| //===- AArch64.cpp --------------------------------------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "InputFiles.h" |
| #include "OutputSections.h" |
| #include "Symbols.h" |
| #include "SyntheticSections.h" |
| #include "Target.h" |
| #include "lld/Common/ErrorHandler.h" |
| #include "llvm/BinaryFormat/ELF.h" |
| #include "llvm/Support/Endian.h" |
| |
| using namespace llvm; |
| using namespace llvm::support::endian; |
| using namespace llvm::ELF; |
| using namespace lld; |
| using namespace lld::elf; |
| |
| // Page(Expr) is the page address of the expression Expr, defined |
| // as (Expr & ~0xFFF). (This applies even if the machine page size |
| // supported by the platform has a different value.) |
| uint64_t elf::getAArch64Page(uint64_t expr) { |
| return expr & ~static_cast<uint64_t>(0xFFF); |
| } |
| |
| namespace { |
| class AArch64 : public TargetInfo { |
| public: |
| AArch64(); |
| RelExpr getRelExpr(RelType type, const Symbol &s, |
| const uint8_t *loc) const override; |
| RelType getDynRel(RelType type) const override; |
| int64_t getImplicitAddend(const uint8_t *buf, RelType type) const override; |
| void writeGotPlt(uint8_t *buf, const Symbol &s) const override; |
| void writeIgotPlt(uint8_t *buf, const Symbol &s) const override; |
| void writePltHeader(uint8_t *buf) const override; |
| void writePlt(uint8_t *buf, const Symbol &sym, |
| uint64_t pltEntryAddr) const override; |
| bool needsThunk(RelExpr expr, RelType type, const InputFile *file, |
| uint64_t branchAddr, const Symbol &s, |
| int64_t a) const override; |
| uint32_t getThunkSectionSpacing() const override; |
| bool inBranchRange(RelType type, uint64_t src, uint64_t dst) const override; |
| bool usesOnlyLowPageBits(RelType type) const override; |
| void relocate(uint8_t *loc, const Relocation &rel, |
| uint64_t val) const override; |
| RelExpr adjustTlsExpr(RelType type, RelExpr expr) const override; |
| void relocateAlloc(InputSectionBase &sec, uint8_t *buf) const override; |
| |
| private: |
| void relaxTlsGdToLe(uint8_t *loc, const Relocation &rel, uint64_t val) const; |
| void relaxTlsGdToIe(uint8_t *loc, const Relocation &rel, uint64_t val) const; |
| void relaxTlsIeToLe(uint8_t *loc, const Relocation &rel, uint64_t val) const; |
| }; |
| |
| struct AArch64Relaxer { |
| bool safeToRelaxAdrpLdr = false; |
| |
| AArch64Relaxer(ArrayRef<Relocation> relocs); |
| bool tryRelaxAdrpAdd(const Relocation &adrpRel, const Relocation &addRel, |
| uint64_t secAddr, uint8_t *buf) const; |
| bool tryRelaxAdrpLdr(const Relocation &adrpRel, const Relocation &ldrRel, |
| uint64_t secAddr, uint8_t *buf) const; |
| }; |
| } // namespace |
| |
| AArch64::AArch64() { |
| copyRel = R_AARCH64_COPY; |
| relativeRel = R_AARCH64_RELATIVE; |
| iRelativeRel = R_AARCH64_IRELATIVE; |
| gotRel = R_AARCH64_GLOB_DAT; |
| pltRel = R_AARCH64_JUMP_SLOT; |
| symbolicRel = R_AARCH64_ABS64; |
| tlsDescRel = R_AARCH64_TLSDESC; |
| tlsGotRel = R_AARCH64_TLS_TPREL64; |
| pltHeaderSize = 32; |
| pltEntrySize = 16; |
| ipltEntrySize = 16; |
| defaultMaxPageSize = 65536; |
| |
| // Align to the 2 MiB page size (known as a superpage or huge page). |
| // FreeBSD automatically promotes 2 MiB-aligned allocations. |
| defaultImageBase = 0x200000; |
| |
| needsThunks = true; |
| } |
| |
| RelExpr AArch64::getRelExpr(RelType type, const Symbol &s, |
| const uint8_t *loc) const { |
| switch (type) { |
| case R_AARCH64_ABS16: |
| case R_AARCH64_ABS32: |
| case R_AARCH64_ABS64: |
| case R_AARCH64_ADD_ABS_LO12_NC: |
| case R_AARCH64_LDST128_ABS_LO12_NC: |
| case R_AARCH64_LDST16_ABS_LO12_NC: |
| case R_AARCH64_LDST32_ABS_LO12_NC: |
| case R_AARCH64_LDST64_ABS_LO12_NC: |
| case R_AARCH64_LDST8_ABS_LO12_NC: |
| case R_AARCH64_MOVW_SABS_G0: |
| case R_AARCH64_MOVW_SABS_G1: |
| case R_AARCH64_MOVW_SABS_G2: |
| case R_AARCH64_MOVW_UABS_G0: |
| case R_AARCH64_MOVW_UABS_G0_NC: |
| case R_AARCH64_MOVW_UABS_G1: |
| case R_AARCH64_MOVW_UABS_G1_NC: |
| case R_AARCH64_MOVW_UABS_G2: |
| case R_AARCH64_MOVW_UABS_G2_NC: |
| case R_AARCH64_MOVW_UABS_G3: |
| return R_ABS; |
| case R_AARCH64_TLSDESC_ADR_PAGE21: |
| return R_AARCH64_TLSDESC_PAGE; |
| case R_AARCH64_TLSDESC_LD64_LO12: |
| case R_AARCH64_TLSDESC_ADD_LO12: |
| return R_TLSDESC; |
| case R_AARCH64_TLSDESC_CALL: |
| return R_TLSDESC_CALL; |
| case R_AARCH64_TLSLE_ADD_TPREL_HI12: |
| case R_AARCH64_TLSLE_ADD_TPREL_LO12_NC: |
| case R_AARCH64_TLSLE_LDST8_TPREL_LO12_NC: |
| case R_AARCH64_TLSLE_LDST16_TPREL_LO12_NC: |
| case R_AARCH64_TLSLE_LDST32_TPREL_LO12_NC: |
| case R_AARCH64_TLSLE_LDST64_TPREL_LO12_NC: |
| case R_AARCH64_TLSLE_LDST128_TPREL_LO12_NC: |
| case R_AARCH64_TLSLE_MOVW_TPREL_G0: |
| case R_AARCH64_TLSLE_MOVW_TPREL_G0_NC: |
| case R_AARCH64_TLSLE_MOVW_TPREL_G1: |
| case R_AARCH64_TLSLE_MOVW_TPREL_G1_NC: |
| case R_AARCH64_TLSLE_MOVW_TPREL_G2: |
| return R_TPREL; |
| case R_AARCH64_CALL26: |
| case R_AARCH64_CONDBR19: |
| case R_AARCH64_JUMP26: |
| case R_AARCH64_TSTBR14: |
| return R_PLT_PC; |
| case R_AARCH64_PLT32: |
| const_cast<Symbol &>(s).thunkAccessed = true; |
| return R_PLT_PC; |
| case R_AARCH64_PREL16: |
| case R_AARCH64_PREL32: |
| case R_AARCH64_PREL64: |
| case R_AARCH64_ADR_PREL_LO21: |
| case R_AARCH64_LD_PREL_LO19: |
| case R_AARCH64_MOVW_PREL_G0: |
| case R_AARCH64_MOVW_PREL_G0_NC: |
| case R_AARCH64_MOVW_PREL_G1: |
| case R_AARCH64_MOVW_PREL_G1_NC: |
| case R_AARCH64_MOVW_PREL_G2: |
| case R_AARCH64_MOVW_PREL_G2_NC: |
| case R_AARCH64_MOVW_PREL_G3: |
| return R_PC; |
| case R_AARCH64_ADR_PREL_PG_HI21: |
| case R_AARCH64_ADR_PREL_PG_HI21_NC: |
| return R_AARCH64_PAGE_PC; |
| case R_AARCH64_LD64_GOT_LO12_NC: |
| case R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC: |
| return R_GOT; |
| case R_AARCH64_LD64_GOTPAGE_LO15: |
| return R_AARCH64_GOT_PAGE; |
| case R_AARCH64_ADR_GOT_PAGE: |
| case R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21: |
| return R_AARCH64_GOT_PAGE_PC; |
| case R_AARCH64_NONE: |
| return R_NONE; |
| default: |
| error(getErrorLocation(loc) + "unknown relocation (" + Twine(type) + |
| ") against symbol " + toString(s)); |
| return R_NONE; |
| } |
| } |
| |
| RelExpr AArch64::adjustTlsExpr(RelType type, RelExpr expr) const { |
| if (expr == R_RELAX_TLS_GD_TO_IE) { |
| if (type == R_AARCH64_TLSDESC_ADR_PAGE21) |
| return R_AARCH64_RELAX_TLS_GD_TO_IE_PAGE_PC; |
| return R_RELAX_TLS_GD_TO_IE_ABS; |
| } |
| return expr; |
| } |
| |
| bool AArch64::usesOnlyLowPageBits(RelType type) const { |
| switch (type) { |
| default: |
| return false; |
| case R_AARCH64_ADD_ABS_LO12_NC: |
| case R_AARCH64_LD64_GOT_LO12_NC: |
| case R_AARCH64_LDST128_ABS_LO12_NC: |
| case R_AARCH64_LDST16_ABS_LO12_NC: |
| case R_AARCH64_LDST32_ABS_LO12_NC: |
| case R_AARCH64_LDST64_ABS_LO12_NC: |
| case R_AARCH64_LDST8_ABS_LO12_NC: |
| case R_AARCH64_TLSDESC_ADD_LO12: |
| case R_AARCH64_TLSDESC_LD64_LO12: |
| case R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC: |
| return true; |
| } |
| } |
| |
| RelType AArch64::getDynRel(RelType type) const { |
| if (type == R_AARCH64_ABS64) |
| return type; |
| return R_AARCH64_NONE; |
| } |
| |
| int64_t AArch64::getImplicitAddend(const uint8_t *buf, RelType type) const { |
| switch (type) { |
| case R_AARCH64_TLSDESC: |
| return read64(buf + 8); |
| case R_AARCH64_NONE: |
| case R_AARCH64_GLOB_DAT: |
| case R_AARCH64_JUMP_SLOT: |
| return 0; |
| case R_AARCH64_PREL32: |
| return SignExtend64<32>(read32(buf)); |
| case R_AARCH64_ABS64: |
| case R_AARCH64_PREL64: |
| case R_AARCH64_RELATIVE: |
| case R_AARCH64_IRELATIVE: |
| case R_AARCH64_TLS_TPREL64: |
| return read64(buf); |
| default: |
| internalLinkerError(getErrorLocation(buf), |
| "cannot read addend for relocation " + toString(type)); |
| return 0; |
| } |
| } |
| |
| void AArch64::writeGotPlt(uint8_t *buf, const Symbol &) const { |
| write64(buf, in.plt->getVA()); |
| } |
| |
| void AArch64::writeIgotPlt(uint8_t *buf, const Symbol &s) const { |
| if (config->writeAddends) |
| write64(buf, s.getVA()); |
| } |
| |
| void AArch64::writePltHeader(uint8_t *buf) const { |
| const uint8_t pltData[] = { |
| 0xf0, 0x7b, 0xbf, 0xa9, // stp x16, x30, [sp,#-16]! |
| 0x10, 0x00, 0x00, 0x90, // adrp x16, Page(&(.got.plt[2])) |
| 0x11, 0x02, 0x40, 0xf9, // ldr x17, [x16, Offset(&(.got.plt[2]))] |
| 0x10, 0x02, 0x00, 0x91, // add x16, x16, Offset(&(.got.plt[2])) |
| 0x20, 0x02, 0x1f, 0xd6, // br x17 |
| 0x1f, 0x20, 0x03, 0xd5, // nop |
| 0x1f, 0x20, 0x03, 0xd5, // nop |
| 0x1f, 0x20, 0x03, 0xd5 // nop |
| }; |
| memcpy(buf, pltData, sizeof(pltData)); |
| |
| uint64_t got = in.gotPlt->getVA(); |
| uint64_t plt = in.plt->getVA(); |
| relocateNoSym(buf + 4, R_AARCH64_ADR_PREL_PG_HI21, |
| getAArch64Page(got + 16) - getAArch64Page(plt + 4)); |
| relocateNoSym(buf + 8, R_AARCH64_LDST64_ABS_LO12_NC, got + 16); |
| relocateNoSym(buf + 12, R_AARCH64_ADD_ABS_LO12_NC, got + 16); |
| } |
| |
| void AArch64::writePlt(uint8_t *buf, const Symbol &sym, |
| uint64_t pltEntryAddr) const { |
| const uint8_t inst[] = { |
| 0x10, 0x00, 0x00, 0x90, // adrp x16, Page(&(.got.plt[n])) |
| 0x11, 0x02, 0x40, 0xf9, // ldr x17, [x16, Offset(&(.got.plt[n]))] |
| 0x10, 0x02, 0x00, 0x91, // add x16, x16, Offset(&(.got.plt[n])) |
| 0x20, 0x02, 0x1f, 0xd6 // br x17 |
| }; |
| memcpy(buf, inst, sizeof(inst)); |
| |
| uint64_t gotPltEntryAddr = sym.getGotPltVA(); |
| relocateNoSym(buf, R_AARCH64_ADR_PREL_PG_HI21, |
| getAArch64Page(gotPltEntryAddr) - getAArch64Page(pltEntryAddr)); |
| relocateNoSym(buf + 4, R_AARCH64_LDST64_ABS_LO12_NC, gotPltEntryAddr); |
| relocateNoSym(buf + 8, R_AARCH64_ADD_ABS_LO12_NC, gotPltEntryAddr); |
| } |
| |
| bool AArch64::needsThunk(RelExpr expr, RelType type, const InputFile *file, |
| uint64_t branchAddr, const Symbol &s, |
| int64_t a) const { |
| // If s is an undefined weak symbol and does not have a PLT entry then it will |
| // be resolved as a branch to the next instruction. If it is hidden, its |
| // binding has been converted to local, so we just check isUndefined() here. A |
| // undefined non-weak symbol will have been errored. |
| if (s.isUndefined() && !s.isInPlt()) |
| return false; |
| // ELF for the ARM 64-bit architecture, section Call and Jump relocations |
| // only permits range extension thunks for R_AARCH64_CALL26 and |
| // R_AARCH64_JUMP26 relocation types. |
| if (type != R_AARCH64_CALL26 && type != R_AARCH64_JUMP26 && |
| type != R_AARCH64_PLT32) |
| return false; |
| uint64_t dst = expr == R_PLT_PC ? s.getPltVA() : s.getVA(a); |
| return !inBranchRange(type, branchAddr, dst); |
| } |
| |
| uint32_t AArch64::getThunkSectionSpacing() const { |
| // See comment in Arch/ARM.cpp for a more detailed explanation of |
| // getThunkSectionSpacing(). For AArch64 the only branches we are permitted to |
| // Thunk have a range of +/- 128 MiB |
| return (128 * 1024 * 1024) - 0x30000; |
| } |
| |
| bool AArch64::inBranchRange(RelType type, uint64_t src, uint64_t dst) const { |
| if (type != R_AARCH64_CALL26 && type != R_AARCH64_JUMP26 && |
| type != R_AARCH64_PLT32) |
| return true; |
| // The AArch64 call and unconditional branch instructions have a range of |
| // +/- 128 MiB. The PLT32 relocation supports a range up to +/- 2 GiB. |
| uint64_t range = |
| type == R_AARCH64_PLT32 ? (UINT64_C(1) << 31) : (128 * 1024 * 1024); |
| if (dst > src) { |
| // Immediate of branch is signed. |
| range -= 4; |
| return dst - src <= range; |
| } |
| return src - dst <= range; |
| } |
| |
| static void write32AArch64Addr(uint8_t *l, uint64_t imm) { |
| uint32_t immLo = (imm & 0x3) << 29; |
| uint32_t immHi = (imm & 0x1FFFFC) << 3; |
| uint64_t mask = (0x3 << 29) | (0x1FFFFC << 3); |
| write32le(l, (read32le(l) & ~mask) | immLo | immHi); |
| } |
| |
| // Return the bits [Start, End] from Val shifted Start bits. |
| // For instance, getBits(0xF0, 4, 8) returns 0xF. |
| static uint64_t getBits(uint64_t val, int start, int end) { |
| uint64_t mask = ((uint64_t)1 << (end + 1 - start)) - 1; |
| return (val >> start) & mask; |
| } |
| |
| static void or32le(uint8_t *p, int32_t v) { write32le(p, read32le(p) | v); } |
| |
| // Update the immediate field in a AARCH64 ldr, str, and add instruction. |
| static void or32AArch64Imm(uint8_t *l, uint64_t imm) { |
| or32le(l, (imm & 0xFFF) << 10); |
| } |
| |
| // Update the immediate field in an AArch64 movk, movn or movz instruction |
| // for a signed relocation, and update the opcode of a movn or movz instruction |
| // to match the sign of the operand. |
| static void writeSMovWImm(uint8_t *loc, uint32_t imm) { |
| uint32_t inst = read32le(loc); |
| // Opcode field is bits 30, 29, with 10 = movz, 00 = movn and 11 = movk. |
| if (!(inst & (1 << 29))) { |
| // movn or movz. |
| if (imm & 0x10000) { |
| // Change opcode to movn, which takes an inverted operand. |
| imm ^= 0xFFFF; |
| inst &= ~(1 << 30); |
| } else { |
| // Change opcode to movz. |
| inst |= 1 << 30; |
| } |
| } |
| write32le(loc, inst | ((imm & 0xFFFF) << 5)); |
| } |
| |
| void AArch64::relocate(uint8_t *loc, const Relocation &rel, |
| uint64_t val) const { |
| switch (rel.type) { |
| case R_AARCH64_ABS16: |
| case R_AARCH64_PREL16: |
| checkIntUInt(loc, val, 16, rel); |
| write16(loc, val); |
| break; |
| case R_AARCH64_ABS32: |
| case R_AARCH64_PREL32: |
| checkIntUInt(loc, val, 32, rel); |
| write32(loc, val); |
| break; |
| case R_AARCH64_PLT32: |
| checkInt(loc, val, 32, rel); |
| write32(loc, val); |
| break; |
| case R_AARCH64_ABS64: |
| // AArch64 relocations to tagged symbols have extended semantics, as |
| // described here: |
| // https://github.com/ARM-software/abi-aa/blob/main/memtagabielf64/memtagabielf64.rst#841extended-semantics-of-r_aarch64_relative. |
| // tl;dr: encode the symbol's special addend in the place, which is an |
| // offset to the point where the logical tag is derived from. Quick hack, if |
| // the addend is within the symbol's bounds, no need to encode the tag |
| // derivation offset. |
| if (rel.sym && rel.sym->isTagged() && |
| (rel.addend < 0 || |
| rel.addend >= static_cast<int64_t>(rel.sym->getSize()))) |
| write64(loc, -rel.addend); |
| else |
| write64(loc, val); |
| break; |
| case R_AARCH64_PREL64: |
| write64(loc, val); |
| break; |
| case R_AARCH64_ADD_ABS_LO12_NC: |
| or32AArch64Imm(loc, val); |
| break; |
| case R_AARCH64_ADR_GOT_PAGE: |
| case R_AARCH64_ADR_PREL_PG_HI21: |
| case R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21: |
| case R_AARCH64_TLSDESC_ADR_PAGE21: |
| checkInt(loc, val, 33, rel); |
| [[fallthrough]]; |
| case R_AARCH64_ADR_PREL_PG_HI21_NC: |
| write32AArch64Addr(loc, val >> 12); |
| break; |
| case R_AARCH64_ADR_PREL_LO21: |
| checkInt(loc, val, 21, rel); |
| write32AArch64Addr(loc, val); |
| break; |
| case R_AARCH64_JUMP26: |
| // Normally we would just write the bits of the immediate field, however |
| // when patching instructions for the cpu errata fix -fix-cortex-a53-843419 |
| // we want to replace a non-branch instruction with a branch immediate |
| // instruction. By writing all the bits of the instruction including the |
| // opcode and the immediate (0 001 | 01 imm26) we can do this |
| // transformation by placing a R_AARCH64_JUMP26 relocation at the offset of |
| // the instruction we want to patch. |
| write32le(loc, 0x14000000); |
| [[fallthrough]]; |
| case R_AARCH64_CALL26: |
| checkInt(loc, val, 28, rel); |
| or32le(loc, (val & 0x0FFFFFFC) >> 2); |
| break; |
| case R_AARCH64_CONDBR19: |
| case R_AARCH64_LD_PREL_LO19: |
| checkAlignment(loc, val, 4, rel); |
| checkInt(loc, val, 21, rel); |
| or32le(loc, (val & 0x1FFFFC) << 3); |
| break; |
| case R_AARCH64_LDST8_ABS_LO12_NC: |
| case R_AARCH64_TLSLE_LDST8_TPREL_LO12_NC: |
| or32AArch64Imm(loc, getBits(val, 0, 11)); |
| break; |
| case R_AARCH64_LDST16_ABS_LO12_NC: |
| case R_AARCH64_TLSLE_LDST16_TPREL_LO12_NC: |
| checkAlignment(loc, val, 2, rel); |
| or32AArch64Imm(loc, getBits(val, 1, 11)); |
| break; |
| case R_AARCH64_LDST32_ABS_LO12_NC: |
| case R_AARCH64_TLSLE_LDST32_TPREL_LO12_NC: |
| checkAlignment(loc, val, 4, rel); |
| or32AArch64Imm(loc, getBits(val, 2, 11)); |
| break; |
| case R_AARCH64_LDST64_ABS_LO12_NC: |
| case R_AARCH64_LD64_GOT_LO12_NC: |
| case R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC: |
| case R_AARCH64_TLSLE_LDST64_TPREL_LO12_NC: |
| case R_AARCH64_TLSDESC_LD64_LO12: |
| checkAlignment(loc, val, 8, rel); |
| or32AArch64Imm(loc, getBits(val, 3, 11)); |
| break; |
| case R_AARCH64_LDST128_ABS_LO12_NC: |
| case R_AARCH64_TLSLE_LDST128_TPREL_LO12_NC: |
| checkAlignment(loc, val, 16, rel); |
| or32AArch64Imm(loc, getBits(val, 4, 11)); |
| break; |
| case R_AARCH64_LD64_GOTPAGE_LO15: |
| checkAlignment(loc, val, 8, rel); |
| or32AArch64Imm(loc, getBits(val, 3, 14)); |
| break; |
| case R_AARCH64_MOVW_UABS_G0: |
| checkUInt(loc, val, 16, rel); |
| [[fallthrough]]; |
| case R_AARCH64_MOVW_UABS_G0_NC: |
| or32le(loc, (val & 0xFFFF) << 5); |
| break; |
| case R_AARCH64_MOVW_UABS_G1: |
| checkUInt(loc, val, 32, rel); |
| [[fallthrough]]; |
| case R_AARCH64_MOVW_UABS_G1_NC: |
| or32le(loc, (val & 0xFFFF0000) >> 11); |
| break; |
| case R_AARCH64_MOVW_UABS_G2: |
| checkUInt(loc, val, 48, rel); |
| [[fallthrough]]; |
| case R_AARCH64_MOVW_UABS_G2_NC: |
| or32le(loc, (val & 0xFFFF00000000) >> 27); |
| break; |
| case R_AARCH64_MOVW_UABS_G3: |
| or32le(loc, (val & 0xFFFF000000000000) >> 43); |
| break; |
| case R_AARCH64_MOVW_PREL_G0: |
| case R_AARCH64_MOVW_SABS_G0: |
| case R_AARCH64_TLSLE_MOVW_TPREL_G0: |
| checkInt(loc, val, 17, rel); |
| [[fallthrough]]; |
| case R_AARCH64_MOVW_PREL_G0_NC: |
| case R_AARCH64_TLSLE_MOVW_TPREL_G0_NC: |
| writeSMovWImm(loc, val); |
| break; |
| case R_AARCH64_MOVW_PREL_G1: |
| case R_AARCH64_MOVW_SABS_G1: |
| case R_AARCH64_TLSLE_MOVW_TPREL_G1: |
| checkInt(loc, val, 33, rel); |
| [[fallthrough]]; |
| case R_AARCH64_MOVW_PREL_G1_NC: |
| case R_AARCH64_TLSLE_MOVW_TPREL_G1_NC: |
| writeSMovWImm(loc, val >> 16); |
| break; |
| case R_AARCH64_MOVW_PREL_G2: |
| case R_AARCH64_MOVW_SABS_G2: |
| case R_AARCH64_TLSLE_MOVW_TPREL_G2: |
| checkInt(loc, val, 49, rel); |
| [[fallthrough]]; |
| case R_AARCH64_MOVW_PREL_G2_NC: |
| writeSMovWImm(loc, val >> 32); |
| break; |
| case R_AARCH64_MOVW_PREL_G3: |
| writeSMovWImm(loc, val >> 48); |
| break; |
| case R_AARCH64_TSTBR14: |
| checkInt(loc, val, 16, rel); |
| or32le(loc, (val & 0xFFFC) << 3); |
| break; |
| case R_AARCH64_TLSLE_ADD_TPREL_HI12: |
| checkUInt(loc, val, 24, rel); |
| or32AArch64Imm(loc, val >> 12); |
| break; |
| case R_AARCH64_TLSLE_ADD_TPREL_LO12_NC: |
| case R_AARCH64_TLSDESC_ADD_LO12: |
| or32AArch64Imm(loc, val); |
| break; |
| case R_AARCH64_TLSDESC: |
| // For R_AARCH64_TLSDESC the addend is stored in the second 64-bit word. |
| write64(loc + 8, val); |
| break; |
| default: |
| llvm_unreachable("unknown relocation"); |
| } |
| } |
| |
| void AArch64::relaxTlsGdToLe(uint8_t *loc, const Relocation &rel, |
| uint64_t val) const { |
| // TLSDESC Global-Dynamic relocation are in the form: |
| // adrp x0, :tlsdesc:v [R_AARCH64_TLSDESC_ADR_PAGE21] |
| // ldr x1, [x0, #:tlsdesc_lo12:v [R_AARCH64_TLSDESC_LD64_LO12] |
| // add x0, x0, :tlsdesc_los:v [R_AARCH64_TLSDESC_ADD_LO12] |
| // .tlsdesccall [R_AARCH64_TLSDESC_CALL] |
| // blr x1 |
| // And it can optimized to: |
| // movz x0, #0x0, lsl #16 |
| // movk x0, #0x10 |
| // nop |
| // nop |
| checkUInt(loc, val, 32, rel); |
| |
| switch (rel.type) { |
| case R_AARCH64_TLSDESC_ADD_LO12: |
| case R_AARCH64_TLSDESC_CALL: |
| write32le(loc, 0xd503201f); // nop |
| return; |
| case R_AARCH64_TLSDESC_ADR_PAGE21: |
| write32le(loc, 0xd2a00000 | (((val >> 16) & 0xffff) << 5)); // movz |
| return; |
| case R_AARCH64_TLSDESC_LD64_LO12: |
| write32le(loc, 0xf2800000 | ((val & 0xffff) << 5)); // movk |
| return; |
| default: |
| llvm_unreachable("unsupported relocation for TLS GD to LE relaxation"); |
| } |
| } |
| |
| void AArch64::relaxTlsGdToIe(uint8_t *loc, const Relocation &rel, |
| uint64_t val) const { |
| // TLSDESC Global-Dynamic relocation are in the form: |
| // adrp x0, :tlsdesc:v [R_AARCH64_TLSDESC_ADR_PAGE21] |
| // ldr x1, [x0, #:tlsdesc_lo12:v [R_AARCH64_TLSDESC_LD64_LO12] |
| // add x0, x0, :tlsdesc_los:v [R_AARCH64_TLSDESC_ADD_LO12] |
| // .tlsdesccall [R_AARCH64_TLSDESC_CALL] |
| // blr x1 |
| // And it can optimized to: |
| // adrp x0, :gottprel:v |
| // ldr x0, [x0, :gottprel_lo12:v] |
| // nop |
| // nop |
| |
| switch (rel.type) { |
| case R_AARCH64_TLSDESC_ADD_LO12: |
| case R_AARCH64_TLSDESC_CALL: |
| write32le(loc, 0xd503201f); // nop |
| break; |
| case R_AARCH64_TLSDESC_ADR_PAGE21: |
| write32le(loc, 0x90000000); // adrp |
| relocateNoSym(loc, R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21, val); |
| break; |
| case R_AARCH64_TLSDESC_LD64_LO12: |
| write32le(loc, 0xf9400000); // ldr |
| relocateNoSym(loc, R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC, val); |
| break; |
| default: |
| llvm_unreachable("unsupported relocation for TLS GD to LE relaxation"); |
| } |
| } |
| |
| void AArch64::relaxTlsIeToLe(uint8_t *loc, const Relocation &rel, |
| uint64_t val) const { |
| checkUInt(loc, val, 32, rel); |
| |
| if (rel.type == R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21) { |
| // Generate MOVZ. |
| uint32_t regNo = read32le(loc) & 0x1f; |
| write32le(loc, (0xd2a00000 | regNo) | (((val >> 16) & 0xffff) << 5)); |
| return; |
| } |
| if (rel.type == R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC) { |
| // Generate MOVK. |
| uint32_t regNo = read32le(loc) & 0x1f; |
| write32le(loc, (0xf2800000 | regNo) | ((val & 0xffff) << 5)); |
| return; |
| } |
| llvm_unreachable("invalid relocation for TLS IE to LE relaxation"); |
| } |
| |
| AArch64Relaxer::AArch64Relaxer(ArrayRef<Relocation> relocs) { |
| if (!config->relax) |
| return; |
| // Check if R_AARCH64_ADR_GOT_PAGE and R_AARCH64_LD64_GOT_LO12_NC |
| // always appear in pairs. |
| size_t i = 0; |
| const size_t size = relocs.size(); |
| for (; i != size; ++i) { |
| if (relocs[i].type == R_AARCH64_ADR_GOT_PAGE) { |
| if (i + 1 < size && relocs[i + 1].type == R_AARCH64_LD64_GOT_LO12_NC) { |
| ++i; |
| continue; |
| } |
| break; |
| } else if (relocs[i].type == R_AARCH64_LD64_GOT_LO12_NC) { |
| break; |
| } |
| } |
| safeToRelaxAdrpLdr = i == size; |
| } |
| |
| bool AArch64Relaxer::tryRelaxAdrpAdd(const Relocation &adrpRel, |
| const Relocation &addRel, uint64_t secAddr, |
| uint8_t *buf) const { |
| // When the address of sym is within the range of ADR then |
| // we may relax |
| // ADRP xn, sym |
| // ADD xn, xn, :lo12: sym |
| // to |
| // NOP |
| // ADR xn, sym |
| if (!config->relax || adrpRel.type != R_AARCH64_ADR_PREL_PG_HI21 || |
| addRel.type != R_AARCH64_ADD_ABS_LO12_NC) |
| return false; |
| // Check if the relocations apply to consecutive instructions. |
| if (adrpRel.offset + 4 != addRel.offset) |
| return false; |
| if (adrpRel.sym != addRel.sym) |
| return false; |
| if (adrpRel.addend != 0 || addRel.addend != 0) |
| return false; |
| |
| uint32_t adrpInstr = read32le(buf + adrpRel.offset); |
| uint32_t addInstr = read32le(buf + addRel.offset); |
| // Check if the first instruction is ADRP and the second instruction is ADD. |
| if ((adrpInstr & 0x9f000000) != 0x90000000 || |
| (addInstr & 0xffc00000) != 0x91000000) |
| return false; |
| uint32_t adrpDestReg = adrpInstr & 0x1f; |
| uint32_t addDestReg = addInstr & 0x1f; |
| uint32_t addSrcReg = (addInstr >> 5) & 0x1f; |
| if (adrpDestReg != addDestReg || adrpDestReg != addSrcReg) |
| return false; |
| |
| Symbol &sym = *adrpRel.sym; |
| // Check if the address difference is within 1MiB range. |
| int64_t val = sym.getVA() - (secAddr + addRel.offset); |
| if (val < -1024 * 1024 || val >= 1024 * 1024) |
| return false; |
| |
| Relocation adrRel = {R_ABS, R_AARCH64_ADR_PREL_LO21, addRel.offset, |
| /*addend=*/0, &sym}; |
| // nop |
| write32le(buf + adrpRel.offset, 0xd503201f); |
| // adr x_<dest_reg> |
| write32le(buf + adrRel.offset, 0x10000000 | adrpDestReg); |
| target->relocate(buf + adrRel.offset, adrRel, val); |
| return true; |
| } |
| |
| bool AArch64Relaxer::tryRelaxAdrpLdr(const Relocation &adrpRel, |
| const Relocation &ldrRel, uint64_t secAddr, |
| uint8_t *buf) const { |
| if (!safeToRelaxAdrpLdr) |
| return false; |
| |
| // When the definition of sym is not preemptible then we may |
| // be able to relax |
| // ADRP xn, :got: sym |
| // LDR xn, [ xn :got_lo12: sym] |
| // to |
| // ADRP xn, sym |
| // ADD xn, xn, :lo_12: sym |
| |
| if (adrpRel.type != R_AARCH64_ADR_GOT_PAGE || |
| ldrRel.type != R_AARCH64_LD64_GOT_LO12_NC) |
| return false; |
| // Check if the relocations apply to consecutive instructions. |
| if (adrpRel.offset + 4 != ldrRel.offset) |
| return false; |
| // Check if the relocations reference the same symbol and |
| // skip undefined, preemptible and STT_GNU_IFUNC symbols. |
| if (!adrpRel.sym || adrpRel.sym != ldrRel.sym || !adrpRel.sym->isDefined() || |
| adrpRel.sym->isPreemptible || adrpRel.sym->isGnuIFunc()) |
| return false; |
| // Check if the addends of the both relocations are zero. |
| if (adrpRel.addend != 0 || ldrRel.addend != 0) |
| return false; |
| uint32_t adrpInstr = read32le(buf + adrpRel.offset); |
| uint32_t ldrInstr = read32le(buf + ldrRel.offset); |
| // Check if the first instruction is ADRP and the second instruction is LDR. |
| if ((adrpInstr & 0x9f000000) != 0x90000000 || |
| (ldrInstr & 0x3b000000) != 0x39000000) |
| return false; |
| // Check the value of the sf bit. |
| if (!(ldrInstr >> 31)) |
| return false; |
| uint32_t adrpDestReg = adrpInstr & 0x1f; |
| uint32_t ldrDestReg = ldrInstr & 0x1f; |
| uint32_t ldrSrcReg = (ldrInstr >> 5) & 0x1f; |
| // Check if ADPR and LDR use the same register. |
| if (adrpDestReg != ldrDestReg || adrpDestReg != ldrSrcReg) |
| return false; |
| |
| Symbol &sym = *adrpRel.sym; |
| // GOT references to absolute symbols can't be relaxed to use ADRP/ADD in |
| // position-independent code because these instructions produce a relative |
| // address. |
| if (config->isPic && !cast<Defined>(sym).section) |
| return false; |
| // Check if the address difference is within 4GB range. |
| int64_t val = |
| getAArch64Page(sym.getVA()) - getAArch64Page(secAddr + adrpRel.offset); |
| if (val != llvm::SignExtend64(val, 33)) |
| return false; |
| |
| Relocation adrpSymRel = {R_AARCH64_PAGE_PC, R_AARCH64_ADR_PREL_PG_HI21, |
| adrpRel.offset, /*addend=*/0, &sym}; |
| Relocation addRel = {R_ABS, R_AARCH64_ADD_ABS_LO12_NC, ldrRel.offset, |
| /*addend=*/0, &sym}; |
| |
| // adrp x_<dest_reg> |
| write32le(buf + adrpSymRel.offset, 0x90000000 | adrpDestReg); |
| // add x_<dest reg>, x_<dest reg> |
| write32le(buf + addRel.offset, 0x91000000 | adrpDestReg | (adrpDestReg << 5)); |
| |
| target->relocate(buf + adrpSymRel.offset, adrpSymRel, |
| SignExtend64(getAArch64Page(sym.getVA()) - |
| getAArch64Page(secAddr + adrpSymRel.offset), |
| 64)); |
| target->relocate(buf + addRel.offset, addRel, SignExtend64(sym.getVA(), 64)); |
| tryRelaxAdrpAdd(adrpSymRel, addRel, secAddr, buf); |
| return true; |
| } |
| |
| // Tagged symbols have upper address bits that are added by the dynamic loader, |
| // and thus need the full 64-bit GOT entry. Do not relax such symbols. |
| static bool needsGotForMemtag(const Relocation &rel) { |
| return rel.sym->isTagged() && needsGot(rel.expr); |
| } |
| |
| void AArch64::relocateAlloc(InputSectionBase &sec, uint8_t *buf) const { |
| uint64_t secAddr = sec.getOutputSection()->addr; |
| if (auto *s = dyn_cast<InputSection>(&sec)) |
| secAddr += s->outSecOff; |
| else if (auto *ehIn = dyn_cast<EhInputSection>(&sec)) |
| secAddr += ehIn->getParent()->outSecOff; |
| AArch64Relaxer relaxer(sec.relocs()); |
| for (size_t i = 0, size = sec.relocs().size(); i != size; ++i) { |
| const Relocation &rel = sec.relocs()[i]; |
| uint8_t *loc = buf + rel.offset; |
| const uint64_t val = |
| sec.getRelocTargetVA(sec.file, rel.type, rel.addend, |
| secAddr + rel.offset, *rel.sym, rel.expr); |
| |
| if (needsGotForMemtag(rel)) { |
| relocate(loc, rel, val); |
| continue; |
| } |
| |
| switch (rel.expr) { |
| case R_AARCH64_GOT_PAGE_PC: |
| if (i + 1 < size && |
| relaxer.tryRelaxAdrpLdr(rel, sec.relocs()[i + 1], secAddr, buf)) { |
| ++i; |
| continue; |
| } |
| break; |
| case R_AARCH64_PAGE_PC: |
| if (i + 1 < size && |
| relaxer.tryRelaxAdrpAdd(rel, sec.relocs()[i + 1], secAddr, buf)) { |
| ++i; |
| continue; |
| } |
| break; |
| case R_AARCH64_RELAX_TLS_GD_TO_IE_PAGE_PC: |
| case R_RELAX_TLS_GD_TO_IE_ABS: |
| relaxTlsGdToIe(loc, rel, val); |
| continue; |
| case R_RELAX_TLS_GD_TO_LE: |
| relaxTlsGdToLe(loc, rel, val); |
| continue; |
| case R_RELAX_TLS_IE_TO_LE: |
| relaxTlsIeToLe(loc, rel, val); |
| continue; |
| default: |
| break; |
| } |
| relocate(loc, rel, val); |
| } |
| } |
| |
| // AArch64 may use security features in variant PLT sequences. These are: |
| // Pointer Authentication (PAC), introduced in armv8.3-a and Branch Target |
| // Indicator (BTI) introduced in armv8.5-a. The additional instructions used |
| // in the variant Plt sequences are encoded in the Hint space so they can be |
| // deployed on older architectures, which treat the instructions as a nop. |
| // PAC and BTI can be combined leading to the following combinations: |
| // writePltHeader |
| // writePltHeaderBti (no PAC Header needed) |
| // writePlt |
| // writePltBti (BTI only) |
| // writePltPac (PAC only) |
| // writePltBtiPac (BTI and PAC) |
| // |
| // When PAC is enabled the dynamic loader encrypts the address that it places |
| // in the .got.plt using the pacia1716 instruction which encrypts the value in |
| // x17 using the modifier in x16. The static linker places autia1716 before the |
| // indirect branch to x17 to authenticate the address in x17 with the modifier |
| // in x16. This makes it more difficult for an attacker to modify the value in |
| // the .got.plt. |
| // |
| // When BTI is enabled all indirect branches must land on a bti instruction. |
| // The static linker must place a bti instruction at the start of any PLT entry |
| // that may be the target of an indirect branch. As the PLT entries call the |
| // lazy resolver indirectly this must have a bti instruction at start. In |
| // general a bti instruction is not needed for a PLT entry as indirect calls |
| // are resolved to the function address and not the PLT entry for the function. |
| // There are a small number of cases where the PLT address can escape, such as |
| // taking the address of a function or ifunc via a non got-generating |
| // relocation, and a shared library refers to that symbol. |
| // |
| // We use the bti c variant of the instruction which permits indirect branches |
| // (br) via x16/x17 and indirect function calls (blr) via any register. The ABI |
| // guarantees that all indirect branches from code requiring BTI protection |
| // will go via x16/x17 |
| |
| namespace { |
| class AArch64BtiPac final : public AArch64 { |
| public: |
| AArch64BtiPac(); |
| void writePltHeader(uint8_t *buf) const override; |
| void writePlt(uint8_t *buf, const Symbol &sym, |
| uint64_t pltEntryAddr) const override; |
| |
| private: |
| bool btiHeader; // bti instruction needed in PLT Header and Entry |
| bool pacEntry; // autia1716 instruction needed in PLT Entry |
| }; |
| } // namespace |
| |
| AArch64BtiPac::AArch64BtiPac() { |
| btiHeader = (config->andFeatures & GNU_PROPERTY_AARCH64_FEATURE_1_BTI); |
| // A BTI (Branch Target Indicator) Plt Entry is only required if the |
| // address of the PLT entry can be taken by the program, which permits an |
| // indirect jump to the PLT entry. This can happen when the address |
| // of the PLT entry for a function is canonicalised due to the address of |
| // the function in an executable being taken by a shared library, or |
| // non-preemptible ifunc referenced by non-GOT-generating, non-PLT-generating |
| // relocations. |
| // The PAC PLT entries require dynamic loader support and this isn't known |
| // from properties in the objects, so we use the command line flag. |
| pacEntry = config->zPacPlt; |
| |
| if (btiHeader || pacEntry) { |
| pltEntrySize = 24; |
| ipltEntrySize = 24; |
| } |
| } |
| |
| void AArch64BtiPac::writePltHeader(uint8_t *buf) const { |
| const uint8_t btiData[] = { 0x5f, 0x24, 0x03, 0xd5 }; // bti c |
| const uint8_t pltData[] = { |
| 0xf0, 0x7b, 0xbf, 0xa9, // stp x16, x30, [sp,#-16]! |
| 0x10, 0x00, 0x00, 0x90, // adrp x16, Page(&(.got.plt[2])) |
| 0x11, 0x02, 0x40, 0xf9, // ldr x17, [x16, Offset(&(.got.plt[2]))] |
| 0x10, 0x02, 0x00, 0x91, // add x16, x16, Offset(&(.got.plt[2])) |
| 0x20, 0x02, 0x1f, 0xd6, // br x17 |
| 0x1f, 0x20, 0x03, 0xd5, // nop |
| 0x1f, 0x20, 0x03, 0xd5 // nop |
| }; |
| const uint8_t nopData[] = { 0x1f, 0x20, 0x03, 0xd5 }; // nop |
| |
| uint64_t got = in.gotPlt->getVA(); |
| uint64_t plt = in.plt->getVA(); |
| |
| if (btiHeader) { |
| // PltHeader is called indirectly by plt[N]. Prefix pltData with a BTI C |
| // instruction. |
| memcpy(buf, btiData, sizeof(btiData)); |
| buf += sizeof(btiData); |
| plt += sizeof(btiData); |
| } |
| memcpy(buf, pltData, sizeof(pltData)); |
| |
| relocateNoSym(buf + 4, R_AARCH64_ADR_PREL_PG_HI21, |
| getAArch64Page(got + 16) - getAArch64Page(plt + 8)); |
| relocateNoSym(buf + 8, R_AARCH64_LDST64_ABS_LO12_NC, got + 16); |
| relocateNoSym(buf + 12, R_AARCH64_ADD_ABS_LO12_NC, got + 16); |
| if (!btiHeader) |
| // We didn't add the BTI c instruction so round out size with NOP. |
| memcpy(buf + sizeof(pltData), nopData, sizeof(nopData)); |
| } |
| |
| void AArch64BtiPac::writePlt(uint8_t *buf, const Symbol &sym, |
| uint64_t pltEntryAddr) const { |
| // The PLT entry is of the form: |
| // [btiData] addrInst (pacBr | stdBr) [nopData] |
| const uint8_t btiData[] = { 0x5f, 0x24, 0x03, 0xd5 }; // bti c |
| const uint8_t addrInst[] = { |
| 0x10, 0x00, 0x00, 0x90, // adrp x16, Page(&(.got.plt[n])) |
| 0x11, 0x02, 0x40, 0xf9, // ldr x17, [x16, Offset(&(.got.plt[n]))] |
| 0x10, 0x02, 0x00, 0x91 // add x16, x16, Offset(&(.got.plt[n])) |
| }; |
| const uint8_t pacBr[] = { |
| 0x9f, 0x21, 0x03, 0xd5, // autia1716 |
| 0x20, 0x02, 0x1f, 0xd6 // br x17 |
| }; |
| const uint8_t stdBr[] = { |
| 0x20, 0x02, 0x1f, 0xd6, // br x17 |
| 0x1f, 0x20, 0x03, 0xd5 // nop |
| }; |
| const uint8_t nopData[] = { 0x1f, 0x20, 0x03, 0xd5 }; // nop |
| |
| // NEEDS_COPY indicates a non-ifunc canonical PLT entry whose address may |
| // escape to shared objects. isInIplt indicates a non-preemptible ifunc. Its |
| // address may escape if referenced by a direct relocation. If relative |
| // vtables are used then if the vtable is in a shared object the offsets will |
| // be to the PLT entry. The condition is conservative. |
| bool hasBti = btiHeader && |
| (sym.hasFlag(NEEDS_COPY) || sym.isInIplt || sym.thunkAccessed); |
| if (hasBti) { |
| memcpy(buf, btiData, sizeof(btiData)); |
| buf += sizeof(btiData); |
| pltEntryAddr += sizeof(btiData); |
| } |
| |
| uint64_t gotPltEntryAddr = sym.getGotPltVA(); |
| memcpy(buf, addrInst, sizeof(addrInst)); |
| relocateNoSym(buf, R_AARCH64_ADR_PREL_PG_HI21, |
| getAArch64Page(gotPltEntryAddr) - getAArch64Page(pltEntryAddr)); |
| relocateNoSym(buf + 4, R_AARCH64_LDST64_ABS_LO12_NC, gotPltEntryAddr); |
| relocateNoSym(buf + 8, R_AARCH64_ADD_ABS_LO12_NC, gotPltEntryAddr); |
| |
| if (pacEntry) |
| memcpy(buf + sizeof(addrInst), pacBr, sizeof(pacBr)); |
| else |
| memcpy(buf + sizeof(addrInst), stdBr, sizeof(stdBr)); |
| if (!hasBti) |
| // We didn't add the BTI c instruction so round out size with NOP. |
| memcpy(buf + sizeof(addrInst) + sizeof(stdBr), nopData, sizeof(nopData)); |
| } |
| |
| static TargetInfo *getTargetInfo() { |
| if ((config->andFeatures & GNU_PROPERTY_AARCH64_FEATURE_1_BTI) || |
| config->zPacPlt) { |
| static AArch64BtiPac t; |
| return &t; |
| } |
| static AArch64 t; |
| return &t; |
| } |
| |
| TargetInfo *elf::getAArch64TargetInfo() { return getTargetInfo(); } |
| |
| template <class ELFT> |
| static void |
| addTaggedSymbolReferences(InputSectionBase &sec, |
| DenseMap<Symbol *, unsigned> &referenceCount) { |
| assert(sec.type == SHT_AARCH64_MEMTAG_GLOBALS_STATIC); |
| |
| const RelsOrRelas<ELFT> rels = sec.relsOrRelas<ELFT>(); |
| if (rels.areRelocsRel()) |
| error("non-RELA relocations are not allowed with memtag globals"); |
| |
| for (const typename ELFT::Rela &rel : rels.relas) { |
| Symbol &sym = sec.getFile<ELFT>()->getRelocTargetSym(rel); |
| // Linker-synthesized symbols such as __executable_start may be referenced |
| // as tagged in input objfiles, and we don't want them to be tagged. A |
| // cheap way to exclude them is the type check, but their type is |
| // STT_NOTYPE. In addition, this save us from checking untaggable symbols, |
| // like functions or TLS symbols. |
| if (sym.type != STT_OBJECT) |
| continue; |
| // STB_LOCAL symbols can't be referenced from outside the object file, and |
| // thus don't need to be checked for references from other object files. |
| if (sym.binding == STB_LOCAL) { |
| sym.setIsTagged(true); |
| continue; |
| } |
| ++referenceCount[&sym]; |
| } |
| sec.markDead(); |
| } |
| |
| // A tagged symbol must be denoted as being tagged by all references and the |
| // chosen definition. For simplicity, here, it must also be denoted as tagged |
| // for all definitions. Otherwise: |
| // |
| // 1. A tagged definition can be used by an untagged declaration, in which case |
| // the untagged access may be PC-relative, causing a tag mismatch at |
| // runtime. |
| // 2. An untagged definition can be used by a tagged declaration, where the |
| // compiler has taken advantage of the increased alignment of the tagged |
| // declaration, but the alignment at runtime is wrong, causing a fault. |
| // |
| // Ideally, this isn't a problem, as any TU that imports or exports tagged |
| // symbols should also be built with tagging. But, to handle these cases, we |
| // demote the symbol to be untagged. |
| void lld::elf::createTaggedSymbols(const SmallVector<ELFFileBase *, 0> &files) { |
| assert(config->emachine == EM_AARCH64 && |
| config->androidMemtagMode != ELF::NT_MEMTAG_LEVEL_NONE); |
| |
| // First, collect all symbols that are marked as tagged, and count how many |
| // times they're marked as tagged. |
| DenseMap<Symbol *, unsigned> taggedSymbolReferenceCount; |
| for (InputFile* file : files) { |
| if (file->kind() != InputFile::ObjKind) |
| continue; |
| for (InputSectionBase *section : file->getSections()) { |
| if (!section || section->type != SHT_AARCH64_MEMTAG_GLOBALS_STATIC || |
| section == &InputSection::discarded) |
| continue; |
| invokeELFT(addTaggedSymbolReferences, *section, |
| taggedSymbolReferenceCount); |
| } |
| } |
| |
| // Now, go through all the symbols. If the number of declarations + |
| // definitions to a symbol exceeds the amount of times they're marked as |
| // tagged, it means we have an objfile that uses the untagged variant of the |
| // symbol. |
| for (InputFile *file : files) { |
| if (file->kind() != InputFile::BinaryKind && |
| file->kind() != InputFile::ObjKind) |
| continue; |
| |
| for (Symbol *symbol : file->getSymbols()) { |
| // See `addTaggedSymbolReferences` for more details. |
| if (symbol->type != STT_OBJECT || |
| symbol->binding == STB_LOCAL) |
| continue; |
| auto it = taggedSymbolReferenceCount.find(symbol); |
| if (it == taggedSymbolReferenceCount.end()) continue; |
| unsigned &remainingAllowedTaggedRefs = it->second; |
| if (remainingAllowedTaggedRefs == 0) { |
| taggedSymbolReferenceCount.erase(it); |
| continue; |
| } |
| --remainingAllowedTaggedRefs; |
| } |
| } |
| |
| // `addTaggedSymbolReferences` has already checked that we have RELA |
| // relocations, the only other way to get written addends is with |
| // --apply-dynamic-relocs. |
| if (!taggedSymbolReferenceCount.empty() && config->writeAddends) |
| error("--apply-dynamic-relocs cannot be used with MTE globals"); |
| |
| // Now, `taggedSymbolReferenceCount` should only contain symbols that are |
| // defined as tagged exactly the same amount as it's referenced, meaning all |
| // uses are tagged. |
| for (auto &[symbol, remainingTaggedRefs] : taggedSymbolReferenceCount) { |
| assert(remainingTaggedRefs == 0 && |
| "Symbol is defined as tagged more times than it's used"); |
| symbol->setIsTagged(true); |
| } |
| } |