| //===- bolt/Passes/CacheMetrics.cpp - Metrics for instruction cache -------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the CacheMetrics class and functions for showing metrics |
| // of cache lines. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "bolt/Passes/CacheMetrics.h" |
| #include "bolt/Core/BinaryBasicBlock.h" |
| #include "bolt/Core/BinaryFunction.h" |
| #include <unordered_map> |
| |
| using namespace llvm; |
| using namespace bolt; |
| |
| namespace { |
| |
| /// The following constants are used to estimate the number of i-TLB cache |
| /// misses for a given code layout. Empirically the values result in high |
| /// correlations between the estimations and the perf measurements. |
| /// The constants do not affect the code layout algorithms. |
| constexpr unsigned ITLBPageSize = 4096; |
| constexpr unsigned ITLBEntries = 16; |
| |
| /// Initialize and return a position map for binary basic blocks |
| void extractBasicBlockInfo( |
| const std::vector<BinaryFunction *> &BinaryFunctions, |
| std::unordered_map<BinaryBasicBlock *, uint64_t> &BBAddr, |
| std::unordered_map<BinaryBasicBlock *, uint64_t> &BBSize) { |
| |
| for (BinaryFunction *BF : BinaryFunctions) { |
| const BinaryContext &BC = BF->getBinaryContext(); |
| for (BinaryBasicBlock &BB : *BF) { |
| if (BF->isSimple() || BC.HasRelocations) { |
| // Use addresses/sizes as in the output binary |
| BBAddr[&BB] = BB.getOutputAddressRange().first; |
| BBSize[&BB] = BB.getOutputSize(); |
| } else { |
| // Output ranges should match the input if the body hasn't changed |
| BBAddr[&BB] = BB.getInputAddressRange().first + BF->getAddress(); |
| BBSize[&BB] = BB.getOriginalSize(); |
| } |
| } |
| } |
| } |
| |
| /// Calculate TSP metric, which quantifies the number of fallthrough jumps in |
| /// the ordering of basic blocks. The method returns a pair |
| /// (the number of fallthrough branches, the total number of branches) |
| std::pair<uint64_t, uint64_t> |
| calcTSPScore(const std::vector<BinaryFunction *> &BinaryFunctions, |
| const std::unordered_map<BinaryBasicBlock *, uint64_t> &BBAddr, |
| const std::unordered_map<BinaryBasicBlock *, uint64_t> &BBSize) { |
| uint64_t Score = 0; |
| uint64_t JumpCount = 0; |
| for (BinaryFunction *BF : BinaryFunctions) { |
| if (!BF->hasProfile()) |
| continue; |
| for (BinaryBasicBlock *SrcBB : BF->getLayout().blocks()) { |
| auto BI = SrcBB->branch_info_begin(); |
| for (BinaryBasicBlock *DstBB : SrcBB->successors()) { |
| if (SrcBB != DstBB && BI->Count != BinaryBasicBlock::COUNT_NO_PROFILE) { |
| JumpCount += BI->Count; |
| |
| auto BBAddrIt = BBAddr.find(SrcBB); |
| assert(BBAddrIt != BBAddr.end()); |
| uint64_t SrcBBAddr = BBAddrIt->second; |
| |
| auto BBSizeIt = BBSize.find(SrcBB); |
| assert(BBSizeIt != BBSize.end()); |
| uint64_t SrcBBSize = BBSizeIt->second; |
| |
| BBAddrIt = BBAddr.find(DstBB); |
| assert(BBAddrIt != BBAddr.end()); |
| uint64_t DstBBAddr = BBAddrIt->second; |
| |
| if (SrcBBAddr + SrcBBSize == DstBBAddr) |
| Score += BI->Count; |
| } |
| ++BI; |
| } |
| } |
| } |
| return std::make_pair(Score, JumpCount); |
| } |
| |
| using Predecessors = std::vector<std::pair<BinaryFunction *, uint64_t>>; |
| |
| /// Build a simplified version of the call graph: For every function, keep |
| /// its callers and the frequencies of the calls |
| std::unordered_map<const BinaryFunction *, Predecessors> |
| extractFunctionCalls(const std::vector<BinaryFunction *> &BinaryFunctions) { |
| std::unordered_map<const BinaryFunction *, Predecessors> Calls; |
| |
| for (BinaryFunction *SrcFunction : BinaryFunctions) { |
| const BinaryContext &BC = SrcFunction->getBinaryContext(); |
| for (const BinaryBasicBlock *BB : SrcFunction->getLayout().blocks()) { |
| // Find call instructions and extract target symbols from each one |
| for (const MCInst &Inst : *BB) { |
| if (!BC.MIB->isCall(Inst)) |
| continue; |
| |
| // Call info |
| const MCSymbol *DstSym = BC.MIB->getTargetSymbol(Inst); |
| uint64_t Count = BB->getKnownExecutionCount(); |
| // Ignore calls w/o information |
| if (DstSym == nullptr || Count == 0) |
| continue; |
| |
| const BinaryFunction *DstFunction = BC.getFunctionForSymbol(DstSym); |
| // Ignore recursive calls |
| if (DstFunction == nullptr || DstFunction->getLayout().block_empty() || |
| DstFunction == SrcFunction) |
| continue; |
| |
| // Record the call |
| Calls[DstFunction].emplace_back(SrcFunction, Count); |
| } |
| } |
| } |
| return Calls; |
| } |
| |
| /// Compute expected hit ratio of the i-TLB cache (optimized by HFSortPlus alg). |
| /// Given an assignment of functions to the i-TLB pages), we divide all |
| /// functions calls into two categories: |
| /// - 'short' ones that have a caller-callee distance less than a page; |
| /// - 'long' ones where the distance exceeds a page. |
| /// The short calls are likely to result in a i-TLB cache hit. For the long |
| /// ones, the hit/miss result depends on the 'hotness' of the page (i.e., how |
| /// often the page is accessed). Assuming that functions are sent to the i-TLB |
| /// cache in a random order, the probability that a page is present in the cache |
| /// is proportional to the number of samples corresponding to the functions on |
| /// the page. The following procedure detects short and long calls, and |
| /// estimates the expected number of cache misses for the long ones. |
| double expectedCacheHitRatio( |
| const std::vector<BinaryFunction *> &BinaryFunctions, |
| const std::unordered_map<BinaryBasicBlock *, uint64_t> &BBAddr, |
| const std::unordered_map<BinaryBasicBlock *, uint64_t> &BBSize) { |
| std::unordered_map<const BinaryFunction *, Predecessors> Calls = |
| extractFunctionCalls(BinaryFunctions); |
| // Compute 'hotness' of the functions |
| double TotalSamples = 0; |
| std::unordered_map<BinaryFunction *, double> FunctionSamples; |
| for (BinaryFunction *BF : BinaryFunctions) { |
| double Samples = 0; |
| for (std::pair<BinaryFunction *, uint64_t> Pair : Calls[BF]) |
| Samples += Pair.second; |
| Samples = std::max(Samples, (double)BF->getKnownExecutionCount()); |
| FunctionSamples[BF] = Samples; |
| TotalSamples += Samples; |
| } |
| |
| // Compute 'hotness' of the pages |
| std::unordered_map<uint64_t, double> PageSamples; |
| for (BinaryFunction *BF : BinaryFunctions) { |
| if (BF->getLayout().block_empty()) |
| continue; |
| auto BBAddrIt = BBAddr.find(BF->getLayout().block_front()); |
| assert(BBAddrIt != BBAddr.end()); |
| const uint64_t Page = BBAddrIt->second / ITLBPageSize; |
| |
| auto FunctionSamplesIt = FunctionSamples.find(BF); |
| assert(FunctionSamplesIt != FunctionSamples.end()); |
| PageSamples[Page] += FunctionSamplesIt->second; |
| } |
| |
| // Computing the expected number of misses for every function |
| double Misses = 0; |
| for (BinaryFunction *BF : BinaryFunctions) { |
| // Skip the function if it has no samples |
| auto FunctionSamplesIt = FunctionSamples.find(BF); |
| assert(FunctionSamplesIt != FunctionSamples.end()); |
| double Samples = FunctionSamplesIt->second; |
| if (BF->getLayout().block_empty() || Samples == 0.0) |
| continue; |
| |
| auto BBAddrIt = BBAddr.find(BF->getLayout().block_front()); |
| assert(BBAddrIt != BBAddr.end()); |
| const uint64_t Page = BBAddrIt->second / ITLBPageSize; |
| // The probability that the page is not present in the cache |
| const double MissProb = |
| pow(1.0 - PageSamples[Page] / TotalSamples, ITLBEntries); |
| |
| // Processing all callers of the function |
| for (std::pair<BinaryFunction *, uint64_t> Pair : Calls[BF]) { |
| BinaryFunction *SrcFunction = Pair.first; |
| |
| BBAddrIt = BBAddr.find(SrcFunction->getLayout().block_front()); |
| assert(BBAddrIt != BBAddr.end()); |
| const uint64_t SrcPage = BBAddrIt->second / ITLBPageSize; |
| // Is this a 'long' or a 'short' call? |
| if (Page != SrcPage) { |
| // This is a miss |
| Misses += MissProb * Pair.second; |
| } |
| Samples -= Pair.second; |
| } |
| assert(Samples >= 0.0 && "Function samples computed incorrectly"); |
| // The remaining samples likely come from the jitted code |
| Misses += Samples * MissProb; |
| } |
| |
| return 100.0 * (1.0 - Misses / TotalSamples); |
| } |
| |
| } // namespace |
| |
| void CacheMetrics::printAll(raw_ostream &OS, |
| const std::vector<BinaryFunction *> &BFs) { |
| // Stats related to hot-cold code splitting |
| size_t NumFunctions = 0; |
| size_t NumProfiledFunctions = 0; |
| size_t NumHotFunctions = 0; |
| size_t NumBlocks = 0; |
| size_t NumHotBlocks = 0; |
| |
| size_t TotalCodeMinAddr = std::numeric_limits<size_t>::max(); |
| size_t TotalCodeMaxAddr = 0; |
| size_t HotCodeMinAddr = std::numeric_limits<size_t>::max(); |
| size_t HotCodeMaxAddr = 0; |
| |
| for (BinaryFunction *BF : BFs) { |
| NumFunctions++; |
| if (BF->hasProfile()) |
| NumProfiledFunctions++; |
| if (BF->hasValidIndex()) |
| NumHotFunctions++; |
| for (const BinaryBasicBlock &BB : *BF) { |
| NumBlocks++; |
| size_t BBAddrMin = BB.getOutputAddressRange().first; |
| size_t BBAddrMax = BB.getOutputAddressRange().second; |
| TotalCodeMinAddr = std::min(TotalCodeMinAddr, BBAddrMin); |
| TotalCodeMaxAddr = std::max(TotalCodeMaxAddr, BBAddrMax); |
| if (BF->hasValidIndex() && !BB.isCold()) { |
| NumHotBlocks++; |
| HotCodeMinAddr = std::min(HotCodeMinAddr, BBAddrMin); |
| HotCodeMaxAddr = std::max(HotCodeMaxAddr, BBAddrMax); |
| } |
| } |
| } |
| |
| OS << format(" There are %zu functions;", NumFunctions) |
| << format(" %zu (%.2lf%%) are in the hot section,", NumHotFunctions, |
| 100.0 * NumHotFunctions / NumFunctions) |
| << format(" %zu (%.2lf%%) have profile\n", NumProfiledFunctions, |
| 100.0 * NumProfiledFunctions / NumFunctions); |
| OS << format(" There are %zu basic blocks;", NumBlocks) |
| << format(" %zu (%.2lf%%) are in the hot section\n", NumHotBlocks, |
| 100.0 * NumHotBlocks / NumBlocks); |
| |
| assert(TotalCodeMinAddr <= TotalCodeMaxAddr && "incorrect output addresses"); |
| size_t HotCodeSize = HotCodeMaxAddr - HotCodeMinAddr; |
| size_t TotalCodeSize = TotalCodeMaxAddr - TotalCodeMinAddr; |
| |
| size_t HugePage2MB = 2 << 20; |
| OS << format(" Hot code takes %.2lf%% of binary (%zu bytes out of %zu, " |
| "%.2lf huge pages)\n", |
| 100.0 * HotCodeSize / TotalCodeSize, HotCodeSize, TotalCodeSize, |
| double(HotCodeSize) / HugePage2MB); |
| |
| // Stats related to expected cache performance |
| std::unordered_map<BinaryBasicBlock *, uint64_t> BBAddr; |
| std::unordered_map<BinaryBasicBlock *, uint64_t> BBSize; |
| extractBasicBlockInfo(BFs, BBAddr, BBSize); |
| |
| OS << " Expected i-TLB cache hit ratio: " |
| << format("%.2lf%%\n", expectedCacheHitRatio(BFs, BBAddr, BBSize)); |
| |
| auto Stats = calcTSPScore(BFs, BBAddr, BBSize); |
| OS << " TSP score: " |
| << format("%.2lf%% (%zu out of %zu)\n", |
| 100.0 * Stats.first / std::max<uint64_t>(Stats.second, 1), |
| Stats.first, Stats.second); |
| } |