| //===---- CGBuiltin.cpp - Emit LLVM Code for builtins ---------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This contains code to emit Builtin calls as LLVM code. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "ABIInfo.h" |
| #include "CGCUDARuntime.h" |
| #include "CGCXXABI.h" |
| #include "CGHLSLRuntime.h" |
| #include "CGObjCRuntime.h" |
| #include "CGOpenCLRuntime.h" |
| #include "CGRecordLayout.h" |
| #include "CGValue.h" |
| #include "CodeGenFunction.h" |
| #include "CodeGenModule.h" |
| #include "ConstantEmitter.h" |
| #include "PatternInit.h" |
| #include "TargetInfo.h" |
| #include "clang/AST/ASTContext.h" |
| #include "clang/AST/Attr.h" |
| #include "clang/AST/Decl.h" |
| #include "clang/AST/Expr.h" |
| #include "clang/AST/OSLog.h" |
| #include "clang/AST/OperationKinds.h" |
| #include "clang/AST/StmtVisitor.h" |
| #include "clang/AST/Type.h" |
| #include "clang/Basic/TargetBuiltins.h" |
| #include "clang/Basic/TargetInfo.h" |
| #include "clang/Basic/TargetOptions.h" |
| #include "clang/CodeGen/CGFunctionInfo.h" |
| #include "clang/Frontend/FrontendDiagnostic.h" |
| #include "llvm/ADT/APFloat.h" |
| #include "llvm/ADT/APInt.h" |
| #include "llvm/ADT/FloatingPointMode.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/StringExtras.h" |
| #include "llvm/Analysis/ValueTracking.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/IR/InlineAsm.h" |
| #include "llvm/IR/Intrinsics.h" |
| #include "llvm/IR/IntrinsicsAArch64.h" |
| #include "llvm/IR/IntrinsicsAMDGPU.h" |
| #include "llvm/IR/IntrinsicsARM.h" |
| #include "llvm/IR/IntrinsicsBPF.h" |
| #include "llvm/IR/IntrinsicsDirectX.h" |
| #include "llvm/IR/IntrinsicsHexagon.h" |
| #include "llvm/IR/IntrinsicsNVPTX.h" |
| #include "llvm/IR/IntrinsicsPowerPC.h" |
| #include "llvm/IR/IntrinsicsR600.h" |
| #include "llvm/IR/IntrinsicsRISCV.h" |
| #include "llvm/IR/IntrinsicsS390.h" |
| #include "llvm/IR/IntrinsicsWebAssembly.h" |
| #include "llvm/IR/IntrinsicsX86.h" |
| #include "llvm/IR/MDBuilder.h" |
| #include "llvm/IR/MatrixBuilder.h" |
| #include "llvm/IR/MemoryModelRelaxationAnnotations.h" |
| #include "llvm/Support/AMDGPUAddrSpace.h" |
| #include "llvm/Support/ConvertUTF.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Support/ScopedPrinter.h" |
| #include "llvm/TargetParser/AArch64TargetParser.h" |
| #include "llvm/TargetParser/RISCVISAInfo.h" |
| #include "llvm/TargetParser/RISCVTargetParser.h" |
| #include "llvm/TargetParser/X86TargetParser.h" |
| #include <numeric> |
| #include <optional> |
| #include <utility> |
| |
| using namespace clang; |
| using namespace CodeGen; |
| using namespace llvm; |
| |
| static void initializeAlloca(CodeGenFunction &CGF, AllocaInst *AI, Value *Size, |
| Align AlignmentInBytes) { |
| ConstantInt *Byte; |
| switch (CGF.getLangOpts().getTrivialAutoVarInit()) { |
| case LangOptions::TrivialAutoVarInitKind::Uninitialized: |
| // Nothing to initialize. |
| return; |
| case LangOptions::TrivialAutoVarInitKind::Zero: |
| Byte = CGF.Builder.getInt8(0x00); |
| break; |
| case LangOptions::TrivialAutoVarInitKind::Pattern: { |
| llvm::Type *Int8 = llvm::IntegerType::getInt8Ty(CGF.CGM.getLLVMContext()); |
| Byte = llvm::dyn_cast<llvm::ConstantInt>( |
| initializationPatternFor(CGF.CGM, Int8)); |
| break; |
| } |
| } |
| if (CGF.CGM.stopAutoInit()) |
| return; |
| auto *I = CGF.Builder.CreateMemSet(AI, Byte, Size, AlignmentInBytes); |
| I->addAnnotationMetadata("auto-init"); |
| } |
| |
| static Value *handleHlslClip(const CallExpr *E, CodeGenFunction *CGF) { |
| Value *Op0 = CGF->EmitScalarExpr(E->getArg(0)); |
| |
| Constant *FZeroConst = ConstantFP::getZero(CGF->FloatTy); |
| Value *CMP; |
| Value *LastInstr; |
| |
| if (const auto *VecTy = E->getArg(0)->getType()->getAs<clang::VectorType>()) { |
| FZeroConst = ConstantVector::getSplat( |
| ElementCount::getFixed(VecTy->getNumElements()), FZeroConst); |
| auto *FCompInst = CGF->Builder.CreateFCmpOLT(Op0, FZeroConst); |
| CMP = CGF->Builder.CreateIntrinsic( |
| CGF->Builder.getInt1Ty(), CGF->CGM.getHLSLRuntime().getAnyIntrinsic(), |
| {FCompInst}, nullptr); |
| } else |
| CMP = CGF->Builder.CreateFCmpOLT(Op0, FZeroConst); |
| |
| if (CGF->CGM.getTarget().getTriple().isDXIL()) |
| LastInstr = CGF->Builder.CreateIntrinsic( |
| CGF->VoidTy, llvm::Intrinsic::dx_discard, {CMP}, nullptr); |
| else if (CGF->CGM.getTarget().getTriple().isSPIRV()) { |
| BasicBlock *LT0 = CGF->createBasicBlock("lt0", CGF->CurFn); |
| BasicBlock *End = CGF->createBasicBlock("end", CGF->CurFn); |
| |
| CGF->Builder.CreateCondBr(CMP, LT0, End); |
| |
| CGF->Builder.SetInsertPoint(LT0); |
| |
| CGF->Builder.CreateIntrinsic(CGF->VoidTy, llvm::Intrinsic::spv_discard, {}, |
| nullptr); |
| |
| LastInstr = CGF->Builder.CreateBr(End); |
| |
| CGF->Builder.SetInsertPoint(End); |
| } else { |
| llvm_unreachable("Backend Codegen not supported."); |
| } |
| |
| return LastInstr; |
| } |
| |
| static Value *handleHlslSplitdouble(const CallExpr *E, CodeGenFunction *CGF) { |
| Value *Op0 = CGF->EmitScalarExpr(E->getArg(0)); |
| const auto *OutArg1 = dyn_cast<HLSLOutArgExpr>(E->getArg(1)); |
| const auto *OutArg2 = dyn_cast<HLSLOutArgExpr>(E->getArg(2)); |
| |
| CallArgList Args; |
| LValue Op1TmpLValue = |
| CGF->EmitHLSLOutArgExpr(OutArg1, Args, OutArg1->getType()); |
| LValue Op2TmpLValue = |
| CGF->EmitHLSLOutArgExpr(OutArg2, Args, OutArg2->getType()); |
| |
| if (CGF->getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) |
| Args.reverseWritebacks(); |
| |
| Value *LowBits = nullptr; |
| Value *HighBits = nullptr; |
| |
| if (CGF->CGM.getTarget().getTriple().isDXIL()) { |
| |
| llvm::Type *RetElementTy = CGF->Int32Ty; |
| if (auto *Op0VecTy = E->getArg(0)->getType()->getAs<clang::VectorType>()) |
| RetElementTy = llvm::VectorType::get( |
| CGF->Int32Ty, ElementCount::getFixed(Op0VecTy->getNumElements())); |
| auto *RetTy = llvm::StructType::get(RetElementTy, RetElementTy); |
| |
| CallInst *CI = CGF->Builder.CreateIntrinsic( |
| RetTy, Intrinsic::dx_splitdouble, {Op0}, nullptr, "hlsl.splitdouble"); |
| |
| LowBits = CGF->Builder.CreateExtractValue(CI, 0); |
| HighBits = CGF->Builder.CreateExtractValue(CI, 1); |
| |
| } else { |
| // For Non DXIL targets we generate the instructions. |
| |
| if (!Op0->getType()->isVectorTy()) { |
| FixedVectorType *DestTy = FixedVectorType::get(CGF->Int32Ty, 2); |
| Value *Bitcast = CGF->Builder.CreateBitCast(Op0, DestTy); |
| |
| LowBits = CGF->Builder.CreateExtractElement(Bitcast, (uint64_t)0); |
| HighBits = CGF->Builder.CreateExtractElement(Bitcast, 1); |
| } else { |
| int NumElements = 1; |
| if (const auto *VecTy = |
| E->getArg(0)->getType()->getAs<clang::VectorType>()) |
| NumElements = VecTy->getNumElements(); |
| |
| FixedVectorType *Uint32VecTy = |
| FixedVectorType::get(CGF->Int32Ty, NumElements * 2); |
| Value *Uint32Vec = CGF->Builder.CreateBitCast(Op0, Uint32VecTy); |
| if (NumElements == 1) { |
| LowBits = CGF->Builder.CreateExtractElement(Uint32Vec, (uint64_t)0); |
| HighBits = CGF->Builder.CreateExtractElement(Uint32Vec, 1); |
| } else { |
| SmallVector<int> EvenMask, OddMask; |
| for (int I = 0, E = NumElements; I != E; ++I) { |
| EvenMask.push_back(I * 2); |
| OddMask.push_back(I * 2 + 1); |
| } |
| LowBits = CGF->Builder.CreateShuffleVector(Uint32Vec, EvenMask); |
| HighBits = CGF->Builder.CreateShuffleVector(Uint32Vec, OddMask); |
| } |
| } |
| } |
| CGF->Builder.CreateStore(LowBits, Op1TmpLValue.getAddress()); |
| auto *LastInst = |
| CGF->Builder.CreateStore(HighBits, Op2TmpLValue.getAddress()); |
| CGF->EmitWritebacks(Args); |
| return LastInst; |
| } |
| |
| static Value *handleAsDoubleBuiltin(CodeGenFunction &CGF, const CallExpr *E) { |
| assert((E->getArg(0)->getType()->hasUnsignedIntegerRepresentation() && |
| E->getArg(1)->getType()->hasUnsignedIntegerRepresentation()) && |
| "asdouble operands types mismatch"); |
| Value *OpLowBits = CGF.EmitScalarExpr(E->getArg(0)); |
| Value *OpHighBits = CGF.EmitScalarExpr(E->getArg(1)); |
| |
| llvm::Type *ResultType = CGF.DoubleTy; |
| int N = 1; |
| if (auto *VTy = E->getArg(0)->getType()->getAs<clang::VectorType>()) { |
| N = VTy->getNumElements(); |
| ResultType = llvm::FixedVectorType::get(CGF.DoubleTy, N); |
| } |
| |
| if (CGF.CGM.getTarget().getTriple().isDXIL()) |
| return CGF.Builder.CreateIntrinsic( |
| /*ReturnType=*/ResultType, Intrinsic::dx_asdouble, |
| ArrayRef<Value *>{OpLowBits, OpHighBits}, nullptr, "hlsl.asdouble"); |
| |
| if (!E->getArg(0)->getType()->isVectorType()) { |
| OpLowBits = CGF.Builder.CreateVectorSplat(1, OpLowBits); |
| OpHighBits = CGF.Builder.CreateVectorSplat(1, OpHighBits); |
| } |
| |
| llvm::SmallVector<int> Mask; |
| for (int i = 0; i < N; i++) { |
| Mask.push_back(i); |
| Mask.push_back(i + N); |
| } |
| |
| Value *BitVec = CGF.Builder.CreateShuffleVector(OpLowBits, OpHighBits, Mask); |
| |
| return CGF.Builder.CreateBitCast(BitVec, ResultType); |
| } |
| |
| /// Helper for the read/write/add/inc X18 builtins: read the X18 register and |
| /// return it as an i8 pointer. |
| Value *readX18AsPtr(CodeGenFunction &CGF) { |
| LLVMContext &Context = CGF.CGM.getLLVMContext(); |
| llvm::Metadata *Ops[] = {llvm::MDString::get(Context, "x18")}; |
| llvm::MDNode *RegName = llvm::MDNode::get(Context, Ops); |
| llvm::Value *Metadata = llvm::MetadataAsValue::get(Context, RegName); |
| llvm::Function *F = |
| CGF.CGM.getIntrinsic(llvm::Intrinsic::read_register, {CGF.Int64Ty}); |
| llvm::Value *X18 = CGF.Builder.CreateCall(F, Metadata); |
| return CGF.Builder.CreateIntToPtr(X18, CGF.Int8PtrTy); |
| } |
| |
| /// getBuiltinLibFunction - Given a builtin id for a function like |
| /// "__builtin_fabsf", return a Function* for "fabsf". |
| llvm::Constant *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD, |
| unsigned BuiltinID) { |
| assert(Context.BuiltinInfo.isLibFunction(BuiltinID)); |
| |
| // Get the name, skip over the __builtin_ prefix (if necessary). |
| StringRef Name; |
| GlobalDecl D(FD); |
| |
| // TODO: This list should be expanded or refactored after all GCC-compatible |
| // std libcall builtins are implemented. |
| static SmallDenseMap<unsigned, StringRef, 64> F128Builtins{ |
| {Builtin::BI__builtin___fprintf_chk, "__fprintf_chkieee128"}, |
| {Builtin::BI__builtin___printf_chk, "__printf_chkieee128"}, |
| {Builtin::BI__builtin___snprintf_chk, "__snprintf_chkieee128"}, |
| {Builtin::BI__builtin___sprintf_chk, "__sprintf_chkieee128"}, |
| {Builtin::BI__builtin___vfprintf_chk, "__vfprintf_chkieee128"}, |
| {Builtin::BI__builtin___vprintf_chk, "__vprintf_chkieee128"}, |
| {Builtin::BI__builtin___vsnprintf_chk, "__vsnprintf_chkieee128"}, |
| {Builtin::BI__builtin___vsprintf_chk, "__vsprintf_chkieee128"}, |
| {Builtin::BI__builtin_fprintf, "__fprintfieee128"}, |
| {Builtin::BI__builtin_printf, "__printfieee128"}, |
| {Builtin::BI__builtin_snprintf, "__snprintfieee128"}, |
| {Builtin::BI__builtin_sprintf, "__sprintfieee128"}, |
| {Builtin::BI__builtin_vfprintf, "__vfprintfieee128"}, |
| {Builtin::BI__builtin_vprintf, "__vprintfieee128"}, |
| {Builtin::BI__builtin_vsnprintf, "__vsnprintfieee128"}, |
| {Builtin::BI__builtin_vsprintf, "__vsprintfieee128"}, |
| {Builtin::BI__builtin_fscanf, "__fscanfieee128"}, |
| {Builtin::BI__builtin_scanf, "__scanfieee128"}, |
| {Builtin::BI__builtin_sscanf, "__sscanfieee128"}, |
| {Builtin::BI__builtin_vfscanf, "__vfscanfieee128"}, |
| {Builtin::BI__builtin_vscanf, "__vscanfieee128"}, |
| {Builtin::BI__builtin_vsscanf, "__vsscanfieee128"}, |
| {Builtin::BI__builtin_nexttowardf128, "__nexttowardieee128"}, |
| }; |
| |
| // The AIX library functions frexpl, ldexpl, and modfl are for 128-bit |
| // IBM 'long double' (i.e. __ibm128). Map to the 'double' versions |
| // if it is 64-bit 'long double' mode. |
| static SmallDenseMap<unsigned, StringRef, 4> AIXLongDouble64Builtins{ |
| {Builtin::BI__builtin_frexpl, "frexp"}, |
| {Builtin::BI__builtin_ldexpl, "ldexp"}, |
| {Builtin::BI__builtin_modfl, "modf"}, |
| }; |
| |
| // If the builtin has been declared explicitly with an assembler label, |
| // use the mangled name. This differs from the plain label on platforms |
| // that prefix labels. |
| if (FD->hasAttr<AsmLabelAttr>()) |
| Name = getMangledName(D); |
| else { |
| // TODO: This mutation should also be applied to other targets other than |
| // PPC, after backend supports IEEE 128-bit style libcalls. |
| if (getTriple().isPPC64() && |
| &getTarget().getLongDoubleFormat() == &llvm::APFloat::IEEEquad() && |
| F128Builtins.contains(BuiltinID)) |
| Name = F128Builtins[BuiltinID]; |
| else if (getTriple().isOSAIX() && |
| &getTarget().getLongDoubleFormat() == |
| &llvm::APFloat::IEEEdouble() && |
| AIXLongDouble64Builtins.contains(BuiltinID)) |
| Name = AIXLongDouble64Builtins[BuiltinID]; |
| else |
| Name = Context.BuiltinInfo.getName(BuiltinID).substr(10); |
| } |
| |
| llvm::FunctionType *Ty = |
| cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType())); |
| |
| return GetOrCreateLLVMFunction(Name, Ty, D, /*ForVTable=*/false); |
| } |
| |
| /// Emit the conversions required to turn the given value into an |
| /// integer of the given size. |
| static Value *EmitToInt(CodeGenFunction &CGF, llvm::Value *V, |
| QualType T, llvm::IntegerType *IntType) { |
| V = CGF.EmitToMemory(V, T); |
| |
| if (V->getType()->isPointerTy()) |
| return CGF.Builder.CreatePtrToInt(V, IntType); |
| |
| assert(V->getType() == IntType); |
| return V; |
| } |
| |
| static Value *EmitFromInt(CodeGenFunction &CGF, llvm::Value *V, |
| QualType T, llvm::Type *ResultType) { |
| V = CGF.EmitFromMemory(V, T); |
| |
| if (ResultType->isPointerTy()) |
| return CGF.Builder.CreateIntToPtr(V, ResultType); |
| |
| assert(V->getType() == ResultType); |
| return V; |
| } |
| |
| static Address CheckAtomicAlignment(CodeGenFunction &CGF, const CallExpr *E) { |
| ASTContext &Ctx = CGF.getContext(); |
| Address Ptr = CGF.EmitPointerWithAlignment(E->getArg(0)); |
| unsigned Bytes = Ptr.getElementType()->isPointerTy() |
| ? Ctx.getTypeSizeInChars(Ctx.VoidPtrTy).getQuantity() |
| : Ptr.getElementType()->getScalarSizeInBits() / 8; |
| unsigned Align = Ptr.getAlignment().getQuantity(); |
| if (Align % Bytes != 0) { |
| DiagnosticsEngine &Diags = CGF.CGM.getDiags(); |
| Diags.Report(E->getBeginLoc(), diag::warn_sync_op_misaligned); |
| // Force address to be at least naturally-aligned. |
| return Ptr.withAlignment(CharUnits::fromQuantity(Bytes)); |
| } |
| return Ptr; |
| } |
| |
| /// Utility to insert an atomic instruction based on Intrinsic::ID |
| /// and the expression node. |
| static Value *MakeBinaryAtomicValue( |
| CodeGenFunction &CGF, llvm::AtomicRMWInst::BinOp Kind, const CallExpr *E, |
| AtomicOrdering Ordering = AtomicOrdering::SequentiallyConsistent) { |
| |
| QualType T = E->getType(); |
| assert(E->getArg(0)->getType()->isPointerType()); |
| assert(CGF.getContext().hasSameUnqualifiedType(T, |
| E->getArg(0)->getType()->getPointeeType())); |
| assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType())); |
| |
| Address DestAddr = CheckAtomicAlignment(CGF, E); |
| |
| llvm::IntegerType *IntType = llvm::IntegerType::get( |
| CGF.getLLVMContext(), CGF.getContext().getTypeSize(T)); |
| |
| llvm::Value *Val = CGF.EmitScalarExpr(E->getArg(1)); |
| llvm::Type *ValueType = Val->getType(); |
| Val = EmitToInt(CGF, Val, T, IntType); |
| |
| llvm::Value *Result = |
| CGF.Builder.CreateAtomicRMW(Kind, DestAddr, Val, Ordering); |
| return EmitFromInt(CGF, Result, T, ValueType); |
| } |
| |
| static Value *EmitNontemporalStore(CodeGenFunction &CGF, const CallExpr *E) { |
| Value *Val = CGF.EmitScalarExpr(E->getArg(0)); |
| Address Addr = CGF.EmitPointerWithAlignment(E->getArg(1)); |
| |
| Val = CGF.EmitToMemory(Val, E->getArg(0)->getType()); |
| LValue LV = CGF.MakeAddrLValue(Addr, E->getArg(0)->getType()); |
| LV.setNontemporal(true); |
| CGF.EmitStoreOfScalar(Val, LV, false); |
| return nullptr; |
| } |
| |
| static Value *EmitNontemporalLoad(CodeGenFunction &CGF, const CallExpr *E) { |
| Address Addr = CGF.EmitPointerWithAlignment(E->getArg(0)); |
| |
| LValue LV = CGF.MakeAddrLValue(Addr, E->getType()); |
| LV.setNontemporal(true); |
| return CGF.EmitLoadOfScalar(LV, E->getExprLoc()); |
| } |
| |
| static RValue EmitBinaryAtomic(CodeGenFunction &CGF, |
| llvm::AtomicRMWInst::BinOp Kind, |
| const CallExpr *E) { |
| return RValue::get(MakeBinaryAtomicValue(CGF, Kind, E)); |
| } |
| |
| /// Utility to insert an atomic instruction based Intrinsic::ID and |
| /// the expression node, where the return value is the result of the |
| /// operation. |
| static RValue EmitBinaryAtomicPost(CodeGenFunction &CGF, |
| llvm::AtomicRMWInst::BinOp Kind, |
| const CallExpr *E, |
| Instruction::BinaryOps Op, |
| bool Invert = false) { |
| QualType T = E->getType(); |
| assert(E->getArg(0)->getType()->isPointerType()); |
| assert(CGF.getContext().hasSameUnqualifiedType(T, |
| E->getArg(0)->getType()->getPointeeType())); |
| assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType())); |
| |
| Address DestAddr = CheckAtomicAlignment(CGF, E); |
| |
| llvm::IntegerType *IntType = llvm::IntegerType::get( |
| CGF.getLLVMContext(), CGF.getContext().getTypeSize(T)); |
| |
| llvm::Value *Val = CGF.EmitScalarExpr(E->getArg(1)); |
| llvm::Type *ValueType = Val->getType(); |
| Val = EmitToInt(CGF, Val, T, IntType); |
| |
| llvm::Value *Result = CGF.Builder.CreateAtomicRMW( |
| Kind, DestAddr, Val, llvm::AtomicOrdering::SequentiallyConsistent); |
| Result = CGF.Builder.CreateBinOp(Op, Result, Val); |
| if (Invert) |
| Result = |
| CGF.Builder.CreateBinOp(llvm::Instruction::Xor, Result, |
| llvm::ConstantInt::getAllOnesValue(IntType)); |
| Result = EmitFromInt(CGF, Result, T, ValueType); |
| return RValue::get(Result); |
| } |
| |
| /// Utility to insert an atomic cmpxchg instruction. |
| /// |
| /// @param CGF The current codegen function. |
| /// @param E Builtin call expression to convert to cmpxchg. |
| /// arg0 - address to operate on |
| /// arg1 - value to compare with |
| /// arg2 - new value |
| /// @param ReturnBool Specifies whether to return success flag of |
| /// cmpxchg result or the old value. |
| /// |
| /// @returns result of cmpxchg, according to ReturnBool |
| /// |
| /// Note: In order to lower Microsoft's _InterlockedCompareExchange* intrinsics |
| /// invoke the function EmitAtomicCmpXchgForMSIntrin. |
| static Value *MakeAtomicCmpXchgValue(CodeGenFunction &CGF, const CallExpr *E, |
| bool ReturnBool) { |
| QualType T = ReturnBool ? E->getArg(1)->getType() : E->getType(); |
| Address DestAddr = CheckAtomicAlignment(CGF, E); |
| |
| llvm::IntegerType *IntType = llvm::IntegerType::get( |
| CGF.getLLVMContext(), CGF.getContext().getTypeSize(T)); |
| |
| Value *Cmp = CGF.EmitScalarExpr(E->getArg(1)); |
| llvm::Type *ValueType = Cmp->getType(); |
| Cmp = EmitToInt(CGF, Cmp, T, IntType); |
| Value *New = EmitToInt(CGF, CGF.EmitScalarExpr(E->getArg(2)), T, IntType); |
| |
| Value *Pair = CGF.Builder.CreateAtomicCmpXchg( |
| DestAddr, Cmp, New, llvm::AtomicOrdering::SequentiallyConsistent, |
| llvm::AtomicOrdering::SequentiallyConsistent); |
| if (ReturnBool) |
| // Extract boolean success flag and zext it to int. |
| return CGF.Builder.CreateZExt(CGF.Builder.CreateExtractValue(Pair, 1), |
| CGF.ConvertType(E->getType())); |
| else |
| // Extract old value and emit it using the same type as compare value. |
| return EmitFromInt(CGF, CGF.Builder.CreateExtractValue(Pair, 0), T, |
| ValueType); |
| } |
| |
| /// This function should be invoked to emit atomic cmpxchg for Microsoft's |
| /// _InterlockedCompareExchange* intrinsics which have the following signature: |
| /// T _InterlockedCompareExchange(T volatile *Destination, |
| /// T Exchange, |
| /// T Comparand); |
| /// |
| /// Whereas the llvm 'cmpxchg' instruction has the following syntax: |
| /// cmpxchg *Destination, Comparand, Exchange. |
| /// So we need to swap Comparand and Exchange when invoking |
| /// CreateAtomicCmpXchg. That is the reason we could not use the above utility |
| /// function MakeAtomicCmpXchgValue since it expects the arguments to be |
| /// already swapped. |
| |
| static |
| Value *EmitAtomicCmpXchgForMSIntrin(CodeGenFunction &CGF, const CallExpr *E, |
| AtomicOrdering SuccessOrdering = AtomicOrdering::SequentiallyConsistent) { |
| assert(E->getArg(0)->getType()->isPointerType()); |
| assert(CGF.getContext().hasSameUnqualifiedType( |
| E->getType(), E->getArg(0)->getType()->getPointeeType())); |
| assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), |
| E->getArg(1)->getType())); |
| assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), |
| E->getArg(2)->getType())); |
| |
| Address DestAddr = CheckAtomicAlignment(CGF, E); |
| |
| auto *Exchange = CGF.EmitScalarExpr(E->getArg(1)); |
| auto *RTy = Exchange->getType(); |
| |
| auto *Comparand = CGF.EmitScalarExpr(E->getArg(2)); |
| |
| if (RTy->isPointerTy()) { |
| Exchange = CGF.Builder.CreatePtrToInt(Exchange, CGF.IntPtrTy); |
| Comparand = CGF.Builder.CreatePtrToInt(Comparand, CGF.IntPtrTy); |
| } |
| |
| // For Release ordering, the failure ordering should be Monotonic. |
| auto FailureOrdering = SuccessOrdering == AtomicOrdering::Release ? |
| AtomicOrdering::Monotonic : |
| SuccessOrdering; |
| |
| // The atomic instruction is marked volatile for consistency with MSVC. This |
| // blocks the few atomics optimizations that LLVM has. If we want to optimize |
| // _Interlocked* operations in the future, we will have to remove the volatile |
| // marker. |
| auto *CmpXchg = CGF.Builder.CreateAtomicCmpXchg( |
| DestAddr, Comparand, Exchange, SuccessOrdering, FailureOrdering); |
| CmpXchg->setVolatile(true); |
| |
| auto *Result = CGF.Builder.CreateExtractValue(CmpXchg, 0); |
| if (RTy->isPointerTy()) { |
| Result = CGF.Builder.CreateIntToPtr(Result, RTy); |
| } |
| |
| return Result; |
| } |
| |
| // 64-bit Microsoft platforms support 128 bit cmpxchg operations. They are |
| // prototyped like this: |
| // |
| // unsigned char _InterlockedCompareExchange128...( |
| // __int64 volatile * _Destination, |
| // __int64 _ExchangeHigh, |
| // __int64 _ExchangeLow, |
| // __int64 * _ComparandResult); |
| // |
| // Note that Destination is assumed to be at least 16-byte aligned, despite |
| // being typed int64. |
| |
| static Value *EmitAtomicCmpXchg128ForMSIntrin(CodeGenFunction &CGF, |
| const CallExpr *E, |
| AtomicOrdering SuccessOrdering) { |
| assert(E->getNumArgs() == 4); |
| llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0)); |
| llvm::Value *ExchangeHigh = CGF.EmitScalarExpr(E->getArg(1)); |
| llvm::Value *ExchangeLow = CGF.EmitScalarExpr(E->getArg(2)); |
| Address ComparandAddr = CGF.EmitPointerWithAlignment(E->getArg(3)); |
| |
| assert(DestPtr->getType()->isPointerTy()); |
| assert(!ExchangeHigh->getType()->isPointerTy()); |
| assert(!ExchangeLow->getType()->isPointerTy()); |
| |
| // For Release ordering, the failure ordering should be Monotonic. |
| auto FailureOrdering = SuccessOrdering == AtomicOrdering::Release |
| ? AtomicOrdering::Monotonic |
| : SuccessOrdering; |
| |
| // Convert to i128 pointers and values. Alignment is also overridden for |
| // destination pointer. |
| llvm::Type *Int128Ty = llvm::IntegerType::get(CGF.getLLVMContext(), 128); |
| Address DestAddr(DestPtr, Int128Ty, |
| CGF.getContext().toCharUnitsFromBits(128)); |
| ComparandAddr = ComparandAddr.withElementType(Int128Ty); |
| |
| // (((i128)hi) << 64) | ((i128)lo) |
| ExchangeHigh = CGF.Builder.CreateZExt(ExchangeHigh, Int128Ty); |
| ExchangeLow = CGF.Builder.CreateZExt(ExchangeLow, Int128Ty); |
| ExchangeHigh = |
| CGF.Builder.CreateShl(ExchangeHigh, llvm::ConstantInt::get(Int128Ty, 64)); |
| llvm::Value *Exchange = CGF.Builder.CreateOr(ExchangeHigh, ExchangeLow); |
| |
| // Load the comparand for the instruction. |
| llvm::Value *Comparand = CGF.Builder.CreateLoad(ComparandAddr); |
| |
| auto *CXI = CGF.Builder.CreateAtomicCmpXchg(DestAddr, Comparand, Exchange, |
| SuccessOrdering, FailureOrdering); |
| |
| // The atomic instruction is marked volatile for consistency with MSVC. This |
| // blocks the few atomics optimizations that LLVM has. If we want to optimize |
| // _Interlocked* operations in the future, we will have to remove the volatile |
| // marker. |
| CXI->setVolatile(true); |
| |
| // Store the result as an outparameter. |
| CGF.Builder.CreateStore(CGF.Builder.CreateExtractValue(CXI, 0), |
| ComparandAddr); |
| |
| // Get the success boolean and zero extend it to i8. |
| Value *Success = CGF.Builder.CreateExtractValue(CXI, 1); |
| return CGF.Builder.CreateZExt(Success, CGF.Int8Ty); |
| } |
| |
| static Value *EmitAtomicIncrementValue(CodeGenFunction &CGF, const CallExpr *E, |
| AtomicOrdering Ordering = AtomicOrdering::SequentiallyConsistent) { |
| assert(E->getArg(0)->getType()->isPointerType()); |
| |
| auto *IntTy = CGF.ConvertType(E->getType()); |
| Address DestAddr = CheckAtomicAlignment(CGF, E); |
| auto *Result = CGF.Builder.CreateAtomicRMW( |
| AtomicRMWInst::Add, DestAddr, ConstantInt::get(IntTy, 1), Ordering); |
| return CGF.Builder.CreateAdd(Result, ConstantInt::get(IntTy, 1)); |
| } |
| |
| static Value *EmitAtomicDecrementValue( |
| CodeGenFunction &CGF, const CallExpr *E, |
| AtomicOrdering Ordering = AtomicOrdering::SequentiallyConsistent) { |
| assert(E->getArg(0)->getType()->isPointerType()); |
| |
| auto *IntTy = CGF.ConvertType(E->getType()); |
| Address DestAddr = CheckAtomicAlignment(CGF, E); |
| auto *Result = CGF.Builder.CreateAtomicRMW( |
| AtomicRMWInst::Sub, DestAddr, ConstantInt::get(IntTy, 1), Ordering); |
| return CGF.Builder.CreateSub(Result, ConstantInt::get(IntTy, 1)); |
| } |
| |
| // Build a plain volatile load. |
| static Value *EmitISOVolatileLoad(CodeGenFunction &CGF, const CallExpr *E) { |
| Value *Ptr = CGF.EmitScalarExpr(E->getArg(0)); |
| QualType ElTy = E->getArg(0)->getType()->getPointeeType(); |
| CharUnits LoadSize = CGF.getContext().getTypeSizeInChars(ElTy); |
| llvm::Type *ITy = |
| llvm::IntegerType::get(CGF.getLLVMContext(), LoadSize.getQuantity() * 8); |
| llvm::LoadInst *Load = CGF.Builder.CreateAlignedLoad(ITy, Ptr, LoadSize); |
| Load->setVolatile(true); |
| return Load; |
| } |
| |
| // Build a plain volatile store. |
| static Value *EmitISOVolatileStore(CodeGenFunction &CGF, const CallExpr *E) { |
| Value *Ptr = CGF.EmitScalarExpr(E->getArg(0)); |
| Value *Value = CGF.EmitScalarExpr(E->getArg(1)); |
| QualType ElTy = E->getArg(0)->getType()->getPointeeType(); |
| CharUnits StoreSize = CGF.getContext().getTypeSizeInChars(ElTy); |
| llvm::StoreInst *Store = |
| CGF.Builder.CreateAlignedStore(Value, Ptr, StoreSize); |
| Store->setVolatile(true); |
| return Store; |
| } |
| |
| // Emit a simple mangled intrinsic that has 1 argument and a return type |
| // matching the argument type. Depending on mode, this may be a constrained |
| // floating-point intrinsic. |
| static Value *emitUnaryMaybeConstrainedFPBuiltin(CodeGenFunction &CGF, |
| const CallExpr *E, unsigned IntrinsicID, |
| unsigned ConstrainedIntrinsicID) { |
| llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0)); |
| |
| CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E); |
| if (CGF.Builder.getIsFPConstrained()) { |
| Function *F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID, Src0->getType()); |
| return CGF.Builder.CreateConstrainedFPCall(F, { Src0 }); |
| } else { |
| Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType()); |
| return CGF.Builder.CreateCall(F, Src0); |
| } |
| } |
| |
| // Emit an intrinsic that has 2 operands of the same type as its result. |
| // Depending on mode, this may be a constrained floating-point intrinsic. |
| static Value *emitBinaryMaybeConstrainedFPBuiltin(CodeGenFunction &CGF, |
| const CallExpr *E, unsigned IntrinsicID, |
| unsigned ConstrainedIntrinsicID) { |
| llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0)); |
| llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1)); |
| |
| CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E); |
| if (CGF.Builder.getIsFPConstrained()) { |
| Function *F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID, Src0->getType()); |
| return CGF.Builder.CreateConstrainedFPCall(F, { Src0, Src1 }); |
| } else { |
| Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType()); |
| return CGF.Builder.CreateCall(F, { Src0, Src1 }); |
| } |
| } |
| |
| // Has second type mangled argument. |
| static Value *emitBinaryExpMaybeConstrainedFPBuiltin( |
| CodeGenFunction &CGF, const CallExpr *E, llvm::Intrinsic::ID IntrinsicID, |
| llvm::Intrinsic::ID ConstrainedIntrinsicID) { |
| llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0)); |
| llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1)); |
| |
| CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E); |
| if (CGF.Builder.getIsFPConstrained()) { |
| Function *F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID, |
| {Src0->getType(), Src1->getType()}); |
| return CGF.Builder.CreateConstrainedFPCall(F, {Src0, Src1}); |
| } |
| |
| Function *F = |
| CGF.CGM.getIntrinsic(IntrinsicID, {Src0->getType(), Src1->getType()}); |
| return CGF.Builder.CreateCall(F, {Src0, Src1}); |
| } |
| |
| // Emit an intrinsic that has 3 operands of the same type as its result. |
| // Depending on mode, this may be a constrained floating-point intrinsic. |
| static Value *emitTernaryMaybeConstrainedFPBuiltin(CodeGenFunction &CGF, |
| const CallExpr *E, unsigned IntrinsicID, |
| unsigned ConstrainedIntrinsicID) { |
| llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0)); |
| llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1)); |
| llvm::Value *Src2 = CGF.EmitScalarExpr(E->getArg(2)); |
| |
| CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E); |
| if (CGF.Builder.getIsFPConstrained()) { |
| Function *F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID, Src0->getType()); |
| return CGF.Builder.CreateConstrainedFPCall(F, { Src0, Src1, Src2 }); |
| } else { |
| Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType()); |
| return CGF.Builder.CreateCall(F, { Src0, Src1, Src2 }); |
| } |
| } |
| |
| // Emit an intrinsic where all operands are of the same type as the result. |
| // Depending on mode, this may be a constrained floating-point intrinsic. |
| static Value *emitCallMaybeConstrainedFPBuiltin(CodeGenFunction &CGF, |
| unsigned IntrinsicID, |
| unsigned ConstrainedIntrinsicID, |
| llvm::Type *Ty, |
| ArrayRef<Value *> Args) { |
| Function *F; |
| if (CGF.Builder.getIsFPConstrained()) |
| F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID, Ty); |
| else |
| F = CGF.CGM.getIntrinsic(IntrinsicID, Ty); |
| |
| if (CGF.Builder.getIsFPConstrained()) |
| return CGF.Builder.CreateConstrainedFPCall(F, Args); |
| else |
| return CGF.Builder.CreateCall(F, Args); |
| } |
| |
| // Emit a simple intrinsic that has N scalar arguments and a return type |
| // matching the argument type. It is assumed that only the first argument is |
| // overloaded. |
| template <unsigned N> |
| static Value *emitBuiltinWithOneOverloadedType(CodeGenFunction &CGF, |
| const CallExpr *E, |
| unsigned IntrinsicID, |
| llvm::StringRef Name = "") { |
| static_assert(N, "expect non-empty argument"); |
| SmallVector<Value *, N> Args; |
| for (unsigned I = 0; I < N; ++I) |
| Args.push_back(CGF.EmitScalarExpr(E->getArg(I))); |
| Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Args[0]->getType()); |
| return CGF.Builder.CreateCall(F, Args, Name); |
| } |
| |
| // Emit an intrinsic that has 1 float or double operand, and 1 integer. |
| static Value *emitFPIntBuiltin(CodeGenFunction &CGF, |
| const CallExpr *E, |
| unsigned IntrinsicID) { |
| llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0)); |
| llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1)); |
| |
| Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType()); |
| return CGF.Builder.CreateCall(F, {Src0, Src1}); |
| } |
| |
| // Emit an intrinsic that has overloaded integer result and fp operand. |
| static Value * |
| emitMaybeConstrainedFPToIntRoundBuiltin(CodeGenFunction &CGF, const CallExpr *E, |
| unsigned IntrinsicID, |
| unsigned ConstrainedIntrinsicID) { |
| llvm::Type *ResultType = CGF.ConvertType(E->getType()); |
| llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0)); |
| |
| if (CGF.Builder.getIsFPConstrained()) { |
| CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E); |
| Function *F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID, |
| {ResultType, Src0->getType()}); |
| return CGF.Builder.CreateConstrainedFPCall(F, {Src0}); |
| } else { |
| Function *F = |
| CGF.CGM.getIntrinsic(IntrinsicID, {ResultType, Src0->getType()}); |
| return CGF.Builder.CreateCall(F, Src0); |
| } |
| } |
| |
| static Value *emitFrexpBuiltin(CodeGenFunction &CGF, const CallExpr *E, |
| llvm::Intrinsic::ID IntrinsicID) { |
| llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0)); |
| llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1)); |
| |
| QualType IntPtrTy = E->getArg(1)->getType()->getPointeeType(); |
| llvm::Type *IntTy = CGF.ConvertType(IntPtrTy); |
| llvm::Function *F = |
| CGF.CGM.getIntrinsic(IntrinsicID, {Src0->getType(), IntTy}); |
| llvm::Value *Call = CGF.Builder.CreateCall(F, Src0); |
| |
| llvm::Value *Exp = CGF.Builder.CreateExtractValue(Call, 1); |
| LValue LV = CGF.MakeNaturalAlignAddrLValue(Src1, IntPtrTy); |
| CGF.EmitStoreOfScalar(Exp, LV); |
| |
| return CGF.Builder.CreateExtractValue(Call, 0); |
| } |
| |
| static void emitSincosBuiltin(CodeGenFunction &CGF, const CallExpr *E, |
| llvm::Intrinsic::ID IntrinsicID) { |
| llvm::Value *Val = CGF.EmitScalarExpr(E->getArg(0)); |
| llvm::Value *Dest0 = CGF.EmitScalarExpr(E->getArg(1)); |
| llvm::Value *Dest1 = CGF.EmitScalarExpr(E->getArg(2)); |
| |
| llvm::Function *F = CGF.CGM.getIntrinsic(IntrinsicID, {Val->getType()}); |
| llvm::Value *Call = CGF.Builder.CreateCall(F, Val); |
| |
| llvm::Value *SinResult = CGF.Builder.CreateExtractValue(Call, 0); |
| llvm::Value *CosResult = CGF.Builder.CreateExtractValue(Call, 1); |
| |
| QualType DestPtrType = E->getArg(1)->getType()->getPointeeType(); |
| LValue SinLV = CGF.MakeNaturalAlignAddrLValue(Dest0, DestPtrType); |
| LValue CosLV = CGF.MakeNaturalAlignAddrLValue(Dest1, DestPtrType); |
| |
| llvm::StoreInst *StoreSin = |
| CGF.Builder.CreateStore(SinResult, SinLV.getAddress()); |
| llvm::StoreInst *StoreCos = |
| CGF.Builder.CreateStore(CosResult, CosLV.getAddress()); |
| |
| // Mark the two stores as non-aliasing with each other. The order of stores |
| // emitted by this builtin is arbitrary, enforcing a particular order will |
| // prevent optimizations later on. |
| llvm::MDBuilder MDHelper(CGF.getLLVMContext()); |
| MDNode *Domain = MDHelper.createAnonymousAliasScopeDomain(); |
| MDNode *AliasScope = MDHelper.createAnonymousAliasScope(Domain); |
| MDNode *AliasScopeList = MDNode::get(Call->getContext(), AliasScope); |
| StoreSin->setMetadata(LLVMContext::MD_alias_scope, AliasScopeList); |
| StoreCos->setMetadata(LLVMContext::MD_noalias, AliasScopeList); |
| } |
| |
| /// EmitFAbs - Emit a call to @llvm.fabs(). |
| static Value *EmitFAbs(CodeGenFunction &CGF, Value *V) { |
| Function *F = CGF.CGM.getIntrinsic(Intrinsic::fabs, V->getType()); |
| llvm::CallInst *Call = CGF.Builder.CreateCall(F, V); |
| Call->setDoesNotAccessMemory(); |
| return Call; |
| } |
| |
| /// Emit the computation of the sign bit for a floating point value. Returns |
| /// the i1 sign bit value. |
| static Value *EmitSignBit(CodeGenFunction &CGF, Value *V) { |
| LLVMContext &C = CGF.CGM.getLLVMContext(); |
| |
| llvm::Type *Ty = V->getType(); |
| int Width = Ty->getPrimitiveSizeInBits(); |
| llvm::Type *IntTy = llvm::IntegerType::get(C, Width); |
| V = CGF.Builder.CreateBitCast(V, IntTy); |
| if (Ty->isPPC_FP128Ty()) { |
| // We want the sign bit of the higher-order double. The bitcast we just |
| // did works as if the double-double was stored to memory and then |
| // read as an i128. The "store" will put the higher-order double in the |
| // lower address in both little- and big-Endian modes, but the "load" |
| // will treat those bits as a different part of the i128: the low bits in |
| // little-Endian, the high bits in big-Endian. Therefore, on big-Endian |
| // we need to shift the high bits down to the low before truncating. |
| Width >>= 1; |
| if (CGF.getTarget().isBigEndian()) { |
| Value *ShiftCst = llvm::ConstantInt::get(IntTy, Width); |
| V = CGF.Builder.CreateLShr(V, ShiftCst); |
| } |
| // We are truncating value in order to extract the higher-order |
| // double, which we will be using to extract the sign from. |
| IntTy = llvm::IntegerType::get(C, Width); |
| V = CGF.Builder.CreateTrunc(V, IntTy); |
| } |
| Value *Zero = llvm::Constant::getNullValue(IntTy); |
| return CGF.Builder.CreateICmpSLT(V, Zero); |
| } |
| |
| /// Checks no arguments or results are passed indirectly in the ABI (i.e. via a |
| /// hidden pointer). This is used to check annotating FP libcalls (that could |
| /// set `errno`) with "int" TBAA metadata is safe. If any floating-point |
| /// arguments are passed indirectly, setup for the call could be incorrectly |
| /// optimized out. |
| static bool HasNoIndirectArgumentsOrResults(CGFunctionInfo const &FnInfo) { |
| auto IsIndirect = [&](ABIArgInfo const &info) { |
| return info.isIndirect() || info.isIndirectAliased() || info.isInAlloca(); |
| }; |
| return !IsIndirect(FnInfo.getReturnInfo()) && |
| llvm::none_of(FnInfo.arguments(), |
| [&](CGFunctionInfoArgInfo const &ArgInfo) { |
| return IsIndirect(ArgInfo.info); |
| }); |
| } |
| |
| static RValue emitLibraryCall(CodeGenFunction &CGF, const FunctionDecl *FD, |
| const CallExpr *E, llvm::Constant *calleeValue) { |
| CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E); |
| CGCallee callee = CGCallee::forDirect(calleeValue, GlobalDecl(FD)); |
| llvm::CallBase *callOrInvoke = nullptr; |
| CGFunctionInfo const *FnInfo = nullptr; |
| RValue Call = |
| CGF.EmitCall(E->getCallee()->getType(), callee, E, ReturnValueSlot(), |
| /*Chain=*/nullptr, &callOrInvoke, &FnInfo); |
| |
| if (unsigned BuiltinID = FD->getBuiltinID()) { |
| // Check whether a FP math builtin function, such as BI__builtin_expf |
| ASTContext &Context = CGF.getContext(); |
| bool ConstWithoutErrnoAndExceptions = |
| Context.BuiltinInfo.isConstWithoutErrnoAndExceptions(BuiltinID); |
| // Restrict to target with errno, for example, MacOS doesn't set errno. |
| // TODO: Support builtin function with complex type returned, eg: cacosh |
| if (ConstWithoutErrnoAndExceptions && CGF.CGM.getLangOpts().MathErrno && |
| !CGF.Builder.getIsFPConstrained() && Call.isScalar() && |
| HasNoIndirectArgumentsOrResults(*FnInfo)) { |
| // Emit "int" TBAA metadata on FP math libcalls. |
| clang::QualType IntTy = Context.IntTy; |
| TBAAAccessInfo TBAAInfo = CGF.CGM.getTBAAAccessInfo(IntTy); |
| CGF.CGM.DecorateInstructionWithTBAA(callOrInvoke, TBAAInfo); |
| } |
| } |
| return Call; |
| } |
| |
| /// Emit a call to llvm.{sadd,uadd,ssub,usub,smul,umul}.with.overflow.* |
| /// depending on IntrinsicID. |
| /// |
| /// \arg CGF The current codegen function. |
| /// \arg IntrinsicID The ID for the Intrinsic we wish to generate. |
| /// \arg X The first argument to the llvm.*.with.overflow.*. |
| /// \arg Y The second argument to the llvm.*.with.overflow.*. |
| /// \arg Carry The carry returned by the llvm.*.with.overflow.*. |
| /// \returns The result (i.e. sum/product) returned by the intrinsic. |
| static llvm::Value *EmitOverflowIntrinsic(CodeGenFunction &CGF, |
| const llvm::Intrinsic::ID IntrinsicID, |
| llvm::Value *X, llvm::Value *Y, |
| llvm::Value *&Carry) { |
| // Make sure we have integers of the same width. |
| assert(X->getType() == Y->getType() && |
| "Arguments must be the same type. (Did you forget to make sure both " |
| "arguments have the same integer width?)"); |
| |
| Function *Callee = CGF.CGM.getIntrinsic(IntrinsicID, X->getType()); |
| llvm::Value *Tmp = CGF.Builder.CreateCall(Callee, {X, Y}); |
| Carry = CGF.Builder.CreateExtractValue(Tmp, 1); |
| return CGF.Builder.CreateExtractValue(Tmp, 0); |
| } |
| |
| static Value *emitRangedBuiltin(CodeGenFunction &CGF, unsigned IntrinsicID, |
| int low, int high) { |
| Function *F = CGF.CGM.getIntrinsic(IntrinsicID, {}); |
| llvm::CallInst *Call = CGF.Builder.CreateCall(F); |
| llvm::ConstantRange CR(APInt(32, low), APInt(32, high)); |
| Call->addRangeRetAttr(CR); |
| Call->addRetAttr(llvm::Attribute::AttrKind::NoUndef); |
| return Call; |
| } |
| |
| namespace { |
| struct WidthAndSignedness { |
| unsigned Width; |
| bool Signed; |
| }; |
| } |
| |
| static WidthAndSignedness |
| getIntegerWidthAndSignedness(const clang::ASTContext &context, |
| const clang::QualType Type) { |
| assert(Type->isIntegerType() && "Given type is not an integer."); |
| unsigned Width = context.getIntWidth(Type); |
| bool Signed = Type->isSignedIntegerType(); |
| return {Width, Signed}; |
| } |
| |
| // Given one or more integer types, this function produces an integer type that |
| // encompasses them: any value in one of the given types could be expressed in |
| // the encompassing type. |
| static struct WidthAndSignedness |
| EncompassingIntegerType(ArrayRef<struct WidthAndSignedness> Types) { |
| assert(Types.size() > 0 && "Empty list of types."); |
| |
| // If any of the given types is signed, we must return a signed type. |
| bool Signed = false; |
| for (const auto &Type : Types) { |
| Signed |= Type.Signed; |
| } |
| |
| // The encompassing type must have a width greater than or equal to the width |
| // of the specified types. Additionally, if the encompassing type is signed, |
| // its width must be strictly greater than the width of any unsigned types |
| // given. |
| unsigned Width = 0; |
| for (const auto &Type : Types) { |
| unsigned MinWidth = Type.Width + (Signed && !Type.Signed); |
| if (Width < MinWidth) { |
| Width = MinWidth; |
| } |
| } |
| |
| return {Width, Signed}; |
| } |
| |
| Value *CodeGenFunction::EmitVAStartEnd(Value *ArgValue, bool IsStart) { |
| Intrinsic::ID inst = IsStart ? Intrinsic::vastart : Intrinsic::vaend; |
| return Builder.CreateCall(CGM.getIntrinsic(inst, {ArgValue->getType()}), |
| ArgValue); |
| } |
| |
| /// Checks if using the result of __builtin_object_size(p, @p From) in place of |
| /// __builtin_object_size(p, @p To) is correct |
| static bool areBOSTypesCompatible(int From, int To) { |
| // Note: Our __builtin_object_size implementation currently treats Type=0 and |
| // Type=2 identically. Encoding this implementation detail here may make |
| // improving __builtin_object_size difficult in the future, so it's omitted. |
| return From == To || (From == 0 && To == 1) || (From == 3 && To == 2); |
| } |
| |
| static llvm::Value * |
| getDefaultBuiltinObjectSizeResult(unsigned Type, llvm::IntegerType *ResType) { |
| return ConstantInt::get(ResType, (Type & 2) ? 0 : -1, /*isSigned=*/true); |
| } |
| |
| llvm::Value * |
| CodeGenFunction::evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type, |
| llvm::IntegerType *ResType, |
| llvm::Value *EmittedE, |
| bool IsDynamic) { |
| uint64_t ObjectSize; |
| if (!E->tryEvaluateObjectSize(ObjectSize, getContext(), Type)) |
| return emitBuiltinObjectSize(E, Type, ResType, EmittedE, IsDynamic); |
| return ConstantInt::get(ResType, ObjectSize, /*isSigned=*/true); |
| } |
| |
| namespace { |
| |
| /// StructFieldAccess is a simple visitor class to grab the first MemberExpr |
| /// from an Expr. It records any ArraySubscriptExpr we meet along the way. |
| class StructFieldAccess |
| : public ConstStmtVisitor<StructFieldAccess, const MemberExpr *> { |
| bool AddrOfSeen = false; |
| |
| public: |
| const ArraySubscriptExpr *ASE = nullptr; |
| |
| const MemberExpr *VisitMemberExpr(const MemberExpr *E) { |
| if (AddrOfSeen && E->getType()->isArrayType()) |
| // Avoid forms like '&ptr->array'. |
| return nullptr; |
| return E; |
| } |
| |
| const MemberExpr *VisitArraySubscriptExpr(const ArraySubscriptExpr *E) { |
| if (ASE) |
| // We don't support multiple subscripts. |
| return nullptr; |
| |
| AddrOfSeen = false; // '&ptr->array[idx]' is okay. |
| ASE = E; |
| return Visit(E->getBase()); |
| } |
| const MemberExpr *VisitCastExpr(const CastExpr *E) { |
| return Visit(E->getSubExpr()); |
| } |
| const MemberExpr *VisitParenExpr(const ParenExpr *E) { |
| return Visit(E->getSubExpr()); |
| } |
| const MemberExpr *VisitUnaryAddrOf(const clang::UnaryOperator *E) { |
| AddrOfSeen = true; |
| return Visit(E->getSubExpr()); |
| } |
| const MemberExpr *VisitUnaryDeref(const clang::UnaryOperator *E) { |
| AddrOfSeen = false; |
| return Visit(E->getSubExpr()); |
| } |
| }; |
| |
| } // end anonymous namespace |
| |
| /// Find a struct's flexible array member. It may be embedded inside multiple |
| /// sub-structs, but must still be the last field. |
| static const FieldDecl *FindFlexibleArrayMemberField(CodeGenFunction &CGF, |
| ASTContext &Ctx, |
| const RecordDecl *RD) { |
| const LangOptions::StrictFlexArraysLevelKind StrictFlexArraysLevel = |
| CGF.getLangOpts().getStrictFlexArraysLevel(); |
| |
| if (RD->isImplicit()) |
| return nullptr; |
| |
| for (const FieldDecl *FD : RD->fields()) { |
| if (Decl::isFlexibleArrayMemberLike( |
| Ctx, FD, FD->getType(), StrictFlexArraysLevel, |
| /*IgnoreTemplateOrMacroSubstitution=*/true)) |
| return FD; |
| |
| if (auto RT = FD->getType()->getAs<RecordType>()) |
| if (const FieldDecl *FD = |
| FindFlexibleArrayMemberField(CGF, Ctx, RT->getAsRecordDecl())) |
| return FD; |
| } |
| |
| return nullptr; |
| } |
| |
| /// Calculate the offset of a struct field. It may be embedded inside multiple |
| /// sub-structs. |
| static bool GetFieldOffset(ASTContext &Ctx, const RecordDecl *RD, |
| const FieldDecl *FD, int64_t &Offset) { |
| if (RD->isImplicit()) |
| return false; |
| |
| // Keep track of the field number ourselves, because the other methods |
| // (CGRecordLayout::getLLVMFieldNo) aren't always equivalent to how the AST |
| // is laid out. |
| uint32_t FieldNo = 0; |
| const ASTRecordLayout &Layout = Ctx.getASTRecordLayout(RD); |
| |
| for (const FieldDecl *Field : RD->fields()) { |
| if (Field == FD) { |
| Offset += Layout.getFieldOffset(FieldNo); |
| return true; |
| } |
| |
| if (auto RT = Field->getType()->getAs<RecordType>()) { |
| if (GetFieldOffset(Ctx, RT->getAsRecordDecl(), FD, Offset)) { |
| Offset += Layout.getFieldOffset(FieldNo); |
| return true; |
| } |
| } |
| |
| if (!RD->isUnion()) |
| ++FieldNo; |
| } |
| |
| return false; |
| } |
| |
| static std::optional<int64_t> |
| GetFieldOffset(ASTContext &Ctx, const RecordDecl *RD, const FieldDecl *FD) { |
| int64_t Offset = 0; |
| |
| if (GetFieldOffset(Ctx, RD, FD, Offset)) |
| return std::optional<int64_t>(Offset); |
| |
| return std::nullopt; |
| } |
| |
| llvm::Value * |
| CodeGenFunction::emitCountedByMemberSize(const Expr *E, llvm::Value *EmittedE, |
| unsigned Type, |
| llvm::IntegerType *ResType) { |
| ASTContext &Ctx = getContext(); |
| |
| // Note: If the whole struct is specificed in the __bdos (i.e. Visitor |
| // returns a DeclRefExpr). The calculation of the whole size of the structure |
| // with a flexible array member can be done in two ways: |
| // |
| // 1) sizeof(struct S) + count * sizeof(typeof(fam)) |
| // 2) offsetof(struct S, fam) + count * sizeof(typeof(fam)) |
| // |
| // The first will add additional padding after the end of the array |
| // allocation while the second method is more precise, but not quite expected |
| // from programmers. See |
| // https://lore.kernel.org/lkml/ZvV6X5FPBBW7CO1f@archlinux/ for a discussion |
| // of the topic. |
| // |
| // GCC isn't (currently) able to calculate __bdos on a pointer to the whole |
| // structure. Therefore, because of the above issue, we choose to match what |
| // GCC does for consistency's sake. |
| |
| StructFieldAccess Visitor; |
| const MemberExpr *ME = Visitor.Visit(E); |
| if (!ME) |
| return nullptr; |
| |
| const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()); |
| if (!FD) |
| return nullptr; |
| |
| const RecordDecl *RD = FD->getDeclContext()->getOuterLexicalRecordContext(); |
| const FieldDecl *FlexibleArrayMemberFD = nullptr; |
| |
| if (Decl::isFlexibleArrayMemberLike( |
| Ctx, FD, FD->getType(), getLangOpts().getStrictFlexArraysLevel(), |
| /*IgnoreTemplateOrMacroSubstitution=*/true)) |
| FlexibleArrayMemberFD = FD; |
| else |
| FlexibleArrayMemberFD = FindFlexibleArrayMemberField(*this, Ctx, RD); |
| |
| if (!FlexibleArrayMemberFD || |
| !FlexibleArrayMemberFD->getType()->isCountAttributedType()) |
| return nullptr; |
| |
| const FieldDecl *CountFD = FlexibleArrayMemberFD->findCountedByField(); |
| if (!CountFD) |
| // Can't find the field referenced by the "counted_by" attribute. |
| return nullptr; |
| |
| const Expr *Idx = nullptr; |
| if (Visitor.ASE) { |
| Idx = Visitor.ASE->getIdx(); |
| |
| if (Idx->HasSideEffects(Ctx)) |
| // We can't have side-effects. |
| return getDefaultBuiltinObjectSizeResult(Type, ResType); |
| |
| if (const auto *IL = dyn_cast<IntegerLiteral>(Idx)) { |
| int64_t Val = IL->getValue().getSExtValue(); |
| if (Val < 0) |
| return getDefaultBuiltinObjectSizeResult(Type, ResType); |
| |
| // The index is 0, so we don't need to take it into account. |
| if (Val == 0) |
| Idx = nullptr; |
| } |
| } |
| |
| // Calculate the flexible array member's object size using these formulae |
| // (note: if the calculation is negative, we return 0.): |
| // |
| // struct p; |
| // struct s { |
| // /* ... */ |
| // int count; |
| // struct p *array[] __attribute__((counted_by(count))); |
| // }; |
| // |
| // 1) 'ptr->array': |
| // |
| // count = ptr->count; |
| // |
| // flexible_array_member_base_size = sizeof (*ptr->array); |
| // flexible_array_member_size = |
| // count * flexible_array_member_base_size; |
| // |
| // if (flexible_array_member_size < 0) |
| // return 0; |
| // return flexible_array_member_size; |
| // |
| // 2) '&ptr->array[idx]': |
| // |
| // count = ptr->count; |
| // index = idx; |
| // |
| // flexible_array_member_base_size = sizeof (*ptr->array); |
| // flexible_array_member_size = |
| // count * flexible_array_member_base_size; |
| // |
| // index_size = index * flexible_array_member_base_size; |
| // |
| // if (flexible_array_member_size < 0 || index < 0) |
| // return 0; |
| // return flexible_array_member_size - index_size; |
| // |
| // 3) '&ptr->field': |
| // |
| // count = ptr->count; |
| // sizeof_struct = sizeof (struct s); |
| // |
| // flexible_array_member_base_size = sizeof (*ptr->array); |
| // flexible_array_member_size = |
| // count * flexible_array_member_base_size; |
| // |
| // field_offset = offsetof (struct s, field); |
| // offset_diff = sizeof_struct - field_offset; |
| // |
| // if (flexible_array_member_size < 0) |
| // return 0; |
| // return offset_diff + flexible_array_member_size; |
| // |
| // 4) '&ptr->field_array[idx]': |
| // |
| // count = ptr->count; |
| // index = idx; |
| // sizeof_struct = sizeof (struct s); |
| // |
| // flexible_array_member_base_size = sizeof (*ptr->array); |
| // flexible_array_member_size = |
| // count * flexible_array_member_base_size; |
| // |
| // field_base_size = sizeof (*ptr->field_array); |
| // field_offset = offsetof (struct s, field) |
| // field_offset += index * field_base_size; |
| // |
| // offset_diff = sizeof_struct - field_offset; |
| // |
| // if (flexible_array_member_size < 0 || index < 0) |
| // return 0; |
| // return offset_diff + flexible_array_member_size; |
| |
| QualType CountTy = CountFD->getType(); |
| bool IsSigned = CountTy->isSignedIntegerType(); |
| |
| QualType FlexibleArrayMemberTy = FlexibleArrayMemberFD->getType(); |
| QualType FieldTy = FD->getType(); |
| |
| // Explicit cast because otherwise the CharWidth will promote an i32's into |
| // u64's leading to overflows.. |
| int64_t CharWidth = static_cast<int64_t>(CGM.getContext().getCharWidth()); |
| |
| // size_t field_offset = offsetof (struct s, field); |
| Value *FieldOffset = nullptr; |
| if (FlexibleArrayMemberFD != FD) { |
| std::optional<int64_t> Offset = GetFieldOffset(Ctx, RD, FD); |
| if (!Offset) |
| return nullptr; |
| FieldOffset = |
| llvm::ConstantInt::get(ResType, *Offset / CharWidth, IsSigned); |
| } |
| |
| // size_t count = (size_t) ptr->count; |
| Value *Count = EmitLoadOfCountedByField(ME, FlexibleArrayMemberFD, CountFD); |
| if (!Count) |
| return nullptr; |
| Count = Builder.CreateIntCast(Count, ResType, IsSigned, "count"); |
| |
| // size_t index = (size_t) ptr->index; |
| Value *Index = nullptr; |
| if (Idx) { |
| bool IdxSigned = Idx->getType()->isSignedIntegerType(); |
| Index = EmitScalarExpr(Idx); |
| Index = Builder.CreateIntCast(Index, ResType, IdxSigned, "index"); |
| } |
| |
| // size_t flexible_array_member_base_size = sizeof (*ptr->array); |
| const ArrayType *ArrayTy = Ctx.getAsArrayType(FlexibleArrayMemberTy); |
| CharUnits BaseSize = Ctx.getTypeSizeInChars(ArrayTy->getElementType()); |
| auto *FlexibleArrayMemberBaseSize = |
| llvm::ConstantInt::get(ResType, BaseSize.getQuantity(), IsSigned); |
| |
| // size_t flexible_array_member_size = |
| // count * flexible_array_member_base_size; |
| Value *FlexibleArrayMemberSize = |
| Builder.CreateMul(Count, FlexibleArrayMemberBaseSize, |
| "flexible_array_member_size", !IsSigned, IsSigned); |
| |
| Value *Res = nullptr; |
| if (FlexibleArrayMemberFD == FD) { |
| if (Idx) { // Option (2) '&ptr->array[idx]' |
| // size_t index_size = index * flexible_array_member_base_size; |
| Value *IndexSize = Builder.CreateMul(FlexibleArrayMemberBaseSize, Index, |
| "index_size", !IsSigned, IsSigned); |
| |
| // return flexible_array_member_size - index_size; |
| Res = Builder.CreateSub(FlexibleArrayMemberSize, IndexSize, "result", |
| !IsSigned, IsSigned); |
| } else { // Option (1) 'ptr->array' |
| // return flexible_array_member_size; |
| Res = FlexibleArrayMemberSize; |
| } |
| } else { |
| // size_t sizeof_struct = sizeof (struct s); |
| llvm::StructType *StructTy = getTypes().getCGRecordLayout(RD).getLLVMType(); |
| const llvm::DataLayout &Layout = CGM.getDataLayout(); |
| TypeSize Size = Layout.getTypeSizeInBits(StructTy); |
| Value *SizeofStruct = |
| llvm::ConstantInt::get(ResType, Size.getKnownMinValue() / CharWidth); |
| |
| if (Idx) { // Option (4) '&ptr->field_array[idx]' |
| // size_t field_base_size = sizeof (*ptr->field_array); |
| const ArrayType *ArrayTy = Ctx.getAsArrayType(FieldTy); |
| CharUnits BaseSize = Ctx.getTypeSizeInChars(ArrayTy->getElementType()); |
| auto *FieldBaseSize = |
| llvm::ConstantInt::get(ResType, BaseSize.getQuantity(), IsSigned); |
| |
| // field_offset += index * field_base_size; |
| Value *Mul = Builder.CreateMul(Index, FieldBaseSize, "field_offset", |
| !IsSigned, IsSigned); |
| FieldOffset = Builder.CreateAdd(FieldOffset, Mul); |
| } |
| // Option (3) '&ptr->field', and Option (4) continuation. |
| |
| // size_t offset_diff = flexible_array_member_offset - field_offset; |
| Value *OffsetDiff = Builder.CreateSub(SizeofStruct, FieldOffset, |
| "offset_diff", !IsSigned, IsSigned); |
| |
| // return offset_diff + flexible_array_member_size; |
| Res = Builder.CreateAdd(FlexibleArrayMemberSize, OffsetDiff, "result"); |
| } |
| |
| Value *Cmp = Builder.CreateIsNotNeg(Res); |
| if (Idx) |
| Cmp = Builder.CreateAnd(Builder.CreateIsNotNeg(Index), Cmp); |
| |
| return Builder.CreateSelect(Cmp, Res, ConstantInt::get(ResType, 0, IsSigned)); |
| } |
| |
| /// Returns a Value corresponding to the size of the given expression. |
| /// This Value may be either of the following: |
| /// - A llvm::Argument (if E is a param with the pass_object_size attribute on |
| /// it) |
| /// - A call to the @llvm.objectsize intrinsic |
| /// |
| /// EmittedE is the result of emitting `E` as a scalar expr. If it's non-null |
| /// and we wouldn't otherwise try to reference a pass_object_size parameter, |
| /// we'll call @llvm.objectsize on EmittedE, rather than emitting E. |
| llvm::Value * |
| CodeGenFunction::emitBuiltinObjectSize(const Expr *E, unsigned Type, |
| llvm::IntegerType *ResType, |
| llvm::Value *EmittedE, bool IsDynamic) { |
| // We need to reference an argument if the pointer is a parameter with the |
| // pass_object_size attribute. |
| if (auto *D = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts())) { |
| auto *Param = dyn_cast<ParmVarDecl>(D->getDecl()); |
| auto *PS = D->getDecl()->getAttr<PassObjectSizeAttr>(); |
| if (Param != nullptr && PS != nullptr && |
| areBOSTypesCompatible(PS->getType(), Type)) { |
| auto Iter = SizeArguments.find(Param); |
| assert(Iter != SizeArguments.end()); |
| |
| const ImplicitParamDecl *D = Iter->second; |
| auto DIter = LocalDeclMap.find(D); |
| assert(DIter != LocalDeclMap.end()); |
| |
| return EmitLoadOfScalar(DIter->second, /*Volatile=*/false, |
| getContext().getSizeType(), E->getBeginLoc()); |
| } |
| } |
| |
| // LLVM can't handle Type=3 appropriately, and __builtin_object_size shouldn't |
| // evaluate E for side-effects. In either case, we shouldn't lower to |
| // @llvm.objectsize. |
| if (Type == 3 || (!EmittedE && E->HasSideEffects(getContext()))) |
| return getDefaultBuiltinObjectSizeResult(Type, ResType); |
| |
| Value *Ptr = EmittedE ? EmittedE : EmitScalarExpr(E); |
| assert(Ptr->getType()->isPointerTy() && |
| "Non-pointer passed to __builtin_object_size?"); |
| |
| if (IsDynamic) |
| // Emit special code for a flexible array member with the "counted_by" |
| // attribute. |
| if (Value *V = emitCountedByMemberSize(E, Ptr, Type, ResType)) |
| return V; |
| |
| Function *F = |
| CGM.getIntrinsic(Intrinsic::objectsize, {ResType, Ptr->getType()}); |
| |
| // LLVM only supports 0 and 2, make sure that we pass along that as a boolean. |
| Value *Min = Builder.getInt1((Type & 2) != 0); |
| // For GCC compatibility, __builtin_object_size treat NULL as unknown size. |
| Value *NullIsUnknown = Builder.getTrue(); |
| Value *Dynamic = Builder.getInt1(IsDynamic); |
| return Builder.CreateCall(F, {Ptr, Min, NullIsUnknown, Dynamic}); |
| } |
| |
| namespace { |
| /// A struct to generically describe a bit test intrinsic. |
| struct BitTest { |
| enum ActionKind : uint8_t { TestOnly, Complement, Reset, Set }; |
| enum InterlockingKind : uint8_t { |
| Unlocked, |
| Sequential, |
| Acquire, |
| Release, |
| NoFence |
| }; |
| |
| ActionKind Action; |
| InterlockingKind Interlocking; |
| bool Is64Bit; |
| |
| static BitTest decodeBitTestBuiltin(unsigned BuiltinID); |
| }; |
| |
| } // namespace |
| |
| BitTest BitTest::decodeBitTestBuiltin(unsigned BuiltinID) { |
| switch (BuiltinID) { |
| // Main portable variants. |
| case Builtin::BI_bittest: |
| return {TestOnly, Unlocked, false}; |
| case Builtin::BI_bittestandcomplement: |
| return {Complement, Unlocked, false}; |
| case Builtin::BI_bittestandreset: |
| return {Reset, Unlocked, false}; |
| case Builtin::BI_bittestandset: |
| return {Set, Unlocked, false}; |
| case Builtin::BI_interlockedbittestandreset: |
| return {Reset, Sequential, false}; |
| case Builtin::BI_interlockedbittestandset: |
| return {Set, Sequential, false}; |
| |
| // X86-specific 64-bit variants. |
| case Builtin::BI_bittest64: |
| return {TestOnly, Unlocked, true}; |
| case Builtin::BI_bittestandcomplement64: |
| return {Complement, Unlocked, true}; |
| case Builtin::BI_bittestandreset64: |
| return {Reset, Unlocked, true}; |
| case Builtin::BI_bittestandset64: |
| return {Set, Unlocked, true}; |
| case Builtin::BI_interlockedbittestandreset64: |
| return {Reset, Sequential, true}; |
| case Builtin::BI_interlockedbittestandset64: |
| return {Set, Sequential, true}; |
| |
| // ARM/AArch64-specific ordering variants. |
| case Builtin::BI_interlockedbittestandset_acq: |
| return {Set, Acquire, false}; |
| case Builtin::BI_interlockedbittestandset_rel: |
| return {Set, Release, false}; |
| case Builtin::BI_interlockedbittestandset_nf: |
| return {Set, NoFence, false}; |
| case Builtin::BI_interlockedbittestandreset_acq: |
| return {Reset, Acquire, false}; |
| case Builtin::BI_interlockedbittestandreset_rel: |
| return {Reset, Release, false}; |
| case Builtin::BI_interlockedbittestandreset_nf: |
| return {Reset, NoFence, false}; |
| } |
| llvm_unreachable("expected only bittest intrinsics"); |
| } |
| |
| static char bitActionToX86BTCode(BitTest::ActionKind A) { |
| switch (A) { |
| case BitTest::TestOnly: return '\0'; |
| case BitTest::Complement: return 'c'; |
| case BitTest::Reset: return 'r'; |
| case BitTest::Set: return 's'; |
| } |
| llvm_unreachable("invalid action"); |
| } |
| |
| static llvm::Value *EmitX86BitTestIntrinsic(CodeGenFunction &CGF, |
| BitTest BT, |
| const CallExpr *E, Value *BitBase, |
| Value *BitPos) { |
| char Action = bitActionToX86BTCode(BT.Action); |
| char SizeSuffix = BT.Is64Bit ? 'q' : 'l'; |
| |
| // Build the assembly. |
| SmallString<64> Asm; |
| raw_svector_ostream AsmOS(Asm); |
| if (BT.Interlocking != BitTest::Unlocked) |
| AsmOS << "lock "; |
| AsmOS << "bt"; |
| if (Action) |
| AsmOS << Action; |
| AsmOS << SizeSuffix << " $2, ($1)"; |
| |
| // Build the constraints. FIXME: We should support immediates when possible. |
| std::string Constraints = "={@ccc},r,r,~{cc},~{memory}"; |
| std::string_view MachineClobbers = CGF.getTarget().getClobbers(); |
| if (!MachineClobbers.empty()) { |
| Constraints += ','; |
| Constraints += MachineClobbers; |
| } |
| llvm::IntegerType *IntType = llvm::IntegerType::get( |
| CGF.getLLVMContext(), |
| CGF.getContext().getTypeSize(E->getArg(1)->getType())); |
| llvm::FunctionType *FTy = |
| llvm::FunctionType::get(CGF.Int8Ty, {CGF.UnqualPtrTy, IntType}, false); |
| |
| llvm::InlineAsm *IA = |
| llvm::InlineAsm::get(FTy, Asm, Constraints, /*hasSideEffects=*/true); |
| return CGF.Builder.CreateCall(IA, {BitBase, BitPos}); |
| } |
| |
| static llvm::AtomicOrdering |
| getBitTestAtomicOrdering(BitTest::InterlockingKind I) { |
| switch (I) { |
| case BitTest::Unlocked: return llvm::AtomicOrdering::NotAtomic; |
| case BitTest::Sequential: return llvm::AtomicOrdering::SequentiallyConsistent; |
| case BitTest::Acquire: return llvm::AtomicOrdering::Acquire; |
| case BitTest::Release: return llvm::AtomicOrdering::Release; |
| case BitTest::NoFence: return llvm::AtomicOrdering::Monotonic; |
| } |
| llvm_unreachable("invalid interlocking"); |
| } |
| |
| /// Emit a _bittest* intrinsic. These intrinsics take a pointer to an array of |
| /// bits and a bit position and read and optionally modify the bit at that |
| /// position. The position index can be arbitrarily large, i.e. it can be larger |
| /// than 31 or 63, so we need an indexed load in the general case. |
| static llvm::Value *EmitBitTestIntrinsic(CodeGenFunction &CGF, |
| unsigned BuiltinID, |
| const CallExpr *E) { |
| Value *BitBase = CGF.EmitScalarExpr(E->getArg(0)); |
| Value *BitPos = CGF.EmitScalarExpr(E->getArg(1)); |
| |
| BitTest BT = BitTest::decodeBitTestBuiltin(BuiltinID); |
| |
| // X86 has special BT, BTC, BTR, and BTS instructions that handle the array |
| // indexing operation internally. Use them if possible. |
| if (CGF.getTarget().getTriple().isX86()) |
| return EmitX86BitTestIntrinsic(CGF, BT, E, BitBase, BitPos); |
| |
| // Otherwise, use generic code to load one byte and test the bit. Use all but |
| // the bottom three bits as the array index, and the bottom three bits to form |
| // a mask. |
| // Bit = BitBaseI8[BitPos >> 3] & (1 << (BitPos & 0x7)) != 0; |
| Value *ByteIndex = CGF.Builder.CreateAShr( |
| BitPos, llvm::ConstantInt::get(BitPos->getType(), 3), "bittest.byteidx"); |
| Address ByteAddr(CGF.Builder.CreateInBoundsGEP(CGF.Int8Ty, BitBase, ByteIndex, |
| "bittest.byteaddr"), |
| CGF.Int8Ty, CharUnits::One()); |
| Value *PosLow = |
| CGF.Builder.CreateAnd(CGF.Builder.CreateTrunc(BitPos, CGF.Int8Ty), |
| llvm::ConstantInt::get(CGF.Int8Ty, 0x7)); |
| |
| // The updating instructions will need a mask. |
| Value *Mask = nullptr; |
| if (BT.Action != BitTest::TestOnly) { |
| Mask = CGF.Builder.CreateShl(llvm::ConstantInt::get(CGF.Int8Ty, 1), PosLow, |
| "bittest.mask"); |
| } |
| |
| // Check the action and ordering of the interlocked intrinsics. |
| llvm::AtomicOrdering Ordering = getBitTestAtomicOrdering(BT.Interlocking); |
| |
| Value *OldByte = nullptr; |
| if (Ordering != llvm::AtomicOrdering::NotAtomic) { |
| // Emit a combined atomicrmw load/store operation for the interlocked |
| // intrinsics. |
| llvm::AtomicRMWInst::BinOp RMWOp = llvm::AtomicRMWInst::Or; |
| if (BT.Action == BitTest::Reset) { |
| Mask = CGF.Builder.CreateNot(Mask); |
| RMWOp = llvm::AtomicRMWInst::And; |
| } |
| OldByte = CGF.Builder.CreateAtomicRMW(RMWOp, ByteAddr, Mask, Ordering); |
| } else { |
| // Emit a plain load for the non-interlocked intrinsics. |
| OldByte = CGF.Builder.CreateLoad(ByteAddr, "bittest.byte"); |
| Value *NewByte = nullptr; |
| switch (BT.Action) { |
| case BitTest::TestOnly: |
| // Don't store anything. |
| break; |
| case BitTest::Complement: |
| NewByte = CGF.Builder.CreateXor(OldByte, Mask); |
| break; |
| case BitTest::Reset: |
| NewByte = CGF.Builder.CreateAnd(OldByte, CGF.Builder.CreateNot(Mask)); |
| break; |
| case BitTest::Set: |
| NewByte = CGF.Builder.CreateOr(OldByte, Mask); |
| break; |
| } |
| if (NewByte) |
| CGF.Builder.CreateStore(NewByte, ByteAddr); |
| } |
| |
| // However we loaded the old byte, either by plain load or atomicrmw, shift |
| // the bit into the low position and mask it to 0 or 1. |
| Value *ShiftedByte = CGF.Builder.CreateLShr(OldByte, PosLow, "bittest.shr"); |
| return CGF.Builder.CreateAnd( |
| ShiftedByte, llvm::ConstantInt::get(CGF.Int8Ty, 1), "bittest.res"); |
| } |
| |
| static llvm::Value *emitPPCLoadReserveIntrinsic(CodeGenFunction &CGF, |
| unsigned BuiltinID, |
| const CallExpr *E) { |
| Value *Addr = CGF.EmitScalarExpr(E->getArg(0)); |
| |
| SmallString<64> Asm; |
| raw_svector_ostream AsmOS(Asm); |
| llvm::IntegerType *RetType = CGF.Int32Ty; |
| |
| switch (BuiltinID) { |
| case clang::PPC::BI__builtin_ppc_ldarx: |
| AsmOS << "ldarx "; |
| RetType = CGF.Int64Ty; |
| break; |
| case clang::PPC::BI__builtin_ppc_lwarx: |
| AsmOS << "lwarx "; |
| RetType = CGF.Int32Ty; |
| break; |
| case clang::PPC::BI__builtin_ppc_lharx: |
| AsmOS << "lharx "; |
| RetType = CGF.Int16Ty; |
| break; |
| case clang::PPC::BI__builtin_ppc_lbarx: |
| AsmOS << "lbarx "; |
| RetType = CGF.Int8Ty; |
| break; |
| default: |
| llvm_unreachable("Expected only PowerPC load reserve intrinsics"); |
| } |
| |
| AsmOS << "$0, ${1:y}"; |
| |
| std::string Constraints = "=r,*Z,~{memory}"; |
| std::string_view MachineClobbers = CGF.getTarget().getClobbers(); |
| if (!MachineClobbers.empty()) { |
| Constraints += ','; |
| Constraints += MachineClobbers; |
| } |
| |
| llvm::Type *PtrType = CGF.UnqualPtrTy; |
| llvm::FunctionType *FTy = llvm::FunctionType::get(RetType, {PtrType}, false); |
| |
| llvm::InlineAsm *IA = |
| llvm::InlineAsm::get(FTy, Asm, Constraints, /*hasSideEffects=*/true); |
| llvm::CallInst *CI = CGF.Builder.CreateCall(IA, {Addr}); |
| CI->addParamAttr( |
| 0, Attribute::get(CGF.getLLVMContext(), Attribute::ElementType, RetType)); |
| return CI; |
| } |
| |
| namespace { |
| enum class MSVCSetJmpKind { |
| _setjmpex, |
| _setjmp3, |
| _setjmp |
| }; |
| } |
| |
| /// MSVC handles setjmp a bit differently on different platforms. On every |
| /// architecture except 32-bit x86, the frame address is passed. On x86, extra |
| /// parameters can be passed as variadic arguments, but we always pass none. |
| static RValue EmitMSVCRTSetJmp(CodeGenFunction &CGF, MSVCSetJmpKind SJKind, |
| const CallExpr *E) { |
| llvm::Value *Arg1 = nullptr; |
| llvm::Type *Arg1Ty = nullptr; |
| StringRef Name; |
| bool IsVarArg = false; |
| if (SJKind == MSVCSetJmpKind::_setjmp3) { |
| Name = "_setjmp3"; |
| Arg1Ty = CGF.Int32Ty; |
| Arg1 = llvm::ConstantInt::get(CGF.IntTy, 0); |
| IsVarArg = true; |
| } else { |
| Name = SJKind == MSVCSetJmpKind::_setjmp ? "_setjmp" : "_setjmpex"; |
| Arg1Ty = CGF.Int8PtrTy; |
| if (CGF.getTarget().getTriple().getArch() == llvm::Triple::aarch64) { |
| Arg1 = CGF.Builder.CreateCall( |
| CGF.CGM.getIntrinsic(Intrinsic::sponentry, CGF.AllocaInt8PtrTy)); |
| } else |
| Arg1 = CGF.Builder.CreateCall( |
| CGF.CGM.getIntrinsic(Intrinsic::frameaddress, CGF.AllocaInt8PtrTy), |
| llvm::ConstantInt::get(CGF.Int32Ty, 0)); |
| } |
| |
| // Mark the call site and declaration with ReturnsTwice. |
| llvm::Type *ArgTypes[2] = {CGF.Int8PtrTy, Arg1Ty}; |
| llvm::AttributeList ReturnsTwiceAttr = llvm::AttributeList::get( |
| CGF.getLLVMContext(), llvm::AttributeList::FunctionIndex, |
| llvm::Attribute::ReturnsTwice); |
| llvm::FunctionCallee SetJmpFn = CGF.CGM.CreateRuntimeFunction( |
| llvm::FunctionType::get(CGF.IntTy, ArgTypes, IsVarArg), Name, |
| ReturnsTwiceAttr, /*Local=*/true); |
| |
| llvm::Value *Buf = CGF.Builder.CreateBitOrPointerCast( |
| CGF.EmitScalarExpr(E->getArg(0)), CGF.Int8PtrTy); |
| llvm::Value *Args[] = {Buf, Arg1}; |
| llvm::CallBase *CB = CGF.EmitRuntimeCallOrInvoke(SetJmpFn, Args); |
| CB->setAttributes(ReturnsTwiceAttr); |
| return RValue::get(CB); |
| } |
| |
| // Many of MSVC builtins are on x64, ARM and AArch64; to avoid repeating code, |
| // we handle them here. |
| enum class CodeGenFunction::MSVCIntrin { |
| _BitScanForward, |
| _BitScanReverse, |
| _InterlockedAnd, |
| _InterlockedCompareExchange, |
| _InterlockedDecrement, |
| _InterlockedExchange, |
| _InterlockedExchangeAdd, |
| _InterlockedExchangeSub, |
| _InterlockedIncrement, |
| _InterlockedOr, |
| _InterlockedXor, |
| _InterlockedExchangeAdd_acq, |
| _InterlockedExchangeAdd_rel, |
| _InterlockedExchangeAdd_nf, |
| _InterlockedExchange_acq, |
| _InterlockedExchange_rel, |
| _InterlockedExchange_nf, |
| _InterlockedCompareExchange_acq, |
| _InterlockedCompareExchange_rel, |
| _InterlockedCompareExchange_nf, |
| _InterlockedCompareExchange128, |
| _InterlockedCompareExchange128_acq, |
| _InterlockedCompareExchange128_rel, |
| _InterlockedCompareExchange128_nf, |
| _InterlockedOr_acq, |
| _InterlockedOr_rel, |
| _InterlockedOr_nf, |
| _InterlockedXor_acq, |
| _InterlockedXor_rel, |
| _InterlockedXor_nf, |
| _InterlockedAnd_acq, |
| _InterlockedAnd_rel, |
| _InterlockedAnd_nf, |
| _InterlockedIncrement_acq, |
| _InterlockedIncrement_rel, |
| _InterlockedIncrement_nf, |
| _InterlockedDecrement_acq, |
| _InterlockedDecrement_rel, |
| _InterlockedDecrement_nf, |
| __fastfail, |
| }; |
| |
| static std::optional<CodeGenFunction::MSVCIntrin> |
| translateArmToMsvcIntrin(unsigned BuiltinID) { |
| using MSVCIntrin = CodeGenFunction::MSVCIntrin; |
| switch (BuiltinID) { |
| default: |
| return std::nullopt; |
| case clang::ARM::BI_BitScanForward: |
| case clang::ARM::BI_BitScanForward64: |
| return MSVCIntrin::_BitScanForward; |
| case clang::ARM::BI_BitScanReverse: |
| case clang::ARM::BI_BitScanReverse64: |
| return MSVCIntrin::_BitScanReverse; |
| case clang::ARM::BI_InterlockedAnd64: |
| return MSVCIntrin::_InterlockedAnd; |
| case clang::ARM::BI_InterlockedExchange64: |
| return MSVCIntrin::_InterlockedExchange; |
| case clang::ARM::BI_InterlockedExchangeAdd64: |
| return MSVCIntrin::_InterlockedExchangeAdd; |
| case clang::ARM::BI_InterlockedExchangeSub64: |
| return MSVCIntrin::_InterlockedExchangeSub; |
| case clang::ARM::BI_InterlockedOr64: |
| return MSVCIntrin::_InterlockedOr; |
| case clang::ARM::BI_InterlockedXor64: |
| return MSVCIntrin::_InterlockedXor; |
| case clang::ARM::BI_InterlockedDecrement64: |
| return MSVCIntrin::_InterlockedDecrement; |
| case clang::ARM::BI_InterlockedIncrement64: |
| return MSVCIntrin::_InterlockedIncrement; |
| case clang::ARM::BI_InterlockedExchangeAdd8_acq: |
| case clang::ARM::BI_InterlockedExchangeAdd16_acq: |
| case clang::ARM::BI_InterlockedExchangeAdd_acq: |
| case clang::ARM::BI_InterlockedExchangeAdd64_acq: |
| return MSVCIntrin::_InterlockedExchangeAdd_acq; |
| case clang::ARM::BI_InterlockedExchangeAdd8_rel: |
| case clang::ARM::BI_InterlockedExchangeAdd16_rel: |
| case clang::ARM::BI_InterlockedExchangeAdd_rel: |
| case clang::ARM::BI_InterlockedExchangeAdd64_rel: |
| return MSVCIntrin::_InterlockedExchangeAdd_rel; |
| case clang::ARM::BI_InterlockedExchangeAdd8_nf: |
| case clang::ARM::BI_InterlockedExchangeAdd16_nf: |
| case clang::ARM::BI_InterlockedExchangeAdd_nf: |
| case clang::ARM::BI_InterlockedExchangeAdd64_nf: |
| return MSVCIntrin::_InterlockedExchangeAdd_nf; |
| case clang::ARM::BI_InterlockedExchange8_acq: |
| case clang::ARM::BI_InterlockedExchange16_acq: |
| case clang::ARM::BI_InterlockedExchange_acq: |
| case clang::ARM::BI_InterlockedExchange64_acq: |
| case clang::ARM::BI_InterlockedExchangePointer_acq: |
| return MSVCIntrin::_InterlockedExchange_acq; |
| case clang::ARM::BI_InterlockedExchange8_rel: |
| case clang::ARM::BI_InterlockedExchange16_rel: |
| case clang::ARM::BI_InterlockedExchange_rel: |
| case clang::ARM::BI_InterlockedExchange64_rel: |
| case clang::ARM::BI_InterlockedExchangePointer_rel: |
| return MSVCIntrin::_InterlockedExchange_rel; |
| case clang::ARM::BI_InterlockedExchange8_nf: |
| case clang::ARM::BI_InterlockedExchange16_nf: |
| case clang::ARM::BI_InterlockedExchange_nf: |
| case clang::ARM::BI_InterlockedExchange64_nf: |
| case clang::ARM::BI_InterlockedExchangePointer_nf: |
| return MSVCIntrin::_InterlockedExchange_nf; |
| case clang::ARM::BI_InterlockedCompareExchange8_acq: |
| case clang::ARM::BI_InterlockedCompareExchange16_acq: |
| case clang::ARM::BI_InterlockedCompareExchange_acq: |
| case clang::ARM::BI_InterlockedCompareExchange64_acq: |
| case clang::ARM::BI_InterlockedCompareExchangePointer_acq: |
| return MSVCIntrin::_InterlockedCompareExchange_acq; |
| case clang::ARM::BI_InterlockedCompareExchange8_rel: |
| case clang::ARM::BI_InterlockedCompareExchange16_rel: |
| case clang::ARM::BI_InterlockedCompareExchange_rel: |
| case clang::ARM::BI_InterlockedCompareExchange64_rel: |
| case clang::ARM::BI_InterlockedCompareExchangePointer_rel: |
| return MSVCIntrin::_InterlockedCompareExchange_rel; |
| case clang::ARM::BI_InterlockedCompareExchange8_nf: |
| case clang::ARM::BI_InterlockedCompareExchange16_nf: |
| case clang::ARM::BI_InterlockedCompareExchange_nf: |
| case clang::ARM::BI_InterlockedCompareExchange64_nf: |
| return MSVCIntrin::_InterlockedCompareExchange_nf; |
| case clang::ARM::BI_InterlockedOr8_acq: |
| case clang::ARM::BI_InterlockedOr16_acq: |
| case clang::ARM::BI_InterlockedOr_acq: |
| case clang::ARM::BI_InterlockedOr64_acq: |
| return MSVCIntrin::_InterlockedOr_acq; |
| case clang::ARM::BI_InterlockedOr8_rel: |
| case clang::ARM::BI_InterlockedOr16_rel: |
| case clang::ARM::BI_InterlockedOr_rel: |
| case clang::ARM::BI_InterlockedOr64_rel: |
| return MSVCIntrin::_InterlockedOr_rel; |
| case clang::ARM::BI_InterlockedOr8_nf: |
| case clang::ARM::BI_InterlockedOr16_nf: |
| case clang::ARM::BI_InterlockedOr_nf: |
| case clang::ARM::BI_InterlockedOr64_nf: |
| return MSVCIntrin::_InterlockedOr_nf; |
| case clang::ARM::BI_InterlockedXor8_acq: |
| case clang::ARM::BI_InterlockedXor16_acq: |
| case clang::ARM::BI_InterlockedXor_acq: |
| case clang::ARM::BI_InterlockedXor64_acq: |
| return MSVCIntrin::_InterlockedXor_acq; |
| case clang::ARM::BI_InterlockedXor8_rel: |
| case clang::ARM::BI_InterlockedXor16_rel: |
| case clang::ARM::BI_InterlockedXor_rel: |
| case clang::ARM::BI_InterlockedXor64_rel: |
| return MSVCIntrin::_InterlockedXor_rel; |
| case clang::ARM::BI_InterlockedXor8_nf: |
| case clang::ARM::BI_InterlockedXor16_nf: |
| case clang::ARM::BI_InterlockedXor_nf: |
| case clang::ARM::BI_InterlockedXor64_nf: |
| return MSVCIntrin::_InterlockedXor_nf; |
| case clang::ARM::BI_InterlockedAnd8_acq: |
| case clang::ARM::BI_InterlockedAnd16_acq: |
| case clang::ARM::BI_InterlockedAnd_acq: |
| case clang::ARM::BI_InterlockedAnd64_acq: |
| return MSVCIntrin::_InterlockedAnd_acq; |
| case clang::ARM::BI_InterlockedAnd8_rel: |
| case clang::ARM::BI_InterlockedAnd16_rel: |
| case clang::ARM::BI_InterlockedAnd_rel: |
| case clang::ARM::BI_InterlockedAnd64_rel: |
| return MSVCIntrin::_InterlockedAnd_rel; |
| case clang::ARM::BI_InterlockedAnd8_nf: |
| case clang::ARM::BI_InterlockedAnd16_nf: |
| case clang::ARM::BI_InterlockedAnd_nf: |
| case clang::ARM::BI_InterlockedAnd64_nf: |
| return MSVCIntrin::_InterlockedAnd_nf; |
| case clang::ARM::BI_InterlockedIncrement16_acq: |
| case clang::ARM::BI_InterlockedIncrement_acq: |
| case clang::ARM::BI_InterlockedIncrement64_acq: |
| return MSVCIntrin::_InterlockedIncrement_acq; |
| case clang::ARM::BI_InterlockedIncrement16_rel: |
| case clang::ARM::BI_InterlockedIncrement_rel: |
| case clang::ARM::BI_InterlockedIncrement64_rel: |
| return MSVCIntrin::_InterlockedIncrement_rel; |
| case clang::ARM::BI_InterlockedIncrement16_nf: |
| case clang::ARM::BI_InterlockedIncrement_nf: |
| case clang::ARM::BI_InterlockedIncrement64_nf: |
| return MSVCIntrin::_InterlockedIncrement_nf; |
| case clang::ARM::BI_InterlockedDecrement16_acq: |
| case clang::ARM::BI_InterlockedDecrement_acq: |
| case clang::ARM::BI_InterlockedDecrement64_acq: |
| return MSVCIntrin::_InterlockedDecrement_acq; |
| case clang::ARM::BI_InterlockedDecrement16_rel: |
| case clang::ARM::BI_InterlockedDecrement_rel: |
| case clang::ARM::BI_InterlockedDecrement64_rel: |
| return MSVCIntrin::_InterlockedDecrement_rel; |
| case clang::ARM::BI_InterlockedDecrement16_nf: |
| case clang::ARM::BI_InterlockedDecrement_nf: |
| case clang::ARM::BI_InterlockedDecrement64_nf: |
| return MSVCIntrin::_InterlockedDecrement_nf; |
| } |
| llvm_unreachable("must return from switch"); |
| } |
| |
| static std::optional<CodeGenFunction::MSVCIntrin> |
| translateAarch64ToMsvcIntrin(unsigned BuiltinID) { |
| using MSVCIntrin = CodeGenFunction::MSVCIntrin; |
| switch (BuiltinID) { |
| default: |
| return std::nullopt; |
| case clang::AArch64::BI_BitScanForward: |
| case clang::AArch64::BI_BitScanForward64: |
| return MSVCIntrin::_BitScanForward; |
| case clang::AArch64::BI_BitScanReverse: |
| case clang::AArch64::BI_BitScanReverse64: |
| return MSVCIntrin::_BitScanReverse; |
| case clang::AArch64::BI_InterlockedAnd64: |
| return MSVCIntrin::_InterlockedAnd; |
| case clang::AArch64::BI_InterlockedExchange64: |
| return MSVCIntrin::_InterlockedExchange; |
| case clang::AArch64::BI_InterlockedExchangeAdd64: |
| return MSVCIntrin::_InterlockedExchangeAdd; |
| case clang::AArch64::BI_InterlockedExchangeSub64: |
| return MSVCIntrin::_InterlockedExchangeSub; |
| case clang::AArch64::BI_InterlockedOr64: |
| return MSVCIntrin::_InterlockedOr; |
| case clang::AArch64::BI_InterlockedXor64: |
| return MSVCIntrin::_InterlockedXor; |
| case clang::AArch64::BI_InterlockedDecrement64: |
| return MSVCIntrin::_InterlockedDecrement; |
| case clang::AArch64::BI_InterlockedIncrement64: |
| return MSVCIntrin::_InterlockedIncrement; |
| case clang::AArch64::BI_InterlockedExchangeAdd8_acq: |
| case clang::AArch64::BI_InterlockedExchangeAdd16_acq: |
| case clang::AArch64::BI_InterlockedExchangeAdd_acq: |
| case clang::AArch64::BI_InterlockedExchangeAdd64_acq: |
| return MSVCIntrin::_InterlockedExchangeAdd_acq; |
| case clang::AArch64::BI_InterlockedExchangeAdd8_rel: |
| case clang::AArch64::BI_InterlockedExchangeAdd16_rel: |
| case clang::AArch64::BI_InterlockedExchangeAdd_rel: |
| case clang::AArch64::BI_InterlockedExchangeAdd64_rel: |
| return MSVCIntrin::_InterlockedExchangeAdd_rel; |
| case clang::AArch64::BI_InterlockedExchangeAdd8_nf: |
| case clang::AArch64::BI_InterlockedExchangeAdd16_nf: |
| case clang::AArch64::BI_InterlockedExchangeAdd_nf: |
| case clang::AArch64::BI_InterlockedExchangeAdd64_nf: |
| return MSVCIntrin::_InterlockedExchangeAdd_nf; |
| case clang::AArch64::BI_InterlockedExchange8_acq: |
| case clang::AArch64::BI_InterlockedExchange16_acq: |
| case clang::AArch64::BI_InterlockedExchange_acq: |
| case clang::AArch64::BI_InterlockedExchange64_acq: |
| case clang::AArch64::BI_InterlockedExchangePointer_acq: |
| return MSVCIntrin::_InterlockedExchange_acq; |
| case clang::AArch64::BI_InterlockedExchange8_rel: |
| case clang::AArch64::BI_InterlockedExchange16_rel: |
| case clang::AArch64::BI_InterlockedExchange_rel: |
| case clang::AArch64::BI_InterlockedExchange64_rel: |
| case clang::AArch64::BI_InterlockedExchangePointer_rel: |
| return MSVCIntrin::_InterlockedExchange_rel; |
| case clang::AArch64::BI_InterlockedExchange8_nf: |
| case clang::AArch64::BI_InterlockedExchange16_nf: |
| case clang::AArch64::BI_InterlockedExchange_nf: |
| case clang::AArch64::BI_InterlockedExchange64_nf: |
| case clang::AArch64::BI_InterlockedExchangePointer_nf: |
| return MSVCIntrin::_InterlockedExchange_nf; |
| case clang::AArch64::BI_InterlockedCompareExchange8_acq: |
| case clang::AArch64::BI_InterlockedCompareExchange16_acq: |
| case clang::AArch64::BI_InterlockedCompareExchange_acq: |
| case clang::AArch64::BI_InterlockedCompareExchange64_acq: |
| case clang::AArch64::BI_InterlockedCompareExchangePointer_acq: |
| return MSVCIntrin::_InterlockedCompareExchange_acq; |
| case clang::AArch64::BI_InterlockedCompareExchange8_rel: |
| case clang::AArch64::BI_InterlockedCompareExchange16_rel: |
| case clang::AArch64::BI_InterlockedCompareExchange_rel: |
| case clang::AArch64::BI_InterlockedCompareExchange64_rel: |
| case clang::AArch64::BI_InterlockedCompareExchangePointer_rel: |
| return MSVCIntrin::_InterlockedCompareExchange_rel; |
| case clang::AArch64::BI_InterlockedCompareExchange8_nf: |
| case clang::AArch64::BI_InterlockedCompareExchange16_nf: |
| case clang::AArch64::BI_InterlockedCompareExchange_nf: |
| case clang::AArch64::BI_InterlockedCompareExchange64_nf: |
| return MSVCIntrin::_InterlockedCompareExchange_nf; |
| case clang::AArch64::BI_InterlockedCompareExchange128: |
| return MSVCIntrin::_InterlockedCompareExchange128; |
| case clang::AArch64::BI_InterlockedCompareExchange128_acq: |
| return MSVCIntrin::_InterlockedCompareExchange128_acq; |
| case clang::AArch64::BI_InterlockedCompareExchange128_nf: |
| return MSVCIntrin::_InterlockedCompareExchange128_nf; |
| case clang::AArch64::BI_InterlockedCompareExchange128_rel: |
| return MSVCIntrin::_InterlockedCompareExchange128_rel; |
| case clang::AArch64::BI_InterlockedOr8_acq: |
| case clang::AArch64::BI_InterlockedOr16_acq: |
| case clang::AArch64::BI_InterlockedOr_acq: |
| case clang::AArch64::BI_InterlockedOr64_acq: |
| return MSVCIntrin::_InterlockedOr_acq; |
| case clang::AArch64::BI_InterlockedOr8_rel: |
| case clang::AArch64::BI_InterlockedOr16_rel: |
| case clang::AArch64::BI_InterlockedOr_rel: |
| case clang::AArch64::BI_InterlockedOr64_rel: |
| return MSVCIntrin::_InterlockedOr_rel; |
| case clang::AArch64::BI_InterlockedOr8_nf: |
| case clang::AArch64::BI_InterlockedOr16_nf: |
| case clang::AArch64::BI_InterlockedOr_nf: |
| case clang::AArch64::BI_InterlockedOr64_nf: |
| return MSVCIntrin::_InterlockedOr_nf; |
| case clang::AArch64::BI_InterlockedXor8_acq: |
| case clang::AArch64::BI_InterlockedXor16_acq: |
| case clang::AArch64::BI_InterlockedXor_acq: |
| case clang::AArch64::BI_InterlockedXor64_acq: |
| return MSVCIntrin::_InterlockedXor_acq; |
| case clang::AArch64::BI_InterlockedXor8_rel: |
| case clang::AArch64::BI_InterlockedXor16_rel: |
| case clang::AArch64::BI_InterlockedXor_rel: |
| case clang::AArch64::BI_InterlockedXor64_rel: |
| return MSVCIntrin::_InterlockedXor_rel; |
| case clang::AArch64::BI_InterlockedXor8_nf: |
| case clang::AArch64::BI_InterlockedXor16_nf: |
| case clang::AArch64::BI_InterlockedXor_nf: |
| case clang::AArch64::BI_InterlockedXor64_nf: |
| return MSVCIntrin::_InterlockedXor_nf; |
| case clang::AArch64::BI_InterlockedAnd8_acq: |
| case clang::AArch64::BI_InterlockedAnd16_acq: |
| case clang::AArch64::BI_InterlockedAnd_acq: |
| case clang::AArch64::BI_InterlockedAnd64_acq: |
| return MSVCIntrin::_InterlockedAnd_acq; |
| case clang::AArch64::BI_InterlockedAnd8_rel: |
| case clang::AArch64::BI_InterlockedAnd16_rel: |
| case clang::AArch64::BI_InterlockedAnd_rel: |
| case clang::AArch64::BI_InterlockedAnd64_rel: |
| return MSVCIntrin::_InterlockedAnd_rel; |
| case clang::AArch64::BI_InterlockedAnd8_nf: |
| case clang::AArch64::BI_InterlockedAnd16_nf: |
| case clang::AArch64::BI_InterlockedAnd_nf: |
| case clang::AArch64::BI_InterlockedAnd64_nf: |
| return MSVCIntrin::_InterlockedAnd_nf; |
| case clang::AArch64::BI_InterlockedIncrement16_acq: |
| case clang::AArch64::BI_InterlockedIncrement_acq: |
| case clang::AArch64::BI_InterlockedIncrement64_acq: |
| return MSVCIntrin::_InterlockedIncrement_acq; |
| case clang::AArch64::BI_InterlockedIncrement16_rel: |
| case clang::AArch64::BI_InterlockedIncrement_rel: |
| case clang::AArch64::BI_InterlockedIncrement64_rel: |
| return MSVCIntrin::_InterlockedIncrement_rel; |
| case clang::AArch64::BI_InterlockedIncrement16_nf: |
| case clang::AArch64::BI_InterlockedIncrement_nf: |
| case clang::AArch64::BI_InterlockedIncrement64_nf: |
| return MSVCIntrin::_InterlockedIncrement_nf; |
| case clang::AArch64::BI_InterlockedDecrement16_acq: |
| case clang::AArch64::BI_InterlockedDecrement_acq: |
| case clang::AArch64::BI_InterlockedDecrement64_acq: |
| return MSVCIntrin::_InterlockedDecrement_acq; |
| case clang::AArch64::BI_InterlockedDecrement16_rel: |
| case clang::AArch64::BI_InterlockedDecrement_rel: |
| case clang::AArch64::BI_InterlockedDecrement64_rel: |
| return MSVCIntrin::_InterlockedDecrement_rel; |
| case clang::AArch64::BI_InterlockedDecrement16_nf: |
| case clang::AArch64::BI_InterlockedDecrement_nf: |
| case clang::AArch64::BI_InterlockedDecrement64_nf: |
| return MSVCIntrin::_InterlockedDecrement_nf; |
| } |
| llvm_unreachable("must return from switch"); |
| } |
| |
| static std::optional<CodeGenFunction::MSVCIntrin> |
| translateX86ToMsvcIntrin(unsigned BuiltinID) { |
| using MSVCIntrin = CodeGenFunction::MSVCIntrin; |
| switch (BuiltinID) { |
| default: |
| return std::nullopt; |
| case clang::X86::BI_BitScanForward: |
| case clang::X86::BI_BitScanForward64: |
| return MSVCIntrin::_BitScanForward; |
| case clang::X86::BI_BitScanReverse: |
| case clang::X86::BI_BitScanReverse64: |
| return MSVCIntrin::_BitScanReverse; |
| case clang::X86::BI_InterlockedAnd64: |
| return MSVCIntrin::_InterlockedAnd; |
| case clang::X86::BI_InterlockedCompareExchange128: |
| return MSVCIntrin::_InterlockedCompareExchange128; |
| case clang::X86::BI_InterlockedExchange64: |
| return MSVCIntrin::_InterlockedExchange; |
| case clang::X86::BI_InterlockedExchangeAdd64: |
| return MSVCIntrin::_InterlockedExchangeAdd; |
| case clang::X86::BI_InterlockedExchangeSub64: |
| return MSVCIntrin::_InterlockedExchangeSub; |
| case clang::X86::BI_InterlockedOr64: |
| return MSVCIntrin::_InterlockedOr; |
| case clang::X86::BI_InterlockedXor64: |
| return MSVCIntrin::_InterlockedXor; |
| case clang::X86::BI_InterlockedDecrement64: |
| return MSVCIntrin::_InterlockedDecrement; |
| case clang::X86::BI_InterlockedIncrement64: |
| return MSVCIntrin::_InterlockedIncrement; |
| } |
| llvm_unreachable("must return from switch"); |
| } |
| |
| // Emit an MSVC intrinsic. Assumes that arguments have *not* been evaluated. |
| Value *CodeGenFunction::EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID, |
| const CallExpr *E) { |
| switch (BuiltinID) { |
| case MSVCIntrin::_BitScanForward: |
| case MSVCIntrin::_BitScanReverse: { |
| Address IndexAddress(EmitPointerWithAlignment(E->getArg(0))); |
| Value *ArgValue = EmitScalarExpr(E->getArg(1)); |
| |
| llvm::Type *ArgType = ArgValue->getType(); |
| llvm::Type *IndexType = IndexAddress.getElementType(); |
| llvm::Type *ResultType = ConvertType(E->getType()); |
| |
| Value *ArgZero = llvm::Constant::getNullValue(ArgType); |
| Value *ResZero = llvm::Constant::getNullValue(ResultType); |
| Value *ResOne = llvm::ConstantInt::get(ResultType, 1); |
| |
| BasicBlock *Begin = Builder.GetInsertBlock(); |
| BasicBlock *End = createBasicBlock("bitscan_end", this->CurFn); |
| Builder.SetInsertPoint(End); |
| PHINode *Result = Builder.CreatePHI(ResultType, 2, "bitscan_result"); |
| |
| Builder.SetInsertPoint(Begin); |
| Value *IsZero = Builder.CreateICmpEQ(ArgValue, ArgZero); |
| BasicBlock *NotZero = createBasicBlock("bitscan_not_zero", this->CurFn); |
| Builder.CreateCondBr(IsZero, End, NotZero); |
| Result->addIncoming(ResZero, Begin); |
| |
| Builder.SetInsertPoint(NotZero); |
| |
| if (BuiltinID == MSVCIntrin::_BitScanForward) { |
| Function *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType); |
| Value *ZeroCount = Builder.CreateCall(F, {ArgValue, Builder.getTrue()}); |
| ZeroCount = Builder.CreateIntCast(ZeroCount, IndexType, false); |
| Builder.CreateStore(ZeroCount, IndexAddress, false); |
| } else { |
| unsigned ArgWidth = cast<llvm::IntegerType>(ArgType)->getBitWidth(); |
| Value *ArgTypeLastIndex = llvm::ConstantInt::get(IndexType, ArgWidth - 1); |
| |
| Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType); |
| Value *ZeroCount = Builder.CreateCall(F, {ArgValue, Builder.getTrue()}); |
| ZeroCount = Builder.CreateIntCast(ZeroCount, IndexType, false); |
| Value *Index = Builder.CreateNSWSub(ArgTypeLastIndex, ZeroCount); |
| Builder.CreateStore(Index, IndexAddress, false); |
| } |
| Builder.CreateBr(End); |
| Result->addIncoming(ResOne, NotZero); |
| |
| Builder.SetInsertPoint(End); |
| return Result; |
| } |
| case MSVCIntrin::_InterlockedAnd: |
| return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E); |
| case MSVCIntrin::_InterlockedExchange: |
| return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E); |
| case MSVCIntrin::_InterlockedExchangeAdd: |
| return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E); |
| case MSVCIntrin::_InterlockedExchangeSub: |
| return MakeBinaryAtomicValue(*this, AtomicRMWInst::Sub, E); |
| case MSVCIntrin::_InterlockedOr: |
| return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E); |
| case MSVCIntrin::_InterlockedXor: |
| return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E); |
| case MSVCIntrin::_InterlockedExchangeAdd_acq: |
| return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E, |
| AtomicOrdering::Acquire); |
| case MSVCIntrin::_InterlockedExchangeAdd_rel: |
| return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E, |
| AtomicOrdering::Release); |
| case MSVCIntrin::_InterlockedExchangeAdd_nf: |
| return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E, |
| AtomicOrdering::Monotonic); |
| case MSVCIntrin::_InterlockedExchange_acq: |
| return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E, |
| AtomicOrdering::Acquire); |
| case MSVCIntrin::_InterlockedExchange_rel: |
| return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E, |
| AtomicOrdering::Release); |
| case MSVCIntrin::_InterlockedExchange_nf: |
| return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E, |
| AtomicOrdering::Monotonic); |
| case MSVCIntrin::_InterlockedCompareExchange: |
| return EmitAtomicCmpXchgForMSIntrin(*this, E); |
| case MSVCIntrin::_InterlockedCompareExchange_acq: |
| return EmitAtomicCmpXchgForMSIntrin(*this, E, AtomicOrdering::Acquire); |
| case MSVCIntrin::_InterlockedCompareExchange_rel: |
| return EmitAtomicCmpXchgForMSIntrin(*this, E, AtomicOrdering::Release); |
| case MSVCIntrin::_InterlockedCompareExchange_nf: |
| return EmitAtomicCmpXchgForMSIntrin(*this, E, AtomicOrdering::Monotonic); |
| case MSVCIntrin::_InterlockedCompareExchange128: |
| return EmitAtomicCmpXchg128ForMSIntrin( |
| *this, E, AtomicOrdering::SequentiallyConsistent); |
| case MSVCIntrin::_InterlockedCompareExchange128_acq: |
| return EmitAtomicCmpXchg128ForMSIntrin(*this, E, AtomicOrdering::Acquire); |
| case MSVCIntrin::_InterlockedCompareExchange128_rel: |
| return EmitAtomicCmpXchg128ForMSIntrin(*this, E, AtomicOrdering::Release); |
| case MSVCIntrin::_InterlockedCompareExchange128_nf: |
| return EmitAtomicCmpXchg128ForMSIntrin(*this, E, AtomicOrdering::Monotonic); |
| case MSVCIntrin::_InterlockedOr_acq: |
| return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E, |
| AtomicOrdering::Acquire); |
| case MSVCIntrin::_InterlockedOr_rel: |
| return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E, |
| AtomicOrdering::Release); |
| case MSVCIntrin::_InterlockedOr_nf: |
| return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E, |
| AtomicOrdering::Monotonic); |
| case MSVCIntrin::_InterlockedXor_acq: |
| return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E, |
| AtomicOrdering::Acquire); |
| case MSVCIntrin::_InterlockedXor_rel: |
| return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E, |
| AtomicOrdering::Release); |
| case MSVCIntrin::_InterlockedXor_nf: |
| return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E, |
| AtomicOrdering::Monotonic); |
| case MSVCIntrin::_InterlockedAnd_acq: |
| return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E, |
| AtomicOrdering::Acquire); |
| case MSVCIntrin::_InterlockedAnd_rel: |
| return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E, |
| AtomicOrdering::Release); |
| case MSVCIntrin::_InterlockedAnd_nf: |
| return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E, |
| AtomicOrdering::Monotonic); |
| case MSVCIntrin::_InterlockedIncrement_acq: |
| return EmitAtomicIncrementValue(*this, E, AtomicOrdering::Acquire); |
| case MSVCIntrin::_InterlockedIncrement_rel: |
| return EmitAtomicIncrementValue(*this, E, AtomicOrdering::Release); |
| case MSVCIntrin::_InterlockedIncrement_nf: |
| return EmitAtomicIncrementValue(*this, E, AtomicOrdering::Monotonic); |
| case MSVCIntrin::_InterlockedDecrement_acq: |
| return EmitAtomicDecrementValue(*this, E, AtomicOrdering::Acquire); |
| case MSVCIntrin::_InterlockedDecrement_rel: |
| return EmitAtomicDecrementValue(*this, E, AtomicOrdering::Release); |
| case MSVCIntrin::_InterlockedDecrement_nf: |
| return EmitAtomicDecrementValue(*this, E, AtomicOrdering::Monotonic); |
| |
| case MSVCIntrin::_InterlockedDecrement: |
| return EmitAtomicDecrementValue(*this, E); |
| case MSVCIntrin::_InterlockedIncrement: |
| return EmitAtomicIncrementValue(*this, E); |
| |
| case MSVCIntrin::__fastfail: { |
| // Request immediate process termination from the kernel. The instruction |
| // sequences to do this are documented on MSDN: |
| // https://msdn.microsoft.com/en-us/library/dn774154.aspx |
| llvm::Triple::ArchType ISA = getTarget().getTriple().getArch(); |
| StringRef Asm, Constraints; |
| switch (ISA) { |
| default: |
| ErrorUnsupported(E, "__fastfail call for this architecture"); |
| break; |
| case llvm::Triple::x86: |
| case llvm::Triple::x86_64: |
| Asm = "int $$0x29"; |
| Constraints = "{cx}"; |
| break; |
| case llvm::Triple::thumb: |
| Asm = "udf #251"; |
| Constraints = "{r0}"; |
| break; |
| case llvm::Triple::aarch64: |
| Asm = "brk #0xF003"; |
| Constraints = "{w0}"; |
| } |
| llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, {Int32Ty}, false); |
| llvm::InlineAsm *IA = |
| llvm::InlineAsm::get(FTy, Asm, Constraints, /*hasSideEffects=*/true); |
| llvm::AttributeList NoReturnAttr = llvm::AttributeList::get( |
| getLLVMContext(), llvm::AttributeList::FunctionIndex, |
| llvm::Attribute::NoReturn); |
| llvm::CallInst *CI = Builder.CreateCall(IA, EmitScalarExpr(E->getArg(0))); |
| CI->setAttributes(NoReturnAttr); |
| return CI; |
| } |
| } |
| llvm_unreachable("Incorrect MSVC intrinsic!"); |
| } |
| |
| namespace { |
| // ARC cleanup for __builtin_os_log_format |
| struct CallObjCArcUse final : EHScopeStack::Cleanup { |
| CallObjCArcUse(llvm::Value *object) : object(object) {} |
| llvm::Value *object; |
| |
| void Emit(CodeGenFunction &CGF, Flags flags) override { |
| CGF.EmitARCIntrinsicUse(object); |
| } |
| }; |
| } |
| |
| Value *CodeGenFunction::EmitCheckedArgForBuiltin(const Expr *E, |
| BuiltinCheckKind Kind) { |
| assert((Kind == BCK_CLZPassedZero || Kind == BCK_CTZPassedZero) && |
| "Unsupported builtin check kind"); |
| |
| Value *ArgValue = EmitScalarExpr(E); |
| if (!SanOpts.has(SanitizerKind::Builtin)) |
| return ArgValue; |
| |
| SanitizerScope SanScope(this); |
| Value *Cond = Builder.CreateICmpNE( |
| ArgValue, llvm::Constant::getNullValue(ArgValue->getType())); |
| EmitCheck(std::make_pair(Cond, SanitizerKind::SO_Builtin), |
| SanitizerHandler::InvalidBuiltin, |
| {EmitCheckSourceLocation(E->getExprLoc()), |
| llvm::ConstantInt::get(Builder.getInt8Ty(), Kind)}, |
| {}); |
| return ArgValue; |
| } |
| |
| Value *CodeGenFunction::EmitCheckedArgForAssume(const Expr *E) { |
| Value *ArgValue = EvaluateExprAsBool(E); |
| if (!SanOpts.has(SanitizerKind::Builtin)) |
| return ArgValue; |
| |
| SanitizerScope SanScope(this); |
| EmitCheck( |
| std::make_pair(ArgValue, SanitizerKind::SO_Builtin), |
| SanitizerHandler::InvalidBuiltin, |
| {EmitCheckSourceLocation(E->getExprLoc()), |
| llvm::ConstantInt::get(Builder.getInt8Ty(), BCK_AssumePassedFalse)}, |
| std::nullopt); |
| return ArgValue; |
| } |
| |
| static Value *EmitAbs(CodeGenFunction &CGF, Value *ArgValue, bool HasNSW) { |
| return CGF.Builder.CreateBinaryIntrinsic( |
| Intrinsic::abs, ArgValue, |
| ConstantInt::get(CGF.Builder.getInt1Ty(), HasNSW)); |
| } |
| |
| static Value *EmitOverflowCheckedAbs(CodeGenFunction &CGF, const CallExpr *E, |
| bool SanitizeOverflow) { |
| Value *ArgValue = CGF.EmitScalarExpr(E->getArg(0)); |
| |
| // Try to eliminate overflow check. |
| if (const auto *VCI = dyn_cast<llvm::ConstantInt>(ArgValue)) { |
| if (!VCI->isMinSignedValue()) |
| return EmitAbs(CGF, ArgValue, true); |
| } |
| |
| CodeGenFunction::SanitizerScope SanScope(&CGF); |
| |
| Constant *Zero = Constant::getNullValue(ArgValue->getType()); |
| Value *ResultAndOverflow = CGF.Builder.CreateBinaryIntrinsic( |
| Intrinsic::ssub_with_overflow, Zero, ArgValue); |
| Value *Result = CGF.Builder.CreateExtractValue(ResultAndOverflow, 0); |
| Value *NotOverflow = CGF.Builder.CreateNot( |
| CGF.Builder.CreateExtractValue(ResultAndOverflow, 1)); |
| |
| // TODO: support -ftrapv-handler. |
| if (SanitizeOverflow) { |
| CGF.EmitCheck({{NotOverflow, SanitizerKind::SO_SignedIntegerOverflow}}, |
| SanitizerHandler::NegateOverflow, |
| {CGF.EmitCheckSourceLocation(E->getArg(0)->getExprLoc()), |
| CGF.EmitCheckTypeDescriptor(E->getType())}, |
| {ArgValue}); |
| } else |
| CGF.EmitTrapCheck(NotOverflow, SanitizerHandler::SubOverflow); |
| |
| Value *CmpResult = CGF.Builder.CreateICmpSLT(ArgValue, Zero, "abscond"); |
| return CGF.Builder.CreateSelect(CmpResult, Result, ArgValue, "abs"); |
| } |
| |
| /// Get the argument type for arguments to os_log_helper. |
| static CanQualType getOSLogArgType(ASTContext &C, int Size) { |
| QualType UnsignedTy = C.getIntTypeForBitwidth(Size * 8, /*Signed=*/false); |
| return C.getCanonicalType(UnsignedTy); |
| } |
| |
| llvm::Function *CodeGenFunction::generateBuiltinOSLogHelperFunction( |
| const analyze_os_log::OSLogBufferLayout &Layout, |
| CharUnits BufferAlignment) { |
| ASTContext &Ctx = getContext(); |
| |
| llvm::SmallString<64> Name; |
| { |
| raw_svector_ostream OS(Name); |
| OS << "__os_log_helper"; |
| OS << "_" << BufferAlignment.getQuantity(); |
| OS << "_" << int(Layout.getSummaryByte()); |
| OS << "_" << int(Layout.getNumArgsByte()); |
| for (const auto &Item : Layout.Items) |
| OS << "_" << int(Item.getSizeByte()) << "_" |
| << int(Item.getDescriptorByte()); |
| } |
| |
| if (llvm::Function *F = CGM.getModule().getFunction(Name)) |
| return F; |
| |
| llvm::SmallVector<QualType, 4> ArgTys; |
| FunctionArgList Args; |
| Args.push_back(ImplicitParamDecl::Create( |
| Ctx, nullptr, SourceLocation(), &Ctx.Idents.get("buffer"), Ctx.VoidPtrTy, |
| ImplicitParamKind::Other)); |
| ArgTys.emplace_back(Ctx.VoidPtrTy); |
| |
| for (unsigned int I = 0, E = Layout.Items.size(); I < E; ++I) { |
| char Size = Layout.Items[I].getSizeByte(); |
| if (!Size) |
| continue; |
| |
| QualType ArgTy = getOSLogArgType(Ctx, Size); |
| Args.push_back(ImplicitParamDecl::Create( |
| Ctx, nullptr, SourceLocation(), |
| &Ctx.Idents.get(std::string("arg") + llvm::to_string(I)), ArgTy, |
| ImplicitParamKind::Other)); |
| ArgTys.emplace_back(ArgTy); |
| } |
| |
| QualType ReturnTy = Ctx.VoidTy; |
| |
| // The helper function has linkonce_odr linkage to enable the linker to merge |
| // identical functions. To ensure the merging always happens, 'noinline' is |
| // attached to the function when compiling with -Oz. |
| const CGFunctionInfo &FI = |
| CGM.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy, Args); |
| llvm::FunctionType *FuncTy = CGM.getTypes().GetFunctionType(FI); |
| llvm::Function *Fn = llvm::Function::Create( |
| FuncTy, llvm::GlobalValue::LinkOnceODRLinkage, Name, &CGM.getModule()); |
| Fn->setVisibility(llvm::GlobalValue::HiddenVisibility); |
| CGM.SetLLVMFunctionAttributes(GlobalDecl(), FI, Fn, /*IsThunk=*/false); |
| CGM.SetLLVMFunctionAttributesForDefinition(nullptr, Fn); |
| Fn->setDoesNotThrow(); |
| |
| // Attach 'noinline' at -Oz. |
| if (CGM.getCodeGenOpts().OptimizeSize == 2) |
| Fn->addFnAttr(llvm::Attribute::NoInline); |
| |
| auto NL = ApplyDebugLocation::CreateEmpty(*this); |
| StartFunction(GlobalDecl(), ReturnTy, Fn, FI, Args); |
| |
| // Create a scope with an artificial location for the body of this function. |
| auto AL = ApplyDebugLocation::CreateArtificial(*this); |
| |
| CharUnits Offset; |
| Address BufAddr = makeNaturalAddressForPointer( |
| Builder.CreateLoad(GetAddrOfLocalVar(Args[0]), "buf"), Ctx.VoidTy, |
| BufferAlignment); |
| Builder.CreateStore(Builder.getInt8(Layout.getSummaryByte()), |
| Builder.CreateConstByteGEP(BufAddr, Offset++, "summary")); |
| Builder.CreateStore(Builder.getInt8(Layout.getNumArgsByte()), |
| Builder.CreateConstByteGEP(BufAddr, Offset++, "numArgs")); |
| |
| unsigned I = 1; |
| for (const auto &Item : Layout.Items) { |
| Builder.CreateStore( |
| Builder.getInt8(Item.getDescriptorByte()), |
| Builder.CreateConstByteGEP(BufAddr, Offset++, "argDescriptor")); |
| Builder.CreateStore( |
| Builder.getInt8(Item.getSizeByte()), |
| Builder.CreateConstByteGEP(BufAddr, Offset++, "argSize")); |
| |
| CharUnits Size = Item.size(); |
| if (!Size.getQuantity()) |
| continue; |
| |
| Address Arg = GetAddrOfLocalVar(Args[I]); |
| Address Addr = Builder.CreateConstByteGEP(BufAddr, Offset, "argData"); |
| Addr = Addr.withElementType(Arg.getElementType()); |
| Builder.CreateStore(Builder.CreateLoad(Arg), Addr); |
| Offset += Size; |
| ++I; |
| } |
| |
| FinishFunction(); |
| |
| return Fn; |
| } |
| |
| RValue CodeGenFunction::emitBuiltinOSLogFormat(const CallExpr &E) { |
| assert(E.getNumArgs() >= 2 && |
| "__builtin_os_log_format takes at least 2 arguments"); |
| ASTContext &Ctx = getContext(); |
| analyze_os_log::OSLogBufferLayout Layout; |
| analyze_os_log::computeOSLogBufferLayout(Ctx, &E, Layout); |
| Address BufAddr = EmitPointerWithAlignment(E.getArg(0)); |
| llvm::SmallVector<llvm::Value *, 4> RetainableOperands; |
| |
| // Ignore argument 1, the format string. It is not currently used. |
| CallArgList Args; |
| Args.add(RValue::get(BufAddr.emitRawPointer(*this)), Ctx.VoidPtrTy); |
| |
| for (const auto &Item : Layout.Items) { |
| int Size = Item.getSizeByte(); |
| if (!Size) |
| continue; |
| |
| llvm::Value *ArgVal; |
| |
| if (Item.getKind() == analyze_os_log::OSLogBufferItem::MaskKind) { |
| uint64_t Val = 0; |
| for (unsigned I = 0, E = Item.getMaskType().size(); I < E; ++I) |
| Val |= ((uint64_t)Item.getMaskType()[I]) << I * 8; |
| ArgVal = llvm::Constant::getIntegerValue(Int64Ty, llvm::APInt(64, Val)); |
| } else if (const Expr *TheExpr = Item.getExpr()) { |
| ArgVal = EmitScalarExpr(TheExpr, /*Ignore*/ false); |
| |
| // If a temporary object that requires destruction after the full |
| // expression is passed, push a lifetime-extended cleanup to extend its |
| // lifetime to the end of the enclosing block scope. |
| auto LifetimeExtendObject = [&](const Expr *E) { |
| E = E->IgnoreParenCasts(); |
| // Extend lifetimes of objects returned by function calls and message |
| // sends. |
| |
| // FIXME: We should do this in other cases in which temporaries are |
| // created including arguments of non-ARC types (e.g., C++ |
| // temporaries). |
| if (isa<CallExpr>(E) || isa<ObjCMessageExpr>(E)) |
| return true; |
| return false; |
| }; |
| |
| if (TheExpr->getType()->isObjCRetainableType() && |
| getLangOpts().ObjCAutoRefCount && LifetimeExtendObject(TheExpr)) { |
| assert(getEvaluationKind(TheExpr->getType()) == TEK_Scalar && |
| "Only scalar can be a ObjC retainable type"); |
| if (!isa<Constant>(ArgVal)) { |
| CleanupKind Cleanup = getARCCleanupKind(); |
| QualType Ty = TheExpr->getType(); |
| RawAddress Alloca = RawAddress::invalid(); |
| RawAddress Addr = CreateMemTemp(Ty, "os.log.arg", &Alloca); |
| ArgVal = EmitARCRetain(Ty, ArgVal); |
| Builder.CreateStore(ArgVal, Addr); |
| pushLifetimeExtendedDestroy(Cleanup, Alloca, Ty, |
| CodeGenFunction::destroyARCStrongPrecise, |
| Cleanup & EHCleanup); |
| |
| // Push a clang.arc.use call to ensure ARC optimizer knows that the |
| // argument has to be alive. |
| if (CGM.getCodeGenOpts().OptimizationLevel != 0) |
| pushCleanupAfterFullExpr<CallObjCArcUse>(Cleanup, ArgVal); |
| } |
| } |
| } else { |
| ArgVal = Builder.getInt32(Item.getConstValue().getQuantity()); |
| } |
| |
| unsigned ArgValSize = |
| CGM.getDataLayout().getTypeSizeInBits(ArgVal->getType()); |
| llvm::IntegerType *IntTy = llvm::Type::getIntNTy(getLLVMContext(), |
| ArgValSize); |
| ArgVal = Builder.CreateBitOrPointerCast(ArgVal, IntTy); |
| CanQualType ArgTy = getOSLogArgType(Ctx, Size); |
| // If ArgVal has type x86_fp80, zero-extend ArgVal. |
| ArgVal = Builder.CreateZExtOrBitCast(ArgVal, ConvertType(ArgTy)); |
| Args.add(RValue::get(ArgVal), ArgTy); |
| } |
| |
| const CGFunctionInfo &FI = |
| CGM.getTypes().arrangeBuiltinFunctionCall(Ctx.VoidTy, Args); |
| llvm::Function *F = CodeGenFunction(CGM).generateBuiltinOSLogHelperFunction( |
| Layout, BufAddr.getAlignment()); |
| EmitCall(FI, CGCallee::forDirect(F), ReturnValueSlot(), Args); |
| return RValue::get(BufAddr, *this); |
| } |
| |
| static bool isSpecialUnsignedMultiplySignedResult( |
| unsigned BuiltinID, WidthAndSignedness Op1Info, WidthAndSignedness Op2Info, |
| WidthAndSignedness ResultInfo) { |
| return BuiltinID == Builtin::BI__builtin_mul_overflow && |
| Op1Info.Width == Op2Info.Width && Op2Info.Width == ResultInfo.Width && |
| !Op1Info.Signed && !Op2Info.Signed && ResultInfo.Signed; |
| } |
| |
| static RValue EmitCheckedUnsignedMultiplySignedResult( |
| CodeGenFunction &CGF, const clang::Expr *Op1, WidthAndSignedness Op1Info, |
| const clang::Expr *Op2, WidthAndSignedness Op2Info, |
| const clang::Expr *ResultArg, QualType ResultQTy, |
| WidthAndSignedness ResultInfo) { |
| assert(isSpecialUnsignedMultiplySignedResult( |
| Builtin::BI__builtin_mul_overflow, Op1Info, Op2Info, ResultInfo) && |
| "Cannot specialize this multiply"); |
| |
| llvm::Value *V1 = CGF.EmitScalarExpr(Op1); |
| llvm::Value *V2 = CGF.EmitScalarExpr(Op2); |
| |
| llvm::Value *HasOverflow; |
| llvm::Value *Result = EmitOverflowIntrinsic( |
| CGF, llvm::Intrinsic::umul_with_overflow, V1, V2, HasOverflow); |
| |
| // The intrinsic call will detect overflow when the value is > UINT_MAX, |
| // however, since the original builtin had a signed result, we need to report |
| // an overflow when the result is greater than INT_MAX. |
| auto IntMax = llvm::APInt::getSignedMaxValue(ResultInfo.Width); |
| llvm::Value *IntMaxValue = llvm::ConstantInt::get(Result->getType(), IntMax); |
| |
| llvm::Value *IntMaxOverflow = CGF.Builder.CreateICmpUGT(Result, IntMaxValue); |
| HasOverflow = CGF.Builder.CreateOr(HasOverflow, IntMaxOverflow); |
| |
| bool isVolatile = |
| ResultArg->getType()->getPointeeType().isVolatileQualified(); |
| Address ResultPtr = CGF.EmitPointerWithAlignment(ResultArg); |
| CGF.Builder.CreateStore(CGF.EmitToMemory(Result, ResultQTy), ResultPtr, |
| isVolatile); |
| return RValue::get(HasOverflow); |
| } |
| |
| /// Determine if a binop is a checked mixed-sign multiply we can specialize. |
| static bool isSpecialMixedSignMultiply(unsigned BuiltinID, |
| WidthAndSignedness Op1Info, |
| WidthAndSignedness Op2Info, |
| WidthAndSignedness ResultInfo) { |
| return BuiltinID == Builtin::BI__builtin_mul_overflow && |
| std::max(Op1Info.Width, Op2Info.Width) >= ResultInfo.Width && |
| Op1Info.Signed != Op2Info.Signed; |
| } |
| |
| /// Emit a checked mixed-sign multiply. This is a cheaper specialization of |
| /// the generic checked-binop irgen. |
| static RValue |
| EmitCheckedMixedSignMultiply(CodeGenFunction &CGF, const clang::Expr *Op1, |
| WidthAndSignedness Op1Info, const clang::Expr *Op2, |
| WidthAndSignedness Op2Info, |
| const clang::Expr *ResultArg, QualType ResultQTy, |
| WidthAndSignedness ResultInfo) { |
| assert(isSpecialMixedSignMultiply(Builtin::BI__builtin_mul_overflow, Op1Info, |
| Op2Info, ResultInfo) && |
| "Not a mixed-sign multipliction we can specialize"); |
| |
| // Emit the signed and unsigned operands. |
| const clang::Expr *SignedOp = Op1Info.Signed ? Op1 : Op2; |
| const clang::Expr *UnsignedOp = Op1Info.Signed ? Op2 : Op1; |
| llvm::Value *Signed = CGF.EmitScalarExpr(SignedOp); |
| llvm::Value *Unsigned = CGF.EmitScalarExpr(UnsignedOp); |
| unsigned SignedOpWidth = Op1Info.Signed ? Op1Info.Width : Op2Info.Width; |
| unsigned UnsignedOpWidth = Op1Info.Signed ? Op2Info.Width : Op1Info.Width; |
| |
| // One of the operands may be smaller than the other. If so, [s|z]ext it. |
| if (SignedOpWidth < UnsignedOpWidth) |
| Signed = CGF.Builder.CreateSExt(Signed, Unsigned->getType(), "op.sext"); |
| if (UnsignedOpWidth < SignedOpWidth) |
| Unsigned = CGF.Builder.CreateZExt(Unsigned, Signed->getType(), "op.zext"); |
| |
| llvm::Type *OpTy = Signed->getType(); |
| llvm::Value *Zero = llvm::Constant::getNullValue(OpTy); |
| Address ResultPtr = CGF.EmitPointerWithAlignment(ResultArg); |
| llvm::Type *ResTy = ResultPtr.getElementType(); |
| unsigned OpWidth = std::max(Op1Info.Width, Op2Info.Width); |
| |
| // Take the absolute value of the signed operand. |
| llvm::Value *IsNegative = CGF.Builder.CreateICmpSLT(Signed, Zero); |
| llvm::Value *AbsOfNegative = CGF.Builder.CreateSub(Zero, Signed); |
| llvm::Value *AbsSigned = |
| CGF.Builder.CreateSelect(IsNegative, AbsOfNegative, Signed); |
| |
| // Perform a checked unsigned multiplication. |
| llvm::Value *UnsignedOverflow; |
| llvm::Value *UnsignedResult = |
| EmitOverflowIntrinsic(CGF, llvm::Intrinsic::umul_with_overflow, AbsSigned, |
| Unsigned, UnsignedOverflow); |
| |
| llvm::Value *Overflow, *Result; |
| if (ResultInfo.Signed) { |
| // Signed overflow occurs if the result is greater than INT_MAX or lesser |
| // than INT_MIN, i.e when |Result| > (INT_MAX + IsNegative). |
| auto IntMax = |
| llvm::APInt::getSignedMaxValue(ResultInfo.Width).zext(OpWidth); |
| llvm::Value *MaxResult = |
| CGF.Builder.CreateAdd(llvm::ConstantInt::get(OpTy, IntMax), |
| CGF.Builder.CreateZExt(IsNegative, OpTy)); |
| llvm::Value *SignedOverflow = |
| CGF.Builder.CreateICmpUGT(UnsignedResult, MaxResult); |
| Overflow = CGF.Builder.CreateOr(UnsignedOverflow, SignedOverflow); |
| |
| // Prepare the signed result (possibly by negating it). |
| llvm::Value *NegativeResult = CGF.Builder.CreateNeg(UnsignedResult); |
| llvm::Value *SignedResult = |
| CGF.Builder.CreateSelect(IsNegative, NegativeResult, UnsignedResult); |
| Result = CGF.Builder.CreateTrunc(SignedResult, ResTy); |
| } else { |
| // Unsigned overflow occurs if the result is < 0 or greater than UINT_MAX. |
| llvm::Value *Underflow = CGF.Builder.CreateAnd( |
| IsNegative, CGF.Builder.CreateIsNotNull(UnsignedResult)); |
| Overflow = CGF.Builder.CreateOr(UnsignedOverflow, Underflow); |
| if (ResultInfo.Width < OpWidth) { |
| auto IntMax = |
| llvm::APInt::getMaxValue(ResultInfo.Width).zext(OpWidth); |
| llvm::Value *TruncOverflow = CGF.Builder.CreateICmpUGT( |
| UnsignedResult, llvm::ConstantInt::get(OpTy, IntMax)); |
| Overflow = CGF.Builder.CreateOr(Overflow, TruncOverflow); |
| } |
| |
| // Negate the product if it would be negative in infinite precision. |
| Result = CGF.Builder.CreateSelect( |
| IsNegative, CGF.Builder.CreateNeg(UnsignedResult), UnsignedResult); |
| |
| Result = CGF.Builder.CreateTrunc(Result, ResTy); |
| } |
| assert(Overflow && Result && "Missing overflow or result"); |
| |
| bool isVolatile = |
| ResultArg->getType()->getPointeeType().isVolatileQualified(); |
| CGF.Builder.CreateStore(CGF.EmitToMemory(Result, ResultQTy), ResultPtr, |
| isVolatile); |
| return RValue::get(Overflow); |
| } |
| |
| static bool |
| TypeRequiresBuiltinLaunderImp(const ASTContext &Ctx, QualType Ty, |
| llvm::SmallPtrSetImpl<const Decl *> &Seen) { |
| if (const auto *Arr = Ctx.getAsArrayType(Ty)) |
| Ty = Ctx.getBaseElementType(Arr); |
| |
| const auto *Record = Ty->getAsCXXRecordDecl(); |
| if (!Record) |
| return false; |
| |
| // We've already checked this type, or are in the process of checking it. |
| if (!Seen.insert(Record).second) |
| return false; |
| |
| assert(Record->hasDefinition() && |
| "Incomplete types should already be diagnosed"); |
| |
| if (Record->isDynamicClass()) |
| return true; |
| |
| for (FieldDecl *F : Record->fields()) { |
| if (TypeRequiresBuiltinLaunderImp(Ctx, F->getType(), Seen)) |
| return true; |
| } |
| return false; |
| } |
| |
| /// Determine if the specified type requires laundering by checking if it is a |
| /// dynamic class type or contains a subobject which is a dynamic class type. |
| static bool TypeRequiresBuiltinLaunder(CodeGenModule &CGM, QualType Ty) { |
| if (!CGM.getCodeGenOpts().StrictVTablePointers) |
| return false; |
| llvm::SmallPtrSet<const Decl *, 16> Seen; |
| return TypeRequiresBuiltinLaunderImp(CGM.getContext(), Ty, Seen); |
| } |
| |
| RValue CodeGenFunction::emitRotate(const CallExpr *E, bool IsRotateRight) { |
| llvm::Value *Src = EmitScalarExpr(E->getArg(0)); |
| llvm::Value *ShiftAmt = EmitScalarExpr(E->getArg(1)); |
| |
| // The builtin's shift arg may have a different type than the source arg and |
| // result, but the LLVM intrinsic uses the same type for all values. |
| llvm::Type *Ty = Src->getType(); |
| ShiftAmt = Builder.CreateIntCast(ShiftAmt, Ty, false); |
| |
| // Rotate is a special case of LLVM funnel shift - 1st 2 args are the same. |
| unsigned IID = IsRotateRight ? Intrinsic::fshr : Intrinsic::fshl; |
| Function *F = CGM.getIntrinsic(IID, Ty); |
| return RValue::get(Builder.CreateCall(F, { Src, Src, ShiftAmt })); |
| } |
| |
| // Map math builtins for long-double to f128 version. |
| static unsigned mutateLongDoubleBuiltin(unsigned BuiltinID) { |
| switch (BuiltinID) { |
| #define MUTATE_LDBL(func) \ |
| case Builtin::BI__builtin_##func##l: \ |
| return Builtin::BI__builtin_##func##f128; |
| MUTATE_LDBL(sqrt) |
| MUTATE_LDBL(cbrt) |
| MUTATE_LDBL(fabs) |
| MUTATE_LDBL(log) |
| MUTATE_LDBL(log2) |
| MUTATE_LDBL(log10) |
| MUTATE_LDBL(log1p) |
| MUTATE_LDBL(logb) |
| MUTATE_LDBL(exp) |
| MUTATE_LDBL(exp2) |
| MUTATE_LDBL(expm1) |
| MUTATE_LDBL(fdim) |
| MUTATE_LDBL(hypot) |
| MUTATE_LDBL(ilogb) |
| MUTATE_LDBL(pow) |
| MUTATE_LDBL(fmin) |
| MUTATE_LDBL(fmax) |
| MUTATE_LDBL(ceil) |
| MUTATE_LDBL(trunc) |
| MUTATE_LDBL(rint) |
| MUTATE_LDBL(nearbyint) |
| MUTATE_LDBL(round) |
| MUTATE_LDBL(floor) |
| MUTATE_LDBL(lround) |
| MUTATE_LDBL(llround) |
| MUTATE_LDBL(lrint) |
| MUTATE_LDBL(llrint) |
| MUTATE_LDBL(fmod) |
| MUTATE_LDBL(modf) |
| MUTATE_LDBL(nan) |
| MUTATE_LDBL(nans) |
| MUTATE_LDBL(inf) |
| MUTATE_LDBL(fma) |
| MUTATE_LDBL(sin) |
| MUTATE_LDBL(cos) |
| MUTATE_LDBL(tan) |
| MUTATE_LDBL(sinh) |
| MUTATE_LDBL(cosh) |
| MUTATE_LDBL(tanh) |
| MUTATE_LDBL(asin) |
| MUTATE_LDBL(acos) |
| MUTATE_LDBL(atan) |
| MUTATE_LDBL(asinh) |
| MUTATE_LDBL(acosh) |
| MUTATE_LDBL(atanh) |
| MUTATE_LDBL(atan2) |
| MUTATE_LDBL(erf) |
| MUTATE_LDBL(erfc) |
| MUTATE_LDBL(ldexp) |
| MUTATE_LDBL(frexp) |
| MUTATE_LDBL(huge_val) |
| MUTATE_LDBL(copysign) |
| MUTATE_LDBL(nextafter) |
| MUTATE_LDBL(nexttoward) |
| MUTATE_LDBL(remainder) |
| MUTATE_LDBL(remquo) |
| MUTATE_LDBL(scalbln) |
| MUTATE_LDBL(scalbn) |
| MUTATE_LDBL(tgamma) |
| MUTATE_LDBL(lgamma) |
| #undef MUTATE_LDBL |
| default: |
| return BuiltinID; |
| } |
| } |
| |
| static Value *tryUseTestFPKind(CodeGenFunction &CGF, unsigned BuiltinID, |
| Value *V) { |
| if (CGF.Builder.getIsFPConstrained() && |
| CGF.Builder.getDefaultConstrainedExcept() != fp::ebIgnore) { |
| if (Value *Result = |
| CGF.getTargetHooks().testFPKind(V, BuiltinID, CGF.Builder, CGF.CGM)) |
| return Result; |
| } |
| return nullptr; |
| } |
| |
| static RValue EmitHipStdParUnsupportedBuiltin(CodeGenFunction *CGF, |
| const FunctionDecl *FD) { |
| auto Name = FD->getNameAsString() + "__hipstdpar_unsupported"; |
| auto FnTy = CGF->CGM.getTypes().GetFunctionType(FD); |
| auto UBF = CGF->CGM.getModule().getOrInsertFunction(Name, FnTy); |
| |
| SmallVector<Value *, 16> Args; |
| for (auto &&FormalTy : FnTy->params()) |
| Args.push_back(llvm::PoisonValue::get(FormalTy)); |
| |
| return RValue::get(CGF->Builder.CreateCall(UBF, Args)); |
| } |
| |
| RValue CodeGenFunction::EmitBuiltinExpr(const GlobalDecl GD, unsigned BuiltinID, |
| const CallExpr *E, |
| ReturnValueSlot ReturnValue) { |
| assert(!getContext().BuiltinInfo.isImmediate(BuiltinID) && |
| "Should not codegen for consteval builtins"); |
| |
| const FunctionDecl *FD = GD.getDecl()->getAsFunction(); |
| // See if we can constant fold this builtin. If so, don't emit it at all. |
| // TODO: Extend this handling to all builtin calls that we can constant-fold. |
| Expr::EvalResult Result; |
| if (E->isPRValue() && E->EvaluateAsRValue(Result, CGM.getContext()) && |
| !Result.hasSideEffects()) { |
| if (Result.Val.isInt()) |
| return RValue::get(llvm::ConstantInt::get(getLLVMContext(), |
| Result.Val.getInt())); |
| if (Result.Val.isFloat()) |
| return RValue::get(llvm::ConstantFP::get(getLLVMContext(), |
| Result.Val.getFloat())); |
| } |
| |
| // If current long-double semantics is IEEE 128-bit, replace math builtins |
| // of long-double with f128 equivalent. |
| // TODO: This mutation should also be applied to other targets other than PPC, |
| // after backend supports IEEE 128-bit style libcalls. |
| if (getTarget().getTriple().isPPC64() && |
| &getTarget().getLongDoubleFormat() == &llvm::APFloat::IEEEquad()) |
| BuiltinID = mutateLongDoubleBuiltin(BuiltinID); |
| |
| // If the builtin has been declared explicitly with an assembler label, |
| // disable the specialized emitting below. Ideally we should communicate the |
| // rename in IR, or at least avoid generating the intrinsic calls that are |
| // likely to get lowered to the renamed library functions. |
| const unsigned BuiltinIDIfNoAsmLabel = |
| FD->hasAttr<AsmLabelAttr>() ? 0 : BuiltinID; |
| |
| std::optional<bool> ErrnoOverriden; |
| // ErrnoOverriden is true if math-errno is overriden via the |
| // '#pragma float_control(precise, on)'. This pragma disables fast-math, |
| // which implies math-errno. |
| if (E->hasStoredFPFeatures()) { |
| FPOptionsOverride OP = E->getFPFeatures(); |
| if (OP.hasMathErrnoOverride()) |
| ErrnoOverriden = OP.getMathErrnoOverride(); |
| } |
| // True if 'attribute__((optnone))' is used. This attribute overrides |
| // fast-math which implies math-errno. |
| bool OptNone = CurFuncDecl && CurFuncDecl->hasAttr<OptimizeNoneAttr>(); |
| |
| // True if we are compiling at -O2 and errno has been disabled |
| // using the '#pragma float_control(precise, off)', and |
| // attribute opt-none hasn't been seen. |
| bool ErrnoOverridenToFalseWithOpt = |
| ErrnoOverriden.has_value() && !ErrnoOverriden.value() && !OptNone && |
| CGM.getCodeGenOpts().OptimizationLevel != 0; |
| |
| // There are LLVM math intrinsics/instructions corresponding to math library |
| // functions except the LLVM op will never set errno while the math library |
| // might. Also, math builtins have the same semantics as their math library |
| // twins. Thus, we can transform math library and builtin calls to their |
| // LLVM counterparts if the call is marked 'const' (known to never set errno). |
| // In case FP exceptions are enabled, the experimental versions of the |
| // intrinsics model those. |
| bool ConstAlways = |
| getContext().BuiltinInfo.isConst(BuiltinID); |
| |
| // There's a special case with the fma builtins where they are always const |
| // if the target environment is GNU or the target is OS is Windows and we're |
| // targeting the MSVCRT.dll environment. |
| // FIXME: This list can be become outdated. Need to find a way to get it some |
| // other way. |
| switch (BuiltinID) { |
| case Builtin::BI__builtin_fma: |
| case Builtin::BI__builtin_fmaf: |
| case Builtin::BI__builtin_fmal: |
| case Builtin::BI__builtin_fmaf16: |
| case Builtin::BIfma: |
| case Builtin::BIfmaf: |
| case Builtin::BIfmal: { |
| auto &Trip = CGM.getTriple(); |
| if (Trip.isGNUEnvironment() || Trip.isOSMSVCRT()) |
| ConstAlways = true; |
| break; |
| } |
| default: |
| break; |
| } |
| |
| bool ConstWithoutErrnoAndExceptions = |
| getContext().BuiltinInfo.isConstWithoutErrnoAndExceptions(BuiltinID); |
| bool ConstWithoutExceptions = |
| getContext().BuiltinInfo.isConstWithoutExceptions(BuiltinID); |
| |
| // ConstAttr is enabled in fast-math mode. In fast-math mode, math-errno is |
| // disabled. |
| // Math intrinsics are generated only when math-errno is disabled. Any pragmas |
| // or attributes that affect math-errno should prevent or allow math |
| // intrincs to be generated. Intrinsics are generated: |
| // 1- In fast math mode, unless math-errno is overriden |
| // via '#pragma float_control(precise, on)', or via an |
| // 'attribute__((optnone))'. |
| // 2- If math-errno was enabled on command line but overriden |
| // to false via '#pragma float_control(precise, off))' and |
| // 'attribute__((optnone))' hasn't been used. |
| // 3- If we are compiling with optimization and errno has been disabled |
| // via '#pragma float_control(precise, off)', and |
| // 'attribute__((optnone))' hasn't been used. |
| |
| bool ConstWithoutErrnoOrExceptions = |
| ConstWithoutErrnoAndExceptions || ConstWithoutExceptions; |
| bool GenerateIntrinsics = |
| (ConstAlways && !OptNone) || |
| (!getLangOpts().MathErrno && |
| !(ErrnoOverriden.has_value() && ErrnoOverriden.value()) && !OptNone); |
| if (!GenerateIntrinsics) { |
| GenerateIntrinsics = |
| ConstWithoutErrnoOrExceptions && !ConstWithoutErrnoAndExceptions; |
| if (!GenerateIntrinsics) |
| GenerateIntrinsics = |
| ConstWithoutErrnoOrExceptions && |
| (!getLangOpts().MathErrno && |
| !(ErrnoOverriden.has_value() && ErrnoOverriden.value()) && !OptNone); |
| if (!GenerateIntrinsics) |
| GenerateIntrinsics = |
| ConstWithoutErrnoOrExceptions && ErrnoOverridenToFalseWithOpt; |
| } |
| if (GenerateIntrinsics) { |
| switch (BuiltinIDIfNoAsmLabel) { |
| case Builtin::BIacos: |
| case Builtin::BIacosf: |
| case Builtin::BIacosl: |
| case Builtin::BI__builtin_acos: |
| case Builtin::BI__builtin_acosf: |
| case Builtin::BI__builtin_acosf16: |
| case Builtin::BI__builtin_acosl: |
| case Builtin::BI__builtin_acosf128: |
| return RValue::get(emitUnaryMaybeConstrainedFPBuiltin( |
| *this, E, Intrinsic::acos, Intrinsic::experimental_constrained_acos)); |
| |
| case Builtin::BIasin: |
| case Builtin::BIasinf: |
| case Builtin::BIasinl: |
| case Builtin::BI__builtin_asin: |
| case Builtin::BI__builtin_asinf: |
| case Builtin::BI__builtin_asinf16: |
| case Builtin::BI__builtin_asinl: |
| case Builtin::BI__builtin_asinf128: |
| return RValue::get(emitUnaryMaybeConstrainedFPBuiltin( |
| *this, E, Intrinsic::asin, Intrinsic::experimental_constrained_asin)); |
| |
| case Builtin::BIatan: |
| case Builtin::BIatanf: |
| case Builtin::BIatanl: |
| case Builtin::BI__builtin_atan: |
| case Builtin::BI__builtin_atanf: |
| case Builtin::BI__builtin_atanf16: |
| case Builtin::BI__builtin_atanl: |
| case Builtin::BI__builtin_atanf128: |
| return RValue::get(emitUnaryMaybeConstrainedFPBuiltin( |
| *this, E, Intrinsic::atan, Intrinsic::experimental_constrained_atan)); |
| |
| case Builtin::BIatan2: |
| case Builtin::BIatan2f: |
| case Builtin::BIatan2l: |
| case Builtin::BI__builtin_atan2: |
| case Builtin::BI__builtin_atan2f: |
| case Builtin::BI__builtin_atan2f16: |
| case Builtin::BI__builtin_atan2l: |
| case Builtin::BI__builtin_atan2f128: |
| return RValue::get(emitBinaryMaybeConstrainedFPBuiltin( |
| *this, E, Intrinsic::atan2, |
| Intrinsic::experimental_constrained_atan2)); |
| |
| case Builtin::BIceil: |
| case Builtin::BIceilf: |
| case Builtin::BIceill: |
| case Builtin::BI__builtin_ceil: |
| case Builtin::BI__builtin_ceilf: |
| case Builtin::BI__builtin_ceilf16: |
| case Builtin::BI__builtin_ceill: |
| case Builtin::BI__builtin_ceilf128: |
| return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E, |
| Intrinsic::ceil, |
| Intrinsic::experimental_constrained_ceil)); |
| |
| case Builtin::BIcopysign: |
| case Builtin::BIcopysignf: |
| case Builtin::BIcopysignl: |
| case Builtin::BI__builtin_copysign: |
| case Builtin::BI__builtin_copysignf: |
| case Builtin::BI__builtin_copysignf16: |
| case Builtin::BI__builtin_copysignl: |
| case Builtin::BI__builtin_copysignf128: |
| return RValue::get( |
| emitBuiltinWithOneOverloadedType<2>(*this, E, Intrinsic::copysign)); |
| |
| case Builtin::BIcos: |
| case Builtin::BIcosf: |
| case Builtin::BIcosl: |
| case Builtin::BI__builtin_cos: |
| case Builtin::BI__builtin_cosf: |
| case Builtin::BI__builtin_cosf16: |
| case Builtin::BI__builtin_cosl: |
| case Builtin::BI__builtin_cosf128: |
| return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E, |
| Intrinsic::cos, |
| Intrinsic::experimental_constrained_cos)); |
| |
| case Builtin::BIcosh: |
| case Builtin::BIcoshf: |
| case Builtin::BIcoshl: |
| case Builtin::BI__builtin_cosh: |
| case Builtin::BI__builtin_coshf: |
| case Builtin::BI__builtin_coshf16: |
| case Builtin::BI__builtin_coshl: |
| case Builtin::BI__builtin_coshf128: |
| return RValue::get(emitUnaryMaybeConstrainedFPBuiltin( |
| *this, E, Intrinsic::cosh, Intrinsic::experimental_constrained_cosh)); |
| |
| case Builtin::BIexp: |
| case Builtin::BIexpf: |
| case Builtin::BIexpl: |
| case Builtin::BI__builtin_exp: |
| case Builtin::BI__builtin_expf: |
| case Builtin::BI__builtin_expf16: |
| case Builtin::BI__builtin_expl: |
| case Builtin::BI__builtin_expf128: |
| return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E, |
| Intrinsic::exp, |
| Intrinsic::experimental_constrained_exp)); |
| |
| case Builtin::BIexp2: |
| case Builtin::BIexp2f: |
| case Builtin::BIexp2l: |
| case Builtin::BI__builtin_exp2: |
| case Builtin::BI__builtin_exp2f: |
| case Builtin::BI__builtin_exp2f16: |
| case Builtin::BI__builtin_exp2l: |
| case Builtin::BI__builtin_exp2f128: |
| return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E, |
| Intrinsic::exp2, |
| Intrinsic::experimental_constrained_exp2)); |
| case Builtin::BI__builtin_exp10: |
| case Builtin::BI__builtin_exp10f: |
| case Builtin::BI__builtin_exp10f16: |
| case Builtin::BI__builtin_exp10l: |
| case Builtin::BI__builtin_exp10f128: { |
| // TODO: strictfp support |
| if (Builder.getIsFPConstrained()) |
| break; |
| return RValue::get( |
| emitBuiltinWithOneOverloadedType<1>(*this, E, Intrinsic::exp10)); |
| } |
| case Builtin::BIfabs: |
| case Builtin::BIfabsf: |
| case Builtin::BIfabsl: |
| case Builtin::BI__builtin_fabs: |
| case Builtin::BI__builtin_fabsf: |
| case Builtin::BI__builtin_fabsf16: |
| case Builtin::BI__builtin_fabsl: |
| case Builtin::BI__builtin_fabsf128: |
| return RValue::get( |
| emitBuiltinWithOneOverloadedType<1>(*this, E, Intrinsic::fabs)); |
| |
| case Builtin::BIfloor: |
| case Builtin::BIfloorf: |
| case Builtin::BIfloorl: |
| case Builtin::BI__builtin_floor: |
| case Builtin::BI__builtin_floorf: |
| case Builtin::BI__builtin_floorf16: |
| case Builtin::BI__builtin_floorl: |
| case Builtin::BI__builtin_floorf128: |
| return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E, |
| Intrinsic::floor, |
| Intrinsic::experimental_constrained_floor)); |
| |
| case Builtin::BIfma: |
| case Builtin::BIfmaf: |
| case Builtin::BIfmal: |
| case Builtin::BI__builtin_fma: |
| case Builtin::BI__builtin_fmaf: |
| case Builtin::BI__builtin_fmaf16: |
| case Builtin::BI__builtin_fmal: |
| case Builtin::BI__builtin_fmaf128: |
| return RValue::get(emitTernaryMaybeConstrainedFPBuiltin(*this, E, |
| Intrinsic::fma, |
| Intrinsic::experimental_constrained_fma)); |
| |
| case Builtin::BIfmax: |
| case Builtin::BIfmaxf: |
| case Builtin::BIfmaxl: |
| case Builtin::BI__builtin_fmax: |
| case Builtin::BI__builtin_fmaxf: |
| case Builtin::BI__builtin_fmaxf16: |
| case Builtin::BI__builtin_fmaxl: |
| case Builtin::BI__builtin_fmaxf128: |
| return RValue::get(emitBinaryMaybeConstrainedFPBuiltin(*this, E, |
| Intrinsic::maxnum, |
| Intrinsic::experimental_constrained_maxnum)); |
| |
| case Builtin::BIfmin: |
| case Builtin::BIfminf: |
| case Builtin::BIfminl: |
| case Builtin::BI__builtin_fmin: |
| case Builtin::BI__builtin_fminf: |
| case Builtin::BI__builtin_fminf16: |
| case Builtin::BI__builtin_fminl: |
| case Builtin::BI__builtin_fminf128: |
| return RValue::get(emitBinaryMaybeConstrainedFPBuiltin(*this, E, |
| Intrinsic::minnum, |
| Intrinsic::experimental_constrained_minnum)); |
| |
| case Builtin::BIfmaximum_num: |
| case Builtin::BIfmaximum_numf: |
| case Builtin::BIfmaximum_numl: |
| case Builtin::BI__builtin_fmaximum_num: |
| case Builtin::BI__builtin_fmaximum_numf: |
| case Builtin::BI__builtin_fmaximum_numf16: |
| case Builtin::BI__builtin_fmaximum_numl: |
| case Builtin::BI__builtin_fmaximum_numf128: |
| return RValue::get( |
| emitBuiltinWithOneOverloadedType<2>(*this, E, Intrinsic::maximumnum)); |
| |
| case Builtin::BIfminimum_num: |
| case Builtin::BIfminimum_numf: |
| case Builtin::BIfminimum_numl: |
| case Builtin::BI__builtin_fminimum_num: |
| case Builtin::BI__builtin_fminimum_numf: |
| case Builtin::BI__builtin_fminimum_numf16: |
| case Builtin::BI__builtin_fminimum_numl: |
| case Builtin::BI__builtin_fminimum_numf128: |
| return RValue::get( |
| emitBuiltinWithOneOverloadedType<2>(*this, E, Intrinsic::minimumnum)); |
| |
| // fmod() is a special-case. It maps to the frem instruction rather than an |
| // LLVM intrinsic. |
| case Builtin::BIfmod: |
| case Builtin::BIfmodf: |
| case Builtin::BIfmodl: |
| case Builtin::BI__builtin_fmod: |
| case Builtin::BI__builtin_fmodf: |
| case Builtin::BI__builtin_fmodf16: |
| case Builtin::BI__builtin_fmodl: |
| case Builtin::BI__builtin_fmodf128: |
| case Builtin::BI__builtin_elementwise_fmod: { |
| CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E); |
| Value *Arg1 = EmitScalarExpr(E->getArg(0)); |
| Value *Arg2 = EmitScalarExpr(E->getArg(1)); |
| return RValue::get(Builder.CreateFRem(Arg1, Arg2, "fmod")); |
| } |
| |
| case Builtin::BIlog: |
| case Builtin::BIlogf: |
| case Builtin::BIlogl: |
| case Builtin::BI__builtin_log: |
| case Builtin::BI__builtin_logf: |
| case Builtin::BI__builtin_logf16: |
| case Builtin::BI__builtin_logl: |
| case Builtin::BI__builtin_logf128: |
| return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E, |
| Intrinsic::log, |
| Intrinsic::experimental_constrained_log)); |
| |
| case Builtin::BIlog10: |
| case Builtin::BIlog10f: |
| case Builtin::BIlog10l: |
| case Builtin::BI__builtin_log10: |
| case Builtin::BI__builtin_log10f: |
| case Builtin::BI__builtin_log10f16: |
| case Builtin::BI__builtin_log10l: |
| case Builtin::BI__builtin_log10f128: |
| return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E, |
| Intrinsic::log10, |
| Intrinsic::experimental_constrained_log10)); |
| |
| case Builtin::BIlog2: |
| case Builtin::BIlog2f: |
| case Builtin::BIlog2l: |
| case Builtin::BI__builtin_log2: |
| case Builtin::BI__builtin_log2f: |
| case Builtin::BI__builtin_log2f16: |
| case Builtin::BI__builtin_log2l: |
| case Builtin::BI__builtin_log2f128: |
| return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E, |
| Intrinsic::log2, |
| Intrinsic::experimental_constrained_log2)); |
| |
| case Builtin::BInearbyint: |
| case Builtin::BInearbyintf: |
| case Builtin::BInearbyintl: |
| case Builtin::BI__builtin_nearbyint: |
| case Builtin::BI__builtin_nearbyintf: |
| case Builtin::BI__builtin_nearbyintl: |
| case Builtin::BI__builtin_nearbyintf128: |
| return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E, |
| Intrinsic::nearbyint, |
| Intrinsic::experimental_constrained_nearbyint)); |
| |
| case Builtin::BIpow: |
| case Builtin::BIpowf: |
| case Builtin::BIpowl: |
| case Builtin::BI__builtin_pow: |
| case Builtin::BI__builtin_powf: |
| case Builtin::BI__builtin_powf16: |
| case Builtin::BI__builtin_powl: |
| case Builtin::BI__builtin_powf128: |
| return RValue::get(emitBinaryMaybeConstrainedFPBuiltin(*this, E, |
| Intrinsic::pow, |
| Intrinsic::experimental_constrained_pow)); |
| |
| case Builtin::BIrint: |
| case Builtin::BIrintf: |
| case Builtin::BIrintl: |
| case Builtin::BI__builtin_rint: |
| case Builtin::BI__builtin_rintf: |
| case Builtin::BI__builtin_rintf16: |
| case Builtin::BI__builtin_rintl: |
| case Builtin::BI__builtin_rintf128: |
| return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E, |
| Intrinsic::rint, |
| Intrinsic::experimental_constrained_rint)); |
| |
| case Builtin::BIround: |
| case Builtin::BIroundf: |
| case Builtin::BIroundl: |
| case Builtin::BI__builtin_round: |
| case Builtin::BI__builtin_roundf: |
| case Builtin::BI__builtin_roundf16: |
| case Builtin::BI__builtin_roundl: |
| case Builtin::BI__builtin_roundf128: |
| return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E, |
| Intrinsic::round, |
| Intrinsic::experimental_constrained_round)); |
| |
| case Builtin::BIroundeven: |
| case Builtin::BIroundevenf: |
| case Builtin::BIroundevenl: |
| case Builtin::BI__builtin_roundeven: |
| case Builtin::BI__builtin_roundevenf: |
| case Builtin::BI__builtin_roundevenf16: |
| case Builtin::BI__builtin_roundevenl: |
| case Builtin::BI__builtin_roundevenf128: |
| return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E, |
| Intrinsic::roundeven, |
| Intrinsic::experimental_constrained_roundeven)); |
| |
| case Builtin::BIsin: |
| case Builtin::BIsinf: |
| case Builtin::BIsinl: |
| case Builtin::BI__builtin_sin: |
| case Builtin::BI__builtin_sinf: |
| case Builtin::BI__builtin_sinf16: |
| case Builtin::BI__builtin_sinl: |
| case Builtin::BI__builtin_sinf128: |
| return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E, |
| Intrinsic::sin, |
| Intrinsic::experimental_constrained_sin)); |
| |
| case Builtin::BIsinh: |
| case Builtin::BIsinhf: |
| case Builtin::BIsinhl: |
| case Builtin::BI__builtin_sinh: |
| case Builtin::BI__builtin_sinhf: |
| case Builtin::BI__builtin_sinhf16: |
| case Builtin::BI__builtin_sinhl: |
| case Builtin::BI__builtin_sinhf128: |
| return RValue::get(emitUnaryMaybeConstrainedFPBuiltin( |
| *this, E, Intrinsic::sinh, Intrinsic::experimental_constrained_sinh)); |
| |
| case Builtin::BI__builtin_sincos: |
| case Builtin::BI__builtin_sincosf: |
| case Builtin::BI__builtin_sincosf16: |
| case Builtin::BI__builtin_sincosl: |
| case Builtin::BI__builtin_sincosf128: |
| emitSincosBuiltin(*this, E, Intrinsic::sincos); |
| return RValue::get(nullptr); |
| |
| case Builtin::BIsqrt: |
| case Builtin::BIsqrtf: |
| case Builtin::BIsqrtl: |
| case Builtin::BI__builtin_sqrt: |
| case Builtin::BI__builtin_sqrtf: |
| case Builtin::BI__builtin_sqrtf16: |
| case Builtin::BI__builtin_sqrtl: |
| case Builtin::BI__builtin_sqrtf128: |
| case Builtin::BI__builtin_elementwise_sqrt: { |
| llvm::Value *Call = emitUnaryMaybeConstrainedFPBuiltin( |
| *this, E, Intrinsic::sqrt, Intrinsic::experimental_constrained_sqrt); |
| SetSqrtFPAccuracy(Call); |
| return RValue::get(Call); |
| } |
| |
| case Builtin::BItan: |
| case Builtin::BItanf: |
| case Builtin::BItanl: |
| case Builtin::BI__builtin_tan: |
| case Builtin::BI__builtin_tanf: |
| case Builtin::BI__builtin_tanf16: |
| case Builtin::BI__builtin_tanl: |
| case Builtin::BI__builtin_tanf128: |
| return RValue::get(emitUnaryMaybeConstrainedFPBuiltin( |
| *this, E, Intrinsic::tan, Intrinsic::experimental_constrained_tan)); |
| |
| case Builtin::BItanh: |
| case Builtin::BItanhf: |
| case Builtin::BItanhl: |
| case Builtin::BI__builtin_tanh: |
| case Builtin::BI__builtin_tanhf: |
| case Builtin::BI__builtin_tanhf16: |
| case Builtin::BI__builtin_tanhl: |
| case Builtin::BI__builtin_tanhf128: |
| return RValue::get(emitUnaryMaybeConstrainedFPBuiltin( |
| *this, E, Intrinsic::tanh, Intrinsic::experimental_constrained_tanh)); |
| |
| case Builtin::BItrunc: |
| case Builtin::BItruncf: |
| case Builtin::BItruncl: |
| case Builtin::BI__builtin_trunc: |
| case Builtin::BI__builtin_truncf: |
| case Builtin::BI__builtin_truncf16: |
| case Builtin::BI__builtin_truncl: |
| case Builtin::BI__builtin_truncf128: |
| return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E, |
| Intrinsic::trunc, |
| Intrinsic::experimental_constrained_trunc)); |
| |
| case Builtin::BIlround: |
| case Builtin::BIlroundf: |
| case Builtin::BIlroundl: |
| case Builtin::BI__builtin_lround: |
| case Builtin::BI__builtin_lroundf: |
| case Builtin::BI__builtin_lroundl: |
| case Builtin::BI__builtin_lroundf128: |
| return RValue::get(emitMaybeConstrainedFPToIntRoundBuiltin( |
| *this, E, Intrinsic::lround, |
| Intrinsic::experimental_constrained_lround)); |
| |
| case Builtin::BIllround: |
| case Builtin::BIllroundf: |
| case Builtin::BIllroundl: |
| case Builtin::BI__builtin_llround: |
| case Builtin::BI__builtin_llroundf: |
| case Builtin::BI__builtin_llroundl: |
| case Builtin::BI__builtin_llroundf128: |
| return RValue::get(emitMaybeConstrainedFPToIntRoundBuiltin( |
| *this, E, Intrinsic::llround, |
| Intrinsic::experimental_constrained_llround)); |
| |
| case Builtin::BIlrint: |
| case Builtin::BIlrintf: |
| case Builtin::BIlrintl: |
| case Builtin::BI__builtin_lrint: |
| case Builtin::BI__builtin_lrintf: |
| case Builtin::BI__builtin_lrintl: |
| case Builtin::BI__builtin_lrintf128: |
| return RValue::get(emitMaybeConstrainedFPToIntRoundBuiltin( |
| *this, E, Intrinsic::lrint, |
| Intrinsic::experimental_constrained_lrint)); |
| |
| case Builtin::BIllrint: |
| case Builtin::BIllrintf: |
| case Builtin::BIllrintl: |
| case Builtin::BI__builtin_llrint: |
| case Builtin::BI__builtin_llrintf: |
| case Builtin::BI__builtin_llrintl: |
| case Builtin::BI__builtin_llrintf128: |
| return RValue::get(emitMaybeConstrainedFPToIntRoundBuiltin( |
| *this, E, Intrinsic::llrint, |
| Intrinsic::experimental_constrained_llrint)); |
| case Builtin::BI__builtin_ldexp: |
| case Builtin::BI__builtin_ldexpf: |
| case Builtin::BI__builtin_ldexpl: |
| case Builtin::BI__builtin_ldexpf16: |
| case Builtin::BI__builtin_ldexpf128: { |
| return RValue::get(emitBinaryExpMaybeConstrainedFPBuiltin( |
| *this, E, Intrinsic::ldexp, |
| Intrinsic::experimental_constrained_ldexp)); |
| } |
| default: |
| break; |
| } |
| } |
| |
| // Check NonnullAttribute/NullabilityArg and Alignment. |
| auto EmitArgCheck = [&](TypeCheckKind Kind, Address A, const Expr *Arg, |
| unsigned ParmNum) { |
| Value *Val = A.emitRawPointer(*this); |
| EmitNonNullArgCheck(RValue::get(Val), Arg->getType(), Arg->getExprLoc(), FD, |
| ParmNum); |
| |
| if (SanOpts.has(SanitizerKind::Alignment)) { |
| SanitizerSet SkippedChecks; |
| SkippedChecks.set(SanitizerKind::All); |
| SkippedChecks.clear(SanitizerKind::Alignment); |
| SourceLocation Loc = Arg->getExprLoc(); |
| // Strip an implicit cast. |
| if (auto *CE = dyn_cast<ImplicitCastExpr>(Arg)) |
| if (CE->getCastKind() == CK_BitCast) |
| Arg = CE->getSubExpr(); |
| EmitTypeCheck(Kind, Loc, Val, Arg->getType(), A.getAlignment(), |
| SkippedChecks); |
| } |
| }; |
| |
| switch (BuiltinIDIfNoAsmLabel) { |
| default: break; |
| case Builtin::BI__builtin___CFStringMakeConstantString: |
| case Builtin::BI__builtin___NSStringMakeConstantString: |
| return RValue::get(ConstantEmitter(*this).emitAbstract(E, E->getType())); |
| case Builtin::BI__builtin_stdarg_start: |
| case Builtin::BI__builtin_va_start: |
| case Builtin::BI__va_start: |
| case Builtin::BI__builtin_va_end: |
| EmitVAStartEnd(BuiltinID == Builtin::BI__va_start |
| ? EmitScalarExpr(E->getArg(0)) |
| : EmitVAListRef(E->getArg(0)).emitRawPointer(*this), |
| BuiltinID != Builtin::BI__builtin_va_end); |
| return RValue::get(nullptr); |
| case Builtin::BI__builtin_va_copy: { |
| Value *DstPtr = EmitVAListRef(E->getArg(0)).emitRawPointer(*this); |
| Value *SrcPtr = EmitVAListRef(E->getArg(1)).emitRawPointer(*this); |
| Builder.CreateCall(CGM.getIntrinsic(Intrinsic::vacopy, {DstPtr->getType()}), |
| {DstPtr, SrcPtr}); |
| return RValue::get(nullptr); |
| } |
| case Builtin::BIabs: |
| case Builtin::BIlabs: |
| case Builtin::BIllabs: |
| case Builtin::BI__builtin_abs: |
| case Builtin::BI__builtin_labs: |
| case Builtin::BI__builtin_llabs: { |
| bool SanitizeOverflow = SanOpts.has(SanitizerKind::SignedIntegerOverflow); |
| |
| Value *Result; |
| switch (getLangOpts().getSignedOverflowBehavior()) { |
| case LangOptions::SOB_Defined: |
| Result = EmitAbs(*this, EmitScalarExpr(E->getArg(0)), false); |
| break; |
| case LangOptions::SOB_Undefined: |
| if (!SanitizeOverflow) { |
| Result = EmitAbs(*this, EmitScalarExpr(E->getArg(0)), true); |
| break; |
| } |
| [[fallthrough]]; |
| case LangOptions::SOB_Trapping: |
| // TODO: Somehow handle the corner case when the address of abs is taken. |
| Result = EmitOverflowCheckedAbs(*this, E, SanitizeOverflow); |
| break; |
| } |
| return RValue::get(Result); |
| } |
| case Builtin::BI__builtin_complex: { |
| Value *Real = EmitScalarExpr(E->getArg(0)); |
| Value *Imag = EmitScalarExpr(E->getArg(1)); |
| return RValue::getComplex({Real, Imag}); |
| } |
| case Builtin::BI__builtin_conj: |
| case Builtin::BI__builtin_conjf: |
| case Builtin::BI__builtin_conjl: |
| case Builtin::BIconj: |
| case Builtin::BIconjf: |
| case Builtin::BIconjl: { |
| ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0)); |
| Value *Real = ComplexVal.first; |
| Value *Imag = ComplexVal.second; |
| Imag = Builder.CreateFNeg(Imag, "neg"); |
| return RValue::getComplex(std::make_pair(Real, Imag)); |
| } |
| case Builtin::BI__builtin_creal: |
| case Builtin::BI__builtin_crealf: |
| case Builtin::BI__builtin_creall: |
| case Builtin::BIcreal: |
| case Builtin::BIcrealf: |
| case Builtin::BIcreall: { |
| ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0)); |
| return RValue::get(ComplexVal.first); |
| } |
| |
| case Builtin::BI__builtin_preserve_access_index: { |
| // Only enabled preserved access index region when debuginfo |
| // is available as debuginfo is needed to preserve user-level |
| // access pattern. |
| if (!getDebugInfo()) { |
| CGM.Error(E->getExprLoc(), "using builtin_preserve_access_index() without -g"); |
| return RValue::get(EmitScalarExpr(E->getArg(0))); |
| } |
| |
| // Nested builtin_preserve_access_index() not supported |
| if (IsInPreservedAIRegion) { |
| CGM.Error(E->getExprLoc(), "nested builtin_preserve_access_index() not supported"); |
| return RValue::get(EmitScalarExpr(E->getArg(0))); |
| } |
| |
| IsInPreservedAIRegion = true; |
| Value *Res = EmitScalarExpr(E->getArg(0)); |
| IsInPreservedAIRegion = false; |
| return RValue::get(Res); |
| } |
| |
| case Builtin::BI__builtin_cimag: |
| case Builtin::BI__builtin_cimagf: |
| case Builtin::BI__builtin_cimagl: |
| case Builtin::BIcimag: |
| case Builtin::BIcimagf: |
| case Builtin::BIcimagl: { |
| ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0)); |
| return RValue::get(ComplexVal.second); |
| } |
| |
| case Builtin::BI__builtin_clrsb: |
| case Builtin::BI__builtin_clrsbl: |
| case Builtin::BI__builtin_clrsbll: { |
| // clrsb(x) -> clz(x < 0 ? ~x : x) - 1 or |
| Value *ArgValue = EmitScalarExpr(E->getArg(0)); |
| |
| llvm::Type *ArgType = ArgValue->getType(); |
| Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType); |
| |
| llvm::Type *ResultType = ConvertType(E->getType()); |
| Value *Zero = llvm::Constant::getNullValue(ArgType); |
| Value *IsNeg = Builder.CreateICmpSLT(ArgValue, Zero, "isneg"); |
| Value *Inverse = Builder.CreateNot(ArgValue, "not"); |
| Value *Tmp = Builder.CreateSelect(IsNeg, Inverse, ArgValue); |
| Value *Ctlz = Builder.CreateCall(F, {Tmp, Builder.getFalse()}); |
| Value *Result = Builder.CreateSub(Ctlz, llvm::ConstantInt::get(ArgType, 1)); |
| Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true, |
| "cast"); |
| return RValue::get(Result); |
| } |
| case Builtin::BI__builtin_ctzs: |
| case Builtin::BI__builtin_ctz: |
| case Builtin::BI__builtin_ctzl: |
| case Builtin::BI__builtin_ctzll: |
| case Builtin::BI__builtin_ctzg: { |
| bool HasFallback = BuiltinIDIfNoAsmLabel == Builtin::BI__builtin_ctzg && |
| E->getNumArgs() > 1; |
| |
| Value *ArgValue = |
| HasFallback ? EmitScalarExpr(E->getArg(0)) |
| : EmitCheckedArgForBuiltin(E->getArg(0), BCK_CTZPassedZero); |
| |
| llvm::Type *ArgType = ArgValue->getType(); |
| Function *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType); |
| |
| llvm::Type *ResultType = ConvertType(E->getType()); |
| Value *ZeroUndef = |
| Builder.getInt1(HasFallback || getTarget().isCLZForZeroUndef()); |
| Value *Result = Builder.CreateCall(F, {ArgValue, ZeroUndef}); |
| if (Result->getType() != ResultType) |
| Result = |
| Builder.CreateIntCast(Result, ResultType, /*isSigned*/ false, "cast"); |
| if (!HasFallback) |
| return RValue::get(Result); |
| |
| Value *Zero = Constant::getNullValue(ArgType); |
| Value *IsZero = Builder.CreateICmpEQ(ArgValue, Zero, "iszero"); |
| Value *FallbackValue = EmitScalarExpr(E->getArg(1)); |
| Value *ResultOrFallback = |
| Builder.CreateSelect(IsZero, FallbackValue, Result, "ctzg"); |
| return RValue::get(ResultOrFallback); |
| } |
| case Builtin::BI__builtin_clzs: |
| case Builtin::BI__builtin_clz: |
| case Builtin::BI__builtin_clzl: |
| case Builtin::BI__builtin_clzll: |
| case Builtin::BI__builtin_clzg: { |
| bool HasFallback = BuiltinIDIfNoAsmLabel == Builtin::BI__builtin_clzg && |
| E->getNumArgs() > 1; |
| |
| Value *ArgValue = |
| HasFallback ? EmitScalarExpr(E->getArg(0)) |
| : EmitCheckedArgForBuiltin(E->getArg(0), BCK_CLZPassedZero); |
| |
| llvm::Type *ArgType = ArgValue->getType(); |
| Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType); |
| |
| llvm::Type *ResultType = ConvertType(E->getType()); |
| Value *ZeroUndef = |
| Builder.getInt1(HasFallback || getTarget().isCLZForZeroUndef()); |
| Value *Result = Builder.CreateCall(F, {ArgValue, ZeroUndef}); |
| if (Result->getType() != ResultType) |
| Result = |
| Builder.CreateIntCast(Result, ResultType, /*isSigned*/ false, "cast"); |
| if (!HasFallback) |
| return RValue::get(Result); |
| |
| Value *Zero = Constant::getNullValue(ArgType); |
| Value *IsZero = Builder.CreateICmpEQ(ArgValue, Zero, "iszero"); |
| Value *FallbackValue = EmitScalarExpr(E->getArg(1)); |
| Value *ResultOrFallback = |
| Builder.CreateSelect(IsZero, FallbackValue, Result, "clzg"); |
| return RValue::get(ResultOrFallback); |
| } |
| case Builtin::BI__builtin_ffs: |
| case Builtin::BI__builtin_ffsl: |
| case Builtin::BI__builtin_ffsll: { |
| // ffs(x) -> x ? cttz(x) + 1 : 0 |
| Value *ArgValue = EmitScalarExpr(E->getArg(0)); |
| |
| llvm::Type *ArgType = ArgValue->getType(); |
| Function *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType); |
| |
| llvm::Type *ResultType = ConvertType(E->getType()); |
| Value *Tmp = |
| Builder.CreateAdd(Builder.CreateCall(F, {ArgValue, Builder.getTrue()}), |
| llvm::ConstantInt::get(ArgType, 1)); |
| Value *Zero = llvm::Constant::getNullValue(ArgType); |
| Value *IsZero = Builder.CreateICmpEQ(ArgValue, Zero, "iszero"); |
| Value *Result = Builder.CreateSelect(IsZero, Zero, Tmp, "ffs"); |
| if (Result->getType() != ResultType) |
| Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true, |
| "cast"); |
| return RValue::get(Result); |
| } |
| case Builtin::BI__builtin_parity: |
| case Builtin::BI__builtin_parityl: |
| case Builtin::BI__builtin_parityll: { |
| // parity(x) -> ctpop(x) & 1 |
| Value *ArgValue = EmitScalarExpr(E->getArg(0)); |
| |
| llvm::Type *ArgType = ArgValue->getType(); |
| Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType); |
| |
| llvm::Type *ResultType = ConvertType(E->getType()); |
| Value *Tmp = Builder.CreateCall(F, ArgValue); |
| Value *Result = Builder.CreateAnd(Tmp, llvm::ConstantInt::get(ArgType, 1)); |
| if (Result->getType() != ResultType) |
| Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true, |
| "cast"); |
| return RValue::get(Result); |
| } |
| case Builtin::BI__lzcnt16: |
| case Builtin::BI__lzcnt: |
| case Builtin::BI__lzcnt64: { |
| Value *ArgValue = EmitScalarExpr(E->getArg(0)); |
| |
| llvm::Type *ArgType = ArgValue->getType(); |
| Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType); |
| |
| llvm::Type *ResultType = ConvertType(E->getType()); |
| Value *Result = Builder.CreateCall(F, {ArgValue, Builder.getFalse()}); |
| if (Result->getType() != ResultType) |
| Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true, |
| "cast"); |
| return RValue::get(Result); |
| } |
| case Builtin::BI__popcnt16: |
| case Builtin::BI__popcnt: |
| case Builtin::BI__popcnt64: |
| case Builtin::BI__builtin_popcount: |
| case Builtin::BI__builtin_popcountl: |
| case Builtin::BI__builtin_popcountll: |
| case Builtin::BI__builtin_popcountg: { |
| Value *ArgValue = EmitScalarExpr(E->getArg(0)); |
| |
| llvm::Type *ArgType = ArgValue->getType(); |
| Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType); |
| |
| llvm::Type *ResultType = ConvertType(E->getType()); |
| Value *Result = Builder.CreateCall(F, ArgValue); |
| if (Result->getType() != ResultType) |
| Result = |
| Builder.CreateIntCast(Result, ResultType, /*isSigned*/ false, "cast"); |
| return RValue::get(Result); |
| } |
| case Builtin::BI__builtin_unpredictable: { |
| // Always return the argument of __builtin_unpredictable. LLVM does not |
| // handle this builtin. Metadata for this builtin should be added directly |
| // to instructions such as branches or switches that use it. |
| return RValue::get(EmitScalarExpr(E->getArg(0))); |
| } |
| case Builtin::BI__builtin_expect: { |
| Value *ArgValue = EmitScalarExpr(E->getArg(0)); |
| llvm::Type *ArgType = ArgValue->getType(); |
| |
| Value *ExpectedValue = EmitScalarExpr(E->getArg(1)); |
| // Don't generate llvm.expect on -O0 as the backend won't use it for |
| // anything. |
| // Note, we still IRGen ExpectedValue because it could have side-effects. |
| if (CGM.getCodeGenOpts().OptimizationLevel == 0) |
| return RValue::get(ArgValue); |
| |
| Function *FnExpect = CGM.getIntrinsic(Intrinsic::expect, ArgType); |
| Value *Result = |
| Builder.CreateCall(FnExpect, {ArgValue, ExpectedValue}, "expval"); |
| return RValue::get(Result); |
| } |
| case Builtin::BI__builtin_expect_with_probability: { |
| Value *ArgValue = EmitScalarExpr(E->getArg(0)); |
| llvm::Type *ArgType = ArgValue->getType(); |
| |
| Value *ExpectedValue = EmitScalarExpr(E->getArg(1)); |
| llvm::APFloat Probability(0.0); |
| const Expr *ProbArg = E->getArg(2); |
| bool EvalSucceed = ProbArg->EvaluateAsFloat(Probability, CGM.getContext()); |
| assert(EvalSucceed && "probability should be able to evaluate as float"); |
| (void)EvalSucceed; |
| bool LoseInfo = false; |
| Probability.convert(llvm::APFloat::IEEEdouble(), |
| llvm::RoundingMode::Dynamic, &LoseInfo); |
| llvm::Type *Ty = ConvertType(ProbArg->getType()); |
| Constant *Confidence = ConstantFP::get(Ty, Probability); |
| // Don't generate llvm.expect.with.probability on -O0 as the backend |
| // won't use it for anything. |
| // Note, we still IRGen ExpectedValue because it could have side-effects. |
| if (CGM.getCodeGenOpts().OptimizationLevel == 0) |
| return RValue::get(ArgValue); |
| |
| Function *FnExpect = |
| CGM.getIntrinsic(Intrinsic::expect_with_probability, ArgType); |
| Value *Result = Builder.CreateCall( |
| FnExpect, {ArgValue, ExpectedValue, Confidence}, "expval"); |
| return RValue::get(Result); |
| } |
| case Builtin::BI__builtin_assume_aligned: { |
| const Expr *Ptr = E->getArg(0); |
| Value *PtrValue = EmitScalarExpr(Ptr); |
| Value *OffsetValue = |
| (E->getNumArgs() > 2) ? EmitScalarExpr(E->getArg(2)) : nullptr; |
| |
| Value *AlignmentValue = EmitScalarExpr(E->getArg(1)); |
| ConstantInt *AlignmentCI = cast<ConstantInt>(AlignmentValue); |
| if (AlignmentCI->getValue().ugt(llvm::Value::MaximumAlignment)) |
| AlignmentCI = ConstantInt::get(AlignmentCI->getIntegerType(), |
| llvm::Value::MaximumAlignment); |
| |
| emitAlignmentAssumption(PtrValue, Ptr, |
| /*The expr loc is sufficient.*/ SourceLocation(), |
| AlignmentCI, OffsetValue); |
| return RValue::get(PtrValue); |
| } |
| case Builtin::BI__assume: |
| case Builtin::BI__builtin_assume: { |
| if (E->getArg(0)->HasSideEffects(getContext())) |
| return RValue::get(nullptr); |
| |
| Value *ArgValue = EmitCheckedArgForAssume(E->getArg(0)); |
| Function *FnAssume = CGM.getIntrinsic(Intrinsic::assume); |
| Builder.CreateCall(FnAssume, ArgValue); |
| return RValue::get(nullptr); |
| } |
| case Builtin::BI__builtin_assume_separate_storage: { |
| const Expr *Arg0 = E->getArg(0); |
| const Expr *Arg1 = E->getArg(1); |
| |
| Value *Value0 = EmitScalarExpr(Arg0); |
| Value *Value1 = EmitScalarExpr(Arg1); |
| |
| Value *Values[] = {Value0, Value1}; |
| OperandBundleDefT<Value *> OBD("separate_storage", Values); |
| Builder.CreateAssumption(ConstantInt::getTrue(getLLVMContext()), {OBD}); |
| return RValue::get(nullptr); |
| } |
| case Builtin::BI__builtin_allow_runtime_check: { |
| StringRef Kind = |
| cast<StringLiteral>(E->getArg(0)->IgnoreParenCasts())->getString(); |
| LLVMContext &Ctx = CGM.getLLVMContext(); |
| llvm::Value *Allow = Builder.CreateCall( |
| CGM.getIntrinsic(llvm::Intrinsic::allow_runtime_check), |
| llvm::MetadataAsValue::get(Ctx, llvm::MDString::get(Ctx, Kind))); |
| return RValue::get(Allow); |
| } |
| case Builtin::BI__arithmetic_fence: { |
| // Create the builtin call if FastMath is selected, and the target |
| // supports the builtin, otherwise just return the argument. |
| CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E); |
| llvm::FastMathFlags FMF = Builder.getFastMathFlags(); |
| bool isArithmeticFenceEnabled = |
| FMF.allowReassoc() && |
| getContext().getTargetInfo().checkArithmeticFenceSupported(); |
| QualType ArgType = E->getArg(0)->getType(); |
| if (ArgType->isComplexType()) { |
| if (isArithmeticFenceEnabled) { |
| QualType ElementType = ArgType->castAs<ComplexType>()->getElementType(); |
| ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0)); |
| Value *Real = Builder.CreateArithmeticFence(ComplexVal.first, |
| ConvertType(ElementType)); |
| Value *Imag = Builder.CreateArithmeticFence(ComplexVal.second, |
| ConvertType(ElementType)); |
| return RValue::getComplex(std::make_pair(Real, Imag)); |
| } |
| ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0)); |
| Value *Real = ComplexVal.first; |
| Value *Imag = ComplexVal.second; |
| return RValue::getComplex(std::make_pair(Real, Imag)); |
| } |
| Value *ArgValue = EmitScalarExpr(E->getArg(0)); |
| if (isArithmeticFenceEnabled) |
| return RValue::get( |
| Builder.CreateArithmeticFence(ArgValue, ConvertType(ArgType))); |
| return RValue::get(ArgValue); |
| } |
| case Builtin::BI__builtin_bswap16: |
| case Builtin::BI__builtin_bswap32: |
| case Builtin::BI__builtin_bswap64: |
| case Builtin::BI_byteswap_ushort: |
| case Builtin::BI_byteswap_ulong: |
| case Builtin::BI_byteswap_uint64: { |
| return RValue::get( |
| emitBuiltinWithOneOverloadedType<1>(*this, E, Intrinsic::bswap)); |
| } |
| case Builtin::BI__builtin_bitreverse8: |
| case Builtin::BI__builtin_bitreverse16: |
| case Builtin::BI__builtin_bitreverse32: |
| case Builtin::BI__builtin_bitreverse64: { |
| return RValue::get( |
| emitBuiltinWithOneOverloadedType<1>(*this, E, Intrinsic::bitreverse)); |
| } |
| case Builtin::BI__builtin_rotateleft8: |
| case Builtin::BI__builtin_rotateleft16: |
| case Builtin::BI__builtin_rotateleft32: |
| case Builtin::BI__builtin_rotateleft64: |
| case Builtin::BI_rotl8: // Microsoft variants of rotate left |
| case Builtin::BI_rotl16: |
| case Builtin::BI_rotl: |
| case Builtin::BI_lrotl: |
| case Builtin::BI_rotl64: |
| return emitRotate(E, false); |
| |
| case Builtin::BI__builtin_rotateright8: |
| case Builtin::BI__builtin_rotateright16: |
| case Builtin::BI__builtin_rotateright32: |
| case Builtin::BI__builtin_rotateright64: |
| case Builtin::BI_rotr8: // Microsoft variants of rotate right |
| case Builtin::BI_rotr16: |
| case Builtin::BI_rotr: |
| case Builtin::BI_lrotr: |
| case Builtin::BI_rotr64: |
| return emitRotate(E, true); |
| |
| case Builtin::BI__builtin_constant_p: { |
| llvm::Type *ResultType = ConvertType(E->getType()); |
| |
| const Expr *Arg = E->getArg(0); |
| QualType ArgType = Arg->getType(); |
| // FIXME: The allowance for Obj-C pointers and block pointers is historical |
| // and likely a mistake. |
| if (!ArgType->isIntegralOrEnumerationType() && !ArgType->isFloatingType() && |
| !ArgType->isObjCObjectPointerType() && !ArgType->isBlockPointerType()) |
| // Per the GCC documentation, only numeric constants are recognized after |
| // inlining. |
| return RValue::get(ConstantInt::get(ResultType, 0)); |
| |
| if (Arg->HasSideEffects(getContext())) |
| // The argument is unevaluated, so be conservative if it might have |
| // side-effects. |
| return RValue::get(ConstantInt::get(ResultType, 0)); |
| |
| Value *ArgValue = EmitScalarExpr(Arg); |
| if (ArgType->isObjCObjectPointerType()) { |
| // Convert Objective-C objects to id because we cannot distinguish between |
| // LLVM types for Obj-C classes as they are opaque. |
| ArgType = CGM.getContext().getObjCIdType(); |
| ArgValue = Builder.CreateBitCast(ArgValue, ConvertType(ArgType)); |
| } |
| Function *F = |
| CGM.getIntrinsic(Intrinsic::is_constant, ConvertType(ArgType)); |
| Value *Result = Builder.CreateCall(F, ArgValue); |
| if (Result->getType() != ResultType) |
| Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/false); |
| return RValue::get(Result); |
| } |
| case Builtin::BI__builtin_dynamic_object_size: |
| case Builtin::BI__builtin_object_size: { |
| unsigned Type = |
| E->getArg(1)->EvaluateKnownConstInt(getContext()).getZExtValue(); |
| auto *ResType = cast<llvm::IntegerType>(ConvertType(E->getType())); |
| |
| // We pass this builtin onto the optimizer so that it can figure out the |
| // object size in more complex cases. |
| bool IsDynamic = BuiltinID == Builtin::BI__builtin_dynamic_object_size; |
| return RValue::get(emitBuiltinObjectSize(E->getArg(0), Type, ResType, |
| /*EmittedE=*/nullptr, IsDynamic)); |
| } |
| case Builtin::BI__builtin_counted_by_ref: { |
| // Default to returning '(void *) 0'. |
| llvm::Value *Result = llvm::ConstantPointerNull::get( |
| llvm::PointerType::getUnqual(getLLVMContext())); |
| |
| const Expr *Arg = E->getArg(0)->IgnoreParenImpCasts(); |
| |
| if (auto *UO = dyn_cast<UnaryOperator>(Arg); |
| UO && UO->getOpcode() == UO_AddrOf) { |
| Arg = UO->getSubExpr()->IgnoreParenImpCasts(); |
| |
| if (auto *ASE = dyn_cast<ArraySubscriptExpr>(Arg)) |
| Arg = ASE->getBase()->IgnoreParenImpCasts(); |
| } |
| |
| if (const MemberExpr *ME = dyn_cast_if_present<MemberExpr>(Arg)) { |
| if (auto *CATy = |
| ME->getMemberDecl()->getType()->getAs<CountAttributedType>(); |
| CATy && CATy->getKind() == CountAttributedType::CountedBy) { |
| const auto *FAMDecl = cast<FieldDecl>(ME->getMemberDecl()); |
| if (const FieldDecl *CountFD = FAMDecl->findCountedByField()) |
| Result = GetCountedByFieldExprGEP(Arg, FAMDecl, CountFD); |
| else |
| llvm::report_fatal_error("Cannot find the counted_by 'count' field"); |
| } |
| } |
| |
| return RValue::get(Result); |
| } |
| case Builtin::BI__builtin_prefetch: { |
| Value *Locality, *RW, *Address = EmitScalarExpr(E->getArg(0)); |
| // FIXME: Technically these constants should of type 'int', yes? |
| RW = (E->getNumArgs() > 1) ? EmitScalarExpr(E->getArg(1)) : |
| llvm::ConstantInt::get(Int32Ty, 0); |
| Locality = (E->getNumArgs() > 2) ? EmitScalarExpr(E->getArg(2)) : |
| llvm::ConstantInt::get(Int32Ty, 3); |
| Value *Data = llvm::ConstantInt::get(Int32Ty, 1); |
| Function *F = CGM.getIntrinsic(Intrinsic::prefetch, Address->getType()); |
| Builder.CreateCall(F, {Address, RW, Locality, Data}); |
| return RValue::get(nullptr); |
| } |
| case Builtin::BI__builtin_readcyclecounter: { |
| Function *F = CGM.getIntrinsic(Intrinsic::readcyclecounter); |
| return RValue::get(Builder.CreateCall(F)); |
| } |
| case Builtin::BI__builtin_readsteadycounter: { |
| Function *F = CGM.getIntrinsic(Intrinsic::readsteadycounter); |
| return RValue::get(Builder.CreateCall(F)); |
| } |
| case Builtin::BI__builtin___clear_cache: { |
| Value *Begin = EmitScalarExpr(E->getArg(0)); |
| Value *End = EmitScalarExpr(E->getArg(1)); |
| Function *F = CGM.getIntrinsic(Intrinsic::clear_cache); |
| return RValue::get(Builder.CreateCall(F, {Begin, End})); |
| } |
| case Builtin::BI__builtin_trap: |
| EmitTrapCall(Intrinsic::trap); |
| return RValue::get(nullptr); |
| case Builtin::BI__builtin_verbose_trap: { |
| llvm::DILocation *TrapLocation = Builder.getCurrentDebugLocation(); |
| if (getDebugInfo()) { |
| TrapLocation = getDebugInfo()->CreateTrapFailureMessageFor( |
| TrapLocation, *E->getArg(0)->tryEvaluateString(getContext()), |
| *E->getArg(1)->tryEvaluateString(getContext())); |
| } |
| ApplyDebugLocation ApplyTrapDI(*this, TrapLocation); |
| // Currently no attempt is made to prevent traps from being merged. |
| EmitTrapCall(Intrinsic::trap); |
| return RValue::get(nullptr); |
| } |
| case Builtin::BI__debugbreak: |
| EmitTrapCall(Intrinsic::debugtrap); |
| return RValue::get(nullptr); |
| case Builtin::BI__builtin_unreachable: { |
| EmitUnreachable(E->getExprLoc()); |
| |
| // We do need to preserve an insertion point. |
| EmitBlock(createBasicBlock("unreachable.cont")); |
| |
| return RValue::get(nullptr); |
| } |
| |
| case Builtin::BI__builtin_powi: |
| case Builtin::BI__builtin_powif: |
| case Builtin::BI__builtin_powil: { |
| llvm::Value *Src0 = EmitScalarExpr(E->getArg(0)); |
| llvm::Value *Src1 = EmitScalarExpr(E->getArg(1)); |
| |
| if (Builder.getIsFPConstrained()) { |
| // FIXME: llvm.powi has 2 mangling types, |
| // llvm.experimental.constrained.powi has one. |
| CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E); |
| Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_powi, |
| Src0->getType()); |
| return RValue::get(Builder.CreateConstrainedFPCall(F, { Src0, Src1 })); |
| } |
| |
| Function *F = CGM.getIntrinsic(Intrinsic::powi, |
| { Src0->getType(), Src1->getType() }); |
| return RValue::get(Builder.CreateCall(F, { Src0, Src1 })); |
| } |
| case Builtin::BI__builtin_frexpl: { |
| // Linux PPC will not be adding additional PPCDoubleDouble support. |
| // WIP to switch default to IEEE long double. Will emit libcall for |
| // frexpl instead of legalizing this type in the BE. |
| if (&getTarget().getLongDoubleFormat() == &llvm::APFloat::PPCDoubleDouble()) |
| break; |
| [[fallthrough]]; |
| } |
| case Builtin::BI__builtin_frexp: |
| case Builtin::BI__builtin_frexpf: |
| case Builtin::BI__builtin_frexpf128: |
| case Builtin::BI__builtin_frexpf16: |
| return RValue::get(emitFrexpBuiltin(*this, E, Intrinsic::frexp)); |
| case Builtin::BI__builtin_isgreater: |
| case Builtin::BI__builtin_isgreaterequal: |
| case Builtin::BI__builtin_isless: |
| case Builtin::BI__builtin_islessequal: |
| case Builtin::BI__builtin_islessgreater: |
| case Builtin::BI__builtin_isunordered: { |
| // Ordered comparisons: we know the arguments to these are matching scalar |
| // floating point values. |
| CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E); |
| Value *LHS = EmitScalarExpr(E->getArg(0)); |
| Value *RHS = EmitScalarExpr(E->getArg(1)); |
| |
| switch (BuiltinID) { |
| default: llvm_unreachable("Unknown ordered comparison"); |
| case Builtin::BI__builtin_isgreater: |
| LHS = Builder.CreateFCmpOGT(LHS, RHS, "cmp"); |
| break; |
| case Builtin::BI__builtin_isgreaterequal: |
| LHS = Builder.CreateFCmpOGE(LHS, RHS, "cmp"); |
| break; |
| case Builtin::BI__builtin_isless: |
| LHS = Builder.CreateFCmpOLT(LHS, RHS, "cmp"); |
| break; |
| case Builtin::BI__builtin_islessequal: |
| LHS = Builder.CreateFCmpOLE(LHS, RHS, "cmp"); |
| break; |
| case Builtin::BI__builtin_islessgreater: |
| LHS = Builder.CreateFCmpONE(LHS, RHS, "cmp"); |
| break; |
| case Builtin::BI__builtin_isunordered: |
| LHS = Builder.CreateFCmpUNO(LHS, RHS, "cmp"); |
| break; |
| } |
| // ZExt bool to int type. |
| return RValue::get(Builder.CreateZExt(LHS, ConvertType(E->getType()))); |
| } |
| |
| case Builtin::BI__builtin_isnan: { |
| CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E); |
| Value *V = EmitScalarExpr(E->getArg(0)); |
| if (Value *Result = tryUseTestFPKind(*this, BuiltinID, V)) |
| return RValue::get(Result); |
| return RValue::get( |
| Builder.CreateZExt(Builder.createIsFPClass(V, FPClassTest::fcNan), |
| ConvertType(E->getType()))); |
| } |
| |
| case Builtin::BI__builtin_issignaling: { |
| CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E); |
| Value *V = EmitScalarExpr(E->getArg(0)); |
| return RValue::get( |
| Builder.CreateZExt(Builder.createIsFPClass(V, FPClassTest::fcSNan), |
| ConvertType(E->getType()))); |
| } |
| |
| case Builtin::BI__builtin_isinf: { |
| CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E); |
| Value *V = EmitScalarExpr(E->getArg(0)); |
| if (Value *Result = tryUseTestFPKind(*this, BuiltinID, V)) |
| return RValue::get(Result); |
| return RValue::get( |
| Builder.CreateZExt(Builder.createIsFPClass(V, FPClassTest::fcInf), |
| ConvertType(E->getType()))); |
| } |
| |
| case Builtin::BIfinite: |
| case Builtin::BI__finite: |
| case Builtin::BIfinitef: |
| case Builtin::BI__finitef: |
| case Builtin::BIfinitel: |
| case Builtin::BI__finitel: |
| case Builtin::BI__builtin_isfinite: { |
| CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E); |
| Value *V = EmitScalarExpr(E->getArg(0)); |
| if (Value *Result = tryUseTestFPKind(*this, BuiltinID, V)) |
| return RValue::get(Result); |
| return RValue::get( |
| Builder.CreateZExt(Builder.createIsFPClass(V, FPClassTest::fcFinite), |
| ConvertType(E->getType()))); |
| } |
| |
| case Builtin::BI__builtin_isnormal: { |
| CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E); |
| Value *V = EmitScalarExpr(E->getArg(0)); |
| return RValue::get( |
| Builder.CreateZExt(Builder.createIsFPClass(V, FPClassTest::fcNormal), |
| ConvertType(E->getType()))); |
| } |
| |
| case Builtin::BI__builtin_issubnormal: { |
| CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E); |
| Value *V = EmitScalarExpr(E->getArg(0)); |
| return RValue::get( |
| Builder.CreateZExt(Builder.createIsFPClass(V, FPClassTest::fcSubnormal), |
| ConvertType(E->getType()))); |
| } |
| |
| case Builtin::BI__builtin_iszero: { |
| CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E); |
| Value *V = EmitScalarExpr(E->getArg(0)); |
| return RValue::get( |
| Builder.CreateZExt(Builder.createIsFPClass(V, FPClassTest::fcZero), |
| ConvertType(E->getType()))); |
| } |
| |
| case Builtin::BI__builtin_isfpclass: { |
| Expr::EvalResult Result; |
| if (!E->getArg(1)->EvaluateAsInt(Result, CGM.getContext())) |
| break; |
| uint64_t Test = Result.Val.getInt().getLimitedValue(); |
| CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E); |
| Value *V = EmitScalarExpr(E->getArg(0)); |
| return RValue::get(Builder.CreateZExt(Builder.createIsFPClass(V, Test), |
| ConvertType(E->getType()))); |
| } |
| |
| case Builtin::BI__builtin_nondeterministic_value: { |
| llvm::Type *Ty = ConvertType(E->getArg(0)->getType()); |
| |
| Value *Result = PoisonValue::get(Ty); |
| Result = Builder.CreateFreeze(Result); |
| |
| return RValue::get(Result); |
| } |
| |
| case Builtin::BI__builtin_elementwise_abs: { |
| Value *Result; |
| QualType QT = E->getArg(0)->getType(); |
| |
| if (auto *VecTy = QT->getAs<VectorType>()) |
| QT = VecTy->getElementType(); |
| if (QT->isIntegerType()) |
| Result = Builder.CreateBinaryIntrinsic( |
| llvm::Intrinsic::abs, EmitScalarExpr(E->getArg(0)), |
| Builder.getFalse(), nullptr, "elt.abs"); |
| else |
| Result = emitBuiltinWithOneOverloadedType<1>( |
| *this, E, llvm::Intrinsic::fabs, "elt.abs"); |
| |
| return RValue::get(Result); |
| } |
| case Builtin::BI__builtin_elementwise_acos: |
| return RValue::get(emitBuiltinWithOneOverloadedType<1>( |
| *this, E, llvm::Intrinsic::acos, "elt.acos")); |
| case Builtin::BI__builtin_elementwise_asin: |
| return RValue::get(emitBuiltinWithOneOverloadedType<1>( |
| *this, E, llvm::Intrinsic::asin, "elt.asin")); |
| case Builtin::BI__builtin_elementwise_atan: |
| return RValue::get(emitBuiltinWithOneOverloadedType<1>( |
| *this, E, llvm::Intrinsic::atan, "elt.atan")); |
| case Builtin::BI__builtin_elementwise_atan2: |
| return RValue::get(emitBuiltinWithOneOverloadedType<2>( |
| *this, E, llvm::Intrinsic::atan2, "elt.atan2")); |
| case Builtin::BI__builtin_elementwise_ceil: |
| return RValue::get(emitBuiltinWithOneOverloadedType<1>( |
| *this, E, llvm::Intrinsic::ceil, "elt.ceil")); |
| case Builtin::BI__builtin_elementwise_exp: |
| return RValue::get(emitBuiltinWithOneOverloadedType<1>( |
| *this, E, llvm::Intrinsic::exp, "elt.exp")); |
| case Builtin::BI__builtin_elementwise_exp2: |
| return RValue::get(emitBuiltinWithOneOverloadedType<1>( |
| *this, E, llvm::Intrinsic::exp2, "elt.exp2")); |
| case Builtin::BI__builtin_elementwise_log: |
| return RValue::get(emitBuiltinWithOneOverloadedType<1>( |
| *this, E, llvm::Intrinsic::log, "elt.log")); |
| case Builtin::BI__builtin_elementwise_log2: |
| return RValue::get(emitBuiltinWithOneOverloadedType<1>( |
| *this, E, llvm::Intrinsic::log2, "elt.log2")); |
| case Builtin::BI__builtin_elementwise_log10: |
| return RValue::get(emitBuiltinWithOneOverloadedType<1>( |
| *this, E, llvm::Intrinsic::log10, "elt.log10")); |
| case Builtin::BI__builtin_elementwise_pow: { |
| return RValue::get( |
| emitBuiltinWithOneOverloadedType<2>(*this, E, llvm::Intrinsic::pow)); |
| } |
| case Builtin::BI__builtin_elementwise_bitreverse: |
| return RValue::get(emitBuiltinWithOneOverloadedType<1>( |
| *this, E, llvm::Intrinsic::bitreverse, "elt.bitreverse")); |
| case Builtin::BI__builtin_elementwise_cos: |
| return RValue::get(emitBuiltinWithOneOverloadedType<1>( |
| *this, E, llvm::Intrinsic::cos, "elt.cos")); |
| case Builtin::BI__builtin_elementwise_cosh: |
| return RValue::get(emitBuiltinWithOneOverloadedType<1>( |
| *this, E, llvm::Intrinsic::cosh, "elt.cosh")); |
| case Builtin::BI__builtin_elementwise_floor: |
| return RValue::get(emitBuiltinWithOneOverloadedType<1>( |
| *this, E, llvm::Intrinsic::floor, "elt.floor")); |
| case Builtin::BI__builtin_elementwise_popcount: |
| return RValue::get(emitBuiltinWithOneOverloadedType<1>( |
| *this, E, llvm::Intrinsic::ctpop, "elt.ctpop")); |
| case Builtin::BI__builtin_elementwise_roundeven: |
| return RValue::get(emitBuiltinWithOneOverloadedType<1>( |
| *this, E, llvm::Intrinsic::roundeven, "elt.roundeven")); |
| case Builtin::BI__builtin_elementwise_round: |
| return RValue::get(emitBuiltinWithOneOverloadedType<1>( |
| *this, E, llvm::Intrinsic::round, "elt.round")); |
| case Builtin::BI__builtin_elementwise_rint: |
| return RValue::get(emitBuiltinWithOneOverloadedType<1>( |
| *this, E, llvm::Intrinsic::rint, "elt.rint")); |
| case Builtin::BI__builtin_elementwise_nearbyint: |
| return RValue::get(emitBuiltinWithOneOverloadedType<1>( |
| *this, E, llvm::Intrinsic::nearbyint, "elt.nearbyint")); |
| case Builtin::BI__builtin_elementwise_sin: |
| return RValue::get(emitBuiltinWithOneOverloadedType<1>( |
| *this, E, llvm::Intrinsic::sin, "elt.sin")); |
| case Builtin::BI__builtin_elementwise_sinh: |
| return RValue::get(emitBuiltinWithOneOverloadedType<1>( |
| *this, E, llvm::Intrinsic::sinh, "elt.sinh")); |
| case Builtin::BI__builtin_elementwise_tan: |
| return RValue::get(emitBuiltinWithOneOverloadedType<1>( |
| *this, E, llvm::Intrinsic::tan, "elt.tan")); |
| case Builtin::BI__builtin_elementwise_tanh: |
| return RValue::get(emitBuiltinWithOneOverloadedType<1>( |
| *this, E, llvm::Intrinsic::tanh, "elt.tanh")); |
| case Builtin::BI__builtin_elementwise_trunc: |
| return RValue::get(emitBuiltinWithOneOverloadedType<1>( |
| *this, E, llvm::Intrinsic::trunc, "elt.trunc")); |
| case Builtin::BI__builtin_elementwise_canonicalize: |
| return RValue::get(emitBuiltinWithOneOverloadedType<1>( |
| *this, E, llvm::Intrinsic::canonicalize, "elt.canonicalize")); |
| case Builtin::BI__builtin_elementwise_copysign: |
| return RValue::get(emitBuiltinWithOneOverloadedType<2>( |
| *this, E, llvm::Intrinsic::copysign)); |
| case Builtin::BI__builtin_elementwise_fma: |
| return RValue::get( |
| emitBuiltinWithOneOverloadedType<3>(*this, E, llvm::Intrinsic::fma)); |
| case Builtin::BI__builtin_elementwise_add_sat: |
| case Builtin::BI__builtin_elementwise_sub_sat: { |
| Value *Op0 = EmitScalarExpr(E->getArg(0)); |
| Value *Op1 = EmitScalarExpr(E->getArg(1)); |
| Value *Result; |
| assert(Op0->getType()->isIntOrIntVectorTy() && "integer type expected"); |
| QualType Ty = E->getArg(0)->getType(); |
| if (auto *VecTy = Ty->getAs<VectorType>()) |
| Ty = VecTy->getElementType(); |
| bool IsSigned = Ty->isSignedIntegerType(); |
| unsigned Opc; |
| if (BuiltinIDIfNoAsmLabel == Builtin::BI__builtin_elementwise_add_sat) |
| Opc = IsSigned ? llvm::Intrinsic::sadd_sat : llvm::Intrinsic::uadd_sat; |
| else |
| Opc = IsSigned ? llvm::Intrinsic::ssub_sat : llvm::Intrinsic::usub_sat; |
| Result = Builder.CreateBinaryIntrinsic(Opc, Op0, Op1, nullptr, "elt.sat"); |
| return RValue::get(Result); |
| } |
| |
| case Builtin::BI__builtin_elementwise_max: { |
| Value *Op0 = EmitScalarExpr(E->getArg(0)); |
| Value *Op1 = EmitScalarExpr(E->getArg(1)); |
| Value *Result; |
| if (Op0->getType()->isIntOrIntVectorTy()) { |
| QualType Ty = E->getArg(0)->getType(); |
| if (auto *VecTy = Ty->getAs<VectorType>()) |
| Ty = VecTy->getElementType(); |
| Result = Builder.CreateBinaryIntrinsic(Ty->isSignedIntegerType() |
| ? llvm::Intrinsic::smax |
| : llvm::Intrinsic::umax, |
| Op0, Op1, nullptr, "elt.max"); |
| } else |
| Result = Builder.CreateMaxNum(Op0, Op1, "elt.max"); |
| return RValue::get(Result); |
| } |
| case Builtin::BI__builtin_elementwise_min: { |
| Value *Op0 = EmitScalarExpr(E->getArg(0)); |
| Value *Op1 = EmitScalarExpr(E->getArg(1)); |
| Value *Result; |
| if (Op0->getType()->isIntOrIntVectorTy()) { |
| QualType Ty = E->getArg(0)->getType(); |
| if (auto *VecTy = Ty->getAs<VectorType>()) |
| Ty = VecTy->getElementType(); |
| Result = Builder.CreateBinaryIntrinsic(Ty->isSignedIntegerType() |
| ? llvm::Intrinsic::smin |
| : llvm::Intrinsic::umin, |
| Op0, Op1, nullptr, "elt.min"); |
| } else |
| Result = Builder.CreateMinNum(Op0, Op1, "elt.min"); |
| return RValue::get(Result); |
| } |
| |
| case Builtin::BI__builtin_elementwise_maximum: { |
| Value *Op0 = EmitScalarExpr(E->getArg(0)); |
| Value *Op1 = EmitScalarExpr(E->getArg(1)); |
| Value *Result = Builder.CreateBinaryIntrinsic(llvm::Intrinsic::maximum, Op0, |
| Op1, nullptr, "elt.maximum"); |
| return RValue::get(Result); |
| } |
| |
| case Builtin::BI__builtin_elementwise_minimum: { |
| Value *Op0 = EmitScalarExpr(E->getArg(0)); |
| Value *Op1 = EmitScalarExpr(E->getArg(1)); |
| Value *Result = Builder.CreateBinaryIntrinsic(llvm::Intrinsic::minimum, Op0, |
| Op1, nullptr, "elt.minimum"); |
| return RValue::get(Result); |
| } |
| |
| case Builtin::BI__builtin_reduce_max: { |
| auto GetIntrinsicID = [this](QualType QT) { |
| if (auto *VecTy = QT->getAs<VectorType>()) |
| QT = VecTy->getElementType(); |
| else if (QT->isSizelessVectorType()) |
| QT = QT->getSizelessVectorEltType(CGM.getContext()); |
| |
| if (QT->isSignedIntegerType()) |
| return llvm::Intrinsic::vector_reduce_smax; |
| if (QT->isUnsignedIntegerType()) |
| return llvm::Intrinsic::vector_reduce_umax; |
| assert(QT->isFloatingType() && "must have a float here"); |
| return llvm::Intrinsic::vector_reduce_fmax; |
| }; |
| return RValue::get(emitBuiltinWithOneOverloadedType<1>( |
| *this, E, GetIntrinsicID(E->getArg(0)->getType()), "rdx.min")); |
| } |
| |
| case Builtin::BI__builtin_reduce_min: { |
| auto GetIntrinsicID = [this](QualType QT) { |
| if (auto *VecTy = QT->getAs<VectorType>()) |
| QT = VecTy->getElementType(); |
| else if (QT->isSizelessVectorType()) |
| QT = QT->getSizelessVectorEltType(CGM.getContext()); |
| |
| if (QT->isSignedIntegerType()) |
| return llvm::Intrinsic::vector_reduce_smin; |
| if (QT->isUnsignedIntegerType()) |
| return llvm::Intrinsic::vector_reduce_umin; |
| assert(QT->isFloatingType() && "must have a float here"); |
| return llvm::Intrinsic::vector_reduce_fmin; |
| }; |
| |
| return RValue::get(emitBuiltinWithOneOverloadedType<1>( |
| *this, E, GetIntrinsicID(E->getArg(0)->getType()), "rdx.min")); |
| } |
| |
| case Builtin::BI__builtin_reduce_add: |
| return RValue::get(emitBuiltinWithOneOverloadedType<1>( |
| *this, E, llvm::Intrinsic::vector_reduce_add, "rdx.add")); |
| case Builtin::BI__builtin_reduce_mul: |
| return RValue::get(emitBuiltinWithOneOverloadedType<1>( |
| *this, E, llvm::Intrinsic::vector_reduce_mul, "rdx.mul")); |
| case Builtin::BI__builtin_reduce_xor: |
| return RValue::get(emitBuiltinWithOneOverloadedType<1>( |
| *this, E, llvm::Intrinsic::vector_reduce_xor, "rdx.xor")); |
| case Builtin::BI__builtin_reduce_or: |
| return RValue::get(emitBuiltinWithOneOverloadedType<1>( |
| *this, E, llvm::Intrinsic::vector_reduce_or, "rdx.or")); |
| case Builtin::BI__builtin_reduce_and: |
| return RValue::get(emitBuiltinWithOneOverloadedType<1>( |
| *this, E, llvm::Intrinsic::vector_reduce_and, "rdx.and")); |
| case Builtin::BI__builtin_reduce_maximum: |
| return RValue::get(emitBuiltinWithOneOverloadedType<1>( |
| *this, E, llvm::Intrinsic::vector_reduce_fmaximum, "rdx.maximum")); |
| case Builtin::BI__builtin_reduce_minimum: |
| return RValue::get(emitBuiltinWithOneOverloadedType<1>( |
| *this, E, llvm::Intrinsic::vector_reduce_fminimum, "rdx.minimum")); |
| |
| case Builtin::BI__builtin_matrix_transpose: { |
| auto *MatrixTy = E->getArg(0)->getType()->castAs<ConstantMatrixType>(); |
| Value *MatValue = EmitScalarExpr(E->getArg(0)); |
| MatrixBuilder MB(Builder); |
| Value *Result = MB.CreateMatrixTranspose(MatValue, MatrixTy->getNumRows(), |
| MatrixTy->getNumColumns()); |
| return RValue::get(Result); |
| } |
| |
| case Builtin::BI__builtin_matrix_column_major_load: { |
| MatrixBuilder MB(Builder); |
| // Emit everything that isn't dependent on the first parameter type |
| Value *Stride = EmitScalarExpr(E->getArg(3)); |
| const auto *ResultTy = E->getType()->getAs<ConstantMatrixType>(); |
| auto *PtrTy = E->getArg(0)->getType()->getAs<PointerType>(); |
| assert(PtrTy && "arg0 must be of pointer type"); |
| bool IsVolatile = PtrTy->getPointeeType().isVolatileQualified(); |
| |
| Address Src = EmitPointerWithAlignment(E->getArg(0)); |
| EmitNonNullArgCheck(RValue::get(Src.emitRawPointer(*this)), |
| E->getArg(0)->getType(), E->getArg(0)->getExprLoc(), FD, |
| 0); |
| Value *Result = MB.CreateColumnMajorLoad( |
| Src.getElementType(), Src.emitRawPointer(*this), |
| Align(Src.getAlignment().getQuantity()), Stride, IsVolatile, |
| ResultTy->getNumRows(), ResultTy->getNumColumns(), "matrix"); |
| return RValue::get(Result); |
| } |
| |
| case Builtin::BI__builtin_matrix_column_major_store: { |
| MatrixBuilder MB(Builder); |
| Value *Matrix = EmitScalarExpr(E->getArg(0)); |
| Address Dst = EmitPointerWithAlignment(E->getArg(1)); |
| Value *Stride = EmitScalarExpr(E->getArg(2)); |
| |
| const auto *MatrixTy = E->getArg(0)->getType()->getAs<ConstantMatrixType>(); |
| auto *PtrTy = E->getArg(1)->getType()->getAs<PointerType>(); |
| assert(PtrTy && "arg1 must be of pointer type"); |
| bool IsVolatile = PtrTy->getPointeeType().isVolatileQualified(); |
| |
| EmitNonNullArgCheck(RValue::get(Dst.emitRawPointer(*this)), |
| E->getArg(1)->getType(), E->getArg(1)->getExprLoc(), FD, |
| 0); |
| Value *Result = MB.CreateColumnMajorStore( |
| Matrix, Dst.emitRawPointer(*this), |
| Align(Dst.getAlignment().getQuantity()), Stride, IsVolatile, |
| MatrixTy->getNumRows(), MatrixTy->getNumColumns()); |
| return RValue::get(Result); |
| } |
| |
| case Builtin::BI__builtin_isinf_sign: { |
| // isinf_sign(x) -> fabs(x) == infinity ? (signbit(x) ? -1 : 1) : 0 |
| CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E); |
| // FIXME: for strictfp/IEEE-754 we need to not trap on SNaN here. |
| Value *Arg = EmitScalarExpr(E->getArg(0)); |
| Value *AbsArg = EmitFAbs(*this, Arg); |
| Value *IsInf = Builder.CreateFCmpOEQ( |
| AbsArg, ConstantFP::getInfinity(Arg->getType()), "isinf"); |
| Value *IsNeg = EmitSignBit(*this, Arg); |
| |
| llvm::Type *IntTy = ConvertType(E->getType()); |
| Value *Zero = Constant::getNullValue(IntTy); |
| Value *One = ConstantInt::get(IntTy, 1); |
| Value *NegativeOne = ConstantInt::get(IntTy, -1); |
| Value *SignResult = Builder.CreateSelect(IsNeg, NegativeOne, One); |
| Value *Result = Builder.CreateSelect(IsInf, SignResult, Zero); |
| return RValue::get(Result); |
| } |
| |
| case Builtin::BI__builtin_flt_rounds: { |
| Function *F = CGM.getIntrinsic(Intrinsic::get_rounding); |
| |
| llvm::Type *ResultType = ConvertType(E->getType()); |
| Value *Result = Builder.CreateCall(F); |
| if (Result->getType() != ResultType) |
| Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true, |
| "cast"); |
| return RValue::get(Result); |
| } |
| |
| case Builtin::BI__builtin_set_flt_rounds: { |
| Function *F = CGM.getIntrinsic(Intrinsic::set_rounding); |
| |
| Value *V = EmitScalarExpr(E->getArg(0)); |
| Builder.CreateCall(F, V); |
| return RValue::get(nullptr); |
| } |
| |
| case Builtin::BI__builtin_fpclassify: { |
| CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E); |
| // FIXME: for strictfp/IEEE-754 we need to not trap on SNaN here. |
| Value *V = EmitScalarExpr(E->getArg(5)); |
| llvm::Type *Ty = ConvertType(E->getArg(5)->getType()); |
| |
| // Create Result |
| BasicBlock *Begin = Builder.GetInsertBlock(); |
| BasicBlock *End = createBasicBlock("fpclassify_end", this->CurFn); |
| Builder.SetInsertPoint(End); |
| PHINode *Result = |
| Builder.CreatePHI(ConvertType(E->getArg(0)->getType()), 4, |
| "fpclassify_result"); |
| |
| // if (V==0) return FP_ZERO |
| Builder.SetInsertPoint(Begin); |
| Value *IsZero = Builder.CreateFCmpOEQ(V, Constant::getNullValue(Ty), |
| "iszero"); |
| Value *ZeroLiteral = EmitScalarExpr(E->getArg(4)); |
| BasicBlock *NotZero = createBasicBlock("fpclassify_not_zero", this->CurFn); |
| Builder.CreateCondBr(IsZero, End, NotZero); |
| Result->addIncoming(ZeroLiteral, Begin); |
| |
| // if (V != V) return FP_NAN |
| Builder.SetInsertPoint(NotZero); |
| Value *IsNan = Builder.CreateFCmpUNO(V, V, "cmp"); |
| Value *NanLiteral = EmitScalarExpr(E->getArg(0)); |
| BasicBlock *NotNan = createBasicBlock("fpclassify_not_nan", this->CurFn); |
| Builder.CreateCondBr(IsNan, End, NotNan); |
| Result->addIncoming(NanLiteral, NotZero); |
| |
| // if (fabs(V) == infinity) return FP_INFINITY |
| Builder.SetInsertPoint(NotNan); |
| Value *VAbs = EmitFAbs(*this, V); |
| Value *IsInf = |
| Builder.CreateFCmpOEQ(VAbs, ConstantFP::getInfinity(V->getType()), |
| "isinf"); |
| Value *InfLiteral = EmitScalarExpr(E->getArg(1)); |
| BasicBlock *NotInf = createBasicBlock("fpclassify_not_inf", this->CurFn); |
| Builder.CreateCondBr(IsInf, End, NotInf); |
| Result->addIncoming(InfLiteral, NotNan); |
| |
| // if (fabs(V) >= MIN_NORMAL) return FP_NORMAL else FP_SUBNORMAL |
| Builder.SetInsertPoint(NotInf); |
| APFloat Smallest = APFloat::getSmallestNormalized( |
| getContext().getFloatTypeSemantics(E->getArg(5)->getType())); |
| Value *IsNormal = |
| Builder.CreateFCmpUGE(VAbs, ConstantFP::get(V->getContext(), Smallest), |
| "isnormal"); |
| Value *NormalResult = |
| Builder.CreateSelect(IsNormal, EmitScalarExpr(E->getArg(2)), |
| EmitScalarExpr(E->getArg(3))); |
| Builder.CreateBr(End); |
| Result->addIncoming(NormalResult, NotInf); |
| |
| // return Result |
| Builder.SetInsertPoint(End); |
| return RValue::get(Result); |
| } |
| |
| // An alloca will always return a pointer to the alloca (stack) address |
| // space. This address space need not be the same as the AST / Language |
| // default (e.g. in C / C++ auto vars are in the generic address space). At |
| // the AST level this is handled within CreateTempAlloca et al., but for the |
| // builtin / dynamic alloca we have to handle it here. We use an explicit cast |
| // instead of passing an AS to CreateAlloca so as to not inhibit optimisation. |
| case Builtin::BIalloca: |
| case Builtin::BI_alloca: |
| case Builtin::BI__builtin_alloca_uninitialized: |
| case Builtin::BI__builtin_alloca: { |
| Value *Size = EmitScalarExpr(E->getArg(0)); |
| const TargetInfo &TI = getContext().getTargetInfo(); |
| // The alignment of the alloca should correspond to __BIGGEST_ALIGNMENT__. |
| const Align SuitableAlignmentInBytes = |
| CGM.getContext() |
| .toCharUnitsFromBits(TI.getSuitableAlign()) |
| .getAsAlign(); |
| AllocaInst *AI = Builder.CreateAlloca(Builder.getInt8Ty(), Size); |
| AI->setAlignment(SuitableAlignmentInBytes); |
| if (BuiltinID != Builtin::BI__builtin_alloca_uninitialized) |
| initializeAlloca(*this, AI, Size, SuitableAlignmentInBytes); |
| LangAS AAS = getASTAllocaAddressSpace(); |
| LangAS EAS = E->getType()->getPointeeType().getAddressSpace(); |
| if (AAS != EAS) { |
| llvm::Type *Ty = CGM.getTypes().ConvertType(E->getType()); |
| return RValue::get(getTargetHooks().performAddrSpaceCast(*this, AI, AAS, |
| EAS, Ty)); |
| } |
| return RValue::get(AI); |
| } |
| |
| case Builtin::BI__builtin_alloca_with_align_uninitialized: |
| case Builtin::BI__builtin_alloca_with_align: { |
| Value *Size = EmitScalarExpr(E->getArg(0)); |
| Value *AlignmentInBitsValue = EmitScalarExpr(E->getArg(1)); |
| auto *AlignmentInBitsCI = cast<ConstantInt>(AlignmentInBitsValue); |
| unsigned AlignmentInBits = AlignmentInBitsCI->getZExtValue(); |
| const Align AlignmentInBytes = |
| CGM.getContext().toCharUnitsFromBits(AlignmentInBits).getAsAlign(); |
| AllocaInst *AI = Builder.CreateAlloca(Builder.getInt8Ty(), Size); |
| AI->setAlignment(AlignmentInBytes); |
| if (BuiltinID != Builtin::BI__builtin_alloca_with_align_uninitialized) |
| initializeAlloca(*this, AI, Size, AlignmentInBytes); |
| LangAS AAS = getASTAllocaAddressSpace(); |
| LangAS EAS = E->getType()->getPointeeType().getAddressSpace(); |
| if (AAS != EAS) { |
| llvm::Type *Ty = CGM.getTypes().ConvertType(E->getType()); |
| return RValue::get(getTargetHooks().performAddrSpaceCast(*this, AI, AAS, |
| EAS, Ty)); |
| } |
| return RValue::get(AI); |
| } |
| |
| case Builtin::BIbzero: |
| case Builtin::BI__builtin_bzero: { |
| Address Dest = EmitPointerWithAlignment(E->getArg(0)); |
| Value *SizeVal = EmitScalarExpr(E->getArg(1)); |
| EmitNonNullArgCheck(Dest, E->getArg(0)->getType(), |
| E->getArg(0)->getExprLoc(), FD, 0); |
| Builder.CreateMemSet(Dest, Builder.getInt8(0), SizeVal, false); |
| return RValue::get(nullptr); |
| } |
| |
| case Builtin::BIbcopy: |
| case Builtin::BI__builtin_bcopy: { |
| Address Src = EmitPointerWithAlignment(E->getArg(0)); |
| Address Dest = EmitPointerWithAlignment(E->getArg(1)); |
| Value *SizeVal = EmitScalarExpr(E->getArg(2)); |
| EmitNonNullArgCheck(RValue::get(Src.emitRawPointer(*this)), |
| E->getArg(0)->getType(), E->getArg(0)->getExprLoc(), FD, |
| 0); |
| EmitNonNullArgCheck(RValue::get(Dest.emitRawPointer(*this)), |
| E->getArg(1)->getType(), E->getArg(1)->getExprLoc(), FD, |
| 0); |
| Builder.CreateMemMove(Dest, Src, SizeVal, false); |
| return RValue::get(nullptr); |
| } |
| |
| case Builtin::BImemcpy: |
| case Builtin::BI__builtin_memcpy: |
| case Builtin::BImempcpy: |
| case Builtin::BI__builtin_mempcpy: { |
| Address Dest = EmitPointerWithAlignment(E->getArg(0)); |
| Address Src = EmitPointerWithAlignment(E->getArg(1)); |
| Value *SizeVal = EmitScalarExpr(E->getArg(2)); |
| EmitArgCheck(TCK_Store, Dest, E->getArg(0), 0); |
| EmitArgCheck(TCK_Load, Src, E->getArg(1), 1); |
| Builder.CreateMemCpy(Dest, Src, SizeVal, false); |
| if (BuiltinID == Builtin::BImempcpy || |
| BuiltinID == Builtin::BI__builtin_mempcpy) |
| return RValue::get(Builder.CreateInBoundsGEP( |
| Dest.getElementType(), Dest.emitRawPointer(*this), SizeVal)); |
| else |
| return RValue::get(Dest, *this); |
| } |
| |
| case Builtin::BI__builtin_memcpy_inline: { |
| Address Dest = EmitPointerWithAlignment(E->getArg(0)); |
| Address Src = EmitPointerWithAlignment(E->getArg(1)); |
| uint64_t Size = |
| E->getArg(2)->EvaluateKnownConstInt(getContext()).getZExtValue(); |
| EmitArgCheck(TCK_Store, Dest, E->getArg(0), 0); |
| EmitArgCheck(TCK_Load, Src, E->getArg(1), 1); |
| Builder.CreateMemCpyInline(Dest, Src, Size); |
| return RValue::get(nullptr); |
| } |
| |
| case Builtin::BI__builtin_char_memchr: |
| BuiltinID = Builtin::BI__builtin_memchr; |
| break; |
| |
| case Builtin::BI__builtin___memcpy_chk: { |
| // fold __builtin_memcpy_chk(x, y, cst1, cst2) to memcpy iff cst1<=cst2. |
| Expr::EvalResult SizeResult, DstSizeResult; |
| if (!E->getArg(2)->EvaluateAsInt(SizeResult, CGM.getContext()) || |
| !E->getArg(3)->EvaluateAsInt(DstSizeResult, CGM.getContext())) |
| break; |
| llvm::APSInt Size = SizeResult.Val.getInt(); |
| llvm::APSInt DstSize = DstSizeResult.Val.getInt(); |
| if (Size.ugt(DstSize)) |
| break; |
| Address Dest = EmitPointerWithAlignment(E->getArg(0)); |
| Address Src = EmitPointerWithAlignment(E->getArg(1)); |
| Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size); |
| Builder.CreateMemCpy(Dest, Src, SizeVal, false); |
| return RValue::get(Dest, *this); |
| } |
| |
| case Builtin::BI__builtin_objc_memmove_collectable: { |
| Address DestAddr = EmitPointerWithAlignment(E->getArg(0)); |
| Address SrcAddr = EmitPointerWithAlignment(E->getArg(1)); |
| Value *SizeVal = EmitScalarExpr(E->getArg(2)); |
| CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, |
| DestAddr, SrcAddr, SizeVal); |
| return RValue::get(DestAddr, *this); |
| } |
| |
| case Builtin::BI__builtin___memmove_chk: { |
| // fold __builtin_memmove_chk(x, y, cst1, cst2) to memmove iff cst1<=cst2. |
| Expr::EvalResult SizeResult, DstSizeResult; |
| if (!E->getArg(2)->EvaluateAsInt(SizeResult, CGM.getContext()) || |
| !E->getArg(3)->EvaluateAsInt(DstSizeResult, CGM.getContext())) |
| break; |
| llvm::APSInt Size = SizeResult.Val.getInt(); |
| llvm::APSInt DstSize = DstSizeResult.Val.getInt(); |
| if (Size.ugt(DstSize)) |
| break; |
| Address Dest = EmitPointerWithAlignment(E->getArg(0)); |
| Address Src = EmitPointerWithAlignment(E->getArg(1)); |
| Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size); |
| Builder.CreateMemMove(Dest, Src, SizeVal, false); |
| return RValue::get(Dest, *this); |
| } |
| |
| case Builtin::BImemmove: |
| case Builtin::BI__builtin_memmove: { |
| Address Dest = EmitPointerWithAlignment(E->getArg(0)); |
| Address Src = EmitPointerWithAlignment(E->getArg(1)); |
| Value *SizeVal = EmitScalarExpr(E->getArg(2)); |
| EmitArgCheck(TCK_Store, Dest, E->getArg(0), 0); |
| EmitArgCheck(TCK_Load, Src, E->getArg(1), 1); |
| Builder.CreateMemMove(Dest, Src, SizeVal, false); |
| return RValue::get(Dest, *this); |
| } |
| case Builtin::BImemset: |
| case Builtin::BI__builtin_memset: { |
| Address Dest = EmitPointerWithAlignment(E->getArg(0)); |
| Value *ByteVal = Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)), |
| Builder.getInt8Ty()); |
| Value *SizeVal = EmitScalarExpr(E->getArg(2)); |
| EmitNonNullArgCheck(Dest, E->getArg(0)->getType(), |
| E->getArg(0)->getExprLoc(), FD, 0); |
| Builder.CreateMemSet(Dest, ByteVal, SizeVal, false); |
| return RValue::get(Dest, *this); |
| } |
| case Builtin::BI__builtin_memset_inline: { |
| Address Dest = EmitPointerWithAlignment(E->getArg(0)); |
| Value *ByteVal = |
| Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)), Builder.getInt8Ty()); |
| uint64_t Size = |
| E->getArg(2)->EvaluateKnownConstInt(getContext()).getZExtValue(); |
| EmitNonNullArgCheck(RValue::get(Dest.emitRawPointer(*this)), |
| E->getArg(0)->getType(), E->getArg(0)->getExprLoc(), FD, |
| 0); |
| Builder.CreateMemSetInline(Dest, ByteVal, Size); |
| return RValue::get(nullptr); |
| } |
| case Builtin::BI__builtin___memset_chk: { |
| // fold __builtin_memset_chk(x, y, cst1, cst2) to memset iff cst1<=cst2. |
| Expr::EvalResult SizeResult, DstSizeResult; |
| if (!E->getArg(2)->EvaluateAsInt(SizeResult, CGM.getContext()) || |
| !E->getArg(3)->EvaluateAsInt(DstSizeResult, CGM.getContext())) |
| break; |
| llvm::APSInt Size = SizeResult.Val.getInt(); |
| llvm::APSInt DstSize = DstSizeResult.Val.getInt(); |
| if (Size.ugt(DstSize)) |
| break; |
| Address Dest = EmitPointerWithAlignment(E->getArg(0)); |
| Value *ByteVal = Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)), |
| Builder.getInt8Ty()); |
| Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size); |
| Builder.CreateMemSet(Dest, ByteVal, SizeVal, false); |
| return RValue::get(Dest, *this); |
| } |
| case Builtin::BI__builtin_wmemchr: { |
| // The MSVC runtime library does not provide a definition of wmemchr, so we |
| // need an inline implementation. |
| if (!getTarget().getTriple().isOSMSVCRT()) |
| break; |
| |
| llvm::Type *WCharTy = ConvertType(getContext().WCharTy); |
| Value *Str = EmitScalarExpr(E->getArg(0)); |
| Value *Chr = EmitScalarExpr(E->getArg(1)); |
| Value *Size = EmitScalarExpr(E->getArg(2)); |
| |
| BasicBlock *Entry = Builder.GetInsertBlock(); |
| BasicBlock *CmpEq = createBasicBlock("wmemchr.eq"); |
| BasicBlock *Next = createBasicBlock("wmemchr.next"); |
| BasicBlock *Exit = createBasicBlock("wmemchr.exit"); |
| Value *SizeEq0 = Builder.CreateICmpEQ(Size, ConstantInt::get(SizeTy, 0)); |
| Builder.CreateCondBr(SizeEq0, Exit, CmpEq); |
| |
| EmitBlock(CmpEq); |
| PHINode *StrPhi = Builder.CreatePHI(Str->getType(), 2); |
| StrPhi->addIncoming(Str, Entry); |
| PHINode *SizePhi = Builder.CreatePHI(SizeTy, 2); |
| SizePhi->addIncoming(Size, Entry); |
| CharUnits WCharAlign = |
| getContext().getTypeAlignInChars(getContext().WCharTy); |
| Value *StrCh = Builder.CreateAlignedLoad(WCharTy, StrPhi, WCharAlign); |
| Value *FoundChr = Builder.CreateConstInBoundsGEP1_32(WCharTy, StrPhi, 0); |
| Value *StrEqChr = Builder.CreateICmpEQ(StrCh, Chr); |
| Builder.CreateCondBr(StrEqChr, Exit, Next); |
| |
| EmitBlock(Next); |
| Value *NextStr = Builder.CreateConstInBoundsGEP1_32(WCharTy, StrPhi, 1); |
| Value *NextSize = Builder.CreateSub(SizePhi, ConstantInt::get(SizeTy, 1)); |
| Value *NextSizeEq0 = |
| Builder.CreateICmpEQ(NextSize, ConstantInt::get(SizeTy, 0)); |
| Builder.CreateCondBr(NextSizeEq0, Exit, CmpEq); |
| StrPhi->addIncoming(NextStr, Next); |
| SizePhi->addIncoming(NextSize, Next); |
| |
| EmitBlock(Exit); |
| PHINode *Ret = Builder.CreatePHI(Str->getType(), 3); |
| Ret->addIncoming(llvm::Constant::getNullValue(Str->getType()), Entry); |
| Ret->addIncoming(llvm::Constant::getNullValue(Str->getType()), Next); |
| Ret->addIncoming(FoundChr, CmpEq); |
| return RValue::get(Ret); |
| } |
| case Builtin::BI__builtin_wmemcmp: { |
| // The MSVC runtime library does not provide a definition of wmemcmp, so we |
| // need an inline implementation. |
| if (!getTarget().getTriple().isOSMSVCRT()) |
| break; |
| |
| llvm::Type *WCharTy = ConvertType(getContext().WCharTy); |
| |
| Value *Dst = EmitScalarExpr(E->getArg(0)); |
| Value *Src = EmitScalarExpr(E->getArg(1)); |
| Value *Size = EmitScalarExpr(E->getArg(2)); |
| |
| BasicBlock *Entry = Builder.GetInsertBlock(); |
| BasicBlock *CmpGT = createBasicBlock("wmemcmp.gt"); |
| BasicBlock *CmpLT = createBasicBlock("wmemcmp.lt"); |
| BasicBlock *Next = createBasicBlock("wmemcmp.next"); |
| BasicBlock *Exit = createBasicBlock("wmemcmp.exit"); |
| Value *SizeEq0 = Builder.CreateICmpEQ(Size, ConstantInt::get(SizeTy, 0)); |
| Builder.CreateCondBr(SizeEq0, Exit, CmpGT); |
| |
| EmitBlock(CmpGT); |
| PHINode *DstPhi = Builder.CreatePHI(Dst->getType(), 2); |
| DstPhi->addIncoming(Dst, Entry); |
| PHINode *SrcPhi = Builder.CreatePHI(Src->getType(), 2); |
| SrcPhi->addIncoming(Src, Entry); |
| PHINode *SizePhi = Builder.CreatePHI(SizeTy, 2); |
| SizePhi->addIncoming(Size, Entry); |
| CharUnits WCharAlign = |
| getContext().getTypeAlignInChars(getContext().WCharTy); |
| Value *DstCh = Builder.CreateAlignedLoad(WCharTy, DstPhi, WCharAlign); |
| Value *SrcCh = Builder.CreateAlignedLoad(WCharTy, SrcPhi, WCharAlign); |
| Value *DstGtSrc = Builder.CreateICmpUGT(DstCh, SrcCh); |
| Builder.CreateCondBr(DstGtSrc, Exit, CmpLT); |
| |
| EmitBlock(CmpLT); |
| Value *DstLtSrc = Builder.CreateICmpULT(DstCh, SrcCh); |
| Builder.CreateCondBr(DstLtSrc, Exit, Next); |
| |
| EmitBlock(Next); |
| Value *NextDst = Builder.CreateConstInBoundsGEP1_32(WCharTy, DstPhi, 1); |
| Value *NextSrc = Builder.CreateConstInBoundsGEP1_32(WCharTy, SrcPhi, 1); |
| Value *NextSize = Builder.CreateSub(SizePhi, ConstantInt::get(SizeTy, 1)); |
| Value *NextSizeEq0 = |
| Builder.CreateICmpEQ(NextSize, ConstantInt::get(SizeTy, 0)); |
| Builder.CreateCondBr(NextSizeEq0, Exit, CmpGT); |
| DstPhi->addIncoming(NextDst, Next); |
| SrcPhi->addIncoming(NextSrc, Next); |
| SizePhi->addIncoming(NextSize, Next); |
| |
| EmitBlock(Exit); |
| PHINode *Ret = Builder.CreatePHI(IntTy, 4); |
| Ret->addIncoming(ConstantInt::get(IntTy, 0), Entry); |
| Ret->addIncoming(ConstantInt::get(IntTy, 1), CmpGT); |
| Ret->addIncoming(ConstantInt::get(IntTy, -1), CmpLT); |
| Ret->addIncoming(ConstantInt::get(IntTy, 0), Next); |
| return RValue::get(Ret); |
| } |
| case Builtin::BI__builtin_dwarf_cfa: { |
| // The offset in bytes from the first argument to the CFA. |
| // |
| // Why on earth is this in the frontend? Is there any reason at |
| // all that the backend can't reasonably determine this while |
| // lowering llvm.eh.dwarf.cfa()? |
| // |
| // TODO: If there's a satisfactory reason, add a target hook for |
| // this instead of hard-coding 0, which is correct for most targets. |
| int32_t Offset = 0; |
| |
| Function *F = CGM.getIntrinsic(Intrinsic::eh_dwarf_cfa); |
| return RValue::get(Builder.CreateCall(F, |
| llvm::ConstantInt::get(Int32Ty, Offset))); |
| } |
| case Builtin::BI__builtin_return_address: { |
| Value *Depth = ConstantEmitter(*this).emitAbstract(E->getArg(0), |
| getContext().UnsignedIntTy); |
| Function *F = CGM.getIntrinsic(Intrinsic::returnaddress); |
| return RValue::get(Builder.CreateCall(F, Depth)); |
| } |
| case Builtin::BI_ReturnAddress: { |
| Function *F = CGM.getIntrinsic(Intrinsic::returnaddress); |
| return RValue::get(Builder.CreateCall(F, Builder.getInt32(0))); |
| } |
| case Builtin::BI__builtin_frame_address: { |
| Value *Depth = ConstantEmitter(*this).emitAbstract(E->getArg(0), |
| getContext().UnsignedIntTy); |
| Function *F = CGM.getIntrinsic(Intrinsic::frameaddress, AllocaInt8PtrTy); |
| return RValue::get(Builder.CreateCall(F, Depth)); |
| } |
| case Builtin::BI__builtin_extract_return_addr: { |
| Value *Address = EmitScalarExpr(E->getArg(0)); |
| Value *Result = getTargetHooks().decodeReturnAddress(*this, Address); |
| return RValue::get(Result); |
| } |
| case Builtin::BI__builtin_frob_return_addr: { |
| Value *Address = EmitScalarExpr(E->getArg(0)); |
| Value *Result = getTargetHooks().encodeReturnAddress(*this, Address); |
| return RValue::get(Result); |
| } |
| case Builtin::BI__builtin_dwarf_sp_column: { |
| llvm::IntegerType *Ty |
| = cast<llvm::IntegerType>(ConvertType(E->getType())); |
| int Column = getTargetHooks().getDwarfEHStackPointer(CGM); |
| if (Column == -1) { |
| CGM.ErrorUnsupported(E, "__builtin_dwarf_sp_column"); |
| return RValue::get(llvm::UndefValue::get(Ty)); |
| } |
| return RValue::get(llvm::ConstantInt::get(Ty, Column, true)); |
| } |
| case Builtin::BI__builtin_init_dwarf_reg_size_table: { |
| Value *Address = EmitScalarExpr(E->getArg(0)); |
| if (getTargetHooks().initDwarfEHRegSizeTable(*this, Address)) |
| CGM.ErrorUnsupported(E, "__builtin_init_dwarf_reg_size_table"); |
| return RValue::get(llvm::UndefValue::get(ConvertType(E->getType()))); |
| } |
| case Builtin::BI__builtin_eh_return: { |
| Value *Int = EmitScalarExpr(E->getArg(0)); |
| Value *Ptr = EmitScalarExpr(E->getArg(1)); |
| |
| llvm::IntegerType *IntTy = cast<llvm::IntegerType>(Int->getType()); |
| assert((IntTy->getBitWidth() == 32 || IntTy->getBitWidth() == 64) && |
| "LLVM's __builtin_eh_return only supports 32- and 64-bit variants"); |
| Function *F = |
| CGM.getIntrinsic(IntTy->getBitWidth() == 32 ? Intrinsic::eh_return_i32 |
| : Intrinsic::eh_return_i64); |
| Builder.CreateCall(F, {Int, Ptr}); |
| Builder.CreateUnreachable(); |
| |
| // We do need to preserve an insertion point. |
| EmitBlock(createBasicBlock("builtin_eh_return.cont")); |
| |
| return RValue::get(nullptr); |
| } |
| case Builtin::BI__builtin_unwind_init: { |
| Function *F = CGM.getIntrinsic(Intrinsic::eh_unwind_init); |
| Builder.CreateCall(F); |
| return RValue::get(nullptr); |
| } |
| case Builtin::BI__builtin_extend_pointer: { |
| // Extends a pointer to the size of an _Unwind_Word, which is |
| // uint64_t on all platforms. Generally this gets poked into a |
| // register and eventually used as an address, so if the |
| // addressing registers are wider than pointers and the platform |
| // doesn't implicitly ignore high-order bits when doing |
| // addressing, we need to make sure we zext / sext based on |
| // the platform's expectations. |
| // |
| // See: http://gcc.gnu.org/ml/gcc-bugs/2002-02/msg00237.html |
| |
| // Cast the pointer to intptr_t. |
| Value *Ptr = EmitScalarExpr(E->getArg(0)); |
| Value *Result = Builder.CreatePtrToInt(Ptr, IntPtrTy, "extend.cast"); |
| |
| // If that's 64 bits, we're done. |
| if (IntPtrTy->getBitWidth() == 64) |
| return RValue::get(Result); |
| |
| // Otherwise, ask the codegen data what to do. |
| if (getTargetHooks().extendPointerWithSExt()) |
| return RValue::get(Builder.CreateSExt(Result, Int64Ty, "extend.sext")); |
| else |
| return RValue::get(Builder.CreateZExt(Result, Int64Ty, "extend.zext")); |
| } |
| case Builtin::BI__builtin_setjmp: { |
| // Buffer is a void**. |
| Address Buf = EmitPointerWithAlignment(E->getArg(0)); |
| |
| if (getTarget().getTriple().getArch() == llvm::Triple::systemz) { |
| // On this target, the back end fills in the context buffer completely. |
| // It doesn't really matter if the frontend stores to the buffer before |
| // calling setjmp, the back-end is going to overwrite them anyway. |
| Function *F = CGM.getIntrinsic(Intrinsic::eh_sjlj_setjmp); |
| return RValue::get(Builder.CreateCall(F, Buf.emitRawPointer(*this))); |
| } |
| |
| // Store the frame pointer to the setjmp buffer. |
| Value *FrameAddr = Builder.CreateCall( |
| CGM.getIntrinsic(Intrinsic::frameaddress, AllocaInt8PtrTy), |
| ConstantInt::get(Int32Ty, 0)); |
| Builder.CreateStore(FrameAddr, Buf); |
| |
| // Store the stack pointer to the setjmp buffer. |
| Value *StackAddr = Builder.CreateStackSave(); |
| assert(Buf.emitRawPointer(*this)->getType() == StackAddr->getType()); |
| |
| Address StackSaveSlot = Builder.CreateConstInBoundsGEP(Buf, 2); |
| Builder.CreateStore(StackAddr, StackSaveSlot); |
| |
| // Call LLVM's EH setjmp, which is lightweight. |
| Function *F = CGM.getIntrinsic(Intrinsic::eh_sjlj_setjmp); |
| return RValue::get(Builder.CreateCall(F, Buf.emitRawPointer(*this))); |
| } |
| case Builtin::BI__builtin_longjmp: { |
| Value *Buf = EmitScalarExpr(E->getArg(0)); |
| |
| // Call LLVM's EH longjmp, which is lightweight. |
| Builder.CreateCall(CGM.getIntrinsic(Intrinsic::eh_sjlj_longjmp), Buf); |
| |
| // longjmp doesn't return; mark this as unreachable. |
| Builder.CreateUnreachable(); |
| |
| // We do need to preserve an insertion point. |
| EmitBlock(createBasicBlock("longjmp.cont")); |
| |
| return RValue::get(nullptr); |
| } |
| case Builtin::BI__builtin_launder: { |
| const Expr *Arg = E->getArg(0); |
| QualType ArgTy = Arg->getType()->getPointeeType(); |
| Value *Ptr = EmitScalarExpr(Arg); |
| if (TypeRequiresBuiltinLaunder(CGM, ArgTy)) |
| Ptr = Builder.CreateLaunderInvariantGroup(Ptr); |
| |
| return RValue::get(Ptr); |
| } |
| case Builtin::BI__sync_fetch_and_add: |
| case Builtin::BI__sync_fetch_and_sub: |
| case Builtin::BI__sync_fetch_and_or: |
| case Builtin::BI__sync_fetch_and_and: |
| case Builtin::BI__sync_fetch_and_xor: |
| case Builtin::BI__sync_fetch_and_nand: |
| case Builtin::BI__sync_add_and_fetch: |
| case Builtin::BI__sync_sub_and_fetch: |
| case Builtin::BI__sync_and_and_fetch: |
| case Builtin::BI__sync_or_and_fetch: |
| case Builtin::BI__sync_xor_and_fetch: |
| case Builtin::BI__sync_nand_and_fetch: |
| case Builtin::BI__sync_val_compare_and_swap: |
| case Builtin::BI__sync_bool_compare_and_swap: |
| case Builtin::BI__sync_lock_test_and_set: |
| case Builtin::BI__sync_lock_release: |
| case Builtin::BI__sync_swap: |
| llvm_unreachable("Shouldn't make it through sema"); |
| case Builtin::BI__sync_fetch_and_add_1: |
| case Builtin::BI__sync_fetch_and_add_2: |
| case Builtin::BI__sync_fetch_and_add_4: |
| case Builtin::BI__sync_fetch_and_add_8: |
| case Builtin::BI__sync_fetch_and_add_16: |
| return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Add, E); |
| case Builtin::BI__sync_fetch_and_sub_1: |
| case Builtin::BI__sync_fetch_and_sub_2: |
| case Builtin::BI__sync_fetch_and_sub_4: |
| case Builtin::BI__sync_fetch_and_sub_8: |
| case Builtin::BI__sync_fetch_and_sub_16: |
| return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Sub, E); |
| case Builtin::BI__sync_fetch_and_or_1: |
| case Builtin::BI__sync_fetch_and_or_2: |
| case Builtin::BI__sync_fetch_and_or_4: |
| case Builtin::BI__sync_fetch_and_or_8: |
| case Builtin::BI__sync_fetch_and_or_16: |
| return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Or, E); |
| case Builtin::BI__sync_fetch_and_and_1: |
| case Builtin::BI__sync_fetch_and_and_2: |
| case Builtin::BI__sync_fetch_and_and_4: |
| case Builtin::BI__sync_fetch_and_and_8: |
| case Builtin::BI__sync_fetch_and_and_16: |
| return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::And, E); |
| case Builtin::BI__sync_fetch_and_xor_1: |
| case Builtin::BI__sync_fetch_and_xor_2: |
| case Builtin::BI__sync_fetch_and_xor_4: |
| case Builtin::BI__sync_fetch_and_xor_8: |
| case Builtin::BI__sync_fetch_and_xor_16: |
| return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xor, E); |
| case Builtin::BI__sync_fetch_and_nand_1: |
| case Builtin::BI__sync_fetch_and_nand_2: |
| case Builtin::BI__sync_fetch_and_nand_4: |
| case Builtin::BI__sync_fetch_and_nand_8: |
| case Builtin::BI__sync_fetch_and_nand_16: |
| return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Nand, E); |
| |
| // Clang extensions: not overloaded yet. |
| case Builtin::BI__sync_fetch_and_min: |
| return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Min, E); |
| case Builtin::BI__sync_fetch_and_max: |
| return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Max, E); |
| case Builtin::BI__sync_fetch_and_umin: |
| return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::UMin, E); |
| case Builtin::BI__sync_fetch_and_umax: |
| return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::UMax, E); |
| |
| case Builtin::BI__sync_add_and_fetch_1: |
| case Builtin::BI__sync_add_and_fetch_2: |
| case Builtin::BI__sync_add_and_fetch_4: |
| case Builtin::BI__sync_add_and_fetch_8: |
| case Builtin::BI__sync_add_and_fetch_16: |
| return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Add, E, |
| llvm::Instruction::Add); |
| case Builtin::BI__sync_sub_and_fetch_1: |
| case Builtin::BI__sync_sub_and_fetch_2: |
| case Builtin::BI__sync_sub_and_fetch_4: |
| case Builtin::BI__sync_sub_and_fetch_8: |
| case Builtin::BI__sync_sub_and_fetch_16: |
| return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Sub, E, |
| llvm::Instruction::Sub); |
| case Builtin::BI__sync_and_and_fetch_1: |
| case Builtin::BI__sync_and_and_fetch_2: |
| case Builtin::BI__sync_and_and_fetch_4: |
| case Builtin::BI__sync_and_and_fetch_8: |
| case Builtin::BI__sync_and_and_fetch_16: |
| return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::And, E, |
| llvm::Instruction::And); |
| case Builtin::BI__sync_or_and_fetch_1: |
| case Builtin::BI__sync_or_and_fetch_2: |
| case Builtin::BI__sync_or_and_fetch_4: |
| case Builtin::BI__sync_or_and_fetch_8: |
| case Builtin::BI__sync_or_and_fetch_16: |
| return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Or, E, |
| llvm::Instruction::Or); |
| case Builtin::BI__sync_xor_and_fetch_1: |
| case Builtin::BI__sync_xor_and_fetch_2: |
| case Builtin::BI__sync_xor_and_fetch_4: |
| case Builtin::BI__sync_xor_and_fetch_8: |
| case Builtin::BI__sync_xor_and_fetch_16: |
| return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Xor, E, |
| llvm::Instruction::Xor); |
| case Builtin::BI__sync_nand_and_fetch_1: |
| case Builtin::BI__sync_nand_and_fetch_2: |
| case Builtin::BI__sync_nand_and_fetch_4: |
| case Builtin::BI__sync_nand_and_fetch_8: |
| case Builtin::BI__sync_nand_and_fetch_16: |
| return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Nand, E, |
| llvm::Instruction::And, true); |
| |
| case Builtin::BI__sync_val_compare_and_swap_1: |
| case Builtin::BI__sync_val_compare_and_swap_2: |
| case Builtin::BI__sync_val_compare_and_swap_4: |
| case Builtin::BI__sync_val_compare_and_swap_8: |
| case Builtin::BI__sync_val_compare_and_swap_16: |
| return RValue::get(MakeAtomicCmpXchgValue(*this, E, false)); |
| |
| case Builtin::BI__sync_bool_compare_and_swap_1: |
| case Builtin::BI__sync_bool_compare_and_swap_2: |
| case Builtin::BI__sync_bool_compare_and_swap_4: |
| case Builtin::BI__sync_bool_compare_and_swap_8: |
| case Builtin::BI__sync_bool_compare_and_swap_16: |
| return RValue::get(MakeAtomicCmpXchgValue(*this, E, true)); |
| |
| case Builtin::BI__sync_swap_1: |
| case Builtin::BI__sync_swap_2: |
| case Builtin::BI__sync_swap_4: |
| case Builtin::BI__sync_swap_8: |
| case Builtin::BI__sync_swap_16: |
| return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xchg, E); |
| |
| case Builtin::BI__sync_lock_test_and_set_1: |
| case Builtin::BI__sync_lock_test_and_set_2: |
| case Builtin::BI__sync_lock_test_and_set_4: |
| case Builtin::BI__sync_lock_test_and_set_8: |
| case Builtin::BI__sync_lock_test_and_set_16: |
| return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xchg, E); |
| |
| case Builtin::BI__sync_lock_release_1: |
| case Builtin::BI__sync_lock_release_2: |
| case Builtin::BI__sync_lock_release_4: |
| case Builtin::BI__sync_lock_release_8: |
| case Builtin::BI__sync_lock_release_16: { |
| Address Ptr = CheckAtomicAlignment(*this, E); |
| QualType ElTy = E->getArg(0)->getType()->getPointeeType(); |
| |
| llvm::Type *ITy = llvm::IntegerType::get(getLLVMContext(), |
| getContext().getTypeSize(ElTy)); |
| llvm::StoreInst *Store = |
| Builder.CreateStore(llvm::Constant::getNullValue(ITy), Ptr); |
| Store->setAtomic(llvm::AtomicOrdering::Release); |
| return RValue::get(nullptr); |
| } |
| |
| case Builtin::BI__sync_synchronize: { |
| // We assume this is supposed to correspond to a C++0x-style |
| // sequentially-consistent fence (i.e. this is only usable for |
| // synchronization, not device I/O or anything like that). This intrinsic |
| // is really badly designed in the sense that in theory, there isn't |
| // any way to safely use it... but in practice, it mostly works |
| // to use it with non-atomic loads and stores to get acquire/release |
| // semantics. |
| Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent); |
| return RValue::get(nullptr); |
| } |
| |
| case Builtin::BI__builtin_nontemporal_load: |
| return RValue::get(EmitNontemporalLoad(*this, E)); |
| case Builtin::BI__builtin_nontemporal_store: |
| return RValue::get(EmitNontemporalStore(*this, E)); |
| case Builtin::BI__c11_atomic_is_lock_free: |
| case Builtin::BI__atomic_is_lock_free: { |
| // Call "bool __atomic_is_lock_free(size_t size, void *ptr)". For the |
| // __c11 builtin, ptr is 0 (indicating a properly-aligned object), since |
| // _Atomic(T) is always properly-aligned. |
| const char *LibCallName = "__atomic_is_lock_free"; |
| CallArgList Args; |
| Args.add(RValue::get(EmitScalarExpr(E->getArg(0))), |
| getContext().getSizeType()); |
| if (BuiltinID == Builtin::BI__atomic_is_lock_free) |
| Args.add(RValue::get(EmitScalarExpr(E->getArg(1))), |
| getContext().VoidPtrTy); |
| else |
| Args.add(RValue::get(llvm::Constant::getNullValue(VoidPtrTy)), |
| getContext().VoidPtrTy); |
| const CGFunctionInfo &FuncInfo = |
| CGM.getTypes().arrangeBuiltinFunctionCall(E->getType(), Args); |
| llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FuncInfo); |
| llvm::FunctionCallee Func = CGM.CreateRuntimeFunction(FTy, LibCallName); |
| return EmitCall(FuncInfo, CGCallee::forDirect(Func), |
| ReturnValueSlot(), Args); |
| } |
| |
| case Builtin::BI__atomic_thread_fence: |
| case Builtin::BI__atomic_signal_fence: |
| case Builtin::BI__c11_atomic_thread_fence: |
| case Builtin::BI__c11_atomic_signal_fence: { |
| llvm::SyncScope::ID SSID; |
| if (BuiltinID == Builtin::BI__atomic_signal_fence || |
| BuiltinID == Builtin::BI__c11_atomic_signal_fence) |
| SSID = llvm::SyncScope::SingleThread; |
| else |
| SSID = llvm::SyncScope::System; |
| Value *Order = EmitScalarExpr(E->getArg(0)); |
| if (isa<llvm::ConstantInt>(Order)) { |
| int ord = cast<llvm::ConstantInt>(Order)->getZExtValue(); |
| switch (ord) { |
| case 0: // memory_order_relaxed |
| default: // invalid order |
| break; |
| case 1: // memory_order_consume |
| case 2: // memory_order_acquire |
| Builder.CreateFence(llvm::AtomicOrdering::Acquire, SSID); |
| break; |
| case 3: // memory_order_release |
| Builder.CreateFence(llvm::AtomicOrdering::Release, SSID); |
| break; |
| case 4: // memory_order_acq_rel |
| Builder.CreateFence(llvm::AtomicOrdering::AcquireRelease, SSID); |
| break; |
| case 5: // memory_order_seq_cst |
| Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent, SSID); |
| break; |
| } |
| return RValue::get(nullptr); |
| } |
| |
| llvm::BasicBlock *AcquireBB, *ReleaseBB, *AcqRelBB, *SeqCstBB; |
| AcquireBB = createBasicBlock("acquire", CurFn); |
| ReleaseBB = createBasicBlock("release", CurFn); |
| AcqRelBB = createBasicBlock("acqrel", CurFn); |
| SeqCstBB = createBasicBlock("seqcst", CurFn); |
| llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn); |
| |
| Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false); |
| llvm::SwitchInst *SI = Builder.CreateSwitch(Order, ContBB); |
| |
| Builder.SetInsertPoint(AcquireBB); |
| Builder.CreateFence(llvm::AtomicOrdering::Acquire, SSID); |
| Builder.CreateBr(ContBB); |
| SI->addCase(Builder.getInt32(1), AcquireBB); |
| SI->addCase(Builder.getInt32(2), AcquireBB); |
| |
| Builder.SetInsertPoint(ReleaseBB); |
| Builder.CreateFence(llvm::AtomicOrdering::Release, SSID); |
| Builder.CreateBr(ContBB); |
| SI->addCase(Builder.getInt32(3), ReleaseBB); |
| |
| Builder.SetInsertPoint(AcqRelBB); |
| Builder.CreateFence(llvm::AtomicOrdering::AcquireRelease, SSID); |
| Builder.CreateBr(ContBB); |
| SI->addCase(Builder.getInt32(4), AcqRelBB); |
| |
| Builder.SetInsertPoint(SeqCstBB); |
| Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent, SSID); |
| Builder.CreateBr(ContBB); |
| SI->addCase(Builder.getInt32(5), SeqCstBB); |
| |
| Builder.SetInsertPoint(ContBB); |
| return RValue::get(nullptr); |
| } |
| case Builtin::BI__scoped_atomic_thread_fence: { |
| auto ScopeModel = AtomicScopeModel::create(AtomicScopeModelKind::Generic); |
| |
| Value *Order = EmitScalarExpr(E->getArg(0)); |
| Value *Scope = EmitScalarExpr(E->getArg(1)); |
| auto Ord = dyn_cast<llvm::ConstantInt>(Order); |
| auto Scp = dyn_cast<llvm::ConstantInt>(Scope); |
| if (Ord && Scp) { |
| SyncScope SS = ScopeModel->isValid(Scp->getZExtValue()) |
| ? ScopeModel->map(Scp->getZExtValue()) |
| : ScopeModel->map(ScopeModel->getFallBackValue()); |
| switch (Ord->getZExtValue()) { |
| case 0: // memory_order_relaxed |
| default: // invalid order |
| break; |
| case 1: // memory_order_consume |
| case 2: // memory_order_acquire |
| Builder.CreateFence( |
| llvm::AtomicOrdering::Acquire, |
| getTargetHooks().getLLVMSyncScopeID(getLangOpts(), SS, |
| llvm::AtomicOrdering::Acquire, |
| getLLVMContext())); |
| break; |
| case 3: // memory_order_release |
| Builder.CreateFence( |
| llvm::AtomicOrdering::Release, |
| getTargetHooks().getLLVMSyncScopeID(getLangOpts(), SS, |
| llvm::AtomicOrdering::Release, |
| getLLVMContext())); |
| break; |
| case 4: // memory_order_acq_rel |
| Builder.CreateFence(llvm::AtomicOrdering::AcquireRelease, |
| getTargetHooks().getLLVMSyncScopeID( |
| getLangOpts(), SS, |
| llvm::AtomicOrdering::AcquireRelease, |
| getLLVMContext())); |
| break; |
| case 5: // memory_order_seq_cst |
| Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent, |
| getTargetHooks().getLLVMSyncScopeID( |
| getLangOpts(), SS, |
| llvm::AtomicOrdering::SequentiallyConsistent, |
| getLLVMContext())); |
| break; |
| } |
| return RValue::get(nullptr); |
| } |
| |
| llvm::BasicBlock *ContBB = createBasicBlock("atomic.scope.continue", CurFn); |
| |
| llvm::SmallVector<std::pair<llvm::BasicBlock *, llvm::AtomicOrdering>> |
| OrderBBs; |
| if (Ord) { |
| switch (Ord->getZExtValue()) { |
| case 0: // memory_order_relaxed |
| default: // invalid order |
| ContBB->eraseFromParent(); |
| return RValue::get(nullptr); |
| case 1: // memory_order_consume |
| case 2: // memory_order_acquire |
| OrderBBs.emplace_back(Builder.GetInsertBlock(), |
| llvm::AtomicOrdering::Acquire); |
| break; |
| case 3: // memory_order_release |
| OrderBBs.emplace_back(Builder.GetInsertBlock(), |
| llvm::AtomicOrdering::Release); |
| break; |
| case 4: // memory_order_acq_rel |
| OrderBBs.emplace_back(Builder.GetInsertBlock(), |
| llvm::AtomicOrdering::AcquireRelease); |
| break; |
| case 5: // memory_order_seq_cst |
| OrderBBs.emplace_back(Builder.GetInsertBlock(), |
| llvm::AtomicOrdering::SequentiallyConsistent); |
| break; |
| } |
| } else { |
| llvm::BasicBlock *AcquireBB = createBasicBlock("acquire", CurFn); |
| llvm::BasicBlock *ReleaseBB = createBasicBlock("release", CurFn); |
| llvm::BasicBlock *AcqRelBB = createBasicBlock("acqrel", CurFn); |
| llvm::BasicBlock *SeqCstBB = createBasicBlock("seqcst", CurFn); |
| |
| Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false); |
| llvm::SwitchInst *SI = Builder.CreateSwitch(Order, ContBB); |
| SI->addCase(Builder.getInt32(1), AcquireBB); |
| SI->addCase(Builder.getInt32(2), AcquireBB); |
| SI->addCase(Builder.getInt32(3), ReleaseBB); |
| SI->addCase(Builder.getInt32(4), AcqRelBB); |
| SI->addCase(Builder.getInt32(5), SeqCstBB); |
| |
| OrderBBs.emplace_back(AcquireBB, llvm::AtomicOrdering::Acquire); |
| OrderBBs.emplace_back(ReleaseBB, llvm::AtomicOrdering::Release); |
| OrderBBs.emplace_back(AcqRelBB, llvm::AtomicOrdering::AcquireRelease); |
| OrderBBs.emplace_back(SeqCstBB, |
| llvm::AtomicOrdering::SequentiallyConsistent); |
| } |
| |
| for (auto &[OrderBB, Ordering] : OrderBBs) { |
| Builder.SetInsertPoint(OrderBB); |
| if (Scp) { |
| SyncScope SS = ScopeModel->isValid(Scp->getZExtValue()) |
| ? ScopeModel->map(Scp->getZExtValue()) |
| : ScopeModel->map(ScopeModel->getFallBackValue()); |
| Builder.CreateFence(Ordering, |
| getTargetHooks().getLLVMSyncScopeID( |
| getLangOpts(), SS, Ordering, getLLVMContext())); |
| Builder.CreateBr(ContBB); |
| } else { |
| llvm::DenseMap<unsigned, llvm::BasicBlock *> BBs; |
| for (unsigned Scp : ScopeModel->getRuntimeValues()) |
| BBs[Scp] = createBasicBlock(getAsString(ScopeModel->map(Scp)), CurFn); |
| |
| auto *SC = Builder.CreateIntCast(Scope, Builder.getInt32Ty(), false); |
| llvm::SwitchInst *SI = Builder.CreateSwitch(SC, ContBB); |
| for (unsigned Scp : ScopeModel->getRuntimeValues()) { |
| auto *B = BBs[Scp]; |
| SI->addCase(Builder.getInt32(Scp), B); |
| |
| Builder.SetInsertPoint(B); |
| Builder.CreateFence(Ordering, getTargetHooks().getLLVMSyncScopeID( |
| getLangOpts(), ScopeModel->map(Scp), |
| Ordering, getLLVMContext())); |
| Builder.CreateBr(ContBB); |
| } |
| } |
| } |
| |
| Builder.SetInsertPoint(ContBB); |
| return RValue::get(nullptr); |
| } |
| |
| case Builtin::BI__builtin_signbit: |
| case Builtin::BI__builtin_signbitf: |
| case Builtin::BI__builtin_signbitl: { |
| return RValue::get( |
| Builder.CreateZExt(EmitSignBit(*this, EmitScalarExpr(E->getArg(0))), |
| ConvertType(E->getType()))); |
| } |
| case Builtin::BI__warn_memset_zero_len: |
| return RValue::getIgnored(); |
| case Builtin::BI__annotation: { |
| // Re-encode each wide string to UTF8 and make an MDString. |
| SmallVector<Metadata *, 1> Strings; |
| for (const Expr *Arg : E->arguments()) { |
| const auto *Str = cast<StringLiteral>(Arg->IgnoreParenCasts()); |
| assert(Str->getCharByteWidth() == 2); |
| StringRef WideBytes = Str->getBytes(); |
| std::string StrUtf8; |
| if (!convertUTF16ToUTF8String( |
| ArrayRef(WideBytes.data(), WideBytes.size()), StrUtf8)) { |
| CGM.ErrorUnsupported(E, "non-UTF16 __annotation argument"); |
| continue; |
| } |
| Strings.push_back(llvm::MDString::get(getLLVMContext(), StrUtf8)); |
| } |
| |
| // Build and MDTuple of MDStrings and emit the intrinsic call. |
| llvm::Function *F = |
| CGM.getIntrinsic(llvm::Intrinsic::codeview_annotation, {}); |
| MDTuple *StrTuple = MDTuple::get(getLLVMContext(), Strings); |
| Builder.CreateCall(F, MetadataAsValue::get(getLLVMContext(), StrTuple)); |
| return RValue::getIgnored(); |
| } |
| case Builtin::BI__builtin_annotation: { |
| llvm::Value *AnnVal = EmitScalarExpr(E->getArg(0)); |
| llvm::Function *F = |
| CGM.getIntrinsic(llvm::Intrinsic::annotation, |
| {AnnVal->getType(), CGM.ConstGlobalsPtrTy}); |
| |
| // Get the annotation string, go through casts. Sema requires this to be a |
| // non-wide string literal, potentially casted, so the cast<> is safe. |
| const Expr *AnnotationStrExpr = E->getArg(1)->IgnoreParenCasts(); |
| StringRef Str = cast<StringLiteral>(AnnotationStrExpr)->getString(); |
| return RValue::get( |
| EmitAnnotationCall(F, AnnVal, Str, E->getExprLoc(), nullptr)); |
| } |
| case Builtin::BI__builtin_addcb: |
| case Builtin::BI__builtin_addcs: |
| case Builtin::BI__builtin_addc: |
| case Builtin::BI__builtin_addcl: |
| case Builtin::BI__builtin_addcll: |
| case Builtin::BI__builtin_subcb: |
| case Builtin::BI__builtin_subcs: |
| case Builtin::BI__builtin_subc: |
| case Builtin::BI__builtin_subcl: |
| case Builtin::BI__builtin_subcll: { |
| |
| // We translate all of these builtins from expressions of the form: |
| // int x = ..., y = ..., carryin = ..., carryout, result; |
| // result = __builtin_addc(x, y, carryin, &carryout); |
| // |
| // to LLVM IR of the form: |
| // |
| // %tmp1 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %x, i32 %y) |
| // %tmpsum1 = extractvalue {i32, i1} %tmp1, 0 |
| // %carry1 = extractvalue {i32, i1} %tmp1, 1 |
| // %tmp2 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %tmpsum1, |
| // i32 %carryin) |
| // %result = extractvalue {i32, i1} %tmp2, 0 |
| // %carry2 = extractvalue {i32, i1} %tmp2, 1 |
| // %tmp3 = or i1 %carry1, %carry2 |
| // %tmp4 = zext i1 %tmp3 to i32 |
| // store i32 %tmp4, i32* %carryout |
| |
| // Scalarize our inputs. |
| llvm::Value *X = EmitScalarExpr(E->getArg(0)); |
| llvm::Value *Y = EmitScalarExpr(E->getArg(1)); |
| llvm::Value *Carryin = EmitScalarExpr(E->getArg(2)); |
| Address CarryOutPtr = EmitPointerWithAlignment(E->getArg(3)); |
| |
| // Decide if we are lowering to a uadd.with.overflow or usub.with.overflow. |
| llvm::Intrinsic::ID IntrinsicId; |
| switch (BuiltinID) { |
| default: llvm_unreachable("Unknown multiprecision builtin id."); |
| case Builtin::BI__builtin_addcb: |
| case Builtin::BI__builtin_addcs: |
| case Builtin::BI__builtin_addc: |
| case Builtin::BI__builtin_addcl: |
| case Builtin::BI__builtin_addcll: |
| IntrinsicId = llvm::Intrinsic::uadd_with_overflow; |
| break; |
| case Builtin::BI__builtin_subcb: |
| case Builtin::BI__builtin_subcs: |
| case Builtin::BI__builtin_subc: |
| case Builtin::BI__builtin_subcl: |
| case Builtin::BI__builtin_subcll: |
| IntrinsicId = llvm::Intrinsic::usub_with_overflow; |
| break; |
| } |
| |
| // Construct our resulting LLVM IR expression. |
| llvm::Value *Carry1; |
| llvm::Value *Sum1 = EmitOverflowIntrinsic(*this, IntrinsicId, |
| X, Y, Carry1); |
| llvm::Value *Carry2; |
| llvm::Value *Sum2 = EmitOverflowIntrinsic(*this, IntrinsicId, |
| Sum1, Carryin, Carry2); |
| llvm::Value *CarryOut = Builder.CreateZExt(Builder.CreateOr(Carry1, Carry2), |
| X->getType()); |
| Builder.CreateStore(CarryOut, CarryOutPtr); |
| return RValue::get(Sum2); |
| } |
| |
| case Builtin::BI__builtin_add_overflow: |
| case Builtin::BI__builtin_sub_overflow: |
| case Builtin::BI__builtin_mul_overflow: { |
| const clang::Expr *LeftArg = E->getArg(0); |
| const clang::Expr *RightArg = E->getArg(1); |
| const clang::Expr *ResultArg = E->getArg(2); |
| |
| clang::QualType ResultQTy = |
| ResultArg->getType()->castAs<PointerType>()->getPointeeType(); |
| |
| WidthAndSignedness LeftInfo = |
| getIntegerWidthAndSignedness(CGM.getContext(), LeftArg->getType()); |
| WidthAndSignedness RightInfo = |
| getIntegerWidthAndSignedness(CGM.getContext(), RightArg->getType()); |
| WidthAndSignedness ResultInfo = |
| getIntegerWidthAndSignedness(CGM.getContext(), ResultQTy); |
| |
| // Handle mixed-sign multiplication as a special case, because adding |
| // runtime or backend support for our generic irgen would be too expensive. |
| if (isSpecialMixedSignMultiply(BuiltinID, LeftInfo, RightInfo, ResultInfo)) |
| return EmitCheckedMixedSignMultiply(*this, LeftArg, LeftInfo, RightArg, |
| RightInfo, ResultArg, ResultQTy, |
| ResultInfo); |
| |
| if (isSpecialUnsignedMultiplySignedResult(BuiltinID, LeftInfo, RightInfo, |
| ResultInfo)) |
| return EmitCheckedUnsignedMultiplySignedResult( |
| *this, LeftArg, LeftInfo, RightArg, RightInfo, ResultArg, ResultQTy, |
| ResultInfo); |
| |
| WidthAndSignedness EncompassingInfo = |
| EncompassingIntegerType({LeftInfo, RightInfo, ResultInfo}); |
| |
| llvm::Type *EncompassingLLVMTy = |
| llvm::IntegerType::get(CGM.getLLVMContext(), EncompassingInfo.Width); |
| |
| llvm::Type *ResultLLVMTy = CGM.getTypes().ConvertType(ResultQTy); |
| |
| llvm::Intrinsic::ID IntrinsicId; |
| switch (BuiltinID) { |
| default: |
| llvm_unreachable("Unknown overflow builtin id."); |
| case Builtin::BI__builtin_add_overflow: |
| IntrinsicId = EncompassingInfo.Signed |
| ? llvm::Intrinsic::sadd_with_overflow |
| : llvm::Intrinsic::uadd_with_overflow; |
| break; |
| case Builtin::BI__builtin_sub_overflow: |
| IntrinsicId = EncompassingInfo.Signed |
| ? llvm::Intrinsic::ssub_with_overflow |
| : llvm::Intrinsic::usub_with_overflow; |
| break; |
| case Builtin::BI__builtin_mul_overflow: |
| IntrinsicId = EncompassingInfo.Signed |
| ? llvm::Intrinsic::smul_with_overflow |
| : llvm::Intrinsic::umul_with_overflow; |
| break; |
| } |
| |
| llvm::Value *Left = EmitScalarExpr(LeftArg); |
| llvm::Value *Right = EmitScalarExpr(RightArg); |
| Address ResultPtr = EmitPointerWithAlignment(ResultArg); |
| |
| // Extend each operand to the encompassing type. |
| Left = Builder.CreateIntCast(Left, EncompassingLLVMTy, LeftInfo.Signed); |
| Right = Builder.CreateIntCast(Right, EncompassingLLVMTy, RightInfo.Signed); |
| |
| // Perform the operation on the extended values. |
| llvm::Value *Overflow, *Result; |
| Result = EmitOverflowIntrinsic(*this, IntrinsicId, Left, Right, Overflow); |
| |
| if (EncompassingInfo.Width > ResultInfo.Width) { |
| // The encompassing type is wider than the result type, so we need to |
| // truncate it. |
| llvm::Value *ResultTrunc = Builder.CreateTrunc(Result, ResultLLVMTy); |
| |
| // To see if the truncation caused an overflow, we will extend |
| // the result and then compare it to the original result. |
| llvm::Value *ResultTruncExt = Builder.CreateIntCast( |
| ResultTrunc, EncompassingLLVMTy, ResultInfo.Signed); |
| llvm::Value *TruncationOverflow = |
| Builder.CreateICmpNE(Result, ResultTruncExt); |
| |
| Overflow = Builder.CreateOr(Overflow, TruncationOverflow); |
| Result = ResultTrunc; |
| } |
| |
| // Finally, store the result using the pointer. |
| bool isVolatile = |
| ResultArg->getType()->getPointeeType().isVolatileQualified(); |
| Builder.CreateStore(EmitToMemory(Result, ResultQTy), ResultPtr, isVolatile); |
| |
| return RValue::get(Overflow); |
| } |
| |
| case Builtin::BI__builtin_uadd_overflow: |
| case Builtin::BI__builtin_uaddl_overflow: |
| case Builtin::BI__builtin_uaddll_overflow: |
| case Builtin::BI__builtin_usub_overflow: |
| case Builtin::BI__builtin_usubl_overflow: |
| case Builtin::BI__builtin_usubll_overflow: |
| case Builtin::BI__builtin_umul_overflow: |
| case Builtin::BI__builtin_umull_overflow: |
| case Builtin::BI__builtin_umulll_overflow: |
| case Builtin::BI__builtin_sadd_overflow: |
| case Builtin::BI__builtin_saddl_overflow: |
| case Builtin::BI__builtin_saddll_overflow: |
| case Builtin::BI__builtin_ssub_overflow: |
| case Builtin::BI__builtin_ssubl_overflow: |
| case Builtin::BI__builtin_ssubll_overflow: |
| case Builtin::BI__builtin_smul_overflow: |
| case Builtin::BI__builtin_smull_overflow: |
| case Builtin::BI__builtin_smulll_overflow: { |
| |
| // We translate all of these builtins directly to the relevant llvm IR node. |
| |
| // Scalarize our inputs. |
| llvm::Value *X = EmitScalarExpr(E->getArg(0)); |
| llvm::Value *Y = EmitScalarExpr(E->getArg(1)); |
| Address SumOutPtr = EmitPointerWithAlignment(E->getArg(2)); |
| |
| // Decide which of the overflow intrinsics we are lowering to: |
| llvm::Intrinsic::ID IntrinsicId; |
| switch (BuiltinID) { |
| default: llvm_unreachable("Unknown overflow builtin id."); |
| case Builtin::BI__builtin_uadd_overflow: |
| case Builtin::BI__builtin_uaddl_overflow: |
| case Builtin::BI__builtin_uaddll_overflow: |
| IntrinsicId = llvm::Intrinsic::uadd_with_overflow; |
| break; |
| case Builtin::BI__builtin_usub_overflow: |
| case Builtin::BI__builtin_usubl_overflow: |
| case Builtin::BI__builtin_usubll_overflow: |
| IntrinsicId = llvm::Intrinsic::usub_with_overflow; |
| break; |
| case Builtin::BI__builtin_umul_overflow: |
| case Builtin::BI__builtin_umull_overflow: |
| case Builtin::BI__builtin_umulll_overflow: |
| IntrinsicId = llvm::Intrinsic::umul_with_overflow; |
| break; |
| case Builtin::BI__builtin_sadd_overflow: |
| case Builtin::BI__builtin_saddl_overflow: |
| case Builtin::BI__builtin_saddll_overflow: |
| IntrinsicId = llvm::Intrinsic::sadd_with_overflow; |
| break; |
| case Builtin::BI__builtin_ssub_overflow: |
| case Builtin::BI__builtin_ssubl_overflow: |
| case Builtin::BI__builtin_ssubll_overflow: |
| IntrinsicId = llvm::Intrinsic::ssub_with_overflow; |
| break; |
| case Builtin::BI__builtin_smul_overflow: |
| case Builtin::BI__builtin_smull_overflow: |
| case Builtin::BI__builtin_smulll_overflow: |
| IntrinsicId = llvm::Intrinsic::smul_with_overflow; |
| break; |
| } |
| |
| |
| llvm::Value *Carry; |
| llvm::Value *Sum = EmitOverflowIntrinsic(*this, IntrinsicId, X, Y, Carry); |
| Builder.CreateStore(Sum, SumOutPtr); |
| |
| return RValue::get(Carry); |
| } |
| case Builtin::BIaddressof: |
| case Builtin::BI__addressof: |
| case Builtin::BI__builtin_addressof: |
| return RValue::get(EmitLValue(E->getArg(0)).getPointer(*this)); |
| case Builtin::BI__builtin_function_start: |
| return RValue::get(CGM.GetFunctionStart( |
| E->getArg(0)->getAsBuiltinConstantDeclRef(CGM.getContext()))); |
| case Builtin::BI__builtin_operator_new: |
| return EmitBuiltinNewDeleteCall( |
| E->getCallee()->getType()->castAs<FunctionProtoType>(), E, false); |
| case Builtin::BI__builtin_operator_delete: |
| EmitBuiltinNewDeleteCall( |
| E->getCallee()->getType()->castAs<FunctionProtoType>(), E, true); |
| return RValue::get(nullptr); |
| |
| case Builtin::BI__builtin_is_aligned: |
| return EmitBuiltinIsAligned(E); |
| case Builtin::BI__builtin_align_up: |
| return EmitBuiltinAlignTo(E, true); |
| case Builtin::BI__builtin_align_down: |
| return EmitBuiltinAlignTo(E, false); |
| |
| case Builtin::BI__noop: |
| // __noop always evaluates to an integer literal zero. |
| return RValue::get(ConstantInt::get(IntTy, 0)); |
| case Builtin::BI__builtin_call_with_static_chain: { |
| const CallExpr *Call = cast<CallExpr>(E->getArg(0)); |
| const Expr *Chain = E->getArg(1); |
| return EmitCall(Call->getCallee()->getType(), |
| EmitCallee(Call->getCallee()), Call, ReturnValue, |
| EmitScalarExpr(Chain)); |
| } |
| case Builtin::BI_InterlockedExchange8: |
| case Builtin::BI_InterlockedExchange16: |
| case Builtin::BI_InterlockedExchange: |
| case Builtin::BI_InterlockedExchangePointer: |
| return RValue::get( |
| EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange, E)); |
| case Builtin::BI_InterlockedCompareExchangePointer: |
| return RValue::get( |
| EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedCompareExchange, E)); |
| case Builtin::BI_InterlockedCompareExchangePointer_nf: |
| return RValue::get( |
| EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedCompareExchange_nf, E)); |
| case Builtin::BI_InterlockedCompareExchange8: |
| case Builtin::BI_InterlockedCompareExchange16: |
| case Builtin::BI_InterlockedCompareExchange: |
| case Builtin::BI_InterlockedCompareExchange64: |
| return RValue::get(EmitAtomicCmpXchgForMSIntrin(*this, E)); |
| case Builtin::BI_InterlockedIncrement16: |
| case Builtin::BI_InterlockedIncrement: |
| return RValue::get( |
| EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement, E)); |
| case Builtin::BI_InterlockedDecrement16: |
| case Builtin::BI_InterlockedDecrement: |
| return RValue::get( |
| EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement, E)); |
| case Builtin::BI_InterlockedAnd8: |
| case Builtin::BI_InterlockedAnd16: |
| case Builtin::BI_InterlockedAnd: |
| return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd, E)); |
| case Builtin::BI_InterlockedExchangeAdd8: |
| case Builtin::BI_InterlockedExchangeAdd16: |
| case Builtin::BI_InterlockedExchangeAdd: |
| return RValue::get( |
| EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd, E)); |
| case Builtin::BI_InterlockedExchangeSub8: |
| case Builtin::BI_InterlockedExchangeSub16: |
| case Builtin::BI_InterlockedExchangeSub: |
| return RValue::get( |
| EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeSub, E)); |
| case Builtin::BI_InterlockedOr8: |
| case Builtin::BI_InterlockedOr16: |
| case Builtin::BI_InterlockedOr: |
| return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr, E)); |
| case Builtin::BI_InterlockedXor8: |
| case Builtin::BI_InterlockedXor16: |
| case Builtin::BI_InterlockedXor: |
| return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor, E)); |
| |
| case Builtin::BI_bittest64: |
| case Builtin::BI_bittest: |
| case Builtin::BI_bittestandcomplement64: |
| case Builtin::BI_bittestandcomplement: |
| case Builtin::BI_bittestandreset64: |
| case Builtin::BI_bittestandreset: |
| case Builtin::BI_bittestandset64: |
| case Builtin::BI_bittestandset: |
| case Builtin::BI_interlockedbittestandreset: |
| case Builtin::BI_interlockedbittestandreset64: |
| case Builtin::BI_interlockedbittestandset64: |
| case Builtin::BI_interlockedbittestandset: |
| case Builtin::BI_interlockedbittestandset_acq: |
| case Builtin::BI_interlockedbittestandset_rel: |
| case Builtin::BI_interlockedbittestandset_nf: |
| case Builtin::BI_interlockedbittestandreset_acq: |
| case Builtin::BI_interlockedbittestandreset_rel: |
| case Builtin::BI_interlockedbittestandreset_nf: |
| return RValue::get(EmitBitTestIntrinsic(*this, BuiltinID, E)); |
| |
| // These builtins exist to emit regular volatile loads and stores not |
| // affected by the -fms-volatile setting. |
| case Builtin::BI__iso_volatile_load8: |
| case Builtin::BI__iso_volatile_load16: |
| case Builtin::BI__iso_volatile_load32: |
| case Builtin::BI__iso_volatile_load64: |
| return RValue::get(EmitISOVolatileLoad(*this, E)); |
| case Builtin::BI__iso_volatile_store8: |
| case Builtin::BI__iso_volatile_store16: |
| case Builtin::BI__iso_volatile_store32: |
| case Builtin::BI__iso_volatile_store64: |
| return RValue::get(EmitISOVolatileStore(*this, E)); |
| |
| case Builtin::BI__builtin_ptrauth_sign_constant: |
| return RValue::get(ConstantEmitter(*this).emitAbstract(E, E->getType())); |
| |
| case Builtin::BI__builtin_ptrauth_auth: |
| case Builtin::BI__builtin_ptrauth_auth_and_resign: |
| case Builtin::BI__builtin_ptrauth_blend_discriminator: |
| case Builtin::BI__builtin_ptrauth_sign_generic_data: |
| case Builtin::BI__builtin_ptrauth_sign_unauthenticated: |
| case Builtin::BI__builtin_ptrauth_strip: { |
| // Emit the arguments. |
| SmallVector<llvm::Value *, 5> Args; |
| for (auto argExpr : E->arguments()) |
| Args.push_back(EmitScalarExpr(argExpr)); |
| |
| // Cast the value to intptr_t, saving its original type. |
| llvm::Type *OrigValueType = Args[0]->getType(); |
| if (OrigValueType->isPointerTy()) |
| Args[0] = Builder.CreatePtrToInt(Args[0], IntPtrTy); |
| |
| switch (BuiltinID) { |
| case Builtin::BI__builtin_ptrauth_auth_and_resign: |
| if (Args[4]->getType()->isPointerTy()) |
| Args[4] = Builder.CreatePtrToInt(Args[4], IntPtrTy); |
| [[fallthrough]]; |
| |
| case Builtin::BI__builtin_ptrauth_auth: |
| case Builtin::BI__builtin_ptrauth_sign_unauthenticated: |
| if (Args[2]->getType()->isPointerTy()) |
| Args[2] = Builder.CreatePtrToInt(Args[2], IntPtrTy); |
| break; |
| |
| case Builtin::BI__builtin_ptrauth_sign_generic_data: |
| if (Args[1]->getType()->isPointerTy()) |
| Args[1] = Builder.CreatePtrToInt(Args[1], IntPtrTy); |
| break; |
| |
| case Builtin::BI__builtin_ptrauth_blend_discriminator: |
| case Builtin::BI__builtin_ptrauth_strip: |
| break; |
| } |
| |
| // Call the intrinsic. |
| auto IntrinsicID = [&]() -> unsigned { |
| switch (BuiltinID) { |
| case Builtin::BI__builtin_ptrauth_auth: |
| return llvm::Intrinsic::ptrauth_auth; |
| case Builtin::BI__builtin_ptrauth_auth_and_resign: |
| return llvm::Intrinsic::ptrauth_resign; |
| case Builtin::BI__builtin_ptrauth_blend_discriminator: |
| return llvm::Intrinsic::ptrauth_blend; |
| case Builtin::BI__builtin_ptrauth_sign_generic_data: |
| return llvm::Intrinsic::ptrauth_sign_generic; |
| case Builtin::BI__builtin_ptrauth_sign_unauthenticated: |
| return llvm::Intrinsic::ptrauth_sign; |
| case Builtin::BI__builtin_ptrauth_strip: |
| return llvm::Intrinsic::ptrauth_strip; |
| } |
| llvm_unreachable("bad ptrauth intrinsic"); |
| }(); |
| auto Intrinsic = CGM.getIntrinsic(IntrinsicID); |
| llvm::Value *Result = EmitRuntimeCall(Intrinsic, Args); |
| |
| if (BuiltinID != Builtin::BI__builtin_ptrauth_sign_generic_data && |
| BuiltinID != Builtin::BI__builtin_ptrauth_blend_discriminator && |
| OrigValueType->isPointerTy()) { |
| Result = Builder.CreateIntToPtr(Result, OrigValueType); |
| } |
| return RValue::get(Result); |
| } |
| |
| case Builtin::BI__exception_code: |
| case Builtin::BI_exception_code: |
| return RValue::get(EmitSEHExceptionCode()); |
| case Builtin::BI__exception_info: |
| case Builtin::BI_exception_info: |
| return RValue::get(EmitSEHExceptionInfo()); |
| case Builtin::BI__abnormal_termination: |
| case Builtin::BI_abnormal_termination: |
| return RValue::get(EmitSEHAbnormalTermination()); |
| case Builtin::BI_setjmpex: |
| if (getTarget().getTriple().isOSMSVCRT() && E->getNumArgs() == 1 && |
| E->getArg(0)->getType()->isPointerType()) |
| return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmpex, E); |
| break; |
| case Builtin::BI_setjmp: |
| if (getTarget().getTriple().isOSMSVCRT() && E->getNumArgs() == 1 && |
| E->getArg(0)->getType()->isPointerType()) { |
| if (getTarget().getTriple().getArch() == llvm::Triple::x86) |
| return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmp3, E); |
| else if (getTarget().getTriple().getArch() == llvm::Triple::aarch64) |
| return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmpex, E); |
| return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmp, E); |
| } |
| break; |
| |
| // C++ std:: builtins. |
| case Builtin::BImove: |
| case Builtin::BImove_if_noexcept: |
| case Builtin::BIforward: |
| case Builtin::BIforward_like: |
| case Builtin::BIas_const: |
| return RValue::get(EmitLValue(E->getArg(0)).getPointer(*this)); |
| case Builtin::BI__GetExceptionInfo: { |
| if (llvm::GlobalVariable *GV = |
| CGM.getCXXABI().getThrowInfo(FD->getParamDecl(0)->getType())) |
| return RValue::get(GV); |
| break; |
| } |
| |
| case Builtin::BI__fastfail: |
| return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::__fastfail, E)); |
| |
| case Builtin::BI__builtin_coro_id: |
| return EmitCoroutineIntrinsic(E, Intrinsic::coro_id); |
| case Builtin::BI__builtin_coro_promise: |
| return EmitCoroutineIntrinsic(E, Intrinsic::coro_promise); |
| case Builtin::BI__builtin_coro_resume: |
| EmitCoroutineIntrinsic(E, Intrinsic::coro_resume); |
| return RValue::get(nullptr); |
| case Builtin::BI__builtin_coro_frame: |
| return EmitCoroutineIntrinsic(E, Intrinsic::coro_frame); |
| case Builtin::BI__builtin_coro_noop: |
| return EmitCoroutineIntrinsic(E, Intrinsic::coro_noop); |
| case Builtin::BI__builtin_coro_free: |
| return EmitCoroutineIntrinsic(E, Intrinsic::coro_free); |
| case Builtin::BI__builtin_coro_destroy: |
| EmitCoroutineIntrinsic(E, Intrinsic::coro_destroy); |
| return RValue::get(nullptr); |
| case Builtin::BI__builtin_coro_done: |
| return EmitCoroutineIntrinsic(E, Intrinsic::coro_done); |
| case Builtin::BI__builtin_coro_alloc: |
| return EmitCoroutineIntrinsic(E, Intrinsic::coro_alloc); |
| case Builtin::BI__builtin_coro_begin: |
| return EmitCoroutineIntrinsic(E, Intrinsic::coro_begin); |
| case Builtin::BI__builtin_coro_end: |
| return EmitCoroutineIntrinsic(E, Intrinsic::coro_end); |
| case Builtin::BI__builtin_coro_suspend: |
| return EmitCoroutineIntrinsic(E, Intrinsic::coro_suspend); |
| case Builtin::BI__builtin_coro_size: |
| return EmitCoroutineIntrinsic(E, Intrinsic::coro_size); |
| case Builtin::BI__builtin_coro_align: |
| return EmitCoroutineIntrinsic(E, Intrinsic::coro_align); |
| |
| // OpenCL v2.0 s6.13.16.2, Built-in pipe read and write functions |
| case Builtin::BIread_pipe: |
| case Builtin::BIwrite_pipe: { |
| Value *Arg0 = EmitScalarExpr(E->getArg(0)), |
| *Arg1 = EmitScalarExpr(E->getArg(1)); |
| CGOpenCLRuntime OpenCLRT(CGM); |
| Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0)); |
| Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0)); |
| |
| // Type of the generic packet parameter. |
| unsigned GenericAS = |
| getContext().getTargetAddressSpace(LangAS::opencl_generic); |
| llvm::Type *I8PTy = llvm::PointerType::get(getLLVMContext(), GenericAS); |
| |
| // Testing which overloaded version we should generate the call for. |
| if (2U == E->getNumArgs()) { |
| const char *Name = (BuiltinID == Builtin::BIread_pipe) ? "__read_pipe_2" |
| : "__write_pipe_2"; |
| // Creating a generic function type to be able to call with any builtin or |
| // user defined type. |
| llvm::Type *ArgTys[] = {Arg0->getType(), I8PTy, Int32Ty, Int32Ty}; |
| llvm::FunctionType *FTy = llvm::FunctionType::get( |
| Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false); |
| Value *ACast = Builder.CreateAddrSpaceCast(Arg1, I8PTy); |
| return RValue::get( |
| EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), |
| {Arg0, ACast, PacketSize, PacketAlign})); |
| } else { |
| assert(4 == E->getNumArgs() && |
| "Illegal number of parameters to pipe function"); |
| const char *Name = (BuiltinID == Builtin::BIread_pipe) ? "__read_pipe_4" |
| : "__write_pipe_4"; |
| |
| llvm::Type *ArgTys[] = {Arg0->getType(), Arg1->getType(), Int32Ty, I8PTy, |
| Int32Ty, Int32Ty}; |
| Value *Arg2 = EmitScalarExpr(E->getArg(2)), |
| *Arg3 = EmitScalarExpr(E->getArg(3)); |
| llvm::FunctionType *FTy = llvm::FunctionType::get( |
| Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false); |
| Value *ACast = Builder.CreateAddrSpaceCast(Arg3, I8PTy); |
| // We know the third argument is an integer type, but we may need to cast |
| // it to i32. |
| if (Arg2->getType() != Int32Ty) |
| Arg2 = Builder.CreateZExtOrTrunc(Arg2, Int32Ty); |
| return RValue::get( |
| EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), |
| {Arg0, Arg1, Arg2, ACast, PacketSize, PacketAlign})); |
| } |
| } |
| // OpenCL v2.0 s6.13.16 ,s9.17.3.5 - Built-in pipe reserve read and write |
| // functions |
| case Builtin::BIreserve_read_pipe: |
| case Builtin::BIreserve_write_pipe: |
| case Builtin::BIwork_group_reserve_read_pipe: |
| case Builtin::BIwork_group_reserve_write_pipe: |
| case Builtin::BIsub_group_reserve_read_pipe: |
| case Builtin::BIsub_group_reserve_write_pipe: { |
| // Composing the mangled name for the function. |
| const char *Name; |
| if (BuiltinID == Builtin::BIreserve_read_pipe) |
| Name = "__reserve_read_pipe"; |
| else if (BuiltinID == Builtin::BIreserve_write_pipe) |
| Name = "__reserve_write_pipe"; |
| else if (BuiltinID == Builtin::BIwork_group_reserve_read_pipe) |
| Name = "__work_group_reserve_read_pipe"; |
| else if (BuiltinID == Builtin::BIwork_group_reserve_write_pipe) |
| Name = "__work_group_reserve_write_pipe"; |
| else if (BuiltinID == Builtin::BIsub_group_reserve_read_pipe) |
| Name = "__sub_group_reserve_read_pipe"; |
| else |
| Name = "__sub_group_reserve_write_pipe"; |
| |
| Value *Arg0 = EmitScalarExpr(E->getArg(0)), |
| *Arg1 = EmitScalarExpr(E->getArg(1)); |
| llvm::Type *ReservedIDTy = ConvertType(getContext().OCLReserveIDTy); |
| CGOpenCLRuntime OpenCLRT(CGM); |
| Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0)); |
| Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0)); |
| |
| // Building the generic function prototype. |
| llvm::Type *ArgTys[] = {Arg0->getType(), Int32Ty, Int32Ty, Int32Ty}; |
| llvm::FunctionType *FTy = llvm::FunctionType::get( |
| ReservedIDTy, llvm::ArrayRef<llvm::Type *>(ArgTys), false); |
| // We know the second argument is an integer type, but we may need to cast |
| // it to i32. |
| if (Arg1->getType() != Int32Ty) |
| Arg1 = Builder.CreateZExtOrTrunc(Arg1, Int32Ty); |
| return RValue::get(EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), |
| {Arg0, Arg1, PacketSize, PacketAlign})); |
| } |
| // OpenCL v2.0 s6.13.16, s9.17.3.5 - Built-in pipe commit read and write |
| // functions |
| case Builtin::BIcommit_read_pipe: |
| case Builtin::BIcommit_write_pipe: |
| case Builtin::BIwork_group_commit_read_pipe: |
| case Builtin::BIwork_group_commit_write_pipe: |
| case Builtin::BIsub_group_commit_read_pipe: |
| case Builtin::BIsub_group_commit_write_pipe: { |
| const char *Name; |
| if (BuiltinID == Builtin::BIcommit_read_pipe) |
| Name = "__commit_read_pipe"; |
| else if (BuiltinID == Builtin::BIcommit_write_pipe) |
| Name = "__commit_write_pipe"; |
| else if (BuiltinID == Builtin::BIwork_group_commit_read_pipe) |
| Name = "__work_group_commit_read_pipe"; |
| else if (BuiltinID == Builtin::BIwork_group_commit_write_pipe) |
| Name = "__work_group_commit_write_pipe"; |
| else if (BuiltinID == Builtin::BIsub_group_commit_read_pipe) |
| Name = "__sub_group_commit_read_pipe"; |
| else |
| Name = "__sub_group_commit_write_pipe"; |
| |
| Value *Arg0 = EmitScalarExpr(E->getArg(0)), |
| *Arg1 = EmitScalarExpr(E->getArg(1)); |
| CGOpenCLRuntime OpenCLRT(CGM); |
| Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0)); |
| Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0)); |
| |
| // Building the generic function prototype. |
| llvm::Type *ArgTys[] = {Arg0->getType(), Arg1->getType(), Int32Ty, Int32Ty}; |
| llvm::FunctionType *FTy = |
| llvm::FunctionType::get(llvm::Type::getVoidTy(getLLVMContext()), |
| llvm::ArrayRef<llvm::Type *>(ArgTys), false); |
| |
| return RValue::get(EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), |
| {Arg0, Arg1, PacketSize, PacketAlign})); |
| } |
| // OpenCL v2.0 s6.13.16.4 Built-in pipe query functions |
| case Builtin::BIget_pipe_num_packets: |
| case Builtin::BIget_pipe_max_packets: { |
| const char *BaseName; |
| const auto *PipeTy = E->getArg(0)->getType()->castAs<PipeType>(); |
| if (BuiltinID == Builtin::BIget_pipe_num_packets) |
| BaseName = "__get_pipe_num_packets"; |
| else |
| BaseName = "__get_pipe_max_packets"; |
| std::string Name = std::string(BaseName) + |
| std::string(PipeTy->isReadOnly() ? "_ro" : "_wo"); |
| |
| // Building the generic function prototype. |
| Value *Arg0 = EmitScalarExpr(E->getArg(0)); |
| CGOpenCLRuntime OpenCLRT(CGM); |
| Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0)); |
| Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0)); |
| llvm::Type *ArgTys[] = {Arg0->getType(), Int32Ty, Int32Ty}; |
| llvm::FunctionType *FTy = llvm::FunctionType::get( |
| Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false); |
| |
| return RValue::get(EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), |
| {Arg0, PacketSize, PacketAlign})); |
| } |
| |
| // OpenCL v2.0 s6.13.9 - Address space qualifier functions. |
| case Builtin::BIto_global: |
| case Builtin::BIto_local: |
| case Builtin::BIto_private: { |
| auto Arg0 = EmitScalarExpr(E->getArg(0)); |
| auto NewArgT = llvm::PointerType::get( |
| getLLVMContext(), |
| CGM.getContext().getTargetAddressSpace(LangAS::opencl_generic)); |
| auto NewRetT = llvm::PointerType::get( |
| getLLVMContext(), |
| CGM.getContext().getTargetAddressSpace( |
| E->getType()->getPointeeType().getAddressSpace())); |
| auto FTy = llvm::FunctionType::get(NewRetT, {NewArgT}, false); |
| llvm::Value *NewArg; |
| if (Arg0->getType()->getPointerAddressSpace() != |
| NewArgT->getPointerAddressSpace()) |
| NewArg = Builder.CreateAddrSpaceCast(Arg0, NewArgT); |
| else |
| NewArg = Builder.CreateBitOrPointerCast(Arg0, NewArgT); |
| auto NewName = std::string("__") + E->getDirectCallee()->getName().str(); |
| auto NewCall = |
| EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, NewName), {NewArg}); |
| return RValue::get(Builder.CreateBitOrPointerCast(NewCall, |
| ConvertType(E->getType()))); |
| } |
| |
| // OpenCL v2.0, s6.13.17 - Enqueue kernel function. |
| // Table 6.13.17.1 specifies four overload forms of enqueue_kernel. |
| // The code below expands the builtin call to a call to one of the following |
| // functions that an OpenCL runtime library will have to provide: |
| // __enqueue_kernel_basic |
| // __enqueue_kernel_varargs |
| // __enqueue_kernel_basic_events |
| // __enqueue_kernel_events_varargs |
| case Builtin::BIenqueue_kernel: { |
| StringRef Name; // Generated function call name |
| unsigned NumArgs = E->getNumArgs(); |
| |
| llvm::Type *QueueTy = ConvertType(getContext().OCLQueueTy); |
| llvm::Type *GenericVoidPtrTy = Builder.getPtrTy( |
| getContext().getTargetAddressSpace(LangAS::opencl_generic)); |
| |
| llvm::Value *Queue = EmitScalarExpr(E->getArg(0)); |
| llvm::Value *Flags = EmitScalarExpr(E->getArg(1)); |
| LValue NDRangeL = EmitAggExprToLValue(E->getArg(2)); |
| llvm::Value *Range = NDRangeL.getAddress().emitRawPointer(*this); |
| llvm::Type *RangeTy = NDRangeL.getAddress().getType(); |
| |
| if (NumArgs == 4) { |
| // The most basic form of the call with parameters: |
| // queue_t, kernel_enqueue_flags_t, ndrange_t, block(void) |
| Name = "__enqueue_kernel_basic"; |
| llvm::Type *ArgTys[] = {QueueTy, Int32Ty, RangeTy, GenericVoidPtrTy, |
| GenericVoidPtrTy}; |
| llvm::FunctionType *FTy = llvm::FunctionType::get( |
| Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false); |
| |
| auto Info = |
| CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(3)); |
| llvm::Value *Kernel = |
| Builder.CreatePointerCast(Info.KernelHandle, GenericVoidPtrTy); |
| llvm::Value *Block = |
| Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy); |
| |
| auto RTCall = EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), |
| {Queue, Flags, Range, Kernel, Block}); |
| return RValue::get(RTCall); |
| } |
| assert(NumArgs >= 5 && "Invalid enqueue_kernel signature"); |
| |
| // Create a temporary array to hold the sizes of local pointer arguments |
| // for the block. \p First is the position of the first size argument. |
| auto CreateArrayForSizeVar = [=](unsigned First) |
| -> std::tuple<llvm::Value *, llvm::Value *, llvm::Value *> { |
| llvm::APInt ArraySize(32, NumArgs - First); |
| QualType SizeArrayTy = getContext().getConstantArrayType( |
| getContext().getSizeType(), ArraySize, nullptr, |
| ArraySizeModifier::Normal, |
| /*IndexTypeQuals=*/0); |
| auto Tmp = CreateMemTemp(SizeArrayTy, "block_sizes"); |
| llvm::Value *TmpPtr = Tmp.getPointer(); |
| // The EmitLifetime* pair expect a naked Alloca as their last argument, |
| // however for cases where the default AS is not the Alloca AS, Tmp is |
| // actually the Alloca ascasted to the default AS, hence the |
| // stripPointerCasts() |
| llvm::Value *Alloca = TmpPtr->stripPointerCasts(); |
| llvm::Value *TmpSize = EmitLifetimeStart( |
| CGM.getDataLayout().getTypeAllocSize(Tmp.getElementType()), Alloca); |
| llvm::Value *ElemPtr; |
| // Each of the following arguments specifies the size of the corresponding |
| // argument passed to the enqueued block. |
| auto *Zero = llvm::ConstantInt::get(IntTy, 0); |
| for (unsigned I = First; I < NumArgs; ++I) { |
| auto *Index = llvm::ConstantInt::get(IntTy, I - First); |
| auto *GEP = Builder.CreateGEP(Tmp.getElementType(), TmpPtr, |
| {Zero, Index}); |
| if (I == First) |
| ElemPtr = GEP; |
| auto *V = |
| Builder.CreateZExtOrTrunc(EmitScalarExpr(E->getArg(I)), SizeTy); |
| Builder.CreateAlignedStore( |
| V, GEP, CGM.getDataLayout().getPrefTypeAlign(SizeTy)); |
| } |
| // Return the Alloca itself rather than a potential ascast as this is only |
| // used by the paired EmitLifetimeEnd. |
| return std::tie(ElemPtr, TmpSize, Alloca); |
| }; |
| |
| // Could have events and/or varargs. |
| if (E->getArg(3)->getType()->isBlockPointerType()) { |
| // No events passed, but has variadic arguments. |
| Name = "__enqueue_kernel_varargs"; |
| auto Info = |
| CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(3)); |
| llvm::Value *Kernel = |
| Builder.CreatePointerCast(Info.KernelHandle, GenericVoidPtrTy); |
| auto *Block = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy); |
| llvm::Value *ElemPtr, *TmpSize, *TmpPtr; |
| std::tie(ElemPtr, TmpSize, TmpPtr) = CreateArrayForSizeVar(4); |
| |
| // Create a vector of the arguments, as well as a constant value to |
| // express to the runtime the number of variadic arguments. |
| llvm::Value *const Args[] = {Queue, Flags, |
| Range, Kernel, |
| Block, ConstantInt::get(IntTy, NumArgs - 4), |
| ElemPtr}; |
| llvm::Type *const ArgTys[] = { |
| QueueTy, IntTy, RangeTy, GenericVoidPtrTy, |
| GenericVoidPtrTy, IntTy, ElemPtr->getType()}; |
| |
| llvm::FunctionType *FTy = llvm::FunctionType::get(Int32Ty, ArgTys, false); |
| auto Call = RValue::get( |
| EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), Args)); |
| if (TmpSize) |
| EmitLifetimeEnd(TmpSize, TmpPtr); |
| return Call; |
| } |
| // Any calls now have event arguments passed. |
| if (NumArgs >= 7) { |
| llvm::PointerType *PtrTy = llvm::PointerType::get( |
| CGM.getLLVMContext(), |
| CGM.getContext().getTargetAddressSpace(LangAS::opencl_generic)); |
| |
| llvm::Value *NumEvents = |
| Builder.CreateZExtOrTrunc(EmitScalarExpr(E->getArg(3)), Int32Ty); |
| |
| // Since SemaOpenCLBuiltinEnqueueKernel allows fifth and sixth arguments |
| // to be a null pointer constant (including `0` literal), we can take it |
| // into account and emit null pointer directly. |
| llvm::Value *EventWaitList = nullptr; |
| if (E->getArg(4)->isNullPointerConstant( |
| getContext(), Expr::NPC_ValueDependentIsNotNull)) { |
| EventWaitList = llvm::ConstantPointerNull::get(PtrTy); |
| } else { |
| EventWaitList = |
| E->getArg(4)->getType()->isArrayType() |
| ? EmitArrayToPointerDecay(E->getArg(4)).emitRawPointer(*this) |
| : EmitScalarExpr(E->getArg(4)); |
| // Convert to generic address space. |
| EventWaitList = Builder.CreatePointerCast(EventWaitList, PtrTy); |
| } |
| llvm::Value *EventRet = nullptr; |
| if (E->getArg(5)->isNullPointerConstant( |
| getContext(), Expr::NPC_ValueDependentIsNotNull)) { |
| EventRet = llvm::ConstantPointerNull::get(PtrTy); |
| } else { |
| EventRet = |
| Builder.CreatePointerCast(EmitScalarExpr(E->getArg(5)), PtrTy); |
| } |
| |
| auto Info = |
| CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(6)); |
| llvm::Value *Kernel = |
| Builder.CreatePointerCast(Info.KernelHandle, GenericVoidPtrTy); |
| llvm::Value *Block = |
| Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy); |
| |
| std::vector<llvm::Type *> ArgTys = { |
| QueueTy, Int32Ty, RangeTy, Int32Ty, |
| PtrTy, PtrTy, GenericVoidPtrTy, GenericVoidPtrTy}; |
| |
| std::vector<llvm::Value *> Args = {Queue, Flags, Range, |
| NumEvents, EventWaitList, EventRet, |
| Kernel, Block}; |
| |
| if (NumArgs == 7) { |
| // Has events but no variadics. |
| Name = "__enqueue_kernel_basic_events"; |
| llvm::FunctionType *FTy = llvm::FunctionType::get( |
| Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false); |
| return RValue::get( |
| EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), |
| llvm::ArrayRef<llvm::Value *>(Args))); |
| } |
| // Has event info and variadics |
| // Pass the number of variadics to the runtime function too. |
| Args.push_back(ConstantInt::get(Int32Ty, NumArgs - 7)); |
| ArgTys.push_back(Int32Ty); |
| Name = "__enqueue_kernel_events_varargs"; |
| |
| llvm::Value *ElemPtr, *TmpSize, *TmpPtr; |
| std::tie(ElemPtr, TmpSize, TmpPtr) = CreateArrayForSizeVar(7); |
| Args.push_back(ElemPtr); |
| ArgTys.push_back(ElemPtr->getType()); |
| |
| llvm::FunctionType *FTy = llvm::FunctionType::get( |
| Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false); |
| auto Call = |
| RValue::get(EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), |
| llvm::ArrayRef<llvm::Value *>(Args))); |
| if (TmpSize) |
| EmitLifetimeEnd(TmpSize, TmpPtr); |
| return Call; |
| } |
| llvm_unreachable("Unexpected enqueue_kernel signature"); |
| } |
| // OpenCL v2.0 s6.13.17.6 - Kernel query functions need bitcast of block |
| // parameter. |
| case Builtin::BIget_kernel_work_group_size: { |
| llvm::Type *GenericVoidPtrTy = Builder.getPtrTy( |
| getContext().getTargetAddressSpace(LangAS::opencl_generic)); |
| auto Info = |
| CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(0)); |
| Value *Kernel = |
| Builder.CreatePointerCast(Info.KernelHandle, GenericVoidPtrTy); |
| Value *Arg = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy); |
| return RValue::get(EmitRuntimeCall( |
| CGM.CreateRuntimeFunction( |
| llvm::FunctionType::get(IntTy, {GenericVoidPtrTy, GenericVoidPtrTy}, |
| false), |
| "__get_kernel_work_group_size_impl"), |
| {Kernel, Arg})); |
| } |
| case Builtin::BIget_kernel_preferred_work_group_size_multiple: { |
| llvm::Type *GenericVoidPtrTy = Builder.getPtrTy( |
| getContext().getTargetAddressSpace(LangAS::opencl_generic)); |
| auto Info = |
| CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(0)); |
| Value *Kernel = |
| Builder.CreatePointerCast(Info.KernelHandle, GenericVoidPtrTy); |
| Value *Arg = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy); |
| return RValue::get(EmitRuntimeCall( |
| CGM.CreateRuntimeFunction( |
| llvm::FunctionType::get(IntTy, {GenericVoidPtrTy, GenericVoidPtrTy}, |
| false), |
| "__get_kernel_preferred_work_group_size_multiple_impl"), |
| {Kernel, Arg})); |
| } |
| case Builtin::BIget_kernel_max_sub_group_size_for_ndrange: |
| case Builtin::BIget_kernel_sub_group_count_for_ndrange: { |
| llvm::Type *GenericVoidPtrTy = Builder.getPtrTy( |
| getContext().getTargetAddressSpace(LangAS::opencl_generic)); |
| LValue NDRangeL = EmitAggExprToLValue(E->getArg(0)); |
| llvm::Value *NDRange = NDRangeL.getAddress().emitRawPointer(*this); |
| auto Info = |
| CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(1)); |
| Value *Kernel = |
| Builder.CreatePointerCast(Info.KernelHandle, GenericVoidPtrTy); |
| Value *Block = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy); |
| const char *Name = |
| BuiltinID == Builtin::BIget_kernel_max_sub_group_size_for_ndrange |
| ? "__get_kernel_max_sub_group_size_for_ndrange_impl" |
| : "__get_kernel_sub_group_count_for_ndrange_impl"; |
| return RValue::get(EmitRuntimeCall( |
| CGM.CreateRuntimeFunction( |
| llvm::FunctionType::get( |
| IntTy, {NDRange->getType(), GenericVoidPtrTy, GenericVoidPtrTy}, |
| false), |
| Name), |
| {NDRange, Kernel, Block})); |
| } |
| case Builtin::BI__builtin_store_half: |
| case Builtin::BI__builtin_store_halff: { |
| Value *Val = EmitScalarExpr(E->getArg(0)); |
| Address Address = EmitPointerWithAlignment(E->getArg(1)); |
| Value *HalfVal = Builder.CreateFPTrunc(Val, Builder.getHalfTy()); |
| Builder.CreateStore(HalfVal, Address); |
| return RValue::get(nullptr); |
| } |
| case Builtin::BI__builtin_load_half: { |
| Address Address = EmitPointerWithAlignment(E->getArg(0)); |
| Value *HalfVal = Builder.CreateLoad(Address); |
| return RValue::get(Builder.CreateFPExt(HalfVal, Builder.getDoubleTy())); |
| } |
| case Builtin::BI__builtin_load_halff: { |
| Address Address = EmitPointerWithAlignment(E->getArg(0)); |
| Value *HalfVal = Builder.CreateLoad(Address); |
| return RValue::get(Builder.CreateFPExt(HalfVal, Builder.getFloatTy())); |
| } |
| case Builtin::BI__builtin_printf: |
| case Builtin::BIprintf: |
| if (getTarget().getTriple().isNVPTX() || |
| getTarget().getTriple().isAMDGCN() || |
| (getTarget().getTriple().isSPIRV() && |
| getTarget().getTriple().getVendor() == Triple::VendorType::AMD)) { |
| if (getTarget().getTriple().isNVPTX()) |
| return EmitNVPTXDevicePrintfCallExpr(E); |
| if ((getTarget().getTriple().isAMDGCN() || |
| getTarget().getTriple().isSPIRV()) && |
| getLangOpts().HIP) |
| return EmitAMDGPUDevicePrintfCallExpr(E); |
| } |
| |
| break; |
| case Builtin::BI__builtin_canonicalize: |
| case Builtin::BI__builtin_canonicalizef: |
| case Builtin::BI__builtin_canonicalizef16: |
| case Builtin::BI__builtin_canonicalizel: |
| return RValue::get( |
| emitBuiltinWithOneOverloadedType<1>(*this, E, Intrinsic::canonicalize)); |
| |
| case Builtin::BI__builtin_thread_pointer: { |
| if (!getContext().getTargetInfo().isTLSSupported()) |
| CGM.ErrorUnsupported(E, "__builtin_thread_pointer"); |
| // Fall through - it's already mapped to the intrinsic by ClangBuiltin. |
| break; |
| } |
| case Builtin::BI__builtin_os_log_format: |
| return emitBuiltinOSLogFormat(*E); |
| |
| case Builtin::BI__xray_customevent: { |
| if (!ShouldXRayInstrumentFunction()) |
| return RValue::getIgnored(); |
| |
| if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has( |
| XRayInstrKind::Custom)) |
| return RValue::getIgnored(); |
| |
| if (const auto *XRayAttr = CurFuncDecl->getAttr<XRayInstrumentAttr>()) |
| if (XRayAttr->neverXRayInstrument() && !AlwaysEmitXRayCustomEvents()) |
| return RValue::getIgnored(); |
| |
| Function *F = CGM.getIntrinsic(Intrinsic::xray_customevent); |
| auto FTy = F->getFunctionType(); |
| auto Arg0 = E->getArg(0); |
| auto Arg0Val = EmitScalarExpr(Arg0); |
| auto Arg0Ty = Arg0->getType(); |
| auto PTy0 = FTy->getParamType(0); |
| if (PTy0 != Arg0Val->getType()) { |
| if (Arg0Ty->isArrayType()) |
| Arg0Val = EmitArrayToPointerDecay(Arg0).emitRawPointer(*this); |
| else |
| Arg0Val = Builder.CreatePointerCast(Arg0Val, PTy0); |
| } |
| auto Arg1 = EmitScalarExpr(E->getArg(1)); |
| auto PTy1 = FTy->getParamType(1); |
| if (PTy1 != Arg1->getType()) |
| Arg1 = Builder.CreateTruncOrBitCast(Arg1, PTy1); |
| return RValue::get(Builder.CreateCall(F, {Arg0Val, Arg1})); |
| } |
| |
| case Builtin::BI__xray_typedevent: { |
| // TODO: There should be a way to always emit events even if the current |
| // function is not instrumented. Losing events in a stream can cripple |
| // a trace. |
| if (!ShouldXRayInstrumentFunction()) |
| return RValue::getIgnored(); |
| |
| if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has( |
| XRayInstrKind::Typed)) |
| return RValue::getIgnored(); |
| |
| if (const auto *XRayAttr = CurFuncDecl->getAttr<XRayInstrumentAttr>()) |
| if (XRayAttr->neverXRayInstrument() && !AlwaysEmitXRayTypedEvents()) |
| return RValue::getIgnored(); |
| |
| Function *F = CGM.getIntrinsic(Intrinsic::xray_typedevent); |
| auto FTy = F->getFunctionType(); |
| auto Arg0 = EmitScalarExpr(E->getArg(0)); |
| auto PTy0 = FTy->getParamType(0); |
| if (PTy0 != Arg0->getType()) |
| Arg0 = Builder.CreateTruncOrBitCast(Arg0, PTy0); |
| auto Arg1 = E->getArg(1); |
| auto Arg1Val = EmitScalarExpr(Arg1); |
| auto Arg1Ty = Arg1->getType(); |
| auto PTy1 = FTy->getParamType(1); |
| if (PTy1 != Arg1Val->getType()) { |
| if (Arg1Ty->isArrayType()) |
| Arg1Val = EmitArrayToPointerDecay(Arg1).emitRawPointer(*this); |
| else |
| Arg1Val = Builder.CreatePointerCast(Arg1Val, PTy1); |
| } |
| auto Arg2 = EmitScalarExpr(E->getArg(2)); |
| auto PTy2 = FTy->getParamType(2); |
| if (PTy2 != Arg2->getType()) |
| Arg2 = Builder.CreateTruncOrBitCast(Arg2, PTy2); |
| return RValue::get(Builder.CreateCall(F, {Arg0, Arg1Val, Arg2})); |
| } |
| |
| case Builtin::BI__builtin_ms_va_start: |
| case Builtin::BI__builtin_ms_va_end: |
| return RValue::get( |
| EmitVAStartEnd(EmitMSVAListRef(E->getArg(0)).emitRawPointer(*this), |
| BuiltinID == Builtin::BI__builtin_ms_va_start)); |
| |
| case Builtin::BI__builtin_ms_va_copy: { |
| // Lower this manually. We can't reliably determine whether or not any |
| // given va_copy() is for a Win64 va_list from the calling convention |
| // alone, because it's legal to do this from a System V ABI function. |
| // With opaque pointer types, we won't have enough information in LLVM |
| // IR to determine this from the argument types, either. Best to do it |
| // now, while we have enough information. |
| Address DestAddr = EmitMSVAListRef(E->getArg(0)); |
| Address SrcAddr = EmitMSVAListRef(E->getArg(1)); |
| |
| DestAddr = DestAddr.withElementType(Int8PtrTy); |
| SrcAddr = SrcAddr.withElementType(Int8PtrTy); |
| |
| Value *ArgPtr = Builder.CreateLoad(SrcAddr, "ap.val"); |
| return RValue::get(Builder.CreateStore(ArgPtr, DestAddr)); |
| } |
| |
| case Builtin::BI__builtin_get_device_side_mangled_name: { |
| auto Name = CGM.getCUDARuntime().getDeviceSideName( |
| cast<DeclRefExpr>(E->getArg(0)->IgnoreImpCasts())->getDecl()); |
| auto Str = CGM.GetAddrOfConstantCString(Name, ""); |
| return RValue::get(Str.getPointer()); |
| } |
| } |
| |
| // If this is an alias for a lib function (e.g. __builtin_sin), emit |
| // the call using the normal call path, but using the unmangled |
| // version of the function name. |
| if (getContext().BuiltinInfo.isLibFunction(BuiltinID)) |
| return emitLibraryCall(*this, FD, E, |
| CGM.getBuiltinLibFunction(FD, BuiltinID)); |
| |
| // If this is a predefined lib function (e.g. malloc), emit the call |
| // using exactly the normal call path. |
| if (getContext().BuiltinInfo.isPredefinedLibFunction(BuiltinID)) |
| return emitLibraryCall(*this, FD, E, CGM.getRawFunctionPointer(FD)); |
| |
| // Check that a call to a target specific builtin has the correct target |
| // features. |
| // This is down here to avoid non-target specific builtins, however, if |
| // generic builtins start to require generic target features then we |
| // can move this up to the beginning of the function. |
| checkTargetFeatures(E, FD); |
| |
| if (unsigned VectorWidth = getContext().BuiltinInfo.getRequiredVectorWidth(BuiltinID)) |
| LargestVectorWidth = std::max(LargestVectorWidth, VectorWidth); |
| |
| // See if we have a target specific intrinsic. |
| StringRef Name = getContext().BuiltinInfo.getName(BuiltinID); |
| Intrinsic::ID IntrinsicID = Intrinsic::not_intrinsic; |
| StringRef Prefix = |
| llvm::Triple::getArchTypePrefix(getTarget().getTriple().getArch()); |
| if (!Prefix.empty()) { |
| IntrinsicID = Intrinsic::getIntrinsicForClangBuiltin(Prefix.data(), Name); |
| if (IntrinsicID == Intrinsic::not_intrinsic && Prefix == "spv" && |
| getTarget().getTriple().getOS() == llvm::Triple::OSType::AMDHSA) |
| IntrinsicID = Intrinsic::getIntrinsicForClangBuiltin("amdgcn", Name); |
| // NOTE we don't need to perform a compatibility flag check here since the |
| // intrinsics are declared in Builtins*.def via LANGBUILTIN which filter the |
| // MS builtins via ALL_MS_LANGUAGES and are filtered earlier. |
| if (IntrinsicID == Intrinsic::not_intrinsic) |
| IntrinsicID = Intrinsic::getIntrinsicForMSBuiltin(Prefix.data(), Name); |
| } |
| |
| if (IntrinsicID != Intrinsic::not_intrinsic) { |
| SmallVector<Value*, 16> Args; |
| |
| // Find out if any arguments are required to be integer constant |
| // expressions. |
| unsigned ICEArguments = 0; |
| ASTContext::GetBuiltinTypeError Error; |
| getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments); |
| assert(Error == ASTContext::GE_None && "Should not codegen an error"); |
| |
| Function *F = CGM.getIntrinsic(IntrinsicID); |
| llvm::FunctionType *FTy = F->getFunctionType(); |
| |
| for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) { |
| Value *ArgValue = EmitScalarOrConstFoldImmArg(ICEArguments, i, E); |
| // If the intrinsic arg type is different from the builtin arg type |
| // we need to do a bit cast. |
| llvm::Type *PTy = FTy->getParamType(i); |
| if (PTy != ArgValue->getType()) { |
| // XXX - vector of pointers? |
| if (auto *PtrTy = dyn_cast<llvm::PointerType>(PTy)) { |
| if (PtrTy->getAddressSpace() != |
| ArgValue->getType()->getPointerAddressSpace()) { |
| ArgValue = Builder.CreateAddrSpaceCast( |
| ArgValue, llvm::PointerType::get(getLLVMContext(), |
| PtrTy->getAddressSpace())); |
| } |
| } |
| |
| // Cast vector type (e.g., v256i32) to x86_amx, this only happen |
| // in amx intrinsics. |
| if (PTy->isX86_AMXTy()) |
| ArgValue = Builder.CreateIntrinsic(Intrinsic::x86_cast_vector_to_tile, |
| {ArgValue->getType()}, {ArgValue}); |
| else |
| ArgValue = Builder.CreateBitCast(ArgValue, PTy); |
| } |
| |
| Args.push_back(ArgValue); |
| } |
| |
| Value *V = Builder.CreateCall(F, Args); |
| QualType BuiltinRetType = E->getType(); |
| |
| llvm::Type *RetTy = VoidTy; |
| if (!BuiltinRetType->isVoidType()) |
| RetTy = ConvertType(BuiltinRetType); |
| |
| if (RetTy != V->getType()) { |
| // XXX - vector of pointers? |
| if (auto *PtrTy = dyn_cast<llvm::PointerType>(RetTy)) { |
| if (PtrTy->getAddressSpace() != V->getType()->getPointerAddressSpace()) { |
| V = Builder.CreateAddrSpaceCast( |
| V, llvm::PointerType::get(getLLVMContext(), |
| PtrTy->getAddressSpace())); |
| } |
| } |
| |
| // Cast x86_amx to vector type (e.g., v256i32), this only happen |
| // in amx intrinsics. |
| if (V->getType()->isX86_AMXTy()) |
| V = Builder.CreateIntrinsic(Intrinsic::x86_cast_tile_to_vector, {RetTy}, |
| {V}); |
| else |
| V = Builder.CreateBitCast(V, RetTy); |
| } |
| |
| if (RetTy->isVoidTy()) |
| return RValue::get(nullptr); |
| |
| return RValue::get(V); |
| } |
| |
| // Some target-specific builtins can have aggregate return values, e.g. |
| // __builtin_arm_mve_vld2q_u32. So if the result is an aggregate, force |
| // ReturnValue to be non-null, so that the target-specific emission code can |
| // always just emit into it. |
| TypeEvaluationKind EvalKind = getEvaluationKind(E->getType()); |
| if (EvalKind == TEK_Aggregate && ReturnValue.isNull()) { |
| Address DestPtr = CreateMemTemp(E->getType(), "agg.tmp"); |
| ReturnValue = ReturnValueSlot(DestPtr, false); |
| } |
| |
| // Now see if we can emit a target-specific builtin. |
| if (Value *V = EmitTargetBuiltinExpr(BuiltinID, E, ReturnValue)) { |
| switch (EvalKind) { |
| case TEK_Scalar: |
| if (V->getType()->isVoidTy()) |
| return RValue::get(nullptr); |
| return RValue::get(V); |
| case TEK_Aggregate: |
| return RValue::getAggregate(ReturnValue.getAddress(), |
| ReturnValue.isVolatile()); |
| case TEK_Complex: |
| llvm_unreachable("No current target builtin returns complex"); |
| } |
| llvm_unreachable("Bad evaluation kind in EmitBuiltinExpr"); |
| } |
| |
| // EmitHLSLBuiltinExpr will check getLangOpts().HLSL |
| if (Value *V = EmitHLSLBuiltinExpr(BuiltinID, E, ReturnValue)) { |
| switch (EvalKind) { |
| case TEK_Scalar: |
| if (V->getType()->isVoidTy()) |
| return RValue::get(nullptr); |
| return RValue::get(V); |
| case TEK_Aggregate: |
| return RValue::getAggregate(ReturnValue.getAddress(), |
| ReturnValue.isVolatile()); |
| case TEK_Complex: |
| llvm_unreachable("No current hlsl builtin returns complex"); |
| } |
| llvm_unreachable("Bad evaluation kind in EmitBuiltinExpr"); |
| } |
| |
| if (getLangOpts().HIPStdPar && getLangOpts().CUDAIsDevice) |
| return EmitHipStdParUnsupportedBuiltin(this, FD); |
| |
| ErrorUnsupported(E, "builtin function"); |
| |
| // Unknown builtin, for now just dump it out and return undef. |
| return GetUndefRValue(E->getType()); |
| } |
| |
| static Value *EmitTargetArchBuiltinExpr(CodeGenFunction *CGF, |
| unsigned BuiltinID, const CallExpr *E, |
| ReturnValueSlot ReturnValue, |
| llvm::Triple::ArchType Arch) { |
| // When compiling in HipStdPar mode we have to be conservative in rejecting |
| // target specific features in the FE, and defer the possible error to the |
| // AcceleratorCodeSelection pass, wherein iff an unsupported target builtin is |
| // referenced by an accelerator executable function, we emit an error. |
| // Returning nullptr here leads to the builtin being handled in |
| // EmitStdParUnsupportedBuiltin. |
| if (CGF->getLangOpts().HIPStdPar && CGF->getLangOpts().CUDAIsDevice && |
| Arch != CGF->getTarget().getTriple().getArch()) |
| return nullptr; |
| |
| switch (Arch) { |
| case llvm::Triple::arm: |
| case llvm::Triple::armeb: |
| case llvm::Triple::thumb: |
| case llvm::Triple::thumbeb: |
| return CGF->EmitARMBuiltinExpr(BuiltinID, E, ReturnValue, Arch); |
| case llvm::Triple::aarch64: |
| case llvm::Triple::aarch64_32: |
| case llvm::Triple::aarch64_be: |
| return CGF->EmitAArch64BuiltinExpr(BuiltinID, E, Arch); |
| case llvm::Triple::bpfeb: |
| case llvm::Triple::bpfel: |
| return CGF->EmitBPFBuiltinExpr(BuiltinID, E); |
| case llvm::Triple::x86: |
| case llvm::Triple::x86_64: |
| return CGF->EmitX86BuiltinExpr(BuiltinID, E); |
| case llvm::Triple::ppc: |
| case llvm::Triple::ppcle: |
| case llvm::Triple::ppc64: |
| case llvm::Triple::ppc64le: |
| return CGF->EmitPPCBuiltinExpr(BuiltinID, E); |
| case llvm::Triple::r600: |
| case llvm::Triple::amdgcn: |
| return CGF->EmitAMDGPUBuiltinExpr(BuiltinID, E); |
| case llvm::Triple::systemz: |
| return CGF->EmitSystemZBuiltinExpr(BuiltinID, E); |
| case llvm::Triple::nvptx: |
| case llvm::Triple::nvptx64: |
| return CGF->EmitNVPTXBuiltinExpr(BuiltinID, E); |
| case llvm::Triple::wasm32: |
| case llvm::Triple::wasm64: |
| return CGF->EmitWebAssemblyBuiltinExpr(BuiltinID, E); |
| case llvm::Triple::hexagon: |
| return CGF->EmitHexagonBuiltinExpr(BuiltinID, E); |
| case llvm::Triple::riscv32: |
| case llvm::Triple::riscv64: |
| return CGF->EmitRISCVBuiltinExpr(BuiltinID, E, ReturnValue); |
| case llvm::Triple::spirv: |
| return CGF->EmitSPIRVBuiltinExpr(BuiltinID, E); |
| case llvm::Triple::spirv64: |
| if (CGF->getTarget().getTriple().getOS() != llvm::Triple::OSType::AMDHSA) |
| return nullptr; |
| return CGF->EmitAMDGPUBuiltinExpr(BuiltinID, E); |
| default: |
| return nullptr; |
| } |
| } |
| |
| Value *CodeGenFunction::EmitTargetBuiltinExpr(unsigned BuiltinID, |
| const CallExpr *E, |
| ReturnValueSlot ReturnValue) { |
| if (getContext().BuiltinInfo.isAuxBuiltinID(BuiltinID)) { |
| assert(getContext().getAuxTargetInfo() && "Missing aux target info"); |
| return EmitTargetArchBuiltinExpr( |
| this, getContext().BuiltinInfo.getAuxBuiltinID(BuiltinID), E, |
| ReturnValue, getContext().getAuxTargetInfo()->getTriple().getArch()); |
| } |
| |
| return EmitTargetArchBuiltinExpr(this, BuiltinID, E, ReturnValue, |
| getTarget().getTriple().getArch()); |
| } |
| |
| static llvm::FixedVectorType *GetNeonType(CodeGenFunction *CGF, |
| NeonTypeFlags TypeFlags, |
| bool HasLegalHalfType = true, |
| bool V1Ty = false, |
| bool AllowBFloatArgsAndRet = true) { |
| int IsQuad = TypeFlags.isQuad(); |
| switch (TypeFlags.getEltType()) { |
| case NeonTypeFlags::Int8: |
| case NeonTypeFlags::Poly8: |
| case NeonTypeFlags::MFloat8: |
| return llvm::FixedVectorType::get(CGF->Int8Ty, V1Ty ? 1 : (8 << IsQuad)); |
| case NeonTypeFlags::Int16: |
| case NeonTypeFlags::Poly16: |
| return llvm::FixedVectorType::get(CGF->Int16Ty, V1Ty ? 1 : (4 << IsQuad)); |
| case NeonTypeFlags::BFloat16: |
| if (AllowBFloatArgsAndRet) |
| return llvm::FixedVectorType::get(CGF->BFloatTy, V1Ty ? 1 : (4 << IsQuad)); |
| else |
| return llvm::FixedVectorType::get(CGF->Int16Ty, V1Ty ? 1 : (4 << IsQuad)); |
| case NeonTypeFlags::Float16: |
| if (HasLegalHalfType) |
| return llvm::FixedVectorType::get(CGF->HalfTy, V1Ty ? 1 : (4 << IsQuad)); |
| else |
| return llvm::FixedVectorType::get(CGF->Int16Ty, V1Ty ? 1 : (4 << IsQuad)); |
| case NeonTypeFlags::Int32: |
| return llvm::FixedVectorType::get(CGF->Int32Ty, V1Ty ? 1 : (2 << IsQuad)); |
| case NeonTypeFlags::Int64: |
| case NeonTypeFlags::Poly64: |
| return llvm::FixedVectorType::get(CGF->Int64Ty, V1Ty ? 1 : (1 << IsQuad)); |
| case NeonTypeFlags::Poly128: |
| // FIXME: i128 and f128 doesn't get fully support in Clang and llvm. |
| // There is a lot of i128 and f128 API missing. |
| // so we use v16i8 to represent poly128 and get pattern matched. |
| return llvm::FixedVectorType::get(CGF->Int8Ty, 16); |
| case NeonTypeFlags::Float32: |
| return llvm::FixedVectorType::get(CGF->FloatTy, V1Ty ? 1 : (2 << IsQuad)); |
| case NeonTypeFlags::Float64: |
| return llvm::FixedVectorType::get(CGF->DoubleTy, V1Ty ? 1 : (1 << IsQuad)); |
| } |
| llvm_unreachable("Unknown vector element type!"); |
| } |
| |
| static llvm::VectorType *GetFloatNeonType(CodeGenFunction *CGF, |
| NeonTypeFlags IntTypeFlags) { |
| int IsQuad = IntTypeFlags.isQuad(); |
| switch (IntTypeFlags.getEltType()) { |
| case NeonTypeFlags::Int16: |
| return llvm::FixedVectorType::get(CGF->HalfTy, (4 << IsQuad)); |
| case NeonTypeFlags::Int32: |
| return llvm::FixedVectorType::get(CGF->FloatTy, (2 << IsQuad)); |
| case NeonTypeFlags::Int64: |
| return llvm::FixedVectorType::get(CGF->DoubleTy, (1 << IsQuad)); |
| default: |
| llvm_unreachable("Type can't be converted to floating-point!"); |
| } |
| } |
| |
| Value *CodeGenFunction::EmitNeonSplat(Value *V, Constant *C, |
| const ElementCount &Count) { |
| Value *SV = llvm::ConstantVector::getSplat(Count, C); |
| return Builder.CreateShuffleVector(V, V, SV, "lane"); |
| } |
| |
| Value *CodeGenFunction::EmitNeonSplat(Value *V, Constant *C) { |
| ElementCount EC = cast<llvm::VectorType>(V->getType())->getElementCount(); |
| return EmitNeonSplat(V, C, EC); |
| } |
| |
| Value *CodeGenFunction::EmitNeonCall(Function *F, SmallVectorImpl<Value*> &Ops, |
| const char *name, |
| unsigned shift, bool rightshift) { |
| unsigned j = 0; |
| for (Function::const_arg_iterator ai = F->arg_begin(), ae = F->arg_end(); |
| ai != ae; ++ai, ++j) { |
| if (F->isConstrainedFPIntrinsic()) |
| if (ai->getType()->isMetadataTy()) |
| continue; |
| if (shift > 0 && shift == j) |
| Ops[j] = EmitNeonShiftVector(Ops[j], ai->getType(), rightshift); |
| else |
| Ops[j] = Builder.CreateBitCast(Ops[j], ai->getType(), name); |
| } |
| |
| if (F->isConstrainedFPIntrinsic()) |
| return Builder.CreateConstrainedFPCall(F, Ops, name); |
| else |
| return Builder.CreateCall(F, Ops, name); |
| } |
| |
| Value *CodeGenFunction::EmitFP8NeonCall(unsigned IID, |
| ArrayRef<llvm::Type *> Tys, |
| SmallVectorImpl<Value *> &Ops, |
| const CallExpr *E, const char *name) { |
| llvm::Value *FPM = |
| EmitScalarOrConstFoldImmArg(/* ICEArguments */ 0, E->getNumArgs() - 1, E); |
| Builder.CreateCall(CGM.getIntrinsic(Intrinsic::aarch64_set_fpmr), FPM); |
| return EmitNeonCall(CGM.getIntrinsic(IID, Tys), Ops, name); |
| } |
| |
| llvm::Value *CodeGenFunction::EmitFP8NeonFDOTCall( |
| unsigned IID, bool ExtendLaneArg, llvm::Type *RetTy, |
| SmallVectorImpl<llvm::Value *> &Ops, const CallExpr *E, const char *name) { |
| |
| const unsigned ElemCount = Ops[0]->getType()->getPrimitiveSizeInBits() / |
| RetTy->getPrimitiveSizeInBits(); |
| llvm::Type *Tys[] = {llvm::FixedVectorType::get(RetTy, ElemCount), |
| Ops[1]->getType()}; |
| if (ExtendLaneArg) { |
| auto *VT = llvm::FixedVectorType::get(Int8Ty, 16); |
| Ops[2] = Builder.CreateInsertVector(VT, PoisonValue::get(VT), Ops[2], |
| Builder.getInt64(0)); |
| } |
| return EmitFP8NeonCall(IID, Tys, Ops, E, name); |
| } |
| |
| llvm::Value *CodeGenFunction::EmitFP8NeonFMLACall( |
| unsigned IID, bool ExtendLaneArg, llvm::Type *RetTy, |
| SmallVectorImpl<llvm::Value *> &Ops, const CallExpr *E, const char *name) { |
| |
| if (ExtendLaneArg) { |
| auto *VT = llvm::FixedVectorType::get(Int8Ty, 16); |
| Ops[2] = Builder.CreateInsertVector(VT, PoisonValue::get(VT), Ops[2], |
| Builder.getInt64(0)); |
| } |
| const unsigned ElemCount = Ops[0]->getType()->getPrimitiveSizeInBits() / |
| RetTy->getPrimitiveSizeInBits(); |
| return EmitFP8NeonCall(IID, {llvm::FixedVectorType::get(RetTy, ElemCount)}, |
| Ops, E, name); |
| } |
| |
| Value *CodeGenFunction::EmitNeonShiftVector(Value *V, llvm::Type *Ty, |
| bool neg) { |
| int SV = cast<ConstantInt>(V)->getSExtValue(); |
| return ConstantInt::get(Ty, neg ? -SV : SV); |
| } |
| |
| Value *CodeGenFunction::EmitFP8NeonCvtCall(unsigned IID, llvm::Type *Ty0, |
| llvm::Type *Ty1, bool Extract, |
| SmallVectorImpl<llvm::Value *> &Ops, |
| const CallExpr *E, |
| const char *name) { |
| llvm::Type *Tys[] = {Ty0, Ty1}; |
| if (Extract) { |
| // Op[0] is mfloat8x16_t, but the intrinsic converts only the lower part of |
| // the vector. |
| Tys[1] = llvm::FixedVectorType::get(Int8Ty, 8); |
| Ops[0] = Builder.CreateExtractVector(Tys[1], Ops[0], Builder.getInt64(0)); |
| } |
| return EmitFP8NeonCall(IID, Tys, Ops, E, name); |
| } |
| |
| // Right-shift a vector by a constant. |
| Value *CodeGenFunction::EmitNeonRShiftImm(Value *Vec, Value *Shift, |
| llvm::Type *Ty, bool usgn, |
| const char *name) { |
| llvm::VectorType *VTy = cast<llvm::VectorType>(Ty); |
| |
| int ShiftAmt = cast<ConstantInt>(Shift)->getSExtValue(); |
| int EltSize = VTy->getScalarSizeInBits(); |
| |
| Vec = Builder.CreateBitCast(Vec, Ty); |
| |
| // lshr/ashr are undefined when the shift amount is equal to the vector |
| // element size. |
| if (ShiftAmt == EltSize) { |
| if (usgn) { |
| // Right-shifting an unsigned value by its size yields 0. |
| return llvm::ConstantAggregateZero::get(VTy); |
| } else { |
| // Right-shifting a signed value by its size is equivalent |
| // to a shift of size-1. |
| --ShiftAmt; |
| Shift = ConstantInt::get(VTy->getElementType(), ShiftAmt); |
| } |
| } |
| |
| Shift = EmitNeonShiftVector(Shift, Ty, false); |
| if (usgn) |
| return Builder.CreateLShr(Vec, Shift, name); |
| else |
| return Builder.CreateAShr(Vec, Shift, name); |
| } |
| |
| enum { |
| AddRetType = (1 << 0), |
| Add1ArgType = (1 << 1), |
| Add2ArgTypes = (1 << 2), |
| |
| VectorizeRetType = (1 << 3), |
| VectorizeArgTypes = (1 << 4), |
| |
| InventFloatType = (1 << 5), |
| UnsignedAlts = (1 << 6), |
| |
| Use64BitVectors = (1 << 7), |
| Use128BitVectors = (1 << 8), |
| |
| Vectorize1ArgType = Add1ArgType | VectorizeArgTypes, |
| VectorRet = AddRetType | VectorizeRetType, |
| VectorRetGetArgs01 = |
| AddRetType | Add2ArgTypes | VectorizeRetType | VectorizeArgTypes, |
| FpCmpzModifiers = |
| AddRetType | VectorizeRetType | Add1ArgType | InventFloatType |
| }; |
| |
| namespace { |
| struct ARMVectorIntrinsicInfo { |
| const char *NameHint; |
| unsigned BuiltinID; |
| unsigned LLVMIntrinsic; |
| unsigned AltLLVMIntrinsic; |
| uint64_t TypeModifier; |
| |
| bool operator<(unsigned RHSBuiltinID) const { |
| return BuiltinID < RHSBuiltinID; |
| } |
| bool operator<(const ARMVectorIntrinsicInfo &TE) const { |
| return BuiltinID < TE.BuiltinID; |
| } |
| }; |
| } // end anonymous namespace |
| |
| #define NEONMAP0(NameBase) \ |
| { #NameBase, NEON::BI__builtin_neon_ ## NameBase, 0, 0, 0 } |
| |
| #define NEONMAP1(NameBase, LLVMIntrinsic, TypeModifier) \ |
| { #NameBase, NEON:: BI__builtin_neon_ ## NameBase, \ |
| Intrinsic::LLVMIntrinsic, 0, TypeModifier } |
| |
| #define NEONMAP2(NameBase, LLVMIntrinsic, AltLLVMIntrinsic, TypeModifier) \ |
| { #NameBase, NEON:: BI__builtin_neon_ ## NameBase, \ |
| Intrinsic::LLVMIntrinsic, Intrinsic::AltLLVMIntrinsic, \ |
| TypeModifier } |
| |
| static const ARMVectorIntrinsicInfo ARMSIMDIntrinsicMap [] = { |
| NEONMAP1(__a32_vcvt_bf16_f32, arm_neon_vcvtfp2bf, 0), |
| NEONMAP0(splat_lane_v), |
| NEONMAP0(splat_laneq_v), |
| NEONMAP0(splatq_lane_v), |
| NEONMAP0(splatq_laneq_v), |
| NEONMAP2(vabd_v, arm_neon_vabdu, arm_neon_vabds, Add1ArgType | UnsignedAlts), |
| NEONMAP2(vabdq_v, arm_neon_vabdu, arm_neon_vabds, Add1ArgType | UnsignedAlts), |
| NEONMAP1(vabs_v, arm_neon_vabs, 0), |
| NEONMAP1(vabsq_v, arm_neon_vabs, 0), |
| NEONMAP0(vadd_v), |
| NEONMAP0(vaddhn_v), |
| NEONMAP0(vaddq_v), |
| NEONMAP1(vaesdq_u8, arm_neon_aesd, 0), |
| NEONMAP1(vaeseq_u8, arm_neon_aese, 0), |
| NEONMAP1(vaesimcq_u8, arm_neon_aesimc, 0), |
| NEONMAP1(vaesmcq_u8, arm_neon_aesmc, 0), |
| NEONMAP1(vbfdot_f32, arm_neon_bfdot, 0), |
| NEONMAP1(vbfdotq_f32, arm_neon_bfdot, 0), |
| NEONMAP1(vbfmlalbq_f32, arm_neon_bfmlalb, 0), |
| NEONMAP1(vbfmlaltq_f32, arm_neon_bfmlalt, 0), |
| NEONMAP1(vbfmmlaq_f32, arm_neon_bfmmla, 0), |
| NEONMAP1(vbsl_v, arm_neon_vbsl, AddRetType), |
| NEONMAP1(vbslq_v, arm_neon_vbsl, AddRetType), |
| NEONMAP1(vcadd_rot270_f16, arm_neon_vcadd_rot270, Add1ArgType), |
| NEONMAP1(vcadd_rot270_f32, arm_neon_vcadd_rot270, Add1ArgType), |
| NEONMAP1(vcadd_rot90_f16, arm_neon_vcadd_rot90, Add1ArgType), |
| NEONMAP1(vcadd_rot90_f32, arm_neon_vcadd_rot90, Add1ArgType), |
| NEONMAP1(vcaddq_rot270_f16, arm_neon_vcadd_rot270, Add1ArgType), |
| NEONMAP1(vcaddq_rot270_f32, arm_neon_vcadd_rot270, Add1ArgType), |
| NEONMAP1(vcaddq_rot270_f64, arm_neon_vcadd_rot270, Add1ArgType), |
| NEONMAP1(vcaddq_rot90_f16, arm_neon_vcadd_rot90, Add1ArgType), |
| NEONMAP1(vcaddq_rot90_f32, arm_neon_vcadd_rot90, Add1ArgType), |
| NEONMAP1(vcaddq_rot90_f64, arm_neon_vcadd_rot90, Add1ArgType), |
| NEONMAP1(vcage_v, arm_neon_vacge, 0), |
| NEONMAP1(vcageq_v, arm_neon_vacge, 0), |
| NEONMAP1(vcagt_v, arm_neon_vacgt, 0), |
| NEONMAP1(vcagtq_v, arm_neon_vacgt, 0), |
| NEONMAP1(vcale_v, arm_neon_vacge, 0), |
| NEONMAP1(vcaleq_v, arm_neon_vacge, 0), |
| NEONMAP1(vcalt_v, arm_neon_vacgt, 0), |
| NEONMAP1(vcaltq_v, arm_neon_vacgt, 0), |
| NEONMAP0(vceqz_v), |
| NEONMAP0(vceqzq_v), |
| NEONMAP0(vcgez_v), |
| NEONMAP0(vcgezq_v), |
| NEONMAP0(vcgtz_v), |
| NEONMAP0(vcgtzq_v), |
| NEONMAP0(vclez_v), |
| NEONMAP0(vclezq_v), |
| NEONMAP1(vcls_v, arm_neon_vcls, Add1ArgType), |
| NEONMAP1(vclsq_v, arm_neon_vcls, Add1ArgType), |
| NEONMAP0(vcltz_v), |
| NEONMAP0(vcltzq_v), |
| NEONMAP1(vclz_v, ctlz, Add1ArgType), |
| NEONMAP1(vclzq_v, ctlz, Add1ArgType), |
| NEONMAP1(vcnt_v, ctpop, Add1ArgType), |
| NEONMAP1(vcntq_v, ctpop, Add1ArgType), |
| NEONMAP1(vcvt_f16_f32, arm_neon_vcvtfp2hf, 0), |
| NEONMAP0(vcvt_f16_s16), |
| NEONMAP0(vcvt_f16_u16), |
| NEONMAP1(vcvt_f32_f16, arm_neon_vcvthf2fp, 0), |
| NEONMAP0(vcvt_f32_v), |
| NEONMAP1(vcvt_n_f16_s16, arm_neon_vcvtfxs2fp, 0), |
| NEONMAP1(vcvt_n_f16_u16, arm_neon_vcvtfxu2fp, 0), |
| NEONMAP2(vcvt_n_f32_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0), |
| NEONMAP1(vcvt_n_s16_f16, arm_neon_vcvtfp2fxs, 0), |
| NEONMAP1(vcvt_n_s32_v, arm_neon_vcvtfp2fxs, 0), |
| NEONMAP1(vcvt_n_s64_v, arm_neon_vcvtfp2fxs, 0), |
| NEONMAP1(vcvt_n_u16_f16, arm_neon_vcvtfp2fxu, 0), |
| NEONMAP1(vcvt_n_u32_v, arm_neon_vcvtfp2fxu, 0), |
| NEONMAP1(vcvt_n_u64_v, arm_neon_vcvtfp2fxu, 0), |
| NEONMAP0(vcvt_s16_f16), |
| NEONMAP0(vcvt_s32_v), |
| NEONMAP0(vcvt_s64_v), |
| NEONMAP0(vcvt_u16_f16), |
| NEONMAP0(vcvt_u32_v), |
| NEONMAP0(vcvt_u64_v), |
| NEONMAP1(vcvta_s16_f16, arm_neon_vcvtas, 0), |
| NEONMAP1(vcvta_s32_v, arm_neon_vcvtas, 0), |
| NEONMAP1(vcvta_s64_v, arm_neon_vcvtas, 0), |
| NEONMAP1(vcvta_u16_f16, arm_neon_vcvtau, 0), |
| NEONMAP1(vcvta_u32_v, arm_neon_vcvtau, 0), |
| NEONMAP1(vcvta_u64_v, arm_neon_vcvtau, 0), |
| NEONMAP1(vcvtaq_s16_f16, arm_neon_vcvtas, 0), |
| NEONMAP1(vcvtaq_s32_v, arm_neon_vcvtas, 0), |
| NEONMAP1(vcvtaq_s64_v, arm_neon_vcvtas, 0), |
| NEONMAP1(vcvtaq_u16_f16, arm_neon_vcvtau, 0), |
| NEONMAP1(vcvtaq_u32_v, arm_neon_vcvtau, 0), |
| NEONMAP1(vcvtaq_u64_v, arm_neon_vcvtau, 0), |
| NEONMAP1(vcvth_bf16_f32, arm_neon_vcvtbfp2bf, 0), |
| NEONMAP1(vcvtm_s16_f16, arm_neon_vcvtms, 0), |
| NEONMAP1(vcvtm_s32_v, arm_neon_vcvtms, 0), |
| NEONMAP1(vcvtm_s64_v, arm_neon_vcvtms, 0), |
| NEONMAP1(vcvtm_u16_f16, arm_neon_vcvtmu, 0), |
| NEONMAP1(vcvtm_u32_v, arm_neon_vcvtmu, 0), |
| NEONMAP1(vcvtm_u64_v, arm_neon_vcvtmu, 0), |
| NEONMAP1(vcvtmq_s16_f16, arm_neon_vcvtms, 0), |
| NEONMAP1(vcvtmq_s32_v, arm_neon_vcvtms, 0), |
| NEONMAP1(vcvtmq_s64_v, arm_neon_vcvtms, 0), |
| NEONMAP1(vcvtmq_u16_f16, arm_neon_vcvtmu, 0), |
| NEONMAP1(vcvtmq_u32_v, arm_neon_vcvtmu, 0), |
| NEONMAP1(vcvtmq_u64_v, arm_neon_vcvtmu, 0), |
| NEONMAP1(vcvtn_s16_f16, arm_neon_vcvtns, 0), |
| NEONMAP1(vcvtn_s32_v, arm_neon_vcvtns, 0), |
| NEONMAP1(vcvtn_s64_v, arm_neon_vcvtns, 0), |
| NEONMAP1(vcvtn_u16_f16, arm_neon_vcvtnu, 0), |
| NEONMAP1(vcvtn_u32_v, arm_neon_vcvtnu, 0), |
| NEONMAP1(vcvtn_u64_v, arm_neon_vcvtnu, 0), |
| NEONMAP1(vcvtnq_s16_f16, arm_neon_vcvtns, 0), |
| NEONMAP1(vcvtnq_s32_v, arm_neon_vcvtns, 0), |
| NEONMAP1(vcvtnq_s64_v, arm_neon_vcvtns, 0), |
| NEONMAP1(vcvtnq_u16_f16, arm_neon_vcvtnu, 0), |
| NEONMAP1(vcvtnq_u32_v, arm_neon_vcvtnu, 0), |
| NEONMAP1(vcvtnq_u64_v, arm_neon_vcvtnu, 0), |
| NEONMAP1(vcvtp_s16_f16, arm_neon_vcvtps, 0), |
| NEONMAP1(vcvtp_s32_v, arm_neon_vcvtps, 0), |
| NEONMAP1(vcvtp_s64_v, arm_neon_vcvtps, 0), |
| NEONMAP1(vcvtp_u16_f16, arm_neon_vcvtpu, 0), |
| NEONMAP1(vcvtp_u32_v, arm_neon_vcvtpu, 0), |
| NEONMAP1(vcvtp_u64_v, arm_neon_vcvtpu, 0), |
| NEONMAP1(vcvtpq_s16_f16, arm_neon_vcvtps, 0), |
| NEONMAP1(vcvtpq_s32_v, arm_neon_vcvtps, 0), |
| NEONMAP1(vcvtpq_s64_v, arm_neon_vcvtps, 0), |
| NEONMAP1(vcvtpq_u16_f16, arm_neon_vcvtpu, 0), |
| NEONMAP1(vcvtpq_u32_v, arm_neon_vcvtpu, 0), |
| NEONMAP1(vcvtpq_u64_v, arm_neon_vcvtpu, 0), |
| NEONMAP0(vcvtq_f16_s16), |
| NEONMAP0(vcvtq_f16_u16), |
| NEONMAP0(vcvtq_f32_v), |
| NEONMAP1(vcvtq_n_f16_s16, arm_neon_vcvtfxs2fp, 0), |
| NEONMAP1(vcvtq_n_f16_u16, arm_neon_vcvtfxu2fp, 0), |
| NEONMAP2(vcvtq_n_f32_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0), |
| NEONMAP1(vcvtq_n_s16_f16, arm_neon_vcvtfp2fxs, 0), |
| NEONMAP1(vcvtq_n_s32_v, arm_neon_vcvtfp2fxs, 0), |
| NEONMAP1(vcvtq_n_s64_v, arm_neon_vcvtfp2fxs, 0), |
| NEONMAP1(vcvtq_n_u16_f16, arm_neon_vcvtfp2fxu, 0), |
| NEONMAP1(vcvtq_n_u32_v, arm_neon_vcvtfp2fxu, 0), |
| NEONMAP1(vcvtq_n_u64_v, arm_neon_vcvtfp2fxu, 0), |
| NEONMAP0(vcvtq_s16_f16), |
| NEONMAP0(vcvtq_s32_v), |
| NEONMAP0(vcvtq_s64_v), |
| NEONMAP0(vcvtq_u16_f16), |
| NEONMAP0(vcvtq_u32_v), |
| NEONMAP0(vcvtq_u64_v), |
| NEONMAP1(vdot_s32, arm_neon_sdot, 0), |
| NEONMAP1(vdot_u32, arm_neon_udot, 0), |
| NEONMAP1(vdotq_s32, arm_neon_sdot, 0), |
| NEONMAP1(vdotq_u32, arm_neon_udot, 0), |
| NEONMAP0(vext_v), |
| NEONMAP0(vextq_v), |
| NEONMAP0(vfma_v), |
| NEONMAP0(vfmaq_v), |
| NEONMAP2(vhadd_v, arm_neon_vhaddu, arm_neon_vhadds, Add1ArgType | UnsignedAlts), |
| NEONMAP2(vhaddq_v, arm_neon_vhaddu, arm_neon_vhadds, Add1ArgType | UnsignedAlts), |
| NEONMAP2(vhsub_v, arm_neon_vhsubu, arm_neon_vhsubs, Add1ArgType | UnsignedAlts), |
| NEONMAP2(vhsubq_v, arm_neon_vhsubu, arm_neon_vhsubs, Add1ArgType | UnsignedAlts), |
| NEONMAP0(vld1_dup_v), |
| NEONMAP1(vld1_v, arm_neon_vld1, 0), |
| NEONMAP1(vld1_x2_v, arm_neon_vld1x2, 0), |
| NEONMAP1(vld1_x3_v, arm_neon_vld1x3, 0), |
| NEONMAP1(vld1_x4_v, arm_neon_vld1x4, 0), |
| NEONMAP0(vld1q_dup_v), |
| NEONMAP1(vld1q_v, arm_neon_vld1, 0), |
| NEONMAP1(vld1q_x2_v, arm_neon_vld1x2, 0), |
| NEONMAP1(vld1q_x3_v, arm_neon_vld1x3, 0), |
| NEONMAP1(vld1q_x4_v, arm_neon_vld1x4, 0), |
| NEONMAP1(vld2_dup_v, arm_neon_vld2dup, 0), |
| NEONMAP1(vld2_lane_v, arm_neon_vld2lane, 0), |
| NEONMAP1(vld2_v, arm_neon_vld2, 0), |
| NEONMAP1(vld2q_dup_v, arm_neon_vld2dup, 0), |
| NEONMAP1(vld2q_lane_v, arm_neon_vld2lane, 0), |
| NEONMAP1(vld2q_v, arm_neon_vld2, 0), |
| NEONMAP1(vld3_dup_v, arm_neon_vld3dup, 0), |
| NEONMAP1(vld3_lane_v, arm_neon_vld3lane, 0), |
| NEONMAP1(vld3_v, arm_neon_vld3, 0), |
| NEONMAP1(vld3q_dup_v, arm_neon_vld3dup, 0), |
| NEONMAP1(vld3q_lane_v, arm_neon_vld3lane, 0), |
| NEONMAP1(vld3q_v, arm_neon_vld3, 0), |
| NEONMAP1(vld4_dup_v, arm_neon_vld4dup, 0), |
| NEONMAP1(vld4_lane_v, arm_neon_vld4lane, 0), |
| NEONMAP1(vld4_v, arm_neon_vld4, 0), |
| NEONMAP1(vld4q_dup_v, arm_neon_vld4dup, 0), |
| NEONMAP1(vld4q_lane_v, arm_neon_vld4lane, 0), |
| NEONMAP1(vld4q_v, arm_neon_vld4, 0), |
| NEONMAP2(vmax_v, arm_neon_vmaxu, arm_neon_vmaxs, Add1ArgType | UnsignedAlts), |
| NEONMAP1(vmaxnm_v, arm_neon_vmaxnm, Add1ArgType), |
| NEONMAP1(vmaxnmq_v, arm_neon_vmaxnm, Add1ArgType), |
| NEONMAP2(vmaxq_v, arm_neon_vmaxu, arm_neon_vmaxs, Add1ArgType | UnsignedAlts), |
| NEONMAP2(vmin_v, arm_neon_vminu, arm_neon_vmins, Add1ArgType | UnsignedAlts), |
| NEONMAP1(vminnm_v, arm_neon_vminnm, Add1ArgType), |
| NEONMAP1(vminnmq_v, arm_neon_vminnm, Add1ArgType), |
| NEONMAP2(vminq_v, arm_neon_vminu, arm_neon_vmins, Add1ArgType | UnsignedAlts), |
| NEONMAP1(vmmlaq_s32, arm_neon_smmla, 0), |
| NEONMAP1(vmmlaq_u32, arm_neon_ummla, 0), |
| NEONMAP0(vmovl_v), |
| NEONMAP0(vmovn_v), |
| NEONMAP1(vmul_v, arm_neon_vmulp, Add1ArgType), |
| NEONMAP0(vmull_v), |
| NEONMAP1(vmulq_v, arm_neon_vmulp, Add1ArgType), |
| NEONMAP2(vpadal_v, arm_neon_vpadalu, arm_neon_vpadals, UnsignedAlts), |
| NEONMAP2(vpadalq_v, arm_neon_vpadalu, arm_neon_vpadals, UnsignedAlts), |
| NEONMAP1(vpadd_v, arm_neon_vpadd, Add1ArgType), |
| NEONMAP2(vpaddl_v, arm_neon_vpaddlu, arm_neon_vpaddls, UnsignedAlts), |
| NEONMAP2(vpaddlq_v, arm_neon_vpaddlu, arm_neon_vpaddls, UnsignedAlts), |
| NEONMAP1(vpaddq_v, arm_neon_vpadd, Add1ArgType), |
| NEONMAP2(vpmax_v, arm_neon_vpmaxu, arm_neon_vpmaxs, Add1ArgType | UnsignedAlts), |
| NEONMAP2(vpmin_v, arm_neon_vpminu, arm_neon_vpmins, Add1ArgType | UnsignedAlts), |
| NEONMAP1(vqabs_v, arm_neon_vqabs, Add1ArgType), |
| NEONMAP1(vqabsq_v, arm_neon_vqabs, Add1ArgType), |
| NEONMAP2(vqadd_v, uadd_sat, sadd_sat, Add1ArgType | UnsignedAlts), |
| NEONMAP2(vqaddq_v, uadd_sat, sadd_sat, Add1ArgType | UnsignedAlts), |
| NEONMAP2(vqdmlal_v, arm_neon_vqdmull, sadd_sat, 0), |
| NEONMAP2(vqdmlsl_v, arm_neon_vqdmull, ssub_sat, 0), |
| NEONMAP1(vqdmulh_v, arm_neon_vqdmulh, Add1ArgType), |
| NEONMAP1(vqdmulhq_v, arm_neon_vqdmulh, Add1ArgType), |
| NEONMAP1(vqdmull_v, arm_neon_vqdmull, Add1ArgType), |
| NEONMAP2(vqmovn_v, arm_neon_vqmovnu, arm_neon_vqmovns, Add1ArgType | UnsignedAlts), |
| NEONMAP1(vqmovun_v, arm_neon_vqmovnsu, Add1ArgType), |
| NEONMAP1(vqneg_v, arm_neon_vqneg, Add1ArgType), |
| NEONMAP1(vqnegq_v, arm_neon_vqneg, Add1ArgType), |
| NEONMAP1(vqrdmlah_s16, arm_neon_vqrdmlah, Add1ArgType), |
| NEONMAP1(vqrdmlah_s32, arm_neon_vqrdmlah, Add1ArgType), |
| NEONMAP1(vqrdmlahq_s16, arm_neon_vqrdmlah, Add1ArgType), |
| NEONMAP1(vqrdmlahq_s32, arm_neon_vqrdmlah, Add1ArgType), |
| NEONMAP1(vqrdmlsh_s16, arm_neon_vqrdmlsh, Add1ArgType), |
| NEONMAP1(vqrdmlsh_s32, arm_neon_vqrdmlsh, Add1ArgType), |
| NEONMAP1(vqrdmlshq_s16, arm_neon_vqrdmlsh, Add1ArgType), |
| NEONMAP1(vqrdmlshq_s32, arm_neon_vqrdmlsh, Add1ArgType), |
| NEONMAP1(vqrdmulh_v, arm_neon_vqrdmulh, Add1ArgType), |
| NEONMAP1(vqrdmulhq_v, arm_neon_vqrdmulh, Add1ArgType), |
| NEONMAP2(vqrshl_v, arm_neon_vqrshiftu, arm_neon_vqrshifts, Add1ArgType | UnsignedAlts), |
| NEONMAP2(vqrshlq_v, arm_neon_vqrshiftu, arm_neon_vqrshifts, Add1ArgType | UnsignedAlts), |
| NEONMAP2(vqshl_n_v, arm_neon_vqshiftu, arm_neon_vqshifts, UnsignedAlts), |
| NEONMAP2(vqshl_v, arm_neon_vqshiftu, arm_neon_vqshifts, Add1ArgType | UnsignedAlts), |
| NEONMAP2(vqshlq_n_v, arm_neon_vqshiftu, arm_neon_vqshifts, UnsignedAlts), |
| NEONMAP2(vqshlq_v, arm_neon_vqshiftu, arm_neon_vqshifts, Add1ArgType | UnsignedAlts), |
| NEONMAP1(vqshlu_n_v, arm_neon_vqshiftsu, 0), |
| NEONMAP1(vqshluq_n_v, arm_neon_vqshiftsu, 0), |
| NEONMAP2(vqsub_v, usub_sat, ssub_sat, Add1ArgType | UnsignedAlts), |
| NEONMAP2(vqsubq_v, usub_sat, ssub_sat, Add1ArgType | UnsignedAlts), |
| NEONMAP1(vraddhn_v, arm_neon_vraddhn, Add1ArgType), |
| NEONMAP2(vrecpe_v, arm_neon_vrecpe, arm_neon_vrecpe, 0), |
| NEONMAP2(vrecpeq_v, arm_neon_vrecpe, arm_neon_vrecpe, 0), |
| NEONMAP1(vrecps_v, arm_neon_vrecps, Add1ArgType), |
| NEONMAP1(vrecpsq_v, arm_neon_vrecps, Add1ArgType), |
| NEONMAP2(vrhadd_v, arm_neon_vrhaddu, arm_neon_vrhadds, Add1ArgType | UnsignedAlts), |
| NEONMAP2(vrhaddq_v, arm_neon_vrhaddu, arm_neon_vrhadds, Add1ArgType | UnsignedAlts), |
| NEONMAP1(vrnd_v, arm_neon_vrintz, Add1ArgType), |
| NEONMAP1(vrnda_v, arm_neon_vrinta, Add1ArgType), |
| NEONMAP1(vrndaq_v, arm_neon_vrinta, Add1ArgType), |
| NEONMAP0(vrndi_v), |
| NEONMAP0(vrndiq_v), |
| NEONMAP1(vrndm_v, arm_neon_vrintm, Add1ArgType), |
| NEONMAP1(vrndmq_v, arm_neon_vrintm, Add1ArgType), |
| NEONMAP1(vrndn_v, arm_neon_vrintn, Add1ArgType), |
| NEONMAP1(vrndnq_v, arm_neon_vrintn, Add1ArgType), |
| NEONMAP1(vrndp_v, arm_neon_vrintp, Add1ArgType), |
| NEONMAP1(vrndpq_v, arm_neon_vrintp, Add1ArgType), |
| NEONMAP1(vrndq_v, arm_neon_vrintz, Add1ArgType), |
| NEONMAP1(vrndx_v, arm_neon_vrintx, Add1ArgType), |
| NEONMAP1(vrndxq_v, arm_neon_vrintx, Add1ArgType), |
| NEONMAP2(vrshl_v, arm_neon_vrshiftu, arm_neon_vrshifts, Add1ArgType | UnsignedAlts), |
| NEONMAP2(vrshlq_v, arm_neon_vrshiftu, arm_neon_vrshifts, Add1ArgType | UnsignedAlts), |
| NEONMAP2(vrshr_n_v, arm_neon_vrshiftu, arm_neon_vrshifts, UnsignedAlts), |
| NEONMAP2(vrshrq_n_v, arm_neon_vrshiftu, arm_neon_vrshifts, UnsignedAlts), |
| NEONMAP2(vrsqrte_v, arm_neon_vrsqrte, arm_neon_vrsqrte, 0), |
| NEONMAP2(vrsqrteq_v, arm_neon_vrsqrte, arm_neon_vrsqrte, 0), |
| NEONMAP1(vrsqrts_v, arm_neon_vrsqrts, Add1ArgType), |
| NEONMAP1(vrsqrtsq_v, arm_neon_vrsqrts, Add1ArgType), |
| NEONMAP1(vrsubhn_v, arm_neon_vrsubhn, Add1ArgType), |
| NEONMAP1(vsha1su0q_u32, arm_neon_sha1su0, 0), |
| NEONMAP1(vsha1su1q_u32, arm_neon_sha1su1, 0), |
| NEONMAP1(vsha256h2q_u32, arm_neon_sha256h2, 0), |
| NEONMAP1(vsha256hq_u32, arm_neon_sha256h, 0), |
| NEONMAP1(vsha256su0q_u32, arm_neon_sha256su0, 0), |
| NEONMAP1(vsha256su1q_u32, arm_neon_sha256su1, 0), |
| NEONMAP0(vshl_n_v), |
| NEONMAP2(vshl_v, arm_neon_vshiftu, arm_neon_vshifts, Add1ArgType | UnsignedAlts), |
| NEONMAP0(vshll_n_v), |
| NEONMAP0(vshlq_n_v), |
| NEONMAP2(vshlq_v, arm_neon_vshiftu, arm_neon_vshifts, Add1ArgType | UnsignedAlts), |
| NEONMAP0(vshr_n_v), |
| NEONMAP0(vshrn_n_v), |
| NEONMAP0(vshrq_n_v), |
| NEONMAP1(vst1_v, arm_neon_vst1, 0), |
| NEONMAP1(vst1_x2_v, arm_neon_vst1x2, 0), |
| NEONMAP1(vst1_x3_v, arm_neon_vst1x3, 0), |
| NEONMAP1(vst1_x4_v, arm_neon_vst1x4, 0), |
| NEONMAP1(vst1q_v, arm_neon_vst1, 0), |
| NEONMAP1(vst1q_x2_v, arm_neon_vst1x2, 0), |
| NEONMAP1(vst1q_x3_v, arm_neon_vst1x3, 0), |
| NEONMAP1(vst1q_x4_v, arm_neon_vst1x4, 0), |
| NEONMAP1(vst2_lane_v, arm_neon_vst2lane, 0), |
| NEONMAP1(vst2_v, arm_neon_vst2, 0), |
| NEONMAP1(vst2q_lane_v, arm_neon_vst2lane, 0), |
| NEONMAP1(vst2q_v, arm_neon_vst2, 0), |
| NEONMAP1(vst3_lane_v, arm_neon_vst3lane, 0), |
| NEONMAP1(vst3_v, arm_neon_vst3, 0), |
| NEONMAP1(vst3q_lane_v, arm_neon_vst3lane, 0), |
| NEONMAP1(vst3q_v, arm_neon_vst3, 0), |
| NEONMAP1(vst4_lane_v, arm_neon_vst4lane, 0), |
| NEONMAP1(vst4_v, arm_neon_vst4, 0), |
| NEONMAP1(vst4q_lane_v, arm_neon_vst4lane, 0), |
| NEONMAP1(vst4q_v, arm_neon_vst4, 0), |
| NEONMAP0(vsubhn_v), |
| NEONMAP0(vtrn_v), |
| NEONMAP0(vtrnq_v), |
| NEONMAP0(vtst_v), |
| NEONMAP0(vtstq_v), |
| NEONMAP1(vusdot_s32, arm_neon_usdot, 0), |
| NEONMAP1(vusdotq_s32, arm_neon_usdot, 0), |
| NEONMAP1(vusmmlaq_s32, arm_neon_usmmla, 0), |
| NEONMAP0(vuzp_v), |
| NEONMAP0(vuzpq_v), |
| NEONMAP0(vzip_v), |
| NEONMAP0(vzipq_v) |
| }; |
| |
| static const ARMVectorIntrinsicInfo AArch64SIMDIntrinsicMap[] = { |
| NEONMAP0(splat_lane_v), |
| NEONMAP0(splat_laneq_v), |
| NEONMAP0(splatq_lane_v), |
| NEONMAP0(splatq_laneq_v), |
| NEONMAP1(vabs_v, aarch64_neon_abs, 0), |
| NEONMAP1(vabsq_v, aarch64_neon_abs, 0), |
| NEONMAP0(vadd_v), |
| NEONMAP0(vaddhn_v), |
| NEONMAP0(vaddq_p128), |
| NEONMAP0(vaddq_v), |
| NEONMAP1(vaesdq_u8, aarch64_crypto_aesd, 0), |
| NEONMAP1(vaeseq_u8, aarch64_crypto_aese, 0), |
| NEONMAP1(vaesimcq_u8, aarch64_crypto_aesimc, 0), |
| NEONMAP1(vaesmcq_u8, aarch64_crypto_aesmc, 0), |
| NEONMAP2(vbcaxq_s16, aarch64_crypto_bcaxu, aarch64_crypto_bcaxs, Add1ArgType | UnsignedAlts), |
| NEONMAP2(vbcaxq_s32, aarch64_crypto_bcaxu, aarch64_crypto_bcaxs, Add1ArgType | UnsignedAlts), |
| NEONMAP2(vbcaxq_s64, aarch64_crypto_bcaxu, aarch64_crypto_bcaxs, Add1ArgType | UnsignedAlts), |
| NEONMAP2(vbcaxq_s8, aarch64_crypto_bcaxu, aarch64_crypto_bcaxs, Add1ArgType | UnsignedAlts), |
| NEONMAP2(vbcaxq_u16, aarch64_crypto_bcaxu, aarch64_crypto_bcaxs, Add1ArgType | UnsignedAlts), |
| NEONMAP2(vbcaxq_u32, aarch64_crypto_bcaxu, aarch64_crypto_bcaxs, Add1ArgType | UnsignedAlts), |
| NEONMAP2(vbcaxq_u64, aarch64_crypto_bcaxu, aarch64_crypto_bcaxs, Add1ArgType | UnsignedAlts), |
| NEONMAP2(vbcaxq_u8, aarch64_crypto_bcaxu, aarch64_crypto_bcaxs, Add1ArgType | UnsignedAlts), |
| NEONMAP1(vbfdot_f32, aarch64_neon_bfdot, 0), |
| NEONMAP1(vbfdotq_f32, aarch64_neon_bfdot, 0), |
| NEONMAP1(vbfmlalbq_f32, aarch64_neon_bfmlalb, 0), |
| NEONMAP1(vbfmlaltq_f32, aarch64_neon_bfmlalt, 0), |
| NEONMAP1(vbfmmlaq_f32, aarch64_neon_bfmmla, 0), |
| NEONMAP1(vcadd_rot270_f16, aarch64_neon_vcadd_rot270, Add1ArgType), |
| NEONMAP1(vcadd_rot270_f32, aarch64_neon_vcadd_rot270, Add1ArgType), |
| NEONMAP1(vcadd_rot90_f16, aarch64_neon_vcadd_rot90, Add1ArgType), |
| NEONMAP1(vcadd_rot90_f32, aarch64_neon_vcadd_rot90, Add1ArgType), |
| NEONMAP1(vcaddq_rot270_f16, aarch64_neon_vcadd_rot270, Add1ArgType), |
| NEONMAP1(vcaddq_rot270_f32, aarch64_neon_vcadd_rot270, Add1ArgType), |
| NEONMAP1(vcaddq_rot270_f64, aarch64_neon_vcadd_rot270, Add1ArgType), |
| NEONMAP1(vcaddq_rot90_f16, aarch64_neon_vcadd_rot90, Add1ArgType), |
| NEONMAP1(vcaddq_rot90_f32, aarch64_neon_vcadd_rot90, Add1ArgType), |
| NEONMAP1(vcaddq_rot90_f64, aarch64_neon_vcadd_rot90, Add1ArgType), |
| NEONMAP1(vcage_v, aarch64_neon_facge, 0), |
| NEONMAP1(vcageq_v, aarch64_neon_facge, 0), |
| NEONMAP1(vcagt_v, aarch64_neon_facgt, 0), |
| NEONMAP1(vcagtq_v, aarch64_neon_facgt, 0), |
| NEONMAP1(vcale_v, aarch64_neon_facge, 0), |
| NEONMAP1(vcaleq_v, aarch64_neon_facge, 0), |
| NEONMAP1(vcalt_v, aarch64_neon_facgt, 0), |
| NEONMAP1(vcaltq_v, aarch64_neon_facgt, 0), |
| NEONMAP0(vceqz_v), |
| NEONMAP0(vceqzq_v), |
| NEONMAP0(vcgez_v), |
| NEONMAP0(vcgezq_v), |
| NEONMAP0(vcgtz_v), |
| NEONMAP0(vcgtzq_v), |
| NEONMAP0(vclez_v), |
| NEONMAP0(vclezq_v), |
| NEONMAP1(vcls_v, aarch64_neon_cls, Add1ArgType), |
| NEONMAP1(vclsq_v, aarch64_neon_cls, Add1ArgType), |
| NEONMAP0(vcltz_v), |
| NEONMAP0(vcltzq_v), |
| NEONMAP1(vclz_v, ctlz, Add1ArgType), |
| NEONMAP1(vclzq_v, ctlz, Add1ArgType), |
| NEONMAP1(vcmla_f16, aarch64_neon_vcmla_rot0, Add1ArgType), |
| NEONMAP1(vcmla_f32, aarch64_neon_vcmla_rot0, Add1ArgType), |
| NEONMAP1(vcmla_rot180_f16, aarch64_neon_vcmla_rot180, Add1ArgType), |
| NEONMAP1(vcmla_rot180_f32, aarch64_neon_vcmla_rot180, Add1ArgType), |
| NEONMAP1(vcmla_rot270_f16, aarch64_neon_vcmla_rot270, Add1ArgType), |
| NEONMAP1(vcmla_rot270_f32, aarch64_neon_vcmla_rot270, Add1ArgType), |
| NEONMAP1(vcmla_rot90_f16, aarch64_neon_vcmla_rot90, Add1ArgType), |
| NEONMAP1(vcmla_rot90_f32, aarch64_neon_vcmla_rot90, Add1ArgType), |
| NEONMAP1(vcmlaq_f16, aarch64_neon_vcmla_rot0, Add1ArgType), |
| NEONMAP1(vcmlaq_f32, aarch64_neon_vcmla_rot0, Add1ArgType), |
| NEONMAP1(vcmlaq_f64, aarch64_neon_vcmla_rot0, Add1ArgType), |
| NEONMAP1(vcmlaq_rot180_f16, aarch64_neon_vcmla_rot180, Add1ArgType), |
| NEONMAP1(vcmlaq_rot180_f32, aarch64_neon_vcmla_rot180, Add1ArgType), |
| NEONMAP1(vcmlaq_rot180_f64, aarch64_neon_vcmla_rot180, Add1ArgType), |
| NEONMAP1(vcmlaq_rot270_f16, aarch64_neon_vcmla_rot270, Add1ArgType), |
| NEONMAP1(vcmlaq_rot270_f32, aarch64_neon_vcmla_rot270, Add1ArgType), |
| NEONMAP1(vcmlaq_rot270_f64, aarch64_neon_vcmla_rot270, Add1ArgType), |
| NEONMAP1(vcmlaq_rot90_f16, aarch64_neon_vcmla_rot90, Add1ArgType), |
| NEONMAP1(vcmlaq_rot90_f32, aarch64_neon_vcmla_rot90, Add1ArgType), |
| NEONMAP1(vcmlaq_rot90_f64, aarch64_neon_vcmla_rot90, Add1ArgType), |
| NEONMAP1(vcnt_v, ctpop, Add1ArgType), |
| NEONMAP1(vcntq_v, ctpop, Add1ArgType), |
| NEONMAP1(vcvt_f16_f32, aarch64_neon_vcvtfp2hf, 0), |
| NEONMAP0(vcvt_f16_s16), |
| NEONMAP0(vcvt_f16_u16), |
| NEONMAP1(vcvt_f32_f16, aarch64_neon_vcvthf2fp, 0), |
| NEONMAP0(vcvt_f32_v), |
| NEONMAP1(vcvt_n_f16_s16, aarch64_neon_vcvtfxs2fp, 0), |
| NEONMAP1(vcvt_n_f16_u16, aarch64_neon_vcvtfxu2fp, 0), |
| NEONMAP2(vcvt_n_f32_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0), |
| NEONMAP2(vcvt_n_f64_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0), |
| NEONMAP1(vcvt_n_s16_f16, aarch64_neon_vcvtfp2fxs, 0), |
| NEONMAP1(vcvt_n_s32_v, aarch64_neon_vcvtfp2fxs, 0), |
| NEONMAP1(vcvt_n_s64_v, aarch64_neon_vcvtfp2fxs, 0), |
| NEONMAP1(vcvt_n_u16_f16, aarch64_neon_vcvtfp2fxu, 0), |
| NEONMAP1(vcvt_n_u32_v, aarch64_neon_vcvtfp2fxu, 0), |
| NEONMAP1(vcvt_n_u64_v, aarch64_neon_vcvtfp2fxu, 0), |
| NEONMAP0(vcvtq_f16_s16), |
| NEONMAP0(vcvtq_f16_u16), |
| NEONMAP0(vcvtq_f32_v), |
| NEONMAP0(vcvtq_high_bf16_f32), |
| NEONMAP0(vcvtq_low_bf16_f32), |
| NEONMAP1(vcvtq_n_f16_s16, aarch64_neon_vcvtfxs2fp, 0), |
| NEONMAP1(vcvtq_n_f16_u16, aarch64_neon_vcvtfxu2fp, 0), |
| NEONMAP2(vcvtq_n_f32_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0), |
| NEONMAP2(vcvtq_n_f64_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0), |
| NEONMAP1(vcvtq_n_s16_f16, aarch64_neon_vcvtfp2fxs, 0), |
| NEONMAP1(vcvtq_n_s32_v, aarch64_neon_vcvtfp2fxs, 0), |
| NEONMAP1(vcvtq_n_s64_v, aarch64_neon_vcvtfp2fxs, 0), |
| NEONMAP1(vcvtq_n_u16_f16, aarch64_neon_vcvtfp2fxu, 0), |
| NEONMAP1(vcvtq_n_u32_v, aarch64_neon_vcvtfp2fxu, 0), |
| NEONMAP1(vcvtq_n_u64_v, aarch64_neon_vcvtfp2fxu, 0), |
| NEONMAP1(vcvtx_f32_v, aarch64_neon_fcvtxn, AddRetType | Add1ArgType), |
| NEONMAP1(vdot_s32, aarch64_neon_sdot, 0), |
| NEONMAP1(vdot_u32, aarch64_neon_udot, 0), |
| NEONMAP1(vdotq_s32, aarch64_neon_sdot, 0), |
| NEONMAP1(vdotq_u32, aarch64_neon_udot, 0), |
| NEONMAP2(veor3q_s16, aarch64_crypto_eor3u, aarch64_crypto_eor3s, Add1ArgType | UnsignedAlts), |
| NEONMAP2(veor3q_s32, aarch64_crypto_eor3u, aarch64_crypto_eor3s, Add1ArgType | UnsignedAlts), |
| NEONMAP2(veor3q_s64, aarch64_crypto_eor3u, aarch64_crypto_eor3s, Add1ArgType | UnsignedAlts), |
| NEONMAP2(veor3q_s8, aarch64_crypto_eor3u, aarch64_crypto_eor3s, Add1ArgType | UnsignedAlts), |
| NEONMAP2(veor3q_u16, aarch64_crypto_eor3u, aarch64_crypto_eor3s, Add1ArgType | UnsignedAlts), |
| NEONMAP2(veor3q_u32, aarch64_crypto_eor3u, aarch64_crypto_eor3s, Add1ArgType | UnsignedAlts), |
| NEONMAP2(veor3q_u64, aarch64_crypto_eor3u, aarch64_crypto_eor3s, Add1ArgType | UnsignedAlts), |
| NEONMAP2(veor3q_u8, aarch64_crypto_eor3u, aarch64_crypto_eor3s, Add1ArgType | UnsignedAlts), |
| NEONMAP0(vext_v), |
| NEONMAP0(vextq_v), |
| NEONMAP0(vfma_v), |
| NEONMAP0(vfmaq_v), |
| NEONMAP1(vfmlal_high_f16, aarch64_neon_fmlal2, 0), |
| NEONMAP1(vfmlal_low_f16, aarch64_neon_fmlal, 0), |
| NEONMAP1(vfmlalq_high_f16, aarch64_neon_fmlal2, 0), |
| NEONMAP1(vfmlalq_low_f16, aarch64_neon_fmlal, 0), |
| NEONMAP1(vfmlsl_high_f16, aarch64_neon_fmlsl2, 0), |
| NEONMAP1(vfmlsl_low_f16, aarch64_neon_fmlsl, 0), |
| NEONMAP1(vfmlslq_high_f16, aarch64_neon_fmlsl2, 0), |
| NEONMAP1(vfmlslq_low_f16, aarch64_neon_fmlsl, 0), |
| NEONMAP2(vhadd_v, aarch64_neon_uhadd, aarch64_neon_shadd, Add1ArgType | UnsignedAlts), |
| NEONMAP2(vhaddq_v, aarch64_neon_uhadd, aarch64_neon_shadd, Add1ArgType | UnsignedAlts), |
| NEONMAP2(vhsub_v, aarch64_neon_uhsub, aarch64_neon_shsub, Add1ArgType | UnsignedAlts), |
| NEONMAP2(vhsubq_v, aarch64_neon_uhsub, aarch64_neon_shsub, Add1ArgType | UnsignedAlts), |
| NEONMAP1(vld1_x2_v, aarch64_neon_ld1x2, 0), |
| NEONMAP1(vld1_x3_v, aarch64_neon_ld1x3, 0), |
| NEONMAP1(vld1_x4_v, aarch64_neon_ld1x4, 0), |
| NEONMAP1(vld1q_x2_v, aarch64_neon_ld1x2, 0), |
| NEONMAP1(vld1q_x3_v, aarch64_neon_ld1x3, 0), |
| NEONMAP1(vld1q_x4_v, aarch64_neon_ld1x4, 0), |
| NEONMAP1(vmmlaq_s32, aarch64_neon_smmla, 0), |
| NEONMAP1(vmmlaq_u32, aarch64_neon_ummla, 0), |
| NEONMAP0(vmovl_v), |
| NEONMAP0(vmovn_v), |
| NEONMAP1(vmul_v, aarch64_neon_pmul, Add1ArgType), |
| NEONMAP1(vmulq_v, aarch64_neon_pmul, Add1ArgType), |
| NEONMAP1(vpadd_v, aarch64_neon_addp, Add1ArgType), |
| NEONMAP2(vpaddl_v, aarch64_neon_uaddlp, aarch64_neon_saddlp, UnsignedAlts), |
| NEONMAP2(vpaddlq_v, aarch64_neon_uaddlp, aarch64_neon_saddlp, UnsignedAlts), |
| NEONMAP1(vpaddq_v, aarch64_neon_addp, Add1ArgType), |
| NEONMAP1(vqabs_v, aarch64_neon_sqabs, Add1ArgType), |
| NEONMAP1(vqabsq_v, aarch64_neon_sqabs, Add1ArgType), |
| NEONMAP2(vqadd_v, aarch64_neon_uqadd, aarch64_neon_sqadd, Add1ArgType | UnsignedAlts), |
| NEONMAP2(vqaddq_v, aarch64_neon_uqadd, aarch64_neon_sqadd, Add1ArgType | UnsignedAlts), |
| NEONMAP2(vqdmlal_v, aarch64_neon_sqdmull, aarch64_neon_sqadd, 0), |
| NEONMAP2(vqdmlsl_v, aarch64_neon_sqdmull, aarch64_neon_sqsub, 0), |
| NEONMAP1(vqdmulh_lane_v, aarch64_neon_sqdmulh_lane, 0), |
| NEONMAP1(vqdmulh_laneq_v, aarch64_neon_sqdmulh_laneq, 0), |
| NEONMAP1(vqdmulh_v, aarch64_neon_sqdmulh, Add1ArgType), |
| NEONMAP1(vqdmulhq_lane_v, aarch64_neon_sqdmulh_lane, 0), |
| NEONMAP1(vqdmulhq_laneq_v, aarch64_neon_sqdmulh_laneq, 0), |
| NEONMAP1(vqdmulhq_v, aarch64_neon_sqdmulh, Add1ArgType), |
| NEONMAP1(vqdmull_v, aarch64_neon_sqdmull, Add1ArgType), |
| NEONMAP2(vqmovn_v, aarch64_neon_uqxtn, aarch64_neon_sqxtn, Add1ArgType | UnsignedAlts), |
| NEONMAP1(vqmovun_v, aarch64_neon_sqxtun, Add1ArgType), |
| NEONMAP1(vqneg_v, aarch64_neon_sqneg, Add1ArgType), |
| NEONMAP1(vqnegq_v, aarch64_neon_sqneg, Add1ArgType), |
| NEONMAP1(vqrdmlah_s16, aarch64_neon_sqrdmlah, Add1ArgType), |
| NEONMAP1(vqrdmlah_s32, aarch64_neon_sqrdmlah, Add1ArgType), |
| NEONMAP1(vqrdmlahq_s16, aarch64_neon_sqrdmlah, Add1ArgType), |
| NEONMAP1(vqrdmlahq_s32, aarch64_neon_sqrdmlah, Add1ArgType), |
| NEONMAP1(vqrdmlsh_s16, aarch64_neon_sqrdmlsh, Add1ArgType), |
| NEONMAP1(vqrdmlsh_s32, aarch64_neon_sqrdmlsh, Add1ArgType), |
| NEONMAP1(vqrdmlshq_s16, aarch64_neon_sqrdmlsh, Add1ArgType), |
| NEONMAP1(vqrdmlshq_s32, aarch64_neon_sqrdmlsh, Add1ArgType), |
| NEONMAP1(vqrdmulh_lane_v, aarch64_neon_sqrdmulh_lane, 0), |
| NEONMAP1(vqrdmulh_laneq_v, aarch64_neon_sqrdmulh_laneq, 0), |
| NEONMAP1(vqrdmulh_v, aarch64_neon_sqrdmulh, Add1ArgType), |
| NEONMAP1(vqrdmulhq_lane_v, aarch64_neon_sqrdmulh_lane, 0), |
| NEONMAP1(vqrdmulhq_laneq_v, aarch64_neon_sqrdmulh_laneq, 0), |
| NEONMAP1(vqrdmulhq_v, aarch64_neon_sqrdmulh, Add1ArgType), |
| NEONMAP2(vqrshl_v, aarch64_neon_uqrshl, aarch64_neon_sqrshl, Add1ArgType | UnsignedAlts), |
| NEONMAP2(vqrshlq_v, aarch64_neon_uqrshl, aarch64_neon_sqrshl, Add1ArgType | UnsignedAlts), |
| NEONMAP2(vqshl_n_v, aarch64_neon_uqshl, aarch64_neon_sqshl, UnsignedAlts), |
| NEONMAP2(vqshl_v, aarch64_neon_uqshl, aarch64_neon_sqshl, Add1ArgType | UnsignedAlts), |
| NEONMAP2(vqshlq_n_v, aarch64_neon_uqshl, aarch64_neon_sqshl,UnsignedAlts), |
| NEONMAP2(vqshlq_v, aarch64_neon_uqshl, aarch64_neon_sqshl, Add1ArgType | UnsignedAlts), |
| NEONMAP1(vqshlu_n_v, aarch64_neon_sqshlu, 0), |
| NEONMAP1(vqshluq_n_v, aarch64_neon_sqshlu, 0), |
| NEONMAP2(vqsub_v, aarch64_neon_uqsub, aarch64_neon_sqsub, Add1ArgType | UnsignedAlts), |
| NEONMAP2(vqsubq_v, aarch64_neon_uqsub, aarch64_neon_sqsub, Add1ArgType | UnsignedAlts), |
| NEONMAP1(vraddhn_v, aarch64_neon_raddhn, Add1ArgType), |
| NEONMAP1(vrax1q_u64, aarch64_crypto_rax1, 0), |
| NEONMAP2(vrecpe_v, aarch64_neon_frecpe, aarch64_neon_urecpe, 0), |
| NEONMAP2(vrecpeq_v, aarch64_neon_frecpe, aarch64_neon_urecpe, 0), |
| NEONMAP1(vrecps_v, aarch64_neon_frecps, Add1ArgType), |
| NEONMAP1(vrecpsq_v, aarch64_neon_frecps, Add1ArgType), |
| NEONMAP2(vrhadd_v, aarch64_neon_urhadd, aarch64_neon_srhadd, Add1ArgType | UnsignedAlts), |
| NEONMAP2(vrhaddq_v, aarch64_neon_urhadd, aarch64_neon_srhadd, Add1ArgType | UnsignedAlts), |
| NEONMAP1(vrnd32x_f32, aarch64_neon_frint32x, Add1ArgType), |
| NEONMAP1(vrnd32x_f64, aarch64_neon_frint32x, Add1ArgType), |
| NEONMAP1(vrnd32xq_f32, aarch64_neon_frint32x, Add1ArgType), |
| NEONMAP1(vrnd32xq_f64, aarch64_neon_frint32x, Add1ArgType), |
| NEONMAP1(vrnd32z_f32, aarch64_neon_frint32z, Add1ArgType), |
| NEONMAP1(vrnd32z_f64, aarch64_neon_frint32z, Add1ArgType), |
| NEONMAP1(vrnd32zq_f32, aarch64_neon_frint32z, Add1ArgType), |
| NEONMAP1(vrnd32zq_f64, aarch64_neon_frint32z, Add1ArgType), |
| NEONMAP1(vrnd64x_f32, aarch64_neon_frint64x, Add1ArgType), |
| NEONMAP1(vrnd64x_f64, aarch64_neon_frint64x, Add1ArgType), |
| NEONMAP1(vrnd64xq_f32, aarch64_neon_frint64x, Add1ArgType), |
| NEONMAP1(vrnd64xq_f64, aarch64_neon_frint64x, Add1ArgType), |
| NEONMAP1(vrnd64z_f32, aarch64_neon_frint64z, Add1ArgType), |
| NEONMAP1(vrnd64z_f64, aarch64_neon_frint64z, Add1ArgType), |
| NEONMAP1(vrnd64zq_f32, aarch64_neon_frint64z, Add1ArgType), |
| NEONMAP1(vrnd64zq_f64, aarch64_neon_frint64z, Add1ArgType), |
| NEONMAP0(vrndi_v), |
| NEONMAP0(vrndiq_v), |
| NEONMAP2(vrshl_v, aarch64_neon_urshl, aarch64_neon_srshl, Add1ArgType | UnsignedAlts), |
| NEONMAP2(vrshlq_v, aarch64_neon_urshl, aarch64_neon_srshl, Add1ArgType | UnsignedAlts), |
| NEONMAP2(vrshr_n_v, aarch64_neon_urshl, aarch64_neon_srshl, UnsignedAlts), |
| NEONMAP2(vrshrq_n_v, aarch64_neon_urshl, aarch64_neon_srshl, UnsignedAlts), |
| NEONMAP2(vrsqrte_v, aarch64_neon_frsqrte, aarch64_neon_ursqrte, 0), |
| NEONMAP2(vrsqrteq_v, aarch64_neon_frsqrte, aarch64_neon_ursqrte, 0), |
| NEONMAP1(vrsqrts_v, aarch64_neon_frsqrts, Add1ArgType), |
| NEONMAP1(vrsqrtsq_v, aarch64_neon_frsqrts, Add1ArgType), |
| NEONMAP1(vrsubhn_v, aarch64_neon_rsubhn, Add1ArgType), |
| NEONMAP1(vsha1su0q_u32, aarch64_crypto_sha1su0, 0), |
| NEONMAP1(vsha1su1q_u32, aarch64_crypto_sha1su1, 0), |
| NEONMAP1(vsha256h2q_u32, aarch64_crypto_sha256h2, 0), |
| NEONMAP1(vsha256hq_u32, aarch64_crypto_sha256h, 0), |
| NEONMAP1(vsha256su0q_u32, aarch64_crypto_sha256su0, 0), |
| NEONMAP1(vsha256su1q_u32, aarch64_crypto_sha256su1, 0), |
| NEONMAP1(vsha512h2q_u64, aarch64_crypto_sha512h2, 0), |
| NEONMAP1(vsha512hq_u64, aarch64_crypto_sha512h, 0), |
| NEONMAP1(vsha512su0q_u64, aarch64_crypto_sha512su0, 0), |
| NEONMAP1(vsha512su1q_u64, aarch64_crypto_sha512su1, 0), |
| NEONMAP0(vshl_n_v), |
| NEONMAP2(vshl_v, aarch64_neon_ushl, aarch64_neon_sshl, Add1ArgType | UnsignedAlts), |
| NEONMAP0(vshll_n_v), |
| NEONMAP0(vshlq_n_v), |
| NEONMAP2(vshlq_v, aarch64_neon_ushl, aarch64_neon_sshl, Add1ArgType | UnsignedAlts), |
| NEONMAP0(vshr_n_v), |
| NEONMAP0(vshrn_n_v), |
| NEONMAP0(vshrq_n_v), |
| NEONMAP1(vsm3partw1q_u32, aarch64_crypto_sm3partw1, 0), |
| NEONMAP1(vsm3partw2q_u32, aarch64_crypto_sm3partw2, 0), |
| NEONMAP1(vsm3ss1q_u32, aarch64_crypto_sm3ss1, 0), |
| NEONMAP1(vsm3tt1aq_u32, aarch64_crypto_sm3tt1a, 0), |
| NEONMAP1(vsm3tt1bq_u32, aarch64_crypto_sm3tt1b, 0), |
| NEONMAP1(vsm3tt2aq_u32, aarch64_crypto_sm3tt2a, 0), |
| NEONMAP1(vsm3tt2bq_u32, aarch64_crypto_sm3tt2b, 0), |
| NEONMAP1(vsm4ekeyq_u32, aarch64_crypto_sm4ekey, 0), |
| NEONMAP1(vsm4eq_u32, aarch64_crypto_sm4e, 0), |
| NEONMAP1(vst1_x2_v, aarch64_neon_st1x2, 0), |
| NEONMAP1(vst1_x3_v, aarch64_neon_st1x3, 0), |
| NEONMAP1(vst1_x4_v, aarch64_neon_st1x4, 0), |
| NEONMAP1(vst1q_x2_v, aarch64_neon_st1x2, 0), |
| NEONMAP1(vst1q_x3_v, aarch64_neon_st1x3, 0), |
| NEONMAP1(vst1q_x4_v, aarch64_neon_st1x4, 0), |
| NEONMAP0(vsubhn_v), |
| NEONMAP0(vtst_v), |
| NEONMAP0(vtstq_v), |
| NEONMAP1(vusdot_s32, aarch64_neon_usdot, 0), |
| NEONMAP1(vusdotq_s32, aarch64_neon_usdot, 0), |
| NEONMAP1(vusmmlaq_s32, aarch64_neon_usmmla, 0), |
| NEONMAP1(vxarq_u64, aarch64_crypto_xar, 0), |
| }; |
| |
| static const ARMVectorIntrinsicInfo AArch64SISDIntrinsicMap[] = { |
| NEONMAP1(vabdd_f64, aarch64_sisd_fabd, Add1ArgType), |
| NEONMAP1(vabds_f32, aarch64_sisd_fabd, Add1ArgType), |
| NEONMAP1(vabsd_s64, aarch64_neon_abs, Add1ArgType), |
| NEONMAP1(vaddlv_s32, aarch64_neon_saddlv, AddRetType | Add1ArgType), |
| NEONMAP1(vaddlv_u32, aarch64_neon_uaddlv, AddRetType | Add1ArgType), |
| NEONMAP1(vaddlvq_s32, aarch64_neon_saddlv, AddRetType | Add1ArgType), |
| NEONMAP1(vaddlvq_u32, aarch64_neon_uaddlv, AddRetType | Add1ArgType), |
| NEONMAP1(vaddv_f32, aarch64_neon_faddv, AddRetType | Add1ArgType), |
| NEONMAP1(vaddv_s32, aarch64_neon_saddv, AddRetType | Add1ArgType), |
| NEONMAP1(vaddv_u32, aarch64_neon_uaddv, AddRetType | Add1ArgType), |
| NEONMAP1(vaddvq_f32, aarch64_neon_faddv, AddRetType | Add1ArgType), |
| NEONMAP1(vaddvq_f64, aarch64_neon_faddv, AddRetType | Add1ArgType), |
| NEONMAP1(vaddvq_s32, aarch64_neon_saddv, AddRetType | Add1ArgType), |
| NEONMAP1(vaddvq_s64, aarch64_neon_saddv, AddRetType | Add1ArgType), |
| NEONMAP1(vaddvq_u32, aarch64_neon_uaddv, AddRetType | Add1ArgType), |
| NEONMAP1(vaddvq_u64, aarch64_neon_uaddv, AddRetType | Add1ArgType), |
| NEONMAP1(vcaged_f64, aarch64_neon_facge, AddRetType | Add1ArgType), |
| NEONMAP1(vcages_f32, aarch64_neon_facge, AddRetType | Add1ArgType), |
| NEONMAP1(vcagtd_f64, aarch64_neon_facgt, AddRetType | Add1ArgType), |
| NEONMAP1(vcagts_f32, aarch64_neon_facgt, AddRetType | Add1ArgType), |
| NEONMAP1(vcaled_f64, aarch64_neon_facge, AddRetType | Add1ArgType), |
| NEONMAP1(vcales_f32, aarch64_neon_facge, AddRetType | Add1ArgType), |
| NEONMAP1(vcaltd_f64, aarch64_neon_facgt, AddRetType | Add1ArgType), |
| NEONMAP1(vcalts_f32, aarch64_neon_facgt, AddRetType | Add1ArgType), |
| NEONMAP1(vcvtad_s64_f64, aarch64_neon_fcvtas, AddRetType | Add1ArgType), |
| NEONMAP1(vcvtad_u64_f64, aarch64_neon_fcvtau, AddRetType | Add1ArgType), |
| NEONMAP1(vcvtas_s32_f32, aarch64_neon_fcvtas, AddRetType | Add1ArgType), |
| NEONMAP1(vcvtas_u32_f32, aarch64_neon_fcvtau, AddRetType | Add1ArgType), |
| NEONMAP1(vcvtd_n_f64_s64, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType), |
| NEONMAP1(vcvtd_n_f64_u64, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType), |
| NEONMAP1(vcvtd_n_s64_f64, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType), |
| NEONMAP1(vcvtd_n_u64_f64, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType), |
| NEONMAP1(vcvtd_s64_f64, aarch64_neon_fcvtzs, AddRetType | Add1ArgType), |
| NEONMAP1(vcvtd_u64_f64, aarch64_neon_fcvtzu, AddRetType | Add1ArgType), |
| NEONMAP0(vcvth_bf16_f32), |
| NEONMAP1(vcvtmd_s64_f64, aarch64_neon_fcvtms, AddRetType | Add1ArgType), |
| NEONMAP1(vcvtmd_u64_f64, aarch64_neon_fcvtmu, AddRetType | Add1ArgType), |
| NEONMAP1(vcvtms_s32_f32, aarch64_neon_fcvtms, AddRetType | Add1ArgType), |
| NEONMAP1(vcvtms_u32_f32, aarch64_neon_fcvtmu, AddRetType | Add1ArgType), |
| NEONMAP1(vcvtnd_s64_f64, aarch64_neon_fcvtns, AddRetType | Add1ArgType), |
| NEONMAP1(vcvtnd_u64_f64, aarch64_neon_fcvtnu, AddRetType | Add1ArgType), |
| NEONMAP1(vcvtns_s32_f32, aarch64_neon_fcvtns, AddRetType | Add1ArgType), |
| NEONMAP1(vcvtns_u32_f32, aarch64_neon_fcvtnu, AddRetType | Add1ArgType), |
| NEONMAP1(vcvtpd_s64_f64, aarch64_neon_fcvtps, AddRetType | Add1ArgType), |
| NEONMAP1(vcvtpd_u64_f64, aarch64_neon_fcvtpu, AddRetType | Add1ArgType), |
| NEONMAP1(vcvtps_s32_f32, aarch64_neon_fcvtps, AddRetType | Add1ArgType), |
| NEONMAP1(vcvtps_u32_f32, aarch64_neon_fcvtpu, AddRetType | Add1ArgType), |
| NEONMAP1(vcvts_n_f32_s32, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType), |
| NEONMAP1(vcvts_n_f32_u32, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType), |
| NEONMAP1(vcvts_n_s32_f32, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType), |
| NEONMAP1(vcvts_n_u32_f32, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType), |
| NEONMAP1(vcvts_s32_f32, aarch64_neon_fcvtzs, AddRetType | Add1ArgType), |
| NEONMAP1(vcvts_u32_f32, aarch64_neon_fcvtzu, AddRetType | Add1ArgType), |
| NEONMAP1(vcvtxd_f32_f64, aarch64_sisd_fcvtxn, 0), |
| NEONMAP1(vmaxnmv_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType), |
| NEONMAP1(vmaxnmvq_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType), |
| NEONMAP1(vmaxnmvq_f64, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType), |
| NEONMAP1(vmaxv_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType), |
| NEONMAP1(vmaxv_s32, aarch64_neon_smaxv, AddRetType | Add1ArgType), |
| NEONMAP1(vmaxv_u32, aarch64_neon_umaxv, AddRetType | Add1ArgType), |
| NEONMAP1(vmaxvq_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType), |
| NEONMAP1(vmaxvq_f64, aarch64_neon_fmaxv, AddRetType | Add1ArgType), |
| NEONMAP1(vmaxvq_s32, aarch64_neon_smaxv, AddRetType | Add1ArgType), |
| NEONMAP1(vmaxvq_u32, aarch64_neon_umaxv, AddRetType | Add1ArgType), |
| NEONMAP1(vminnmv_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType), |
| NEONMAP1(vminnmvq_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType), |
| NEONMAP1(vminnmvq_f64, aarch64_neon_fminnmv, AddRetType | Add1ArgType), |
| NEONMAP1(vminv_f32, aarch64_neon_fminv, AddRetType | Add1ArgType), |
| NEONMAP1(vminv_s32, aarch64_neon_sminv, AddRetType | Add1ArgType), |
| NEONMAP1(vminv_u32, aarch64_neon_uminv, AddRetType | Add1ArgType), |
| NEONMAP1(vminvq_f32, aarch64_neon_fminv, AddRetType | Add1ArgType), |
| NEONMAP1(vminvq_f64, aarch64_neon_fminv, AddRetType | Add1ArgType), |
| NEONMAP1(vminvq_s32, aarch64_neon_sminv, AddRetType | Add1ArgType), |
| NEONMAP1(vminvq_u32, aarch64_neon_uminv, AddRetType | Add1ArgType), |
| NEONMAP1(vmull_p64, aarch64_neon_pmull64, 0), |
| NEONMAP1(vmulxd_f64, aarch64_neon_fmulx, Add1ArgType), |
| NEONMAP1(vmulxs_f32, aarch64_neon_fmulx, Add1ArgType), |
| NEONMAP1(vpaddd_s64, aarch64_neon_uaddv, AddRetType | Add1ArgType), |
| NEONMAP1(vpaddd_u64, aarch64_neon_uaddv, AddRetType | Add1ArgType), |
| NEONMAP1(vpmaxnmqd_f64, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType), |
| NEONMAP1(vpmaxnms_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType), |
| NEONMAP1(vpmaxqd_f64, aarch64_neon_fmaxv, AddRetType | Add1ArgType), |
| NEONMAP1(vpmaxs_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType), |
| NEONMAP1(vpminnmqd_f64, aarch64_neon_fminnmv, AddRetType | Add1ArgType), |
| NEONMAP1(vpminnms_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType), |
| NEONMAP1(vpminqd_f64, aarch64_neon_fminv, AddRetType | Add1ArgType), |
| NEONMAP1(vpmins_f32, aarch64_neon_fminv, AddRetType | Add1ArgType), |
| NEONMAP1(vqabsb_s8, aarch64_neon_sqabs, Vectorize1ArgType | Use64BitVectors), |
| NEONMAP1(vqabsd_s64, aarch64_neon_sqabs, Add1ArgType), |
| NEONMAP1(vqabsh_s16, aarch64_neon_sqabs, Vectorize1ArgType | Use64BitVectors), |
| NEONMAP1(vqabss_s32, aarch64_neon_sqabs, Add1ArgType), |
| NEONMAP1(vqaddb_s8, aarch64_neon_sqadd, Vectorize1ArgType | Use64BitVectors), |
| NEONMAP1(vqaddb_u8, aarch64_neon_uqadd, Vectorize1ArgType | Use64BitVectors), |
| NEONMAP1(vqaddd_s64, aarch64_neon_sqadd, Add1ArgType), |
| NEONMAP1(vqaddd_u64, aarch64_neon_uqadd, Add1ArgType), |
| NEONMAP1(vqaddh_s16, aarch64_neon_sqadd, Vectorize1ArgType | Use64BitVectors), |
| NEONMAP1(vqaddh_u16, aarch64_neon_uqadd, Vectorize1ArgType | Use64BitVectors), |
| NEONMAP1(vqadds_s32, aarch64_neon_sqadd, Add1ArgType), |
| NEONMAP1(vqadds_u32, aarch64_neon_uqadd, Add1ArgType), |
| NEONMAP1(vqdmulhh_s16, aarch64_neon_sqdmulh, Vectorize1ArgType | Use64BitVectors), |
| NEONMAP1(vqdmulhs_s32, aarch64_neon_sqdmulh, Add1ArgType), |
| NEONMAP1(vqdmullh_s16, aarch64_neon_sqdmull, VectorRet | Use128BitVectors), |
| NEONMAP1(vqdmulls_s32, aarch64_neon_sqdmulls_scalar, 0), |
| NEONMAP1(vqmovnd_s64, aarch64_neon_scalar_sqxtn, AddRetType | Add1ArgType), |
| NEONMAP1(vqmovnd_u64, aarch64_neon_scalar_uqxtn, AddRetType | Add1ArgType), |
| NEONMAP1(vqmovnh_s16, aarch64_neon_sqxtn, VectorRet | Use64BitVectors), |
| NEONMAP1(vqmovnh_u16, aarch64_neon_uqxtn, VectorRet | Use64BitVectors), |
| NEONMAP1(vqmovns_s32, aarch64_neon_sqxtn, VectorRet | Use64BitVectors), |
| NEONMAP1(vqmovns_u32, aarch64_neon_uqxtn, VectorRet | Use64BitVectors), |
| NEONMAP1(vqmovund_s64, aarch64_neon_scalar_sqxtun, AddRetType | Add1ArgType), |
| NEONMAP1(vqmovunh_s16, aarch64_neon_sqxtun, VectorRet | Use64BitVectors), |
| NEONMAP1(vqmovuns_s32, aarch64_neon_sqxtun, VectorRet | Use64BitVectors), |
| NEONMAP1(vqnegb_s8, aarch64_neon_sqneg, Vectorize1ArgType | Use64BitVectors), |
| NEONMAP1(vqnegd_s64, aarch64_neon_sqneg, Add1ArgType), |
| NEONMAP1(vqnegh_s16, aarch64_neon_sqneg, Vectorize1ArgType | Use64BitVectors), |
| NEONMAP1(vqnegs_s32, aarch64_neon_sqneg, Add1ArgType), |
| NEONMAP1(vqrdmlahh_s16, aarch64_neon_sqrdmlah, Vectorize1ArgType | Use64BitVectors), |
| NEONMAP1(vqrdmlahs_s32, aarch64_neon_sqrdmlah, Add1ArgType), |
| NEONMAP1(vqrdmlshh_s16, aarch64_neon_sqrdmlsh, Vectorize1ArgType | Use64BitVectors), |
| NEONMAP1(vqrdmlshs_s32, aarch64_neon_sqrdmlsh, Add1ArgType), |
| NEONMAP1(vqrdmulhh_s16, aarch64_neon_sqrdmulh, Vectorize1ArgType | Use64BitVectors), |
| NEONMAP1(vqrdmulhs_s32, aarch64_neon_sqrdmulh, Add1ArgType), |
| NEONMAP1(vqrshlb_s8, aarch64_neon_sqrshl, Vectorize1ArgType | Use64BitVectors), |
| NEONMAP1(vqrshlb_u8, aarch64_neon_uqrshl, Vectorize1ArgType | Use64BitVectors), |
| NEONMAP1(vqrshld_s64, aarch64_neon_sqrshl, Add1ArgType), |
| NEONMAP1(vqrshld_u64, aarch64_neon_uqrshl, Add1ArgType), |
| NEONMAP1(vqrshlh_s16, aarch64_neon_sqrshl, Vectorize1ArgType | Use64BitVectors), |
| NEONMAP1(vqrshlh_u16, aarch64_neon_uqrshl, Vectorize1ArgType | Use64BitVectors), |
| NEONMAP1(vqrshls_s32, aarch64_neon_sqrshl, Add1ArgType), |
| NEONMAP1(vqrshls_u32, aarch64_neon_uqrshl, Add1ArgType), |
| NEONMAP1(vqrshrnd_n_s64, aarch64_neon_sqrshrn, AddRetType), |
| NEONMAP1(vqrshrnd_n_u64, aarch64_neon_uqrshrn, AddRetType), |
| NEONMAP1(vqrshrnh_n_s16, aarch64_neon_sqrshrn, VectorRet | Use64BitVectors), |
| NEONMAP1(vqrshrnh_n_u16, aarch64_neon_uqrshrn, VectorRet | Use64BitVectors), |
| NEONMAP1(vqrshrns_n_s32, aarch64_neon_sqrshrn, VectorRet | Use64BitVectors), |
| NEONMAP1(vqrshrns_n_u32, aarch64_neon_uqrshrn, VectorRet | Use64BitVectors), |
| NEONMAP1(vqrshrund_n_s64, aarch64_neon_sqrshrun, AddRetType), |
| NEONMAP1(vqrshrunh_n_s16, aarch64_neon_sqrshrun, VectorRet | Use64BitVectors), |
| NEONMAP1(vqrshruns_n_s32, aarch64_neon_sqrshrun, VectorRet | Use64BitVectors), |
| NEONMAP1(vqshlb_n_s8, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors), |
| NEONMAP1(vqshlb_n_u8, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors), |
| NEONMAP1(vqshlb_s8, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors), |
| NEONMAP1(vqshlb_u8, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors), |
| NEONMAP1(vqshld_s64, aarch64_neon_sqshl, Add1ArgType), |
| NEONMAP1(vqshld_u64, aarch64_neon_uqshl, Add1ArgType), |
| NEONMAP1(vqshlh_n_s16, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors), |
| NEONMAP1(vqshlh_n_u16, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors), |
| NEONMAP1(vqshlh_s16, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors), |
| NEONMAP1(vqshlh_u16, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors), |
| NEONMAP1(vqshls_n_s32, aarch64_neon_sqshl, Add1ArgType), |
| NEONMAP1(vqshls_n_u32, aarch64_neon_uqshl, Add1ArgType), |
| NEONMAP1(vqshls_s32, aarch64_neon_sqshl, Add1ArgType), |
| NEONMAP1(vqshls_u32, aarch64_neon_uqshl, Add1ArgType), |
| NEONMAP1(vqshlub_n_s8, aarch64_neon_sqshlu, Vectorize1ArgType | Use64BitVectors), |
| NEONMAP1(vqshluh_n_s16, aarch64_neon_sqshlu, Vectorize1ArgType | Use64BitVectors), |
| NEONMAP1(vqshlus_n_s32, aarch64_neon_sqshlu, Add1ArgType), |
| NEONMAP1(vqshrnd_n_s64, aarch64_neon_sqshrn, AddRetType), |
| NEONMAP1(vqshrnd_n_u64, aarch64_neon_uqshrn, AddRetType), |
| NEONMAP1(vqshrnh_n_s16, aarch64_neon_sqshrn, VectorRet | Use64BitVectors), |
| NEONMAP1(vqshrnh_n_u16, aarch64_neon_uqshrn, VectorRet | Use64BitVectors), |
| NEONMAP1(vqshrns_n_s32, aarch64_neon_sqshrn, VectorRet | Use64BitVectors), |
| NEONMAP1(vqshrns_n_u32, aarch64_neon_uqshrn, VectorRet | Use64BitVectors), |
| NEONMAP1(vqshrund_n_s64, aarch64_neon_sqshrun, AddRetType), |
| NEONMAP1(vqshrunh_n_s16, aarch64_neon_sqshrun, VectorRet | Use64BitVectors), |
| NEONMAP1(vqshruns_n_s32, aarch64_neon_sqshrun, VectorRet | Use64BitVectors), |
| NEONMAP1(vqsubb_s8, aarch64_neon_sqsub, Vectorize1ArgType | Use64BitVectors), |
| NEONMAP1(vqsubb_u8, aarch64_neon_uqsub, Vectorize1ArgType | Use64BitVectors), |
| NEONMAP1(vqsubd_s64, aarch64_neon_sqsub, Add1ArgType), |
| NEONMAP1(vqsubd_u64, aarch64_neon_uqsub, Add1ArgType), |
| NEONMAP1(vqsubh_s16, aarch64_neon_sqsub, Vectorize1ArgType | Use64BitVectors), |
| NEONMAP1(vqsubh_u16, aarch64_neon_uqsub, Vectorize1ArgType | Use64BitVectors), |
| NEONMAP1(vqsubs_s32, aarch64_neon_sqsub, Add1ArgType), |
| NEONMAP1(vqsubs_u32, aarch64_neon_uqsub, Add1ArgType), |
| NEONMAP1(vrecped_f64, aarch64_neon_frecpe, Add1ArgType), |
| NEONMAP1(vrecpes_f32, aarch64_neon_frecpe, Add1ArgType), |
| NEONMAP1(vrecpxd_f64, aarch64_neon_frecpx, Add1ArgType), |
| NEONMAP1(vrecpxs_f32, aarch64_neon_frecpx, Add1ArgType), |
| NEONMAP1(vrshld_s64, aarch64_neon_srshl, Add1ArgType), |
| NEONMAP1(vrshld_u64, aarch64_neon_urshl, Add1ArgType), |
| NEONMAP1(vrsqrted_f64, aarch64_neon_frsqrte, Add1ArgType), |
| NEONMAP1(vrsqrtes_f32, aarch64_neon_frsqrte, Add1ArgType), |
| NEONMAP1(vrsqrtsd_f64, aarch64_neon_frsqrts, Add1ArgType), |
| NEONMAP1(vrsqrtss_f32, aarch64_neon_frsqrts, Add1ArgType), |
| NEONMAP1(vsha1cq_u32, aarch64_crypto_sha1c, 0), |
| NEONMAP1(vsha1h_u32, aarch64_crypto_sha1h, 0), |
| NEONMAP1(vsha1mq_u32, aarch64_crypto_sha1m, 0), |
| NEONMAP1(vsha1pq_u32, aarch64_crypto_sha1p, 0), |
| NEONMAP1(vshld_s64, aarch64_neon_sshl, Add1ArgType), |
| NEONMAP1(vshld_u64, aarch64_neon_ushl, Add1ArgType), |
| NEONMAP1(vslid_n_s64, aarch64_neon_vsli, Vectorize1ArgType), |
| NEONMAP1(vslid_n_u64, aarch64_neon_vsli, Vectorize1ArgType), |
| NEONMAP1(vsqaddb_u8, aarch64_neon_usqadd, Vectorize1ArgType | Use64BitVectors), |
| NEONMAP1(vsqaddd_u64, aarch64_neon_usqadd, Add1ArgType), |
| NEONMAP1(vsqaddh_u16, aarch64_neon_usqadd, Vectorize1ArgType | Use64BitVectors), |
| NEONMAP1(vsqadds_u32, aarch64_neon_usqadd, Add1ArgType), |
| NEONMAP1(vsrid_n_s64, aarch64_neon_vsri, Vectorize1ArgType), |
| NEONMAP1(vsrid_n_u64, aarch64_neon_vsri, Vectorize1ArgType), |
| NEONMAP1(vuqaddb_s8, aarch64_neon_suqadd, Vectorize1ArgType | Use64BitVectors), |
| NEONMAP1(vuqaddd_s64, aarch64_neon_suqadd, Add1ArgType), |
| NEONMAP1(vuqaddh_s16, aarch64_neon_suqadd, Vectorize1ArgType | Use64BitVectors), |
| NEONMAP1(vuqadds_s32, aarch64_neon_suqadd, Add1ArgType), |
| // FP16 scalar intrinisics go here. |
| NEONMAP1(vabdh_f16, aarch64_sisd_fabd, Add1ArgType), |
| NEONMAP1(vcvtah_s32_f16, aarch64_neon_fcvtas, AddRetType | Add1ArgType), |
| NEONMAP1(vcvtah_s64_f16, aarch64_neon_fcvtas, AddRetType | Add1ArgType), |
| NEONMAP1(vcvtah_u32_f16, aarch64_neon_fcvtau, AddRetType | Add1ArgType), |
| NEONMAP1(vcvtah_u64_f16, aarch64_neon_fcvtau, AddRetType | Add1ArgType), |
| NEONMAP1(vcvth_n_f16_s32, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType), |
| NEONMAP1(vcvth_n_f16_s64, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType), |
| NEONMAP1(vcvth_n_f16_u32, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType), |
| NEONMAP1(vcvth_n_f16_u64, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType), |
| NEONMAP1(vcvth_n_s32_f16, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType), |
| NEONMAP1(vcvth_n_s64_f16, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType), |
| NEONMAP1(vcvth_n_u32_f16, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType), |
| NEONMAP1(vcvth_n_u64_f16, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType), |
| NEONMAP1(vcvth_s32_f16, aarch64_neon_fcvtzs, AddRetType | Add1ArgType), |
| NEONMAP1(vcvth_s64_f16, aarch64_neon_fcvtzs, AddRetType | Add1ArgType), |
| NEONMAP1(vcvth_u32_f16, aarch64_neon_fcvtzu, AddRetType | Add1ArgType), |
| NEONMAP1(vcvth_u64_f16, aarch64_neon_fcvtzu, AddRetType | Add1ArgType), |
| NEONMAP1(vcvtmh_s32_f16, aarch64_neon_fcvtms, AddRetType | Add1ArgType), |
| NEONMAP1(vcvtmh_s64_f16, aarch64_neon_fcvtms, AddRetType | Add1ArgType), |
| NEONMAP1(vcvtmh_u32_f16, aarch64_neon_fcvtmu, AddRetType | Add1ArgType), |
| NEONMAP1(vcvtmh_u64_f16, aarch64_neon_fcvtmu, AddRetType | Add1ArgType), |
| NEONMAP1(vcvtnh_s32_f16, aarch64_neon_fcvtns, AddRetType | Add1ArgType), |
| NEONMAP1(vcvtnh_s64_f16, aarch64_neon_fcvtns, AddRetType | Add1ArgType), |
| NEONMAP1(vcvtnh_u32_f16, aarch64_neon_fcvtnu, AddRetType | Add1ArgType), |
| NEONMAP1(vcvtnh_u64_f16, aarch64_neon_fcvtnu, AddRetType | Add1ArgType), |
| NEONMAP1(vcvtph_s32_f16, aarch64_neon_fcvtps, AddRetType | Add1ArgType), |
| NEONMAP1(vcvtph_s64_f16, aarch64_neon_fcvtps, AddRetType | Add1ArgType), |
| NEONMAP1(vcvtph_u32_f16, aarch64_neon_fcvtpu, AddRetType | Add1ArgType), |
| NEONMAP1(vcvtph_u64_f16, aarch64_neon_fcvtpu, AddRetType | Add1ArgType), |
| NEONMAP1(vmulxh_f16, aarch64_neon_fmulx, Add1ArgType), |
| NEONMAP1(vrecpeh_f16, aarch64_neon_frecpe, Add1ArgType), |
| NEONMAP1(vrecpxh_f16, aarch64_neon_frecpx, Add1ArgType), |
| NEONMAP1(vrsqrteh_f16, aarch64_neon_frsqrte, Add1ArgType), |
| NEONMAP1(vrsqrtsh_f16, aarch64_neon_frsqrts, Add1ArgType), |
| }; |
| |
| // Some intrinsics are equivalent for codegen. |
| static const std::pair<unsigned, unsigned> NEONEquivalentIntrinsicMap[] = { |
| { NEON::BI__builtin_neon_splat_lane_bf16, NEON::BI__builtin_neon_splat_lane_v, }, |
| { NEON::BI__builtin_neon_splat_laneq_bf16, NEON::BI__builtin_neon_splat_laneq_v, }, |
| { NEON::BI__builtin_neon_splatq_lane_bf16, NEON::BI__builtin_neon_splatq_lane_v, }, |
| { NEON::BI__builtin_neon_splatq_laneq_bf16, NEON::BI__builtin_neon_splatq_laneq_v, }, |
| { NEON::BI__builtin_neon_vabd_f16, NEON::BI__builtin_neon_vabd_v, }, |
| { NEON::BI__builtin_neon_vabdq_f16, NEON::BI__builtin_neon_vabdq_v, }, |
| { NEON::BI__builtin_neon_vabs_f16, NEON::BI__builtin_neon_vabs_v, }, |
| { NEON::BI__builtin_neon_vabsq_f16, NEON::BI__builtin_neon_vabsq_v, }, |
| { NEON::BI__builtin_neon_vcage_f16, NEON::BI__builtin_neon_vcage_v, }, |
| { NEON::BI__builtin_neon_vcageq_f16, NEON::BI__builtin_neon_vcageq_v, }, |
| { NEON::BI__builtin_neon_vcagt_f16, NEON::BI__builtin_neon_vcagt_v, }, |
| { NEON::BI__builtin_neon_vcagtq_f16, NEON::BI__builtin_neon_vcagtq_v, }, |
| { NEON::BI__builtin_neon_vcale_f16, NEON::BI__builtin_neon_vcale_v, }, |
| { NEON::BI__builtin_neon_vcaleq_f16, NEON::BI__builtin_neon_vcaleq_v, }, |
| { NEON::BI__builtin_neon_vcalt_f16, NEON::BI__builtin_neon_vcalt_v, }, |
| { NEON::BI__builtin_neon_vcaltq_f16, NEON::BI__builtin_neon_vcaltq_v, }, |
| { NEON::BI__builtin_neon_vceqz_f16, NEON::BI__builtin_neon_vceqz_v, }, |
| { NEON::BI__builtin_neon_vceqzq_f16, NEON::BI__builtin_neon_vceqzq_v, }, |
| { NEON::BI__builtin_neon_vcgez_f16, NEON::BI__builtin_neon_vcgez_v, }, |
| { NEON::BI__builtin_neon_vcgezq_f16, NEON::BI__builtin_neon_vcgezq_v, }, |
| { NEON::BI__builtin_neon_vcgtz_f16, NEON::BI__builtin_neon_vcgtz_v, }, |
| { NEON::BI__builtin_neon_vcgtzq_f16, NEON::BI__builtin_neon_vcgtzq_v, }, |
| { NEON::BI__builtin_neon_vclez_f16, NEON::BI__builtin_neon_vclez_v, }, |
| { NEON::BI__builtin_neon_vclezq_f16, NEON::BI__builtin_neon_vclezq_v, }, |
| { NEON::BI__builtin_neon_vcltz_f16, NEON::BI__builtin_neon_vcltz_v, }, |
| { NEON::BI__builtin_neon_vcltzq_f16, NEON::BI__builtin_neon_vcltzq_v, }, |
| { NEON::BI__builtin_neon_vfma_f16, NEON::BI__builtin_neon_vfma_v, }, |
| { NEON::BI__builtin_neon_vfma_lane_f16, NEON::BI__builtin_neon_vfma_lane_v, }, |
| { NEON::BI__builtin_neon_vfma_laneq_f16, NEON::BI__builtin_neon_vfma_laneq_v, }, |
| { NEON::BI__builtin_neon_vfmaq_f16, NEON::BI__builtin_neon_vfmaq_v, }, |
| { NEON::BI__builtin_neon_vfmaq_lane_f16, NEON::BI__builtin_neon_vfmaq_lane_v, }, |
| { NEON::BI__builtin_neon_vfmaq_laneq_f16, NEON::BI__builtin_neon_vfmaq_laneq_v, }, |
| { NEON::BI__builtin_neon_vld1_bf16_x2, NEON::BI__builtin_neon_vld1_x2_v }, |
| { NEON::BI__builtin_neon_vld1_bf16_x3, NEON::BI__builtin_neon_vld1_x3_v }, |
| { NEON::BI__builtin_neon_vld1_bf16_x4, NEON::BI__builtin_neon_vld1_x4_v }, |
| { NEON::BI__builtin_neon_vld1_bf16, NEON::BI__builtin_neon_vld1_v }, |
| { NEON::BI__builtin_neon_vld1_dup_bf16, NEON::BI__builtin_neon_vld1_dup_v }, |
| { NEON::BI__builtin_neon_vld1_lane_bf16, NEON::BI__builtin_neon_vld1_lane_v }, |
| { NEON::BI__builtin_neon_vld1q_bf16_x2, NEON::BI__builtin_neon_vld1q_x2_v }, |
| { NEON::BI__builtin_neon_vld1q_bf16_x3, NEON::BI__builtin_neon_vld1q_x3_v }, |
| { NEON::BI__builtin_neon_vld1q_bf16_x4, NEON::BI__builtin_neon_vld1q_x4_v }, |
| { NEON::BI__builtin_neon_vld1q_bf16, NEON::BI__builtin_neon_vld1q_v }, |
| { NEON::BI__builtin_neon_vld1q_dup_bf16, NEON::BI__builtin_neon_vld1q_dup_v }, |
| { NEON::BI__builtin_neon_vld1q_lane_bf16, NEON::BI__builtin_neon_vld1q_lane_v }, |
| { NEON::BI__builtin_neon_vld2_bf16, NEON::BI__builtin_neon_vld2_v }, |
| { NEON::BI__builtin_neon_vld2_dup_bf16, NEON::BI__builtin_neon_vld2_dup_v }, |
| { NEON::BI__builtin_neon_vld2_lane_bf16, NEON::BI__builtin_neon_vld2_lane_v }, |
| { NEON::BI__builtin_neon_vld2q_bf16, NEON::BI__builtin_neon_vld2q_v }, |
| { NEON::BI__builtin_neon_vld2q_dup_bf16, NEON::BI__builtin_neon_vld2q_dup_v }, |
| { NEON::BI__builtin_neon_vld2q_lane_bf16, NEON::BI__builtin_neon_vld2q_lane_v }, |
| { NEON::BI__builtin_neon_vld3_bf16, NEON::BI__builtin_neon_vld3_v }, |
| { NEON::BI__builtin_neon_vld3_dup_bf16, NEON::BI__builtin_neon_vld3_dup_v }, |
| { NEON::BI__builtin_neon_vld3_lane_bf16, NEON::BI__builtin_neon_vld3_lane_v }, |
| { NEON::BI__builtin_neon_vld3q_bf16, NEON::BI__builtin_neon_vld3q_v }, |
| { NEON::BI__builtin_neon_vld3q_dup_bf16, NEON::BI__builtin_neon_vld3q_dup_v }, |
| { NEON::BI__builtin_neon_vld3q_lane_bf16, NEON::BI__builtin_neon_vld3q_lane_v }, |
| { NEON::BI__builtin_neon_vld4_bf16, NEON::BI__builtin_neon_vld4_v }, |
| { NEON::BI__builtin_neon_vld4_dup_bf16, NEON::BI__builtin_neon_vld4_dup_v }, |
| { NEON::BI__builtin_neon_vld4_lane_bf16, NEON::BI__builtin_neon_vld4_lane_v }, |
| { NEON::BI__builtin_neon_vld4q_bf16, NEON::BI__builtin_neon_vld4q_v }, |
| { NEON::BI__builtin_neon_vld4q_dup_bf16, NEON::BI__builtin_neon_vld4q_dup_v }, |
| { NEON::BI__builtin_neon_vld4q_lane_bf16, NEON::BI__builtin_neon_vld4q_lane_v }, |
| { NEON::BI__builtin_neon_vmax_f16, NEON::BI__builtin_neon_vmax_v, }, |
| { NEON::BI__builtin_neon_vmaxnm_f16, NEON::BI__builtin_neon_vmaxnm_v, }, |
| { NEON::BI__builtin_neon_vmaxnmq_f16, NEON::BI__builtin_neon_vmaxnmq_v, }, |
| { NEON::BI__builtin_neon_vmaxq_f16, NEON::BI__builtin_neon_vmaxq_v, }, |
| { NEON::BI__builtin_neon_vmin_f16, NEON::BI__builtin_neon_vmin_v, }, |
| { NEON::BI__builtin_neon_vminnm_f16, NEON::BI__builtin_neon_vminnm_v, }, |
| { NEON::BI__builtin_neon_vminnmq_f16, NEON::BI__builtin_neon_vminnmq_v, }, |
| { NEON::BI__builtin_neon_vminq_f16, NEON::BI__builtin_neon_vminq_v, }, |
| { NEON::BI__builtin_neon_vmulx_f16, NEON::BI__builtin_neon_vmulx_v, }, |
| { NEON::BI__builtin_neon_vmulxq_f16, NEON::BI__builtin_neon_vmulxq_v, }, |
| { NEON::BI__builtin_neon_vpadd_f16, NEON::BI__builtin_neon_vpadd_v, }, |
| { NEON::BI__builtin_neon_vpaddq_f16, NEON::BI__builtin_neon_vpaddq_v, }, |
| { NEON::BI__builtin_neon_vpmax_f16, NEON::BI__builtin_neon_vpmax_v, }, |
| { NEON::BI__builtin_neon_vpmaxnm_f16, NEON::BI__builtin_neon_vpmaxnm_v, }, |
| { NEON::BI__builtin_neon_vpmaxnmq_f16, NEON::BI__builtin_neon_vpmaxnmq_v, }, |
| { NEON::BI__builtin_neon_vpmaxq_f16, NEON::BI__builtin_neon_vpmaxq_v, }, |
| { NEON::BI__builtin_neon_vpmin_f16, NEON::BI__builtin_neon_vpmin_v, }, |
| { NEON::BI__builtin_neon_vpminnm_f16, NEON::BI__builtin_neon_vpminnm_v, }, |
| { NEON::BI__builtin_neon_vpminnmq_f16, NEON::BI__builtin_neon_vpminnmq_v, }, |
| { NEON::BI__builtin_neon_vpminq_f16, NEON::BI__builtin_neon_vpminq_v, }, |
| { NEON::BI__builtin_neon_vrecpe_f16, NEON::BI__builtin_neon_vrecpe_v, }, |
| { NEON::BI__builtin_neon_vrecpeq_f16, NEON::BI__builtin_neon_vrecpeq_v, }, |
| { NEON::BI__builtin_neon_vrecps_f16, NEON::BI__builtin_neon_vrecps_v, }, |
| { NEON::BI__builtin_neon_vrecpsq_f16, NEON::BI__builtin_neon_vrecpsq_v, }, |
| { NEON::BI__builtin_neon_vrnd_f16, NEON::BI__builtin_neon_vrnd_v, }, |
| { NEON::BI__builtin_neon_vrnda_f16, NEON::BI__builtin_neon_vrnda_v, }, |
| { NEON::BI__builtin_neon_vrndaq_f16, NEON::BI__builtin_neon_vrndaq_v, }, |
| { NEON::BI__builtin_neon_vrndi_f16, NEON::BI__builtin_neon_vrndi_v, }, |
| { NEON::BI__builtin_neon_vrndiq_f16, NEON::BI__builtin_neon_vrndiq_v, }, |
| { NEON::BI__builtin_neon_vrndm_f16, NEON::BI__builtin_neon_vrndm_v, }, |
| { NEON::BI__builtin_neon_vrndmq_f16, NEON::BI__builtin_neon_vrndmq_v, }, |
| { NEON::BI__builtin_neon_vrndn_f16, NEON::BI__builtin_neon_vrndn_v, }, |
| { NEON::BI__builtin_neon_vrndnq_f16, NEON::BI__builtin_neon_vrndnq_v, }, |
| { NEON::BI__builtin_neon_vrndp_f16, NEON::BI__builtin_neon_vrndp_v, }, |
| { NEON::BI__builtin_neon_vrndpq_f16, NEON::BI__builtin_neon_vrndpq_v, }, |
| { NEON::BI__builtin_neon_vrndq_f16, NEON::BI__builtin_neon_vrndq_v, }, |
| { NEON::BI__builtin_neon_vrndx_f16, NEON::BI__builtin_neon_vrndx_v, }, |
| { NEON::BI__builtin_neon_vrndxq_f16, NEON::BI__builtin_neon_vrndxq_v, }, |
| { NEON::BI__builtin_neon_vrsqrte_f16, NEON::BI__builtin_neon_vrsqrte_v, }, |
| { NEON::BI__builtin_neon_vrsqrteq_f16, NEON::BI__builtin_neon_vrsqrteq_v, }, |
| { NEON::BI__builtin_neon_vrsqrts_f16, NEON::BI__builtin_neon_vrsqrts_v, }, |
| { NEON::BI__builtin_neon_vrsqrtsq_f16, NEON::BI__builtin_neon_vrsqrtsq_v, }, |
| { NEON::BI__builtin_neon_vsqrt_f16, NEON::BI__builtin_neon_vsqrt_v, }, |
| { NEON::BI__builtin_neon_vsqrtq_f16, NEON::BI__builtin_neon_vsqrtq_v, }, |
| { NEON::BI__builtin_neon_vst1_bf16_x2, NEON::BI__builtin_neon_vst1_x2_v }, |
| { NEON::BI__builtin_neon_vst1_bf16_x3, NEON::BI__builtin_neon_vst1_x3_v }, |
| { NEON::BI__builtin_neon_vst1_bf16_x4, NEON::BI__builtin_neon_vst1_x4_v }, |
| { NEON::BI__builtin_neon_vst1_bf16, NEON::BI__builtin_neon_vst1_v }, |
| { NEON::BI__builtin_neon_vst1_lane_bf16, NEON::BI__builtin_neon_vst1_lane_v }, |
| { NEON::BI__builtin_neon_vst1q_bf16_x2, NEON::BI__builtin_neon_vst1q_x2_v }, |
| { NEON::BI__builtin_neon_vst1q_bf16_x3, NEON::BI__builtin_neon_vst1q_x3_v }, |
| { NEON::BI__builtin_neon_vst1q_bf16_x4, NEON::BI__builtin_neon_vst1q_x4_v }, |
| { NEON::BI__builtin_neon_vst1q_bf16, NEON::BI__builtin_neon_vst1q_v }, |
| { NEON::BI__builtin_neon_vst1q_lane_bf16, NEON::BI__builtin_neon_vst1q_lane_v }, |
| { NEON::BI__builtin_neon_vst2_bf16, NEON::BI__builtin_neon_vst2_v }, |
| { NEON::BI__builtin_neon_vst2_lane_bf16, NEON::BI__builtin_neon_vst2_lane_v }, |
| { NEON::BI__builtin_neon_vst2q_bf16, NEON::BI__builtin_neon_vst2q_v }, |
| { NEON::BI__builtin_neon_vst2q_lane_bf16, NEON::BI__builtin_neon_vst2q_lane_v }, |
| { NEON::BI__builtin_neon_vst3_bf16, NEON::BI__builtin_neon_vst3_v }, |
| { NEON::BI__builtin_neon_vst3_lane_bf16, NEON::BI__builtin_neon_vst3_lane_v }, |
| { NEON::BI__builtin_neon_vst3q_bf16, NEON::BI__builtin_neon_vst3q_v }, |
| { NEON::BI__builtin_neon_vst3q_lane_bf16, NEON::BI__builtin_neon_vst3q_lane_v }, |
| { NEON::BI__builtin_neon_vst4_bf16, NEON::BI__builtin_neon_vst4_v }, |
| { NEON::BI__builtin_neon_vst4_lane_bf16, NEON::BI__builtin_neon_vst4_lane_v }, |
| { NEON::BI__builtin_neon_vst4q_bf16, NEON::BI__builtin_neon_vst4q_v }, |
| { NEON::BI__builtin_neon_vst4q_lane_bf16, NEON::BI__builtin_neon_vst4q_lane_v }, |
| // The mangling rules cause us to have one ID for each type for vldap1(q)_lane |
| // and vstl1(q)_lane, but codegen is equivalent for all of them. Choose an |
| // arbitrary one to be handled as tha canonical variation. |
| { NEON::BI__builtin_neon_vldap1_lane_u64, NEON::BI__builtin_neon_vldap1_lane_s64 }, |
| { NEON::BI__builtin_neon_vldap1_lane_f64, NEON::BI__builtin_neon_vldap1_lane_s64 }, |
| { NEON::BI__builtin_neon_vldap1_lane_p64, NEON::BI__builtin_neon_vldap1_lane_s64 }, |
| { NEON::BI__builtin_neon_vldap1q_lane_u64, NEON::BI__builtin_neon_vldap1q_lane_s64 }, |
| { NEON::BI__builtin_neon_vldap1q_lane_f64, NEON::BI__builtin_neon_vldap1q_lane_s64 }, |
| { NEON::BI__builtin_neon_vldap1q_lane_p64, NEON::BI__builtin_neon_vldap1q_lane_s64 }, |
| { NEON::BI__builtin_neon_vstl1_lane_u64, NEON::BI__builtin_neon_vstl1_lane_s64 }, |
| { NEON::BI__builtin_neon_vstl1_lane_f64, NEON::BI__builtin_neon_vstl1_lane_s64 }, |
| { NEON::BI__builtin_neon_vstl1_lane_p64, NEON::BI__builtin_neon_vstl1_lane_s64 }, |
| { NEON::BI__builtin_neon_vstl1q_lane_u64, NEON::BI__builtin_neon_vstl1q_lane_s64 }, |
| { NEON::BI__builtin_neon_vstl1q_lane_f64, NEON::BI__builtin_neon_vstl1q_lane_s64 }, |
| { NEON::BI__builtin_neon_vstl1q_lane_p64, NEON::BI__builtin_neon_vstl1q_lane_s64 }, |
| }; |
| |
| #undef NEONMAP0 |
| #undef NEONMAP1 |
| #undef NEONMAP2 |
| |
| #define SVEMAP1(NameBase, LLVMIntrinsic, TypeModifier) \ |
| { \ |
| #NameBase, SVE::BI__builtin_sve_##NameBase, Intrinsic::LLVMIntrinsic, 0, \ |
| TypeModifier \ |
| } |
| |
| #define SVEMAP2(NameBase, TypeModifier) \ |
| { #NameBase, SVE::BI__builtin_sve_##NameBase, 0, 0, TypeModifier } |
| static const ARMVectorIntrinsicInfo AArch64SVEIntrinsicMap[] = { |
| #define GET_SVE_LLVM_INTRINSIC_MAP |
| #include "clang/Basic/arm_sve_builtin_cg.inc" |
| #include "clang/Basic/BuiltinsAArch64NeonSVEBridge_cg.def" |
| #undef GET_SVE_LLVM_INTRINSIC_MAP |
| }; |
| |
| #undef SVEMAP1 |
| #undef SVEMAP2 |
| |
| #define SMEMAP1(NameBase, LLVMIntrinsic, TypeModifier) \ |
| { \ |
| #NameBase, SME::BI__builtin_sme_##NameBase, Intrinsic::LLVMIntrinsic, 0, \ |
| TypeModifier \ |
| } |
| |
| #define SMEMAP2(NameBase, TypeModifier) \ |
| { #NameBase, SME::BI__builtin_sme_##NameBase, 0, 0, TypeModifier } |
| static const ARMVectorIntrinsicInfo AArch64SMEIntrinsicMap[] = { |
| #define GET_SME_LLVM_INTRINSIC_MAP |
| #include "clang/Basic/arm_sme_builtin_cg.inc" |
| #undef GET_SME_LLVM_INTRINSIC_MAP |
| }; |
| |
| #undef SMEMAP1 |
| #undef SMEMAP2 |
| |
| static bool NEONSIMDIntrinsicsProvenSorted = false; |
| |
| static bool AArch64SIMDIntrinsicsProvenSorted = false; |
| static bool AArch64SISDIntrinsicsProvenSorted = false; |
| static bool AArch64SVEIntrinsicsProvenSorted = false; |
| static bool AArch64SMEIntrinsicsProvenSorted = false; |
| |
| static const ARMVectorIntrinsicInfo * |
| findARMVectorIntrinsicInMap(ArrayRef<ARMVectorIntrinsicInfo> IntrinsicMap, |
| unsigned BuiltinID, bool &MapProvenSorted) { |
| |
| #ifndef NDEBUG |
| if (!MapProvenSorted) { |
| assert(llvm::is_sorted(IntrinsicMap)); |
| MapProvenSorted = true; |
| } |
| #endif |
| |
| const ARMVectorIntrinsicInfo *Builtin = |
| llvm::lower_bound(IntrinsicMap, BuiltinID); |
| |
| if (Builtin != IntrinsicMap.end() && Builtin->BuiltinID == BuiltinID) |
| return Builtin; |
| |
| return nullptr; |
| } |
| |
| Function *CodeGenFunction::LookupNeonLLVMIntrinsic(unsigned IntrinsicID, |
| unsigned Modifier, |
| llvm::Type *ArgType, |
| const CallExpr *E) { |
| int VectorSize = 0; |
| if (Modifier & Use64BitVectors) |
| VectorSize = 64; |
| else if (Modifier & Use128BitVectors) |
| VectorSize = 128; |
| |
| // Return type. |
| SmallVector<llvm::Type *, 3> Tys; |
| if (Modifier & AddRetType) { |
| llvm::Type *Ty = ConvertType(E->getCallReturnType(getContext())); |
| if (Modifier & VectorizeRetType) |
| Ty = llvm::FixedVectorType::get( |
| Ty, VectorSize ? VectorSize / Ty->getPrimitiveSizeInBits() : 1); |
| |
| Tys.push_back(Ty); |
| } |
| |
| // Arguments. |
| if (Modifier & VectorizeArgTypes) { |
| int Elts = VectorSize ? VectorSize / ArgType->getPrimitiveSizeInBits() : 1; |
| ArgType = llvm::FixedVectorType::get(ArgType, Elts); |
| } |
| |
| if (Modifier & (Add1ArgType | Add2ArgTypes)) |
| Tys.push_back(ArgType); |
| |
| if (Modifier & Add2ArgTypes) |
| Tys.push_back(ArgType); |
| |
| if (Modifier & InventFloatType) |
| Tys.push_back(FloatTy); |
| |
| return CGM.getIntrinsic(IntrinsicID, Tys); |
| } |
| |
| static Value *EmitCommonNeonSISDBuiltinExpr( |
| CodeGenFunction &CGF, const ARMVectorIntrinsicInfo &SISDInfo, |
| SmallVectorImpl<Value *> &Ops, const CallExpr *E) { |
| unsigned BuiltinID = SISDInfo.BuiltinID; |
| unsigned int Int = SISDInfo.LLVMIntrinsic; |
| unsigned Modifier = SISDInfo.TypeModifier; |
| const char *s = SISDInfo.NameHint; |
| |
| switch (BuiltinID) { |
| case NEON::BI__builtin_neon_vcled_s64: |
| case NEON::BI__builtin_neon_vcled_u64: |
| case NEON::BI__builtin_neon_vcles_f32: |
| case NEON::BI__builtin_neon_vcled_f64: |
| case NEON::BI__builtin_neon_vcltd_s64: |
| case NEON::BI__builtin_neon_vcltd_u64: |
| case NEON::BI__builtin_neon_vclts_f32: |
| case NEON::BI__builtin_neon_vcltd_f64: |
| case NEON::BI__builtin_neon_vcales_f32: |
| case NEON::BI__builtin_neon_vcaled_f64: |
| case NEON::BI__builtin_neon_vcalts_f32: |
| case NEON::BI__builtin_neon_vcaltd_f64: |
| // Only one direction of comparisons actually exist, cmle is actually a cmge |
| // with swapped operands. The table gives us the right intrinsic but we |
| // still need to do the swap. |
| std::swap(Ops[0], Ops[1]); |
| break; |
| } |
| |
| assert(Int && "Generic code assumes a valid intrinsic"); |
| |
| // Determine the type(s) of this overloaded AArch64 intrinsic. |
| const Expr *Arg = E->getArg(0); |
| llvm::Type *ArgTy = CGF.ConvertType(Arg->getType()); |
| Function *F = CGF.LookupNeonLLVMIntrinsic(Int, Modifier, ArgTy, E); |
| |
| int j = 0; |
| ConstantInt *C0 = ConstantInt::get(CGF.SizeTy, 0); |
| for (Function::const_arg_iterator ai = F->arg_begin(), ae = F->arg_end(); |
| ai != ae; ++ai, ++j) { |
| llvm::Type *ArgTy = ai->getType(); |
| if (Ops[j]->getType()->getPrimitiveSizeInBits() == |
| ArgTy->getPrimitiveSizeInBits()) |
| continue; |
| |
| assert(ArgTy->isVectorTy() && !Ops[j]->getType()->isVectorTy()); |
| // The constant argument to an _n_ intrinsic always has Int32Ty, so truncate |
| // it before inserting. |
| Ops[j] = CGF.Builder.CreateTruncOrBitCast( |
| Ops[j], cast<llvm::VectorType>(ArgTy)->getElementType()); |
| Ops[j] = |
| CGF.Builder.CreateInsertElement(PoisonValue::get(ArgTy), Ops[j], C0); |
| } |
| |
| Value *Result = CGF.EmitNeonCall(F, Ops, s); |
| llvm::Type *ResultType = CGF.ConvertType(E->getType()); |
| if (ResultType->getPrimitiveSizeInBits().getFixedValue() < |
| Result->getType()->getPrimitiveSizeInBits().getFixedValue()) |
| return CGF.Builder.CreateExtractElement(Result, C0); |
| |
| return CGF.Builder.CreateBitCast(Result, ResultType, s); |
| } |
| |
| Value *CodeGenFunction::EmitCommonNeonBuiltinExpr( |
| unsigned BuiltinID, unsigned LLVMIntrinsic, unsigned AltLLVMIntrinsic, |
| const char *NameHint, unsigned Modifier, const CallExpr *E, |
| SmallVectorImpl<llvm::Value *> &Ops, Address PtrOp0, Address PtrOp1, |
| llvm::Triple::ArchType Arch) { |
| // Get the last argument, which specifies the vector type. |
| const Expr *Arg = E->getArg(E->getNumArgs() - 1); |
| std::optional<llvm::APSInt> NeonTypeConst = |
| Arg->getIntegerConstantExpr(getContext()); |
| if (!NeonTypeConst) |
| return nullptr; |
| |
| // Determine the type of this overloaded NEON intrinsic. |
| NeonTypeFlags Type(NeonTypeConst->getZExtValue()); |
| bool Usgn = Type.isUnsigned(); |
| bool Quad = Type.isQuad(); |
| const bool HasLegalHalfType = getTarget().hasLegalHalfType(); |
| const bool AllowBFloatArgsAndRet = |
| getTargetHooks().getABIInfo().allowBFloatArgsAndRet(); |
| |
| llvm::FixedVectorType *VTy = |
| GetNeonType(this, Type, HasLegalHalfType, false, AllowBFloatArgsAndRet); |
| llvm::Type *Ty = VTy; |
| if (!Ty) |
| return nullptr; |
| |
| auto getAlignmentValue32 = [&](Address addr) -> Value* { |
| return Builder.getInt32(addr.getAlignment().getQuantity()); |
| }; |
| |
| unsigned Int = LLVMIntrinsic; |
| if ((Modifier & UnsignedAlts) && !Usgn) |
| Int = AltLLVMIntrinsic; |
| |
| switch (BuiltinID) { |
| default: break; |
| case NEON::BI__builtin_neon_splat_lane_v: |
| case NEON::BI__builtin_neon_splat_laneq_v: |
| case NEON::BI__builtin_neon_splatq_lane_v: |
| case NEON::BI__builtin_neon_splatq_laneq_v: { |
| auto NumElements = VTy->getElementCount(); |
| if (BuiltinID == NEON::BI__builtin_neon_splatq_lane_v) |
| NumElements = NumElements * 2; |
| if (BuiltinID == NEON::BI__builtin_neon_splat_laneq_v) |
| NumElements = NumElements.divideCoefficientBy(2); |
| |
| Ops[0] = Builder.CreateBitCast(Ops[0], VTy); |
| return EmitNeonSplat(Ops[0], cast<ConstantInt>(Ops[1]), NumElements); |
| } |
| case NEON::BI__builtin_neon_vpadd_v: |
| case NEON::BI__builtin_neon_vpaddq_v: |
| // We don't allow fp/int overloading of intrinsics. |
| if (VTy->getElementType()->isFloatingPointTy() && |
| Int == Intrinsic::aarch64_neon_addp) |
| Int = Intrinsic::aarch64_neon_faddp; |
| break; |
| case NEON::BI__builtin_neon_vabs_v: |
| case NEON::BI__builtin_neon_vabsq_v: |
| if (VTy->getElementType()->isFloatingPointTy()) |
| return EmitNeonCall(CGM.getIntrinsic(Intrinsic::fabs, Ty), Ops, "vabs"); |
| return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Ty), Ops, "vabs"); |
| case NEON::BI__builtin_neon_vadd_v: |
| case NEON::BI__builtin_neon_vaddq_v: { |
| llvm::Type *VTy = llvm::FixedVectorType::get(Int8Ty, Quad ? 16 : 8); |
| Ops[0] = Builder.CreateBitCast(Ops[0], VTy); |
| Ops[1] = Builder.CreateBitCast(Ops[1], VTy); |
| Ops[0] = Builder.CreateXor(Ops[0], Ops[1]); |
| return Builder.CreateBitCast(Ops[0], Ty); |
| } |
| case NEON::BI__builtin_neon_vaddhn_v: { |
| llvm::FixedVectorType *SrcTy = |
| llvm::FixedVectorType::getExtendedElementVectorType(VTy); |
| |
| // %sum = add <4 x i32> %lhs, %rhs |
| Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy); |
| Ops[1] = Builder.CreateBitCast(Ops[1], SrcTy); |
| Ops[0] = Builder.CreateAdd(Ops[0], Ops[1], "vaddhn"); |
| |
| // %high = lshr <4 x i32> %sum, <i32 16, i32 16, i32 16, i32 16> |
| Constant *ShiftAmt = |
| ConstantInt::get(SrcTy, SrcTy->getScalarSizeInBits() / 2); |
| Ops[0] = Builder.CreateLShr(Ops[0], ShiftAmt, "vaddhn"); |
| |
| // %res = trunc <4 x i32> %high to <4 x i16> |
| return Builder.CreateTrunc(Ops[0], VTy, "vaddhn"); |
| } |
| case NEON::BI__builtin_neon_vcale_v: |
| case NEON::BI__builtin_neon_vcaleq_v: |
| case NEON::BI__builtin_neon_vcalt_v: |
| case NEON::BI__builtin_neon_vcaltq_v: |
| std::swap(Ops[0], Ops[1]); |
| [[fallthrough]]; |
| case NEON::BI__builtin_neon_vcage_v: |
| case NEON::BI__builtin_neon_vcageq_v: |
| case NEON::BI__builtin_neon_vcagt_v: |
| case NEON::BI__builtin_neon_vcagtq_v: { |
| llvm::Type *Ty; |
| switch (VTy->getScalarSizeInBits()) { |
| default: llvm_unreachable("unexpected type"); |
| case 32: |
| Ty = FloatTy; |
| break; |
| case 64: |
| Ty = DoubleTy; |
| break; |
| case 16: |
| Ty = HalfTy; |
| break; |
| } |
| auto *VecFlt = llvm::FixedVectorType::get(Ty, VTy->getNumElements()); |
| llvm::Type *Tys[] = { VTy, VecFlt }; |
| Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys); |
| return EmitNeonCall(F, Ops, NameHint); |
| } |
| case NEON::BI__builtin_neon_vceqz_v: |
| case NEON::BI__builtin_neon_vceqzq_v: |
| return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OEQ, |
| ICmpInst::ICMP_EQ, "vceqz"); |
| case NEON::BI__builtin_neon_vcgez_v: |
| case NEON::BI__builtin_neon_vcgezq_v: |
| return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OGE, |
| ICmpInst::ICMP_SGE, "vcgez"); |
| case NEON::BI__builtin_neon_vclez_v: |
| case NEON::BI__builtin_neon_vclezq_v: |
| return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OLE, |
| ICmpInst::ICMP_SLE, "vclez"); |
| case NEON::BI__builtin_neon_vcgtz_v: |
| case NEON::BI__builtin_neon_vcgtzq_v: |
| return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OGT, |
| ICmpInst::ICMP_SGT, "vcgtz"); |
| case NEON::BI__builtin_neon_vcltz_v: |
| case NEON::BI__builtin_neon_vcltzq_v: |
| return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OLT, |
| ICmpInst::ICMP_SLT, "vcltz"); |
| case NEON::BI__builtin_neon_vclz_v: |
| case NEON::BI__builtin_neon_vclzq_v: |
| // We generate target-independent intrinsic, which needs a second argument |
| // for whether or not clz of zero is undefined; on ARM it isn't. |
| Ops.push_back(Builder.getInt1(getTarget().isCLZForZeroUndef())); |
| break; |
| case NEON::BI__builtin_neon_vcvt_f32_v: |
| case NEON::BI__builtin_neon_vcvtq_f32_v: |
| Ops[0] = Builder.CreateBitCast(Ops[0], Ty); |
| Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float32, false, Quad), |
| HasLegalHalfType); |
| return Usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt") |
| : Builder.CreateSIToFP(Ops[0], Ty, "vcvt"); |
| case NEON::BI__builtin_neon_vcvt_f16_s16: |
| case NEON::BI__builtin_neon_vcvt_f16_u16: |
| case NEON::BI__builtin_neon_vcvtq_f16_s16: |
| case NEON::BI__builtin_neon_vcvtq_f16_u16: |
| Ops[0] = Builder.CreateBitCast(Ops[0], Ty); |
| Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float16, false, Quad), |
| HasLegalHalfType); |
| return Usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt") |
| : Builder.CreateSIToFP(Ops[0], Ty, "vcvt"); |
| case NEON::BI__builtin_neon_vcvt_n_f16_s16: |
| case NEON::BI__builtin_neon_vcvt_n_f16_u16: |
| case NEON::BI__builtin_neon_vcvtq_n_f16_s16: |
| case NEON::BI__builtin_neon_vcvtq_n_f16_u16: { |
| llvm::Type *Tys[2] = { GetFloatNeonType(this, Type), Ty }; |
| Function *F = CGM.getIntrinsic(Int, Tys); |
| return EmitNeonCall(F, Ops, "vcvt_n"); |
| } |
| case NEON::BI__builtin_neon_vcvt_n_f32_v: |
| case NEON::BI__builtin_neon_vcvt_n_f64_v: |
| case NEON::BI__builtin_neon_vcvtq_n_f32_v: |
| case NEON::BI__builtin_neon_vcvtq_n_f64_v: { |
| llvm::Type *Tys[2] = { GetFloatNeonType(this, Type), Ty }; |
| Int = Usgn ? LLVMIntrinsic : AltLLVMIntrinsic; |
| Function *F = CGM.getIntrinsic(Int, Tys); |
| return EmitNeonCall(F, Ops, "vcvt_n"); |
| } |
| case NEON::BI__builtin_neon_vcvt_n_s16_f16: |
| case NEON::BI__builtin_neon_vcvt_n_s32_v: |
| case NEON::BI__builtin_neon_vcvt_n_u16_f16: |
| case NEON::BI__builtin_neon_vcvt_n_u32_v: |
| case NEON::BI__builtin_neon_vcvt_n_s64_v: |
| case NEON::BI__builtin_neon_vcvt_n_u64_v: |
| case NEON::BI__builtin_neon_vcvtq_n_s16_f16: |
| case NEON::BI__builtin_neon_vcvtq_n_s32_v: |
| case NEON::BI__builtin_neon_vcvtq_n_u16_f16: |
| case NEON::BI__builtin_neon_vcvtq_n_u32_v: |
| case NEON::BI__builtin_neon_vcvtq_n_s64_v: |
| case NEON::BI__builtin_neon_vcvtq_n_u64_v: { |
| llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) }; |
| Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys); |
| return EmitNeonCall(F, Ops, "vcvt_n"); |
| } |
| case NEON::BI__builtin_neon_vcvt_s32_v: |
| case NEON::BI__builtin_neon_vcvt_u32_v: |
| case NEON::BI__builtin_neon_vcvt_s64_v: |
| case NEON::BI__builtin_neon_vcvt_u64_v: |
| case NEON::BI__builtin_neon_vcvt_s16_f16: |
| case NEON::BI__builtin_neon_vcvt_u16_f16: |
| case NEON::BI__builtin_neon_vcvtq_s32_v: |
| case NEON::BI__builtin_neon_vcvtq_u32_v: |
| case NEON::BI__builtin_neon_vcvtq_s64_v: |
| case NEON::BI__builtin_neon_vcvtq_u64_v: |
| case NEON::BI__builtin_neon_vcvtq_s16_f16: |
| case NEON::BI__builtin_neon_vcvtq_u16_f16: { |
| Ops[0] = Builder.CreateBitCast(Ops[0], GetFloatNeonType(this, Type)); |
| return Usgn ? Builder.CreateFPToUI(Ops[0], Ty, "vcvt") |
| : Builder.CreateFPToSI(Ops[0], Ty, "vcvt"); |
| } |
| case NEON::BI__builtin_neon_vcvta_s16_f16: |
| case NEON::BI__builtin_neon_vcvta_s32_v: |
| case NEON::BI__builtin_neon_vcvta_s64_v: |
| case NEON::BI__builtin_neon_vcvta_u16_f16: |
| case NEON::BI__builtin_neon_vcvta_u32_v: |
| case NEON::BI__builtin_neon_vcvta_u64_v: |
| case NEON::BI__builtin_neon_vcvtaq_s16_f16: |
| case NEON::BI__builtin_neon_vcvtaq_s32_v: |
| case NEON::BI__builtin_neon_vcvtaq_s64_v: |
| case NEON::BI__builtin_neon_vcvtaq_u16_f16: |
| case NEON::BI__builtin_neon_vcvtaq_u32_v: |
| case NEON::BI__builtin_neon_vcvtaq_u64_v: |
| case NEON::BI__builtin_neon_vcvtn_s16_f16: |
| case NEON::BI__builtin_neon_vcvtn_s32_v: |
| case NEON::BI__builtin_neon_vcvtn_s64_v: |
| case NEON::BI__builtin_neon_vcvtn_u16_f16: |
| case NEON::BI__builtin_neon_vcvtn_u32_v: |
| case NEON::BI__builtin_neon_vcvtn_u64_v: |
| case NEON::BI__builtin_neon_vcvtnq_s16_f16: |
| case NEON::BI__builtin_neon_vcvtnq_s32_v: |
| case NEON::BI__builtin_neon_vcvtnq_s64_v: |
| case NEON::BI__builtin_neon_vcvtnq_u16_f16: |
| case NEON::BI__builtin_neon_vcvtnq_u32_v: |
| case NEON::BI__builtin_neon_vcvtnq_u64_v: |
| case NEON::BI__builtin_neon_vcvtp_s16_f16: |
| case NEON::BI__builtin_neon_vcvtp_s32_v: |
| case NEON::BI__builtin_neon_vcvtp_s64_v: |
| case NEON::BI__builtin_neon_vcvtp_u16_f16: |
| case NEON::BI__builtin_neon_vcvtp_u32_v: |
| case NEON::BI__builtin_neon_vcvtp_u64_v: |
| case NEON::BI__builtin_neon_vcvtpq_s16_f16: |
| case NEON::BI__builtin_neon_vcvtpq_s32_v: |
| case NEON::BI__builtin_neon_vcvtpq_s64_v: |
| case NEON::BI__builtin_neon_vcvtpq_u16_f16: |
| case NEON::BI__builtin_neon_vcvtpq_u32_v: |
| case NEON::BI__builtin_neon_vcvtpq_u64_v: |
| case NEON::BI__builtin_neon_vcvtm_s16_f16: |
| case NEON::BI__builtin_neon_vcvtm_s32_v: |
| case NEON::BI__builtin_neon_vcvtm_s64_v: |
| case NEON::BI__builtin_neon_vcvtm_u16_f16: |
| case NEON::BI__builtin_neon_vcvtm_u32_v: |
| case NEON::BI__builtin_neon_vcvtm_u64_v: |
| case NEON::BI__builtin_neon_vcvtmq_s16_f16: |
| case NEON::BI__builtin_neon_vcvtmq_s32_v: |
| case NEON::BI__builtin_neon_vcvtmq_s64_v: |
| case NEON::BI__builtin_neon_vcvtmq_u16_f16: |
| case NEON::BI__builtin_neon_vcvtmq_u32_v: |
| case NEON::BI__builtin_neon_vcvtmq_u64_v: { |
| llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) }; |
| return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, NameHint); |
| } |
| case NEON::BI__builtin_neon_vcvtx_f32_v: { |
| llvm::Type *Tys[2] = { VTy->getTruncatedElementVectorType(VTy), Ty}; |
| return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, NameHint); |
| |
| } |
| case NEON::BI__builtin_neon_vext_v: |
| case NEON::BI__builtin_neon_vextq_v: { |
| int CV = cast<ConstantInt>(Ops[2])->getSExtValue(); |
| SmallVector<int, 16> Indices; |
| for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) |
| Indices.push_back(i+CV); |
| |
| Ops[0] = Builder.CreateBitCast(Ops[0], Ty); |
| Ops[1] = Builder.CreateBitCast(Ops[1], Ty); |
| return Builder.CreateShuffleVector(Ops[0], Ops[1], Indices, "vext"); |
| } |
| case NEON::BI__builtin_neon_vfma_v: |
| case NEON::BI__builtin_neon_vfmaq_v: { |
| Ops[0] = Builder.CreateBitCast(Ops[0], Ty); |
| Ops[1] = Builder.CreateBitCast(Ops[1], Ty); |
| Ops[2] = Builder.CreateBitCast(Ops[2], Ty); |
| |
| // NEON intrinsic puts accumulator first, unlike the LLVM fma. |
| return emitCallMaybeConstrainedFPBuiltin( |
| *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, Ty, |
| {Ops[1], Ops[2], Ops[0]}); |
| } |
| case NEON::BI__builtin_neon_vld1_v: |
| case NEON::BI__builtin_neon_vld1q_v: { |
| llvm::Type *Tys[] = {Ty, Int8PtrTy}; |
| Ops.push_back(getAlignmentValue32(PtrOp0)); |
| return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, "vld1"); |
| } |
| case NEON::BI__builtin_neon_vld1_x2_v: |
| case NEON::BI__builtin_neon_vld1q_x2_v: |
| case NEON::BI__builtin_neon_vld1_x3_v: |
| case NEON::BI__builtin_neon_vld1q_x3_v: |
| case NEON::BI__builtin_neon_vld1_x4_v: |
| case NEON::BI__builtin_neon_vld1q_x4_v: { |
| llvm::Type *Tys[2] = {VTy, UnqualPtrTy}; |
| Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys); |
| Ops[1] = Builder.CreateCall(F, Ops[1], "vld1xN"); |
| return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]); |
| } |
| case NEON::BI__builtin_neon_vld2_v: |
| case NEON::BI__builtin_neon_vld2q_v: |
| case NEON::BI__builtin_neon_vld3_v: |
| case NEON::BI__builtin_neon_vld3q_v: |
| case NEON::BI__builtin_neon_vld4_v: |
| case NEON::BI__builtin_neon_vld4q_v: |
| case NEON::BI__builtin_neon_vld2_dup_v: |
| case NEON::BI__builtin_neon_vld2q_dup_v: |
| case NEON::BI__builtin_neon_vld3_dup_v: |
| case NEON::BI__builtin_neon_vld3q_dup_v: |
| case NEON::BI__builtin_neon_vld4_dup_v: |
| case NEON::BI__builtin_neon_vld4q_dup_v: { |
| llvm::Type *Tys[] = {Ty, Int8PtrTy}; |
| Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys); |
| Value *Align = getAlignmentValue32(PtrOp1); |
| Ops[1] = Builder.CreateCall(F, {Ops[1], Align}, NameHint); |
| return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]); |
| } |
| case NEON::BI__builtin_neon_vld1_dup_v: |
| case NEON::BI__builtin_neon_vld1q_dup_v: { |
| Value *V = PoisonValue::get(Ty); |
| PtrOp0 = PtrOp0.withElementType(VTy->getElementType()); |
| LoadInst *Ld = Builder.CreateLoad(PtrOp0); |
| llvm::Constant *CI = ConstantInt::get(SizeTy, 0); |
| Ops[0] = Builder.CreateInsertElement(V, Ld, CI); |
| return EmitNeonSplat(Ops[0], CI); |
| } |
| case NEON::BI__builtin_neon_vld2_lane_v: |
| case NEON::BI__builtin_neon_vld2q_lane_v: |
| case NEON::BI__builtin_neon_vld3_lane_v: |
| case NEON::BI__builtin_neon_vld3q_lane_v: |
| case NEON::BI__builtin_neon_vld4_lane_v: |
| case NEON::BI__builtin_neon_vld4q_lane_v: { |
| llvm::Type *Tys[] = {Ty, Int8PtrTy}; |
| Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys); |
| for (unsigned I = 2; I < Ops.size() - 1; ++I) |
| Ops[I] = Builder.CreateBitCast(Ops[I], Ty); |
| Ops.push_back(getAlignmentValue32(PtrOp1)); |
| Ops[1] = Builder.CreateCall(F, ArrayRef(Ops).slice(1), NameHint); |
| return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]); |
| } |
| case NEON::BI__builtin_neon_vmovl_v: { |
| llvm::FixedVectorType *DTy = |
| llvm::FixedVectorType::getTruncatedElementVectorType(VTy); |
| Ops[0] = Builder.CreateBitCast(Ops[0], DTy); |
| if (Usgn) |
| return Builder.CreateZExt(Ops[0], Ty, "vmovl"); |
| return Builder.CreateSExt(Ops[0], Ty, "vmovl"); |
| } |
| case NEON::BI__builtin_neon_vmovn_v: { |
| llvm::FixedVectorType *QTy = |
| llvm::FixedVectorType::getExtendedElementVectorType(VTy); |
| Ops[0] = Builder.CreateBitCast(Ops[0], QTy); |
| return Builder.CreateTrunc(Ops[0], Ty, "vmovn"); |
| } |
| case NEON::BI__builtin_neon_vmull_v: |
| // FIXME: the integer vmull operations could be emitted in terms of pure |
| // LLVM IR (2 exts followed by a mul). Unfortunately LLVM has a habit of |
| // hoisting the exts outside loops. Until global ISel comes along that can |
| // see through such movement this leads to bad CodeGen. So we need an |
| // intrinsic for now. |
| Int = Usgn ? Intrinsic::arm_neon_vmullu : Intrinsic::arm_neon_vmulls; |
| Int = Type.isPoly() ? (unsigned)Intrinsic::arm_neon_vmullp : Int; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmull"); |
| case NEON::BI__builtin_neon_vpadal_v: |
| case NEON::BI__builtin_neon_vpadalq_v: { |
| // The source operand type has twice as many elements of half the size. |
| unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits(); |
| llvm::Type *EltTy = |
| llvm::IntegerType::get(getLLVMContext(), EltBits / 2); |
| auto *NarrowTy = |
| llvm::FixedVectorType::get(EltTy, VTy->getNumElements() * 2); |
| llvm::Type *Tys[2] = { Ty, NarrowTy }; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, NameHint); |
| } |
| case NEON::BI__builtin_neon_vpaddl_v: |
| case NEON::BI__builtin_neon_vpaddlq_v: { |
| // The source operand type has twice as many elements of half the size. |
| unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits(); |
| llvm::Type *EltTy = llvm::IntegerType::get(getLLVMContext(), EltBits / 2); |
| auto *NarrowTy = |
| llvm::FixedVectorType::get(EltTy, VTy->getNumElements() * 2); |
| llvm::Type *Tys[2] = { Ty, NarrowTy }; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vpaddl"); |
| } |
| case NEON::BI__builtin_neon_vqdmlal_v: |
| case NEON::BI__builtin_neon_vqdmlsl_v: { |
| SmallVector<Value *, 2> MulOps(Ops.begin() + 1, Ops.end()); |
| Ops[1] = |
| EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Ty), MulOps, "vqdmlal"); |
| Ops.resize(2); |
| return EmitNeonCall(CGM.getIntrinsic(AltLLVMIntrinsic, Ty), Ops, NameHint); |
| } |
| case NEON::BI__builtin_neon_vqdmulhq_lane_v: |
| case NEON::BI__builtin_neon_vqdmulh_lane_v: |
| case NEON::BI__builtin_neon_vqrdmulhq_lane_v: |
| case NEON::BI__builtin_neon_vqrdmulh_lane_v: { |
| auto *RTy = cast<llvm::FixedVectorType>(Ty); |
| if (BuiltinID == NEON::BI__builtin_neon_vqdmulhq_lane_v || |
| BuiltinID == NEON::BI__builtin_neon_vqrdmulhq_lane_v) |
| RTy = llvm::FixedVectorType::get(RTy->getElementType(), |
| RTy->getNumElements() * 2); |
| llvm::Type *Tys[2] = { |
| RTy, GetNeonType(this, NeonTypeFlags(Type.getEltType(), false, |
| /*isQuad*/ false))}; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, NameHint); |
| } |
| case NEON::BI__builtin_neon_vqdmulhq_laneq_v: |
| case NEON::BI__builtin_neon_vqdmulh_laneq_v: |
| case NEON::BI__builtin_neon_vqrdmulhq_laneq_v: |
| case NEON::BI__builtin_neon_vqrdmulh_laneq_v: { |
| llvm::Type *Tys[2] = { |
| Ty, GetNeonType(this, NeonTypeFlags(Type.getEltType(), false, |
| /*isQuad*/ true))}; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, NameHint); |
| } |
| case NEON::BI__builtin_neon_vqshl_n_v: |
| case NEON::BI__builtin_neon_vqshlq_n_v: |
| return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshl_n", |
| 1, false); |
| case NEON::BI__builtin_neon_vqshlu_n_v: |
| case NEON::BI__builtin_neon_vqshluq_n_v: |
| return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshlu_n", |
| 1, false); |
| case NEON::BI__builtin_neon_vrecpe_v: |
| case NEON::BI__builtin_neon_vrecpeq_v: |
| case NEON::BI__builtin_neon_vrsqrte_v: |
| case NEON::BI__builtin_neon_vrsqrteq_v: |
| Int = Ty->isFPOrFPVectorTy() ? LLVMIntrinsic : AltLLVMIntrinsic; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, NameHint); |
| case NEON::BI__builtin_neon_vrndi_v: |
| case NEON::BI__builtin_neon_vrndiq_v: |
| Int = Builder.getIsFPConstrained() |
| ? Intrinsic::experimental_constrained_nearbyint |
| : Intrinsic::nearbyint; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, NameHint); |
| case NEON::BI__builtin_neon_vrshr_n_v: |
| case NEON::BI__builtin_neon_vrshrq_n_v: |
| return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrshr_n", |
| 1, true); |
| case NEON::BI__builtin_neon_vsha512hq_u64: |
| case NEON::BI__builtin_neon_vsha512h2q_u64: |
| case NEON::BI__builtin_neon_vsha512su0q_u64: |
| case NEON::BI__builtin_neon_vsha512su1q_u64: { |
| Function *F = CGM.getIntrinsic(Int); |
| return EmitNeonCall(F, Ops, ""); |
| } |
| case NEON::BI__builtin_neon_vshl_n_v: |
| case NEON::BI__builtin_neon_vshlq_n_v: |
| Ops[1] = EmitNeonShiftVector(Ops[1], Ty, false); |
| return Builder.CreateShl(Builder.CreateBitCast(Ops[0],Ty), Ops[1], |
| "vshl_n"); |
| case NEON::BI__builtin_neon_vshll_n_v: { |
| llvm::FixedVectorType *SrcTy = |
| llvm::FixedVectorType::getTruncatedElementVectorType(VTy); |
| Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy); |
| if (Usgn) |
| Ops[0] = Builder.CreateZExt(Ops[0], VTy); |
| else |
| Ops[0] = Builder.CreateSExt(Ops[0], VTy); |
| Ops[1] = EmitNeonShiftVector(Ops[1], VTy, false); |
| return Builder.CreateShl(Ops[0], Ops[1], "vshll_n"); |
| } |
| case NEON::BI__builtin_neon_vshrn_n_v: { |
| llvm::FixedVectorType *SrcTy = |
| llvm::FixedVectorType::getExtendedElementVectorType(VTy); |
| Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy); |
| Ops[1] = EmitNeonShiftVector(Ops[1], SrcTy, false); |
| if (Usgn) |
| Ops[0] = Builder.CreateLShr(Ops[0], Ops[1]); |
| else |
| Ops[0] = Builder.CreateAShr(Ops[0], Ops[1]); |
| return Builder.CreateTrunc(Ops[0], Ty, "vshrn_n"); |
| } |
| case NEON::BI__builtin_neon_vshr_n_v: |
| case NEON::BI__builtin_neon_vshrq_n_v: |
| return EmitNeonRShiftImm(Ops[0], Ops[1], Ty, Usgn, "vshr_n"); |
| case NEON::BI__builtin_neon_vst1_v: |
| case NEON::BI__builtin_neon_vst1q_v: |
| case NEON::BI__builtin_neon_vst2_v: |
| case NEON::BI__builtin_neon_vst2q_v: |
| case NEON::BI__builtin_neon_vst3_v: |
| case NEON::BI__builtin_neon_vst3q_v: |
| case NEON::BI__builtin_neon_vst4_v: |
| case NEON::BI__builtin_neon_vst4q_v: |
| case NEON::BI__builtin_neon_vst2_lane_v: |
| case NEON::BI__builtin_neon_vst2q_lane_v: |
| case NEON::BI__builtin_neon_vst3_lane_v: |
| case NEON::BI__builtin_neon_vst3q_lane_v: |
| case NEON::BI__builtin_neon_vst4_lane_v: |
| case NEON::BI__builtin_neon_vst4q_lane_v: { |
| llvm::Type *Tys[] = {Int8PtrTy, Ty}; |
| Ops.push_back(getAlignmentValue32(PtrOp0)); |
| return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, ""); |
| } |
| case NEON::BI__builtin_neon_vsm3partw1q_u32: |
| case NEON::BI__builtin_neon_vsm3partw2q_u32: |
| case NEON::BI__builtin_neon_vsm3ss1q_u32: |
| case NEON::BI__builtin_neon_vsm4ekeyq_u32: |
| case NEON::BI__builtin_neon_vsm4eq_u32: { |
| Function *F = CGM.getIntrinsic(Int); |
| return EmitNeonCall(F, Ops, ""); |
| } |
| case NEON::BI__builtin_neon_vsm3tt1aq_u32: |
| case NEON::BI__builtin_neon_vsm3tt1bq_u32: |
| case NEON::BI__builtin_neon_vsm3tt2aq_u32: |
| case NEON::BI__builtin_neon_vsm3tt2bq_u32: { |
| Function *F = CGM.getIntrinsic(Int); |
| Ops[3] = Builder.CreateZExt(Ops[3], Int64Ty); |
| return EmitNeonCall(F, Ops, ""); |
| } |
| case NEON::BI__builtin_neon_vst1_x2_v: |
| case NEON::BI__builtin_neon_vst1q_x2_v: |
| case NEON::BI__builtin_neon_vst1_x3_v: |
| case NEON::BI__builtin_neon_vst1q_x3_v: |
| case NEON::BI__builtin_neon_vst1_x4_v: |
| case NEON::BI__builtin_neon_vst1q_x4_v: { |
| // TODO: Currently in AArch32 mode the pointer operand comes first, whereas |
| // in AArch64 it comes last. We may want to stick to one or another. |
| if (Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_be || |
| Arch == llvm::Triple::aarch64_32) { |
| llvm::Type *Tys[2] = {VTy, UnqualPtrTy}; |
| std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end()); |
| return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, ""); |
| } |
| llvm::Type *Tys[2] = {UnqualPtrTy, VTy}; |
| return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, ""); |
| } |
| case NEON::BI__builtin_neon_vsubhn_v: { |
| llvm::FixedVectorType *SrcTy = |
| llvm::FixedVectorType::getExtendedElementVectorType(VTy); |
| |
| // %sum = add <4 x i32> %lhs, %rhs |
| Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy); |
| Ops[1] = Builder.CreateBitCast(Ops[1], SrcTy); |
| Ops[0] = Builder.CreateSub(Ops[0], Ops[1], "vsubhn"); |
| |
| // %high = lshr <4 x i32> %sum, <i32 16, i32 16, i32 16, i32 16> |
| Constant *ShiftAmt = |
| ConstantInt::get(SrcTy, SrcTy->getScalarSizeInBits() / 2); |
| Ops[0] = Builder.CreateLShr(Ops[0], ShiftAmt, "vsubhn"); |
| |
| // %res = trunc <4 x i32> %high to <4 x i16> |
| return Builder.CreateTrunc(Ops[0], VTy, "vsubhn"); |
| } |
| case NEON::BI__builtin_neon_vtrn_v: |
| case NEON::BI__builtin_neon_vtrnq_v: { |
| Ops[1] = Builder.CreateBitCast(Ops[1], Ty); |
| Ops[2] = Builder.CreateBitCast(Ops[2], Ty); |
| Value *SV = nullptr; |
| |
| for (unsigned vi = 0; vi != 2; ++vi) { |
| SmallVector<int, 16> Indices; |
| for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) { |
| Indices.push_back(i+vi); |
| Indices.push_back(i+e+vi); |
| } |
| Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi); |
| SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vtrn"); |
| SV = Builder.CreateDefaultAlignedStore(SV, Addr); |
| } |
| return SV; |
| } |
| case NEON::BI__builtin_neon_vtst_v: |
| case NEON::BI__builtin_neon_vtstq_v: { |
| Ops[0] = Builder.CreateBitCast(Ops[0], Ty); |
| Ops[1] = Builder.CreateBitCast(Ops[1], Ty); |
| Ops[0] = Builder.CreateAnd(Ops[0], Ops[1]); |
| Ops[0] = Builder.CreateICmp(ICmpInst::ICMP_NE, Ops[0], |
| ConstantAggregateZero::get(Ty)); |
| return Builder.CreateSExt(Ops[0], Ty, "vtst"); |
| } |
| case NEON::BI__builtin_neon_vuzp_v: |
| case NEON::BI__builtin_neon_vuzpq_v: { |
| Ops[1] = Builder.CreateBitCast(Ops[1], Ty); |
| Ops[2] = Builder.CreateBitCast(Ops[2], Ty); |
| Value *SV = nullptr; |
| |
| for (unsigned vi = 0; vi != 2; ++vi) { |
| SmallVector<int, 16> Indices; |
| for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) |
| Indices.push_back(2*i+vi); |
| |
| Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi); |
| SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vuzp"); |
| SV = Builder.CreateDefaultAlignedStore(SV, Addr); |
| } |
| return SV; |
| } |
| case NEON::BI__builtin_neon_vxarq_u64: { |
| Function *F = CGM.getIntrinsic(Int); |
| Ops[2] = Builder.CreateZExt(Ops[2], Int64Ty); |
| return EmitNeonCall(F, Ops, ""); |
| } |
| case NEON::BI__builtin_neon_vzip_v: |
| case NEON::BI__builtin_neon_vzipq_v: { |
| Ops[1] = Builder.CreateBitCast(Ops[1], Ty); |
| Ops[2] = Builder.CreateBitCast(Ops[2], Ty); |
| Value *SV = nullptr; |
| |
| for (unsigned vi = 0; vi != 2; ++vi) { |
| SmallVector<int, 16> Indices; |
| for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) { |
| Indices.push_back((i + vi*e) >> 1); |
| Indices.push_back(((i + vi*e) >> 1)+e); |
| } |
| Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi); |
| SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vzip"); |
| SV = Builder.CreateDefaultAlignedStore(SV, Addr); |
| } |
| return SV; |
| } |
| case NEON::BI__builtin_neon_vdot_s32: |
| case NEON::BI__builtin_neon_vdot_u32: |
| case NEON::BI__builtin_neon_vdotq_s32: |
| case NEON::BI__builtin_neon_vdotq_u32: { |
| auto *InputTy = |
| llvm::FixedVectorType::get(Int8Ty, Ty->getPrimitiveSizeInBits() / 8); |
| llvm::Type *Tys[2] = { Ty, InputTy }; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vdot"); |
| } |
| case NEON::BI__builtin_neon_vfmlal_low_f16: |
| case NEON::BI__builtin_neon_vfmlalq_low_f16: { |
| auto *InputTy = |
| llvm::FixedVectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16); |
| llvm::Type *Tys[2] = { Ty, InputTy }; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlal_low"); |
| } |
| case NEON::BI__builtin_neon_vfmlsl_low_f16: |
| case NEON::BI__builtin_neon_vfmlslq_low_f16: { |
| auto *InputTy = |
| llvm::FixedVectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16); |
| llvm::Type *Tys[2] = { Ty, InputTy }; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlsl_low"); |
| } |
| case NEON::BI__builtin_neon_vfmlal_high_f16: |
| case NEON::BI__builtin_neon_vfmlalq_high_f16: { |
| auto *InputTy = |
| llvm::FixedVectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16); |
| llvm::Type *Tys[2] = { Ty, InputTy }; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlal_high"); |
| } |
| case NEON::BI__builtin_neon_vfmlsl_high_f16: |
| case NEON::BI__builtin_neon_vfmlslq_high_f16: { |
| auto *InputTy = |
| llvm::FixedVectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16); |
| llvm::Type *Tys[2] = { Ty, InputTy }; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlsl_high"); |
| } |
| case NEON::BI__builtin_neon_vmmlaq_s32: |
| case NEON::BI__builtin_neon_vmmlaq_u32: { |
| auto *InputTy = |
| llvm::FixedVectorType::get(Int8Ty, Ty->getPrimitiveSizeInBits() / 8); |
| llvm::Type *Tys[2] = { Ty, InputTy }; |
| return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, "vmmla"); |
| } |
| case NEON::BI__builtin_neon_vusmmlaq_s32: { |
| auto *InputTy = |
| llvm::FixedVectorType::get(Int8Ty, Ty->getPrimitiveSizeInBits() / 8); |
| llvm::Type *Tys[2] = { Ty, InputTy }; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vusmmla"); |
| } |
| case NEON::BI__builtin_neon_vusdot_s32: |
| case NEON::BI__builtin_neon_vusdotq_s32: { |
| auto *InputTy = |
| llvm::FixedVectorType::get(Int8Ty, Ty->getPrimitiveSizeInBits() / 8); |
| llvm::Type *Tys[2] = { Ty, InputTy }; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vusdot"); |
| } |
| case NEON::BI__builtin_neon_vbfdot_f32: |
| case NEON::BI__builtin_neon_vbfdotq_f32: { |
| llvm::Type *InputTy = |
| llvm::FixedVectorType::get(BFloatTy, Ty->getPrimitiveSizeInBits() / 16); |
| llvm::Type *Tys[2] = { Ty, InputTy }; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vbfdot"); |
| } |
| case NEON::BI__builtin_neon___a32_vcvt_bf16_f32: { |
| llvm::Type *Tys[1] = { Ty }; |
| Function *F = CGM.getIntrinsic(Int, Tys); |
| return EmitNeonCall(F, Ops, "vcvtfp2bf"); |
| } |
| |
| } |
| |
| assert(Int && "Expected valid intrinsic number"); |
| |
| // Determine the type(s) of this overloaded AArch64 intrinsic. |
| Function *F = LookupNeonLLVMIntrinsic(Int, Modifier, Ty, E); |
| |
| Value *Result = EmitNeonCall(F, Ops, NameHint); |
| llvm::Type *ResultType = ConvertType(E->getType()); |
| // AArch64 intrinsic one-element vector type cast to |
| // scalar type expected by the builtin |
| return Builder.CreateBitCast(Result, ResultType, NameHint); |
| } |
| |
| Value *CodeGenFunction::EmitAArch64CompareBuiltinExpr( |
| Value *Op, llvm::Type *Ty, const CmpInst::Predicate Fp, |
| const CmpInst::Predicate Ip, const Twine &Name) { |
| llvm::Type *OTy = Op->getType(); |
| |
| // FIXME: this is utterly horrific. We should not be looking at previous |
| // codegen context to find out what needs doing. Unfortunately TableGen |
| // currently gives us exactly the same calls for vceqz_f32 and vceqz_s32 |
| // (etc). |
| if (BitCastInst *BI = dyn_cast<BitCastInst>(Op)) |
| OTy = BI->getOperand(0)->getType(); |
| |
| Op = Builder.CreateBitCast(Op, OTy); |
| if (OTy->getScalarType()->isFloatingPointTy()) { |
| if (Fp == CmpInst::FCMP_OEQ) |
| Op = Builder.CreateFCmp(Fp, Op, Constant::getNullValue(OTy)); |
| else |
| Op = Builder.CreateFCmpS(Fp, Op, Constant::getNullValue(OTy)); |
| } else { |
| Op = Builder.CreateICmp(Ip, Op, Constant::getNullValue(OTy)); |
| } |
| return Builder.CreateSExt(Op, Ty, Name); |
| } |
| |
| static Value *packTBLDVectorList(CodeGenFunction &CGF, ArrayRef<Value *> Ops, |
| Value *ExtOp, Value *IndexOp, |
| llvm::Type *ResTy, unsigned IntID, |
| const char *Name) { |
| SmallVector<Value *, 2> TblOps; |
| if (ExtOp) |
| TblOps.push_back(ExtOp); |
| |
| // Build a vector containing sequential number like (0, 1, 2, ..., 15) |
| SmallVector<int, 16> Indices; |
| auto *TblTy = cast<llvm::FixedVectorType>(Ops[0]->getType()); |
| for (unsigned i = 0, e = TblTy->getNumElements(); i != e; ++i) { |
| Indices.push_back(2*i); |
| Indices.push_back(2*i+1); |
| } |
| |
| int PairPos = 0, End = Ops.size() - 1; |
| while (PairPos < End) { |
| TblOps.push_back(CGF.Builder.CreateShuffleVector(Ops[PairPos], |
| Ops[PairPos+1], Indices, |
| Name)); |
| PairPos += 2; |
| } |
| |
| // If there's an odd number of 64-bit lookup table, fill the high 64-bit |
| // of the 128-bit lookup table with zero. |
| if (PairPos == End) { |
| Value *ZeroTbl = ConstantAggregateZero::get(TblTy); |
| TblOps.push_back(CGF.Builder.CreateShuffleVector(Ops[PairPos], |
| ZeroTbl, Indices, Name)); |
| } |
| |
| Function *TblF; |
| TblOps.push_back(IndexOp); |
| TblF = CGF.CGM.getIntrinsic(IntID, ResTy); |
| |
| return CGF.EmitNeonCall(TblF, TblOps, Name); |
| } |
| |
| Value *CodeGenFunction::GetValueForARMHint(unsigned BuiltinID) { |
| unsigned Value; |
| switch (BuiltinID) { |
| default: |
| return nullptr; |
| case clang::ARM::BI__builtin_arm_nop: |
| Value = 0; |
| break; |
| case clang::ARM::BI__builtin_arm_yield: |
| case clang::ARM::BI__yield: |
| Value = 1; |
| break; |
| case clang::ARM::BI__builtin_arm_wfe: |
| case clang::ARM::BI__wfe: |
| Value = 2; |
| break; |
| case clang::ARM::BI__builtin_arm_wfi: |
| case clang::ARM::BI__wfi: |
| Value = 3; |
| break; |
| case clang::ARM::BI__builtin_arm_sev: |
| case clang::ARM::BI__sev: |
| Value = 4; |
| break; |
| case clang::ARM::BI__builtin_arm_sevl: |
| case clang::ARM::BI__sevl: |
| Value = 5; |
| break; |
| } |
| |
| return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_hint), |
| llvm::ConstantInt::get(Int32Ty, Value)); |
| } |
| |
| enum SpecialRegisterAccessKind { |
| NormalRead, |
| VolatileRead, |
| Write, |
| }; |
| |
| // Generates the IR for __builtin_read_exec_*. |
| // Lowers the builtin to amdgcn_ballot intrinsic. |
| static Value *EmitAMDGCNBallotForExec(CodeGenFunction &CGF, const CallExpr *E, |
| llvm::Type *RegisterType, |
| llvm::Type *ValueType, bool isExecHi) { |
| CodeGen::CGBuilderTy &Builder = CGF.Builder; |
| CodeGen::CodeGenModule &CGM = CGF.CGM; |
| |
| Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_ballot, {RegisterType}); |
| llvm::Value *Call = Builder.CreateCall(F, {Builder.getInt1(true)}); |
| |
| if (isExecHi) { |
| Value *Rt2 = Builder.CreateLShr(Call, 32); |
| Rt2 = Builder.CreateTrunc(Rt2, CGF.Int32Ty); |
| return Rt2; |
| } |
| |
| return Call; |
| } |
| |
| // Generates the IR for the read/write special register builtin, |
| // ValueType is the type of the value that is to be written or read, |
| // RegisterType is the type of the register being written to or read from. |
| static Value *EmitSpecialRegisterBuiltin(CodeGenFunction &CGF, |
| const CallExpr *E, |
| llvm::Type *RegisterType, |
| llvm::Type *ValueType, |
| SpecialRegisterAccessKind AccessKind, |
| StringRef SysReg = "") { |
| // write and register intrinsics only support 32, 64 and 128 bit operations. |
| assert((RegisterType->isIntegerTy(32) || RegisterType->isIntegerTy(64) || |
| RegisterType->isIntegerTy(128)) && |
| "Unsupported size for register."); |
| |
| CodeGen::CGBuilderTy &Builder = CGF.Builder; |
| CodeGen::CodeGenModule &CGM = CGF.CGM; |
| LLVMContext &Context = CGM.getLLVMContext(); |
| |
| if (SysReg.empty()) { |
| const Expr *SysRegStrExpr = E->getArg(0)->IgnoreParenCasts(); |
| SysReg = cast<clang::StringLiteral>(SysRegStrExpr)->getString(); |
| } |
| |
| llvm::Metadata *Ops[] = { llvm::MDString::get(Context, SysReg) }; |
| llvm::MDNode *RegName = llvm::MDNode::get(Context, Ops); |
| llvm::Value *Metadata = llvm::MetadataAsValue::get(Context, RegName); |
| |
| llvm::Type *Types[] = { RegisterType }; |
| |
| bool MixedTypes = RegisterType->isIntegerTy(64) && ValueType->isIntegerTy(32); |
| assert(!(RegisterType->isIntegerTy(32) && ValueType->isIntegerTy(64)) |
| && "Can't fit 64-bit value in 32-bit register"); |
| |
| if (AccessKind != Write) { |
| assert(AccessKind == NormalRead || AccessKind == VolatileRead); |
| llvm::Function *F = CGM.getIntrinsic( |
| AccessKind == VolatileRead ? llvm::Intrinsic::read_volatile_register |
| : llvm::Intrinsic::read_register, |
| Types); |
| llvm::Value *Call = Builder.CreateCall(F, Metadata); |
| |
| if (MixedTypes) |
| // Read into 64 bit register and then truncate result to 32 bit. |
| return Builder.CreateTrunc(Call, ValueType); |
| |
| if (ValueType->isPointerTy()) |
| // Have i32/i64 result (Call) but want to return a VoidPtrTy (i8*). |
| return Builder.CreateIntToPtr(Call, ValueType); |
| |
| return Call; |
| } |
| |
| llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types); |
| llvm::Value *ArgValue = CGF.EmitScalarExpr(E->getArg(1)); |
| if (MixedTypes) { |
| // Extend 32 bit write value to 64 bit to pass to write. |
| ArgValue = Builder.CreateZExt(ArgValue, RegisterType); |
| return Builder.CreateCall(F, { Metadata, ArgValue }); |
| } |
| |
| if (ValueType->isPointerTy()) { |
| // Have VoidPtrTy ArgValue but want to return an i32/i64. |
| ArgValue = Builder.CreatePtrToInt(ArgValue, RegisterType); |
| return Builder.CreateCall(F, { Metadata, ArgValue }); |
| } |
| |
| return Builder.CreateCall(F, { Metadata, ArgValue }); |
| } |
| |
| /// Return true if BuiltinID is an overloaded Neon intrinsic with an extra |
| /// argument that specifies the vector type. |
| static bool HasExtraNeonArgument(unsigned BuiltinID) { |
| switch (BuiltinID) { |
| default: break; |
| case NEON::BI__builtin_neon_vget_lane_i8: |
| case NEON::BI__builtin_neon_vget_lane_i16: |
| case NEON::BI__builtin_neon_vget_lane_bf16: |
| case NEON::BI__builtin_neon_vget_lane_i32: |
| case NEON::BI__builtin_neon_vget_lane_i64: |
| case NEON::BI__builtin_neon_vget_lane_f32: |
| case NEON::BI__builtin_neon_vgetq_lane_i8: |
| case NEON::BI__builtin_neon_vgetq_lane_i16: |
| case NEON::BI__builtin_neon_vgetq_lane_bf16: |
| case NEON::BI__builtin_neon_vgetq_lane_i32: |
| case NEON::BI__builtin_neon_vgetq_lane_i64: |
| case NEON::BI__builtin_neon_vgetq_lane_f32: |
| case NEON::BI__builtin_neon_vduph_lane_bf16: |
| case NEON::BI__builtin_neon_vduph_laneq_bf16: |
| case NEON::BI__builtin_neon_vset_lane_i8: |
| case NEON::BI__builtin_neon_vset_lane_i16: |
| case NEON::BI__builtin_neon_vset_lane_bf16: |
| case NEON::BI__builtin_neon_vset_lane_i32: |
| case NEON::BI__builtin_neon_vset_lane_i64: |
| case NEON::BI__builtin_neon_vset_lane_f32: |
| case NEON::BI__builtin_neon_vsetq_lane_i8: |
| case NEON::BI__builtin_neon_vsetq_lane_i16: |
| case NEON::BI__builtin_neon_vsetq_lane_bf16: |
| case NEON::BI__builtin_neon_vsetq_lane_i32: |
| case NEON::BI__builtin_neon_vsetq_lane_i64: |
| case NEON::BI__builtin_neon_vsetq_lane_f32: |
| case NEON::BI__builtin_neon_vsha1h_u32: |
| case NEON::BI__builtin_neon_vsha1cq_u32: |
| case NEON::BI__builtin_neon_vsha1pq_u32: |
| case NEON::BI__builtin_neon_vsha1mq_u32: |
| case NEON::BI__builtin_neon_vcvth_bf16_f32: |
| case clang::ARM::BI_MoveToCoprocessor: |
| case clang::ARM::BI_MoveToCoprocessor2: |
| return false; |
| } |
| return true; |
| } |
| |
| Value *CodeGenFunction::EmitARMBuiltinExpr(unsigned BuiltinID, |
| const CallExpr *E, |
| ReturnValueSlot ReturnValue, |
| llvm::Triple::ArchType Arch) { |
| if (auto Hint = GetValueForARMHint(BuiltinID)) |
| return Hint; |
| |
| if (BuiltinID == clang::ARM::BI__emit) { |
| bool IsThumb = getTarget().getTriple().getArch() == llvm::Triple::thumb; |
| llvm::FunctionType *FTy = |
| llvm::FunctionType::get(VoidTy, /*Variadic=*/false); |
| |
| Expr::EvalResult Result; |
| if (!E->getArg(0)->EvaluateAsInt(Result, CGM.getContext())) |
| llvm_unreachable("Sema will ensure that the parameter is constant"); |
| |
| llvm::APSInt Value = Result.Val.getInt(); |
| uint64_t ZExtValue = Value.zextOrTrunc(IsThumb ? 16 : 32).getZExtValue(); |
| |
| llvm::InlineAsm *Emit = |
| IsThumb ? InlineAsm::get(FTy, ".inst.n 0x" + utohexstr(ZExtValue), "", |
| /*hasSideEffects=*/true) |
| : InlineAsm::get(FTy, ".inst 0x" + utohexstr(ZExtValue), "", |
| /*hasSideEffects=*/true); |
| |
| return Builder.CreateCall(Emit); |
| } |
| |
| if (BuiltinID == clang::ARM::BI__builtin_arm_dbg) { |
| Value *Option = EmitScalarExpr(E->getArg(0)); |
| return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_dbg), Option); |
| } |
| |
| if (BuiltinID == clang::ARM::BI__builtin_arm_prefetch) { |
| Value *Address = EmitScalarExpr(E->getArg(0)); |
| Value *RW = EmitScalarExpr(E->getArg(1)); |
| Value *IsData = EmitScalarExpr(E->getArg(2)); |
| |
| // Locality is not supported on ARM target |
| Value *Locality = llvm::ConstantInt::get(Int32Ty, 3); |
| |
| Function *F = CGM.getIntrinsic(Intrinsic::prefetch, Address->getType()); |
| return Builder.CreateCall(F, {Address, RW, Locality, IsData}); |
| } |
| |
| if (BuiltinID == clang::ARM::BI__builtin_arm_rbit) { |
| llvm::Value *Arg = EmitScalarExpr(E->getArg(0)); |
| return Builder.CreateCall( |
| CGM.getIntrinsic(Intrinsic::bitreverse, Arg->getType()), Arg, "rbit"); |
| } |
| |
| if (BuiltinID == clang::ARM::BI__builtin_arm_clz || |
| BuiltinID == clang::ARM::BI__builtin_arm_clz64) { |
| llvm::Value *Arg = EmitScalarExpr(E->getArg(0)); |
| Function *F = CGM.getIntrinsic(Intrinsic::ctlz, Arg->getType()); |
| Value *Res = Builder.CreateCall(F, {Arg, Builder.getInt1(false)}); |
| if (BuiltinID == clang::ARM::BI__builtin_arm_clz64) |
| Res = Builder.CreateTrunc(Res, Builder.getInt32Ty()); |
| return Res; |
| } |
| |
| |
| if (BuiltinID == clang::ARM::BI__builtin_arm_cls) { |
| llvm::Value *Arg = EmitScalarExpr(E->getArg(0)); |
| return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_cls), Arg, "cls"); |
| } |
| if (BuiltinID == clang::ARM::BI__builtin_arm_cls64) { |
| llvm::Value *Arg = EmitScalarExpr(E->getArg(0)); |
| return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_cls64), Arg, |
| "cls"); |
| } |
| |
| if (BuiltinID == clang::ARM::BI__clear_cache) { |
| assert(E->getNumArgs() == 2 && "__clear_cache takes 2 arguments"); |
| const FunctionDecl *FD = E->getDirectCallee(); |
| Value *Ops[2]; |
| for (unsigned i = 0; i < 2; i++) |
| Ops[i] = EmitScalarExpr(E->getArg(i)); |
| llvm::Type *Ty = CGM.getTypes().ConvertType(FD->getType()); |
| llvm::FunctionType *FTy = cast<llvm::FunctionType>(Ty); |
| StringRef Name = FD->getName(); |
| return EmitNounwindRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), Ops); |
| } |
| |
| if (BuiltinID == clang::ARM::BI__builtin_arm_mcrr || |
| BuiltinID == clang::ARM::BI__builtin_arm_mcrr2) { |
| Function *F; |
| |
| switch (BuiltinID) { |
| default: llvm_unreachable("unexpected builtin"); |
| case clang::ARM::BI__builtin_arm_mcrr: |
| F = CGM.getIntrinsic(Intrinsic::arm_mcrr); |
| break; |
| case clang::ARM::BI__builtin_arm_mcrr2: |
| F = CGM.getIntrinsic(Intrinsic::arm_mcrr2); |
| break; |
| } |
| |
| // MCRR{2} instruction has 5 operands but |
| // the intrinsic has 4 because Rt and Rt2 |
| // are represented as a single unsigned 64 |
| // bit integer in the intrinsic definition |
| // but internally it's represented as 2 32 |
| // bit integers. |
| |
| Value *Coproc = EmitScalarExpr(E->getArg(0)); |
| Value *Opc1 = EmitScalarExpr(E->getArg(1)); |
| Value *RtAndRt2 = EmitScalarExpr(E->getArg(2)); |
| Value *CRm = EmitScalarExpr(E->getArg(3)); |
| |
| Value *C1 = llvm::ConstantInt::get(Int64Ty, 32); |
| Value *Rt = Builder.CreateTruncOrBitCast(RtAndRt2, Int32Ty); |
| Value *Rt2 = Builder.CreateLShr(RtAndRt2, C1); |
| Rt2 = Builder.CreateTruncOrBitCast(Rt2, Int32Ty); |
| |
| return Builder.CreateCall(F, {Coproc, Opc1, Rt, Rt2, CRm}); |
| } |
| |
| if (BuiltinID == clang::ARM::BI__builtin_arm_mrrc || |
| BuiltinID == clang::ARM::BI__builtin_arm_mrrc2) { |
| Function *F; |
| |
| switch (BuiltinID) { |
| default: llvm_unreachable("unexpected builtin"); |
| case clang::ARM::BI__builtin_arm_mrrc: |
| F = CGM.getIntrinsic(Intrinsic::arm_mrrc); |
| break; |
| case clang::ARM::BI__builtin_arm_mrrc2: |
| F = CGM.getIntrinsic(Intrinsic::arm_mrrc2); |
| break; |
| } |
| |
| Value *Coproc = EmitScalarExpr(E->getArg(0)); |
| Value *Opc1 = EmitScalarExpr(E->getArg(1)); |
| Value *CRm = EmitScalarExpr(E->getArg(2)); |
| Value *RtAndRt2 = Builder.CreateCall(F, {Coproc, Opc1, CRm}); |
| |
| // Returns an unsigned 64 bit integer, represented |
| // as two 32 bit integers. |
| |
| Value *Rt = Builder.CreateExtractValue(RtAndRt2, 1); |
| Value *Rt1 = Builder.CreateExtractValue(RtAndRt2, 0); |
| Rt = Builder.CreateZExt(Rt, Int64Ty); |
| Rt1 = Builder.CreateZExt(Rt1, Int64Ty); |
| |
| Value *ShiftCast = llvm::ConstantInt::get(Int64Ty, 32); |
| RtAndRt2 = Builder.CreateShl(Rt, ShiftCast, "shl", true); |
| RtAndRt2 = Builder.CreateOr(RtAndRt2, Rt1); |
| |
| return Builder.CreateBitCast(RtAndRt2, ConvertType(E->getType())); |
| } |
| |
| if (BuiltinID == clang::ARM::BI__builtin_arm_ldrexd || |
| ((BuiltinID == clang::ARM::BI__builtin_arm_ldrex || |
| BuiltinID == clang::ARM::BI__builtin_arm_ldaex) && |
| getContext().getTypeSize(E->getType()) == 64) || |
| BuiltinID == clang::ARM::BI__ldrexd) { |
| Function *F; |
| |
| switch (BuiltinID) { |
| default: llvm_unreachable("unexpected builtin"); |
| case clang::ARM::BI__builtin_arm_ldaex: |
| F = CGM.getIntrinsic(Intrinsic::arm_ldaexd); |
| break; |
| case clang::ARM::BI__builtin_arm_ldrexd: |
| case clang::ARM::BI__builtin_arm_ldrex: |
| case clang::ARM::BI__ldrexd: |
| F = CGM.getIntrinsic(Intrinsic::arm_ldrexd); |
| break; |
| } |
| |
| Value *LdPtr = EmitScalarExpr(E->getArg(0)); |
| Value *Val = Builder.CreateCall(F, LdPtr, "ldrexd"); |
| |
| Value *Val0 = Builder.CreateExtractValue(Val, 1); |
| Value *Val1 = Builder.CreateExtractValue(Val, 0); |
| Val0 = Builder.CreateZExt(Val0, Int64Ty); |
| Val1 = Builder.CreateZExt(Val1, Int64Ty); |
| |
| Value *ShiftCst = llvm::ConstantInt::get(Int64Ty, 32); |
| Val = Builder.CreateShl(Val0, ShiftCst, "shl", true /* nuw */); |
| Val = Builder.CreateOr(Val, Val1); |
| return Builder.CreateBitCast(Val, ConvertType(E->getType())); |
| } |
| |
| if (BuiltinID == clang::ARM::BI__builtin_arm_ldrex || |
| BuiltinID == clang::ARM::BI__builtin_arm_ldaex) { |
| Value *LoadAddr = EmitScalarExpr(E->getArg(0)); |
| |
| QualType Ty = E->getType(); |
| llvm::Type *RealResTy = ConvertType(Ty); |
| llvm::Type *IntTy = |
| llvm::IntegerType::get(getLLVMContext(), getContext().getTypeSize(Ty)); |
| |
| Function *F = CGM.getIntrinsic( |
| BuiltinID == clang::ARM::BI__builtin_arm_ldaex ? Intrinsic::arm_ldaex |
| : Intrinsic::arm_ldrex, |
| UnqualPtrTy); |
| CallInst *Val = Builder.CreateCall(F, LoadAddr, "ldrex"); |
| Val->addParamAttr( |
| 0, Attribute::get(getLLVMContext(), Attribute::ElementType, IntTy)); |
| |
| if (RealResTy->isPointerTy()) |
| return Builder.CreateIntToPtr(Val, RealResTy); |
| else { |
| llvm::Type *IntResTy = llvm::IntegerType::get( |
| getLLVMContext(), CGM.getDataLayout().getTypeSizeInBits(RealResTy)); |
| return Builder.CreateBitCast(Builder.CreateTruncOrBitCast(Val, IntResTy), |
| RealResTy); |
| } |
| } |
| |
| if (BuiltinID == clang::ARM::BI__builtin_arm_strexd || |
| ((BuiltinID == clang::ARM::BI__builtin_arm_stlex || |
| BuiltinID == clang::ARM::BI__builtin_arm_strex) && |
| getContext().getTypeSize(E->getArg(0)->getType()) == 64)) { |
| Function *F = CGM.getIntrinsic( |
| BuiltinID == clang::ARM::BI__builtin_arm_stlex ? Intrinsic::arm_stlexd |
| : Intrinsic::arm_strexd); |
| llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty); |
| |
| Address Tmp = CreateMemTemp(E->getArg(0)->getType()); |
| Value *Val = EmitScalarExpr(E->getArg(0)); |
| Builder.CreateStore(Val, Tmp); |
| |
| Address LdPtr = Tmp.withElementType(STy); |
| Val = Builder.CreateLoad(LdPtr); |
| |
| Value *Arg0 = Builder.CreateExtractValue(Val, 0); |
| Value *Arg1 = Builder.CreateExtractValue(Val, 1); |
| Value *StPtr = EmitScalarExpr(E->getArg(1)); |
| return Builder.CreateCall(F, {Arg0, Arg1, StPtr}, "strexd"); |
| } |
| |
| if (BuiltinID == clang::ARM::BI__builtin_arm_strex || |
| BuiltinID == clang::ARM::BI__builtin_arm_stlex) { |
| Value *StoreVal = EmitScalarExpr(E->getArg(0)); |
| Value *StoreAddr = EmitScalarExpr(E->getArg(1)); |
| |
| QualType Ty = E->getArg(0)->getType(); |
| llvm::Type *StoreTy = |
| llvm::IntegerType::get(getLLVMContext(), getContext().getTypeSize(Ty)); |
| |
| if (StoreVal->getType()->isPointerTy()) |
| StoreVal = Builder.CreatePtrToInt(StoreVal, Int32Ty); |
| else { |
| llvm::Type *IntTy = llvm::IntegerType::get( |
| getLLVMContext(), |
| CGM.getDataLayout().getTypeSizeInBits(StoreVal->getType())); |
| StoreVal = Builder.CreateBitCast(StoreVal, IntTy); |
| StoreVal = Builder.CreateZExtOrBitCast(StoreVal, Int32Ty); |
| } |
| |
| Function *F = CGM.getIntrinsic( |
| BuiltinID == clang::ARM::BI__builtin_arm_stlex ? Intrinsic::arm_stlex |
| : Intrinsic::arm_strex, |
| StoreAddr->getType()); |
| |
| CallInst *CI = Builder.CreateCall(F, {StoreVal, StoreAddr}, "strex"); |
| CI->addParamAttr( |
| 1, Attribute::get(getLLVMContext(), Attribute::ElementType, StoreTy)); |
| return CI; |
| } |
| |
| if (BuiltinID == clang::ARM::BI__builtin_arm_clrex) { |
| Function *F = CGM.getIntrinsic(Intrinsic::arm_clrex); |
| return Builder.CreateCall(F); |
| } |
| |
| // CRC32 |
| Intrinsic::ID CRCIntrinsicID = Intrinsic::not_intrinsic; |
| switch (BuiltinID) { |
| case clang::ARM::BI__builtin_arm_crc32b: |
| CRCIntrinsicID = Intrinsic::arm_crc32b; break; |
| case clang::ARM::BI__builtin_arm_crc32cb: |
| CRCIntrinsicID = Intrinsic::arm_crc32cb; break; |
| case clang::ARM::BI__builtin_arm_crc32h: |
| CRCIntrinsicID = Intrinsic::arm_crc32h; break; |
| case clang::ARM::BI__builtin_arm_crc32ch: |
| CRCIntrinsicID = Intrinsic::arm_crc32ch; break; |
| case clang::ARM::BI__builtin_arm_crc32w: |
| case clang::ARM::BI__builtin_arm_crc32d: |
| CRCIntrinsicID = Intrinsic::arm_crc32w; break; |
| case clang::ARM::BI__builtin_arm_crc32cw: |
| case clang::ARM::BI__builtin_arm_crc32cd: |
| CRCIntrinsicID = Intrinsic::arm_crc32cw; break; |
| } |
| |
| if (CRCIntrinsicID != Intrinsic::not_intrinsic) { |
| Value *Arg0 = EmitScalarExpr(E->getArg(0)); |
| Value *Arg1 = EmitScalarExpr(E->getArg(1)); |
| |
| // crc32{c,}d intrinsics are implemented as two calls to crc32{c,}w |
| // intrinsics, hence we need different codegen for these cases. |
| if (BuiltinID == clang::ARM::BI__builtin_arm_crc32d || |
| BuiltinID == clang::ARM::BI__builtin_arm_crc32cd) { |
| Value *C1 = llvm::ConstantInt::get(Int64Ty, 32); |
| Value *Arg1a = Builder.CreateTruncOrBitCast(Arg1, Int32Ty); |
| Value *Arg1b = Builder.CreateLShr(Arg1, C1); |
| Arg1b = Builder.CreateTruncOrBitCast(Arg1b, Int32Ty); |
| |
| Function *F = CGM.getIntrinsic(CRCIntrinsicID); |
| Value *Res = Builder.CreateCall(F, {Arg0, Arg1a}); |
| return Builder.CreateCall(F, {Res, Arg1b}); |
| } else { |
| Arg1 = Builder.CreateZExtOrBitCast(Arg1, Int32Ty); |
| |
| Function *F = CGM.getIntrinsic(CRCIntrinsicID); |
| return Builder.CreateCall(F, {Arg0, Arg1}); |
| } |
| } |
| |
| if (BuiltinID == clang::ARM::BI__builtin_arm_rsr || |
| BuiltinID == clang::ARM::BI__builtin_arm_rsr64 || |
| BuiltinID == clang::ARM::BI__builtin_arm_rsrp || |
| BuiltinID == clang::ARM::BI__builtin_arm_wsr || |
| BuiltinID == clang::ARM::BI__builtin_arm_wsr64 || |
| BuiltinID == clang::ARM::BI__builtin_arm_wsrp) { |
| |
| SpecialRegisterAccessKind AccessKind = Write; |
| if (BuiltinID == clang::ARM::BI__builtin_arm_rsr || |
| BuiltinID == clang::ARM::BI__builtin_arm_rsr64 || |
| BuiltinID == clang::ARM::BI__builtin_arm_rsrp) |
| AccessKind = VolatileRead; |
| |
| bool IsPointerBuiltin = BuiltinID == clang::ARM::BI__builtin_arm_rsrp || |
| BuiltinID == clang::ARM::BI__builtin_arm_wsrp; |
| |
| bool Is64Bit = BuiltinID == clang::ARM::BI__builtin_arm_rsr64 || |
| BuiltinID == clang::ARM::BI__builtin_arm_wsr64; |
| |
| llvm::Type *ValueType; |
| llvm::Type *RegisterType; |
| if (IsPointerBuiltin) { |
| ValueType = VoidPtrTy; |
| RegisterType = Int32Ty; |
| } else if (Is64Bit) { |
| ValueType = RegisterType = Int64Ty; |
| } else { |
| ValueType = RegisterType = Int32Ty; |
| } |
| |
| return EmitSpecialRegisterBuiltin(*this, E, RegisterType, ValueType, |
| AccessKind); |
| } |
| |
| if (BuiltinID == ARM::BI__builtin_sponentry) { |
| llvm::Function *F = CGM.getIntrinsic(Intrinsic::sponentry, AllocaInt8PtrTy); |
| return Builder.CreateCall(F); |
| } |
| |
| // Handle MSVC intrinsics before argument evaluation to prevent double |
| // evaluation. |
| if (std::optional<MSVCIntrin> MsvcIntId = translateArmToMsvcIntrin(BuiltinID)) |
| return EmitMSVCBuiltinExpr(*MsvcIntId, E); |
| |
| // Deal with MVE builtins |
| if (Value *Result = EmitARMMVEBuiltinExpr(BuiltinID, E, ReturnValue, Arch)) |
| return Result; |
| // Handle CDE builtins |
| if (Value *Result = EmitARMCDEBuiltinExpr(BuiltinID, E, ReturnValue, Arch)) |
| return Result; |
| |
| // Some intrinsics are equivalent - if they are use the base intrinsic ID. |
| auto It = llvm::find_if(NEONEquivalentIntrinsicMap, [BuiltinID](auto &P) { |
| return P.first == BuiltinID; |
| }); |
| if (It != end(NEONEquivalentIntrinsicMap)) |
| BuiltinID = It->second; |
| |
| // Find out if any arguments are required to be integer constant |
| // expressions. |
| unsigned ICEArguments = 0; |
| ASTContext::GetBuiltinTypeError Error; |
| getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments); |
| assert(Error == ASTContext::GE_None && "Should not codegen an error"); |
| |
| auto getAlignmentValue32 = [&](Address addr) -> Value* { |
| return Builder.getInt32(addr.getAlignment().getQuantity()); |
| }; |
| |
| Address PtrOp0 = Address::invalid(); |
| Address PtrOp1 = Address::invalid(); |
| SmallVector<Value*, 4> Ops; |
| bool HasExtraArg = HasExtraNeonArgument(BuiltinID); |
| unsigned NumArgs = E->getNumArgs() - (HasExtraArg ? 1 : 0); |
| for (unsigned i = 0, e = NumArgs; i != e; i++) { |
| if (i == 0) { |
| switch (BuiltinID) { |
| case NEON::BI__builtin_neon_vld1_v: |
| case NEON::BI__builtin_neon_vld1q_v: |
| case NEON::BI__builtin_neon_vld1q_lane_v: |
| case NEON::BI__builtin_neon_vld1_lane_v: |
| case NEON::BI__builtin_neon_vld1_dup_v: |
| case NEON::BI__builtin_neon_vld1q_dup_v: |
| case NEON::BI__builtin_neon_vst1_v: |
| case NEON::BI__builtin_neon_vst1q_v: |
| case NEON::BI__builtin_neon_vst1q_lane_v: |
| case NEON::BI__builtin_neon_vst1_lane_v: |
| case NEON::BI__builtin_neon_vst2_v: |
| case NEON::BI__builtin_neon_vst2q_v: |
| case NEON::BI__builtin_neon_vst2_lane_v: |
| case NEON::BI__builtin_neon_vst2q_lane_v: |
| case NEON::BI__builtin_neon_vst3_v: |
| case NEON::BI__builtin_neon_vst3q_v: |
| case NEON::BI__builtin_neon_vst3_lane_v: |
| case NEON::BI__builtin_neon_vst3q_lane_v: |
| case NEON::BI__builtin_neon_vst4_v: |
| case NEON::BI__builtin_neon_vst4q_v: |
| case NEON::BI__builtin_neon_vst4_lane_v: |
| case NEON::BI__builtin_neon_vst4q_lane_v: |
| // Get the alignment for the argument in addition to the value; |
| // we'll use it later. |
| PtrOp0 = EmitPointerWithAlignment(E->getArg(0)); |
| Ops.push_back(PtrOp0.emitRawPointer(*this)); |
| continue; |
| } |
| } |
| if (i == 1) { |
| switch (BuiltinID) { |
| case NEON::BI__builtin_neon_vld2_v: |
| case NEON::BI__builtin_neon_vld2q_v: |
| case NEON::BI__builtin_neon_vld3_v: |
| case NEON::BI__builtin_neon_vld3q_v: |
| case NEON::BI__builtin_neon_vld4_v: |
| case NEON::BI__builtin_neon_vld4q_v: |
| case NEON::BI__builtin_neon_vld2_lane_v: |
| case NEON::BI__builtin_neon_vld2q_lane_v: |
| case NEON::BI__builtin_neon_vld3_lane_v: |
| case NEON::BI__builtin_neon_vld3q_lane_v: |
| case NEON::BI__builtin_neon_vld4_lane_v: |
| case NEON::BI__builtin_neon_vld4q_lane_v: |
| case NEON::BI__builtin_neon_vld2_dup_v: |
| case NEON::BI__builtin_neon_vld2q_dup_v: |
| case NEON::BI__builtin_neon_vld3_dup_v: |
| case NEON::BI__builtin_neon_vld3q_dup_v: |
| case NEON::BI__builtin_neon_vld4_dup_v: |
| case NEON::BI__builtin_neon_vld4q_dup_v: |
| // Get the alignment for the argument in addition to the value; |
| // we'll use it later. |
| PtrOp1 = EmitPointerWithAlignment(E->getArg(1)); |
| Ops.push_back(PtrOp1.emitRawPointer(*this)); |
| continue; |
| } |
| } |
| |
| Ops.push_back(EmitScalarOrConstFoldImmArg(ICEArguments, i, E)); |
| } |
| |
| switch (BuiltinID) { |
| default: break; |
| |
| case NEON::BI__builtin_neon_vget_lane_i8: |
| case NEON::BI__builtin_neon_vget_lane_i16: |
| case NEON::BI__builtin_neon_vget_lane_i32: |
| case NEON::BI__builtin_neon_vget_lane_i64: |
| case NEON::BI__builtin_neon_vget_lane_bf16: |
| case NEON::BI__builtin_neon_vget_lane_f32: |
| case NEON::BI__builtin_neon_vgetq_lane_i8: |
| case NEON::BI__builtin_neon_vgetq_lane_i16: |
| case NEON::BI__builtin_neon_vgetq_lane_i32: |
| case NEON::BI__builtin_neon_vgetq_lane_i64: |
| case NEON::BI__builtin_neon_vgetq_lane_bf16: |
| case NEON::BI__builtin_neon_vgetq_lane_f32: |
| case NEON::BI__builtin_neon_vduph_lane_bf16: |
| case NEON::BI__builtin_neon_vduph_laneq_bf16: |
| return Builder.CreateExtractElement(Ops[0], Ops[1], "vget_lane"); |
| |
| case NEON::BI__builtin_neon_vrndns_f32: { |
| Value *Arg = EmitScalarExpr(E->getArg(0)); |
| llvm::Type *Tys[] = {Arg->getType()}; |
| Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vrintn, Tys); |
| return Builder.CreateCall(F, {Arg}, "vrndn"); } |
| |
| case NEON::BI__builtin_neon_vset_lane_i8: |
| case NEON::BI__builtin_neon_vset_lane_i16: |
| case NEON::BI__builtin_neon_vset_lane_i32: |
| case NEON::BI__builtin_neon_vset_lane_i64: |
| case NEON::BI__builtin_neon_vset_lane_bf16: |
| case NEON::BI__builtin_neon_vset_lane_f32: |
| case NEON::BI__builtin_neon_vsetq_lane_i8: |
| case NEON::BI__builtin_neon_vsetq_lane_i16: |
| case NEON::BI__builtin_neon_vsetq_lane_i32: |
| case NEON::BI__builtin_neon_vsetq_lane_i64: |
| case NEON::BI__builtin_neon_vsetq_lane_bf16: |
| case NEON::BI__builtin_neon_vsetq_lane_f32: |
| return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane"); |
| |
| case NEON::BI__builtin_neon_vsha1h_u32: |
| return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1h), Ops, |
| "vsha1h"); |
| case NEON::BI__builtin_neon_vsha1cq_u32: |
| return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1c), Ops, |
| "vsha1h"); |
| case NEON::BI__builtin_neon_vsha1pq_u32: |
| return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1p), Ops, |
| "vsha1h"); |
| case NEON::BI__builtin_neon_vsha1mq_u32: |
| return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1m), Ops, |
| "vsha1h"); |
| |
| case NEON::BI__builtin_neon_vcvth_bf16_f32: { |
| return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vcvtbfp2bf), Ops, |
| "vcvtbfp2bf"); |
| } |
| |
| // The ARM _MoveToCoprocessor builtins put the input register value as |
| // the first argument, but the LLVM intrinsic expects it as the third one. |
| case clang::ARM::BI_MoveToCoprocessor: |
| case clang::ARM::BI_MoveToCoprocessor2: { |
| Function *F = CGM.getIntrinsic(BuiltinID == clang::ARM::BI_MoveToCoprocessor |
| ? Intrinsic::arm_mcr |
| : Intrinsic::arm_mcr2); |
| return Builder.CreateCall(F, {Ops[1], Ops[2], Ops[0], |
| Ops[3], Ops[4], Ops[5]}); |
| } |
| } |
| |
| // Get the last argument, which specifies the vector type. |
| assert(HasExtraArg); |
| const Expr *Arg = E->getArg(E->getNumArgs()-1); |
| std::optional<llvm::APSInt> Result = |
| Arg->getIntegerConstantExpr(getContext()); |
| if (!Result) |
| return nullptr; |
| |
| if (BuiltinID == clang::ARM::BI__builtin_arm_vcvtr_f || |
| BuiltinID == clang::ARM::BI__builtin_arm_vcvtr_d) { |
| // Determine the overloaded type of this builtin. |
| llvm::Type *Ty; |
| if (BuiltinID == clang::ARM::BI__builtin_arm_vcvtr_f) |
| Ty = FloatTy; |
| else |
| Ty = DoubleTy; |
| |
| // Determine whether this is an unsigned conversion or not. |
| bool usgn = Result->getZExtValue() == 1; |
| unsigned Int = usgn ? Intrinsic::arm_vcvtru : Intrinsic::arm_vcvtr; |
| |
| // Call the appropriate intrinsic. |
| Function *F = CGM.getIntrinsic(Int, Ty); |
| return Builder.CreateCall(F, Ops, "vcvtr"); |
| } |
| |
| // Determine the type of this overloaded NEON intrinsic. |
| NeonTypeFlags Type = Result->getZExtValue(); |
| bool usgn = Type.isUnsigned(); |
| bool rightShift = false; |
| |
| llvm::FixedVectorType *VTy = |
| GetNeonType(this, Type, getTarget().hasLegalHalfType(), false, |
| getTarget().hasBFloat16Type()); |
| llvm::Type *Ty = VTy; |
| if (!Ty) |
| return nullptr; |
| |
| // Many NEON builtins have identical semantics and uses in ARM and |
| // AArch64. Emit these in a single function. |
| auto IntrinsicMap = ArrayRef(ARMSIMDIntrinsicMap); |
| const ARMVectorIntrinsicInfo *Builtin = findARMVectorIntrinsicInMap( |
| IntrinsicMap, BuiltinID, NEONSIMDIntrinsicsProvenSorted); |
| if (Builtin) |
| return EmitCommonNeonBuiltinExpr( |
| Builtin->BuiltinID, Builtin->LLVMIntrinsic, Builtin->AltLLVMIntrinsic, |
| Builtin->NameHint, Builtin->TypeModifier, E, Ops, PtrOp0, PtrOp1, Arch); |
| |
| unsigned Int; |
| switch (BuiltinID) { |
| default: return nullptr; |
| case NEON::BI__builtin_neon_vld1q_lane_v: |
| // Handle 64-bit integer elements as a special case. Use shuffles of |
| // one-element vectors to avoid poor code for i64 in the backend. |
| if (VTy->getElementType()->isIntegerTy(64)) { |
| // Extract the other lane. |
| Ops[1] = Builder.CreateBitCast(Ops[1], Ty); |
| int Lane = cast<ConstantInt>(Ops[2])->getZExtValue(); |
| Value *SV = llvm::ConstantVector::get(ConstantInt::get(Int32Ty, 1-Lane)); |
| Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV); |
| // Load the value as a one-element vector. |
| Ty = llvm::FixedVectorType::get(VTy->getElementType(), 1); |
| llvm::Type *Tys[] = {Ty, Int8PtrTy}; |
| Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld1, Tys); |
| Value *Align = getAlignmentValue32(PtrOp0); |
| Value *Ld = Builder.CreateCall(F, {Ops[0], Align}); |
| // Combine them. |
| int Indices[] = {1 - Lane, Lane}; |
| return Builder.CreateShuffleVector(Ops[1], Ld, Indices, "vld1q_lane"); |
| } |
| [[fallthrough]]; |
| case NEON::BI__builtin_neon_vld1_lane_v: { |
| Ops[1] = Builder.CreateBitCast(Ops[1], Ty); |
| PtrOp0 = PtrOp0.withElementType(VTy->getElementType()); |
| Value *Ld = Builder.CreateLoad(PtrOp0); |
| return Builder.CreateInsertElement(Ops[1], Ld, Ops[2], "vld1_lane"); |
| } |
| case NEON::BI__builtin_neon_vqrshrn_n_v: |
| Int = |
| usgn ? Intrinsic::arm_neon_vqrshiftnu : Intrinsic::arm_neon_vqrshiftns; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrn_n", |
| 1, true); |
| case NEON::BI__builtin_neon_vqrshrun_n_v: |
| return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqrshiftnsu, Ty), |
| Ops, "vqrshrun_n", 1, true); |
| case NEON::BI__builtin_neon_vqshrn_n_v: |
| Int = usgn ? Intrinsic::arm_neon_vqshiftnu : Intrinsic::arm_neon_vqshiftns; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrn_n", |
| 1, true); |
| case NEON::BI__builtin_neon_vqshrun_n_v: |
| return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqshiftnsu, Ty), |
| Ops, "vqshrun_n", 1, true); |
| case NEON::BI__builtin_neon_vrecpe_v: |
| case NEON::BI__builtin_neon_vrecpeq_v: |
| return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrecpe, Ty), |
| Ops, "vrecpe"); |
| case NEON::BI__builtin_neon_vrshrn_n_v: |
| return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrshiftn, Ty), |
| Ops, "vrshrn_n", 1, true); |
| case NEON::BI__builtin_neon_vrsra_n_v: |
| case NEON::BI__builtin_neon_vrsraq_n_v: |
| Ops[0] = Builder.CreateBitCast(Ops[0], Ty); |
| Ops[1] = Builder.CreateBitCast(Ops[1], Ty); |
| Ops[2] = EmitNeonShiftVector(Ops[2], Ty, true); |
| Int = usgn ? Intrinsic::arm_neon_vrshiftu : Intrinsic::arm_neon_vrshifts; |
| Ops[1] = Builder.CreateCall(CGM.getIntrinsic(Int, Ty), {Ops[1], Ops[2]}); |
| return Builder.CreateAdd(Ops[0], Ops[1], "vrsra_n"); |
| case NEON::BI__builtin_neon_vsri_n_v: |
| case NEON::BI__builtin_neon_vsriq_n_v: |
| rightShift = true; |
| [[fallthrough]]; |
| case NEON::BI__builtin_neon_vsli_n_v: |
| case NEON::BI__builtin_neon_vsliq_n_v: |
| Ops[2] = EmitNeonShiftVector(Ops[2], Ty, rightShift); |
| return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vshiftins, Ty), |
| Ops, "vsli_n"); |
| case NEON::BI__builtin_neon_vsra_n_v: |
| case NEON::BI__builtin_neon_vsraq_n_v: |
| Ops[0] = Builder.CreateBitCast(Ops[0], Ty); |
| Ops[1] = EmitNeonRShiftImm(Ops[1], Ops[2], Ty, usgn, "vsra_n"); |
| return Builder.CreateAdd(Ops[0], Ops[1]); |
| case NEON::BI__builtin_neon_vst1q_lane_v: |
| // Handle 64-bit integer elements as a special case. Use a shuffle to get |
| // a one-element vector and avoid poor code for i64 in the backend. |
| if (VTy->getElementType()->isIntegerTy(64)) { |
| Ops[1] = Builder.CreateBitCast(Ops[1], Ty); |
| Value *SV = llvm::ConstantVector::get(cast<llvm::Constant>(Ops[2])); |
| Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV); |
| Ops[2] = getAlignmentValue32(PtrOp0); |
| llvm::Type *Tys[] = {Int8PtrTy, Ops[1]->getType()}; |
| return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst1, |
| Tys), Ops); |
| } |
| [[fallthrough]]; |
| case NEON::BI__builtin_neon_vst1_lane_v: { |
| Ops[1] = Builder.CreateBitCast(Ops[1], Ty); |
| Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2]); |
| return Builder.CreateStore(Ops[1], |
| PtrOp0.withElementType(Ops[1]->getType())); |
| } |
| case NEON::BI__builtin_neon_vtbl1_v: |
| return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl1), |
| Ops, "vtbl1"); |
| case NEON::BI__builtin_neon_vtbl2_v: |
| return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl2), |
| Ops, "vtbl2"); |
| case NEON::BI__builtin_neon_vtbl3_v: |
| return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl3), |
| Ops, "vtbl3"); |
| case NEON::BI__builtin_neon_vtbl4_v: |
| return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl4), |
| Ops, "vtbl4"); |
| case NEON::BI__builtin_neon_vtbx1_v: |
| return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx1), |
| Ops, "vtbx1"); |
| case NEON::BI__builtin_neon_vtbx2_v: |
| return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx2), |
| Ops, "vtbx2"); |
| case NEON::BI__builtin_neon_vtbx3_v: |
| return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx3), |
| Ops, "vtbx3"); |
| case NEON::BI__builtin_neon_vtbx4_v: |
| return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx4), |
| Ops, "vtbx4"); |
| } |
| } |
| |
| template<typename Integer> |
| static Integer GetIntegerConstantValue(const Expr *E, ASTContext &Context) { |
| return E->getIntegerConstantExpr(Context)->getExtValue(); |
| } |
| |
| static llvm::Value *SignOrZeroExtend(CGBuilderTy &Builder, llvm::Value *V, |
| llvm::Type *T, bool Unsigned) { |
| // Helper function called by Tablegen-constructed ARM MVE builtin codegen, |
| // which finds it convenient to specify signed/unsigned as a boolean flag. |
| return Unsigned ? Builder.CreateZExt(V, T) : Builder.CreateSExt(V, T); |
| } |
| |
| static llvm::Value *MVEImmediateShr(CGBuilderTy &Builder, llvm::Value *V, |
| uint32_t Shift, bool Unsigned) { |
| // MVE helper function for integer shift right. This must handle signed vs |
| // unsigned, and also deal specially with the case where the shift count is |
| // equal to the lane size. In LLVM IR, an LShr with that parameter would be |
| // undefined behavior, but in MVE it's legal, so we must convert it to code |
| // that is not undefined in IR. |
| unsigned LaneBits = cast<llvm::VectorType>(V->getType()) |
| ->getElementType() |
| ->getPrimitiveSizeInBits(); |
| if (Shift == LaneBits) { |
| // An unsigned shift of the full lane size always generates zero, so we can |
| // simply emit a zero vector. A signed shift of the full lane size does the |
| // same thing as shifting by one bit fewer. |
| if (Unsigned) |
| return llvm::Constant::getNullValue(V->getType()); |
| else |
| --Shift; |
| } |
| return Unsigned ? Builder.CreateLShr(V, Shift) : Builder.CreateAShr(V, Shift); |
| } |
| |
| static llvm::Value *ARMMVEVectorSplat(CGBuilderTy &Builder, llvm::Value *V) { |
| // MVE-specific helper function for a vector splat, which infers the element |
| // count of the output vector by knowing that MVE vectors are all 128 bits |
| // wide. |
| unsigned Elements = 128 / V->getType()->getPrimitiveSizeInBits(); |
| return Builder.CreateVectorSplat(Elements, V); |
| } |
| |
| static llvm::Value *ARMMVEVectorReinterpret(CGBuilderTy &Builder, |
| CodeGenFunction *CGF, |
| llvm::Value *V, |
| llvm::Type *DestType) { |
| // Convert one MVE vector type into another by reinterpreting its in-register |
| // format. |
| // |
| // Little-endian, this is identical to a bitcast (which reinterprets the |
| // memory format). But big-endian, they're not necessarily the same, because |
| // the register and memory formats map to each other differently depending on |
| // the lane size. |
| // |
| // We generate a bitcast whenever we can (if we're little-endian, or if the |
| // lane sizes are the same anyway). Otherwise we fall back to an IR intrinsic |
| // that performs the different kind of reinterpretation. |
| if (CGF->getTarget().isBigEndian() && |
| V->getType()->getScalarSizeInBits() != DestType->getScalarSizeInBits()) { |
| return Builder.CreateCall( |
| CGF->CGM.getIntrinsic(Intrinsic::arm_mve_vreinterpretq, |
| {DestType, V->getType()}), |
| V); |
| } else { |
| return Builder.CreateBitCast(V, DestType); |
| } |
| } |
| |
| static llvm::Value *VectorUnzip(CGBuilderTy &Builder, llvm::Value *V, bool Odd) { |
| // Make a shufflevector that extracts every other element of a vector (evens |
| // or odds, as desired). |
| SmallVector<int, 16> Indices; |
| unsigned InputElements = |
| cast<llvm::FixedVectorType>(V->getType())->getNumElements(); |
| for (unsigned i = 0; i < InputElements; i += 2) |
| Indices.push_back(i + Odd); |
| return Builder.CreateShuffleVector(V, Indices); |
| } |
| |
| static llvm::Value *VectorZip(CGBuilderTy &Builder, llvm::Value *V0, |
| llvm::Value *V1) { |
| // Make a shufflevector that interleaves two vectors element by element. |
| assert(V0->getType() == V1->getType() && "Can't zip different vector types"); |
| SmallVector<int, 16> Indices; |
| unsigned InputElements = |
| cast<llvm::FixedVectorType>(V0->getType())->getNumElements(); |
| for (unsigned i = 0; i < InputElements; i++) { |
| Indices.push_back(i); |
| Indices.push_back(i + InputElements); |
| } |
| return Builder.CreateShuffleVector(V0, V1, Indices); |
| } |
| |
| template<unsigned HighBit, unsigned OtherBits> |
| static llvm::Value *ARMMVEConstantSplat(CGBuilderTy &Builder, llvm::Type *VT) { |
| // MVE-specific helper function to make a vector splat of a constant such as |
| // UINT_MAX or INT_MIN, in which all bits below the highest one are equal. |
| llvm::Type *T = cast<llvm::VectorType>(VT)->getElementType(); |
| unsigned LaneBits = T->getPrimitiveSizeInBits(); |
| uint32_t Value = HighBit << (LaneBits - 1); |
| if (OtherBits) |
| Value |= (1UL << (LaneBits - 1)) - 1; |
| llvm::Value *Lane = llvm::ConstantInt::get(T, Value); |
| return ARMMVEVectorSplat(Builder, Lane); |
| } |
| |
| static llvm::Value *ARMMVEVectorElementReverse(CGBuilderTy &Builder, |
| llvm::Value *V, |
| unsigned ReverseWidth) { |
| // MVE-specific helper function which reverses the elements of a |
| // vector within every (ReverseWidth)-bit collection of lanes. |
| SmallVector<int, 16> Indices; |
| unsigned LaneSize = V->getType()->getScalarSizeInBits(); |
| unsigned Elements = 128 / LaneSize; |
| unsigned Mask = ReverseWidth / LaneSize - 1; |
| for (unsigned i = 0; i < Elements; i++) |
| Indices.push_back(i ^ Mask); |
| return Builder.CreateShuffleVector(V, Indices); |
| } |
| |
| Value *CodeGenFunction::EmitARMMVEBuiltinExpr(unsigned BuiltinID, |
| const CallExpr *E, |
| ReturnValueSlot ReturnValue, |
| llvm::Triple::ArchType Arch) { |
| enum class CustomCodeGen { VLD24, VST24 } CustomCodeGenType; |
| Intrinsic::ID IRIntr; |
| unsigned NumVectors; |
| |
| // Code autogenerated by Tablegen will handle all the simple builtins. |
| switch (BuiltinID) { |
| #include "clang/Basic/arm_mve_builtin_cg.inc" |
| |
| // If we didn't match an MVE builtin id at all, go back to the |
| // main EmitARMBuiltinExpr. |
| default: |
| return nullptr; |
| } |
| |
| // Anything that breaks from that switch is an MVE builtin that |
| // needs handwritten code to generate. |
| |
| switch (CustomCodeGenType) { |
| |
| case CustomCodeGen::VLD24: { |
| llvm::SmallVector<Value *, 4> Ops; |
| llvm::SmallVector<llvm::Type *, 4> Tys; |
| |
| auto MvecCType = E->getType(); |
| auto MvecLType = ConvertType(MvecCType); |
| assert(MvecLType->isStructTy() && |
| "Return type for vld[24]q should be a struct"); |
| assert(MvecLType->getStructNumElements() == 1 && |
| "Return-type struct for vld[24]q should have one element"); |
| auto MvecLTypeInner = MvecLType->getStructElementType(0); |
| assert(MvecLTypeInner->isArrayTy() && |
| "Return-type struct for vld[24]q should contain an array"); |
| assert(MvecLTypeInner->getArrayNumElements() == NumVectors && |
| "Array member of return-type struct vld[24]q has wrong length"); |
| auto VecLType = MvecLTypeInner->getArrayElementType(); |
| |
| Tys.push_back(VecLType); |
| |
| auto Addr = E->getArg(0); |
| Ops.push_back(EmitScalarExpr(Addr)); |
| Tys.push_back(ConvertType(Addr->getType())); |
| |
| Function *F = CGM.getIntrinsic(IRIntr, ArrayRef(Tys)); |
| Value *LoadResult = Builder.CreateCall(F, Ops); |
| Value *MvecOut = PoisonValue::get(MvecLType); |
| for (unsigned i = 0; i < NumVectors; ++i) { |
| Value *Vec = Builder.CreateExtractValue(LoadResult, i); |
| MvecOut = Builder.CreateInsertValue(MvecOut, Vec, {0, i}); |
| } |
| |
| if (ReturnValue.isNull()) |
| return MvecOut; |
| else |
| return Builder.CreateStore(MvecOut, ReturnValue.getAddress()); |
| } |
| |
| case CustomCodeGen::VST24: { |
| llvm::SmallVector<Value *, 4> Ops; |
| llvm::SmallVector<llvm::Type *, 4> Tys; |
| |
| auto Addr = E->getArg(0); |
| Ops.push_back(EmitScalarExpr(Addr)); |
| Tys.push_back(ConvertType(Addr->getType())); |
| |
| auto MvecCType = E->getArg(1)->getType(); |
| auto MvecLType = ConvertType(MvecCType); |
| assert(MvecLType->isStructTy() && "Data type for vst2q should be a struct"); |
| assert(MvecLType->getStructNumElements() == 1 && |
| "Data-type struct for vst2q should have one element"); |
| auto MvecLTypeInner = MvecLType->getStructElementType(0); |
| assert(MvecLTypeInner->isArrayTy() && |
| "Data-type struct for vst2q should contain an array"); |
| assert(MvecLTypeInner->getArrayNumElements() == NumVectors && |
| "Array member of return-type struct vld[24]q has wrong length"); |
| auto VecLType = MvecLTypeInner->getArrayElementType(); |
| |
| Tys.push_back(VecLType); |
| |
| AggValueSlot MvecSlot = CreateAggTemp(MvecCType); |
| EmitAggExpr(E->getArg(1), MvecSlot); |
| auto Mvec = Builder.CreateLoad(MvecSlot.getAddress()); |
| for (unsigned i = 0; i < NumVectors; i++) |
| Ops.push_back(Builder.CreateExtractValue(Mvec, {0, i})); |
| |
| Function *F = CGM.getIntrinsic(IRIntr, ArrayRef(Tys)); |
| Value *ToReturn = nullptr; |
| for (unsigned i = 0; i < NumVectors; i++) { |
| Ops.push_back(llvm::ConstantInt::get(Int32Ty, i)); |
| ToReturn = Builder.CreateCall(F, Ops); |
| Ops.pop_back(); |
| } |
| return ToReturn; |
| } |
| } |
| llvm_unreachable("unknown custom codegen type."); |
| } |
| |
| Value *CodeGenFunction::EmitARMCDEBuiltinExpr(unsigned BuiltinID, |
| const CallExpr *E, |
| ReturnValueSlot ReturnValue, |
| llvm::Triple::ArchType Arch) { |
| switch (BuiltinID) { |
| default: |
| return nullptr; |
| #include "clang/Basic/arm_cde_builtin_cg.inc" |
| } |
| } |
| |
| static Value *EmitAArch64TblBuiltinExpr(CodeGenFunction &CGF, unsigned BuiltinID, |
| const CallExpr *E, |
| SmallVectorImpl<Value *> &Ops, |
| llvm::Triple::ArchType Arch) { |
| unsigned int Int = 0; |
| const char *s = nullptr; |
| |
| switch (BuiltinID) { |
| default: |
| return nullptr; |
| case NEON::BI__builtin_neon_vtbl1_v: |
| case NEON::BI__builtin_neon_vqtbl1_v: |
| case NEON::BI__builtin_neon_vqtbl1q_v: |
| case NEON::BI__builtin_neon_vtbl2_v: |
| case NEON::BI__builtin_neon_vqtbl2_v: |
| case NEON::BI__builtin_neon_vqtbl2q_v: |
| case NEON::BI__builtin_neon_vtbl3_v: |
| case NEON::BI__builtin_neon_vqtbl3_v: |
| case NEON::BI__builtin_neon_vqtbl3q_v: |
| case NEON::BI__builtin_neon_vtbl4_v: |
| case NEON::BI__builtin_neon_vqtbl4_v: |
| case NEON::BI__builtin_neon_vqtbl4q_v: |
| break; |
| case NEON::BI__builtin_neon_vtbx1_v: |
| case NEON::BI__builtin_neon_vqtbx1_v: |
| case NEON::BI__builtin_neon_vqtbx1q_v: |
| case NEON::BI__builtin_neon_vtbx2_v: |
| case NEON::BI__builtin_neon_vqtbx2_v: |
| case NEON::BI__builtin_neon_vqtbx2q_v: |
| case NEON::BI__builtin_neon_vtbx3_v: |
| case NEON::BI__builtin_neon_vqtbx3_v: |
| case NEON::BI__builtin_neon_vqtbx3q_v: |
| case NEON::BI__builtin_neon_vtbx4_v: |
| case NEON::BI__builtin_neon_vqtbx4_v: |
| case NEON::BI__builtin_neon_vqtbx4q_v: |
| break; |
| } |
| |
| assert(E->getNumArgs() >= 3); |
| |
| // Get the last argument, which specifies the vector type. |
| const Expr *Arg = E->getArg(E->getNumArgs() - 1); |
| std::optional<llvm::APSInt> Result = |
| Arg->getIntegerConstantExpr(CGF.getContext()); |
| if (!Result) |
| return nullptr; |
| |
| // Determine the type of this overloaded NEON intrinsic. |
| NeonTypeFlags Type = Result->getZExtValue(); |
| llvm::FixedVectorType *Ty = GetNeonType(&CGF, Type); |
| if (!Ty) |
| return nullptr; |
| |
| CodeGen::CGBuilderTy &Builder = CGF.Builder; |
| |
| // AArch64 scalar builtins are not overloaded, they do not have an extra |
| // argument that specifies the vector type, need to handle each case. |
| switch (BuiltinID) { |
| case NEON::BI__builtin_neon_vtbl1_v: { |
| return packTBLDVectorList(CGF, ArrayRef(Ops).slice(0, 1), nullptr, Ops[1], |
| Ty, Intrinsic::aarch64_neon_tbl1, "vtbl1"); |
| } |
| case NEON::BI__builtin_neon_vtbl2_v: { |
| return packTBLDVectorList(CGF, ArrayRef(Ops).slice(0, 2), nullptr, Ops[2], |
| Ty, Intrinsic::aarch64_neon_tbl1, "vtbl1"); |
| } |
| case NEON::BI__builtin_neon_vtbl3_v: { |
| return packTBLDVectorList(CGF, ArrayRef(Ops).slice(0, 3), nullptr, Ops[3], |
| Ty, Intrinsic::aarch64_neon_tbl2, "vtbl2"); |
| } |
| case NEON::BI__builtin_neon_vtbl4_v: { |
| return packTBLDVectorList(CGF, ArrayRef(Ops).slice(0, 4), nullptr, Ops[4], |
| Ty, Intrinsic::aarch64_neon_tbl2, "vtbl2"); |
| } |
| case NEON::BI__builtin_neon_vtbx1_v: { |
| Value *TblRes = |
| packTBLDVectorList(CGF, ArrayRef(Ops).slice(1, 1), nullptr, Ops[2], Ty, |
| Intrinsic::aarch64_neon_tbl1, "vtbl1"); |
| |
| llvm::Constant *EightV = ConstantInt::get(Ty, 8); |
| Value *CmpRes = Builder.CreateICmp(ICmpInst::ICMP_UGE, Ops[2], EightV); |
| CmpRes = Builder.CreateSExt(CmpRes, Ty); |
| |
| Value *EltsFromInput = Builder.CreateAnd(CmpRes, Ops[0]); |
| Value *EltsFromTbl = Builder.CreateAnd(Builder.CreateNot(CmpRes), TblRes); |
| return Builder.CreateOr(EltsFromInput, EltsFromTbl, "vtbx"); |
| } |
| case NEON::BI__builtin_neon_vtbx2_v: { |
| return packTBLDVectorList(CGF, ArrayRef(Ops).slice(1, 2), Ops[0], Ops[3], |
| Ty, Intrinsic::aarch64_neon_tbx1, "vtbx1"); |
| } |
| case NEON::BI__builtin_neon_vtbx3_v: { |
| Value *TblRes = |
| packTBLDVectorList(CGF, ArrayRef(Ops).slice(1, 3), nullptr, Ops[4], Ty, |
| Intrinsic::aarch64_neon_tbl2, "vtbl2"); |
| |
| llvm::Constant *TwentyFourV = ConstantInt::get(Ty, 24); |
| Value *CmpRes = Builder.CreateICmp(ICmpInst::ICMP_UGE, Ops[4], |
| TwentyFourV); |
| CmpRes = Builder.CreateSExt(CmpRes, Ty); |
| |
| Value *EltsFromInput = Builder.CreateAnd(CmpRes, Ops[0]); |
| Value *EltsFromTbl = Builder.CreateAnd(Builder.CreateNot(CmpRes), TblRes); |
| return Builder.CreateOr(EltsFromInput, EltsFromTbl, "vtbx"); |
| } |
| case NEON::BI__builtin_neon_vtbx4_v: { |
| return packTBLDVectorList(CGF, ArrayRef(Ops).slice(1, 4), Ops[0], Ops[5], |
| Ty, Intrinsic::aarch64_neon_tbx2, "vtbx2"); |
| } |
| case NEON::BI__builtin_neon_vqtbl1_v: |
| case NEON::BI__builtin_neon_vqtbl1q_v: |
| Int = Intrinsic::aarch64_neon_tbl1; s = "vtbl1"; break; |
| case NEON::BI__builtin_neon_vqtbl2_v: |
| case NEON::BI__builtin_neon_vqtbl2q_v: { |
| Int = Intrinsic::aarch64_neon_tbl2; s = "vtbl2"; break; |
| case NEON::BI__builtin_neon_vqtbl3_v: |
| case NEON::BI__builtin_neon_vqtbl3q_v: |
| Int = Intrinsic::aarch64_neon_tbl3; s = "vtbl3"; break; |
| case NEON::BI__builtin_neon_vqtbl4_v: |
| case NEON::BI__builtin_neon_vqtbl4q_v: |
| Int = Intrinsic::aarch64_neon_tbl4; s = "vtbl4"; break; |
| case NEON::BI__builtin_neon_vqtbx1_v: |
| case NEON::BI__builtin_neon_vqtbx1q_v: |
| Int = Intrinsic::aarch64_neon_tbx1; s = "vtbx1"; break; |
| case NEON::BI__builtin_neon_vqtbx2_v: |
| case NEON::BI__builtin_neon_vqtbx2q_v: |
| Int = Intrinsic::aarch64_neon_tbx2; s = "vtbx2"; break; |
| case NEON::BI__builtin_neon_vqtbx3_v: |
| case NEON::BI__builtin_neon_vqtbx3q_v: |
| Int = Intrinsic::aarch64_neon_tbx3; s = "vtbx3"; break; |
| case NEON::BI__builtin_neon_vqtbx4_v: |
| case NEON::BI__builtin_neon_vqtbx4q_v: |
| Int = Intrinsic::aarch64_neon_tbx4; s = "vtbx4"; break; |
| } |
| } |
| |
| if (!Int) |
| return nullptr; |
| |
| Function *F = CGF.CGM.getIntrinsic(Int, Ty); |
| return CGF.EmitNeonCall(F, Ops, s); |
| } |
| |
| Value *CodeGenFunction::vectorWrapScalar16(Value *Op) { |
| auto *VTy = llvm::FixedVectorType::get(Int16Ty, 4); |
| Op = Builder.CreateBitCast(Op, Int16Ty); |
| Value *V = PoisonValue::get(VTy); |
| llvm::Constant *CI = ConstantInt::get(SizeTy, 0); |
| Op = Builder.CreateInsertElement(V, Op, CI); |
| return Op; |
| } |
| |
| /// SVEBuiltinMemEltTy - Returns the memory element type for this memory |
| /// access builtin. Only required if it can't be inferred from the base pointer |
| /// operand. |
| llvm::Type *CodeGenFunction::SVEBuiltinMemEltTy(const SVETypeFlags &TypeFlags) { |
| switch (TypeFlags.getMemEltType()) { |
| case SVETypeFlags::MemEltTyDefault: |
| return getEltType(TypeFlags); |
| case SVETypeFlags::MemEltTyInt8: |
| return Builder.getInt8Ty(); |
| case SVETypeFlags::MemEltTyInt16: |
| return Builder.getInt16Ty(); |
| case SVETypeFlags::MemEltTyInt32: |
| return Builder.getInt32Ty(); |
| case SVETypeFlags::MemEltTyInt64: |
| return Builder.getInt64Ty(); |
| } |
| llvm_unreachable("Unknown MemEltType"); |
| } |
| |
| llvm::Type *CodeGenFunction::getEltType(const SVETypeFlags &TypeFlags) { |
| switch (TypeFlags.getEltType()) { |
| default: |
| llvm_unreachable("Invalid SVETypeFlag!"); |
| |
| case SVETypeFlags::EltTyInt8: |
| return Builder.getInt8Ty(); |
| case SVETypeFlags::EltTyInt16: |
| return Builder.getInt16Ty(); |
| case SVETypeFlags::EltTyInt32: |
| return Builder.getInt32Ty(); |
| case SVETypeFlags::EltTyInt64: |
| return Builder.getInt64Ty(); |
| case SVETypeFlags::EltTyInt128: |
| return Builder.getInt128Ty(); |
| |
| case SVETypeFlags::EltTyFloat16: |
| return Builder.getHalfTy(); |
| case SVETypeFlags::EltTyFloat32: |
| return Builder.getFloatTy(); |
| case SVETypeFlags::EltTyFloat64: |
| return Builder.getDoubleTy(); |
| |
| case SVETypeFlags::EltTyBFloat16: |
| return Builder.getBFloatTy(); |
| |
| case SVETypeFlags::EltTyBool8: |
| case SVETypeFlags::EltTyBool16: |
| case SVETypeFlags::EltTyBool32: |
| case SVETypeFlags::EltTyBool64: |
| return Builder.getInt1Ty(); |
| } |
| } |
| |
| // Return the llvm predicate vector type corresponding to the specified element |
| // TypeFlags. |
| llvm::ScalableVectorType * |
| CodeGenFunction::getSVEPredType(const SVETypeFlags &TypeFlags) { |
| switch (TypeFlags.getEltType()) { |
| default: llvm_unreachable("Unhandled SVETypeFlag!"); |
| |
| case SVETypeFlags::EltTyInt8: |
| return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16); |
| case SVETypeFlags::EltTyInt16: |
| return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 8); |
| case SVETypeFlags::EltTyInt32: |
| return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 4); |
| case SVETypeFlags::EltTyInt64: |
| return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 2); |
| |
| case SVETypeFlags::EltTyBFloat16: |
| return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 8); |
| case SVETypeFlags::EltTyFloat16: |
| return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 8); |
| case SVETypeFlags::EltTyFloat32: |
| return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 4); |
| case SVETypeFlags::EltTyFloat64: |
| return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 2); |
| |
| case SVETypeFlags::EltTyBool8: |
| return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16); |
| case SVETypeFlags::EltTyBool16: |
| return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 8); |
| case SVETypeFlags::EltTyBool32: |
| return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 4); |
| case SVETypeFlags::EltTyBool64: |
| return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 2); |
| } |
| } |
| |
| // Return the llvm vector type corresponding to the specified element TypeFlags. |
| llvm::ScalableVectorType * |
| CodeGenFunction::getSVEType(const SVETypeFlags &TypeFlags) { |
| switch (TypeFlags.getEltType()) { |
| default: |
| llvm_unreachable("Invalid SVETypeFlag!"); |
| |
| case SVETypeFlags::EltTyInt8: |
| return llvm::ScalableVectorType::get(Builder.getInt8Ty(), 16); |
| case SVETypeFlags::EltTyInt16: |
| return llvm::ScalableVectorType::get(Builder.getInt16Ty(), 8); |
| case SVETypeFlags::EltTyInt32: |
| return llvm::ScalableVectorType::get(Builder.getInt32Ty(), 4); |
| case SVETypeFlags::EltTyInt64: |
| return llvm::ScalableVectorType::get(Builder.getInt64Ty(), 2); |
| |
| case SVETypeFlags::EltTyMFloat8: |
| return llvm::ScalableVectorType::get(Builder.getInt8Ty(), 16); |
| case SVETypeFlags::EltTyFloat16: |
| return llvm::ScalableVectorType::get(Builder.getHalfTy(), 8); |
| case SVETypeFlags::EltTyBFloat16: |
| return llvm::ScalableVectorType::get(Builder.getBFloatTy(), 8); |
| case SVETypeFlags::EltTyFloat32: |
| return llvm::ScalableVectorType::get(Builder.getFloatTy(), 4); |
| case SVETypeFlags::EltTyFloat64: |
| return llvm::ScalableVectorType::get(Builder.getDoubleTy(), 2); |
| |
| case SVETypeFlags::EltTyBool8: |
| return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16); |
| case SVETypeFlags::EltTyBool16: |
| return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 8); |
| case SVETypeFlags::EltTyBool32: |
| return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 4); |
| case SVETypeFlags::EltTyBool64: |
| return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 2); |
| } |
| } |
| |
| llvm::Value * |
| CodeGenFunction::EmitSVEAllTruePred(const SVETypeFlags &TypeFlags) { |
| Function *Ptrue = |
| CGM.getIntrinsic(Intrinsic::aarch64_sve_ptrue, getSVEPredType(TypeFlags)); |
| return Builder.CreateCall(Ptrue, {Builder.getInt32(/*SV_ALL*/ 31)}); |
| } |
| |
| constexpr unsigned SVEBitsPerBlock = 128; |
| |
| static llvm::ScalableVectorType *getSVEVectorForElementType(llvm::Type *EltTy) { |
| unsigned NumElts = SVEBitsPerBlock / EltTy->getScalarSizeInBits(); |
| return llvm::ScalableVectorType::get(EltTy, NumElts); |
| } |
| |
| // Reinterpret the input predicate so that it can be used to correctly isolate |
| // the elements of the specified datatype. |
| Value *CodeGenFunction::EmitSVEPredicateCast(Value *Pred, |
| llvm::ScalableVectorType *VTy) { |
| |
| if (isa<TargetExtType>(Pred->getType()) && |
| cast<TargetExtType>(Pred->getType())->getName() == "aarch64.svcount") |
| return Pred; |
| |
| auto *RTy = llvm::VectorType::get(IntegerType::get(getLLVMContext(), 1), VTy); |
| if (Pred->getType() == RTy) |
| return Pred; |
| |
| unsigned IntID; |
| llvm::Type *IntrinsicTy; |
| switch (VTy->getMinNumElements()) { |
| default: |
| llvm_unreachable("unsupported element count!"); |
| case 1: |
| case 2: |
| case 4: |
| case 8: |
| IntID = Intrinsic::aarch64_sve_convert_from_svbool; |
| IntrinsicTy = RTy; |
| break; |
| case 16: |
| IntID = Intrinsic::aarch64_sve_convert_to_svbool; |
| IntrinsicTy = Pred->getType(); |
| break; |
| } |
| |
| Function *F = CGM.getIntrinsic(IntID, IntrinsicTy); |
| Value *C = Builder.CreateCall(F, Pred); |
| assert(C->getType() == RTy && "Unexpected return type!"); |
| return C; |
| } |
| |
| Value *CodeGenFunction::EmitSVEPredicateTupleCast(Value *PredTuple, |
| llvm::StructType *Ty) { |
| if (PredTuple->getType() == Ty) |
| return PredTuple; |
| |
| Value *Ret = llvm::PoisonValue::get(Ty); |
| for (unsigned I = 0; I < Ty->getNumElements(); ++I) { |
| Value *Pred = Builder.CreateExtractValue(PredTuple, I); |
| Pred = EmitSVEPredicateCast( |
| Pred, cast<llvm::ScalableVectorType>(Ty->getTypeAtIndex(I))); |
| Ret = Builder.CreateInsertValue(Ret, Pred, I); |
| } |
| |
| return Ret; |
| } |
| |
| Value *CodeGenFunction::EmitSVEGatherLoad(const SVETypeFlags &TypeFlags, |
| SmallVectorImpl<Value *> &Ops, |
| unsigned IntID) { |
| auto *ResultTy = getSVEType(TypeFlags); |
| auto *OverloadedTy = |
| llvm::ScalableVectorType::get(SVEBuiltinMemEltTy(TypeFlags), ResultTy); |
| |
| Function *F = nullptr; |
| if (Ops[1]->getType()->isVectorTy()) |
| // This is the "vector base, scalar offset" case. In order to uniquely |
| // map this built-in to an LLVM IR intrinsic, we need both the return type |
| // and the type of the vector base. |
| F = CGM.getIntrinsic(IntID, {OverloadedTy, Ops[1]->getType()}); |
| else |
| // This is the "scalar base, vector offset case". The type of the offset |
| // is encoded in the name of the intrinsic. We only need to specify the |
| // return type in order to uniquely map this built-in to an LLVM IR |
| // intrinsic. |
| F = CGM.getIntrinsic(IntID, OverloadedTy); |
| |
| // At the ACLE level there's only one predicate type, svbool_t, which is |
| // mapped to <n x 16 x i1>. However, this might be incompatible with the |
| // actual type being loaded. For example, when loading doubles (i64) the |
| // predicate should be <n x 2 x i1> instead. At the IR level the type of |
| // the predicate and the data being loaded must match. Cast to the type |
| // expected by the intrinsic. The intrinsic itself should be defined in |
| // a way than enforces relations between parameter types. |
| Ops[0] = EmitSVEPredicateCast( |
| Ops[0], cast<llvm::ScalableVectorType>(F->getArg(0)->getType())); |
| |
| // Pass 0 when the offset is missing. This can only be applied when using |
| // the "vector base" addressing mode for which ACLE allows no offset. The |
| // corresponding LLVM IR always requires an offset. |
| if (Ops.size() == 2) { |
| assert(Ops[1]->getType()->isVectorTy() && "Scalar base requires an offset"); |
| Ops.push_back(ConstantInt::get(Int64Ty, 0)); |
| } |
| |
| // For "vector base, scalar index" scale the index so that it becomes a |
| // scalar offset. |
| if (!TypeFlags.isByteIndexed() && Ops[1]->getType()->isVectorTy()) { |
| unsigned BytesPerElt = |
| OverloadedTy->getElementType()->getScalarSizeInBits() / 8; |
| Ops[2] = Builder.CreateShl(Ops[2], Log2_32(BytesPerElt)); |
| } |
| |
| Value *Call = Builder.CreateCall(F, Ops); |
| |
| // The following sext/zext is only needed when ResultTy != OverloadedTy. In |
| // other cases it's folded into a nop. |
| return TypeFlags.isZExtReturn() ? Builder.CreateZExt(Call, ResultTy) |
| : Builder.CreateSExt(Call, ResultTy); |
| } |
| |
| Value *CodeGenFunction::EmitSVEScatterStore(const SVETypeFlags &TypeFlags, |
| SmallVectorImpl<Value *> &Ops, |
| unsigned IntID) { |
| auto *SrcDataTy = getSVEType(TypeFlags); |
| auto *OverloadedTy = |
| llvm::ScalableVectorType::get(SVEBuiltinMemEltTy(TypeFlags), SrcDataTy); |
| |
| // In ACLE the source data is passed in the last argument, whereas in LLVM IR |
| // it's the first argument. Move it accordingly. |
| Ops.insert(Ops.begin(), Ops.pop_back_val()); |
| |
| Function *F = nullptr; |
| if (Ops[2]->getType()->isVectorTy()) |
| // This is the "vector base, scalar offset" case. In order to uniquely |
| // map this built-in to an LLVM IR intrinsic, we need both the return type |
| // and the type of the vector base. |
| F = CGM.getIntrinsic(IntID, {OverloadedTy, Ops[2]->getType()}); |
| else |
| // This is the "scalar base, vector offset case". The type of the offset |
| // is encoded in the name of the intrinsic. We only need to specify the |
| // return type in order to uniquely map this built-in to an LLVM IR |
| // intrinsic. |
| F = CGM.getIntrinsic(IntID, OverloadedTy); |
| |
| // Pass 0 when the offset is missing. This can only be applied when using |
| // the "vector base" addressing mode for which ACLE allows no offset. The |
| // corresponding LLVM IR always requires an offset. |
| if (Ops.size() == 3) { |
| assert(Ops[1]->getType()->isVectorTy() && "Scalar base requires an offset"); |
| Ops.push_back(ConstantInt::get(Int64Ty, 0)); |
| } |
| |
| // Truncation is needed when SrcDataTy != OverloadedTy. In other cases it's |
| // folded into a nop. |
| Ops[0] = Builder.CreateTrunc(Ops[0], OverloadedTy); |
| |
| // At the ACLE level there's only one predicate type, svbool_t, which is |
| // mapped to <n x 16 x i1>. However, this might be incompatible with the |
| // actual type being stored. For example, when storing doubles (i64) the |
| // predicated should be <n x 2 x i1> instead. At the IR level the type of |
| // the predicate and the data being stored must match. Cast to the type |
| // expected by the intrinsic. The intrinsic itself should be defined in |
| // a way that enforces relations between parameter types. |
| Ops[1] = EmitSVEPredicateCast( |
| Ops[1], cast<llvm::ScalableVectorType>(F->getArg(1)->getType())); |
| |
| // For "vector base, scalar index" scale the index so that it becomes a |
| // scalar offset. |
| if (!TypeFlags.isByteIndexed() && Ops[2]->getType()->isVectorTy()) { |
| unsigned BytesPerElt = |
| OverloadedTy->getElementType()->getScalarSizeInBits() / 8; |
| Ops[3] = Builder.CreateShl(Ops[3], Log2_32(BytesPerElt)); |
| } |
| |
| return Builder.CreateCall(F, Ops); |
| } |
| |
| Value *CodeGenFunction::EmitSVEGatherPrefetch(const SVETypeFlags &TypeFlags, |
| SmallVectorImpl<Value *> &Ops, |
| unsigned IntID) { |
| // The gather prefetches are overloaded on the vector input - this can either |
| // be the vector of base addresses or vector of offsets. |
| auto *OverloadedTy = dyn_cast<llvm::ScalableVectorType>(Ops[1]->getType()); |
| if (!OverloadedTy) |
| OverloadedTy = cast<llvm::ScalableVectorType>(Ops[2]->getType()); |
| |
| // Cast the predicate from svbool_t to the right number of elements. |
| Ops[0] = EmitSVEPredicateCast(Ops[0], OverloadedTy); |
| |
| // vector + imm addressing modes |
| if (Ops[1]->getType()->isVectorTy()) { |
| if (Ops.size() == 3) { |
| // Pass 0 for 'vector+imm' when the index is omitted. |
| Ops.push_back(ConstantInt::get(Int64Ty, 0)); |
| |
| // The sv_prfop is the last operand in the builtin and IR intrinsic. |
| std::swap(Ops[2], Ops[3]); |
| } else { |
| // Index needs to be passed as scaled offset. |
| llvm::Type *MemEltTy = SVEBuiltinMemEltTy(TypeFlags); |
| unsigned BytesPerElt = MemEltTy->getPrimitiveSizeInBits() / 8; |
| if (BytesPerElt > 1) |
| Ops[2] = Builder.CreateShl(Ops[2], Log2_32(BytesPerElt)); |
| } |
| } |
| |
| Function *F = CGM.getIntrinsic(IntID, OverloadedTy); |
| return Builder.CreateCall(F, Ops); |
| } |
| |
| Value *CodeGenFunction::EmitSVEStructLoad(const SVETypeFlags &TypeFlags, |
| SmallVectorImpl<Value*> &Ops, |
| unsigned IntID) { |
| llvm::ScalableVectorType *VTy = getSVEType(TypeFlags); |
| Value *Predicate = EmitSVEPredicateCast(Ops[0], VTy); |
| Value *BasePtr = Ops[1]; |
| |
| // Does the load have an offset? |
| if (Ops.size() > 2) |
| BasePtr = Builder.CreateGEP(VTy, BasePtr, Ops[2]); |
| |
| Function *F = CGM.getIntrinsic(IntID, {VTy}); |
| return Builder.CreateCall(F, {Predicate, BasePtr}); |
| } |
| |
| Value *CodeGenFunction::EmitSVEStructStore(const SVETypeFlags &TypeFlags, |
| SmallVectorImpl<Value*> &Ops, |
| unsigned IntID) { |
| llvm::ScalableVectorType *VTy = getSVEType(TypeFlags); |
| |
| unsigned N; |
| switch (IntID) { |
| case Intrinsic::aarch64_sve_st2: |
| case Intrinsic::aarch64_sve_st1_pn_x2: |
| case Intrinsic::aarch64_sve_stnt1_pn_x2: |
| case Intrinsic::aarch64_sve_st2q: |
| N = 2; |
| break; |
| case Intrinsic::aarch64_sve_st3: |
| case Intrinsic::aarch64_sve_st3q: |
| N = 3; |
| break; |
| case Intrinsic::aarch64_sve_st4: |
| case Intrinsic::aarch64_sve_st1_pn_x4: |
| case Intrinsic::aarch64_sve_stnt1_pn_x4: |
| case Intrinsic::aarch64_sve_st4q: |
| N = 4; |
| break; |
| default: |
| llvm_unreachable("unknown intrinsic!"); |
| } |
| |
| Value *Predicate = EmitSVEPredicateCast(Ops[0], VTy); |
| Value *BasePtr = Ops[1]; |
| |
| // Does the store have an offset? |
| if (Ops.size() > (2 + N)) |
| BasePtr = Builder.CreateGEP(VTy, BasePtr, Ops[2]); |
| |
| // The llvm.aarch64.sve.st2/3/4 intrinsics take legal part vectors, so we |
| // need to break up the tuple vector. |
| SmallVector<llvm::Value*, 5> Operands; |
| for (unsigned I = Ops.size() - N; I < Ops.size(); ++I) |
| Operands.push_back(Ops[I]); |
| Operands.append({Predicate, BasePtr}); |
| Function *F = CGM.getIntrinsic(IntID, { VTy }); |
| |
| return Builder.CreateCall(F, Operands); |
| } |
| |
| // SVE2's svpmullb and svpmullt builtins are similar to the svpmullb_pair and |
| // svpmullt_pair intrinsics, with the exception that their results are bitcast |
| // to a wider type. |
| Value *CodeGenFunction::EmitSVEPMull(const SVETypeFlags &TypeFlags, |
| SmallVectorImpl<Value *> &Ops, |
| unsigned BuiltinID) { |
| // Splat scalar operand to vector (intrinsics with _n infix) |
| if (TypeFlags.hasSplatOperand()) { |
| unsigned OpNo = TypeFlags.getSplatOperand(); |
| Ops[OpNo] = EmitSVEDupX(Ops[OpNo]); |
| } |
| |
| // The pair-wise function has a narrower overloaded type. |
| Function *F = CGM.getIntrinsic(BuiltinID, Ops[0]->getType()); |
| Value *Call = Builder.CreateCall(F, {Ops[0], Ops[1]}); |
| |
| // Now bitcast to the wider result type. |
| llvm::ScalableVectorType *Ty = getSVEType(TypeFlags); |
| return EmitSVEReinterpret(Call, Ty); |
| } |
| |
| Value *CodeGenFunction::EmitSVEMovl(const SVETypeFlags &TypeFlags, |
| ArrayRef<Value *> Ops, unsigned BuiltinID) { |
| llvm::Type *OverloadedTy = getSVEType(TypeFlags); |
| Function *F = CGM.getIntrinsic(BuiltinID, OverloadedTy); |
| return Builder.CreateCall(F, {Ops[0], Builder.getInt32(0)}); |
| } |
| |
| Value *CodeGenFunction::EmitSVEPrefetchLoad(const SVETypeFlags &TypeFlags, |
| SmallVectorImpl<Value *> &Ops, |
| unsigned BuiltinID) { |
| auto *MemEltTy = SVEBuiltinMemEltTy(TypeFlags); |
| auto *VectorTy = getSVEVectorForElementType(MemEltTy); |
| auto *MemoryTy = llvm::ScalableVectorType::get(MemEltTy, VectorTy); |
| |
| Value *Predicate = EmitSVEPredicateCast(Ops[0], MemoryTy); |
| Value *BasePtr = Ops[1]; |
| |
| // Implement the index operand if not omitted. |
| if (Ops.size() > 3) |
| BasePtr = Builder.CreateGEP(MemoryTy, BasePtr, Ops[2]); |
| |
| Value *PrfOp = Ops.back(); |
| |
| Function *F = CGM.getIntrinsic(BuiltinID, Predicate->getType()); |
| return Builder.CreateCall(F, {Predicate, BasePtr, PrfOp}); |
| } |
| |
| Value *CodeGenFunction::EmitSVEMaskedLoad(const CallExpr *E, |
| llvm::Type *ReturnTy, |
| SmallVectorImpl<Value *> &Ops, |
| unsigned IntrinsicID, |
| bool IsZExtReturn) { |
| QualType LangPTy = E->getArg(1)->getType(); |
| llvm::Type *MemEltTy = CGM.getTypes().ConvertType( |
| LangPTy->castAs<PointerType>()->getPointeeType()); |
| |
| // The vector type that is returned may be different from the |
| // eventual type loaded from memory. |
| auto VectorTy = cast<llvm::ScalableVectorType>(ReturnTy); |
| llvm::ScalableVectorType *MemoryTy = nullptr; |
| llvm::ScalableVectorType *PredTy = nullptr; |
| bool IsQuadLoad = false; |
| switch (IntrinsicID) { |
| case Intrinsic::aarch64_sve_ld1uwq: |
| case Intrinsic::aarch64_sve_ld1udq: |
| MemoryTy = llvm::ScalableVectorType::get(MemEltTy, 1); |
| PredTy = llvm::ScalableVectorType::get( |
| llvm::Type::getInt1Ty(getLLVMContext()), 1); |
| IsQuadLoad = true; |
| break; |
| default: |
| MemoryTy = llvm::ScalableVectorType::get(MemEltTy, VectorTy); |
| PredTy = MemoryTy; |
| break; |
| } |
| |
| Value *Predicate = EmitSVEPredicateCast(Ops[0], PredTy); |
| Value *BasePtr = Ops[1]; |
| |
| // Does the load have an offset? |
| if (Ops.size() > 2) |
| BasePtr = Builder.CreateGEP(MemoryTy, BasePtr, Ops[2]); |
| |
| Function *F = CGM.getIntrinsic(IntrinsicID, IsQuadLoad ? VectorTy : MemoryTy); |
| auto *Load = |
| cast<llvm::Instruction>(Builder.CreateCall(F, {Predicate, BasePtr})); |
| auto TBAAInfo = CGM.getTBAAAccessInfo(LangPTy->getPointeeType()); |
| CGM.DecorateInstructionWithTBAA(Load, TBAAInfo); |
| |
| if (IsQuadLoad) |
| return Load; |
| |
| return IsZExtReturn ? Builder.CreateZExt(Load, VectorTy) |
| : Builder.CreateSExt(Load, VectorTy); |
| } |
| |
| Value *CodeGenFunction::EmitSVEMaskedStore(const CallExpr *E, |
| SmallVectorImpl<Value *> &Ops, |
| unsigned IntrinsicID) { |
| QualType LangPTy = E->getArg(1)->getType(); |
| llvm::Type *MemEltTy = CGM.getTypes().ConvertType( |
| LangPTy->castAs<PointerType>()->getPointeeType()); |
| |
| // The vector type that is stored may be different from the |
| // eventual type stored to memory. |
| auto VectorTy = cast<llvm::ScalableVectorType>(Ops.back()->getType()); |
| auto MemoryTy = llvm::ScalableVectorType::get(MemEltTy, VectorTy); |
| |
| auto PredTy = MemoryTy; |
| auto AddrMemoryTy = MemoryTy; |
| bool IsQuadStore = false; |
| |
| switch (IntrinsicID) { |
| case Intrinsic::aarch64_sve_st1wq: |
| case Intrinsic::aarch64_sve_st1dq: |
| AddrMemoryTy = llvm::ScalableVectorType::get(MemEltTy, 1); |
| PredTy = |
| llvm::ScalableVectorType::get(IntegerType::get(getLLVMContext(), 1), 1); |
| IsQuadStore = true; |
| break; |
| default: |
| break; |
| } |
| Value *Predicate = EmitSVEPredicateCast(Ops[0], PredTy); |
| Value *BasePtr = Ops[1]; |
| |
| // Does the store have an offset? |
| if (Ops.size() == 4) |
| BasePtr = Builder.CreateGEP(AddrMemoryTy, BasePtr, Ops[2]); |
| |
| // Last value is always the data |
| Value *Val = |
| IsQuadStore ? Ops.back() : Builder.CreateTrunc(Ops.back(), MemoryTy); |
| |
| Function *F = |
| CGM.getIntrinsic(IntrinsicID, IsQuadStore ? VectorTy : MemoryTy); |
| auto *Store = |
| cast<llvm::Instruction>(Builder.CreateCall(F, {Val, Predicate, BasePtr})); |
| auto TBAAInfo = CGM.getTBAAAccessInfo(LangPTy->getPointeeType()); |
| CGM.DecorateInstructionWithTBAA(Store, TBAAInfo); |
| return Store; |
| } |
| |
| Value *CodeGenFunction::EmitSMELd1St1(const SVETypeFlags &TypeFlags, |
| SmallVectorImpl<Value *> &Ops, |
| unsigned IntID) { |
| Ops[2] = EmitSVEPredicateCast( |
| Ops[2], getSVEVectorForElementType(SVEBuiltinMemEltTy(TypeFlags))); |
| |
| SmallVector<Value *> NewOps; |
| NewOps.push_back(Ops[2]); |
| |
| llvm::Value *BasePtr = Ops[3]; |
| llvm::Value *RealSlice = Ops[1]; |
| // If the intrinsic contains the vnum parameter, multiply it with the vector |
| // size in bytes. |
| if (Ops.size() == 5) { |
| Function *StreamingVectorLength = |
| CGM.getIntrinsic(Intrinsic::aarch64_sme_cntsb); |
| llvm::Value *StreamingVectorLengthCall = |
| Builder.CreateCall(StreamingVectorLength); |
| llvm::Value *Mulvl = |
| Builder.CreateMul(StreamingVectorLengthCall, Ops[4], "mulvl"); |
| // The type of the ptr parameter is void *, so use Int8Ty here. |
| BasePtr = Builder.CreateGEP(Int8Ty, Ops[3], Mulvl); |
| RealSlice = Builder.CreateZExt(RealSlice, Int64Ty); |
| RealSlice = Builder.CreateAdd(RealSlice, Ops[4]); |
| RealSlice = Builder.CreateTrunc(RealSlice, Int32Ty); |
| } |
| NewOps.push_back(BasePtr); |
| NewOps.push_back(Ops[0]); |
| NewOps.push_back(RealSlice); |
| Function *F = CGM.getIntrinsic(IntID); |
| return Builder.CreateCall(F, NewOps); |
| } |
| |
| Value *CodeGenFunction::EmitSMEReadWrite(const SVETypeFlags &TypeFlags, |
| SmallVectorImpl<Value *> &Ops, |
| unsigned IntID) { |
| auto *VecTy = getSVEType(TypeFlags); |
| Function *F = CGM.getIntrinsic(IntID, VecTy); |
| if (TypeFlags.isReadZA()) |
| Ops[1] = EmitSVEPredicateCast(Ops[1], VecTy); |
| else if (TypeFlags.isWriteZA()) |
| Ops[2] = EmitSVEPredicateCast(Ops[2], VecTy); |
| return Builder.CreateCall(F, Ops); |
| } |
| |
| Value *CodeGenFunction::EmitSMEZero(const SVETypeFlags &TypeFlags, |
| SmallVectorImpl<Value *> &Ops, |
| unsigned IntID) { |
| // svzero_za() intrinsic zeros the entire za tile and has no paramters. |
| if (Ops.size() == 0) |
| Ops.push_back(llvm::ConstantInt::get(Int32Ty, 255)); |
| Function *F = CGM.getIntrinsic(IntID, {}); |
| return Builder.CreateCall(F, Ops); |
| } |
| |
| Value *CodeGenFunction::EmitSMELdrStr(const SVETypeFlags &TypeFlags, |
| SmallVectorImpl<Value *> &Ops, |
| unsigned IntID) { |
| if (Ops.size() == 2) |
| Ops.push_back(Builder.getInt32(0)); |
| else |
| Ops[2] = Builder.CreateIntCast(Ops[2], Int32Ty, true); |
| Function *F = CGM.getIntrinsic(IntID, {}); |
| return Builder.CreateCall(F, Ops); |
| } |
| |
| // Limit the usage of scalable llvm IR generated by the ACLE by using the |
| // sve dup.x intrinsic instead of IRBuilder::CreateVectorSplat. |
| Value *CodeGenFunction::EmitSVEDupX(Value *Scalar, llvm::Type *Ty) { |
| return Builder.CreateVectorSplat( |
| cast<llvm::VectorType>(Ty)->getElementCount(), Scalar); |
| } |
| |
| Value *CodeGenFunction::EmitSVEDupX(Value *Scalar) { |
| if (auto *Ty = Scalar->getType(); Ty->isVectorTy()) { |
| #ifndef NDEBUG |
| auto *VecTy = cast<llvm::VectorType>(Ty); |
| ElementCount EC = VecTy->getElementCount(); |
| assert(EC.isScalar() && VecTy->getElementType() == Int8Ty && |
| "Only <1 x i8> expected"); |
| #endif |
| Scalar = Builder.CreateExtractElement(Scalar, uint64_t(0)); |
| } |
| return EmitSVEDupX(Scalar, getSVEVectorForElementType(Scalar->getType())); |
| } |
| |
| Value *CodeGenFunction::EmitSVEReinterpret(Value *Val, llvm::Type *Ty) { |
| // FIXME: For big endian this needs an additional REV, or needs a separate |
| // intrinsic that is code-generated as a no-op, because the LLVM bitcast |
| // instruction is defined as 'bitwise' equivalent from memory point of |
| // view (when storing/reloading), whereas the svreinterpret builtin |
| // implements bitwise equivalent cast from register point of view. |
| // LLVM CodeGen for a bitcast must add an explicit REV for big-endian. |
| |
| if (auto *StructTy = dyn_cast<StructType>(Ty)) { |
| Value *Tuple = llvm::PoisonValue::get(Ty); |
| |
| for (unsigned I = 0; I < StructTy->getNumElements(); ++I) { |
| Value *In = Builder.CreateExtractValue(Val, I); |
| Value *Out = Builder.CreateBitCast(In, StructTy->getTypeAtIndex(I)); |
| Tuple = Builder.CreateInsertValue(Tuple, Out, I); |
| } |
| |
| return Tuple; |
| } |
| |
| return Builder.CreateBitCast(Val, Ty); |
| } |
| |
| static void InsertExplicitZeroOperand(CGBuilderTy &Builder, llvm::Type *Ty, |
| SmallVectorImpl<Value *> &Ops) { |
| auto *SplatZero = Constant::getNullValue(Ty); |
| Ops.insert(Ops.begin(), SplatZero); |
| } |
| |
| static void InsertExplicitUndefOperand(CGBuilderTy &Builder, llvm::Type *Ty, |
| SmallVectorImpl<Value *> &Ops) { |
| auto *SplatUndef = UndefValue::get(Ty); |
| Ops.insert(Ops.begin(), SplatUndef); |
| } |
| |
| SmallVector<llvm::Type *, 2> |
| CodeGenFunction::getSVEOverloadTypes(const SVETypeFlags &TypeFlags, |
| llvm::Type *ResultType, |
| ArrayRef<Value *> Ops) { |
| if (TypeFlags.isOverloadNone()) |
| return {}; |
| |
| llvm::Type *DefaultType = getSVEType(TypeFlags); |
| |
| if (TypeFlags.isOverloadWhileOrMultiVecCvt()) |
| return {DefaultType, Ops[1]->getType()}; |
| |
| if (TypeFlags.isOverloadWhileRW()) |
| return {getSVEPredType(TypeFlags), Ops[0]->getType()}; |
| |
| if (TypeFlags.isOverloadCvt()) |
| return {Ops[0]->getType(), Ops.back()->getType()}; |
| |
| if (TypeFlags.isReductionQV() && !ResultType->isScalableTy() && |
| ResultType->isVectorTy()) |
| return {ResultType, Ops[1]->getType()}; |
| |
| assert(TypeFlags.isOverloadDefault() && "Unexpected value for overloads"); |
| return {DefaultType}; |
| } |
| |
| Value *CodeGenFunction::EmitSVETupleSetOrGet(const SVETypeFlags &TypeFlags, |
| ArrayRef<Value *> Ops) { |
| assert((TypeFlags.isTupleSet() || TypeFlags.isTupleGet()) && |
| "Expects TypleFlags.isTupleSet() or TypeFlags.isTupleGet()"); |
| unsigned Idx = cast<ConstantInt>(Ops[1])->getZExtValue(); |
| |
| if (TypeFlags.isTupleSet()) |
| return Builder.CreateInsertValue(Ops[0], Ops[2], Idx); |
| return Builder.CreateExtractValue(Ops[0], Idx); |
| } |
| |
| Value *CodeGenFunction::EmitSVETupleCreate(const SVETypeFlags &TypeFlags, |
| llvm::Type *Ty, |
| ArrayRef<Value *> Ops) { |
| assert(TypeFlags.isTupleCreate() && "Expects TypleFlag isTupleCreate"); |
| |
| Value *Tuple = llvm::PoisonValue::get(Ty); |
| for (unsigned Idx = 0; Idx < Ops.size(); Idx++) |
| Tuple = Builder.CreateInsertValue(Tuple, Ops[Idx], Idx); |
| |
| return Tuple; |
| } |
| |
| void CodeGenFunction::GetAArch64SVEProcessedOperands( |
| unsigned BuiltinID, const CallExpr *E, SmallVectorImpl<Value *> &Ops, |
| SVETypeFlags TypeFlags) { |
| // Find out if any arguments are required to be integer constant expressions. |
| unsigned ICEArguments = 0; |
| ASTContext::GetBuiltinTypeError Error; |
| getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments); |
| assert(Error == ASTContext::GE_None && "Should not codegen an error"); |
| |
| // Tuple set/get only requires one insert/extract vector, which is |
| // created by EmitSVETupleSetOrGet. |
| bool IsTupleGetOrSet = TypeFlags.isTupleSet() || TypeFlags.isTupleGet(); |
| |
| for (unsigned i = 0, e = E->getNumArgs(); i != e; i++) { |
| bool IsICE = ICEArguments & (1 << i); |
| Value *Arg = EmitScalarExpr(E->getArg(i)); |
| |
| if (IsICE) { |
| // If this is required to be a constant, constant fold it so that we know |
| // that the generated intrinsic gets a ConstantInt. |
| std::optional<llvm::APSInt> Result = |
| E->getArg(i)->getIntegerConstantExpr(getContext()); |
| assert(Result && "Expected argument to be a constant"); |
| |
| // Immediates for SVE llvm intrinsics are always 32bit. We can safely |
| // truncate because the immediate has been range checked and no valid |
| // immediate requires more than a handful of bits. |
| *Result = Result->extOrTrunc(32); |
| Ops.push_back(llvm::ConstantInt::get(getLLVMContext(), *Result)); |
| continue; |
| } |
| |
| if (isa<StructType>(Arg->getType()) && !IsTupleGetOrSet) { |
| for (unsigned I = 0; I < Arg->getType()->getStructNumElements(); ++I) |
| Ops.push_back(Builder.CreateExtractValue(Arg, I)); |
| |
| continue; |
| } |
| |
| Ops.push_back(Arg); |
| } |
| } |
| |
| Value *CodeGenFunction::EmitAArch64SVEBuiltinExpr(unsigned BuiltinID, |
| const CallExpr *E) { |
| llvm::Type *Ty = ConvertType(E->getType()); |
| if (BuiltinID >= SVE::BI__builtin_sve_reinterpret_s8_s8 && |
| BuiltinID <= SVE::BI__builtin_sve_reinterpret_f64_f64_x4) { |
| Value *Val = EmitScalarExpr(E->getArg(0)); |
| return EmitSVEReinterpret(Val, Ty); |
| } |
| |
| auto *Builtin = findARMVectorIntrinsicInMap(AArch64SVEIntrinsicMap, BuiltinID, |
| AArch64SVEIntrinsicsProvenSorted); |
| |
| llvm::SmallVector<Value *, 4> Ops; |
| SVETypeFlags TypeFlags(Builtin->TypeModifier); |
| GetAArch64SVEProcessedOperands(BuiltinID, E, Ops, TypeFlags); |
| |
| if (TypeFlags.isLoad()) |
| return EmitSVEMaskedLoad(E, Ty, Ops, Builtin->LLVMIntrinsic, |
| TypeFlags.isZExtReturn()); |
| else if (TypeFlags.isStore()) |
| return EmitSVEMaskedStore(E, Ops, Builtin->LLVMIntrinsic); |
| else if (TypeFlags.isGatherLoad()) |
| return EmitSVEGatherLoad(TypeFlags, Ops, Builtin->LLVMIntrinsic); |
| else if (TypeFlags.isScatterStore()) |
| return EmitSVEScatterStore(TypeFlags, Ops, Builtin->LLVMIntrinsic); |
| else if (TypeFlags.isPrefetch()) |
| return EmitSVEPrefetchLoad(TypeFlags, Ops, Builtin->LLVMIntrinsic); |
| else if (TypeFlags.isGatherPrefetch()) |
| return EmitSVEGatherPrefetch(TypeFlags, Ops, Builtin->LLVMIntrinsic); |
| else if (TypeFlags.isStructLoad()) |
| return EmitSVEStructLoad(TypeFlags, Ops, Builtin->LLVMIntrinsic); |
| else if (TypeFlags.isStructStore()) |
| return EmitSVEStructStore(TypeFlags, Ops, Builtin->LLVMIntrinsic); |
| else if (TypeFlags.isTupleSet() || TypeFlags.isTupleGet()) |
| return EmitSVETupleSetOrGet(TypeFlags, Ops); |
| else if (TypeFlags.isTupleCreate()) |
| return EmitSVETupleCreate(TypeFlags, Ty, Ops); |
| else if (TypeFlags.isUndef()) |
| return UndefValue::get(Ty); |
| else if (Builtin->LLVMIntrinsic != 0) { |
| // Emit set FPMR for intrinsics that require it |
| if (TypeFlags.setsFPMR()) |
| Builder.CreateCall(CGM.getIntrinsic(Intrinsic::aarch64_set_fpmr), |
| Ops.pop_back_val()); |
| if (TypeFlags.getMergeType() == SVETypeFlags::MergeZeroExp) |
| InsertExplicitZeroOperand(Builder, Ty, Ops); |
| |
| if (TypeFlags.getMergeType() == SVETypeFlags::MergeAnyExp) |
| InsertExplicitUndefOperand(Builder, Ty, Ops); |
| |
| // Some ACLE builtins leave out the argument to specify the predicate |
| // pattern, which is expected to be expanded to an SV_ALL pattern. |
| if (TypeFlags.isAppendSVALL()) |
| Ops.push_back(Builder.getInt32(/*SV_ALL*/ 31)); |
| if (TypeFlags.isInsertOp1SVALL()) |
| Ops.insert(&Ops[1], Builder.getInt32(/*SV_ALL*/ 31)); |
| |
| // Predicates must match the main datatype. |
| for (unsigned i = 0, e = Ops.size(); i != e; ++i) |
| if (auto PredTy = dyn_cast<llvm::VectorType>(Ops[i]->getType())) |
| if (PredTy->getElementType()->isIntegerTy(1)) |
| Ops[i] = EmitSVEPredicateCast(Ops[i], getSVEType(TypeFlags)); |
| |
| // Splat scalar operand to vector (intrinsics with _n infix) |
| if (TypeFlags.hasSplatOperand()) { |
| unsigned OpNo = TypeFlags.getSplatOperand(); |
| Ops[OpNo] = EmitSVEDupX(Ops[OpNo]); |
| } |
| |
| if (TypeFlags.isReverseCompare()) |
| std::swap(Ops[1], Ops[2]); |
| else if (TypeFlags.isReverseUSDOT()) |
| std::swap(Ops[1], Ops[2]); |
| else if (TypeFlags.isReverseMergeAnyBinOp() && |
| TypeFlags.getMergeType() == SVETypeFlags::MergeAny) |
| std::swap(Ops[1], Ops[2]); |
| else if (TypeFlags.isReverseMergeAnyAccOp() && |
| TypeFlags.getMergeType() == SVETypeFlags::MergeAny) |
| std::swap(Ops[1], Ops[3]); |
| |
| // Predicated intrinsics with _z suffix need a select w/ zeroinitializer. |
| if (TypeFlags.getMergeType() == SVETypeFlags::MergeZero) { |
| llvm::Type *OpndTy = Ops[1]->getType(); |
| auto *SplatZero = Constant::getNullValue(OpndTy); |
| Ops[1] = Builder.CreateSelect(Ops[0], Ops[1], SplatZero); |
| } |
| |
| Function *F = CGM.getIntrinsic(Builtin->LLVMIntrinsic, |
| getSVEOverloadTypes(TypeFlags, Ty, Ops)); |
| Value *Call = Builder.CreateCall(F, Ops); |
| |
| if (Call->getType() == Ty) |
| return Call; |
| |
| // Predicate results must be converted to svbool_t. |
| if (auto PredTy = dyn_cast<llvm::ScalableVectorType>(Ty)) |
| return EmitSVEPredicateCast(Call, PredTy); |
| if (auto PredTupleTy = dyn_cast<llvm::StructType>(Ty)) |
| return EmitSVEPredicateTupleCast(Call, PredTupleTy); |
| |
| llvm_unreachable("unsupported element count!"); |
| } |
| |
| switch (BuiltinID) { |
| default: |
| return nullptr; |
| |
| case SVE::BI__builtin_sve_svreinterpret_b: { |
| auto SVCountTy = |
| llvm::TargetExtType::get(getLLVMContext(), "aarch64.svcount"); |
| Function *CastFromSVCountF = |
| CGM.getIntrinsic(Intrinsic::aarch64_sve_convert_to_svbool, SVCountTy); |
| return Builder.CreateCall(CastFromSVCountF, Ops[0]); |
| } |
| case SVE::BI__builtin_sve_svreinterpret_c: { |
| auto SVCountTy = |
| llvm::TargetExtType::get(getLLVMContext(), "aarch64.svcount"); |
| Function *CastToSVCountF = |
| CGM.getIntrinsic(Intrinsic::aarch64_sve_convert_from_svbool, SVCountTy); |
| return Builder.CreateCall(CastToSVCountF, Ops[0]); |
| } |
| |
| case SVE::BI__builtin_sve_svpsel_lane_b8: |
| case SVE::BI__builtin_sve_svpsel_lane_b16: |
| case SVE::BI__builtin_sve_svpsel_lane_b32: |
| case SVE::BI__builtin_sve_svpsel_lane_b64: |
| case SVE::BI__builtin_sve_svpsel_lane_c8: |
| case SVE::BI__builtin_sve_svpsel_lane_c16: |
| case SVE::BI__builtin_sve_svpsel_lane_c32: |
| case SVE::BI__builtin_sve_svpsel_lane_c64: { |
| bool IsSVCount = isa<TargetExtType>(Ops[0]->getType()); |
| assert(((!IsSVCount || cast<TargetExtType>(Ops[0]->getType())->getName() == |
| "aarch64.svcount")) && |
| "Unexpected TargetExtType"); |
| auto SVCountTy = |
| llvm::TargetExtType::get(getLLVMContext(), "aarch64.svcount"); |
| Function *CastFromSVCountF = |
| CGM.getIntrinsic(Intrinsic::aarch64_sve_convert_to_svbool, SVCountTy); |
| Function *CastToSVCountF = |
| CGM.getIntrinsic(Intrinsic::aarch64_sve_convert_from_svbool, SVCountTy); |
| |
| auto OverloadedTy = getSVEType(SVETypeFlags(Builtin->TypeModifier)); |
| Function *F = CGM.getIntrinsic(Intrinsic::aarch64_sve_psel, OverloadedTy); |
| llvm::Value *Ops0 = |
| IsSVCount ? Builder.CreateCall(CastFromSVCountF, Ops[0]) : Ops[0]; |
| llvm::Value *Ops1 = EmitSVEPredicateCast(Ops[1], OverloadedTy); |
| llvm::Value *PSel = Builder.CreateCall(F, {Ops0, Ops1, Ops[2]}); |
| return IsSVCount ? Builder.CreateCall(CastToSVCountF, PSel) : PSel; |
| } |
| case SVE::BI__builtin_sve_svmov_b_z: { |
| // svmov_b_z(pg, op) <=> svand_b_z(pg, op, op) |
| SVETypeFlags TypeFlags(Builtin->TypeModifier); |
| llvm::Type* OverloadedTy = getSVEType(TypeFlags); |
| Function *F = CGM.getIntrinsic(Intrinsic::aarch64_sve_and_z, OverloadedTy); |
| return Builder.CreateCall(F, {Ops[0], Ops[1], Ops[1]}); |
| } |
| |
| case SVE::BI__builtin_sve_svnot_b_z: { |
| // svnot_b_z(pg, op) <=> sveor_b_z(pg, op, pg) |
| SVETypeFlags TypeFlags(Builtin->TypeModifier); |
| llvm::Type* OverloadedTy = getSVEType(TypeFlags); |
| Function *F = CGM.getIntrinsic(Intrinsic::aarch64_sve_eor_z, OverloadedTy); |
| return Builder.CreateCall(F, {Ops[0], Ops[1], Ops[0]}); |
| } |
| |
| case SVE::BI__builtin_sve_svmovlb_u16: |
| case SVE::BI__builtin_sve_svmovlb_u32: |
| case SVE::BI__builtin_sve_svmovlb_u64: |
| return EmitSVEMovl(TypeFlags, Ops, Intrinsic::aarch64_sve_ushllb); |
| |
| case SVE::BI__builtin_sve_svmovlb_s16: |
| case SVE::BI__builtin_sve_svmovlb_s32: |
| case SVE::BI__builtin_sve_svmovlb_s64: |
| return EmitSVEMovl(TypeFlags, Ops, Intrinsic::aarch64_sve_sshllb); |
| |
| case SVE::BI__builtin_sve_svmovlt_u16: |
| case SVE::BI__builtin_sve_svmovlt_u32: |
| case SVE::BI__builtin_sve_svmovlt_u64: |
| return EmitSVEMovl(TypeFlags, Ops, Intrinsic::aarch64_sve_ushllt); |
| |
| case SVE::BI__builtin_sve_svmovlt_s16: |
| case SVE::BI__builtin_sve_svmovlt_s32: |
| case SVE::BI__builtin_sve_svmovlt_s64: |
| return EmitSVEMovl(TypeFlags, Ops, Intrinsic::aarch64_sve_sshllt); |
| |
| case SVE::BI__builtin_sve_svpmullt_u16: |
| case SVE::BI__builtin_sve_svpmullt_u64: |
| case SVE::BI__builtin_sve_svpmullt_n_u16: |
| case SVE::BI__builtin_sve_svpmullt_n_u64: |
| return EmitSVEPMull(TypeFlags, Ops, Intrinsic::aarch64_sve_pmullt_pair); |
| |
| case SVE::BI__builtin_sve_svpmullb_u16: |
| case SVE::BI__builtin_sve_svpmullb_u64: |
| case SVE::BI__builtin_sve_svpmullb_n_u16: |
| case SVE::BI__builtin_sve_svpmullb_n_u64: |
| return EmitSVEPMull(TypeFlags, Ops, Intrinsic::aarch64_sve_pmullb_pair); |
| |
| case SVE::BI__builtin_sve_svdup_n_b8: |
| case SVE::BI__builtin_sve_svdup_n_b16: |
| case SVE::BI__builtin_sve_svdup_n_b32: |
| case SVE::BI__builtin_sve_svdup_n_b64: { |
| Value *CmpNE = |
| Builder.CreateICmpNE(Ops[0], Constant::getNullValue(Ops[0]->getType())); |
| llvm::ScalableVectorType *OverloadedTy = getSVEType(TypeFlags); |
| Value *Dup = EmitSVEDupX(CmpNE, OverloadedTy); |
| return EmitSVEPredicateCast(Dup, cast<llvm::ScalableVectorType>(Ty)); |
| } |
| |
| case SVE::BI__builtin_sve_svdupq_n_b8: |
| case SVE::BI__builtin_sve_svdupq_n_b16: |
| case SVE::BI__builtin_sve_svdupq_n_b32: |
| case SVE::BI__builtin_sve_svdupq_n_b64: |
| case SVE::BI__builtin_sve_svdupq_n_u8: |
| case SVE::BI__builtin_sve_svdupq_n_s8: |
| case SVE::BI__builtin_sve_svdupq_n_u64: |
| case SVE::BI__builtin_sve_svdupq_n_f64: |
| case SVE::BI__builtin_sve_svdupq_n_s64: |
| case SVE::BI__builtin_sve_svdupq_n_u16: |
| case SVE::BI__builtin_sve_svdupq_n_f16: |
| case SVE::BI__builtin_sve_svdupq_n_bf16: |
| case SVE::BI__builtin_sve_svdupq_n_s16: |
| case SVE::BI__builtin_sve_svdupq_n_u32: |
| case SVE::BI__builtin_sve_svdupq_n_f32: |
| case SVE::BI__builtin_sve_svdupq_n_s32: { |
| // These builtins are implemented by storing each element to an array and using |
| // ld1rq to materialize a vector. |
| unsigned NumOpnds = Ops.size(); |
| |
| bool IsBoolTy = |
| cast<llvm::VectorType>(Ty)->getElementType()->isIntegerTy(1); |
| |
| // For svdupq_n_b* the element type of is an integer of type 128/numelts, |
| // so that the compare can use the width that is natural for the expected |
| // number of predicate lanes. |
| llvm::Type *EltTy = Ops[0]->getType(); |
| if (IsBoolTy) |
| EltTy = IntegerType::get(getLLVMContext(), SVEBitsPerBlock / NumOpnds); |
| |
| SmallVector<llvm::Value *, 16> VecOps; |
| for (unsigned I = 0; I < NumOpnds; ++I) |
| VecOps.push_back(Builder.CreateZExt(Ops[I], EltTy)); |
| Value *Vec = BuildVector(VecOps); |
| |
| llvm::Type *OverloadedTy = getSVEVectorForElementType(EltTy); |
| Value *InsertSubVec = Builder.CreateInsertVector( |
| OverloadedTy, PoisonValue::get(OverloadedTy), Vec, Builder.getInt64(0)); |
| |
| Function *F = |
| CGM.getIntrinsic(Intrinsic::aarch64_sve_dupq_lane, OverloadedTy); |
| Value *DupQLane = |
| Builder.CreateCall(F, {InsertSubVec, Builder.getInt64(0)}); |
| |
| if (!IsBoolTy) |
| return DupQLane; |
| |
| SVETypeFlags TypeFlags(Builtin->TypeModifier); |
| Value *Pred = EmitSVEAllTruePred(TypeFlags); |
| |
| // For svdupq_n_b* we need to add an additional 'cmpne' with '0'. |
| F = CGM.getIntrinsic(NumOpnds == 2 ? Intrinsic::aarch64_sve_cmpne |
| : Intrinsic::aarch64_sve_cmpne_wide, |
| OverloadedTy); |
| Value *Call = Builder.CreateCall( |
| F, {Pred, DupQLane, EmitSVEDupX(Builder.getInt64(0))}); |
| return EmitSVEPredicateCast(Call, cast<llvm::ScalableVectorType>(Ty)); |
| } |
| |
| case SVE::BI__builtin_sve_svpfalse_b: |
| return ConstantInt::getFalse(Ty); |
| |
| case SVE::BI__builtin_sve_svpfalse_c: { |
| auto SVBoolTy = ScalableVectorType::get(Builder.getInt1Ty(), 16); |
| Function *CastToSVCountF = |
| CGM.getIntrinsic(Intrinsic::aarch64_sve_convert_from_svbool, Ty); |
| return Builder.CreateCall(CastToSVCountF, ConstantInt::getFalse(SVBoolTy)); |
| } |
| |
| case SVE::BI__builtin_sve_svlen_bf16: |
| case SVE::BI__builtin_sve_svlen_f16: |
| case SVE::BI__builtin_sve_svlen_f32: |
| case SVE::BI__builtin_sve_svlen_f64: |
| case SVE::BI__builtin_sve_svlen_s8: |
| case SVE::BI__builtin_sve_svlen_s16: |
| case SVE::BI__builtin_sve_svlen_s32: |
| case SVE::BI__builtin_sve_svlen_s64: |
| case SVE::BI__builtin_sve_svlen_u8: |
| case SVE::BI__builtin_sve_svlen_u16: |
| case SVE::BI__builtin_sve_svlen_u32: |
| case SVE::BI__builtin_sve_svlen_u64: { |
| SVETypeFlags TF(Builtin->TypeModifier); |
| auto VTy = cast<llvm::VectorType>(getSVEType(TF)); |
| auto *NumEls = |
| llvm::ConstantInt::get(Ty, VTy->getElementCount().getKnownMinValue()); |
| |
| Function *F = CGM.getIntrinsic(Intrinsic::vscale, Ty); |
| return Builder.CreateMul(NumEls, Builder.CreateCall(F)); |
| } |
| |
| case SVE::BI__builtin_sve_svtbl2_u8: |
| case SVE::BI__builtin_sve_svtbl2_s8: |
| case SVE::BI__builtin_sve_svtbl2_u16: |
| case SVE::BI__builtin_sve_svtbl2_s16: |
| case SVE::BI__builtin_sve_svtbl2_u32: |
| case SVE::BI__builtin_sve_svtbl2_s32: |
| case SVE::BI__builtin_sve_svtbl2_u64: |
| case SVE::BI__builtin_sve_svtbl2_s64: |
| case SVE::BI__builtin_sve_svtbl2_f16: |
| case SVE::BI__builtin_sve_svtbl2_bf16: |
| case SVE::BI__builtin_sve_svtbl2_f32: |
| case SVE::BI__builtin_sve_svtbl2_f64: { |
| SVETypeFlags TF(Builtin->TypeModifier); |
| auto VTy = cast<llvm::ScalableVectorType>(getSVEType(TF)); |
| Function *F = CGM.getIntrinsic(Intrinsic::aarch64_sve_tbl2, VTy); |
| return Builder.CreateCall(F, Ops); |
| } |
| |
| case SVE::BI__builtin_sve_svset_neonq_s8: |
| case SVE::BI__builtin_sve_svset_neonq_s16: |
| case SVE::BI__builtin_sve_svset_neonq_s32: |
| case SVE::BI__builtin_sve_svset_neonq_s64: |
| case SVE::BI__builtin_sve_svset_neonq_u8: |
| case SVE::BI__builtin_sve_svset_neonq_u16: |
| case SVE::BI__builtin_sve_svset_neonq_u32: |
| case SVE::BI__builtin_sve_svset_neonq_u64: |
| case SVE::BI__builtin_sve_svset_neonq_f16: |
| case SVE::BI__builtin_sve_svset_neonq_f32: |
| case SVE::BI__builtin_sve_svset_neonq_f64: |
| case SVE::BI__builtin_sve_svset_neonq_bf16: { |
| return Builder.CreateInsertVector(Ty, Ops[0], Ops[1], Builder.getInt64(0)); |
| } |
| |
| case SVE::BI__builtin_sve_svget_neonq_s8: |
| case SVE::BI__builtin_sve_svget_neonq_s16: |
| case SVE::BI__builtin_sve_svget_neonq_s32: |
| case SVE::BI__builtin_sve_svget_neonq_s64: |
| case SVE::BI__builtin_sve_svget_neonq_u8: |
| case SVE::BI__builtin_sve_svget_neonq_u16: |
| case SVE::BI__builtin_sve_svget_neonq_u32: |
| case SVE::BI__builtin_sve_svget_neonq_u64: |
| case SVE::BI__builtin_sve_svget_neonq_f16: |
| case SVE::BI__builtin_sve_svget_neonq_f32: |
| case SVE::BI__builtin_sve_svget_neonq_f64: |
| case SVE::BI__builtin_sve_svget_neonq_bf16: { |
| return Builder.CreateExtractVector(Ty, Ops[0], Builder.getInt64(0)); |
| } |
| |
| case SVE::BI__builtin_sve_svdup_neonq_s8: |
| case SVE::BI__builtin_sve_svdup_neonq_s16: |
| case SVE::BI__builtin_sve_svdup_neonq_s32: |
| case SVE::BI__builtin_sve_svdup_neonq_s64: |
| case SVE::BI__builtin_sve_svdup_neonq_u8: |
| case SVE::BI__builtin_sve_svdup_neonq_u16: |
| case SVE::BI__builtin_sve_svdup_neonq_u32: |
| case SVE::BI__builtin_sve_svdup_neonq_u64: |
| case SVE::BI__builtin_sve_svdup_neonq_f16: |
| case SVE::BI__builtin_sve_svdup_neonq_f32: |
| case SVE::BI__builtin_sve_svdup_neonq_f64: |
| case SVE::BI__builtin_sve_svdup_neonq_bf16: { |
| Value *Insert = Builder.CreateInsertVector(Ty, PoisonValue::get(Ty), Ops[0], |
| Builder.getInt64(0)); |
| return Builder.CreateIntrinsic(Intrinsic::aarch64_sve_dupq_lane, {Ty}, |
| {Insert, Builder.getInt64(0)}); |
| } |
| } |
| |
| /// Should not happen |
| return nullptr; |
| } |
| |
| static void swapCommutativeSMEOperands(unsigned BuiltinID, |
| SmallVectorImpl<Value *> &Ops) { |
| unsigned MultiVec; |
| switch (BuiltinID) { |
| default: |
| return; |
| case SME::BI__builtin_sme_svsumla_za32_s8_vg4x1: |
| MultiVec = 1; |
| break; |
| case SME::BI__builtin_sme_svsumla_za32_s8_vg4x2: |
| case SME::BI__builtin_sme_svsudot_za32_s8_vg1x2: |
| MultiVec = 2; |
| break; |
| case SME::BI__builtin_sme_svsudot_za32_s8_vg1x4: |
| case SME::BI__builtin_sme_svsumla_za32_s8_vg4x4: |
| MultiVec = 4; |
| break; |
| } |
| |
| if (MultiVec > 0) |
| for (unsigned I = 0; I < MultiVec; ++I) |
| std::swap(Ops[I + 1], Ops[I + 1 + MultiVec]); |
| } |
| |
| Value *CodeGenFunction::EmitAArch64SMEBuiltinExpr(unsigned BuiltinID, |
| const CallExpr *E) { |
| auto *Builtin = findARMVectorIntrinsicInMap(AArch64SMEIntrinsicMap, BuiltinID, |
| AArch64SMEIntrinsicsProvenSorted); |
| |
| llvm::SmallVector<Value *, 4> Ops; |
| SVETypeFlags TypeFlags(Builtin->TypeModifier); |
| GetAArch64SVEProcessedOperands(BuiltinID, E, Ops, TypeFlags); |
| |
| if (TypeFlags.isLoad() || TypeFlags.isStore()) |
| return EmitSMELd1St1(TypeFlags, Ops, Builtin->LLVMIntrinsic); |
| else if (TypeFlags.isReadZA() || TypeFlags.isWriteZA()) |
| return EmitSMEReadWrite(TypeFlags, Ops, Builtin->LLVMIntrinsic); |
| else if (BuiltinID == SME::BI__builtin_sme_svzero_mask_za || |
| BuiltinID == SME::BI__builtin_sme_svzero_za) |
| return EmitSMEZero(TypeFlags, Ops, Builtin->LLVMIntrinsic); |
| else if (BuiltinID == SME::BI__builtin_sme_svldr_vnum_za || |
| BuiltinID == SME::BI__builtin_sme_svstr_vnum_za || |
| BuiltinID == SME::BI__builtin_sme_svldr_za || |
| BuiltinID == SME::BI__builtin_sme_svstr_za) |
| return EmitSMELdrStr(TypeFlags, Ops, Builtin->LLVMIntrinsic); |
| |
| // Emit set FPMR for intrinsics that require it |
| if (TypeFlags.setsFPMR()) |
| Builder.CreateCall(CGM.getIntrinsic(Intrinsic::aarch64_set_fpmr), |
| Ops.pop_back_val()); |
| // Handle builtins which require their multi-vector operands to be swapped |
| swapCommutativeSMEOperands(BuiltinID, Ops); |
| |
| // Should not happen! |
| if (Builtin->LLVMIntrinsic == 0) |
| return nullptr; |
| |
| if (BuiltinID == SME::BI__builtin_sme___arm_in_streaming_mode) { |
| // If we already know the streaming mode, don't bother with the intrinsic |
| // and emit a constant instead |
| const auto *FD = cast<FunctionDecl>(CurFuncDecl); |
| if (const auto *FPT = FD->getType()->getAs<FunctionProtoType>()) { |
| unsigned SMEAttrs = FPT->getAArch64SMEAttributes(); |
| if (!(SMEAttrs & FunctionType::SME_PStateSMCompatibleMask)) { |
| bool IsStreaming = SMEAttrs & FunctionType::SME_PStateSMEnabledMask; |
| return ConstantInt::getBool(Builder.getContext(), IsStreaming); |
| } |
| } |
| } |
| |
| // Predicates must match the main datatype. |
| for (unsigned i = 0, e = Ops.size(); i != e; ++i) |
| if (auto PredTy = dyn_cast<llvm::VectorType>(Ops[i]->getType())) |
| if (PredTy->getElementType()->isIntegerTy(1)) |
| Ops[i] = EmitSVEPredicateCast(Ops[i], getSVEType(TypeFlags)); |
| |
| Function *F = |
| TypeFlags.isOverloadNone() |
| ? CGM.getIntrinsic(Builtin->LLVMIntrinsic) |
| : CGM.getIntrinsic(Builtin->LLVMIntrinsic, {getSVEType(TypeFlags)}); |
| |
| return Builder.CreateCall(F, Ops); |
| } |
| |
| Value *CodeGenFunction::EmitAArch64BuiltinExpr(unsigned BuiltinID, |
| const CallExpr *E, |
| llvm::Triple::ArchType Arch) { |
| if (BuiltinID >= clang::AArch64::FirstSVEBuiltin && |
| BuiltinID <= clang::AArch64::LastSVEBuiltin) |
| return EmitAArch64SVEBuiltinExpr(BuiltinID, E); |
| |
| if (BuiltinID >= clang::AArch64::FirstSMEBuiltin && |
| BuiltinID <= clang::AArch64::LastSMEBuiltin) |
| return EmitAArch64SMEBuiltinExpr(BuiltinID, E); |
| |
| if (BuiltinID == Builtin::BI__builtin_cpu_supports) |
| return EmitAArch64CpuSupports(E); |
| |
| unsigned HintID = static_cast<unsigned>(-1); |
| switch (BuiltinID) { |
| default: break; |
| case clang::AArch64::BI__builtin_arm_nop: |
| HintID = 0; |
| break; |
| case clang::AArch64::BI__builtin_arm_yield: |
| case clang::AArch64::BI__yield: |
| HintID = 1; |
| break; |
| case clang::AArch64::BI__builtin_arm_wfe: |
| case clang::AArch64::BI__wfe: |
| HintID = 2; |
| break; |
| case clang::AArch64::BI__builtin_arm_wfi: |
| case clang::AArch64::BI__wfi: |
| HintID = 3; |
| break; |
| case clang::AArch64::BI__builtin_arm_sev: |
| case clang::AArch64::BI__sev: |
| HintID = 4; |
| break; |
| case clang::AArch64::BI__builtin_arm_sevl: |
| case clang::AArch64::BI__sevl: |
| HintID = 5; |
| break; |
| } |
| |
| if (HintID != static_cast<unsigned>(-1)) { |
| Function *F = CGM.getIntrinsic(Intrinsic::aarch64_hint); |
| return Builder.CreateCall(F, llvm::ConstantInt::get(Int32Ty, HintID)); |
| } |
| |
| if (BuiltinID == clang::AArch64::BI__builtin_arm_trap) { |
| Function *F = CGM.getIntrinsic(Intrinsic::aarch64_break); |
| llvm::Value *Arg = EmitScalarExpr(E->getArg(0)); |
| return Builder.CreateCall(F, Builder.CreateZExt(Arg, CGM.Int32Ty)); |
| } |
| |
| if (BuiltinID == clang::AArch64::BI__builtin_arm_get_sme_state) { |
| // Create call to __arm_sme_state and store the results to the two pointers. |
| CallInst *CI = EmitRuntimeCall(CGM.CreateRuntimeFunction( |
| llvm::FunctionType::get(StructType::get(CGM.Int64Ty, CGM.Int64Ty), {}, |
| false), |
| "__arm_sme_state")); |
| auto Attrs = AttributeList().addFnAttribute(getLLVMContext(), |
| "aarch64_pstate_sm_compatible"); |
| CI->setAttributes(Attrs); |
| CI->setCallingConv( |
| llvm::CallingConv:: |
| AArch64_SME_ABI_Support_Routines_PreserveMost_From_X2); |
| Builder.CreateStore(Builder.CreateExtractValue(CI, 0), |
| EmitPointerWithAlignment(E->getArg(0))); |
| return Builder.CreateStore(Builder.CreateExtractValue(CI, 1), |
| EmitPointerWithAlignment(E->getArg(1))); |
| } |
| |
| if (BuiltinID == clang::AArch64::BI__builtin_arm_rbit) { |
| assert((getContext().getTypeSize(E->getType()) == 32) && |
| "rbit of unusual size!"); |
| llvm::Value *Arg = EmitScalarExpr(E->getArg(0)); |
| return Builder.CreateCall( |
| CGM.getIntrinsic(Intrinsic::bitreverse, Arg->getType()), Arg, "rbit"); |
| } |
| if (BuiltinID == clang::AArch64::BI__builtin_arm_rbit64) { |
| assert((getContext().getTypeSize(E->getType()) == 64) && |
| "rbit of unusual size!"); |
| llvm::Value *Arg = EmitScalarExpr(E->getArg(0)); |
| return Builder.CreateCall( |
| CGM.getIntrinsic(Intrinsic::bitreverse, Arg->getType()), Arg, "rbit"); |
| } |
| |
| if (BuiltinID == clang::AArch64::BI__builtin_arm_clz || |
| BuiltinID == clang::AArch64::BI__builtin_arm_clz64) { |
| llvm::Value *Arg = EmitScalarExpr(E->getArg(0)); |
| Function *F = CGM.getIntrinsic(Intrinsic::ctlz, Arg->getType()); |
| Value *Res = Builder.CreateCall(F, {Arg, Builder.getInt1(false)}); |
| if (BuiltinID == clang::AArch64::BI__builtin_arm_clz64) |
| Res = Builder.CreateTrunc(Res, Builder.getInt32Ty()); |
| return Res; |
| } |
| |
| if (BuiltinID == clang::AArch64::BI__builtin_arm_cls) { |
| llvm::Value *Arg = EmitScalarExpr(E->getArg(0)); |
| return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::aarch64_cls), Arg, |
| "cls"); |
| } |
| if (BuiltinID == clang::AArch64::BI__builtin_arm_cls64) { |
| llvm::Value *Arg = EmitScalarExpr(E->getArg(0)); |
| return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::aarch64_cls64), Arg, |
| "cls"); |
| } |
| |
| if (BuiltinID == clang::AArch64::BI__builtin_arm_rint32zf || |
| BuiltinID == clang::AArch64::BI__builtin_arm_rint32z) { |
| llvm::Value *Arg = EmitScalarExpr(E->getArg(0)); |
| llvm::Type *Ty = Arg->getType(); |
| return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::aarch64_frint32z, Ty), |
| Arg, "frint32z"); |
| } |
| |
| if (BuiltinID == clang::AArch64::BI__builtin_arm_rint64zf || |
| BuiltinID == clang::AArch64::BI__builtin_arm_rint64z) { |
| llvm::Value *Arg = EmitScalarExpr(E->getArg(0)); |
| llvm::Type *Ty = Arg->getType(); |
| return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::aarch64_frint64z, Ty), |
| Arg, "frint64z"); |
| } |
| |
| if (BuiltinID == clang::AArch64::BI__builtin_arm_rint32xf || |
| BuiltinID == clang::AArch64::BI__builtin_arm_rint32x) { |
| llvm::Value *Arg = EmitScalarExpr(E->getArg(0)); |
| llvm::Type *Ty = Arg->getType(); |
| return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::aarch64_frint32x, Ty), |
| Arg, "frint32x"); |
| } |
| |
| if (BuiltinID == clang::AArch64::BI__builtin_arm_rint64xf || |
| BuiltinID == clang::AArch64::BI__builtin_arm_rint64x) { |
| llvm::Value *Arg = EmitScalarExpr(E->getArg(0)); |
| llvm::Type *Ty = Arg->getType(); |
| return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::aarch64_frint64x, Ty), |
| Arg, "frint64x"); |
| } |
| |
| if (BuiltinID == clang::AArch64::BI__builtin_arm_jcvt) { |
| assert((getContext().getTypeSize(E->getType()) == 32) && |
| "__jcvt of unusual size!"); |
| llvm::Value *Arg = EmitScalarExpr(E->getArg(0)); |
| return Builder.CreateCall( |
| CGM.getIntrinsic(Intrinsic::aarch64_fjcvtzs), Arg); |
| } |
| |
| if (BuiltinID == clang::AArch64::BI__builtin_arm_ld64b || |
| BuiltinID == clang::AArch64::BI__builtin_arm_st64b || |
| BuiltinID == clang::AArch64::BI__builtin_arm_st64bv || |
| BuiltinID == clang::AArch64::BI__builtin_arm_st64bv0) { |
| llvm::Value *MemAddr = EmitScalarExpr(E->getArg(0)); |
| llvm::Value *ValPtr = EmitScalarExpr(E->getArg(1)); |
| |
| if (BuiltinID == clang::AArch64::BI__builtin_arm_ld64b) { |
| // Load from the address via an LLVM intrinsic, receiving a |
| // tuple of 8 i64 words, and store each one to ValPtr. |
| Function *F = CGM.getIntrinsic(Intrinsic::aarch64_ld64b); |
| llvm::Value *Val = Builder.CreateCall(F, MemAddr); |
| llvm::Value *ToRet; |
| for (size_t i = 0; i < 8; i++) { |
| llvm::Value *ValOffsetPtr = |
| Builder.CreateGEP(Int64Ty, ValPtr, Builder.getInt32(i)); |
| Address Addr = |
| Address(ValOffsetPtr, Int64Ty, CharUnits::fromQuantity(8)); |
| ToRet = Builder.CreateStore(Builder.CreateExtractValue(Val, i), Addr); |
| } |
| return ToRet; |
| } else { |
| // Load 8 i64 words from ValPtr, and store them to the address |
| // via an LLVM intrinsic. |
| SmallVector<llvm::Value *, 9> Args; |
| Args.push_back(MemAddr); |
| for (size_t i = 0; i < 8; i++) { |
| llvm::Value *ValOffsetPtr = |
| Builder.CreateGEP(Int64Ty, ValPtr, Builder.getInt32(i)); |
| Address Addr = |
| Address(ValOffsetPtr, Int64Ty, CharUnits::fromQuantity(8)); |
| Args.push_back(Builder.CreateLoad(Addr)); |
| } |
| |
| auto Intr = (BuiltinID == clang::AArch64::BI__builtin_arm_st64b |
| ? Intrinsic::aarch64_st64b |
| : BuiltinID == clang::AArch64::BI__builtin_arm_st64bv |
| ? Intrinsic::aarch64_st64bv |
| : Intrinsic::aarch64_st64bv0); |
| Function *F = CGM.getIntrinsic(Intr); |
| return Builder.CreateCall(F, Args); |
| } |
| } |
| |
| if (BuiltinID == clang::AArch64::BI__builtin_arm_rndr || |
| BuiltinID == clang::AArch64::BI__builtin_arm_rndrrs) { |
| |
| auto Intr = (BuiltinID == clang::AArch64::BI__builtin_arm_rndr |
| ? Intrinsic::aarch64_rndr |
| : Intrinsic::aarch64_rndrrs); |
| Function *F = CGM.getIntrinsic(Intr); |
| llvm::Value *Val = Builder.CreateCall(F); |
| Value *RandomValue = Builder.CreateExtractValue(Val, 0); |
| Value *Status = Builder.CreateExtractValue(Val, 1); |
| |
| Address MemAddress = EmitPointerWithAlignment(E->getArg(0)); |
| Builder.CreateStore(RandomValue, MemAddress); |
| Status = Builder.CreateZExt(Status, Int32Ty); |
| return Status; |
| } |
| |
| if (BuiltinID == clang::AArch64::BI__clear_cache) { |
| assert(E->getNumArgs() == 2 && "__clear_cache takes 2 arguments"); |
| const FunctionDecl *FD = E->getDirectCallee(); |
| Value *Ops[2]; |
| for (unsigned i = 0; i < 2; i++) |
| Ops[i] = EmitScalarExpr(E->getArg(i)); |
| llvm::Type *Ty = CGM.getTypes().ConvertType(FD->getType()); |
| llvm::FunctionType *FTy = cast<llvm::FunctionType>(Ty); |
| StringRef Name = FD->getName(); |
| return EmitNounwindRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), Ops); |
| } |
| |
| if ((BuiltinID == clang::AArch64::BI__builtin_arm_ldrex || |
| BuiltinID == clang::AArch64::BI__builtin_arm_ldaex) && |
| getContext().getTypeSize(E->getType()) == 128) { |
| Function *F = |
| CGM.getIntrinsic(BuiltinID == clang::AArch64::BI__builtin_arm_ldaex |
| ? Intrinsic::aarch64_ldaxp |
| : Intrinsic::aarch64_ldxp); |
| |
| Value *LdPtr = EmitScalarExpr(E->getArg(0)); |
| Value *Val = Builder.CreateCall(F, LdPtr, "ldxp"); |
| |
| Value *Val0 = Builder.CreateExtractValue(Val, 1); |
| Value *Val1 = Builder.CreateExtractValue(Val, 0); |
| llvm::Type *Int128Ty = llvm::IntegerType::get(getLLVMContext(), 128); |
| Val0 = Builder.CreateZExt(Val0, Int128Ty); |
| Val1 = Builder.CreateZExt(Val1, Int128Ty); |
| |
| Value *ShiftCst = llvm::ConstantInt::get(Int128Ty, 64); |
| Val = Builder.CreateShl(Val0, ShiftCst, "shl", true /* nuw */); |
| Val = Builder.CreateOr(Val, Val1); |
| return Builder.CreateBitCast(Val, ConvertType(E->getType())); |
| } else if (BuiltinID == clang::AArch64::BI__builtin_arm_ldrex || |
| BuiltinID == clang::AArch64::BI__builtin_arm_ldaex) { |
| Value *LoadAddr = EmitScalarExpr(E->getArg(0)); |
| |
| QualType Ty = E->getType(); |
| llvm::Type *RealResTy = ConvertType(Ty); |
| llvm::Type *IntTy = |
| llvm::IntegerType::get(getLLVMContext(), getContext().getTypeSize(Ty)); |
| |
| Function *F = |
| CGM.getIntrinsic(BuiltinID == clang::AArch64::BI__builtin_arm_ldaex |
| ? Intrinsic::aarch64_ldaxr |
| : Intrinsic::aarch64_ldxr, |
| UnqualPtrTy); |
| CallInst *Val = Builder.CreateCall(F, LoadAddr, "ldxr"); |
| Val->addParamAttr( |
| 0, Attribute::get(getLLVMContext(), Attribute::ElementType, IntTy)); |
| |
| if (RealResTy->isPointerTy()) |
| return Builder.CreateIntToPtr(Val, RealResTy); |
| |
| llvm::Type *IntResTy = llvm::IntegerType::get( |
| getLLVMContext(), CGM.getDataLayout().getTypeSizeInBits(RealResTy)); |
| return Builder.CreateBitCast(Builder.CreateTruncOrBitCast(Val, IntResTy), |
| RealResTy); |
| } |
| |
| if ((BuiltinID == clang::AArch64::BI__builtin_arm_strex || |
| BuiltinID == clang::AArch64::BI__builtin_arm_stlex) && |
| getContext().getTypeSize(E->getArg(0)->getType()) == 128) { |
| Function *F = |
| CGM.getIntrinsic(BuiltinID == clang::AArch64::BI__builtin_arm_stlex |
| ? Intrinsic::aarch64_stlxp |
| : Intrinsic::aarch64_stxp); |
| llvm::Type *STy = llvm::StructType::get(Int64Ty, Int64Ty); |
| |
| Address Tmp = CreateMemTemp(E->getArg(0)->getType()); |
| EmitAnyExprToMem(E->getArg(0), Tmp, Qualifiers(), /*init*/ true); |
| |
| Tmp = Tmp.withElementType(STy); |
| llvm::Value *Val = Builder.CreateLoad(Tmp); |
| |
| Value *Arg0 = Builder.CreateExtractValue(Val, 0); |
| Value *Arg1 = Builder.CreateExtractValue(Val, 1); |
| Value *StPtr = EmitScalarExpr(E->getArg(1)); |
| return Builder.CreateCall(F, {Arg0, Arg1, StPtr}, "stxp"); |
| } |
| |
| if (BuiltinID == clang::AArch64::BI__builtin_arm_strex || |
| BuiltinID == clang::AArch64::BI__builtin_arm_stlex) { |
| Value *StoreVal = EmitScalarExpr(E->getArg(0)); |
| Value *StoreAddr = EmitScalarExpr(E->getArg(1)); |
| |
| QualType Ty = E->getArg(0)->getType(); |
| llvm::Type *StoreTy = |
| llvm::IntegerType::get(getLLVMContext(), getContext().getTypeSize(Ty)); |
| |
| if (StoreVal->getType()->isPointerTy()) |
| StoreVal = Builder.CreatePtrToInt(StoreVal, Int64Ty); |
| else { |
| llvm::Type *IntTy = llvm::IntegerType::get( |
| getLLVMContext(), |
| CGM.getDataLayout().getTypeSizeInBits(StoreVal->getType())); |
| StoreVal = Builder.CreateBitCast(StoreVal, IntTy); |
| StoreVal = Builder.CreateZExtOrBitCast(StoreVal, Int64Ty); |
| } |
| |
| Function *F = |
| CGM.getIntrinsic(BuiltinID == clang::AArch64::BI__builtin_arm_stlex |
| ? Intrinsic::aarch64_stlxr |
| : Intrinsic::aarch64_stxr, |
| StoreAddr->getType()); |
| CallInst *CI = Builder.CreateCall(F, {StoreVal, StoreAddr}, "stxr"); |
| CI->addParamAttr( |
| 1, Attribute::get(getLLVMContext(), Attribute::ElementType, StoreTy)); |
| return CI; |
| } |
| |
| if (BuiltinID == clang::AArch64::BI__getReg) { |
| Expr::EvalResult Result; |
| if (!E->getArg(0)->EvaluateAsInt(Result, CGM.getContext())) |
| llvm_unreachable("Sema will ensure that the parameter is constant"); |
| |
| llvm::APSInt Value = Result.Val.getInt(); |
| LLVMContext &Context = CGM.getLLVMContext(); |
| std::string Reg = Value == 31 ? "sp" : "x" + toString(Value, 10); |
| |
| llvm::Metadata *Ops[] = {llvm::MDString::get(Context, Reg)}; |
| llvm::MDNode *RegName = llvm::MDNode::get(Context, Ops); |
| llvm::Value *Metadata = llvm::MetadataAsValue::get(Context, RegName); |
| |
| llvm::Function *F = |
| CGM.getIntrinsic(llvm::Intrinsic::read_register, {Int64Ty}); |
| return Builder.CreateCall(F, Metadata); |
| } |
| |
| if (BuiltinID == clang::AArch64::BI__break) { |
| Expr::EvalResult Result; |
| if (!E->getArg(0)->EvaluateAsInt(Result, CGM.getContext())) |
| llvm_unreachable("Sema will ensure that the parameter is constant"); |
| |
| llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::aarch64_break); |
| return Builder.CreateCall(F, {EmitScalarExpr(E->getArg(0))}); |
| } |
| |
| if (BuiltinID == clang::AArch64::BI__builtin_arm_clrex) { |
| Function *F = CGM.getIntrinsic(Intrinsic::aarch64_clrex); |
| return Builder.CreateCall(F); |
| } |
| |
| if (BuiltinID == clang::AArch64::BI_ReadWriteBarrier) |
| return Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent, |
| llvm::SyncScope::SingleThread); |
| |
| // CRC32 |
| Intrinsic::ID CRCIntrinsicID = Intrinsic::not_intrinsic; |
| switch (BuiltinID) { |
| case clang::AArch64::BI__builtin_arm_crc32b: |
| CRCIntrinsicID = Intrinsic::aarch64_crc32b; break; |
| case clang::AArch64::BI__builtin_arm_crc32cb: |
| CRCIntrinsicID = Intrinsic::aarch64_crc32cb; break; |
| case clang::AArch64::BI__builtin_arm_crc32h: |
| CRCIntrinsicID = Intrinsic::aarch64_crc32h; break; |
| case clang::AArch64::BI__builtin_arm_crc32ch: |
| CRCIntrinsicID = Intrinsic::aarch64_crc32ch; break; |
| case clang::AArch64::BI__builtin_arm_crc32w: |
| CRCIntrinsicID = Intrinsic::aarch64_crc32w; break; |
| case clang::AArch64::BI__builtin_arm_crc32cw: |
| CRCIntrinsicID = Intrinsic::aarch64_crc32cw; break; |
| case clang::AArch64::BI__builtin_arm_crc32d: |
| CRCIntrinsicID = Intrinsic::aarch64_crc32x; break; |
| case clang::AArch64::BI__builtin_arm_crc32cd: |
| CRCIntrinsicID = Intrinsic::aarch64_crc32cx; break; |
| } |
| |
| if (CRCIntrinsicID != Intrinsic::not_intrinsic) { |
| Value *Arg0 = EmitScalarExpr(E->getArg(0)); |
| Value *Arg1 = EmitScalarExpr(E->getArg(1)); |
| Function *F = CGM.getIntrinsic(CRCIntrinsicID); |
| |
| llvm::Type *DataTy = F->getFunctionType()->getParamType(1); |
| Arg1 = Builder.CreateZExtOrBitCast(Arg1, DataTy); |
| |
| return Builder.CreateCall(F, {Arg0, Arg1}); |
| } |
| |
| // Memory Operations (MOPS) |
| if (BuiltinID == AArch64::BI__builtin_arm_mops_memset_tag) { |
| Value *Dst = EmitScalarExpr(E->getArg(0)); |
| Value *Val = EmitScalarExpr(E->getArg(1)); |
| Value *Size = EmitScalarExpr(E->getArg(2)); |
| Val = Builder.CreateTrunc(Val, Int8Ty); |
| Size = Builder.CreateIntCast(Size, Int64Ty, false); |
| return Builder.CreateCall( |
| CGM.getIntrinsic(Intrinsic::aarch64_mops_memset_tag), {Dst, Val, Size}); |
| } |
| |
| // Memory Tagging Extensions (MTE) Intrinsics |
| Intrinsic::ID MTEIntrinsicID = Intrinsic::not_intrinsic; |
| switch (BuiltinID) { |
| case clang::AArch64::BI__builtin_arm_irg: |
| MTEIntrinsicID = Intrinsic::aarch64_irg; break; |
| case clang::AArch64::BI__builtin_arm_addg: |
| MTEIntrinsicID = Intrinsic::aarch64_addg; break; |
| case clang::AArch64::BI__builtin_arm_gmi: |
| MTEIntrinsicID = Intrinsic::aarch64_gmi; break; |
| case clang::AArch64::BI__builtin_arm_ldg: |
| MTEIntrinsicID = Intrinsic::aarch64_ldg; break; |
| case clang::AArch64::BI__builtin_arm_stg: |
| MTEIntrinsicID = Intrinsic::aarch64_stg; break; |
| case clang::AArch64::BI__builtin_arm_subp: |
| MTEIntrinsicID = Intrinsic::aarch64_subp; break; |
| } |
| |
| if (MTEIntrinsicID != Intrinsic::not_intrinsic) { |
| if (MTEIntrinsicID == Intrinsic::aarch64_irg) { |
| Value *Pointer = EmitScalarExpr(E->getArg(0)); |
| Value *Mask = EmitScalarExpr(E->getArg(1)); |
| |
| Mask = Builder.CreateZExt(Mask, Int64Ty); |
| return Builder.CreateCall(CGM.getIntrinsic(MTEIntrinsicID), |
| {Pointer, Mask}); |
| } |
| if (MTEIntrinsicID == Intrinsic::aarch64_addg) { |
| Value *Pointer = EmitScalarExpr(E->getArg(0)); |
| Value *TagOffset = EmitScalarExpr(E->getArg(1)); |
| |
| TagOffset = Builder.CreateZExt(TagOffset, Int64Ty); |
| return Builder.CreateCall(CGM.getIntrinsic(MTEIntrinsicID), |
| {Pointer, TagOffset}); |
| } |
| if (MTEIntrinsicID == Intrinsic::aarch64_gmi) { |
| Value *Pointer = EmitScalarExpr(E->getArg(0)); |
| Value *ExcludedMask = EmitScalarExpr(E->getArg(1)); |
| |
| ExcludedMask = Builder.CreateZExt(ExcludedMask, Int64Ty); |
| return Builder.CreateCall( |
| CGM.getIntrinsic(MTEIntrinsicID), {Pointer, ExcludedMask}); |
| } |
| // Although it is possible to supply a different return |
| // address (first arg) to this intrinsic, for now we set |
| // return address same as input address. |
| if (MTEIntrinsicID == Intrinsic::aarch64_ldg) { |
| Value *TagAddress = EmitScalarExpr(E->getArg(0)); |
| return Builder.CreateCall(CGM.getIntrinsic(MTEIntrinsicID), |
| {TagAddress, TagAddress}); |
| } |
| // Although it is possible to supply a different tag (to set) |
| // to this intrinsic (as first arg), for now we supply |
| // the tag that is in input address arg (common use case). |
| if (MTEIntrinsicID == Intrinsic::aarch64_stg) { |
| Value *TagAddress = EmitScalarExpr(E->getArg(0)); |
| return Builder.CreateCall(CGM.getIntrinsic(MTEIntrinsicID), |
| {TagAddress, TagAddress}); |
| } |
| if (MTEIntrinsicID == Intrinsic::aarch64_subp) { |
| Value *PointerA = EmitScalarExpr(E->getArg(0)); |
| Value *PointerB = EmitScalarExpr(E->getArg(1)); |
| return Builder.CreateCall( |
| CGM.getIntrinsic(MTEIntrinsicID), {PointerA, PointerB}); |
| } |
| } |
| |
| if (BuiltinID == clang::AArch64::BI__builtin_arm_rsr || |
| BuiltinID == clang::AArch64::BI__builtin_arm_rsr64 || |
| BuiltinID == clang::AArch64::BI__builtin_arm_rsr128 || |
| BuiltinID == clang::AArch64::BI__builtin_arm_rsrp || |
| BuiltinID == clang::AArch64::BI__builtin_arm_wsr || |
| BuiltinID == clang::AArch64::BI__builtin_arm_wsr64 || |
| BuiltinID == clang::AArch64::BI__builtin_arm_wsr128 || |
| BuiltinID == clang::AArch64::BI__builtin_arm_wsrp) { |
| |
| SpecialRegisterAccessKind AccessKind = Write; |
| if (BuiltinID == clang::AArch64::BI__builtin_arm_rsr || |
| BuiltinID == clang::AArch64::BI__builtin_arm_rsr64 || |
| BuiltinID == clang::AArch64::BI__builtin_arm_rsr128 || |
| BuiltinID == clang::AArch64::BI__builtin_arm_rsrp) |
| AccessKind = VolatileRead; |
| |
| bool IsPointerBuiltin = BuiltinID == clang::AArch64::BI__builtin_arm_rsrp || |
| BuiltinID == clang::AArch64::BI__builtin_arm_wsrp; |
| |
| bool Is32Bit = BuiltinID == clang::AArch64::BI__builtin_arm_rsr || |
| BuiltinID == clang::AArch64::BI__builtin_arm_wsr; |
| |
| bool Is128Bit = BuiltinID == clang::AArch64::BI__builtin_arm_rsr128 || |
| BuiltinID == clang::AArch64::BI__builtin_arm_wsr128; |
| |
| llvm::Type *ValueType; |
| llvm::Type *RegisterType = Int64Ty; |
| if (Is32Bit) { |
| ValueType = Int32Ty; |
| } else if (Is128Bit) { |
| llvm::Type *Int128Ty = |
| llvm::IntegerType::getInt128Ty(CGM.getLLVMContext()); |
| ValueType = Int128Ty; |
| RegisterType = Int128Ty; |
| } else if (IsPointerBuiltin) { |
| ValueType = VoidPtrTy; |
| } else { |
| ValueType = Int64Ty; |
| }; |
| |
| return EmitSpecialRegisterBuiltin(*this, E, RegisterType, ValueType, |
| AccessKind); |
| } |
| |
| if (BuiltinID == clang::AArch64::BI_ReadStatusReg || |
| BuiltinID == clang::AArch64::BI_WriteStatusReg) { |
| LLVMContext &Context = CGM.getLLVMContext(); |
| |
| unsigned SysReg = |
| E->getArg(0)->EvaluateKnownConstInt(getContext()).getZExtValue(); |
| |
| std::string SysRegStr; |
| llvm::raw_string_ostream(SysRegStr) << |
| ((1 << 1) | ((SysReg >> 14) & 1)) << ":" << |
| ((SysReg >> 11) & 7) << ":" << |
| ((SysReg >> 7) & 15) << ":" << |
| ((SysReg >> 3) & 15) << ":" << |
| ( SysReg & 7); |
| |
| llvm::Metadata *Ops[] = { llvm::MDString::get(Context, SysRegStr) }; |
| llvm::MDNode *RegName = llvm::MDNode::get(Context, Ops); |
| llvm::Value *Metadata = llvm::MetadataAsValue::get(Context, RegName); |
| |
| llvm::Type *RegisterType = Int64Ty; |
| llvm::Type *Types[] = { RegisterType }; |
| |
| if (BuiltinID == clang::AArch64::BI_ReadStatusReg) { |
| llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types); |
| |
| return Builder.CreateCall(F, Metadata); |
| } |
| |
| llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types); |
| llvm::Value *ArgValue = EmitScalarExpr(E->getArg(1)); |
| |
| return Builder.CreateCall(F, { Metadata, ArgValue }); |
| } |
| |
| if (BuiltinID == clang::AArch64::BI_AddressOfReturnAddress) { |
| llvm::Function *F = |
| CGM.getIntrinsic(Intrinsic::addressofreturnaddress, AllocaInt8PtrTy); |
| return Builder.CreateCall(F); |
| } |
| |
| if (BuiltinID == clang::AArch64::BI__builtin_sponentry) { |
| llvm::Function *F = CGM.getIntrinsic(Intrinsic::sponentry, AllocaInt8PtrTy); |
| return Builder.CreateCall(F); |
| } |
| |
| if (BuiltinID == clang::AArch64::BI__mulh || |
| BuiltinID == clang::AArch64::BI__umulh) { |
| llvm::Type *ResType = ConvertType(E->getType()); |
| llvm::Type *Int128Ty = llvm::IntegerType::get(getLLVMContext(), 128); |
| |
| bool IsSigned = BuiltinID == clang::AArch64::BI__mulh; |
| Value *LHS = |
| Builder.CreateIntCast(EmitScalarExpr(E->getArg(0)), Int128Ty, IsSigned); |
| Value *RHS = |
| Builder.CreateIntCast(EmitScalarExpr(E->getArg(1)), Int128Ty, IsSigned); |
| |
| Value *MulResult, *HigherBits; |
| if (IsSigned) { |
| MulResult = Builder.CreateNSWMul(LHS, RHS); |
| HigherBits = Builder.CreateAShr(MulResult, 64); |
| } else { |
| MulResult = Builder.CreateNUWMul(LHS, RHS); |
| HigherBits = Builder.CreateLShr(MulResult, 64); |
| } |
| HigherBits = Builder.CreateIntCast(HigherBits, ResType, IsSigned); |
| |
| return HigherBits; |
| } |
| |
| if (BuiltinID == AArch64::BI__writex18byte || |
| BuiltinID == AArch64::BI__writex18word || |
| BuiltinID == AArch64::BI__writex18dword || |
| BuiltinID == AArch64::BI__writex18qword) { |
| // Process the args first |
| Value *OffsetArg = EmitScalarExpr(E->getArg(0)); |
| Value *DataArg = EmitScalarExpr(E->getArg(1)); |
| |
| // Read x18 as i8* |
| llvm::Value *X18 = readX18AsPtr(*this); |
| |
| // Store val at x18 + offset |
| Value *Offset = Builder.CreateZExt(OffsetArg, Int64Ty); |
| Value *Ptr = Builder.CreateGEP(Int8Ty, X18, Offset); |
| StoreInst *Store = |
| Builder.CreateAlignedStore(DataArg, Ptr, CharUnits::One()); |
| return Store; |
| } |
| |
| if (BuiltinID == AArch64::BI__readx18byte || |
| BuiltinID == AArch64::BI__readx18word || |
| BuiltinID == AArch64::BI__readx18dword || |
| BuiltinID == AArch64::BI__readx18qword) { |
| // Process the args first |
| Value *OffsetArg = EmitScalarExpr(E->getArg(0)); |
| |
| // Read x18 as i8* |
| llvm::Value *X18 = readX18AsPtr(*this); |
| |
| // Load x18 + offset |
| Value *Offset = Builder.CreateZExt(OffsetArg, Int64Ty); |
| Value *Ptr = Builder.CreateGEP(Int8Ty, X18, Offset); |
| llvm::Type *IntTy = ConvertType(E->getType()); |
| LoadInst *Load = Builder.CreateAlignedLoad(IntTy, Ptr, CharUnits::One()); |
| return Load; |
| } |
| |
| if (BuiltinID == AArch64::BI__addx18byte || |
| BuiltinID == AArch64::BI__addx18word || |
| BuiltinID == AArch64::BI__addx18dword || |
| BuiltinID == AArch64::BI__addx18qword || |
| BuiltinID == AArch64::BI__incx18byte || |
| BuiltinID == AArch64::BI__incx18word || |
| BuiltinID == AArch64::BI__incx18dword || |
| BuiltinID == AArch64::BI__incx18qword) { |
| llvm::Type *IntTy; |
| bool isIncrement; |
| switch (BuiltinID) { |
| case AArch64::BI__incx18byte: |
| IntTy = Int8Ty; |
| isIncrement = true; |
| break; |
| case AArch64::BI__incx18word: |
| IntTy = Int16Ty; |
| isIncrement = true; |
| break; |
| case AArch64::BI__incx18dword: |
| IntTy = Int32Ty; |
| isIncrement = true; |
| break; |
| case AArch64::BI__incx18qword: |
| IntTy = Int64Ty; |
| isIncrement = true; |
| break; |
| default: |
| IntTy = ConvertType(E->getArg(1)->getType()); |
| isIncrement = false; |
| break; |
| } |
| // Process the args first |
| Value *OffsetArg = EmitScalarExpr(E->getArg(0)); |
| Value *ValToAdd = |
| isIncrement ? ConstantInt::get(IntTy, 1) : EmitScalarExpr(E->getArg(1)); |
| |
| // Read x18 as i8* |
| llvm::Value *X18 = readX18AsPtr(*this); |
| |
| // Load x18 + offset |
| Value *Offset = Builder.CreateZExt(OffsetArg, Int64Ty); |
| Value *Ptr = Builder.CreateGEP(Int8Ty, X18, Offset); |
| LoadInst *Load = Builder.CreateAlignedLoad(IntTy, Ptr, CharUnits::One()); |
| |
| // Add values |
| Value *AddResult = Builder.CreateAdd(Load, ValToAdd); |
| |
| // Store val at x18 + offset |
| StoreInst *Store = |
| Builder.CreateAlignedStore(AddResult, Ptr, CharUnits::One()); |
| return Store; |
| } |
| |
| if (BuiltinID == AArch64::BI_CopyDoubleFromInt64 || |
| BuiltinID == AArch64::BI_CopyFloatFromInt32 || |
| BuiltinID == AArch64::BI_CopyInt32FromFloat || |
| BuiltinID == AArch64::BI_CopyInt64FromDouble) { |
| Value *Arg = EmitScalarExpr(E->getArg(0)); |
| llvm::Type *RetTy = ConvertType(E->getType()); |
| return Builder.CreateBitCast(Arg, RetTy); |
| } |
| |
| if (BuiltinID == AArch64::BI_CountLeadingOnes || |
| BuiltinID == AArch64::BI_CountLeadingOnes64 || |
| BuiltinID == AArch64::BI_CountLeadingZeros || |
| BuiltinID == AArch64::BI_CountLeadingZeros64) { |
| Value *Arg = EmitScalarExpr(E->getArg(0)); |
| llvm::Type *ArgType = Arg->getType(); |
| |
| if (BuiltinID == AArch64::BI_CountLeadingOnes || |
| BuiltinID == AArch64::BI_CountLeadingOnes64) |
| Arg = Builder.CreateXor(Arg, Constant::getAllOnesValue(ArgType)); |
| |
| Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType); |
| Value *Result = Builder.CreateCall(F, {Arg, Builder.getInt1(false)}); |
| |
| if (BuiltinID == AArch64::BI_CountLeadingOnes64 || |
| BuiltinID == AArch64::BI_CountLeadingZeros64) |
| Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); |
| return Result; |
| } |
| |
| if (BuiltinID == AArch64::BI_CountLeadingSigns || |
| BuiltinID == AArch64::BI_CountLeadingSigns64) { |
| Value *Arg = EmitScalarExpr(E->getArg(0)); |
| |
| Function *F = (BuiltinID == AArch64::BI_CountLeadingSigns) |
| ? CGM.getIntrinsic(Intrinsic::aarch64_cls) |
| : CGM.getIntrinsic(Intrinsic::aarch64_cls64); |
| |
| Value *Result = Builder.CreateCall(F, Arg, "cls"); |
| if (BuiltinID == AArch64::BI_CountLeadingSigns64) |
| Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); |
| return Result; |
| } |
| |
| if (BuiltinID == AArch64::BI_CountOneBits || |
| BuiltinID == AArch64::BI_CountOneBits64) { |
| Value *ArgValue = EmitScalarExpr(E->getArg(0)); |
| llvm::Type *ArgType = ArgValue->getType(); |
| Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType); |
| |
| Value *Result = Builder.CreateCall(F, ArgValue); |
| if (BuiltinID == AArch64::BI_CountOneBits64) |
| Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); |
| return Result; |
| } |
| |
| if (BuiltinID == AArch64::BI__prefetch) { |
| Value *Address = EmitScalarExpr(E->getArg(0)); |
| Value *RW = llvm::ConstantInt::get(Int32Ty, 0); |
| Value *Locality = ConstantInt::get(Int32Ty, 3); |
| Value *Data = llvm::ConstantInt::get(Int32Ty, 1); |
| Function *F = CGM.getIntrinsic(Intrinsic::prefetch, Address->getType()); |
| return Builder.CreateCall(F, {Address, RW, Locality, Data}); |
| } |
| |
| if (BuiltinID == AArch64::BI__hlt) { |
| Function *F = CGM.getIntrinsic(Intrinsic::aarch64_hlt); |
| Builder.CreateCall(F, {EmitScalarExpr(E->getArg(0))}); |
| |
| // Return 0 for convenience, even though MSVC returns some other undefined |
| // value. |
| return ConstantInt::get(Builder.getInt32Ty(), 0); |
| } |
| |
| if (BuiltinID == NEON::BI__builtin_neon_vcvth_bf16_f32) |
| return Builder.CreateFPTrunc( |
| Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), |
| Builder.getFloatTy()), |
| Builder.getBFloatTy()); |
| |
| // Handle MSVC intrinsics before argument evaluation to prevent double |
| // evaluation. |
| if (std::optional<MSVCIntrin> MsvcIntId = |
| translateAarch64ToMsvcIntrin(BuiltinID)) |
| return EmitMSVCBuiltinExpr(*MsvcIntId, E); |
| |
| // Some intrinsics are equivalent - if they are use the base intrinsic ID. |
| auto It = llvm::find_if(NEONEquivalentIntrinsicMap, [BuiltinID](auto &P) { |
| return P.first == BuiltinID; |
| }); |
| if (It != end(NEONEquivalentIntrinsicMap)) |
| BuiltinID = It->second; |
| |
| // Find out if any arguments are required to be integer constant |
| // expressions. |
| unsigned ICEArguments = 0; |
| ASTContext::GetBuiltinTypeError Error; |
| getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments); |
| assert(Error == ASTContext::GE_None && "Should not codegen an error"); |
| |
| llvm::SmallVector<Value*, 4> Ops; |
| Address PtrOp0 = Address::invalid(); |
| for (unsigned i = 0, e = E->getNumArgs() - 1; i != e; i++) { |
| if (i == 0) { |
| switch (BuiltinID) { |
| case NEON::BI__builtin_neon_vld1_v: |
| case NEON::BI__builtin_neon_vld1q_v: |
| case NEON::BI__builtin_neon_vld1_dup_v: |
| case NEON::BI__builtin_neon_vld1q_dup_v: |
| case NEON::BI__builtin_neon_vld1_lane_v: |
| case NEON::BI__builtin_neon_vld1q_lane_v: |
| case NEON::BI__builtin_neon_vst1_v: |
| case NEON::BI__builtin_neon_vst1q_v: |
| case NEON::BI__builtin_neon_vst1_lane_v: |
| case NEON::BI__builtin_neon_vst1q_lane_v: |
| case NEON::BI__builtin_neon_vldap1_lane_s64: |
| case NEON::BI__builtin_neon_vldap1q_lane_s64: |
| case NEON::BI__builtin_neon_vstl1_lane_s64: |
| case NEON::BI__builtin_neon_vstl1q_lane_s64: |
| // Get the alignment for the argument in addition to the value; |
| // we'll use it later. |
| PtrOp0 = EmitPointerWithAlignment(E->getArg(0)); |
| Ops.push_back(PtrOp0.emitRawPointer(*this)); |
| continue; |
| } |
| } |
| Ops.push_back(EmitScalarOrConstFoldImmArg(ICEArguments, i, E)); |
| } |
| |
| auto SISDMap = ArrayRef(AArch64SISDIntrinsicMap); |
| const ARMVectorIntrinsicInfo *Builtin = findARMVectorIntrinsicInMap( |
| SISDMap, BuiltinID, AArch64SISDIntrinsicsProvenSorted); |
| |
| if (Builtin) { |
| Ops.push_back(EmitScalarExpr(E->getArg(E->getNumArgs() - 1))); |
| Value *Result = EmitCommonNeonSISDBuiltinExpr(*this, *Builtin, Ops, E); |
| assert(Result && "SISD intrinsic should have been handled"); |
| return Result; |
| } |
| |
| const Expr *Arg = E->getArg(E->getNumArgs()-1); |
| NeonTypeFlags Type(0); |
| if (std::optional<llvm::APSInt> Result = |
| Arg->getIntegerConstantExpr(getContext())) |
| // Determine the type of this overloaded NEON intrinsic. |
| Type = NeonTypeFlags(Result->getZExtValue()); |
| |
| bool usgn = Type.isUnsigned(); |
| bool quad = Type.isQuad(); |
| |
| // Handle non-overloaded intrinsics first. |
| switch (BuiltinID) { |
| default: break; |
| case NEON::BI__builtin_neon_vabsh_f16: |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| return EmitNeonCall(CGM.getIntrinsic(Intrinsic::fabs, HalfTy), Ops, "vabs"); |
| case NEON::BI__builtin_neon_vaddq_p128: { |
| llvm::Type *Ty = GetNeonType(this, NeonTypeFlags::Poly128); |
| Ops.push_back(EmitScalarExpr(E->getArg(1))); |
| Ops[0] = Builder.CreateBitCast(Ops[0], Ty); |
| Ops[1] = Builder.CreateBitCast(Ops[1], Ty); |
| Ops[0] = Builder.CreateXor(Ops[0], Ops[1]); |
| llvm::Type *Int128Ty = llvm::Type::getIntNTy(getLLVMContext(), 128); |
| return Builder.CreateBitCast(Ops[0], Int128Ty); |
| } |
| case NEON::BI__builtin_neon_vldrq_p128: { |
| llvm::Type *Int128Ty = llvm::Type::getIntNTy(getLLVMContext(), 128); |
| Value *Ptr = EmitScalarExpr(E->getArg(0)); |
| return Builder.CreateAlignedLoad(Int128Ty, Ptr, |
| CharUnits::fromQuantity(16)); |
| } |
| case NEON::BI__builtin_neon_vstrq_p128: { |
| Value *Ptr = Ops[0]; |
| return Builder.CreateDefaultAlignedStore(EmitScalarExpr(E->getArg(1)), Ptr); |
| } |
| case NEON::BI__builtin_neon_vcvts_f32_u32: |
| case NEON::BI__builtin_neon_vcvtd_f64_u64: |
| usgn = true; |
| [[fallthrough]]; |
| case NEON::BI__builtin_neon_vcvts_f32_s32: |
| case NEON::BI__builtin_neon_vcvtd_f64_s64: { |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| bool Is64 = Ops[0]->getType()->getPrimitiveSizeInBits() == 64; |
| llvm::Type *InTy = Is64 ? Int64Ty : Int32Ty; |
| llvm::Type *FTy = Is64 ? DoubleTy : FloatTy; |
| Ops[0] = Builder.CreateBitCast(Ops[0], InTy); |
| if (usgn) |
| return Builder.CreateUIToFP(Ops[0], FTy); |
| return Builder.CreateSIToFP(Ops[0], FTy); |
| } |
| case NEON::BI__builtin_neon_vcvth_f16_u16: |
| case NEON::BI__builtin_neon_vcvth_f16_u32: |
| case NEON::BI__builtin_neon_vcvth_f16_u64: |
| usgn = true; |
| [[fallthrough]]; |
| case NEON::BI__builtin_neon_vcvth_f16_s16: |
| case NEON::BI__builtin_neon_vcvth_f16_s32: |
| case NEON::BI__builtin_neon_vcvth_f16_s64: { |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| llvm::Type *FTy = HalfTy; |
| llvm::Type *InTy; |
| if (Ops[0]->getType()->getPrimitiveSizeInBits() == 64) |
| InTy = Int64Ty; |
| else if (Ops[0]->getType()->getPrimitiveSizeInBits() == 32) |
| InTy = Int32Ty; |
| else |
| InTy = Int16Ty; |
| Ops[0] = Builder.CreateBitCast(Ops[0], InTy); |
| if (usgn) |
| return Builder.CreateUIToFP(Ops[0], FTy); |
| return Builder.CreateSIToFP(Ops[0], FTy); |
| } |
| case NEON::BI__builtin_neon_vcvtah_u16_f16: |
| case NEON::BI__builtin_neon_vcvtmh_u16_f16: |
| case NEON::BI__builtin_neon_vcvtnh_u16_f16: |
| case NEON::BI__builtin_neon_vcvtph_u16_f16: |
| case NEON::BI__builtin_neon_vcvth_u16_f16: |
| case NEON::BI__builtin_neon_vcvtah_s16_f16: |
| case NEON::BI__builtin_neon_vcvtmh_s16_f16: |
| case NEON::BI__builtin_neon_vcvtnh_s16_f16: |
| case NEON::BI__builtin_neon_vcvtph_s16_f16: |
| case NEON::BI__builtin_neon_vcvth_s16_f16: { |
| unsigned Int; |
| llvm::Type* InTy = Int32Ty; |
| llvm::Type* FTy = HalfTy; |
| llvm::Type *Tys[2] = {InTy, FTy}; |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| switch (BuiltinID) { |
| default: llvm_unreachable("missing builtin ID in switch!"); |
| case NEON::BI__builtin_neon_vcvtah_u16_f16: |
| Int = Intrinsic::aarch64_neon_fcvtau; break; |
| case NEON::BI__builtin_neon_vcvtmh_u16_f16: |
| Int = Intrinsic::aarch64_neon_fcvtmu; break; |
| case NEON::BI__builtin_neon_vcvtnh_u16_f16: |
| Int = Intrinsic::aarch64_neon_fcvtnu; break; |
| case NEON::BI__builtin_neon_vcvtph_u16_f16: |
| Int = Intrinsic::aarch64_neon_fcvtpu; break; |
| case NEON::BI__builtin_neon_vcvth_u16_f16: |
| Int = Intrinsic::aarch64_neon_fcvtzu; break; |
| case NEON::BI__builtin_neon_vcvtah_s16_f16: |
| Int = Intrinsic::aarch64_neon_fcvtas; break; |
| case NEON::BI__builtin_neon_vcvtmh_s16_f16: |
| Int = Intrinsic::aarch64_neon_fcvtms; break; |
| case NEON::BI__builtin_neon_vcvtnh_s16_f16: |
| Int = Intrinsic::aarch64_neon_fcvtns; break; |
| case NEON::BI__builtin_neon_vcvtph_s16_f16: |
| Int = Intrinsic::aarch64_neon_fcvtps; break; |
| case NEON::BI__builtin_neon_vcvth_s16_f16: |
| Int = Intrinsic::aarch64_neon_fcvtzs; break; |
| } |
| Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "fcvt"); |
| return Builder.CreateTrunc(Ops[0], Int16Ty); |
| } |
| case NEON::BI__builtin_neon_vcaleh_f16: |
| case NEON::BI__builtin_neon_vcalth_f16: |
| case NEON::BI__builtin_neon_vcageh_f16: |
| case NEON::BI__builtin_neon_vcagth_f16: { |
| unsigned Int; |
| llvm::Type* InTy = Int32Ty; |
| llvm::Type* FTy = HalfTy; |
| llvm::Type *Tys[2] = {InTy, FTy}; |
| Ops.push_back(EmitScalarExpr(E->getArg(1))); |
| switch (BuiltinID) { |
| default: llvm_unreachable("missing builtin ID in switch!"); |
| case NEON::BI__builtin_neon_vcageh_f16: |
| Int = Intrinsic::aarch64_neon_facge; break; |
| case NEON::BI__builtin_neon_vcagth_f16: |
| Int = Intrinsic::aarch64_neon_facgt; break; |
| case NEON::BI__builtin_neon_vcaleh_f16: |
| Int = Intrinsic::aarch64_neon_facge; std::swap(Ops[0], Ops[1]); break; |
| case NEON::BI__builtin_neon_vcalth_f16: |
| Int = Intrinsic::aarch64_neon_facgt; std::swap(Ops[0], Ops[1]); break; |
| } |
| Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "facg"); |
| return Builder.CreateTrunc(Ops[0], Int16Ty); |
| } |
| case NEON::BI__builtin_neon_vcvth_n_s16_f16: |
| case NEON::BI__builtin_neon_vcvth_n_u16_f16: { |
| unsigned Int; |
| llvm::Type* InTy = Int32Ty; |
| llvm::Type* FTy = HalfTy; |
| llvm::Type *Tys[2] = {InTy, FTy}; |
| Ops.push_back(EmitScalarExpr(E->getArg(1))); |
| switch (BuiltinID) { |
| default: llvm_unreachable("missing builtin ID in switch!"); |
| case NEON::BI__builtin_neon_vcvth_n_s16_f16: |
| Int = Intrinsic::aarch64_neon_vcvtfp2fxs; break; |
| case NEON::BI__builtin_neon_vcvth_n_u16_f16: |
| Int = Intrinsic::aarch64_neon_vcvtfp2fxu; break; |
| } |
| Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "fcvth_n"); |
| return Builder.CreateTrunc(Ops[0], Int16Ty); |
| } |
| case NEON::BI__builtin_neon_vcvth_n_f16_s16: |
| case NEON::BI__builtin_neon_vcvth_n_f16_u16: { |
| unsigned Int; |
| llvm::Type* FTy = HalfTy; |
| llvm::Type* InTy = Int32Ty; |
| llvm::Type *Tys[2] = {FTy, InTy}; |
| Ops.push_back(EmitScalarExpr(E->getArg(1))); |
| switch (BuiltinID) { |
| default: llvm_unreachable("missing builtin ID in switch!"); |
| case NEON::BI__builtin_neon_vcvth_n_f16_s16: |
| Int = Intrinsic::aarch64_neon_vcvtfxs2fp; |
| Ops[0] = Builder.CreateSExt(Ops[0], InTy, "sext"); |
| break; |
| case NEON::BI__builtin_neon_vcvth_n_f16_u16: |
| Int = Intrinsic::aarch64_neon_vcvtfxu2fp; |
| Ops[0] = Builder.CreateZExt(Ops[0], InTy); |
| break; |
| } |
| return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "fcvth_n"); |
| } |
| case NEON::BI__builtin_neon_vpaddd_s64: { |
| auto *Ty = llvm::FixedVectorType::get(Int64Ty, 2); |
| Value *Vec = EmitScalarExpr(E->getArg(0)); |
| // The vector is v2f64, so make sure it's bitcast to that. |
| Vec = Builder.CreateBitCast(Vec, Ty, "v2i64"); |
| llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0); |
| llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1); |
| Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0"); |
| Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1"); |
| // Pairwise addition of a v2f64 into a scalar f64. |
| return Builder.CreateAdd(Op0, Op1, "vpaddd"); |
| } |
| case NEON::BI__builtin_neon_vpaddd_f64: { |
| auto *Ty = llvm::FixedVectorType::get(DoubleTy, 2); |
| Value *Vec = EmitScalarExpr(E->getArg(0)); |
| // The vector is v2f64, so make sure it's bitcast to that. |
| Vec = Builder.CreateBitCast(Vec, Ty, "v2f64"); |
| llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0); |
| llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1); |
| Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0"); |
| Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1"); |
| // Pairwise addition of a v2f64 into a scalar f64. |
| return Builder.CreateFAdd(Op0, Op1, "vpaddd"); |
| } |
| case NEON::BI__builtin_neon_vpadds_f32: { |
| auto *Ty = llvm::FixedVectorType::get(FloatTy, 2); |
| Value *Vec = EmitScalarExpr(E->getArg(0)); |
| // The vector is v2f32, so make sure it's bitcast to that. |
| Vec = Builder.CreateBitCast(Vec, Ty, "v2f32"); |
| llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0); |
| llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1); |
| Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0"); |
| Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1"); |
| // Pairwise addition of a v2f32 into a scalar f32. |
| return Builder.CreateFAdd(Op0, Op1, "vpaddd"); |
| } |
| case NEON::BI__builtin_neon_vceqzd_s64: |
| case NEON::BI__builtin_neon_vceqzd_f64: |
| case NEON::BI__builtin_neon_vceqzs_f32: |
| case NEON::BI__builtin_neon_vceqzh_f16: |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| return EmitAArch64CompareBuiltinExpr( |
| Ops[0], ConvertType(E->getCallReturnType(getContext())), |
| ICmpInst::FCMP_OEQ, ICmpInst::ICMP_EQ, "vceqz"); |
| case NEON::BI__builtin_neon_vcgezd_s64: |
| case NEON::BI__builtin_neon_vcgezd_f64: |
| case NEON::BI__builtin_neon_vcgezs_f32: |
| case NEON::BI__builtin_neon_vcgezh_f16: |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| return EmitAArch64CompareBuiltinExpr( |
| Ops[0], ConvertType(E->getCallReturnType(getContext())), |
| ICmpInst::FCMP_OGE, ICmpInst::ICMP_SGE, "vcgez"); |
| case NEON::BI__builtin_neon_vclezd_s64: |
| case NEON::BI__builtin_neon_vclezd_f64: |
| case NEON::BI__builtin_neon_vclezs_f32: |
| case NEON::BI__builtin_neon_vclezh_f16: |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| return EmitAArch64CompareBuiltinExpr( |
| Ops[0], ConvertType(E->getCallReturnType(getContext())), |
| ICmpInst::FCMP_OLE, ICmpInst::ICMP_SLE, "vclez"); |
| case NEON::BI__builtin_neon_vcgtzd_s64: |
| case NEON::BI__builtin_neon_vcgtzd_f64: |
| case NEON::BI__builtin_neon_vcgtzs_f32: |
| case NEON::BI__builtin_neon_vcgtzh_f16: |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| return EmitAArch64CompareBuiltinExpr( |
| Ops[0], ConvertType(E->getCallReturnType(getContext())), |
| ICmpInst::FCMP_OGT, ICmpInst::ICMP_SGT, "vcgtz"); |
| case NEON::BI__builtin_neon_vcltzd_s64: |
| case NEON::BI__builtin_neon_vcltzd_f64: |
| case NEON::BI__builtin_neon_vcltzs_f32: |
| case NEON::BI__builtin_neon_vcltzh_f16: |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| return EmitAArch64CompareBuiltinExpr( |
| Ops[0], ConvertType(E->getCallReturnType(getContext())), |
| ICmpInst::FCMP_OLT, ICmpInst::ICMP_SLT, "vcltz"); |
| |
| case NEON::BI__builtin_neon_vceqzd_u64: { |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| Ops[0] = Builder.CreateBitCast(Ops[0], Int64Ty); |
| Ops[0] = |
| Builder.CreateICmpEQ(Ops[0], llvm::Constant::getNullValue(Int64Ty)); |
| return Builder.CreateSExt(Ops[0], Int64Ty, "vceqzd"); |
| } |
| case NEON::BI__builtin_neon_vceqd_f64: |
| case NEON::BI__builtin_neon_vcled_f64: |
| case NEON::BI__builtin_neon_vcltd_f64: |
| case NEON::BI__builtin_neon_vcged_f64: |
| case NEON::BI__builtin_neon_vcgtd_f64: { |
| llvm::CmpInst::Predicate P; |
| switch (BuiltinID) { |
| default: llvm_unreachable("missing builtin ID in switch!"); |
| case NEON::BI__builtin_neon_vceqd_f64: P = llvm::FCmpInst::FCMP_OEQ; break; |
| case NEON::BI__builtin_neon_vcled_f64: P = llvm::FCmpInst::FCMP_OLE; break; |
| case NEON::BI__builtin_neon_vcltd_f64: P = llvm::FCmpInst::FCMP_OLT; break; |
| case NEON::BI__builtin_neon_vcged_f64: P = llvm::FCmpInst::FCMP_OGE; break; |
| case NEON::BI__builtin_neon_vcgtd_f64: P = llvm::FCmpInst::FCMP_OGT; break; |
| } |
| Ops.push_back(EmitScalarExpr(E->getArg(1))); |
| Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy); |
| Ops[1] = Builder.CreateBitCast(Ops[1], DoubleTy); |
| if (P == llvm::FCmpInst::FCMP_OEQ) |
| Ops[0] = Builder.CreateFCmp(P, Ops[0], Ops[1]); |
| else |
| Ops[0] = Builder.CreateFCmpS(P, Ops[0], Ops[1]); |
| return Builder.CreateSExt(Ops[0], Int64Ty, "vcmpd"); |
| } |
| case NEON::BI__builtin_neon_vceqs_f32: |
| case NEON::BI__builtin_neon_vcles_f32: |
| case NEON::BI__builtin_neon_vclts_f32: |
| case NEON::BI__builtin_neon_vcges_f32: |
| case NEON::BI__builtin_neon_vcgts_f32: { |
| llvm::CmpInst::Predicate P; |
| switch (BuiltinID) { |
| default: llvm_unreachable("missing builtin ID in switch!"); |
| case NEON::BI__builtin_neon_vceqs_f32: P = llvm::FCmpInst::FCMP_OEQ; break; |
| case NEON::BI__builtin_neon_vcles_f32: P = llvm::FCmpInst::FCMP_OLE; break; |
| case NEON::BI__builtin_neon_vclts_f32: P = llvm::FCmpInst::FCMP_OLT; break; |
| case NEON::BI__builtin_neon_vcges_f32: P = llvm::FCmpInst::FCMP_OGE; break; |
| case NEON::BI__builtin_neon_vcgts_f32: P = llvm::FCmpInst::FCMP_OGT; break; |
| } |
| Ops.push_back(EmitScalarExpr(E->getArg(1))); |
| Ops[0] = Builder.CreateBitCast(Ops[0], FloatTy); |
| Ops[1] = Builder.CreateBitCast(Ops[1], FloatTy); |
| if (P == llvm::FCmpInst::FCMP_OEQ) |
| Ops[0] = Builder.CreateFCmp(P, Ops[0], Ops[1]); |
| else |
| Ops[0] = Builder.CreateFCmpS(P, Ops[0], Ops[1]); |
| return Builder.CreateSExt(Ops[0], Int32Ty, "vcmpd"); |
| } |
| case NEON::BI__builtin_neon_vceqh_f16: |
| case NEON::BI__builtin_neon_vcleh_f16: |
| case NEON::BI__builtin_neon_vclth_f16: |
| case NEON::BI__builtin_neon_vcgeh_f16: |
| case NEON::BI__builtin_neon_vcgth_f16: { |
| llvm::CmpInst::Predicate P; |
| switch (BuiltinID) { |
| default: llvm_unreachable("missing builtin ID in switch!"); |
| case NEON::BI__builtin_neon_vceqh_f16: P = llvm::FCmpInst::FCMP_OEQ; break; |
| case NEON::BI__builtin_neon_vcleh_f16: P = llvm::FCmpInst::FCMP_OLE; break; |
| case NEON::BI__builtin_neon_vclth_f16: P = llvm::FCmpInst::FCMP_OLT; break; |
| case NEON::BI__builtin_neon_vcgeh_f16: P = llvm::FCmpInst::FCMP_OGE; break; |
| case NEON::BI__builtin_neon_vcgth_f16: P = llvm::FCmpInst::FCMP_OGT; break; |
| } |
| Ops.push_back(EmitScalarExpr(E->getArg(1))); |
| Ops[0] = Builder.CreateBitCast(Ops[0], HalfTy); |
| Ops[1] = Builder.CreateBitCast(Ops[1], HalfTy); |
| if (P == llvm::FCmpInst::FCMP_OEQ) |
| Ops[0] = Builder.CreateFCmp(P, Ops[0], Ops[1]); |
| else |
| Ops[0] = Builder.CreateFCmpS(P, Ops[0], Ops[1]); |
| return Builder.CreateSExt(Ops[0], Int16Ty, "vcmpd"); |
| } |
| case NEON::BI__builtin_neon_vceqd_s64: |
| case NEON::BI__builtin_neon_vceqd_u64: |
| case NEON::BI__builtin_neon_vcgtd_s64: |
| case NEON::BI__builtin_neon_vcgtd_u64: |
| case NEON::BI__builtin_neon_vcltd_s64: |
| case NEON::BI__builtin_neon_vcltd_u64: |
| case NEON::BI__builtin_neon_vcged_u64: |
| case NEON::BI__builtin_neon_vcged_s64: |
| case NEON::BI__builtin_neon_vcled_u64: |
| case NEON::BI__builtin_neon_vcled_s64: { |
| llvm::CmpInst::Predicate P; |
| switch (BuiltinID) { |
| default: llvm_unreachable("missing builtin ID in switch!"); |
| case NEON::BI__builtin_neon_vceqd_s64: |
| case NEON::BI__builtin_neon_vceqd_u64:P = llvm::ICmpInst::ICMP_EQ;break; |
| case NEON::BI__builtin_neon_vcgtd_s64:P = llvm::ICmpInst::ICMP_SGT;break; |
| case NEON::BI__builtin_neon_vcgtd_u64:P = llvm::ICmpInst::ICMP_UGT;break; |
| case NEON::BI__builtin_neon_vcltd_s64:P = llvm::ICmpInst::ICMP_SLT;break; |
| case NEON::BI__builtin_neon_vcltd_u64:P = llvm::ICmpInst::ICMP_ULT;break; |
| case NEON::BI__builtin_neon_vcged_u64:P = llvm::ICmpInst::ICMP_UGE;break; |
| case NEON::BI__builtin_neon_vcged_s64:P = llvm::ICmpInst::ICMP_SGE;break; |
| case NEON::BI__builtin_neon_vcled_u64:P = llvm::ICmpInst::ICMP_ULE;break; |
| case NEON::BI__builtin_neon_vcled_s64:P = llvm::ICmpInst::ICMP_SLE;break; |
| } |
| Ops.push_back(EmitScalarExpr(E->getArg(1))); |
| Ops[0] = Builder.CreateBitCast(Ops[0], Int64Ty); |
| Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty); |
| Ops[0] = Builder.CreateICmp(P, Ops[0], Ops[1]); |
| return Builder.CreateSExt(Ops[0], Int64Ty, "vceqd"); |
| } |
| case NEON::BI__builtin_neon_vtstd_s64: |
| case NEON::BI__builtin_neon_vtstd_u64: { |
| Ops.push_back(EmitScalarExpr(E->getArg(1))); |
| Ops[0] = Builder.CreateBitCast(Ops[0], Int64Ty); |
| Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty); |
| Ops[0] = Builder.CreateAnd(Ops[0], Ops[1]); |
| Ops[0] = Builder.CreateICmp(ICmpInst::ICMP_NE, Ops[0], |
| llvm::Constant::getNullValue(Int64Ty)); |
| return Builder.CreateSExt(Ops[0], Int64Ty, "vtstd"); |
| } |
| case NEON::BI__builtin_neon_vset_lane_i8: |
| case NEON::BI__builtin_neon_vset_lane_i16: |
| case NEON::BI__builtin_neon_vset_lane_i32: |
| case NEON::BI__builtin_neon_vset_lane_i64: |
| case NEON::BI__builtin_neon_vset_lane_bf16: |
| case NEON::BI__builtin_neon_vset_lane_f32: |
| case NEON::BI__builtin_neon_vsetq_lane_i8: |
| case NEON::BI__builtin_neon_vsetq_lane_i16: |
| case NEON::BI__builtin_neon_vsetq_lane_i32: |
| case NEON::BI__builtin_neon_vsetq_lane_i64: |
| case NEON::BI__builtin_neon_vsetq_lane_bf16: |
| case NEON::BI__builtin_neon_vsetq_lane_f32: |
| Ops.push_back(EmitScalarExpr(E->getArg(2))); |
| return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane"); |
| case NEON::BI__builtin_neon_vset_lane_f64: |
| // The vector type needs a cast for the v1f64 variant. |
| Ops[1] = |
| Builder.CreateBitCast(Ops[1], llvm::FixedVectorType::get(DoubleTy, 1)); |
| Ops.push_back(EmitScalarExpr(E->getArg(2))); |
| return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane"); |
| case NEON::BI__builtin_neon_vsetq_lane_f64: |
| // The vector type needs a cast for the v2f64 variant. |
| Ops[1] = |
| Builder.CreateBitCast(Ops[1], llvm::FixedVectorType::get(DoubleTy, 2)); |
| Ops.push_back(EmitScalarExpr(E->getArg(2))); |
| return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane"); |
| |
| case NEON::BI__builtin_neon_vget_lane_i8: |
| case NEON::BI__builtin_neon_vdupb_lane_i8: |
| Ops[0] = |
| Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int8Ty, 8)); |
| return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), |
| "vget_lane"); |
| case NEON::BI__builtin_neon_vgetq_lane_i8: |
| case NEON::BI__builtin_neon_vdupb_laneq_i8: |
| Ops[0] = |
| Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int8Ty, 16)); |
| return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), |
| "vgetq_lane"); |
| case NEON::BI__builtin_neon_vget_lane_i16: |
| case NEON::BI__builtin_neon_vduph_lane_i16: |
| Ops[0] = |
| Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int16Ty, 4)); |
| return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), |
| "vget_lane"); |
| case NEON::BI__builtin_neon_vgetq_lane_i16: |
| case NEON::BI__builtin_neon_vduph_laneq_i16: |
| Ops[0] = |
| Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int16Ty, 8)); |
| return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), |
| "vgetq_lane"); |
| case NEON::BI__builtin_neon_vget_lane_i32: |
| case NEON::BI__builtin_neon_vdups_lane_i32: |
| Ops[0] = |
| Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int32Ty, 2)); |
| return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), |
| "vget_lane"); |
| case NEON::BI__builtin_neon_vdups_lane_f32: |
| Ops[0] = |
| Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(FloatTy, 2)); |
| return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), |
| "vdups_lane"); |
| case NEON::BI__builtin_neon_vgetq_lane_i32: |
| case NEON::BI__builtin_neon_vdups_laneq_i32: |
| Ops[0] = |
| Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int32Ty, 4)); |
| return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), |
| "vgetq_lane"); |
| case NEON::BI__builtin_neon_vget_lane_i64: |
| case NEON::BI__builtin_neon_vdupd_lane_i64: |
| Ops[0] = |
| Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int64Ty, 1)); |
| return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), |
| "vget_lane"); |
| case NEON::BI__builtin_neon_vdupd_lane_f64: |
| Ops[0] = |
| Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(DoubleTy, 1)); |
| return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), |
| "vdupd_lane"); |
| case NEON::BI__builtin_neon_vgetq_lane_i64: |
| case NEON::BI__builtin_neon_vdupd_laneq_i64: |
| Ops[0] = |
| Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int64Ty, 2)); |
| return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), |
| "vgetq_lane"); |
| case NEON::BI__builtin_neon_vget_lane_f32: |
| Ops[0] = |
| Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(FloatTy, 2)); |
| return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), |
| "vget_lane"); |
| case NEON::BI__builtin_neon_vget_lane_f64: |
| Ops[0] = |
| Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(DoubleTy, 1)); |
| return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), |
| "vget_lane"); |
| case NEON::BI__builtin_neon_vgetq_lane_f32: |
| case NEON::BI__builtin_neon_vdups_laneq_f32: |
| Ops[0] = |
| Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(FloatTy, 4)); |
| return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), |
| "vgetq_lane"); |
| case NEON::BI__builtin_neon_vgetq_lane_f64: |
| case NEON::BI__builtin_neon_vdupd_laneq_f64: |
| Ops[0] = |
| Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(DoubleTy, 2)); |
| return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), |
| "vgetq_lane"); |
| case NEON::BI__builtin_neon_vaddh_f16: |
| Ops.push_back(EmitScalarExpr(E->getArg(1))); |
| return Builder.CreateFAdd(Ops[0], Ops[1], "vaddh"); |
| case NEON::BI__builtin_neon_vsubh_f16: |
| Ops.push_back(EmitScalarExpr(E->getArg(1))); |
| return Builder.CreateFSub(Ops[0], Ops[1], "vsubh"); |
| case NEON::BI__builtin_neon_vmulh_f16: |
| Ops.push_back(EmitScalarExpr(E->getArg(1))); |
| return Builder.CreateFMul(Ops[0], Ops[1], "vmulh"); |
| case NEON::BI__builtin_neon_vdivh_f16: |
| Ops.push_back(EmitScalarExpr(E->getArg(1))); |
| return Builder.CreateFDiv(Ops[0], Ops[1], "vdivh"); |
| case NEON::BI__builtin_neon_vfmah_f16: |
| // NEON intrinsic puts accumulator first, unlike the LLVM fma. |
| return emitCallMaybeConstrainedFPBuiltin( |
| *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, HalfTy, |
| {EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2)), Ops[0]}); |
| case NEON::BI__builtin_neon_vfmsh_f16: { |
| Value* Neg = Builder.CreateFNeg(EmitScalarExpr(E->getArg(1)), "vsubh"); |
| |
| // NEON intrinsic puts accumulator first, unlike the LLVM fma. |
| return emitCallMaybeConstrainedFPBuiltin( |
| *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, HalfTy, |
| {Neg, EmitScalarExpr(E->getArg(2)), Ops[0]}); |
| } |
| case NEON::BI__builtin_neon_vaddd_s64: |
| case NEON::BI__builtin_neon_vaddd_u64: |
| return Builder.CreateAdd(Ops[0], EmitScalarExpr(E->getArg(1)), "vaddd"); |
| case NEON::BI__builtin_neon_vsubd_s64: |
| case NEON::BI__builtin_neon_vsubd_u64: |
| return Builder.CreateSub(Ops[0], EmitScalarExpr(E->getArg(1)), "vsubd"); |
| case NEON::BI__builtin_neon_vqdmlalh_s16: |
| case NEON::BI__builtin_neon_vqdmlslh_s16: { |
| SmallVector<Value *, 2> ProductOps; |
| ProductOps.push_back(vectorWrapScalar16(Ops[1])); |
| ProductOps.push_back(vectorWrapScalar16(EmitScalarExpr(E->getArg(2)))); |
| auto *VTy = llvm::FixedVectorType::get(Int32Ty, 4); |
| Ops[1] = EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmull, VTy), |
| ProductOps, "vqdmlXl"); |
| Constant *CI = ConstantInt::get(SizeTy, 0); |
| Ops[1] = Builder.CreateExtractElement(Ops[1], CI, "lane0"); |
| |
| unsigned AccumInt = BuiltinID == NEON::BI__builtin_neon_vqdmlalh_s16 |
| ? Intrinsic::aarch64_neon_sqadd |
| : Intrinsic::aarch64_neon_sqsub; |
| return EmitNeonCall(CGM.getIntrinsic(AccumInt, Int32Ty), Ops, "vqdmlXl"); |
| } |
| case NEON::BI__builtin_neon_vqshlud_n_s64: { |
| Ops.push_back(EmitScalarExpr(E->getArg(1))); |
| Ops[1] = Builder.CreateZExt(Ops[1], Int64Ty); |
| return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqshlu, Int64Ty), |
| Ops, "vqshlu_n"); |
| } |
| case NEON::BI__builtin_neon_vqshld_n_u64: |
| case NEON::BI__builtin_neon_vqshld_n_s64: { |
| unsigned Int = BuiltinID == NEON::BI__builtin_neon_vqshld_n_u64 |
| ? Intrinsic::aarch64_neon_uqshl |
| : Intrinsic::aarch64_neon_sqshl; |
| Ops.push_back(EmitScalarExpr(E->getArg(1))); |
| Ops[1] = Builder.CreateZExt(Ops[1], Int64Ty); |
| return EmitNeonCall(CGM.getIntrinsic(Int, Int64Ty), Ops, "vqshl_n"); |
| } |
| case NEON::BI__builtin_neon_vrshrd_n_u64: |
| case NEON::BI__builtin_neon_vrshrd_n_s64: { |
| unsigned Int = BuiltinID == NEON::BI__builtin_neon_vrshrd_n_u64 |
| ? Intrinsic::aarch64_neon_urshl |
| : Intrinsic::aarch64_neon_srshl; |
| Ops.push_back(EmitScalarExpr(E->getArg(1))); |
| int SV = cast<ConstantInt>(Ops[1])->getSExtValue(); |
| Ops[1] = ConstantInt::get(Int64Ty, -SV); |
| return EmitNeonCall(CGM.getIntrinsic(Int, Int64Ty), Ops, "vrshr_n"); |
| } |
| case NEON::BI__builtin_neon_vrsrad_n_u64: |
| case NEON::BI__builtin_neon_vrsrad_n_s64: { |
| unsigned Int = BuiltinID == NEON::BI__builtin_neon_vrsrad_n_u64 |
| ? Intrinsic::aarch64_neon_urshl |
| : Intrinsic::aarch64_neon_srshl; |
| Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty); |
| Ops.push_back(Builder.CreateNeg(EmitScalarExpr(E->getArg(2)))); |
| Ops[1] = Builder.CreateCall(CGM.getIntrinsic(Int, Int64Ty), |
| {Ops[1], Builder.CreateSExt(Ops[2], Int64Ty)}); |
| return Builder.CreateAdd(Ops[0], Builder.CreateBitCast(Ops[1], Int64Ty)); |
| } |
| case NEON::BI__builtin_neon_vshld_n_s64: |
| case NEON::BI__builtin_neon_vshld_n_u64: { |
| llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(1))); |
| return Builder.CreateShl( |
| Ops[0], ConstantInt::get(Int64Ty, Amt->getZExtValue()), "shld_n"); |
| } |
| case NEON::BI__builtin_neon_vshrd_n_s64: { |
| llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(1))); |
| return Builder.CreateAShr( |
| Ops[0], ConstantInt::get(Int64Ty, std::min(static_cast<uint64_t>(63), |
| Amt->getZExtValue())), |
| "shrd_n"); |
| } |
| case NEON::BI__builtin_neon_vshrd_n_u64: { |
| llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(1))); |
| uint64_t ShiftAmt = Amt->getZExtValue(); |
| // Right-shifting an unsigned value by its size yields 0. |
| if (ShiftAmt == 64) |
| return ConstantInt::get(Int64Ty, 0); |
| return Builder.CreateLShr(Ops[0], ConstantInt::get(Int64Ty, ShiftAmt), |
| "shrd_n"); |
| } |
| case NEON::BI__builtin_neon_vsrad_n_s64: { |
| llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(2))); |
| Ops[1] = Builder.CreateAShr( |
| Ops[1], ConstantInt::get(Int64Ty, std::min(static_cast<uint64_t>(63), |
| Amt->getZExtValue())), |
| "shrd_n"); |
| return Builder.CreateAdd(Ops[0], Ops[1]); |
| } |
| case NEON::BI__builtin_neon_vsrad_n_u64: { |
| llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(2))); |
| uint64_t ShiftAmt = Amt->getZExtValue(); |
| // Right-shifting an unsigned value by its size yields 0. |
| // As Op + 0 = Op, return Ops[0] directly. |
| if (ShiftAmt == 64) |
| return Ops[0]; |
| Ops[1] = Builder.CreateLShr(Ops[1], ConstantInt::get(Int64Ty, ShiftAmt), |
| "shrd_n"); |
| return Builder.CreateAdd(Ops[0], Ops[1]); |
| } |
| case NEON::BI__builtin_neon_vqdmlalh_lane_s16: |
| case NEON::BI__builtin_neon_vqdmlalh_laneq_s16: |
| case NEON::BI__builtin_neon_vqdmlslh_lane_s16: |
| case NEON::BI__builtin_neon_vqdmlslh_laneq_s16: { |
| Ops[2] = Builder.CreateExtractElement(Ops[2], EmitScalarExpr(E->getArg(3)), |
| "lane"); |
| SmallVector<Value *, 2> ProductOps; |
| ProductOps.push_back(vectorWrapScalar16(Ops[1])); |
| ProductOps.push_back(vectorWrapScalar16(Ops[2])); |
| auto *VTy = llvm::FixedVectorType::get(Int32Ty, 4); |
| Ops[1] = EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmull, VTy), |
| ProductOps, "vqdmlXl"); |
| Constant *CI = ConstantInt::get(SizeTy, 0); |
| Ops[1] = Builder.CreateExtractElement(Ops[1], CI, "lane0"); |
| Ops.pop_back(); |
| |
| unsigned AccInt = (BuiltinID == NEON::BI__builtin_neon_vqdmlalh_lane_s16 || |
| BuiltinID == NEON::BI__builtin_neon_vqdmlalh_laneq_s16) |
| ? Intrinsic::aarch64_neon_sqadd |
| : Intrinsic::aarch64_neon_sqsub; |
| return EmitNeonCall(CGM.getIntrinsic(AccInt, Int32Ty), Ops, "vqdmlXl"); |
| } |
| case NEON::BI__builtin_neon_vqdmlals_s32: |
| case NEON::BI__builtin_neon_vqdmlsls_s32: { |
| SmallVector<Value *, 2> ProductOps; |
| ProductOps.push_back(Ops[1]); |
| ProductOps.push_back(EmitScalarExpr(E->getArg(2))); |
| Ops[1] = |
| EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmulls_scalar), |
| ProductOps, "vqdmlXl"); |
| |
| unsigned AccumInt = BuiltinID == NEON::BI__builtin_neon_vqdmlals_s32 |
| ? Intrinsic::aarch64_neon_sqadd |
| : Intrinsic::aarch64_neon_sqsub; |
| return EmitNeonCall(CGM.getIntrinsic(AccumInt, Int64Ty), Ops, "vqdmlXl"); |
| } |
| case NEON::BI__builtin_neon_vqdmlals_lane_s32: |
| case NEON::BI__builtin_neon_vqdmlals_laneq_s32: |
| case NEON::BI__builtin_neon_vqdmlsls_lane_s32: |
| case NEON::BI__builtin_neon_vqdmlsls_laneq_s32: { |
| Ops[2] = Builder.CreateExtractElement(Ops[2], EmitScalarExpr(E->getArg(3)), |
| "lane"); |
| SmallVector<Value *, 2> ProductOps; |
| ProductOps.push_back(Ops[1]); |
| ProductOps.push_back(Ops[2]); |
| Ops[1] = |
| EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmulls_scalar), |
| ProductOps, "vqdmlXl"); |
| Ops.pop_back(); |
| |
| unsigned AccInt = (BuiltinID == NEON::BI__builtin_neon_vqdmlals_lane_s32 || |
| BuiltinID == NEON::BI__builtin_neon_vqdmlals_laneq_s32) |
| ? Intrinsic::aarch64_neon_sqadd |
| : Intrinsic::aarch64_neon_sqsub; |
| return EmitNeonCall(CGM.getIntrinsic(AccInt, Int64Ty), Ops, "vqdmlXl"); |
| } |
| case NEON::BI__builtin_neon_vget_lane_bf16: |
| case NEON::BI__builtin_neon_vduph_lane_bf16: |
| case NEON::BI__builtin_neon_vduph_lane_f16: { |
| return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), |
| "vget_lane"); |
| } |
| case NEON::BI__builtin_neon_vgetq_lane_bf16: |
| case NEON::BI__builtin_neon_vduph_laneq_bf16: |
| case NEON::BI__builtin_neon_vduph_laneq_f16: { |
| return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), |
| "vgetq_lane"); |
| } |
| case NEON::BI__builtin_neon_vcvt_bf16_f32: { |
| llvm::Type *V4F32 = FixedVectorType::get(Builder.getFloatTy(), 4); |
| llvm::Type *V4BF16 = FixedVectorType::get(Builder.getBFloatTy(), 4); |
| return Builder.CreateFPTrunc(Builder.CreateBitCast(Ops[0], V4F32), V4BF16); |
| } |
| case NEON::BI__builtin_neon_vcvtq_low_bf16_f32: { |
| SmallVector<int, 16> ConcatMask(8); |
| std::iota(ConcatMask.begin(), ConcatMask.end(), 0); |
| llvm::Type *V4F32 = FixedVectorType::get(Builder.getFloatTy(), 4); |
| llvm::Type *V4BF16 = FixedVectorType::get(Builder.getBFloatTy(), 4); |
| llvm::Value *Trunc = |
| Builder.CreateFPTrunc(Builder.CreateBitCast(Ops[0], V4F32), V4BF16); |
| return Builder.CreateShuffleVector( |
| Trunc, ConstantAggregateZero::get(V4BF16), ConcatMask); |
| } |
| case NEON::BI__builtin_neon_vcvtq_high_bf16_f32: { |
| SmallVector<int, 16> ConcatMask(8); |
| std::iota(ConcatMask.begin(), ConcatMask.end(), 0); |
| SmallVector<int, 16> LoMask(4); |
| std::iota(LoMask.begin(), LoMask.end(), 0); |
| llvm::Type *V4F32 = FixedVectorType::get(Builder.getFloatTy(), 4); |
| llvm::Type *V4BF16 = FixedVectorType::get(Builder.getBFloatTy(), 4); |
| llvm::Type *V8BF16 = FixedVectorType::get(Builder.getBFloatTy(), 8); |
| llvm::Value *Inactive = Builder.CreateShuffleVector( |
| Builder.CreateBitCast(Ops[0], V8BF16), LoMask); |
| llvm::Value *Trunc = |
| Builder.CreateFPTrunc(Builder.CreateBitCast(Ops[1], V4F32), V4BF16); |
| return Builder.CreateShuffleVector(Inactive, Trunc, ConcatMask); |
| } |
| |
| case clang::AArch64::BI_InterlockedAdd: |
| case clang::AArch64::BI_InterlockedAdd64: { |
| Address DestAddr = CheckAtomicAlignment(*this, E); |
| Value *Val = EmitScalarExpr(E->getArg(1)); |
| AtomicRMWInst *RMWI = |
| Builder.CreateAtomicRMW(AtomicRMWInst::Add, DestAddr, Val, |
| llvm::AtomicOrdering::SequentiallyConsistent); |
| return Builder.CreateAdd(RMWI, Val); |
| } |
| } |
| |
| llvm::FixedVectorType *VTy = GetNeonType(this, Type); |
| llvm::Type *Ty = VTy; |
| if (!Ty) |
| return nullptr; |
| |
| // Not all intrinsics handled by the common case work for AArch64 yet, so only |
| // defer to common code if it's been added to our special map. |
| Builtin = findARMVectorIntrinsicInMap(AArch64SIMDIntrinsicMap, BuiltinID, |
| AArch64SIMDIntrinsicsProvenSorted); |
| |
| if (Builtin) |
| return EmitCommonNeonBuiltinExpr( |
| Builtin->BuiltinID, Builtin->LLVMIntrinsic, Builtin->AltLLVMIntrinsic, |
| Builtin->NameHint, Builtin->TypeModifier, E, Ops, |
| /*never use addresses*/ Address::invalid(), Address::invalid(), Arch); |
| |
| if (Value *V = EmitAArch64TblBuiltinExpr(*this, BuiltinID, E, Ops, Arch)) |
| return V; |
| |
| unsigned Int; |
| bool ExtractLow = false; |
| bool ExtendLaneArg = false; |
| switch (BuiltinID) { |
| default: return nullptr; |
| case NEON::BI__builtin_neon_vbsl_v: |
| case NEON::BI__builtin_neon_vbslq_v: { |
| llvm::Type *BitTy = llvm::VectorType::getInteger(VTy); |
| Ops[0] = Builder.CreateBitCast(Ops[0], BitTy, "vbsl"); |
| Ops[1] = Builder.CreateBitCast(Ops[1], BitTy, "vbsl"); |
| Ops[2] = Builder.CreateBitCast(Ops[2], BitTy, "vbsl"); |
| |
| Ops[1] = Builder.CreateAnd(Ops[0], Ops[1], "vbsl"); |
| Ops[2] = Builder.CreateAnd(Builder.CreateNot(Ops[0]), Ops[2], "vbsl"); |
| Ops[0] = Builder.CreateOr(Ops[1], Ops[2], "vbsl"); |
| return Builder.CreateBitCast(Ops[0], Ty); |
| } |
| case NEON::BI__builtin_neon_vfma_lane_v: |
| case NEON::BI__builtin_neon_vfmaq_lane_v: { // Only used for FP types |
| // The ARM builtins (and instructions) have the addend as the first |
| // operand, but the 'fma' intrinsics have it last. Swap it around here. |
| Value *Addend = Ops[0]; |
| Value *Multiplicand = Ops[1]; |
| Value *LaneSource = Ops[2]; |
| Ops[0] = Multiplicand; |
| Ops[1] = LaneSource; |
| Ops[2] = Addend; |
| |
| // Now adjust things to handle the lane access. |
| auto *SourceTy = BuiltinID == NEON::BI__builtin_neon_vfmaq_lane_v |
| ? llvm::FixedVectorType::get(VTy->getElementType(), |
| VTy->getNumElements() / 2) |
| : VTy; |
| llvm::Constant *cst = cast<Constant>(Ops[3]); |
| Value *SV = llvm::ConstantVector::getSplat(VTy->getElementCount(), cst); |
| Ops[1] = Builder.CreateBitCast(Ops[1], SourceTy); |
| Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV, "lane"); |
| |
| Ops.pop_back(); |
| Int = Builder.getIsFPConstrained() ? Intrinsic::experimental_constrained_fma |
| : Intrinsic::fma; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "fmla"); |
| } |
| case NEON::BI__builtin_neon_vfma_laneq_v: { |
| auto *VTy = cast<llvm::FixedVectorType>(Ty); |
| // v1f64 fma should be mapped to Neon scalar f64 fma |
| if (VTy && VTy->getElementType() == DoubleTy) { |
| Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy); |
| Ops[1] = Builder.CreateBitCast(Ops[1], DoubleTy); |
| llvm::FixedVectorType *VTy = |
| GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float64, false, true)); |
| Ops[2] = Builder.CreateBitCast(Ops[2], VTy); |
| Ops[2] = Builder.CreateExtractElement(Ops[2], Ops[3], "extract"); |
| Value *Result; |
| Result = emitCallMaybeConstrainedFPBuiltin( |
| *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, |
| DoubleTy, {Ops[1], Ops[2], Ops[0]}); |
| return Builder.CreateBitCast(Result, Ty); |
| } |
| Ops[0] = Builder.CreateBitCast(Ops[0], Ty); |
| Ops[1] = Builder.CreateBitCast(Ops[1], Ty); |
| |
| auto *STy = llvm::FixedVectorType::get(VTy->getElementType(), |
| VTy->getNumElements() * 2); |
| Ops[2] = Builder.CreateBitCast(Ops[2], STy); |
| Value *SV = llvm::ConstantVector::getSplat(VTy->getElementCount(), |
| cast<ConstantInt>(Ops[3])); |
| Ops[2] = Builder.CreateShuffleVector(Ops[2], Ops[2], SV, "lane"); |
| |
| return emitCallMaybeConstrainedFPBuiltin( |
| *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, Ty, |
| {Ops[2], Ops[1], Ops[0]}); |
| } |
| case NEON::BI__builtin_neon_vfmaq_laneq_v: { |
| Ops[0] = Builder.CreateBitCast(Ops[0], Ty); |
| Ops[1] = Builder.CreateBitCast(Ops[1], Ty); |
| |
| Ops[2] = Builder.CreateBitCast(Ops[2], Ty); |
| Ops[2] = EmitNeonSplat(Ops[2], cast<ConstantInt>(Ops[3])); |
| return emitCallMaybeConstrainedFPBuiltin( |
| *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, Ty, |
| {Ops[2], Ops[1], Ops[0]}); |
| } |
| case NEON::BI__builtin_neon_vfmah_lane_f16: |
| case NEON::BI__builtin_neon_vfmas_lane_f32: |
| case NEON::BI__builtin_neon_vfmah_laneq_f16: |
| case NEON::BI__builtin_neon_vfmas_laneq_f32: |
| case NEON::BI__builtin_neon_vfmad_lane_f64: |
| case NEON::BI__builtin_neon_vfmad_laneq_f64: { |
| Ops.push_back(EmitScalarExpr(E->getArg(3))); |
| llvm::Type *Ty = ConvertType(E->getCallReturnType(getContext())); |
| Ops[2] = Builder.CreateExtractElement(Ops[2], Ops[3], "extract"); |
| return emitCallMaybeConstrainedFPBuiltin( |
| *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, Ty, |
| {Ops[1], Ops[2], Ops[0]}); |
| } |
| case NEON::BI__builtin_neon_vmull_v: |
| // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics. |
| Int = usgn ? Intrinsic::aarch64_neon_umull : Intrinsic::aarch64_neon_smull; |
| if (Type.isPoly()) Int = Intrinsic::aarch64_neon_pmull; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmull"); |
| case NEON::BI__builtin_neon_vmax_v: |
| case NEON::BI__builtin_neon_vmaxq_v: |
| // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics. |
| Int = usgn ? Intrinsic::aarch64_neon_umax : Intrinsic::aarch64_neon_smax; |
| if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmax; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmax"); |
| case NEON::BI__builtin_neon_vmaxh_f16: { |
| Ops.push_back(EmitScalarExpr(E->getArg(1))); |
| Int = Intrinsic::aarch64_neon_fmax; |
| return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmax"); |
| } |
| case NEON::BI__builtin_neon_vmin_v: |
| case NEON::BI__builtin_neon_vminq_v: |
| // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics. |
| Int = usgn ? Intrinsic::aarch64_neon_umin : Intrinsic::aarch64_neon_smin; |
| if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmin; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmin"); |
| case NEON::BI__builtin_neon_vminh_f16: { |
| Ops.push_back(EmitScalarExpr(E->getArg(1))); |
| Int = Intrinsic::aarch64_neon_fmin; |
| return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmin"); |
| } |
| case NEON::BI__builtin_neon_vabd_v: |
| case NEON::BI__builtin_neon_vabdq_v: |
| // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics. |
| Int = usgn ? Intrinsic::aarch64_neon_uabd : Intrinsic::aarch64_neon_sabd; |
| if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fabd; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vabd"); |
| case NEON::BI__builtin_neon_vpadal_v: |
| case NEON::BI__builtin_neon_vpadalq_v: { |
| unsigned ArgElts = VTy->getNumElements(); |
| llvm::IntegerType *EltTy = cast<IntegerType>(VTy->getElementType()); |
| unsigned BitWidth = EltTy->getBitWidth(); |
| auto *ArgTy = llvm::FixedVectorType::get( |
| llvm::IntegerType::get(getLLVMContext(), BitWidth / 2), 2 * ArgElts); |
| llvm::Type* Tys[2] = { VTy, ArgTy }; |
| Int = usgn ? Intrinsic::aarch64_neon_uaddlp : Intrinsic::aarch64_neon_saddlp; |
| SmallVector<llvm::Value*, 1> TmpOps; |
| TmpOps.push_back(Ops[1]); |
| Function *F = CGM.getIntrinsic(Int, Tys); |
| llvm::Value *tmp = EmitNeonCall(F, TmpOps, "vpadal"); |
| llvm::Value *addend = Builder.CreateBitCast(Ops[0], tmp->getType()); |
| return Builder.CreateAdd(tmp, addend); |
| } |
| case NEON::BI__builtin_neon_vpmin_v: |
| case NEON::BI__builtin_neon_vpminq_v: |
| // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics. |
| Int = usgn ? Intrinsic::aarch64_neon_uminp : Intrinsic::aarch64_neon_sminp; |
| if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fminp; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmin"); |
| case NEON::BI__builtin_neon_vpmax_v: |
| case NEON::BI__builtin_neon_vpmaxq_v: |
| // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics. |
| Int = usgn ? Intrinsic::aarch64_neon_umaxp : Intrinsic::aarch64_neon_smaxp; |
| if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmaxp; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmax"); |
| case NEON::BI__builtin_neon_vminnm_v: |
| case NEON::BI__builtin_neon_vminnmq_v: |
| Int = Intrinsic::aarch64_neon_fminnm; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vminnm"); |
| case NEON::BI__builtin_neon_vminnmh_f16: |
| Ops.push_back(EmitScalarExpr(E->getArg(1))); |
| Int = Intrinsic::aarch64_neon_fminnm; |
| return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vminnm"); |
| case NEON::BI__builtin_neon_vmaxnm_v: |
| case NEON::BI__builtin_neon_vmaxnmq_v: |
| Int = Intrinsic::aarch64_neon_fmaxnm; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmaxnm"); |
| case NEON::BI__builtin_neon_vmaxnmh_f16: |
| Ops.push_back(EmitScalarExpr(E->getArg(1))); |
| Int = Intrinsic::aarch64_neon_fmaxnm; |
| return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmaxnm"); |
| case NEON::BI__builtin_neon_vrecpss_f32: { |
| Ops.push_back(EmitScalarExpr(E->getArg(1))); |
| return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_frecps, FloatTy), |
| Ops, "vrecps"); |
| } |
| case NEON::BI__builtin_neon_vrecpsd_f64: |
| Ops.push_back(EmitScalarExpr(E->getArg(1))); |
| return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_frecps, DoubleTy), |
| Ops, "vrecps"); |
| case NEON::BI__builtin_neon_vrecpsh_f16: |
| Ops.push_back(EmitScalarExpr(E->getArg(1))); |
| return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_frecps, HalfTy), |
| Ops, "vrecps"); |
| case NEON::BI__builtin_neon_vqshrun_n_v: |
| Int = Intrinsic::aarch64_neon_sqshrun; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrun_n"); |
| case NEON::BI__builtin_neon_vqrshrun_n_v: |
| Int = Intrinsic::aarch64_neon_sqrshrun; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrun_n"); |
| case NEON::BI__builtin_neon_vqshrn_n_v: |
| Int = usgn ? Intrinsic::aarch64_neon_uqshrn : Intrinsic::aarch64_neon_sqshrn; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrn_n"); |
| case NEON::BI__builtin_neon_vrshrn_n_v: |
| Int = Intrinsic::aarch64_neon_rshrn; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrshrn_n"); |
| case NEON::BI__builtin_neon_vqrshrn_n_v: |
| Int = usgn ? Intrinsic::aarch64_neon_uqrshrn : Intrinsic::aarch64_neon_sqrshrn; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrn_n"); |
| case NEON::BI__builtin_neon_vrndah_f16: { |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| Int = Builder.getIsFPConstrained() |
| ? Intrinsic::experimental_constrained_round |
| : Intrinsic::round; |
| return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrnda"); |
| } |
| case NEON::BI__builtin_neon_vrnda_v: |
| case NEON::BI__builtin_neon_vrndaq_v: { |
| Int = Builder.getIsFPConstrained() |
| ? Intrinsic::experimental_constrained_round |
| : Intrinsic::round; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrnda"); |
| } |
| case NEON::BI__builtin_neon_vrndih_f16: { |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| Int = Builder.getIsFPConstrained() |
| ? Intrinsic::experimental_constrained_nearbyint |
| : Intrinsic::nearbyint; |
| return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndi"); |
| } |
| case NEON::BI__builtin_neon_vrndmh_f16: { |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| Int = Builder.getIsFPConstrained() |
| ? Intrinsic::experimental_constrained_floor |
| : Intrinsic::floor; |
| return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndm"); |
| } |
| case NEON::BI__builtin_neon_vrndm_v: |
| case NEON::BI__builtin_neon_vrndmq_v: { |
| Int = Builder.getIsFPConstrained() |
| ? Intrinsic::experimental_constrained_floor |
| : Intrinsic::floor; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndm"); |
| } |
| case NEON::BI__builtin_neon_vrndnh_f16: { |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| Int = Builder.getIsFPConstrained() |
| ? Intrinsic::experimental_constrained_roundeven |
| : Intrinsic::roundeven; |
| return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndn"); |
| } |
| case NEON::BI__builtin_neon_vrndn_v: |
| case NEON::BI__builtin_neon_vrndnq_v: { |
| Int = Builder.getIsFPConstrained() |
| ? Intrinsic::experimental_constrained_roundeven |
| : Intrinsic::roundeven; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndn"); |
| } |
| case NEON::BI__builtin_neon_vrndns_f32: { |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| Int = Builder.getIsFPConstrained() |
| ? Intrinsic::experimental_constrained_roundeven |
| : Intrinsic::roundeven; |
| return EmitNeonCall(CGM.getIntrinsic(Int, FloatTy), Ops, "vrndn"); |
| } |
| case NEON::BI__builtin_neon_vrndph_f16: { |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| Int = Builder.getIsFPConstrained() |
| ? Intrinsic::experimental_constrained_ceil |
| : Intrinsic::ceil; |
| return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndp"); |
| } |
| case NEON::BI__builtin_neon_vrndp_v: |
| case NEON::BI__builtin_neon_vrndpq_v: { |
| Int = Builder.getIsFPConstrained() |
| ? Intrinsic::experimental_constrained_ceil |
| : Intrinsic::ceil; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndp"); |
| } |
| case NEON::BI__builtin_neon_vrndxh_f16: { |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| Int = Builder.getIsFPConstrained() |
| ? Intrinsic::experimental_constrained_rint |
| : Intrinsic::rint; |
| return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndx"); |
| } |
| case NEON::BI__builtin_neon_vrndx_v: |
| case NEON::BI__builtin_neon_vrndxq_v: { |
| Int = Builder.getIsFPConstrained() |
| ? Intrinsic::experimental_constrained_rint |
| : Intrinsic::rint; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndx"); |
| } |
| case NEON::BI__builtin_neon_vrndh_f16: { |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| Int = Builder.getIsFPConstrained() |
| ? Intrinsic::experimental_constrained_trunc |
| : Intrinsic::trunc; |
| return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndz"); |
| } |
| case NEON::BI__builtin_neon_vrnd32x_f32: |
| case NEON::BI__builtin_neon_vrnd32xq_f32: |
| case NEON::BI__builtin_neon_vrnd32x_f64: |
| case NEON::BI__builtin_neon_vrnd32xq_f64: { |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| Int = Intrinsic::aarch64_neon_frint32x; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrnd32x"); |
| } |
| case NEON::BI__builtin_neon_vrnd32z_f32: |
| case NEON::BI__builtin_neon_vrnd32zq_f32: |
| case NEON::BI__builtin_neon_vrnd32z_f64: |
| case NEON::BI__builtin_neon_vrnd32zq_f64: { |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| Int = Intrinsic::aarch64_neon_frint32z; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrnd32z"); |
| } |
| case NEON::BI__builtin_neon_vrnd64x_f32: |
| case NEON::BI__builtin_neon_vrnd64xq_f32: |
| case NEON::BI__builtin_neon_vrnd64x_f64: |
| case NEON::BI__builtin_neon_vrnd64xq_f64: { |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| Int = Intrinsic::aarch64_neon_frint64x; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrnd64x"); |
| } |
| case NEON::BI__builtin_neon_vrnd64z_f32: |
| case NEON::BI__builtin_neon_vrnd64zq_f32: |
| case NEON::BI__builtin_neon_vrnd64z_f64: |
| case NEON::BI__builtin_neon_vrnd64zq_f64: { |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| Int = Intrinsic::aarch64_neon_frint64z; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrnd64z"); |
| } |
| case NEON::BI__builtin_neon_vrnd_v: |
| case NEON::BI__builtin_neon_vrndq_v: { |
| Int = Builder.getIsFPConstrained() |
| ? Intrinsic::experimental_constrained_trunc |
| : Intrinsic::trunc; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndz"); |
| } |
| case NEON::BI__builtin_neon_vcvt_f64_v: |
| case NEON::BI__builtin_neon_vcvtq_f64_v: |
| Ops[0] = Builder.CreateBitCast(Ops[0], Ty); |
| Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float64, false, quad)); |
| return usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt") |
| : Builder.CreateSIToFP(Ops[0], Ty, "vcvt"); |
| case NEON::BI__builtin_neon_vcvt_f64_f32: { |
| assert(Type.getEltType() == NeonTypeFlags::Float64 && quad && |
| "unexpected vcvt_f64_f32 builtin"); |
| NeonTypeFlags SrcFlag = NeonTypeFlags(NeonTypeFlags::Float32, false, false); |
| Ops[0] = Builder.CreateBitCast(Ops[0], GetNeonType(this, SrcFlag)); |
| |
| return Builder.CreateFPExt(Ops[0], Ty, "vcvt"); |
| } |
| case NEON::BI__builtin_neon_vcvt_f32_f64: { |
| assert(Type.getEltType() == NeonTypeFlags::Float32 && |
| "unexpected vcvt_f32_f64 builtin"); |
| NeonTypeFlags SrcFlag = NeonTypeFlags(NeonTypeFlags::Float64, false, true); |
| Ops[0] = Builder.CreateBitCast(Ops[0], GetNeonType(this, SrcFlag)); |
| |
| return Builder.CreateFPTrunc(Ops[0], Ty, "vcvt"); |
| } |
| case NEON::BI__builtin_neon_vcvt_s32_v: |
| case NEON::BI__builtin_neon_vcvt_u32_v: |
| case NEON::BI__builtin_neon_vcvt_s64_v: |
| case NEON::BI__builtin_neon_vcvt_u64_v: |
| case NEON::BI__builtin_neon_vcvt_s16_f16: |
| case NEON::BI__builtin_neon_vcvt_u16_f16: |
| case NEON::BI__builtin_neon_vcvtq_s32_v: |
| case NEON::BI__builtin_neon_vcvtq_u32_v: |
| case NEON::BI__builtin_neon_vcvtq_s64_v: |
| case NEON::BI__builtin_neon_vcvtq_u64_v: |
| case NEON::BI__builtin_neon_vcvtq_s16_f16: |
| case NEON::BI__builtin_neon_vcvtq_u16_f16: { |
| Int = |
| usgn ? Intrinsic::aarch64_neon_fcvtzu : Intrinsic::aarch64_neon_fcvtzs; |
| llvm::Type *Tys[2] = {Ty, GetFloatNeonType(this, Type)}; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtz"); |
| } |
| case NEON::BI__builtin_neon_vcvta_s16_f16: |
| case NEON::BI__builtin_neon_vcvta_u16_f16: |
| case NEON::BI__builtin_neon_vcvta_s32_v: |
| case NEON::BI__builtin_neon_vcvtaq_s16_f16: |
| case NEON::BI__builtin_neon_vcvtaq_s32_v: |
| case NEON::BI__builtin_neon_vcvta_u32_v: |
| case NEON::BI__builtin_neon_vcvtaq_u16_f16: |
| case NEON::BI__builtin_neon_vcvtaq_u32_v: |
| case NEON::BI__builtin_neon_vcvta_s64_v: |
| case NEON::BI__builtin_neon_vcvtaq_s64_v: |
| case NEON::BI__builtin_neon_vcvta_u64_v: |
| case NEON::BI__builtin_neon_vcvtaq_u64_v: { |
| Int = usgn ? Intrinsic::aarch64_neon_fcvtau : Intrinsic::aarch64_neon_fcvtas; |
| llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) }; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvta"); |
| } |
| case NEON::BI__builtin_neon_vcvtm_s16_f16: |
| case NEON::BI__builtin_neon_vcvtm_s32_v: |
| case NEON::BI__builtin_neon_vcvtmq_s16_f16: |
| case NEON::BI__builtin_neon_vcvtmq_s32_v: |
| case NEON::BI__builtin_neon_vcvtm_u16_f16: |
| case NEON::BI__builtin_neon_vcvtm_u32_v: |
| case NEON::BI__builtin_neon_vcvtmq_u16_f16: |
| case NEON::BI__builtin_neon_vcvtmq_u32_v: |
| case NEON::BI__builtin_neon_vcvtm_s64_v: |
| case NEON::BI__builtin_neon_vcvtmq_s64_v: |
| case NEON::BI__builtin_neon_vcvtm_u64_v: |
| case NEON::BI__builtin_neon_vcvtmq_u64_v: { |
| Int = usgn ? Intrinsic::aarch64_neon_fcvtmu : Intrinsic::aarch64_neon_fcvtms; |
| llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) }; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtm"); |
| } |
| case NEON::BI__builtin_neon_vcvtn_s16_f16: |
| case NEON::BI__builtin_neon_vcvtn_s32_v: |
| case NEON::BI__builtin_neon_vcvtnq_s16_f16: |
| case NEON::BI__builtin_neon_vcvtnq_s32_v: |
| case NEON::BI__builtin_neon_vcvtn_u16_f16: |
| case NEON::BI__builtin_neon_vcvtn_u32_v: |
| case NEON::BI__builtin_neon_vcvtnq_u16_f16: |
| case NEON::BI__builtin_neon_vcvtnq_u32_v: |
| case NEON::BI__builtin_neon_vcvtn_s64_v: |
| case NEON::BI__builtin_neon_vcvtnq_s64_v: |
| case NEON::BI__builtin_neon_vcvtn_u64_v: |
| case NEON::BI__builtin_neon_vcvtnq_u64_v: { |
| Int = usgn ? Intrinsic::aarch64_neon_fcvtnu : Intrinsic::aarch64_neon_fcvtns; |
| llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) }; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtn"); |
| } |
| case NEON::BI__builtin_neon_vcvtp_s16_f16: |
| case NEON::BI__builtin_neon_vcvtp_s32_v: |
| case NEON::BI__builtin_neon_vcvtpq_s16_f16: |
| case NEON::BI__builtin_neon_vcvtpq_s32_v: |
| case NEON::BI__builtin_neon_vcvtp_u16_f16: |
| case NEON::BI__builtin_neon_vcvtp_u32_v: |
| case NEON::BI__builtin_neon_vcvtpq_u16_f16: |
| case NEON::BI__builtin_neon_vcvtpq_u32_v: |
| case NEON::BI__builtin_neon_vcvtp_s64_v: |
| case NEON::BI__builtin_neon_vcvtpq_s64_v: |
| case NEON::BI__builtin_neon_vcvtp_u64_v: |
| case NEON::BI__builtin_neon_vcvtpq_u64_v: { |
| Int = usgn ? Intrinsic::aarch64_neon_fcvtpu : Intrinsic::aarch64_neon_fcvtps; |
| llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) }; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtp"); |
| } |
| case NEON::BI__builtin_neon_vmulx_v: |
| case NEON::BI__builtin_neon_vmulxq_v: { |
| Int = Intrinsic::aarch64_neon_fmulx; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmulx"); |
| } |
| case NEON::BI__builtin_neon_vmulxh_lane_f16: |
| case NEON::BI__builtin_neon_vmulxh_laneq_f16: { |
| // vmulx_lane should be mapped to Neon scalar mulx after |
| // extracting the scalar element |
| Ops.push_back(EmitScalarExpr(E->getArg(2))); |
| Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2], "extract"); |
| Ops.pop_back(); |
| Int = Intrinsic::aarch64_neon_fmulx; |
| return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmulx"); |
| } |
| case NEON::BI__builtin_neon_vmul_lane_v: |
| case NEON::BI__builtin_neon_vmul_laneq_v: { |
| // v1f64 vmul_lane should be mapped to Neon scalar mul lane |
| bool Quad = false; |
| if (BuiltinID == NEON::BI__builtin_neon_vmul_laneq_v) |
| Quad = true; |
| Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy); |
| llvm::FixedVectorType *VTy = |
| GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float64, false, Quad)); |
| Ops[1] = Builder.CreateBitCast(Ops[1], VTy); |
| Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2], "extract"); |
| Value *Result = Builder.CreateFMul(Ops[0], Ops[1]); |
| return Builder.CreateBitCast(Result, Ty); |
| } |
| case NEON::BI__builtin_neon_vnegd_s64: |
| return Builder.CreateNeg(EmitScalarExpr(E->getArg(0)), "vnegd"); |
| case NEON::BI__builtin_neon_vnegh_f16: |
| return Builder.CreateFNeg(EmitScalarExpr(E->getArg(0)), "vnegh"); |
| case NEON::BI__builtin_neon_vpmaxnm_v: |
| case NEON::BI__builtin_neon_vpmaxnmq_v: { |
| Int = Intrinsic::aarch64_neon_fmaxnmp; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmaxnm"); |
| } |
| case NEON::BI__builtin_neon_vpminnm_v: |
| case NEON::BI__builtin_neon_vpminnmq_v: { |
| Int = Intrinsic::aarch64_neon_fminnmp; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpminnm"); |
| } |
| case NEON::BI__builtin_neon_vsqrth_f16: { |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| Int = Builder.getIsFPConstrained() |
| ? Intrinsic::experimental_constrained_sqrt |
| : Intrinsic::sqrt; |
| return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vsqrt"); |
| } |
| case NEON::BI__builtin_neon_vsqrt_v: |
| case NEON::BI__builtin_neon_vsqrtq_v: { |
| Int = Builder.getIsFPConstrained() |
| ? Intrinsic::experimental_constrained_sqrt |
| : Intrinsic::sqrt; |
| Ops[0] = Builder.CreateBitCast(Ops[0], Ty); |
| return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vsqrt"); |
| } |
| case NEON::BI__builtin_neon_vrbit_v: |
| case NEON::BI__builtin_neon_vrbitq_v: { |
| Int = Intrinsic::bitreverse; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrbit"); |
| } |
| case NEON::BI__builtin_neon_vaddv_u8: |
| // FIXME: These are handled by the AArch64 scalar code. |
| usgn = true; |
| [[fallthrough]]; |
| case NEON::BI__builtin_neon_vaddv_s8: { |
| Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv; |
| Ty = Int32Ty; |
| VTy = llvm::FixedVectorType::get(Int8Ty, 8); |
| llvm::Type *Tys[2] = { Ty, VTy }; |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv"); |
| return Builder.CreateTrunc(Ops[0], Int8Ty); |
| } |
| case NEON::BI__builtin_neon_vaddv_u16: |
| usgn = true; |
| [[fallthrough]]; |
| case NEON::BI__builtin_neon_vaddv_s16: { |
| Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv; |
| Ty = Int32Ty; |
| VTy = llvm::FixedVectorType::get(Int16Ty, 4); |
| llvm::Type *Tys[2] = { Ty, VTy }; |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv"); |
| return Builder.CreateTrunc(Ops[0], Int16Ty); |
| } |
| case NEON::BI__builtin_neon_vaddvq_u8: |
| usgn = true; |
| [[fallthrough]]; |
| case NEON::BI__builtin_neon_vaddvq_s8: { |
| Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv; |
| Ty = Int32Ty; |
| VTy = llvm::FixedVectorType::get(Int8Ty, 16); |
| llvm::Type *Tys[2] = { Ty, VTy }; |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv"); |
| return Builder.CreateTrunc(Ops[0], Int8Ty); |
| } |
| case NEON::BI__builtin_neon_vaddvq_u16: |
| usgn = true; |
| [[fallthrough]]; |
| case NEON::BI__builtin_neon_vaddvq_s16: { |
| Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv; |
| Ty = Int32Ty; |
| VTy = llvm::FixedVectorType::get(Int16Ty, 8); |
| llvm::Type *Tys[2] = { Ty, VTy }; |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv"); |
| return Builder.CreateTrunc(Ops[0], Int16Ty); |
| } |
| case NEON::BI__builtin_neon_vmaxv_u8: { |
| Int = Intrinsic::aarch64_neon_umaxv; |
| Ty = Int32Ty; |
| VTy = llvm::FixedVectorType::get(Int8Ty, 8); |
| llvm::Type *Tys[2] = { Ty, VTy }; |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv"); |
| return Builder.CreateTrunc(Ops[0], Int8Ty); |
| } |
| case NEON::BI__builtin_neon_vmaxv_u16: { |
| Int = Intrinsic::aarch64_neon_umaxv; |
| Ty = Int32Ty; |
| VTy = llvm::FixedVectorType::get(Int16Ty, 4); |
| llvm::Type *Tys[2] = { Ty, VTy }; |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv"); |
| return Builder.CreateTrunc(Ops[0], Int16Ty); |
| } |
| case NEON::BI__builtin_neon_vmaxvq_u8: { |
| Int = Intrinsic::aarch64_neon_umaxv; |
| Ty = Int32Ty; |
| VTy = llvm::FixedVectorType::get(Int8Ty, 16); |
| llvm::Type *Tys[2] = { Ty, VTy }; |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv"); |
| return Builder.CreateTrunc(Ops[0], Int8Ty); |
| } |
| case NEON::BI__builtin_neon_vmaxvq_u16: { |
| Int = Intrinsic::aarch64_neon_umaxv; |
| Ty = Int32Ty; |
| VTy = llvm::FixedVectorType::get(Int16Ty, 8); |
| llvm::Type *Tys[2] = { Ty, VTy }; |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv"); |
| return Builder.CreateTrunc(Ops[0], Int16Ty); |
| } |
| case NEON::BI__builtin_neon_vmaxv_s8: { |
| Int = Intrinsic::aarch64_neon_smaxv; |
| Ty = Int32Ty; |
| VTy = llvm::FixedVectorType::get(Int8Ty, 8); |
| llvm::Type *Tys[2] = { Ty, VTy }; |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv"); |
| return Builder.CreateTrunc(Ops[0], Int8Ty); |
| } |
| case NEON::BI__builtin_neon_vmaxv_s16: { |
| Int = Intrinsic::aarch64_neon_smaxv; |
| Ty = Int32Ty; |
| VTy = llvm::FixedVectorType::get(Int16Ty, 4); |
| llvm::Type *Tys[2] = { Ty, VTy }; |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv"); |
| return Builder.CreateTrunc(Ops[0], Int16Ty); |
| } |
| case NEON::BI__builtin_neon_vmaxvq_s8: { |
| Int = Intrinsic::aarch64_neon_smaxv; |
| Ty = Int32Ty; |
| VTy = llvm::FixedVectorType::get(Int8Ty, 16); |
| llvm::Type *Tys[2] = { Ty, VTy }; |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv"); |
| return Builder.CreateTrunc(Ops[0], Int8Ty); |
| } |
| case NEON::BI__builtin_neon_vmaxvq_s16: { |
| Int = Intrinsic::aarch64_neon_smaxv; |
| Ty = Int32Ty; |
| VTy = llvm::FixedVectorType::get(Int16Ty, 8); |
| llvm::Type *Tys[2] = { Ty, VTy }; |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv"); |
| return Builder.CreateTrunc(Ops[0], Int16Ty); |
| } |
| case NEON::BI__builtin_neon_vmaxv_f16: { |
| Int = Intrinsic::aarch64_neon_fmaxv; |
| Ty = HalfTy; |
| VTy = llvm::FixedVectorType::get(HalfTy, 4); |
| llvm::Type *Tys[2] = { Ty, VTy }; |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv"); |
| return Builder.CreateTrunc(Ops[0], HalfTy); |
| } |
| case NEON::BI__builtin_neon_vmaxvq_f16: { |
| Int = Intrinsic::aarch64_neon_fmaxv; |
| Ty = HalfTy; |
| VTy = llvm::FixedVectorType::get(HalfTy, 8); |
| llvm::Type *Tys[2] = { Ty, VTy }; |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv"); |
| return Builder.CreateTrunc(Ops[0], HalfTy); |
| } |
| case NEON::BI__builtin_neon_vminv_u8: { |
| Int = Intrinsic::aarch64_neon_uminv; |
| Ty = Int32Ty; |
| VTy = llvm::FixedVectorType::get(Int8Ty, 8); |
| llvm::Type *Tys[2] = { Ty, VTy }; |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv"); |
| return Builder.CreateTrunc(Ops[0], Int8Ty); |
| } |
| case NEON::BI__builtin_neon_vminv_u16: { |
| Int = Intrinsic::aarch64_neon_uminv; |
| Ty = Int32Ty; |
| VTy = llvm::FixedVectorType::get(Int16Ty, 4); |
| llvm::Type *Tys[2] = { Ty, VTy }; |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv"); |
| return Builder.CreateTrunc(Ops[0], Int16Ty); |
| } |
| case NEON::BI__builtin_neon_vminvq_u8: { |
| Int = Intrinsic::aarch64_neon_uminv; |
| Ty = Int32Ty; |
| VTy = llvm::FixedVectorType::get(Int8Ty, 16); |
| llvm::Type *Tys[2] = { Ty, VTy }; |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv"); |
| return Builder.CreateTrunc(Ops[0], Int8Ty); |
| } |
| case NEON::BI__builtin_neon_vminvq_u16: { |
| Int = Intrinsic::aarch64_neon_uminv; |
| Ty = Int32Ty; |
| VTy = llvm::FixedVectorType::get(Int16Ty, 8); |
| llvm::Type *Tys[2] = { Ty, VTy }; |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv"); |
| return Builder.CreateTrunc(Ops[0], Int16Ty); |
| } |
| case NEON::BI__builtin_neon_vminv_s8: { |
| Int = Intrinsic::aarch64_neon_sminv; |
| Ty = Int32Ty; |
| VTy = llvm::FixedVectorType::get(Int8Ty, 8); |
| llvm::Type *Tys[2] = { Ty, VTy }; |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv"); |
| return Builder.CreateTrunc(Ops[0], Int8Ty); |
| } |
| case NEON::BI__builtin_neon_vminv_s16: { |
| Int = Intrinsic::aarch64_neon_sminv; |
| Ty = Int32Ty; |
| VTy = llvm::FixedVectorType::get(Int16Ty, 4); |
| llvm::Type *Tys[2] = { Ty, VTy }; |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv"); |
| return Builder.CreateTrunc(Ops[0], Int16Ty); |
| } |
| case NEON::BI__builtin_neon_vminvq_s8: { |
| Int = Intrinsic::aarch64_neon_sminv; |
| Ty = Int32Ty; |
| VTy = llvm::FixedVectorType::get(Int8Ty, 16); |
| llvm::Type *Tys[2] = { Ty, VTy }; |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv"); |
| return Builder.CreateTrunc(Ops[0], Int8Ty); |
| } |
| case NEON::BI__builtin_neon_vminvq_s16: { |
| Int = Intrinsic::aarch64_neon_sminv; |
| Ty = Int32Ty; |
| VTy = llvm::FixedVectorType::get(Int16Ty, 8); |
| llvm::Type *Tys[2] = { Ty, VTy }; |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv"); |
| return Builder.CreateTrunc(Ops[0], Int16Ty); |
| } |
| case NEON::BI__builtin_neon_vminv_f16: { |
| Int = Intrinsic::aarch64_neon_fminv; |
| Ty = HalfTy; |
| VTy = llvm::FixedVectorType::get(HalfTy, 4); |
| llvm::Type *Tys[2] = { Ty, VTy }; |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv"); |
| return Builder.CreateTrunc(Ops[0], HalfTy); |
| } |
| case NEON::BI__builtin_neon_vminvq_f16: { |
| Int = Intrinsic::aarch64_neon_fminv; |
| Ty = HalfTy; |
| VTy = llvm::FixedVectorType::get(HalfTy, 8); |
| llvm::Type *Tys[2] = { Ty, VTy }; |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv"); |
| return Builder.CreateTrunc(Ops[0], HalfTy); |
| } |
| case NEON::BI__builtin_neon_vmaxnmv_f16: { |
| Int = Intrinsic::aarch64_neon_fmaxnmv; |
| Ty = HalfTy; |
| VTy = llvm::FixedVectorType::get(HalfTy, 4); |
| llvm::Type *Tys[2] = { Ty, VTy }; |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxnmv"); |
| return Builder.CreateTrunc(Ops[0], HalfTy); |
| } |
| case NEON::BI__builtin_neon_vmaxnmvq_f16: { |
| Int = Intrinsic::aarch64_neon_fmaxnmv; |
| Ty = HalfTy; |
| VTy = llvm::FixedVectorType::get(HalfTy, 8); |
| llvm::Type *Tys[2] = { Ty, VTy }; |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxnmv"); |
| return Builder.CreateTrunc(Ops[0], HalfTy); |
| } |
| case NEON::BI__builtin_neon_vminnmv_f16: { |
| Int = Intrinsic::aarch64_neon_fminnmv; |
| Ty = HalfTy; |
| VTy = llvm::FixedVectorType::get(HalfTy, 4); |
| llvm::Type *Tys[2] = { Ty, VTy }; |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminnmv"); |
| return Builder.CreateTrunc(Ops[0], HalfTy); |
| } |
| case NEON::BI__builtin_neon_vminnmvq_f16: { |
| Int = Intrinsic::aarch64_neon_fminnmv; |
| Ty = HalfTy; |
| VTy = llvm::FixedVectorType::get(HalfTy, 8); |
| llvm::Type *Tys[2] = { Ty, VTy }; |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminnmv"); |
| return Builder.CreateTrunc(Ops[0], HalfTy); |
| } |
| case NEON::BI__builtin_neon_vmul_n_f64: { |
| Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy); |
| Value *RHS = Builder.CreateBitCast(EmitScalarExpr(E->getArg(1)), DoubleTy); |
| return Builder.CreateFMul(Ops[0], RHS); |
| } |
| case NEON::BI__builtin_neon_vaddlv_u8: { |
| Int = Intrinsic::aarch64_neon_uaddlv; |
| Ty = Int32Ty; |
| VTy = llvm::FixedVectorType::get(Int8Ty, 8); |
| llvm::Type *Tys[2] = { Ty, VTy }; |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv"); |
| return Builder.CreateTrunc(Ops[0], Int16Ty); |
| } |
| case NEON::BI__builtin_neon_vaddlv_u16: { |
| Int = Intrinsic::aarch64_neon_uaddlv; |
| Ty = Int32Ty; |
| VTy = llvm::FixedVectorType::get(Int16Ty, 4); |
| llvm::Type *Tys[2] = { Ty, VTy }; |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv"); |
| } |
| case NEON::BI__builtin_neon_vaddlvq_u8: { |
| Int = Intrinsic::aarch64_neon_uaddlv; |
| Ty = Int32Ty; |
| VTy = llvm::FixedVectorType::get(Int8Ty, 16); |
| llvm::Type *Tys[2] = { Ty, VTy }; |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv"); |
| return Builder.CreateTrunc(Ops[0], Int16Ty); |
| } |
| case NEON::BI__builtin_neon_vaddlvq_u16: { |
| Int = Intrinsic::aarch64_neon_uaddlv; |
| Ty = Int32Ty; |
| VTy = llvm::FixedVectorType::get(Int16Ty, 8); |
| llvm::Type *Tys[2] = { Ty, VTy }; |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv"); |
| } |
| case NEON::BI__builtin_neon_vaddlv_s8: { |
| Int = Intrinsic::aarch64_neon_saddlv; |
| Ty = Int32Ty; |
| VTy = llvm::FixedVectorType::get(Int8Ty, 8); |
| llvm::Type *Tys[2] = { Ty, VTy }; |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv"); |
| return Builder.CreateTrunc(Ops[0], Int16Ty); |
| } |
| case NEON::BI__builtin_neon_vaddlv_s16: { |
| Int = Intrinsic::aarch64_neon_saddlv; |
| Ty = Int32Ty; |
| VTy = llvm::FixedVectorType::get(Int16Ty, 4); |
| llvm::Type *Tys[2] = { Ty, VTy }; |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv"); |
| } |
| case NEON::BI__builtin_neon_vaddlvq_s8: { |
| Int = Intrinsic::aarch64_neon_saddlv; |
| Ty = Int32Ty; |
| VTy = llvm::FixedVectorType::get(Int8Ty, 16); |
| llvm::Type *Tys[2] = { Ty, VTy }; |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv"); |
| return Builder.CreateTrunc(Ops[0], Int16Ty); |
| } |
| case NEON::BI__builtin_neon_vaddlvq_s16: { |
| Int = Intrinsic::aarch64_neon_saddlv; |
| Ty = Int32Ty; |
| VTy = llvm::FixedVectorType::get(Int16Ty, 8); |
| llvm::Type *Tys[2] = { Ty, VTy }; |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv"); |
| } |
| case NEON::BI__builtin_neon_vsri_n_v: |
| case NEON::BI__builtin_neon_vsriq_n_v: { |
| Int = Intrinsic::aarch64_neon_vsri; |
| llvm::Function *Intrin = CGM.getIntrinsic(Int, Ty); |
| return EmitNeonCall(Intrin, Ops, "vsri_n"); |
| } |
| case NEON::BI__builtin_neon_vsli_n_v: |
| case NEON::BI__builtin_neon_vsliq_n_v: { |
| Int = Intrinsic::aarch64_neon_vsli; |
| llvm::Function *Intrin = CGM.getIntrinsic(Int, Ty); |
| return EmitNeonCall(Intrin, Ops, "vsli_n"); |
| } |
| case NEON::BI__builtin_neon_vsra_n_v: |
| case NEON::BI__builtin_neon_vsraq_n_v: |
| Ops[0] = Builder.CreateBitCast(Ops[0], Ty); |
| Ops[1] = EmitNeonRShiftImm(Ops[1], Ops[2], Ty, usgn, "vsra_n"); |
| return Builder.CreateAdd(Ops[0], Ops[1]); |
| case NEON::BI__builtin_neon_vrsra_n_v: |
| case NEON::BI__builtin_neon_vrsraq_n_v: { |
| Int = usgn ? Intrinsic::aarch64_neon_urshl : Intrinsic::aarch64_neon_srshl; |
| SmallVector<llvm::Value*,2> TmpOps; |
| TmpOps.push_back(Ops[1]); |
| TmpOps.push_back(Ops[2]); |
| Function* F = CGM.getIntrinsic(Int, Ty); |
| llvm::Value *tmp = EmitNeonCall(F, TmpOps, "vrshr_n", 1, true); |
| Ops[0] = Builder.CreateBitCast(Ops[0], VTy); |
| return Builder.CreateAdd(Ops[0], tmp); |
| } |
| case NEON::BI__builtin_neon_vld1_v: |
| case NEON::BI__builtin_neon_vld1q_v: { |
| return Builder.CreateAlignedLoad(VTy, Ops[0], PtrOp0.getAlignment()); |
| } |
| case NEON::BI__builtin_neon_vst1_v: |
| case NEON::BI__builtin_neon_vst1q_v: |
| Ops[1] = Builder.CreateBitCast(Ops[1], VTy); |
| return Builder.CreateAlignedStore(Ops[1], Ops[0], PtrOp0.getAlignment()); |
| case NEON::BI__builtin_neon_vld1_lane_v: |
| case NEON::BI__builtin_neon_vld1q_lane_v: { |
| Ops[1] = Builder.CreateBitCast(Ops[1], Ty); |
| Ops[0] = Builder.CreateAlignedLoad(VTy->getElementType(), Ops[0], |
| PtrOp0.getAlignment()); |
| return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vld1_lane"); |
| } |
| case NEON::BI__builtin_neon_vldap1_lane_s64: |
| case NEON::BI__builtin_neon_vldap1q_lane_s64: { |
| Ops[1] = Builder.CreateBitCast(Ops[1], Ty); |
| llvm::LoadInst *LI = Builder.CreateAlignedLoad( |
| VTy->getElementType(), Ops[0], PtrOp0.getAlignment()); |
| LI->setAtomic(llvm::AtomicOrdering::Acquire); |
| Ops[0] = LI; |
| return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vldap1_lane"); |
| } |
| case NEON::BI__builtin_neon_vld1_dup_v: |
| case NEON::BI__builtin_neon_vld1q_dup_v: { |
| Value *V = PoisonValue::get(Ty); |
| Ops[0] = Builder.CreateAlignedLoad(VTy->getElementType(), Ops[0], |
| PtrOp0.getAlignment()); |
| llvm::Constant *CI = ConstantInt::get(Int32Ty, 0); |
| Ops[0] = Builder.CreateInsertElement(V, Ops[0], CI); |
| return EmitNeonSplat(Ops[0], CI); |
| } |
| case NEON::BI__builtin_neon_vst1_lane_v: |
| case NEON::BI__builtin_neon_vst1q_lane_v: |
| Ops[1] = Builder.CreateBitCast(Ops[1], Ty); |
| Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2]); |
| return Builder.CreateAlignedStore(Ops[1], Ops[0], PtrOp0.getAlignment()); |
| case NEON::BI__builtin_neon_vstl1_lane_s64: |
| case NEON::BI__builtin_neon_vstl1q_lane_s64: { |
| Ops[1] = Builder.CreateBitCast(Ops[1], Ty); |
| Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2]); |
| llvm::StoreInst *SI = |
| Builder.CreateAlignedStore(Ops[1], Ops[0], PtrOp0.getAlignment()); |
| SI->setAtomic(llvm::AtomicOrdering::Release); |
| return SI; |
| } |
| case NEON::BI__builtin_neon_vld2_v: |
| case NEON::BI__builtin_neon_vld2q_v: { |
| llvm::Type *Tys[2] = {VTy, UnqualPtrTy}; |
| Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2, Tys); |
| Ops[1] = Builder.CreateCall(F, Ops[1], "vld2"); |
| return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]); |
| } |
| case NEON::BI__builtin_neon_vld3_v: |
| case NEON::BI__builtin_neon_vld3q_v: { |
| llvm::Type *Tys[2] = {VTy, UnqualPtrTy}; |
| Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3, Tys); |
| Ops[1] = Builder.CreateCall(F, Ops[1], "vld3"); |
| return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]); |
| } |
| case NEON::BI__builtin_neon_vld4_v: |
| case NEON::BI__builtin_neon_vld4q_v: { |
| llvm::Type *Tys[2] = {VTy, UnqualPtrTy}; |
| Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4, Tys); |
| Ops[1] = Builder.CreateCall(F, Ops[1], "vld4"); |
| return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]); |
| } |
| case NEON::BI__builtin_neon_vld2_dup_v: |
| case NEON::BI__builtin_neon_vld2q_dup_v: { |
| llvm::Type *Tys[2] = {VTy, UnqualPtrTy}; |
| Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2r, Tys); |
| Ops[1] = Builder.CreateCall(F, Ops[1], "vld2"); |
| return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]); |
| } |
| case NEON::BI__builtin_neon_vld3_dup_v: |
| case NEON::BI__builtin_neon_vld3q_dup_v: { |
| llvm::Type *Tys[2] = {VTy, UnqualPtrTy}; |
| Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3r, Tys); |
| Ops[1] = Builder.CreateCall(F, Ops[1], "vld3"); |
| return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]); |
| } |
| case NEON::BI__builtin_neon_vld4_dup_v: |
| case NEON::BI__builtin_neon_vld4q_dup_v: { |
| llvm::Type *Tys[2] = {VTy, UnqualPtrTy}; |
| Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4r, Tys); |
| Ops[1] = Builder.CreateCall(F, Ops[1], "vld4"); |
| return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]); |
| } |
| case NEON::BI__builtin_neon_vld2_lane_v: |
| case NEON::BI__builtin_neon_vld2q_lane_v: { |
| llvm::Type *Tys[2] = { VTy, Ops[1]->getType() }; |
| Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2lane, Tys); |
| std::rotate(Ops.begin() + 1, Ops.begin() + 2, Ops.end()); |
| Ops[1] = Builder.CreateBitCast(Ops[1], Ty); |
| Ops[2] = Builder.CreateBitCast(Ops[2], Ty); |
| Ops[3] = Builder.CreateZExt(Ops[3], Int64Ty); |
| Ops[1] = Builder.CreateCall(F, ArrayRef(Ops).slice(1), "vld2_lane"); |
| return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]); |
| } |
| case NEON::BI__builtin_neon_vld3_lane_v: |
| case NEON::BI__builtin_neon_vld3q_lane_v: { |
| llvm::Type *Tys[2] = { VTy, Ops[1]->getType() }; |
| Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3lane, Tys); |
| std::rotate(Ops.begin() + 1, Ops.begin() + 2, Ops.end()); |
| Ops[1] = Builder.CreateBitCast(Ops[1], Ty); |
| Ops[2] = Builder.CreateBitCast(Ops[2], Ty); |
| Ops[3] = Builder.CreateBitCast(Ops[3], Ty); |
| Ops[4] = Builder.CreateZExt(Ops[4], Int64Ty); |
| Ops[1] = Builder.CreateCall(F, ArrayRef(Ops).slice(1), "vld3_lane"); |
| return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]); |
| } |
| case NEON::BI__builtin_neon_vld4_lane_v: |
| case NEON::BI__builtin_neon_vld4q_lane_v: { |
| llvm::Type *Tys[2] = { VTy, Ops[1]->getType() }; |
| Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4lane, Tys); |
| std::rotate(Ops.begin() + 1, Ops.begin() + 2, Ops.end()); |
| Ops[1] = Builder.CreateBitCast(Ops[1], Ty); |
| Ops[2] = Builder.CreateBitCast(Ops[2], Ty); |
| Ops[3] = Builder.CreateBitCast(Ops[3], Ty); |
| Ops[4] = Builder.CreateBitCast(Ops[4], Ty); |
| Ops[5] = Builder.CreateZExt(Ops[5], Int64Ty); |
| Ops[1] = Builder.CreateCall(F, ArrayRef(Ops).slice(1), "vld4_lane"); |
| return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]); |
| } |
| case NEON::BI__builtin_neon_vst2_v: |
| case NEON::BI__builtin_neon_vst2q_v: { |
| std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end()); |
| llvm::Type *Tys[2] = { VTy, Ops[2]->getType() }; |
| return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st2, Tys), |
| Ops, ""); |
| } |
| case NEON::BI__builtin_neon_vst2_lane_v: |
| case NEON::BI__builtin_neon_vst2q_lane_v: { |
| std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end()); |
| Ops[2] = Builder.CreateZExt(Ops[2], Int64Ty); |
| llvm::Type *Tys[2] = { VTy, Ops[3]->getType() }; |
| return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st2lane, Tys), |
| Ops, ""); |
| } |
| case NEON::BI__builtin_neon_vst3_v: |
| case NEON::BI__builtin_neon_vst3q_v: { |
| std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end()); |
| llvm::Type *Tys[2] = { VTy, Ops[3]->getType() }; |
| return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st3, Tys), |
| Ops, ""); |
| } |
| case NEON::BI__builtin_neon_vst3_lane_v: |
| case NEON::BI__builtin_neon_vst3q_lane_v: { |
| std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end()); |
| Ops[3] = Builder.CreateZExt(Ops[3], Int64Ty); |
| llvm::Type *Tys[2] = { VTy, Ops[4]->getType() }; |
| return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st3lane, Tys), |
| Ops, ""); |
| } |
| case NEON::BI__builtin_neon_vst4_v: |
| case NEON::BI__builtin_neon_vst4q_v: { |
| std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end()); |
| llvm::Type *Tys[2] = { VTy, Ops[4]->getType() }; |
| return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st4, Tys), |
| Ops, ""); |
| } |
| case NEON::BI__builtin_neon_vst4_lane_v: |
| case NEON::BI__builtin_neon_vst4q_lane_v: { |
| std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end()); |
| Ops[4] = Builder.CreateZExt(Ops[4], Int64Ty); |
| llvm::Type *Tys[2] = { VTy, Ops[5]->getType() }; |
| return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st4lane, Tys), |
| Ops, ""); |
| } |
| case NEON::BI__builtin_neon_vtrn_v: |
| case NEON::BI__builtin_neon_vtrnq_v: { |
| Ops[1] = Builder.CreateBitCast(Ops[1], Ty); |
| Ops[2] = Builder.CreateBitCast(Ops[2], Ty); |
| Value *SV = nullptr; |
| |
| for (unsigned vi = 0; vi != 2; ++vi) { |
| SmallVector<int, 16> Indices; |
| for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) { |
| Indices.push_back(i+vi); |
| Indices.push_back(i+e+vi); |
| } |
| Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi); |
| SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vtrn"); |
| SV = Builder.CreateDefaultAlignedStore(SV, Addr); |
| } |
| return SV; |
| } |
| case NEON::BI__builtin_neon_vuzp_v: |
| case NEON::BI__builtin_neon_vuzpq_v: { |
| Ops[1] = Builder.CreateBitCast(Ops[1], Ty); |
| Ops[2] = Builder.CreateBitCast(Ops[2], Ty); |
| Value *SV = nullptr; |
| |
| for (unsigned vi = 0; vi != 2; ++vi) { |
| SmallVector<int, 16> Indices; |
| for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) |
| Indices.push_back(2*i+vi); |
| |
| Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi); |
| SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vuzp"); |
| SV = Builder.CreateDefaultAlignedStore(SV, Addr); |
| } |
| return SV; |
| } |
| case NEON::BI__builtin_neon_vzip_v: |
| case NEON::BI__builtin_neon_vzipq_v: { |
| Ops[1] = Builder.CreateBitCast(Ops[1], Ty); |
| Ops[2] = Builder.CreateBitCast(Ops[2], Ty); |
| Value *SV = nullptr; |
| |
| for (unsigned vi = 0; vi != 2; ++vi) { |
| SmallVector<int, 16> Indices; |
| for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) { |
| Indices.push_back((i + vi*e) >> 1); |
| Indices.push_back(((i + vi*e) >> 1)+e); |
| } |
| Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi); |
| SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vzip"); |
| SV = Builder.CreateDefaultAlignedStore(SV, Addr); |
| } |
| return SV; |
| } |
| case NEON::BI__builtin_neon_vqtbl1q_v: { |
| return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl1, Ty), |
| Ops, "vtbl1"); |
| } |
| case NEON::BI__builtin_neon_vqtbl2q_v: { |
| return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl2, Ty), |
| Ops, "vtbl2"); |
| } |
| case NEON::BI__builtin_neon_vqtbl3q_v: { |
| return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl3, Ty), |
| Ops, "vtbl3"); |
| } |
| case NEON::BI__builtin_neon_vqtbl4q_v: { |
| return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl4, Ty), |
| Ops, "vtbl4"); |
| } |
| case NEON::BI__builtin_neon_vqtbx1q_v: { |
| return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx1, Ty), |
| Ops, "vtbx1"); |
| } |
| case NEON::BI__builtin_neon_vqtbx2q_v: { |
| return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx2, Ty), |
| Ops, "vtbx2"); |
| } |
| case NEON::BI__builtin_neon_vqtbx3q_v: { |
| return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx3, Ty), |
| Ops, "vtbx3"); |
| } |
| case NEON::BI__builtin_neon_vqtbx4q_v: { |
| return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx4, Ty), |
| Ops, "vtbx4"); |
| } |
| case NEON::BI__builtin_neon_vsqadd_v: |
| case NEON::BI__builtin_neon_vsqaddq_v: { |
| Int = Intrinsic::aarch64_neon_usqadd; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vsqadd"); |
| } |
| case NEON::BI__builtin_neon_vuqadd_v: |
| case NEON::BI__builtin_neon_vuqaddq_v: { |
| Int = Intrinsic::aarch64_neon_suqadd; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vuqadd"); |
| } |
| |
| case NEON::BI__builtin_neon_vluti2_laneq_bf16: |
| case NEON::BI__builtin_neon_vluti2_laneq_f16: |
| case NEON::BI__builtin_neon_vluti2_laneq_p16: |
| case NEON::BI__builtin_neon_vluti2_laneq_p8: |
| case NEON::BI__builtin_neon_vluti2_laneq_s16: |
| case NEON::BI__builtin_neon_vluti2_laneq_s8: |
| case NEON::BI__builtin_neon_vluti2_laneq_u16: |
| case NEON::BI__builtin_neon_vluti2_laneq_u8: { |
| Int = Intrinsic::aarch64_neon_vluti2_laneq; |
| llvm::Type *Tys[2]; |
| Tys[0] = Ty; |
| Tys[1] = GetNeonType(this, NeonTypeFlags(Type.getEltType(), false, |
| /*isQuad*/ false)); |
| return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vluti2_laneq"); |
| } |
| case NEON::BI__builtin_neon_vluti2q_laneq_bf16: |
| case NEON::BI__builtin_neon_vluti2q_laneq_f16: |
| case NEON::BI__builtin_neon_vluti2q_laneq_p16: |
| case NEON::BI__builtin_neon_vluti2q_laneq_p8: |
| case NEON::BI__builtin_neon_vluti2q_laneq_s16: |
| case NEON::BI__builtin_neon_vluti2q_laneq_s8: |
| case NEON::BI__builtin_neon_vluti2q_laneq_u16: |
| case NEON::BI__builtin_neon_vluti2q_laneq_u8: { |
| Int = Intrinsic::aarch64_neon_vluti2_laneq; |
| llvm::Type *Tys[2]; |
| Tys[0] = Ty; |
| Tys[1] = GetNeonType(this, NeonTypeFlags(Type.getEltType(), false, |
| /*isQuad*/ true)); |
| return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vluti2_laneq"); |
| } |
| case NEON::BI__builtin_neon_vluti2_lane_bf16: |
| case NEON::BI__builtin_neon_vluti2_lane_f16: |
| case NEON::BI__builtin_neon_vluti2_lane_p16: |
| case NEON::BI__builtin_neon_vluti2_lane_p8: |
| case NEON::BI__builtin_neon_vluti2_lane_s16: |
| case NEON::BI__builtin_neon_vluti2_lane_s8: |
| case NEON::BI__builtin_neon_vluti2_lane_u16: |
| case NEON::BI__builtin_neon_vluti2_lane_u8: { |
| Int = Intrinsic::aarch64_neon_vluti2_lane; |
| llvm::Type *Tys[2]; |
| Tys[0] = Ty; |
| Tys[1] = GetNeonType(this, NeonTypeFlags(Type.getEltType(), false, |
| /*isQuad*/ false)); |
| return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vluti2_lane"); |
| } |
| case NEON::BI__builtin_neon_vluti2q_lane_bf16: |
| case NEON::BI__builtin_neon_vluti2q_lane_f16: |
| case NEON::BI__builtin_neon_vluti2q_lane_p16: |
| case NEON::BI__builtin_neon_vluti2q_lane_p8: |
| case NEON::BI__builtin_neon_vluti2q_lane_s16: |
| case NEON::BI__builtin_neon_vluti2q_lane_s8: |
| case NEON::BI__builtin_neon_vluti2q_lane_u16: |
| case NEON::BI__builtin_neon_vluti2q_lane_u8: { |
| Int = Intrinsic::aarch64_neon_vluti2_lane; |
| llvm::Type *Tys[2]; |
| Tys[0] = Ty; |
| Tys[1] = GetNeonType(this, NeonTypeFlags(Type.getEltType(), false, |
| /*isQuad*/ true)); |
| return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vluti2_lane"); |
| } |
| case NEON::BI__builtin_neon_vluti4q_lane_p8: |
| case NEON::BI__builtin_neon_vluti4q_lane_s8: |
| case NEON::BI__builtin_neon_vluti4q_lane_u8: { |
| Int = Intrinsic::aarch64_neon_vluti4q_lane; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vluti4q_lane"); |
| } |
| case NEON::BI__builtin_neon_vluti4q_laneq_p8: |
| case NEON::BI__builtin_neon_vluti4q_laneq_s8: |
| case NEON::BI__builtin_neon_vluti4q_laneq_u8: { |
| Int = Intrinsic::aarch64_neon_vluti4q_laneq; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vluti4q_laneq"); |
| } |
| case NEON::BI__builtin_neon_vluti4q_lane_bf16_x2: |
| case NEON::BI__builtin_neon_vluti4q_lane_f16_x2: |
| case NEON::BI__builtin_neon_vluti4q_lane_p16_x2: |
| case NEON::BI__builtin_neon_vluti4q_lane_s16_x2: |
| case NEON::BI__builtin_neon_vluti4q_lane_u16_x2: { |
| Int = Intrinsic::aarch64_neon_vluti4q_lane_x2; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vluti4q_lane_x2"); |
| } |
| case NEON::BI__builtin_neon_vluti4q_laneq_bf16_x2: |
| case NEON::BI__builtin_neon_vluti4q_laneq_f16_x2: |
| case NEON::BI__builtin_neon_vluti4q_laneq_p16_x2: |
| case NEON::BI__builtin_neon_vluti4q_laneq_s16_x2: |
| case NEON::BI__builtin_neon_vluti4q_laneq_u16_x2: { |
| Int = Intrinsic::aarch64_neon_vluti4q_laneq_x2; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vluti4q_laneq_x2"); |
| } |
| case NEON::BI__builtin_neon_vcvt1_low_bf16_mf8_fpm: |
| ExtractLow = true; |
| LLVM_FALLTHROUGH; |
| case NEON::BI__builtin_neon_vcvt1_bf16_mf8_fpm: |
| case NEON::BI__builtin_neon_vcvt1_high_bf16_mf8_fpm: |
| return EmitFP8NeonCvtCall(Intrinsic::aarch64_neon_fp8_cvtl1, |
| llvm::FixedVectorType::get(BFloatTy, 8), |
| Ops[0]->getType(), ExtractLow, Ops, E, "vbfcvt1"); |
| case NEON::BI__builtin_neon_vcvt2_low_bf16_mf8_fpm: |
| ExtractLow = true; |
| LLVM_FALLTHROUGH; |
| case NEON::BI__builtin_neon_vcvt2_bf16_mf8_fpm: |
| case NEON::BI__builtin_neon_vcvt2_high_bf16_mf8_fpm: |
| return EmitFP8NeonCvtCall(Intrinsic::aarch64_neon_fp8_cvtl2, |
| llvm::FixedVectorType::get(BFloatTy, 8), |
| Ops[0]->getType(), ExtractLow, Ops, E, "vbfcvt2"); |
| case NEON::BI__builtin_neon_vcvt1_low_f16_mf8_fpm: |
| ExtractLow = true; |
| LLVM_FALLTHROUGH; |
| case NEON::BI__builtin_neon_vcvt1_f16_mf8_fpm: |
| case NEON::BI__builtin_neon_vcvt1_high_f16_mf8_fpm: |
| return EmitFP8NeonCvtCall(Intrinsic::aarch64_neon_fp8_cvtl1, |
| llvm::FixedVectorType::get(HalfTy, 8), |
| Ops[0]->getType(), ExtractLow, Ops, E, "vbfcvt1"); |
| case NEON::BI__builtin_neon_vcvt2_low_f16_mf8_fpm: |
| ExtractLow = true; |
| LLVM_FALLTHROUGH; |
| case NEON::BI__builtin_neon_vcvt2_f16_mf8_fpm: |
| case NEON::BI__builtin_neon_vcvt2_high_f16_mf8_fpm: |
| return EmitFP8NeonCvtCall(Intrinsic::aarch64_neon_fp8_cvtl2, |
| llvm::FixedVectorType::get(HalfTy, 8), |
| Ops[0]->getType(), ExtractLow, Ops, E, "vbfcvt2"); |
| case NEON::BI__builtin_neon_vcvt_mf8_f32_fpm: |
| return EmitFP8NeonCvtCall(Intrinsic::aarch64_neon_fp8_fcvtn, |
| llvm::FixedVectorType::get(Int8Ty, 8), |
| Ops[0]->getType(), false, Ops, E, "vfcvtn"); |
| case NEON::BI__builtin_neon_vcvt_mf8_f16_fpm: |
| return EmitFP8NeonCvtCall(Intrinsic::aarch64_neon_fp8_fcvtn, |
| llvm::FixedVectorType::get(Int8Ty, 8), |
| llvm::FixedVectorType::get(HalfTy, 4), false, Ops, |
| E, "vfcvtn"); |
| case NEON::BI__builtin_neon_vcvtq_mf8_f16_fpm: |
| return EmitFP8NeonCvtCall(Intrinsic::aarch64_neon_fp8_fcvtn, |
| llvm::FixedVectorType::get(Int8Ty, 16), |
| llvm::FixedVectorType::get(HalfTy, 8), false, Ops, |
| E, "vfcvtn"); |
| case NEON::BI__builtin_neon_vcvt_high_mf8_f32_fpm: { |
| llvm::Type *Ty = llvm::FixedVectorType::get(Int8Ty, 16); |
| Ops[0] = Builder.CreateInsertVector(Ty, PoisonValue::get(Ty), Ops[0], |
| Builder.getInt64(0)); |
| return EmitFP8NeonCvtCall(Intrinsic::aarch64_neon_fp8_fcvtn2, Ty, |
| Ops[1]->getType(), false, Ops, E, "vfcvtn2"); |
| } |
| |
| case NEON::BI__builtin_neon_vdot_f16_mf8_fpm: |
| case NEON::BI__builtin_neon_vdotq_f16_mf8_fpm: |
| return EmitFP8NeonFDOTCall(Intrinsic::aarch64_neon_fp8_fdot2, false, HalfTy, |
| Ops, E, "fdot2"); |
| case NEON::BI__builtin_neon_vdot_lane_f16_mf8_fpm: |
| case NEON::BI__builtin_neon_vdotq_lane_f16_mf8_fpm: |
| ExtendLaneArg = true; |
| LLVM_FALLTHROUGH; |
| case NEON::BI__builtin_neon_vdot_laneq_f16_mf8_fpm: |
| case NEON::BI__builtin_neon_vdotq_laneq_f16_mf8_fpm: |
| return EmitFP8NeonFDOTCall(Intrinsic::aarch64_neon_fp8_fdot2_lane, |
| ExtendLaneArg, HalfTy, Ops, E, "fdot2_lane"); |
| case NEON::BI__builtin_neon_vdot_f32_mf8_fpm: |
| case NEON::BI__builtin_neon_vdotq_f32_mf8_fpm: |
| return EmitFP8NeonFDOTCall(Intrinsic::aarch64_neon_fp8_fdot4, false, |
| FloatTy, Ops, E, "fdot4"); |
| case NEON::BI__builtin_neon_vdot_lane_f32_mf8_fpm: |
| case NEON::BI__builtin_neon_vdotq_lane_f32_mf8_fpm: |
| ExtendLaneArg = true; |
| LLVM_FALLTHROUGH; |
| case NEON::BI__builtin_neon_vdot_laneq_f32_mf8_fpm: |
| case NEON::BI__builtin_neon_vdotq_laneq_f32_mf8_fpm: |
| return EmitFP8NeonFDOTCall(Intrinsic::aarch64_neon_fp8_fdot4_lane, |
| ExtendLaneArg, FloatTy, Ops, E, "fdot4_lane"); |
| |
| case NEON::BI__builtin_neon_vmlalbq_f16_mf8_fpm: |
| return EmitFP8NeonCall(Intrinsic::aarch64_neon_fp8_fmlalb, |
| {llvm::FixedVectorType::get(HalfTy, 8)}, Ops, E, |
| "vmlal"); |
| case NEON::BI__builtin_neon_vmlaltq_f16_mf8_fpm: |
| return EmitFP8NeonCall(Intrinsic::aarch64_neon_fp8_fmlalt, |
| {llvm::FixedVectorType::get(HalfTy, 8)}, Ops, E, |
| "vmlal"); |
| case NEON::BI__builtin_neon_vmlallbbq_f32_mf8_fpm: |
| return EmitFP8NeonCall(Intrinsic::aarch64_neon_fp8_fmlallbb, |
| {llvm::FixedVectorType::get(FloatTy, 4)}, Ops, E, |
| "vmlall"); |
| case NEON::BI__builtin_neon_vmlallbtq_f32_mf8_fpm: |
| return EmitFP8NeonCall(Intrinsic::aarch64_neon_fp8_fmlallbt, |
| {llvm::FixedVectorType::get(FloatTy, 4)}, Ops, E, |
| "vmlall"); |
| case NEON::BI__builtin_neon_vmlalltbq_f32_mf8_fpm: |
| return EmitFP8NeonCall(Intrinsic::aarch64_neon_fp8_fmlalltb, |
| {llvm::FixedVectorType::get(FloatTy, 4)}, Ops, E, |
| "vmlall"); |
| case NEON::BI__builtin_neon_vmlallttq_f32_mf8_fpm: |
| return EmitFP8NeonCall(Intrinsic::aarch64_neon_fp8_fmlalltt, |
| {llvm::FixedVectorType::get(FloatTy, 4)}, Ops, E, |
| "vmlall"); |
| case NEON::BI__builtin_neon_vmlalbq_lane_f16_mf8_fpm: |
| ExtendLaneArg = true; |
| LLVM_FALLTHROUGH; |
| case NEON::BI__builtin_neon_vmlalbq_laneq_f16_mf8_fpm: |
| return EmitFP8NeonFMLACall(Intrinsic::aarch64_neon_fp8_fmlalb_lane, |
| ExtendLaneArg, HalfTy, Ops, E, "vmlal_lane"); |
| case NEON::BI__builtin_neon_vmlaltq_lane_f16_mf8_fpm: |
| ExtendLaneArg = true; |
| LLVM_FALLTHROUGH; |
| case NEON::BI__builtin_neon_vmlaltq_laneq_f16_mf8_fpm: |
| return EmitFP8NeonFMLACall(Intrinsic::aarch64_neon_fp8_fmlalt_lane, |
| ExtendLaneArg, HalfTy, Ops, E, "vmlal_lane"); |
| case NEON::BI__builtin_neon_vmlallbbq_lane_f32_mf8_fpm: |
| ExtendLaneArg = true; |
| LLVM_FALLTHROUGH; |
| case NEON::BI__builtin_neon_vmlallbbq_laneq_f32_mf8_fpm: |
| return EmitFP8NeonFMLACall(Intrinsic::aarch64_neon_fp8_fmlallbb_lane, |
| ExtendLaneArg, FloatTy, Ops, E, "vmlall_lane"); |
| case NEON::BI__builtin_neon_vmlallbtq_lane_f32_mf8_fpm: |
| ExtendLaneArg = true; |
| LLVM_FALLTHROUGH; |
| case NEON::BI__builtin_neon_vmlallbtq_laneq_f32_mf8_fpm: |
| return EmitFP8NeonFMLACall(Intrinsic::aarch64_neon_fp8_fmlallbt_lane, |
| ExtendLaneArg, FloatTy, Ops, E, "vmlall_lane"); |
| case NEON::BI__builtin_neon_vmlalltbq_lane_f32_mf8_fpm: |
| ExtendLaneArg = true; |
| LLVM_FALLTHROUGH; |
| case NEON::BI__builtin_neon_vmlalltbq_laneq_f32_mf8_fpm: |
| return EmitFP8NeonFMLACall(Intrinsic::aarch64_neon_fp8_fmlalltb_lane, |
| ExtendLaneArg, FloatTy, Ops, E, "vmlall_lane"); |
| case NEON::BI__builtin_neon_vmlallttq_lane_f32_mf8_fpm: |
| ExtendLaneArg = true; |
| LLVM_FALLTHROUGH; |
| case NEON::BI__builtin_neon_vmlallttq_laneq_f32_mf8_fpm: |
| return EmitFP8NeonFMLACall(Intrinsic::aarch64_neon_fp8_fmlalltt_lane, |
| ExtendLaneArg, FloatTy, Ops, E, "vmlall_lane"); |
| case NEON::BI__builtin_neon_vamin_f16: |
| case NEON::BI__builtin_neon_vaminq_f16: |
| case NEON::BI__builtin_neon_vamin_f32: |
| case NEON::BI__builtin_neon_vaminq_f32: |
| case NEON::BI__builtin_neon_vaminq_f64: { |
| Int = Intrinsic::aarch64_neon_famin; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "famin"); |
| } |
| case NEON::BI__builtin_neon_vamax_f16: |
| case NEON::BI__builtin_neon_vamaxq_f16: |
| case NEON::BI__builtin_neon_vamax_f32: |
| case NEON::BI__builtin_neon_vamaxq_f32: |
| case NEON::BI__builtin_neon_vamaxq_f64: { |
| Int = Intrinsic::aarch64_neon_famax; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "famax"); |
| } |
| case NEON::BI__builtin_neon_vscale_f16: |
| case NEON::BI__builtin_neon_vscaleq_f16: |
| case NEON::BI__builtin_neon_vscale_f32: |
| case NEON::BI__builtin_neon_vscaleq_f32: |
| case NEON::BI__builtin_neon_vscaleq_f64: { |
| Int = Intrinsic::aarch64_neon_fp8_fscale; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "fscale"); |
| } |
| } |
| } |
| |
| Value *CodeGenFunction::EmitBPFBuiltinExpr(unsigned BuiltinID, |
| const CallExpr *E) { |
| assert((BuiltinID == BPF::BI__builtin_preserve_field_info || |
| BuiltinID == BPF::BI__builtin_btf_type_id || |
| BuiltinID == BPF::BI__builtin_preserve_type_info || |
| BuiltinID == BPF::BI__builtin_preserve_enum_value) && |
| "unexpected BPF builtin"); |
| |
| // A sequence number, injected into IR builtin functions, to |
| // prevent CSE given the only difference of the function |
| // may just be the debuginfo metadata. |
| static uint32_t BuiltinSeqNum; |
| |
| switch (BuiltinID) { |
| default: |
| llvm_unreachable("Unexpected BPF builtin"); |
| case BPF::BI__builtin_preserve_field_info: { |
| const Expr *Arg = E->getArg(0); |
| bool IsBitField = Arg->IgnoreParens()->getObjectKind() == OK_BitField; |
| |
| if (!getDebugInfo()) { |
| CGM.Error(E->getExprLoc(), |
| "using __builtin_preserve_field_info() without -g"); |
| return IsBitField ? EmitLValue(Arg).getRawBitFieldPointer(*this) |
| : EmitLValue(Arg).emitRawPointer(*this); |
| } |
| |
| // Enable underlying preserve_*_access_index() generation. |
| bool OldIsInPreservedAIRegion = IsInPreservedAIRegion; |
| IsInPreservedAIRegion = true; |
| Value *FieldAddr = IsBitField ? EmitLValue(Arg).getRawBitFieldPointer(*this) |
| : EmitLValue(Arg).emitRawPointer(*this); |
| IsInPreservedAIRegion = OldIsInPreservedAIRegion; |
| |
| ConstantInt *C = cast<ConstantInt>(EmitScalarExpr(E->getArg(1))); |
| Value *InfoKind = ConstantInt::get(Int64Ty, C->getSExtValue()); |
| |
| // Built the IR for the preserve_field_info intrinsic. |
| llvm::Function *FnGetFieldInfo = llvm::Intrinsic::getOrInsertDeclaration( |
| &CGM.getModule(), llvm::Intrinsic::bpf_preserve_field_info, |
| {FieldAddr->getType()}); |
| return Builder.CreateCall(FnGetFieldInfo, {FieldAddr, InfoKind}); |
| } |
| case BPF::BI__builtin_btf_type_id: |
| case BPF::BI__builtin_preserve_type_info: { |
| if (!getDebugInfo()) { |
| CGM.Error(E->getExprLoc(), "using builtin function without -g"); |
| return nullptr; |
| } |
| |
| const Expr *Arg0 = E->getArg(0); |
| llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateStandaloneType( |
| Arg0->getType(), Arg0->getExprLoc()); |
| |
| ConstantInt *Flag = cast<ConstantInt>(EmitScalarExpr(E->getArg(1))); |
| Value *FlagValue = ConstantInt::get(Int64Ty, Flag->getSExtValue()); |
| Value *SeqNumVal = ConstantInt::get(Int32Ty, BuiltinSeqNum++); |
| |
| llvm::Function *FnDecl; |
| if (BuiltinID == BPF::BI__builtin_btf_type_id) |
| FnDecl = llvm::Intrinsic::getOrInsertDeclaration( |
| &CGM.getModule(), llvm::Intrinsic::bpf_btf_type_id, {}); |
| else |
| FnDecl = llvm::Intrinsic::getOrInsertDeclaration( |
| &CGM.getModule(), llvm::Intrinsic::bpf_preserve_type_info, {}); |
| CallInst *Fn = Builder.CreateCall(FnDecl, {SeqNumVal, FlagValue}); |
| Fn->setMetadata(LLVMContext::MD_preserve_access_index, DbgInfo); |
| return Fn; |
| } |
| case BPF::BI__builtin_preserve_enum_value: { |
| if (!getDebugInfo()) { |
| CGM.Error(E->getExprLoc(), "using builtin function without -g"); |
| return nullptr; |
| } |
| |
| const Expr *Arg0 = E->getArg(0); |
| llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateStandaloneType( |
| Arg0->getType(), Arg0->getExprLoc()); |
| |
| // Find enumerator |
| const auto *UO = cast<UnaryOperator>(Arg0->IgnoreParens()); |
| const auto *CE = cast<CStyleCastExpr>(UO->getSubExpr()); |
| const auto *DR = cast<DeclRefExpr>(CE->getSubExpr()); |
| const auto *Enumerator = cast<EnumConstantDecl>(DR->getDecl()); |
| |
| auto InitVal = Enumerator->getInitVal(); |
| std::string InitValStr; |
| if (InitVal.isNegative() || InitVal > uint64_t(INT64_MAX)) |
| InitValStr = std::to_string(InitVal.getSExtValue()); |
| else |
| InitValStr = std::to_string(InitVal.getZExtValue()); |
| std::string EnumStr = Enumerator->getNameAsString() + ":" + InitValStr; |
| Value *EnumStrVal = Builder.CreateGlobalString(EnumStr); |
| |
| ConstantInt *Flag = cast<ConstantInt>(EmitScalarExpr(E->getArg(1))); |
| Value *FlagValue = ConstantInt::get(Int64Ty, Flag->getSExtValue()); |
| Value *SeqNumVal = ConstantInt::get(Int32Ty, BuiltinSeqNum++); |
| |
| llvm::Function *IntrinsicFn = llvm::Intrinsic::getOrInsertDeclaration( |
| &CGM.getModule(), llvm::Intrinsic::bpf_preserve_enum_value, {}); |
| CallInst *Fn = |
| Builder.CreateCall(IntrinsicFn, {SeqNumVal, EnumStrVal, FlagValue}); |
| Fn->setMetadata(LLVMContext::MD_preserve_access_index, DbgInfo); |
| return Fn; |
| } |
| } |
| } |
| |
| llvm::Value *CodeGenFunction:: |
| BuildVector(ArrayRef<llvm::Value*> Ops) { |
| assert((Ops.size() & (Ops.size() - 1)) == 0 && |
| "Not a power-of-two sized vector!"); |
| bool AllConstants = true; |
| for (unsigned i = 0, e = Ops.size(); i != e && AllConstants; ++i) |
| AllConstants &= isa<Constant>(Ops[i]); |
| |
| // If this is a constant vector, create a ConstantVector. |
| if (AllConstants) { |
| SmallVector<llvm::Constant*, 16> CstOps; |
| for (unsigned i = 0, e = Ops.size(); i != e; ++i) |
| CstOps.push_back(cast<Constant>(Ops[i])); |
| return llvm::ConstantVector::get(CstOps); |
| } |
| |
| // Otherwise, insertelement the values to build the vector. |
| Value *Result = llvm::PoisonValue::get( |
| llvm::FixedVectorType::get(Ops[0]->getType(), Ops.size())); |
| |
| for (unsigned i = 0, e = Ops.size(); i != e; ++i) |
| Result = Builder.CreateInsertElement(Result, Ops[i], Builder.getInt64(i)); |
| |
| return Result; |
| } |
| |
| // Convert the mask from an integer type to a vector of i1. |
| static Value *getMaskVecValue(CodeGenFunction &CGF, Value *Mask, |
| unsigned NumElts) { |
| |
| auto *MaskTy = llvm::FixedVectorType::get( |
| CGF.Builder.getInt1Ty(), |
| cast<IntegerType>(Mask->getType())->getBitWidth()); |
| Value *MaskVec = CGF.Builder.CreateBitCast(Mask, MaskTy); |
| |
| // If we have less than 8 elements, then the starting mask was an i8 and |
| // we need to extract down to the right number of elements. |
| if (NumElts < 8) { |
| int Indices[4]; |
| for (unsigned i = 0; i != NumElts; ++i) |
| Indices[i] = i; |
| MaskVec = CGF.Builder.CreateShuffleVector( |
| MaskVec, MaskVec, ArrayRef(Indices, NumElts), "extract"); |
| } |
| return MaskVec; |
| } |
| |
| static Value *EmitX86MaskedStore(CodeGenFunction &CGF, ArrayRef<Value *> Ops, |
| Align Alignment) { |
| Value *Ptr = Ops[0]; |
| |
| Value *MaskVec = getMaskVecValue( |
| CGF, Ops[2], |
| cast<llvm::FixedVectorType>(Ops[1]->getType())->getNumElements()); |
| |
| return CGF.Builder.CreateMaskedStore(Ops[1], Ptr, Alignment, MaskVec); |
| } |
| |
| static Value *EmitX86MaskedLoad(CodeGenFunction &CGF, ArrayRef<Value *> Ops, |
| Align Alignment) { |
| llvm::Type *Ty = Ops[1]->getType(); |
| Value *Ptr = Ops[0]; |
| |
| Value *MaskVec = getMaskVecValue( |
| CGF, Ops[2], cast<llvm::FixedVectorType>(Ty)->getNumElements()); |
| |
| return CGF.Builder.CreateMaskedLoad(Ty, Ptr, Alignment, MaskVec, Ops[1]); |
| } |
| |
| static Value *EmitX86ExpandLoad(CodeGenFunction &CGF, |
| ArrayRef<Value *> Ops) { |
| auto *ResultTy = cast<llvm::VectorType>(Ops[1]->getType()); |
| Value *Ptr = Ops[0]; |
| |
| Value *MaskVec = getMaskVecValue( |
| CGF, Ops[2], cast<FixedVectorType>(ResultTy)->getNumElements()); |
| |
| llvm::Function *F = CGF.CGM.getIntrinsic(Intrinsic::masked_expandload, |
| ResultTy); |
| return CGF.Builder.CreateCall(F, { Ptr, MaskVec, Ops[1] }); |
| } |
| |
| static Value *EmitX86CompressExpand(CodeGenFunction &CGF, |
| ArrayRef<Value *> Ops, |
| bool IsCompress) { |
| auto *ResultTy = cast<llvm::FixedVectorType>(Ops[1]->getType()); |
| |
| Value *MaskVec = getMaskVecValue(CGF, Ops[2], ResultTy->getNumElements()); |
| |
| Intrinsic::ID IID = IsCompress ? Intrinsic::x86_avx512_mask_compress |
| : Intrinsic::x86_avx512_mask_expand; |
| llvm::Function *F = CGF.CGM.getIntrinsic(IID, ResultTy); |
| return CGF.Builder.CreateCall(F, { Ops[0], Ops[1], MaskVec }); |
| } |
| |
| static Value *EmitX86CompressStore(CodeGenFunction &CGF, |
| ArrayRef<Value *> Ops) { |
| auto *ResultTy = cast<llvm::FixedVectorType>(Ops[1]->getType()); |
| Value *Ptr = Ops[0]; |
| |
| Value *MaskVec = getMaskVecValue(CGF, Ops[2], ResultTy->getNumElements()); |
| |
| llvm::Function *F = CGF.CGM.getIntrinsic(Intrinsic::masked_compressstore, |
| ResultTy); |
| return CGF.Builder.CreateCall(F, { Ops[1], Ptr, MaskVec }); |
| } |
| |
| static Value *EmitX86MaskLogic(CodeGenFunction &CGF, Instruction::BinaryOps Opc, |
| ArrayRef<Value *> Ops, |
| bool InvertLHS = false) { |
| unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth(); |
| Value *LHS = getMaskVecValue(CGF, Ops[0], NumElts); |
| Value *RHS = getMaskVecValue(CGF, Ops[1], NumElts); |
| |
| if (InvertLHS) |
| LHS = CGF.Builder.CreateNot(LHS); |
| |
| return CGF.Builder.CreateBitCast(CGF.Builder.CreateBinOp(Opc, LHS, RHS), |
| Ops[0]->getType()); |
| } |
| |
| static Value *EmitX86FunnelShift(CodeGenFunction &CGF, Value *Op0, Value *Op1, |
| Value *Amt, bool IsRight) { |
| llvm::Type *Ty = Op0->getType(); |
| |
| // Amount may be scalar immediate, in which case create a splat vector. |
| // Funnel shifts amounts are treated as modulo and types are all power-of-2 so |
| // we only care about the lowest log2 bits anyway. |
| if (Amt->getType() != Ty) { |
| unsigned NumElts = cast<llvm::FixedVectorType>(Ty)->getNumElements(); |
| Amt = CGF.Builder.CreateIntCast(Amt, Ty->getScalarType(), false); |
| Amt = CGF.Builder.CreateVectorSplat(NumElts, Amt); |
| } |
| |
| unsigned IID = IsRight ? Intrinsic::fshr : Intrinsic::fshl; |
| Function *F = CGF.CGM.getIntrinsic(IID, Ty); |
| return CGF.Builder.CreateCall(F, {Op0, Op1, Amt}); |
| } |
| |
| static Value *EmitX86vpcom(CodeGenFunction &CGF, ArrayRef<Value *> Ops, |
| bool IsSigned) { |
| Value *Op0 = Ops[0]; |
| Value *Op1 = Ops[1]; |
| llvm::Type *Ty = Op0->getType(); |
| uint64_t Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x7; |
| |
| CmpInst::Predicate Pred; |
| switch (Imm) { |
| case 0x0: |
| Pred = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; |
| break; |
| case 0x1: |
| Pred = IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; |
| break; |
| case 0x2: |
| Pred = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; |
| break; |
| case 0x3: |
| Pred = IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; |
| break; |
| case 0x4: |
| Pred = ICmpInst::ICMP_EQ; |
| break; |
| case 0x5: |
| Pred = ICmpInst::ICMP_NE; |
| break; |
| case 0x6: |
| return llvm::Constant::getNullValue(Ty); // FALSE |
| case 0x7: |
| return llvm::Constant::getAllOnesValue(Ty); // TRUE |
| default: |
| llvm_unreachable("Unexpected XOP vpcom/vpcomu predicate"); |
| } |
| |
| Value *Cmp = CGF.Builder.CreateICmp(Pred, Op0, Op1); |
| Value *Res = CGF.Builder.CreateSExt(Cmp, Ty); |
| return Res; |
| } |
| |
| static Value *EmitX86Select(CodeGenFunction &CGF, |
| Value *Mask, Value *Op0, Value *Op1) { |
| |
| // If the mask is all ones just return first argument. |
| if (const auto *C = dyn_cast<Constant>(Mask)) |
| if (C->isAllOnesValue()) |
| return Op0; |
| |
| Mask = getMaskVecValue( |
| CGF, Mask, cast<llvm::FixedVectorType>(Op0->getType())->getNumElements()); |
| |
| return CGF.Builder.CreateSelect(Mask, Op0, Op1); |
| } |
| |
| static Value *EmitX86ScalarSelect(CodeGenFunction &CGF, |
| Value *Mask, Value *Op0, Value *Op1) { |
| // If the mask is all ones just return first argument. |
| if (const auto *C = dyn_cast<Constant>(Mask)) |
| if (C->isAllOnesValue()) |
| return Op0; |
| |
| auto *MaskTy = llvm::FixedVectorType::get( |
| CGF.Builder.getInt1Ty(), Mask->getType()->getIntegerBitWidth()); |
| Mask = CGF.Builder.CreateBitCast(Mask, MaskTy); |
| Mask = CGF.Builder.CreateExtractElement(Mask, (uint64_t)0); |
| return CGF.Builder.CreateSelect(Mask, Op0, Op1); |
| } |
| |
| static Value *EmitX86MaskedCompareResult(CodeGenFunction &CGF, Value *Cmp, |
| unsigned NumElts, Value *MaskIn) { |
| if (MaskIn) { |
| const auto *C = dyn_cast<Constant>(MaskIn); |
| if (!C || !C->isAllOnesValue()) |
| Cmp = CGF.Builder.CreateAnd(Cmp, getMaskVecValue(CGF, MaskIn, NumElts)); |
| } |
| |
| if (NumElts < 8) { |
| int Indices[8]; |
| for (unsigned i = 0; i != NumElts; ++i) |
| Indices[i] = i; |
| for (unsigned i = NumElts; i != 8; ++i) |
| Indices[i] = i % NumElts + NumElts; |
| Cmp = CGF.Builder.CreateShuffleVector( |
| Cmp, llvm::Constant::getNullValue(Cmp->getType()), Indices); |
| } |
| |
| return CGF.Builder.CreateBitCast(Cmp, |
| IntegerType::get(CGF.getLLVMContext(), |
| std::max(NumElts, 8U))); |
| } |
| |
| static Value *EmitX86MaskedCompare(CodeGenFunction &CGF, unsigned CC, |
| bool Signed, ArrayRef<Value *> Ops) { |
| assert((Ops.size() == 2 || Ops.size() == 4) && |
| "Unexpected number of arguments"); |
| unsigned NumElts = |
| cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements(); |
| Value *Cmp; |
| |
| if (CC == 3) { |
| Cmp = Constant::getNullValue( |
| llvm::FixedVectorType::get(CGF.Builder.getInt1Ty(), NumElts)); |
| } else if (CC == 7) { |
| Cmp = Constant::getAllOnesValue( |
| llvm::FixedVectorType::get(CGF.Builder.getInt1Ty(), NumElts)); |
| } else { |
| ICmpInst::Predicate Pred; |
| switch (CC) { |
| default: llvm_unreachable("Unknown condition code"); |
| case 0: Pred = ICmpInst::ICMP_EQ; break; |
| case 1: Pred = Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; break; |
| case 2: Pred = Signed ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; break; |
| case 4: Pred = ICmpInst::ICMP_NE; break; |
| case 5: Pred = Signed ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; break; |
| case 6: Pred = Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; break; |
| } |
| Cmp = CGF.Builder.CreateICmp(Pred, Ops[0], Ops[1]); |
| } |
| |
| Value *MaskIn = nullptr; |
| if (Ops.size() == 4) |
| MaskIn = Ops[3]; |
| |
| return EmitX86MaskedCompareResult(CGF, Cmp, NumElts, MaskIn); |
| } |
| |
| static Value *EmitX86ConvertToMask(CodeGenFunction &CGF, Value *In) { |
| Value *Zero = Constant::getNullValue(In->getType()); |
| return EmitX86MaskedCompare(CGF, 1, true, { In, Zero }); |
| } |
| |
| static Value *EmitX86ConvertIntToFp(CodeGenFunction &CGF, const CallExpr *E, |
| ArrayRef<Value *> Ops, bool IsSigned) { |
| unsigned Rnd = cast<llvm::ConstantInt>(Ops[3])->getZExtValue(); |
| llvm::Type *Ty = Ops[1]->getType(); |
| |
| Value *Res; |
| if (Rnd != 4) { |
| Intrinsic::ID IID = IsSigned ? Intrinsic::x86_avx512_sitofp_round |
| : Intrinsic::x86_avx512_uitofp_round; |
| Function *F = CGF.CGM.getIntrinsic(IID, { Ty, Ops[0]->getType() }); |
| Res = CGF.Builder.CreateCall(F, { Ops[0], Ops[3] }); |
| } else { |
| CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E); |
| Res = IsSigned ? CGF.Builder.CreateSIToFP(Ops[0], Ty) |
| : CGF.Builder.CreateUIToFP(Ops[0], Ty); |
| } |
| |
| return EmitX86Select(CGF, Ops[2], Res, Ops[1]); |
| } |
| |
| // Lowers X86 FMA intrinsics to IR. |
| static Value *EmitX86FMAExpr(CodeGenFunction &CGF, const CallExpr *E, |
| ArrayRef<Value *> Ops, unsigned BuiltinID, |
| bool IsAddSub) { |
| |
| bool Subtract = false; |
| Intrinsic::ID IID = Intrinsic::not_intrinsic; |
| switch (BuiltinID) { |
| default: break; |
| case clang::X86::BI__builtin_ia32_vfmsubph512_mask3: |
| Subtract = true; |
| [[fallthrough]]; |
| case clang::X86::BI__builtin_ia32_vfmaddph512_mask: |
| case clang::X86::BI__builtin_ia32_vfmaddph512_maskz: |
| case clang::X86::BI__builtin_ia32_vfmaddph512_mask3: |
| IID = llvm::Intrinsic::x86_avx512fp16_vfmadd_ph_512; |
| break; |
| case clang::X86::BI__builtin_ia32_vfmsubaddph512_mask3: |
| Subtract = true; |
| [[fallthrough]]; |
| case clang::X86::BI__builtin_ia32_vfmaddsubph512_mask: |
| case clang::X86::BI__builtin_ia32_vfmaddsubph512_maskz: |
| case clang::X86::BI__builtin_ia32_vfmaddsubph512_mask3: |
| IID = llvm::Intrinsic::x86_avx512fp16_vfmaddsub_ph_512; |
| break; |
| case clang::X86::BI__builtin_ia32_vfmsubps512_mask3: |
| Subtract = true; |
| [[fallthrough]]; |
| case clang::X86::BI__builtin_ia32_vfmaddps512_mask: |
| case clang::X86::BI__builtin_ia32_vfmaddps512_maskz: |
| case clang::X86::BI__builtin_ia32_vfmaddps512_mask3: |
| IID = llvm::Intrinsic::x86_avx512_vfmadd_ps_512; break; |
| case clang::X86::BI__builtin_ia32_vfmsubpd512_mask3: |
| Subtract = true; |
| [[fallthrough]]; |
| case clang::X86::BI__builtin_ia32_vfmaddpd512_mask: |
| case clang::X86::BI__builtin_ia32_vfmaddpd512_maskz: |
| case clang::X86::BI__builtin_ia32_vfmaddpd512_mask3: |
| IID = llvm::Intrinsic::x86_avx512_vfmadd_pd_512; break; |
| case clang::X86::BI__builtin_ia32_vfmsubaddps512_mask3: |
| Subtract = true; |
| [[fallthrough]]; |
| case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask: |
| case clang::X86::BI__builtin_ia32_vfmaddsubps512_maskz: |
| case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask3: |
| IID = llvm::Intrinsic::x86_avx512_vfmaddsub_ps_512; |
| break; |
| case clang::X86::BI__builtin_ia32_vfmsubaddpd512_mask3: |
| Subtract = true; |
| [[fallthrough]]; |
| case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask: |
| case clang::X86::BI__builtin_ia32_vfmaddsubpd512_maskz: |
| case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask3: |
| IID = llvm::Intrinsic::x86_avx512_vfmaddsub_pd_512; |
| break; |
| case clang::X86::BI__builtin_ia32_vfmsubph256_round_mask3: |
| Subtract = true; |
| LLVM_FALLTHROUGH; |
| case clang::X86::BI__builtin_ia32_vfmaddph256_round_mask: |
| case clang::X86::BI__builtin_ia32_vfmaddph256_round_maskz: |
| case clang::X86::BI__builtin_ia32_vfmaddph256_round_mask3: |
| IID = llvm::Intrinsic::x86_avx10_vfmaddph256; |
| break; |
| case clang::X86::BI__builtin_ia32_vfmsubaddph256_round_mask3: |
| Subtract = true; |
| LLVM_FALLTHROUGH; |
| case clang::X86::BI__builtin_ia32_vfmaddsubph256_round_mask: |
| case clang::X86::BI__builtin_ia32_vfmaddsubph256_round_maskz: |
| case clang::X86::BI__builtin_ia32_vfmaddsubph256_round_mask3: |
| IID = llvm::Intrinsic::x86_avx10_vfmaddsubph256; |
| break; |
| case clang::X86::BI__builtin_ia32_vfmsubps256_round_mask3: |
| Subtract = true; |
| LLVM_FALLTHROUGH; |
| case clang::X86::BI__builtin_ia32_vfmaddps256_round_mask: |
| case clang::X86::BI__builtin_ia32_vfmaddps256_round_maskz: |
| case clang::X86::BI__builtin_ia32_vfmaddps256_round_mask3: |
| IID = llvm::Intrinsic::x86_avx10_vfmaddps256; |
| break; |
| case clang::X86::BI__builtin_ia32_vfmsubpd256_round_mask3: |
| Subtract = true; |
| LLVM_FALLTHROUGH; |
| case clang::X86::BI__builtin_ia32_vfmaddpd256_round_mask: |
| case clang::X86::BI__builtin_ia32_vfmaddpd256_round_maskz: |
| case clang::X86::BI__builtin_ia32_vfmaddpd256_round_mask3: |
| IID = llvm::Intrinsic::x86_avx10_vfmaddpd256; |
| break; |
| case clang::X86::BI__builtin_ia32_vfmsubaddps256_round_mask3: |
| Subtract = true; |
| LLVM_FALLTHROUGH; |
| case clang::X86::BI__builtin_ia32_vfmaddsubps256_round_mask: |
| case clang::X86::BI__builtin_ia32_vfmaddsubps256_round_maskz: |
| case clang::X86::BI__builtin_ia32_vfmaddsubps256_round_mask3: |
| IID = llvm::Intrinsic::x86_avx10_vfmaddsubps256; |
| break; |
| case clang::X86::BI__builtin_ia32_vfmsubaddpd256_round_mask3: |
| Subtract = true; |
| LLVM_FALLTHROUGH; |
| case clang::X86::BI__builtin_ia32_vfmaddsubpd256_round_mask: |
| case clang::X86::BI__builtin_ia32_vfmaddsubpd256_round_maskz: |
| case clang::X86::BI__builtin_ia32_vfmaddsubpd256_round_mask3: |
| IID = llvm::Intrinsic::x86_avx10_vfmaddsubpd256; |
| break; |
| } |
| |
| Value *A = Ops[0]; |
| Value *B = Ops[1]; |
| Value *C = Ops[2]; |
| |
| if (Subtract) |
| C = CGF.Builder.CreateFNeg(C); |
| |
| Value *Res; |
| |
| // Only handle in case of _MM_FROUND_CUR_DIRECTION/4 (no rounding). |
| if (IID != Intrinsic::not_intrinsic && |
| (cast<llvm::ConstantInt>(Ops.back())->getZExtValue() != (uint64_t)4 || |
| IsAddSub)) { |
| Function *Intr = CGF.CGM.getIntrinsic(IID); |
| Res = CGF.Builder.CreateCall(Intr, {A, B, C, Ops.back() }); |
| } else { |
| llvm::Type *Ty = A->getType(); |
| Function *FMA; |
| if (CGF.Builder.getIsFPConstrained()) { |
| CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E); |
| FMA = CGF.CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, Ty); |
| Res = CGF.Builder.CreateConstrainedFPCall(FMA, {A, B, C}); |
| } else { |
| FMA = CGF.CGM.getIntrinsic(Intrinsic::fma, Ty); |
| Res = CGF.Builder.CreateCall(FMA, {A, B, C}); |
| } |
| } |
| |
| // Handle any required masking. |
| Value *MaskFalseVal = nullptr; |
| switch (BuiltinID) { |
| case clang::X86::BI__builtin_ia32_vfmaddph512_mask: |
| case clang::X86::BI__builtin_ia32_vfmaddps512_mask: |
| case clang::X86::BI__builtin_ia32_vfmaddpd512_mask: |
| case clang::X86::BI__builtin_ia32_vfmaddsubph512_mask: |
| case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask: |
| case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask: |
| case clang::X86::BI__builtin_ia32_vfmaddph256_round_mask: |
| case clang::X86::BI__builtin_ia32_vfmaddps256_round_mask: |
| case clang::X86::BI__builtin_ia32_vfmaddpd256_round_mask: |
| case clang::X86::BI__builtin_ia32_vfmaddsubph256_round_mask: |
| case clang::X86::BI__builtin_ia32_vfmaddsubps256_round_mask: |
| case clang::X86::BI__builtin_ia32_vfmaddsubpd256_round_mask: |
| MaskFalseVal = Ops[0]; |
| break; |
| case clang::X86::BI__builtin_ia32_vfmaddph512_maskz: |
| case clang::X86::BI__builtin_ia32_vfmaddps512_maskz: |
| case clang::X86::BI__builtin_ia32_vfmaddpd512_maskz: |
| case clang::X86::BI__builtin_ia32_vfmaddsubph512_maskz: |
| case clang::X86::BI__builtin_ia32_vfmaddsubps512_maskz: |
| case clang::X86::BI__builtin_ia32_vfmaddsubpd512_maskz: |
| case clang::X86::BI__builtin_ia32_vfmaddph256_round_maskz: |
| case clang::X86::BI__builtin_ia32_vfmaddps256_round_maskz: |
| case clang::X86::BI__builtin_ia32_vfmaddpd256_round_maskz: |
| case clang::X86::BI__builtin_ia32_vfmaddsubph256_round_maskz: |
| case clang::X86::BI__builtin_ia32_vfmaddsubps256_round_maskz: |
| case clang::X86::BI__builtin_ia32_vfmaddsubpd256_round_maskz: |
| MaskFalseVal = Constant::getNullValue(Ops[0]->getType()); |
| break; |
| case clang::X86::BI__builtin_ia32_vfmsubph512_mask3: |
| case clang::X86::BI__builtin_ia32_vfmaddph512_mask3: |
| case clang::X86::BI__builtin_ia32_vfmsubps512_mask3: |
| case clang::X86::BI__builtin_ia32_vfmaddps512_mask3: |
| case clang::X86::BI__builtin_ia32_vfmsubpd512_mask3: |
| case clang::X86::BI__builtin_ia32_vfmaddpd512_mask3: |
| case clang::X86::BI__builtin_ia32_vfmsubaddph512_mask3: |
| case clang::X86::BI__builtin_ia32_vfmaddsubph512_mask3: |
| case clang::X86::BI__builtin_ia32_vfmsubaddps512_mask3: |
| case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask3: |
| case clang::X86::BI__builtin_ia32_vfmsubaddpd512_mask3: |
| case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask3: |
| case clang::X86::BI__builtin_ia32_vfmsubph256_round_mask3: |
| case clang::X86::BI__builtin_ia32_vfmaddph256_round_mask3: |
| case clang::X86::BI__builtin_ia32_vfmsubps256_round_mask3: |
| case clang::X86::BI__builtin_ia32_vfmaddps256_round_mask3: |
| case clang::X86::BI__builtin_ia32_vfmsubpd256_round_mask3: |
| case clang::X86::BI__builtin_ia32_vfmaddpd256_round_mask3: |
| case clang::X86::BI__builtin_ia32_vfmsubaddph256_round_mask3: |
| case clang::X86::BI__builtin_ia32_vfmaddsubph256_round_mask3: |
| case clang::X86::BI__builtin_ia32_vfmsubaddps256_round_mask3: |
| case clang::X86::BI__builtin_ia32_vfmaddsubps256_round_mask3: |
| case clang::X86::BI__builtin_ia32_vfmsubaddpd256_round_mask3: |
| case clang::X86::BI__builtin_ia32_vfmaddsubpd256_round_mask3: |
| MaskFalseVal = Ops[2]; |
| break; |
| } |
| |
| if (MaskFalseVal) |
| return EmitX86Select(CGF, Ops[3], Res, MaskFalseVal); |
| |
| return Res; |
| } |
| |
| static Value *EmitScalarFMAExpr(CodeGenFunction &CGF, const CallExpr *E, |
| MutableArrayRef<Value *> Ops, Value *Upper, |
| bool ZeroMask = false, unsigned PTIdx = 0, |
| bool NegAcc = false) { |
| unsigned Rnd = 4; |
| if (Ops.size() > 4) |
| Rnd = cast<llvm::ConstantInt>(Ops[4])->getZExtValue(); |
| |
| if (NegAcc) |
| Ops[2] = CGF.Builder.CreateFNeg(Ops[2]); |
| |
| Ops[0] = CGF.Builder.CreateExtractElement(Ops[0], (uint64_t)0); |
| Ops[1] = CGF.Builder.CreateExtractElement(Ops[1], (uint64_t)0); |
| Ops[2] = CGF.Builder.CreateExtractElement(Ops[2], (uint64_t)0); |
| Value *Res; |
| if (Rnd != 4) { |
| Intrinsic::ID IID; |
| |
| switch (Ops[0]->getType()->getPrimitiveSizeInBits()) { |
| case 16: |
| IID = Intrinsic::x86_avx512fp16_vfmadd_f16; |
| break; |
| case 32: |
| IID = Intrinsic::x86_avx512_vfmadd_f32; |
| break; |
| case 64: |
| IID = Intrinsic::x86_avx512_vfmadd_f64; |
| break; |
| default: |
| llvm_unreachable("Unexpected size"); |
| } |
| Res = CGF.Builder.CreateCall(CGF.CGM.getIntrinsic(IID), |
| {Ops[0], Ops[1], Ops[2], Ops[4]}); |
| } else if (CGF.Builder.getIsFPConstrained()) { |
| CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E); |
| Function *FMA = CGF.CGM.getIntrinsic( |
| Intrinsic::experimental_constrained_fma, Ops[0]->getType()); |
| Res = CGF.Builder.CreateConstrainedFPCall(FMA, Ops.slice(0, 3)); |
| } else { |
| Function *FMA = CGF.CGM.getIntrinsic(Intrinsic::fma, Ops[0]->getType()); |
| Res = CGF.Builder.CreateCall(FMA, Ops.slice(0, 3)); |
| } |
| // If we have more than 3 arguments, we need to do masking. |
| if (Ops.size() > 3) { |
| Value *PassThru = ZeroMask ? Constant::getNullValue(Res->getType()) |
| : Ops[PTIdx]; |
| |
| // If we negated the accumulator and the its the PassThru value we need to |
| // bypass the negate. Conveniently Upper should be the same thing in this |
| // case. |
| if (NegAcc && PTIdx == 2) |
| PassThru = CGF.Builder.CreateExtractElement(Upper, (uint64_t)0); |
| |
| Res = EmitX86ScalarSelect(CGF, Ops[3], Res, PassThru); |
| } |
| return CGF.Builder.CreateInsertElement(Upper, Res, (uint64_t)0); |
| } |
| |
| static Value *EmitX86Muldq(CodeGenFunction &CGF, bool IsSigned, |
| ArrayRef<Value *> Ops) { |
| llvm::Type *Ty = Ops[0]->getType(); |
| // Arguments have a vXi32 type so cast to vXi64. |
| Ty = llvm::FixedVectorType::get(CGF.Int64Ty, |
| Ty->getPrimitiveSizeInBits() / 64); |
| Value *LHS = CGF.Builder.CreateBitCast(Ops[0], Ty); |
| Value *RHS = CGF.Builder.CreateBitCast(Ops[1], Ty); |
| |
| if (IsSigned) { |
| // Shift left then arithmetic shift right. |
| Constant *ShiftAmt = ConstantInt::get(Ty, 32); |
| LHS = CGF.Builder.CreateShl(LHS, ShiftAmt); |
| LHS = CGF.Builder.CreateAShr(LHS, ShiftAmt); |
| RHS = CGF.Builder.CreateShl(RHS, ShiftAmt); |
| RHS = CGF.Builder.CreateAShr(RHS, ShiftAmt); |
| } else { |
| // Clear the upper bits. |
| Constant *Mask = ConstantInt::get(Ty, 0xffffffff); |
| LHS = CGF.Builder.CreateAnd(LHS, Mask); |
| RHS = CGF.Builder.CreateAnd(RHS, Mask); |
| } |
| |
| return CGF.Builder.CreateMul(LHS, RHS); |
| } |
| |
| // Emit a masked pternlog intrinsic. This only exists because the header has to |
| // use a macro and we aren't able to pass the input argument to a pternlog |
| // builtin and a select builtin without evaluating it twice. |
| static Value *EmitX86Ternlog(CodeGenFunction &CGF, bool ZeroMask, |
| ArrayRef<Value *> Ops) { |
| llvm::Type *Ty = Ops[0]->getType(); |
| |
| unsigned VecWidth = Ty->getPrimitiveSizeInBits(); |
| unsigned EltWidth = Ty->getScalarSizeInBits(); |
| Intrinsic::ID IID; |
| if (VecWidth == 128 && EltWidth == 32) |
| IID = Intrinsic::x86_avx512_pternlog_d_128; |
| else if (VecWidth == 256 && EltWidth == 32) |
| IID = Intrinsic::x86_avx512_pternlog_d_256; |
| else if (VecWidth == 512 && EltWidth == 32) |
| IID = Intrinsic::x86_avx512_pternlog_d_512; |
| else if (VecWidth == 128 && EltWidth == 64) |
| IID = Intrinsic::x86_avx512_pternlog_q_128; |
| else if (VecWidth == 256 && EltWidth == 64) |
| IID = Intrinsic::x86_avx512_pternlog_q_256; |
| else if (VecWidth == 512 && EltWidth == 64) |
| IID = Intrinsic::x86_avx512_pternlog_q_512; |
| else |
| llvm_unreachable("Unexpected intrinsic"); |
| |
| Value *Ternlog = CGF.Builder.CreateCall(CGF.CGM.getIntrinsic(IID), |
| Ops.drop_back()); |
| Value *PassThru = ZeroMask ? ConstantAggregateZero::get(Ty) : Ops[0]; |
| return EmitX86Select(CGF, Ops[4], Ternlog, PassThru); |
| } |
| |
| static Value *EmitX86SExtMask(CodeGenFunction &CGF, Value *Op, |
| llvm::Type *DstTy) { |
| unsigned NumberOfElements = |
| cast<llvm::FixedVectorType>(DstTy)->getNumElements(); |
| Value *Mask = getMaskVecValue(CGF, Op, NumberOfElements); |
| return CGF.Builder.CreateSExt(Mask, DstTy, "vpmovm2"); |
| } |
| |
| Value *CodeGenFunction::EmitX86CpuIs(const CallExpr *E) { |
| const Expr *CPUExpr = E->getArg(0)->IgnoreParenCasts(); |
| StringRef CPUStr = cast<clang::StringLiteral>(CPUExpr)->getString(); |
| return EmitX86CpuIs(CPUStr); |
| } |
| |
| // Convert F16 halfs to floats. |
| static Value *EmitX86CvtF16ToFloatExpr(CodeGenFunction &CGF, |
| ArrayRef<Value *> Ops, |
| llvm::Type *DstTy) { |
| assert((Ops.size() == 1 || Ops.size() == 3 || Ops.size() == 4) && |
| "Unknown cvtph2ps intrinsic"); |
| |
| // If the SAE intrinsic doesn't use default rounding then we can't upgrade. |
| if (Ops.size() == 4 && cast<llvm::ConstantInt>(Ops[3])->getZExtValue() != 4) { |
| Function *F = |
| CGF.CGM.getIntrinsic(Intrinsic::x86_avx512_mask_vcvtph2ps_512); |
| return CGF.Builder.CreateCall(F, {Ops[0], Ops[1], Ops[2], Ops[3]}); |
| } |
| |
| unsigned NumDstElts = cast<llvm::FixedVectorType>(DstTy)->getNumElements(); |
| Value *Src = Ops[0]; |
| |
| // Extract the subvector. |
| if (NumDstElts != |
| cast<llvm::FixedVectorType>(Src->getType())->getNumElements()) { |
| assert(NumDstElts == 4 && "Unexpected vector size"); |
| Src = CGF.Builder.CreateShuffleVector(Src, ArrayRef<int>{0, 1, 2, 3}); |
| } |
| |
| // Bitcast from vXi16 to vXf16. |
| auto *HalfTy = llvm::FixedVectorType::get( |
| llvm::Type::getHalfTy(CGF.getLLVMContext()), NumDstElts); |
| Src = CGF.Builder.CreateBitCast(Src, HalfTy); |
| |
| // Perform the fp-extension. |
| Value *Res = CGF.Builder.CreateFPExt(Src, DstTy, "cvtph2ps"); |
| |
| if (Ops.size() >= 3) |
| Res = EmitX86Select(CGF, Ops[2], Res, Ops[1]); |
| return Res; |
| } |
| |
| Value *CodeGenFunction::EmitX86CpuIs(StringRef CPUStr) { |
| |
| llvm::Type *Int32Ty = Builder.getInt32Ty(); |
| |
| // Matching the struct layout from the compiler-rt/libgcc structure that is |
| // filled in: |
| // unsigned int __cpu_vendor; |
| // unsigned int __cpu_type; |
| // unsigned int __cpu_subtype; |
| // unsigned int __cpu_features[1]; |
| llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty, Int32Ty, |
| llvm::ArrayType::get(Int32Ty, 1)); |
| |
| // Grab the global __cpu_model. |
| llvm::Constant *CpuModel = CGM.CreateRuntimeVariable(STy, "__cpu_model"); |
| cast<llvm::GlobalValue>(CpuModel)->setDSOLocal(true); |
| |
| // Calculate the index needed to access the correct field based on the |
| // range. Also adjust the expected value. |
| unsigned Index; |
| unsigned Value; |
| std::tie(Index, Value) = StringSwitch<std::pair<unsigned, unsigned>>(CPUStr) |
| #define X86_VENDOR(ENUM, STRING) \ |
| .Case(STRING, {0u, static_cast<unsigned>(llvm::X86::ENUM)}) |
| #define X86_CPU_TYPE_ALIAS(ENUM, ALIAS) \ |
| .Case(ALIAS, {1u, static_cast<unsigned>(llvm::X86::ENUM)}) |
| #define X86_CPU_TYPE(ENUM, STR) \ |
| .Case(STR, {1u, static_cast<unsigned>(llvm::X86::ENUM)}) |
| #define X86_CPU_SUBTYPE_ALIAS(ENUM, ALIAS) \ |
| .Case(ALIAS, {2u, static_cast<unsigned>(llvm::X86::ENUM)}) |
| #define X86_CPU_SUBTYPE(ENUM, STR) \ |
| .Case(STR, {2u, static_cast<unsigned>(llvm::X86::ENUM)}) |
| #include "llvm/TargetParser/X86TargetParser.def" |
| .Default({0, 0}); |
| assert(Value != 0 && "Invalid CPUStr passed to CpuIs"); |
| |
| // Grab the appropriate field from __cpu_model. |
| llvm::Value *Idxs[] = {ConstantInt::get(Int32Ty, 0), |
| ConstantInt::get(Int32Ty, Index)}; |
| llvm::Value *CpuValue = Builder.CreateInBoundsGEP(STy, CpuModel, Idxs); |
| CpuValue = Builder.CreateAlignedLoad(Int32Ty, CpuValue, |
| CharUnits::fromQuantity(4)); |
| |
| // Check the value of the field against the requested value. |
| return Builder.CreateICmpEQ(CpuValue, |
| llvm::ConstantInt::get(Int32Ty, Value)); |
| } |
| |
| Value *CodeGenFunction::EmitX86CpuSupports(const CallExpr *E) { |
| const Expr *FeatureExpr = E->getArg(0)->IgnoreParenCasts(); |
| StringRef FeatureStr = cast<StringLiteral>(FeatureExpr)->getString(); |
| if (!getContext().getTargetInfo().validateCpuSupports(FeatureStr)) |
| return Builder.getFalse(); |
| return EmitX86CpuSupports(FeatureStr); |
| } |
| |
| Value *CodeGenFunction::EmitX86CpuSupports(ArrayRef<StringRef> FeatureStrs) { |
| return EmitX86CpuSupports(llvm::X86::getCpuSupportsMask(FeatureStrs)); |
| } |
| |
| llvm::Value * |
| CodeGenFunction::EmitX86CpuSupports(std::array<uint32_t, 4> FeatureMask) { |
| Value *Result = Builder.getTrue(); |
| if (FeatureMask[0] != 0) { |
| // Matching the struct layout from the compiler-rt/libgcc structure that is |
| // filled in: |
| // unsigned int __cpu_vendor; |
| // unsigned int __cpu_type; |
| // unsigned int __cpu_subtype; |
| // unsigned int __cpu_features[1]; |
| llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty, Int32Ty, |
| llvm::ArrayType::get(Int32Ty, 1)); |
| |
| // Grab the global __cpu_model. |
| llvm::Constant *CpuModel = CGM.CreateRuntimeVariable(STy, "__cpu_model"); |
| cast<llvm::GlobalValue>(CpuModel)->setDSOLocal(true); |
| |
| // Grab the first (0th) element from the field __cpu_features off of the |
| // global in the struct STy. |
| Value *Idxs[] = {Builder.getInt32(0), Builder.getInt32(3), |
| Builder.getInt32(0)}; |
| Value *CpuFeatures = Builder.CreateInBoundsGEP(STy, CpuModel, Idxs); |
| Value *Features = Builder.CreateAlignedLoad(Int32Ty, CpuFeatures, |
| CharUnits::fromQuantity(4)); |
| |
| // Check the value of the bit corresponding to the feature requested. |
| Value *Mask = Builder.getInt32(FeatureMask[0]); |
| Value *Bitset = Builder.CreateAnd(Features, Mask); |
| Value *Cmp = Builder.CreateICmpEQ(Bitset, Mask); |
| Result = Builder.CreateAnd(Result, Cmp); |
| } |
| |
| llvm::Type *ATy = llvm::ArrayType::get(Int32Ty, 3); |
| llvm::Constant *CpuFeatures2 = |
| CGM.CreateRuntimeVariable(ATy, "__cpu_features2"); |
| cast<llvm::GlobalValue>(CpuFeatures2)->setDSOLocal(true); |
| for (int i = 1; i != 4; ++i) { |
| const uint32_t M = FeatureMask[i]; |
| if (!M) |
| continue; |
| Value *Idxs[] = {Builder.getInt32(0), Builder.getInt32(i - 1)}; |
| Value *Features = Builder.CreateAlignedLoad( |
| Int32Ty, Builder.CreateInBoundsGEP(ATy, CpuFeatures2, Idxs), |
| CharUnits::fromQuantity(4)); |
| // Check the value of the bit corresponding to the feature requested. |
| Value *Mask = Builder.getInt32(M); |
| Value *Bitset = Builder.CreateAnd(Features, Mask); |
| Value *Cmp = Builder.CreateICmpEQ(Bitset, Mask); |
| Result = Builder.CreateAnd(Result, Cmp); |
| } |
| |
| return Result; |
| } |
| |
| Value *CodeGenFunction::EmitAArch64CpuInit() { |
| llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false); |
| llvm::FunctionCallee Func = |
| CGM.CreateRuntimeFunction(FTy, "__init_cpu_features_resolver"); |
| cast<llvm::GlobalValue>(Func.getCallee())->setDSOLocal(true); |
| cast<llvm::GlobalValue>(Func.getCallee()) |
| ->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); |
| return Builder.CreateCall(Func); |
| } |
| |
| Value *CodeGenFunction::EmitRISCVCpuInit() { |
| llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, {VoidPtrTy}, false); |
| llvm::FunctionCallee Func = |
| CGM.CreateRuntimeFunction(FTy, "__init_riscv_feature_bits"); |
| auto *CalleeGV = cast<llvm::GlobalValue>(Func.getCallee()); |
| CalleeGV->setDSOLocal(true); |
| CalleeGV->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); |
| return Builder.CreateCall(Func, {llvm::ConstantPointerNull::get(VoidPtrTy)}); |
| } |
| |
| Value *CodeGenFunction::EmitX86CpuInit() { |
| llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, |
| /*Variadic*/ false); |
| llvm::FunctionCallee Func = |
| CGM.CreateRuntimeFunction(FTy, "__cpu_indicator_init"); |
| cast<llvm::GlobalValue>(Func.getCallee())->setDSOLocal(true); |
| cast<llvm::GlobalValue>(Func.getCallee()) |
| ->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); |
| return Builder.CreateCall(Func); |
| } |
| |
| Value *CodeGenFunction::EmitAArch64CpuSupports(const CallExpr *E) { |
| const Expr *ArgExpr = E->getArg(0)->IgnoreParenCasts(); |
| StringRef ArgStr = cast<StringLiteral>(ArgExpr)->getString(); |
| llvm::SmallVector<StringRef, 8> Features; |
| ArgStr.split(Features, "+"); |
| for (auto &Feature : Features) { |
| Feature = Feature.trim(); |
| if (!llvm::AArch64::parseFMVExtension(Feature)) |
| return Builder.getFalse(); |
| if (Feature != "default") |
| Features.push_back(Feature); |
| } |
| return EmitAArch64CpuSupports(Features); |
| } |
| |
| llvm::Value * |
| CodeGenFunction::EmitAArch64CpuSupports(ArrayRef<StringRef> FeaturesStrs) { |
| uint64_t FeaturesMask = llvm::AArch64::getCpuSupportsMask(FeaturesStrs); |
| Value *Result = Builder.getTrue(); |
| if (FeaturesMask != 0) { |
| // Get features from structure in runtime library |
| // struct { |
| // unsigned long long features; |
| // } __aarch64_cpu_features; |
| llvm::Type *STy = llvm::StructType::get(Int64Ty); |
| llvm::Constant *AArch64CPUFeatures = |
| CGM.CreateRuntimeVariable(STy, "__aarch64_cpu_features"); |
| cast<llvm::GlobalValue>(AArch64CPUFeatures)->setDSOLocal(true); |
| llvm::Value *CpuFeatures = Builder.CreateGEP( |
| STy, AArch64CPUFeatures, |
| {ConstantInt::get(Int32Ty, 0), ConstantInt::get(Int32Ty, 0)}); |
| Value *Features = Builder.CreateAlignedLoad(Int64Ty, CpuFeatures, |
| CharUnits::fromQuantity(8)); |
| Value *Mask = Builder.getInt64(FeaturesMask); |
| Value *Bitset = Builder.CreateAnd(Features, Mask); |
| Value *Cmp = Builder.CreateICmpEQ(Bitset, Mask); |
| Result = Builder.CreateAnd(Result, Cmp); |
| } |
| return Result; |
| } |
| |
| Value *CodeGenFunction::EmitRISCVCpuSupports(const CallExpr *E) { |
| |
| const Expr *FeatureExpr = E->getArg(0)->IgnoreParenCasts(); |
| StringRef FeatureStr = cast<StringLiteral>(FeatureExpr)->getString(); |
| if (!getContext().getTargetInfo().validateCpuSupports(FeatureStr)) |
| return Builder.getFalse(); |
| |
| return EmitRISCVCpuSupports(ArrayRef<StringRef>(FeatureStr)); |
| } |
| |
| static Value *loadRISCVFeatureBits(unsigned Index, CGBuilderTy &Builder, |
| CodeGenModule &CGM) { |
| llvm::Type *Int32Ty = Builder.getInt32Ty(); |
| llvm::Type *Int64Ty = Builder.getInt64Ty(); |
| llvm::ArrayType *ArrayOfInt64Ty = |
| llvm::ArrayType::get(Int64Ty, llvm::RISCVISAInfo::FeatureBitSize); |
| llvm::Type *StructTy = llvm::StructType::get(Int32Ty, ArrayOfInt64Ty); |
| llvm::Constant *RISCVFeaturesBits = |
| CGM.CreateRuntimeVariable(StructTy, "__riscv_feature_bits"); |
| cast<llvm::GlobalValue>(RISCVFeaturesBits)->setDSOLocal(true); |
| Value *IndexVal = llvm::ConstantInt::get(Int32Ty, Index); |
| llvm::Value *GEPIndices[] = {Builder.getInt32(0), Builder.getInt32(1), |
| IndexVal}; |
| Value *Ptr = |
| Builder.CreateInBoundsGEP(StructTy, RISCVFeaturesBits, GEPIndices); |
| Value *FeaturesBit = |
| Builder.CreateAlignedLoad(Int64Ty, Ptr, CharUnits::fromQuantity(8)); |
| return FeaturesBit; |
| } |
| |
| Value *CodeGenFunction::EmitRISCVCpuSupports(ArrayRef<StringRef> FeaturesStrs) { |
| const unsigned RISCVFeatureLength = llvm::RISCVISAInfo::FeatureBitSize; |
| uint64_t RequireBitMasks[RISCVFeatureLength] = {0}; |
| |
| for (auto Feat : FeaturesStrs) { |
| auto [GroupID, BitPos] = RISCVISAInfo::getRISCVFeaturesBitsInfo(Feat); |
| |
| // If there isn't BitPos for this feature, skip this version. |
| // It also report the warning to user during compilation. |
| if (BitPos == -1) |
| return Builder.getFalse(); |
| |
| RequireBitMasks[GroupID] |= (1ULL << BitPos); |
| } |
| |
| Value *Result = nullptr; |
| for (unsigned Idx = 0; Idx < RISCVFeatureLength; Idx++) { |
| if (RequireBitMasks[Idx] == 0) |
| continue; |
| |
| Value *Mask = Builder.getInt64(RequireBitMasks[Idx]); |
| Value *Bitset = |
| Builder.CreateAnd(loadRISCVFeatureBits(Idx, Builder, CGM), Mask); |
| Value *CmpV = Builder.CreateICmpEQ(Bitset, Mask); |
| Result = (!Result) ? CmpV : Builder.CreateAnd(Result, CmpV); |
| } |
| |
| assert(Result && "Should have value here."); |
| |
| return Result; |
| } |
| |
| Value *CodeGenFunction::EmitX86BuiltinExpr(unsigned BuiltinID, |
| const CallExpr *E) { |
| if (BuiltinID == Builtin::BI__builtin_cpu_is) |
| return EmitX86CpuIs(E); |
| if (BuiltinID == Builtin::BI__builtin_cpu_supports) |
| return EmitX86CpuSupports(E); |
| if (BuiltinID == Builtin::BI__builtin_cpu_init) |
| return EmitX86CpuInit(); |
| |
| // Handle MSVC intrinsics before argument evaluation to prevent double |
| // evaluation. |
| if (std::optional<MSVCIntrin> MsvcIntId = translateX86ToMsvcIntrin(BuiltinID)) |
| return EmitMSVCBuiltinExpr(*MsvcIntId, E); |
| |
| SmallVector<Value*, 4> Ops; |
| bool IsMaskFCmp = false; |
| bool IsConjFMA = false; |
| |
| // Find out if any arguments are required to be integer constant expressions. |
| unsigned ICEArguments = 0; |
| ASTContext::GetBuiltinTypeError Error; |
| getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments); |
| assert(Error == ASTContext::GE_None && "Should not codegen an error"); |
| |
| for (unsigned i = 0, e = E->getNumArgs(); i != e; i++) { |
| Ops.push_back(EmitScalarOrConstFoldImmArg(ICEArguments, i, E)); |
| } |
| |
| // These exist so that the builtin that takes an immediate can be bounds |
| // checked by clang to avoid passing bad immediates to the backend. Since |
| // AVX has a larger immediate than SSE we would need separate builtins to |
| // do the different bounds checking. Rather than create a clang specific |
| // SSE only builtin, this implements eight separate builtins to match gcc |
| // implementation. |
| auto getCmpIntrinsicCall = [this, &Ops](Intrinsic::ID ID, unsigned Imm) { |
| Ops.push_back(llvm::ConstantInt::get(Int8Ty, Imm)); |
| llvm::Function *F = CGM.getIntrinsic(ID); |
| return Builder.CreateCall(F, Ops); |
| }; |
| |
| // For the vector forms of FP comparisons, translate the builtins directly to |
| // IR. |
| // TODO: The builtins could be removed if the SSE header files used vector |
| // extension comparisons directly (vector ordered/unordered may need |
| // additional support via __builtin_isnan()). |
| auto getVectorFCmpIR = [this, &Ops, E](CmpInst::Predicate Pred, |
| bool IsSignaling) { |
| CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E); |
| Value *Cmp; |
| if (IsSignaling) |
| Cmp = Builder.CreateFCmpS(Pred, Ops[0], Ops[1]); |
| else |
| Cmp = Builder.CreateFCmp(Pred, Ops[0], Ops[1]); |
| llvm::VectorType *FPVecTy = cast<llvm::VectorType>(Ops[0]->getType()); |
| llvm::VectorType *IntVecTy = llvm::VectorType::getInteger(FPVecTy); |
| Value *Sext = Builder.CreateSExt(Cmp, IntVecTy); |
| return Builder.CreateBitCast(Sext, FPVecTy); |
| }; |
| |
| switch (BuiltinID) { |
| default: return nullptr; |
| case X86::BI_mm_prefetch: { |
| Value *Address = Ops[0]; |
| ConstantInt *C = cast<ConstantInt>(Ops[1]); |
| Value *RW = ConstantInt::get(Int32Ty, (C->getZExtValue() >> 2) & 0x1); |
| Value *Locality = ConstantInt::get(Int32Ty, C->getZExtValue() & 0x3); |
| Value *Data = ConstantInt::get(Int32Ty, 1); |
| Function *F = CGM.getIntrinsic(Intrinsic::prefetch, Address->getType()); |
| return Builder.CreateCall(F, {Address, RW, Locality, Data}); |
| } |
| case X86::BI_mm_clflush: { |
| return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_clflush), |
| Ops[0]); |
| } |
| case X86::BI_mm_lfence: { |
| return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_lfence)); |
| } |
| case X86::BI_mm_mfence: { |
| return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_mfence)); |
| } |
| case X86::BI_mm_sfence: { |
| return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_sfence)); |
| } |
| case X86::BI_mm_pause: { |
| return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_pause)); |
| } |
| case X86::BI__rdtsc: { |
| return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_rdtsc)); |
| } |
| case X86::BI__builtin_ia32_rdtscp: { |
| Value *Call = Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_rdtscp)); |
| Builder.CreateDefaultAlignedStore(Builder.CreateExtractValue(Call, 1), |
| Ops[0]); |
| return Builder.CreateExtractValue(Call, 0); |
| } |
| case X86::BI__builtin_ia32_lzcnt_u16: |
| case X86::BI__builtin_ia32_lzcnt_u32: |
| case X86::BI__builtin_ia32_lzcnt_u64: { |
| Function *F = CGM.getIntrinsic(Intrinsic::ctlz, Ops[0]->getType()); |
| return Builder.CreateCall(F, {Ops[0], Builder.getInt1(false)}); |
| } |
| case X86::BI__builtin_ia32_tzcnt_u16: |
| case X86::BI__builtin_ia32_tzcnt_u32: |
| case X86::BI__builtin_ia32_tzcnt_u64: { |
| Function *F = CGM.getIntrinsic(Intrinsic::cttz, Ops[0]->getType()); |
| return Builder.CreateCall(F, {Ops[0], Builder.getInt1(false)}); |
| } |
| case X86::BI__builtin_ia32_undef128: |
| case X86::BI__builtin_ia32_undef256: |
| case X86::BI__builtin_ia32_undef512: |
| // The x86 definition of "undef" is not the same as the LLVM definition |
| // (PR32176). We leave optimizing away an unnecessary zero constant to the |
| // IR optimizer and backend. |
| // TODO: If we had a "freeze" IR instruction to generate a fixed undef |
| // value, we should use that here instead of a zero. |
| return llvm::Constant::getNullValue(ConvertType(E->getType())); |
| case X86::BI__builtin_ia32_vec_ext_v4hi: |
| case X86::BI__builtin_ia32_vec_ext_v16qi: |
| case X86::BI__builtin_ia32_vec_ext_v8hi: |
| case X86::BI__builtin_ia32_vec_ext_v4si: |
| case X86::BI__builtin_ia32_vec_ext_v4sf: |
| case X86::BI__builtin_ia32_vec_ext_v2di: |
| case X86::BI__builtin_ia32_vec_ext_v32qi: |
| case X86::BI__builtin_ia32_vec_ext_v16hi: |
| case X86::BI__builtin_ia32_vec_ext_v8si: |
| case X86::BI__builtin_ia32_vec_ext_v4di: { |
| unsigned NumElts = |
| cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements(); |
| uint64_t Index = cast<ConstantInt>(Ops[1])->getZExtValue(); |
| Index &= NumElts - 1; |
| // These builtins exist so we can ensure the index is an ICE and in range. |
| // Otherwise we could just do this in the header file. |
| return Builder.CreateExtractElement(Ops[0], Index); |
| } |
| case X86::BI__builtin_ia32_vec_set_v4hi: |
| case X86::BI__builtin_ia32_vec_set_v16qi: |
| case X86::BI__builtin_ia32_vec_set_v8hi: |
| case X86::BI__builtin_ia32_vec_set_v4si: |
| case X86::BI__builtin_ia32_vec_set_v2di: |
| case X86::BI__builtin_ia32_vec_set_v32qi: |
| case X86::BI__builtin_ia32_vec_set_v16hi: |
| case X86::BI__builtin_ia32_vec_set_v8si: |
| case X86::BI__builtin_ia32_vec_set_v4di: { |
| unsigned NumElts = |
| cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements(); |
| unsigned Index = cast<ConstantInt>(Ops[2])->getZExtValue(); |
| Index &= NumElts - 1; |
| // These builtins exist so we can ensure the index is an ICE and in range. |
| // Otherwise we could just do this in the header file. |
| return Builder.CreateInsertElement(Ops[0], Ops[1], Index); |
| } |
| case X86::BI_mm_setcsr: |
| case X86::BI__builtin_ia32_ldmxcsr: { |
| RawAddress Tmp = CreateMemTemp(E->getArg(0)->getType()); |
| Builder.CreateStore(Ops[0], Tmp); |
| return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_ldmxcsr), |
| Tmp.getPointer()); |
| } |
| case X86::BI_mm_getcsr: |
| case X86::BI__builtin_ia32_stmxcsr: { |
| RawAddress Tmp = CreateMemTemp(E->getType()); |
| Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_stmxcsr), |
| Tmp.getPointer()); |
| return Builder.CreateLoad(Tmp, "stmxcsr"); |
| } |
| case X86::BI__builtin_ia32_xsave: |
| case X86::BI__builtin_ia32_xsave64: |
| case X86::BI__builtin_ia32_xrstor: |
| case X86::BI__builtin_ia32_xrstor64: |
| case X86::BI__builtin_ia32_xsaveopt: |
| case X86::BI__builtin_ia32_xsaveopt64: |
| case X86::BI__builtin_ia32_xrstors: |
| case X86::BI__builtin_ia32_xrstors64: |
| case X86::BI__builtin_ia32_xsavec: |
| case X86::BI__builtin_ia32_xsavec64: |
| case X86::BI__builtin_ia32_xsaves: |
| case X86::BI__builtin_ia32_xsaves64: |
| case X86::BI__builtin_ia32_xsetbv: |
| case X86::BI_xsetbv: { |
| Intrinsic::ID ID; |
| #define INTRINSIC_X86_XSAVE_ID(NAME) \ |
| case X86::BI__builtin_ia32_##NAME: \ |
| ID = Intrinsic::x86_##NAME; \ |
| break |
| switch (BuiltinID) { |
| default: llvm_unreachable("Unsupported intrinsic!"); |
| INTRINSIC_X86_XSAVE_ID(xsave); |
| INTRINSIC_X86_XSAVE_ID(xsave64); |
| INTRINSIC_X86_XSAVE_ID(xrstor); |
| INTRINSIC_X86_XSAVE_ID(xrstor64); |
| INTRINSIC_X86_XSAVE_ID(xsaveopt); |
| INTRINSIC_X86_XSAVE_ID(xsaveopt64); |
| INTRINSIC_X86_XSAVE_ID(xrstors); |
| INTRINSIC_X86_XSAVE_ID(xrstors64); |
| INTRINSIC_X86_XSAVE_ID(xsavec); |
| INTRINSIC_X86_XSAVE_ID(xsavec64); |
| INTRINSIC_X86_XSAVE_ID(xsaves); |
| INTRINSIC_X86_XSAVE_ID(xsaves64); |
| INTRINSIC_X86_XSAVE_ID(xsetbv); |
| case X86::BI_xsetbv: |
| ID = Intrinsic::x86_xsetbv; |
| break; |
| } |
| #undef INTRINSIC_X86_XSAVE_ID |
| Value *Mhi = Builder.CreateTrunc( |
| Builder.CreateLShr(Ops[1], ConstantInt::get(Int64Ty, 32)), Int32Ty); |
| Value *Mlo = Builder.CreateTrunc(Ops[1], Int32Ty); |
| Ops[1] = Mhi; |
| Ops.push_back(Mlo); |
| return Builder.CreateCall(CGM.getIntrinsic(ID), Ops); |
| } |
| case X86::BI__builtin_ia32_xgetbv: |
| case X86::BI_xgetbv: |
| return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_xgetbv), Ops); |
| case X86::BI__builtin_ia32_storedqudi128_mask: |
| case X86::BI__builtin_ia32_storedqusi128_mask: |
| case X86::BI__builtin_ia32_storedquhi128_mask: |
| case X86::BI__builtin_ia32_storedquqi128_mask: |
| case X86::BI__builtin_ia32_storeupd128_mask: |
| case X86::BI__builtin_ia32_storeups128_mask: |
| case X86::BI__builtin_ia32_storedqudi256_mask: |
| case X86::BI__builtin_ia32_storedqusi256_mask: |
| case X86::BI__builtin_ia32_storedquhi256_mask: |
| case X86::BI__builtin_ia32_storedquqi256_mask: |
| case X86::BI__builtin_ia32_storeupd256_mask: |
| case X86::BI__builtin_ia32_storeups256_mask: |
| case X86::BI__builtin_ia32_storedqudi512_mask: |
| case X86::BI__builtin_ia32_storedqusi512_mask: |
| case X86::BI__builtin_ia32_storedquhi512_mask: |
| case X86::BI__builtin_ia32_storedquqi512_mask: |
| case X86::BI__builtin_ia32_storeupd512_mask: |
| case X86::BI__builtin_ia32_storeups512_mask: |
| return EmitX86MaskedStore(*this, Ops, Align(1)); |
| |
| case X86::BI__builtin_ia32_storesbf16128_mask: |
| case X86::BI__builtin_ia32_storesh128_mask: |
| case X86::BI__builtin_ia32_storess128_mask: |
| case X86::BI__builtin_ia32_storesd128_mask: |
| return EmitX86MaskedStore(*this, Ops, Align(1)); |
| |
| case X86::BI__builtin_ia32_cvtmask2b128: |
| case X86::BI__builtin_ia32_cvtmask2b256: |
| case X86::BI__builtin_ia32_cvtmask2b512: |
| case X86::BI__builtin_ia32_cvtmask2w128: |
| case X86::BI__builtin_ia32_cvtmask2w256: |
| case X86::BI__builtin_ia32_cvtmask2w512: |
| case X86::BI__builtin_ia32_cvtmask2d128: |
| case X86::BI__builtin_ia32_cvtmask2d256: |
| case X86::BI__builtin_ia32_cvtmask2d512: |
| case X86::BI__builtin_ia32_cvtmask2q128: |
| case X86::BI__builtin_ia32_cvtmask2q256: |
| case X86::BI__builtin_ia32_cvtmask2q512: |
| return EmitX86SExtMask(*this, Ops[0], ConvertType(E->getType())); |
| |
| case X86::BI__builtin_ia32_cvtb2mask128: |
| case X86::BI__builtin_ia32_cvtb2mask256: |
| case X86::BI__builtin_ia32_cvtb2mask512: |
| case X86::BI__builtin_ia32_cvtw2mask128: |
| case X86::BI__builtin_ia32_cvtw2mask256: |
| case X86::BI__builtin_ia32_cvtw2mask512: |
| case X86::BI__builtin_ia32_cvtd2mask128: |
| case X86::BI__builtin_ia32_cvtd2mask256: |
| case X86::BI__builtin_ia32_cvtd2mask512: |
| case X86::BI__builtin_ia32_cvtq2mask128: |
| case X86::BI__builtin_ia32_cvtq2mask256: |
| case X86::BI__builtin_ia32_cvtq2mask512: |
| return EmitX86ConvertToMask(*this, Ops[0]); |
| |
| case X86::BI__builtin_ia32_cvtdq2ps512_mask: |
| case X86::BI__builtin_ia32_cvtqq2ps512_mask: |
| case X86::BI__builtin_ia32_cvtqq2pd512_mask: |
| case X86::BI__builtin_ia32_vcvtw2ph512_mask: |
| case X86::BI__builtin_ia32_vcvtdq2ph512_mask: |
| case X86::BI__builtin_ia32_vcvtqq2ph512_mask: |
| case X86::BI__builtin_ia32_vcvtdq2ph256_round_mask: |
| case X86::BI__builtin_ia32_vcvtdq2ps256_round_mask: |
| case X86::BI__builtin_ia32_vcvtqq2pd256_round_mask: |
| case X86::BI__builtin_ia32_vcvtqq2ph256_round_mask: |
| case X86::BI__builtin_ia32_vcvtqq2ps256_round_mask: |
| case X86::BI__builtin_ia32_vcvtw2ph256_round_mask: |
| return EmitX86ConvertIntToFp(*this, E, Ops, /*IsSigned*/ true); |
| case X86::BI__builtin_ia32_cvtudq2ps512_mask: |
| case X86::BI__builtin_ia32_cvtuqq2ps512_mask: |
| case X86::BI__builtin_ia32_cvtuqq2pd512_mask: |
| case X86::BI__builtin_ia32_vcvtuw2ph512_mask: |
| case X86::BI__builtin_ia32_vcvtudq2ph512_mask: |
| case X86::BI__builtin_ia32_vcvtuqq2ph512_mask: |
| case X86::BI__builtin_ia32_vcvtudq2ph256_round_mask: |
| case X86::BI__builtin_ia32_vcvtudq2ps256_round_mask: |
| case X86::BI__builtin_ia32_vcvtuqq2pd256_round_mask: |
| case X86::BI__builtin_ia32_vcvtuqq2ph256_round_mask: |
| case X86::BI__builtin_ia32_vcvtuqq2ps256_round_mask: |
| case X86::BI__builtin_ia32_vcvtuw2ph256_round_mask: |
| return EmitX86ConvertIntToFp(*this, E, Ops, /*IsSigned*/ false); |
| |
| case X86::BI__builtin_ia32_vfmaddss3: |
| case X86::BI__builtin_ia32_vfmaddsd3: |
| case X86::BI__builtin_ia32_vfmaddsh3_mask: |
| case X86::BI__builtin_ia32_vfmaddss3_mask: |
| case X86::BI__builtin_ia32_vfmaddsd3_mask: |
| return EmitScalarFMAExpr(*this, E, Ops, Ops[0]); |
| case X86::BI__builtin_ia32_vfmaddss: |
| case X86::BI__builtin_ia32_vfmaddsd: |
| return EmitScalarFMAExpr(*this, E, Ops, |
| Constant::getNullValue(Ops[0]->getType())); |
| case X86::BI__builtin_ia32_vfmaddsh3_maskz: |
| case X86::BI__builtin_ia32_vfmaddss3_maskz: |
| case X86::BI__builtin_ia32_vfmaddsd3_maskz: |
| return EmitScalarFMAExpr(*this, E, Ops, Ops[0], /*ZeroMask*/ true); |
| case X86::BI__builtin_ia32_vfmaddsh3_mask3: |
| case X86::BI__builtin_ia32_vfmaddss3_mask3: |
| case X86::BI__builtin_ia32_vfmaddsd3_mask3: |
| return EmitScalarFMAExpr(*this, E, Ops, Ops[2], /*ZeroMask*/ false, 2); |
| case X86::BI__builtin_ia32_vfmsubsh3_mask3: |
| case X86::BI__builtin_ia32_vfmsubss3_mask3: |
| case X86::BI__builtin_ia32_vfmsubsd3_mask3: |
| return EmitScalarFMAExpr(*this, E, Ops, Ops[2], /*ZeroMask*/ false, 2, |
| /*NegAcc*/ true); |
| case X86::BI__builtin_ia32_vfmaddph: |
| case X86::BI__builtin_ia32_vfmaddps: |
| case X86::BI__builtin_ia32_vfmaddpd: |
| case X86::BI__builtin_ia32_vfmaddph256: |
| case X86::BI__builtin_ia32_vfmaddps256: |
| case X86::BI__builtin_ia32_vfmaddpd256: |
| case X86::BI__builtin_ia32_vfmaddph512_mask: |
| case X86::BI__builtin_ia32_vfmaddph512_maskz: |
| case X86::BI__builtin_ia32_vfmaddph512_mask3: |
| case X86::BI__builtin_ia32_vfmaddnepbh128: |
| case X86::BI__builtin_ia32_vfmaddnepbh256: |
| case X86::BI__builtin_ia32_vfmaddnepbh512: |
| case X86::BI__builtin_ia32_vfmaddps512_mask: |
| case X86::BI__builtin_ia32_vfmaddps512_maskz: |
| case X86::BI__builtin_ia32_vfmaddps512_mask3: |
| case X86::BI__builtin_ia32_vfmsubps512_mask3: |
| case X86::BI__builtin_ia32_vfmaddpd512_mask: |
| case X86::BI__builtin_ia32_vfmaddpd512_maskz: |
| case X86::BI__builtin_ia32_vfmaddpd512_mask3: |
| case X86::BI__builtin_ia32_vfmsubpd512_mask3: |
| case X86::BI__builtin_ia32_vfmsubph512_mask3: |
| case X86::BI__builtin_ia32_vfmaddph256_round_mask: |
| case X86::BI__builtin_ia32_vfmaddph256_round_maskz: |
| case X86::BI__builtin_ia32_vfmaddph256_round_mask3: |
| case X86::BI__builtin_ia32_vfmaddps256_round_mask: |
| case X86::BI__builtin_ia32_vfmaddps256_round_maskz: |
| case X86::BI__builtin_ia32_vfmaddps256_round_mask3: |
| case X86::BI__builtin_ia32_vfmsubps256_round_mask3: |
| case X86::BI__builtin_ia32_vfmaddpd256_round_mask: |
| case X86::BI__builtin_ia32_vfmaddpd256_round_maskz: |
| case X86::BI__builtin_ia32_vfmaddpd256_round_mask3: |
| case X86::BI__builtin_ia32_vfmsubpd256_round_mask3: |
| case X86::BI__builtin_ia32_vfmsubph256_round_mask3: |
| return EmitX86FMAExpr(*this, E, Ops, BuiltinID, /*IsAddSub*/ false); |
| case X86::BI__builtin_ia32_vfmaddsubph512_mask: |
| case X86::BI__builtin_ia32_vfmaddsubph512_maskz: |
| case X86::BI__builtin_ia32_vfmaddsubph512_mask3: |
| case X86::BI__builtin_ia32_vfmsubaddph512_mask3: |
| case X86::BI__builtin_ia32_vfmaddsubps512_mask: |
| case X86::BI__builtin_ia32_vfmaddsubps512_maskz: |
| case X86::BI__builtin_ia32_vfmaddsubps512_mask3: |
| case X86::BI__builtin_ia32_vfmsubaddps512_mask3: |
| case X86::BI__builtin_ia32_vfmaddsubpd512_mask: |
| case X86::BI__builtin_ia32_vfmaddsubpd512_maskz: |
| case X86::BI__builtin_ia32_vfmaddsubpd512_mask3: |
| case X86::BI__builtin_ia32_vfmsubaddpd512_mask3: |
| case X86::BI__builtin_ia32_vfmaddsubph256_round_mask: |
| case X86::BI__builtin_ia32_vfmaddsubph256_round_maskz: |
| case X86::BI__builtin_ia32_vfmaddsubph256_round_mask3: |
| case X86::BI__builtin_ia32_vfmsubaddph256_round_mask3: |
| case X86::BI__builtin_ia32_vfmaddsubps256_round_mask: |
| case X86::BI__builtin_ia32_vfmaddsubps256_round_maskz: |
| case X86::BI__builtin_ia32_vfmaddsubps256_round_mask3: |
| case X86::BI__builtin_ia32_vfmsubaddps256_round_mask3: |
| case X86::BI__builtin_ia32_vfmaddsubpd256_round_mask: |
| case X86::BI__builtin_ia32_vfmaddsubpd256_round_maskz: |
| case X86::BI__builtin_ia32_vfmaddsubpd256_round_mask3: |
| case X86::BI__builtin_ia32_vfmsubaddpd256_round_mask3: |
| return EmitX86FMAExpr(*this, E, Ops, BuiltinID, /*IsAddSub*/ true); |
| |
| case X86::BI__builtin_ia32_movdqa32store128_mask: |
| case X86::BI__builtin_ia32_movdqa64store128_mask: |
| case X86::BI__builtin_ia32_storeaps128_mask: |
| case X86::BI__builtin_ia32_storeapd128_mask: |
| case X86::BI__builtin_ia32_movdqa32store256_mask: |
| case X86::BI__builtin_ia32_movdqa64store256_mask: |
| case X86::BI__builtin_ia32_storeaps256_mask: |
| case X86::BI__builtin_ia32_storeapd256_mask: |
| case X86::BI__builtin_ia32_movdqa32store512_mask: |
| case X86::BI__builtin_ia32_movdqa64store512_mask: |
| case X86::BI__builtin_ia32_storeaps512_mask: |
| case X86::BI__builtin_ia32_storeapd512_mask: |
| return EmitX86MaskedStore( |
| *this, Ops, |
| getContext().getTypeAlignInChars(E->getArg(1)->getType()).getAsAlign()); |
| |
| case X86::BI__builtin_ia32_loadups128_mask: |
| case X86::BI__builtin_ia32_loadups256_mask: |
| case X86::BI__builtin_ia32_loadups512_mask: |
| case X86::BI__builtin_ia32_loadupd128_mask: |
| case X86::BI__builtin_ia32_loadupd256_mask: |
| case X86::BI__builtin_ia32_loadupd512_mask: |
| case X86::BI__builtin_ia32_loaddquqi128_mask: |
| case X86::BI__builtin_ia32_loaddquqi256_mask: |
| case X86::BI__builtin_ia32_loaddquqi512_mask: |
| case X86::BI__builtin_ia32_loaddquhi128_mask: |
| case X86::BI__builtin_ia32_loaddquhi256_mask: |
| case X86::BI__builtin_ia32_loaddquhi512_mask: |
| case X86::BI__builtin_ia32_loaddqusi128_mask: |
| case X86::BI__builtin_ia32_loaddqusi256_mask: |
| case X86::BI__builtin_ia32_loaddqusi512_mask: |
| case X86::BI__builtin_ia32_loaddqudi128_mask: |
| case X86::BI__builtin_ia32_loaddqudi256_mask: |
| case X86::BI__builtin_ia32_loaddqudi512_mask: |
| return EmitX86MaskedLoad(*this, Ops, Align(1)); |
| |
| case X86::BI__builtin_ia32_loadsbf16128_mask: |
| case X86::BI__builtin_ia32_loadsh128_mask: |
| case X86::BI__builtin_ia32_loadss128_mask: |
| case X86::BI__builtin_ia32_loadsd128_mask: |
| return EmitX86MaskedLoad(*this, Ops, Align(1)); |
| |
| case X86::BI__builtin_ia32_loadaps128_mask: |
| case X86::BI__builtin_ia32_loadaps256_mask: |
| case X86::BI__builtin_ia32_loadaps512_mask: |
| case X86::BI__builtin_ia32_loadapd128_mask: |
| case X86::BI__builtin_ia32_loadapd256_mask: |
| case X86::BI__builtin_ia32_loadapd512_mask: |
| case X86::BI__builtin_ia32_movdqa32load128_mask: |
| case X86::BI__builtin_ia32_movdqa32load256_mask: |
| case X86::BI__builtin_ia32_movdqa32load512_mask: |
| case X86::BI__builtin_ia32_movdqa64load128_mask: |
| case X86::BI__builtin_ia32_movdqa64load256_mask: |
| case X86::BI__builtin_ia32_movdqa64load512_mask: |
| return EmitX86MaskedLoad( |
| *this, Ops, |
| getContext().getTypeAlignInChars(E->getArg(1)->getType()).getAsAlign()); |
| |
| case X86::BI__builtin_ia32_expandloaddf128_mask: |
| case X86::BI__builtin_ia32_expandloaddf256_mask: |
| case X86::BI__builtin_ia32_expandloaddf512_mask: |
| case X86::BI__builtin_ia32_expandloadsf128_mask: |
| case X86::BI__builtin_ia32_expandloadsf256_mask: |
| case X86::BI__builtin_ia32_expandloadsf512_mask: |
| case X86::BI__builtin_ia32_expandloaddi128_mask: |
| case X86::BI__builtin_ia32_expandloaddi256_mask: |
| case X86::BI__builtin_ia32_expandloaddi512_mask: |
| case X86::BI__builtin_ia32_expandloadsi128_mask: |
| case X86::BI__builtin_ia32_expandloadsi256_mask: |
| case X86::BI__builtin_ia32_expandloadsi512_mask: |
| case X86::BI__builtin_ia32_expandloadhi128_mask: |
| case X86::BI__builtin_ia32_expandloadhi256_mask: |
| case X86::BI__builtin_ia32_expandloadhi512_mask: |
| case X86::BI__builtin_ia32_expandloadqi128_mask: |
| case X86::BI__builtin_ia32_expandloadqi256_mask: |
| case X86::BI__builtin_ia32_expandloadqi512_mask: |
| return EmitX86ExpandLoad(*this, Ops); |
| |
| case X86::BI__builtin_ia32_compressstoredf128_mask: |
| case X86::BI__builtin_ia32_compressstoredf256_mask: |
| case X86::BI__builtin_ia32_compressstoredf512_mask: |
| case X86::BI__builtin_ia32_compressstoresf128_mask: |
| case X86::BI__builtin_ia32_compressstoresf256_mask: |
| case X86::BI__builtin_ia32_compressstoresf512_mask: |
| case X86::BI__builtin_ia32_compressstoredi128_mask: |
| case X86::BI__builtin_ia32_compressstoredi256_mask: |
| case X86::BI__builtin_ia32_compressstoredi512_mask: |
| case X86::BI__builtin_ia32_compressstoresi128_mask: |
| case X86::BI__builtin_ia32_compressstoresi256_mask: |
| case X86::BI__builtin_ia32_compressstoresi512_mask: |
| case X86::BI__builtin_ia32_compressstorehi128_mask: |
| case X86::BI__builtin_ia32_compressstorehi256_mask: |
| case X86::BI__builtin_ia32_compressstorehi512_mask: |
| case X86::BI__builtin_ia32_compressstoreqi128_mask: |
| case X86::BI__builtin_ia32_compressstoreqi256_mask: |
| case X86::BI__builtin_ia32_compressstoreqi512_mask: |
| return EmitX86CompressStore(*this, Ops); |
| |
| case X86::BI__builtin_ia32_expanddf128_mask: |
| case X86::BI__builtin_ia32_expanddf256_mask: |
| case X86::BI__builtin_ia32_expanddf512_mask: |
| case X86::BI__builtin_ia32_expandsf128_mask: |
| case X86::BI__builtin_ia32_expandsf256_mask: |
| case X86::BI__builtin_ia32_expandsf512_mask: |
| case X86::BI__builtin_ia32_expanddi128_mask: |
| case X86::BI__builtin_ia32_expanddi256_mask: |
| case X86::BI__builtin_ia32_expanddi512_mask: |
| case X86::BI__builtin_ia32_expandsi128_mask: |
| case X86::BI__builtin_ia32_expandsi256_mask: |
| case X86::BI__builtin_ia32_expandsi512_mask: |
| case X86::BI__builtin_ia32_expandhi128_mask: |
| case X86::BI__builtin_ia32_expandhi256_mask: |
| case X86::BI__builtin_ia32_expandhi512_mask: |
| case X86::BI__builtin_ia32_expandqi128_mask: |
| case X86::BI__builtin_ia32_expandqi256_mask: |
| case X86::BI__builtin_ia32_expandqi512_mask: |
| return EmitX86CompressExpand(*this, Ops, /*IsCompress*/false); |
| |
| case X86::BI__builtin_ia32_compressdf128_mask: |
| case X86::BI__builtin_ia32_compressdf256_mask: |
| case X86::BI__builtin_ia32_compressdf512_mask: |
| case X86::BI__builtin_ia32_compresssf128_mask: |
| case X86::BI__builtin_ia32_compresssf256_mask: |
| case X86::BI__builtin_ia32_compresssf512_mask: |
| case X86::BI__builtin_ia32_compressdi128_mask: |
| case X86::BI__builtin_ia32_compressdi256_mask: |
| case X86::BI__builtin_ia32_compressdi512_mask: |
| case X86::BI__builtin_ia32_compresssi128_mask: |
| case X86::BI__builtin_ia32_compresssi256_mask: |
| case X86::BI__builtin_ia32_compresssi512_mask: |
| case X86::BI__builtin_ia32_compresshi128_mask: |
| case X86::BI__builtin_ia32_compresshi256_mask: |
| case X86::BI__builtin_ia32_compresshi512_mask: |
| case X86::BI__builtin_ia32_compressqi128_mask: |
| case X86::BI__builtin_ia32_compressqi256_mask: |
| case X86::BI__builtin_ia32_compressqi512_mask: |
| return EmitX86CompressExpand(*this, Ops, /*IsCompress*/true); |
| |
| case X86::BI__builtin_ia32_gather3div2df: |
| case X86::BI__builtin_ia32_gather3div2di: |
| case X86::BI__builtin_ia32_gather3div4df: |
| case X86::BI__builtin_ia32_gather3div4di: |
| case X86::BI__builtin_ia32_gather3div4sf: |
| case X86::BI__builtin_ia32_gather3div4si: |
| case X86::BI__builtin_ia32_gather3div8sf: |
| case X86::BI__builtin_ia32_gather3div8si: |
| case X86::BI__builtin_ia32_gather3siv2df: |
| case X86::BI__builtin_ia32_gather3siv2di: |
| case X86::BI__builtin_ia32_gather3siv4df: |
| case X86::BI__builtin_ia32_gather3siv4di: |
| case X86::BI__builtin_ia32_gather3siv4sf: |
| case X86::BI__builtin_ia32_gather3siv4si: |
| case X86::BI__builtin_ia32_gather3siv8sf: |
| case X86::BI__builtin_ia32_gather3siv8si: |
| case X86::BI__builtin_ia32_gathersiv8df: |
| case X86::BI__builtin_ia32_gathersiv16sf: |
| case X86::BI__builtin_ia32_gatherdiv8df: |
| case X86::BI__builtin_ia32_gatherdiv16sf: |
| case X86::BI__builtin_ia32_gathersiv8di: |
| case X86::BI__builtin_ia32_gathersiv16si: |
| case X86::BI__builtin_ia32_gatherdiv8di: |
| case X86::BI__builtin_ia32_gatherdiv16si: { |
| Intrinsic::ID IID; |
| switch (BuiltinID) { |
| default: llvm_unreachable("Unexpected builtin"); |
| case X86::BI__builtin_ia32_gather3div2df: |
| IID = Intrinsic::x86_avx512_mask_gather3div2_df; |
| break; |
| case X86::BI__builtin_ia32_gather3div2di: |
| IID = Intrinsic::x86_avx512_mask_gather3div2_di; |
| break; |
| case X86::BI__builtin_ia32_gather3div4df: |
| IID = Intrinsic::x86_avx512_mask_gather3div4_df; |
| break; |
| case X86::BI__builtin_ia32_gather3div4di: |
| IID = Intrinsic::x86_avx512_mask_gather3div4_di; |
| break; |
| case X86::BI__builtin_ia32_gather3div4sf: |
| IID = Intrinsic::x86_avx512_mask_gather3div4_sf; |
| break; |
| case X86::BI__builtin_ia32_gather3div4si: |
| IID = Intrinsic::x86_avx512_mask_gather3div4_si; |
| break; |
| case X86::BI__builtin_ia32_gather3div8sf: |
| IID = Intrinsic::x86_avx512_mask_gather3div8_sf; |
| break; |
| case X86::BI__builtin_ia32_gather3div8si: |
| IID = Intrinsic::x86_avx512_mask_gather3div8_si; |
| break; |
| case X86::BI__builtin_ia32_gather3siv2df: |
| IID = Intrinsic::x86_avx512_mask_gather3siv2_df; |
| break; |
| case X86::BI__builtin_ia32_gather3siv2di: |
| IID = Intrinsic::x86_avx512_mask_gather3siv2_di; |
| break; |
| case X86::BI__builtin_ia32_gather3siv4df: |
| IID = Intrinsic::x86_avx512_mask_gather3siv4_df; |
| break; |
| case X86::BI__builtin_ia32_gather3siv4di: |
| IID = Intrinsic::x86_avx512_mask_gather3siv4_di; |
| break; |
| case X86::BI__builtin_ia32_gather3siv4sf: |
| IID = Intrinsic::x86_avx512_mask_gather3siv4_sf; |
| break; |
| case X86::BI__builtin_ia32_gather3siv4si: |
| IID = Intrinsic::x86_avx512_mask_gather3siv4_si; |
| break; |
| case X86::BI__builtin_ia32_gather3siv8sf: |
| IID = Intrinsic::x86_avx512_mask_gather3siv8_sf; |
| break; |
| case X86::BI__builtin_ia32_gather3siv8si: |
| IID = Intrinsic::x86_avx512_mask_gather3siv8_si; |
| break; |
| case X86::BI__builtin_ia32_gathersiv8df: |
| IID = Intrinsic::x86_avx512_mask_gather_dpd_512; |
| break; |
| case X86::BI__builtin_ia32_gathersiv16sf: |
| IID = Intrinsic::x86_avx512_mask_gather_dps_512; |
| break; |
| case X86::BI__builtin_ia32_gatherdiv8df: |
| IID = Intrinsic::x86_avx512_mask_gather_qpd_512; |
| break; |
| case X86::BI__builtin_ia32_gatherdiv16sf: |
| IID = Intrinsic::x86_avx512_mask_gather_qps_512; |
| break; |
| case X86::BI__builtin_ia32_gathersiv8di: |
| IID = Intrinsic::x86_avx512_mask_gather_dpq_512; |
| break; |
| case X86::BI__builtin_ia32_gathersiv16si: |
| IID = Intrinsic::x86_avx512_mask_gather_dpi_512; |
| break; |
| case X86::BI__builtin_ia32_gatherdiv8di: |
| IID = Intrinsic::x86_avx512_mask_gather_qpq_512; |
| break; |
| case X86::BI__builtin_ia32_gatherdiv16si: |
| IID = Intrinsic::x86_avx512_mask_gather_qpi_512; |
| break; |
| } |
| |
| unsigned MinElts = std::min( |
| cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements(), |
| cast<llvm::FixedVectorType>(Ops[2]->getType())->getNumElements()); |
| Ops[3] = getMaskVecValue(*this, Ops[3], MinElts); |
| Function *Intr = CGM.getIntrinsic(IID); |
| return Builder.CreateCall(Intr, Ops); |
| } |
| |
| case X86::BI__builtin_ia32_scattersiv8df: |
| case X86::BI__builtin_ia32_scattersiv16sf: |
| case X86::BI__builtin_ia32_scatterdiv8df: |
| case X86::BI__builtin_ia32_scatterdiv16sf: |
| case X86::BI__builtin_ia32_scattersiv8di: |
| case X86::BI__builtin_ia32_scattersiv16si: |
| case X86::BI__builtin_ia32_scatterdiv8di: |
| case X86::BI__builtin_ia32_scatterdiv16si: |
| case X86::BI__builtin_ia32_scatterdiv2df: |
| case X86::BI__builtin_ia32_scatterdiv2di: |
| case X86::BI__builtin_ia32_scatterdiv4df: |
| case X86::BI__builtin_ia32_scatterdiv4di: |
| case X86::BI__builtin_ia32_scatterdiv4sf: |
| case X86::BI__builtin_ia32_scatterdiv4si: |
| case X86::BI__builtin_ia32_scatterdiv8sf: |
| case X86::BI__builtin_ia32_scatterdiv8si: |
| case X86::BI__builtin_ia32_scattersiv2df: |
| case X86::BI__builtin_ia32_scattersiv2di: |
| case X86::BI__builtin_ia32_scattersiv4df: |
| case X86::BI__builtin_ia32_scattersiv4di: |
| case X86::BI__builtin_ia32_scattersiv4sf: |
| case X86::BI__builtin_ia32_scattersiv4si: |
| case X86::BI__builtin_ia32_scattersiv8sf: |
| case X86::BI__builtin_ia32_scattersiv8si: { |
| Intrinsic::ID IID; |
| switch (BuiltinID) { |
| default: llvm_unreachable("Unexpected builtin"); |
| case X86::BI__builtin_ia32_scattersiv8df: |
| IID = Intrinsic::x86_avx512_mask_scatter_dpd_512; |
| break; |
| case X86::BI__builtin_ia32_scattersiv16sf: |
| IID = Intrinsic::x86_avx512_mask_scatter_dps_512; |
| break; |
| case X86::BI__builtin_ia32_scatterdiv8df: |
| IID = Intrinsic::x86_avx512_mask_scatter_qpd_512; |
| break; |
| case X86::BI__builtin_ia32_scatterdiv16sf: |
| IID = Intrinsic::x86_avx512_mask_scatter_qps_512; |
| break; |
| case X86::BI__builtin_ia32_scattersiv8di: |
| IID = Intrinsic::x86_avx512_mask_scatter_dpq_512; |
| break; |
| case X86::BI__builtin_ia32_scattersiv16si: |
| IID = Intrinsic::x86_avx512_mask_scatter_dpi_512; |
| break; |
| case X86::BI__builtin_ia32_scatterdiv8di: |
| IID = Intrinsic::x86_avx512_mask_scatter_qpq_512; |
| break; |
| case X86::BI__builtin_ia32_scatterdiv16si: |
| IID = Intrinsic::x86_avx512_mask_scatter_qpi_512; |
| break; |
| case X86::BI__builtin_ia32_scatterdiv2df: |
| IID = Intrinsic::x86_avx512_mask_scatterdiv2_df; |
| break; |
| case X86::BI__builtin_ia32_scatterdiv2di: |
| IID = Intrinsic::x86_avx512_mask_scatterdiv2_di; |
| break; |
| case X86::BI__builtin_ia32_scatterdiv4df: |
| IID = Intrinsic::x86_avx512_mask_scatterdiv4_df; |
| break; |
| case X86::BI__builtin_ia32_scatterdiv4di: |
| IID = Intrinsic::x86_avx512_mask_scatterdiv4_di; |
| break; |
| case X86::BI__builtin_ia32_scatterdiv4sf: |
| IID = Intrinsic::x86_avx512_mask_scatterdiv4_sf; |
| break; |
| case X86::BI__builtin_ia32_scatterdiv4si: |
| IID = Intrinsic::x86_avx512_mask_scatterdiv4_si; |
| break; |
| case X86::BI__builtin_ia32_scatterdiv8sf: |
| IID = Intrinsic::x86_avx512_mask_scatterdiv8_sf; |
| break; |
| case X86::BI__builtin_ia32_scatterdiv8si: |
| IID = Intrinsic::x86_avx512_mask_scatterdiv8_si; |
| break; |
| case X86::BI__builtin_ia32_scattersiv2df: |
| IID = Intrinsic::x86_avx512_mask_scattersiv2_df; |
| break; |
| case X86::BI__builtin_ia32_scattersiv2di: |
| IID = Intrinsic::x86_avx512_mask_scattersiv2_di; |
| break; |
| case X86::BI__builtin_ia32_scattersiv4df: |
| IID = Intrinsic::x86_avx512_mask_scattersiv4_df; |
| break; |
| case X86::BI__builtin_ia32_scattersiv4di: |
| IID = Intrinsic::x86_avx512_mask_scattersiv4_di; |
| break; |
| case X86::BI__builtin_ia32_scattersiv4sf: |
| IID = Intrinsic::x86_avx512_mask_scattersiv4_sf; |
| break; |
| case X86::BI__builtin_ia32_scattersiv4si: |
| IID = Intrinsic::x86_avx512_mask_scattersiv4_si; |
| break; |
| case X86::BI__builtin_ia32_scattersiv8sf: |
| IID = Intrinsic::x86_avx512_mask_scattersiv8_sf; |
| break; |
| case X86::BI__builtin_ia32_scattersiv8si: |
| IID = Intrinsic::x86_avx512_mask_scattersiv8_si; |
| break; |
| } |
| |
| unsigned MinElts = std::min( |
| cast<llvm::FixedVectorType>(Ops[2]->getType())->getNumElements(), |
| cast<llvm::FixedVectorType>(Ops[3]->getType())->getNumElements()); |
| Ops[1] = getMaskVecValue(*this, Ops[1], MinElts); |
| Function *Intr = CGM.getIntrinsic(IID); |
| return Builder.CreateCall(Intr, Ops); |
| } |
| |
| case X86::BI__builtin_ia32_vextractf128_pd256: |
| case X86::BI__builtin_ia32_vextractf128_ps256: |
| case X86::BI__builtin_ia32_vextractf128_si256: |
| case X86::BI__builtin_ia32_extract128i256: |
| case X86::BI__builtin_ia32_extractf64x4_mask: |
| case X86::BI__builtin_ia32_extractf32x4_mask: |
| case X86::BI__builtin_ia32_extracti64x4_mask: |
| case X86::BI__builtin_ia32_extracti32x4_mask: |
| case X86::BI__builtin_ia32_extractf32x8_mask: |
| case X86::BI__builtin_ia32_extracti32x8_mask: |
| case X86::BI__builtin_ia32_extractf32x4_256_mask: |
| case X86::BI__builtin_ia32_extracti32x4_256_mask: |
| case X86::BI__builtin_ia32_extractf64x2_256_mask: |
| case X86::BI__builtin_ia32_extracti64x2_256_mask: |
| case X86::BI__builtin_ia32_extractf64x2_512_mask: |
| case X86::BI__builtin_ia32_extracti64x2_512_mask: { |
| auto *DstTy = cast<llvm::FixedVectorType>(ConvertType(E->getType())); |
| unsigned NumElts = DstTy->getNumElements(); |
| unsigned SrcNumElts = |
| cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements(); |
| unsigned SubVectors = SrcNumElts / NumElts; |
| unsigned Index = cast<ConstantInt>(Ops[1])->getZExtValue(); |
| assert(llvm::isPowerOf2_32(SubVectors) && "Expected power of 2 subvectors"); |
| Index &= SubVectors - 1; // Remove any extra bits. |
| Index *= NumElts; |
| |
| int Indices[16]; |
| for (unsigned i = 0; i != NumElts; ++i) |
| Indices[i] = i + Index; |
| |
| Value *Res = Builder.CreateShuffleVector(Ops[0], ArrayRef(Indices, NumElts), |
| "extract"); |
| |
| if (Ops.size() == 4) |
| Res = EmitX86Select(*this, Ops[3], Res, Ops[2]); |
| |
| return Res; |
| } |
| case X86::BI__builtin_ia32_vinsertf128_pd256: |
| case X86::BI__builtin_ia32_vinsertf128_ps256: |
| case X86::BI__builtin_ia32_vinsertf128_si256: |
| case X86::BI__builtin_ia32_insert128i256: |
| case X86::BI__builtin_ia32_insertf64x4: |
| case X86::BI__builtin_ia32_insertf32x4: |
| case X86::BI__builtin_ia32_inserti64x4: |
| case X86::BI__builtin_ia32_inserti32x4: |
| case X86::BI__builtin_ia32_insertf32x8: |
| case X86::BI__builtin_ia32_inserti32x8: |
| case X86::BI__builtin_ia32_insertf32x4_256: |
| case X86::BI__builtin_ia32_inserti32x4_256: |
| case X86::BI__builtin_ia32_insertf64x2_256: |
| case X86::BI__builtin_ia32_inserti64x2_256: |
| case X86::BI__builtin_ia32_insertf64x2_512: |
| case X86::BI__builtin_ia32_inserti64x2_512: { |
| unsigned DstNumElts = |
| cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements(); |
| unsigned SrcNumElts = |
| cast<llvm::FixedVectorType>(Ops[1]->getType())->getNumElements(); |
| unsigned SubVectors = DstNumElts / SrcNumElts; |
| unsigned Index = cast<ConstantInt>(Ops[2])->getZExtValue(); |
| assert(llvm::isPowerOf2_32(SubVectors) && "Expected power of 2 subvectors"); |
| Index &= SubVectors - 1; // Remove any extra bits. |
| Index *= SrcNumElts; |
| |
| int Indices[16]; |
| for (unsigned i = 0; i != DstNumElts; ++i) |
| Indices[i] = (i >= SrcNumElts) ? SrcNumElts + (i % SrcNumElts) : i; |
| |
| Value *Op1 = Builder.CreateShuffleVector( |
| Ops[1], ArrayRef(Indices, DstNumElts), "widen"); |
| |
| for (unsigned i = 0; i != DstNumElts; ++i) { |
| if (i >= Index && i < (Index + SrcNumElts)) |
| Indices[i] = (i - Index) + DstNumElts; |
| else |
| Indices[i] = i; |
| } |
| |
| return Builder.CreateShuffleVector(Ops[0], Op1, |
| ArrayRef(Indices, DstNumElts), "insert"); |
| } |
| case X86::BI__builtin_ia32_pmovqd512_mask: |
| case X86::BI__builtin_ia32_pmovwb512_mask: { |
| Value *Res = Builder.CreateTrunc(Ops[0], Ops[1]->getType()); |
| return EmitX86Select(*this, Ops[2], Res, Ops[1]); |
| } |
| case X86::BI__builtin_ia32_pmovdb512_mask: |
| case X86::BI__builtin_ia32_pmovdw512_mask: |
| case X86::BI__builtin_ia32_pmovqw512_mask: { |
| if (const auto *C = dyn_cast<Constant>(Ops[2])) |
| if (C->isAllOnesValue()) |
| return Builder.CreateTrunc(Ops[0], Ops[1]->getType()); |
| |
| Intrinsic::ID IID; |
| switch (BuiltinID) { |
| default: llvm_unreachable("Unsupported intrinsic!"); |
| case X86::BI__builtin_ia32_pmovdb512_mask: |
| IID = Intrinsic::x86_avx512_mask_pmov_db_512; |
| break; |
| case X86::BI__builtin_ia32_pmovdw512_mask: |
| IID = Intrinsic::x86_avx512_mask_pmov_dw_512; |
| break; |
| case X86::BI__builtin_ia32_pmovqw512_mask: |
| IID = Intrinsic::x86_avx512_mask_pmov_qw_512; |
| break; |
| } |
| |
| Function *Intr = CGM.getIntrinsic(IID); |
| return Builder.CreateCall(Intr, Ops); |
| } |
| case X86::BI__builtin_ia32_pblendw128: |
| case X86::BI__builtin_ia32_blendpd: |
| case X86::BI__builtin_ia32_blendps: |
| case X86::BI__builtin_ia32_blendpd256: |
| case X86::BI__builtin_ia32_blendps256: |
| case X86::BI__builtin_ia32_pblendw256: |
| case X86::BI__builtin_ia32_pblendd128: |
| case X86::BI__builtin_ia32_pblendd256: { |
| unsigned NumElts = |
| cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements(); |
| unsigned Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue(); |
| |
| int Indices[16]; |
| // If there are more than 8 elements, the immediate is used twice so make |
| // sure we handle that. |
| for (unsigned i = 0; i != NumElts; ++i) |
| Indices[i] = ((Imm >> (i % 8)) & 0x1) ? NumElts + i : i; |
| |
| return Builder.CreateShuffleVector(Ops[0], Ops[1], |
| ArrayRef(Indices, NumElts), "blend"); |
| } |
| case X86::BI__builtin_ia32_pshuflw: |
| case X86::BI__builtin_ia32_pshuflw256: |
| case X86::BI__builtin_ia32_pshuflw512: { |
| uint32_t Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue(); |
| auto *Ty = cast<llvm::FixedVectorType>(Ops[0]->getType()); |
| unsigned NumElts = Ty->getNumElements(); |
| |
| // Splat the 8-bits of immediate 4 times to help the loop wrap around. |
| Imm = (Imm & 0xff) * 0x01010101; |
| |
| int Indices[32]; |
| for (unsigned l = 0; l != NumElts; l += 8) { |
| for (unsigned i = 0; i != 4; ++i) { |
| Indices[l + i] = l + (Imm & 3); |
| Imm >>= 2; |
| } |
| for (unsigned i = 4; i != 8; ++i) |
| Indices[l + i] = l + i; |
| } |
| |
| return Builder.CreateShuffleVector(Ops[0], ArrayRef(Indices, NumElts), |
| "pshuflw"); |
| } |
| case X86::BI__builtin_ia32_pshufhw: |
| case X86::BI__builtin_ia32_pshufhw256: |
| case X86::BI__builtin_ia32_pshufhw512: { |
| uint32_t Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue(); |
| auto *Ty = cast<llvm::FixedVectorType>(Ops[0]->getType()); |
| unsigned NumElts = Ty->getNumElements(); |
| |
| // Splat the 8-bits of immediate 4 times to help the loop wrap around. |
| Imm = (Imm & 0xff) * 0x01010101; |
| |
| int Indices[32]; |
| for (unsigned l = 0; l != NumElts; l += 8) { |
| for (unsigned i = 0; i != 4; ++i) |
| Indices[l + i] = l + i; |
| for (unsigned i = 4; i != 8; ++i) { |
| Indices[l + i] = l + 4 + (Imm & 3); |
| Imm >>= 2; |
| } |
| } |
| |
| return Builder.CreateShuffleVector(Ops[0], ArrayRef(Indices, NumElts), |
| "pshufhw"); |
| } |
| case X86::BI__builtin_ia32_pshufd: |
| case X86::BI__builtin_ia32_pshufd256: |
| case X86::BI__builtin_ia32_pshufd512: |
| case X86::BI__builtin_ia32_vpermilpd: |
| case X86::BI__builtin_ia32_vpermilps: |
| case X86::BI__builtin_ia32_vpermilpd256: |
| case X86::BI__builtin_ia32_vpermilps256: |
| case X86::BI__builtin_ia32_vpermilpd512: |
| case X86::BI__builtin_ia32_vpermilps512: { |
| uint32_t Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue(); |
| auto *Ty = cast<llvm::FixedVectorType>(Ops[0]->getType()); |
| unsigned NumElts = Ty->getNumElements(); |
| unsigned NumLanes = Ty->getPrimitiveSizeInBits() / 128; |
| unsigned NumLaneElts = NumElts / NumLanes; |
| |
| // Splat the 8-bits of immediate 4 times to help the loop wrap around. |
| Imm = (Imm & 0xff) * 0x01010101; |
| |
| int Indices[16]; |
| for (unsigned l = 0; l != NumElts; l += NumLaneElts) { |
| for (unsigned i = 0; i != NumLaneElts; ++i) { |
| Indices[i + l] = (Imm % NumLaneElts) + l; |
| Imm /= NumLaneElts; |
| } |
| } |
| |
| return Builder.CreateShuffleVector(Ops[0], ArrayRef(Indices, NumElts), |
| "permil"); |
| } |
| case X86::BI__builtin_ia32_shufpd: |
| case X86::BI__builtin_ia32_shufpd256: |
| case X86::BI__builtin_ia32_shufpd512: |
| case X86::BI__builtin_ia32_shufps: |
| case X86::BI__builtin_ia32_shufps256: |
| case X86::BI__builtin_ia32_shufps512: { |
| uint32_t Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue(); |
| auto *Ty = cast<llvm::FixedVectorType>(Ops[0]->getType()); |
| unsigned NumElts = Ty->getNumElements(); |
| unsigned NumLanes = Ty->getPrimitiveSizeInBits() / 128; |
| unsigned NumLaneElts = NumElts / NumLanes; |
| |
| // Splat the 8-bits of immediate 4 times to help the loop wrap around. |
| Imm = (Imm & 0xff) * 0x01010101; |
| |
| int Indices[16]; |
| for (unsigned l = 0; l != NumElts; l += NumLaneElts) { |
| for (unsigned i = 0; i != NumLaneElts; ++i) { |
| unsigned Index = Imm % NumLaneElts; |
| Imm /= NumLaneElts; |
| if (i >= (NumLaneElts / 2)) |
| Index += NumElts; |
| Indices[l + i] = l + Index; |
| } |
| } |
| |
| return Builder.CreateShuffleVector(Ops[0], Ops[1], |
| ArrayRef(Indices, NumElts), "shufp"); |
| } |
| case X86::BI__builtin_ia32_permdi256: |
| case X86::BI__builtin_ia32_permdf256: |
| case X86::BI__builtin_ia32_permdi512: |
| case X86::BI__builtin_ia32_permdf512: { |
| unsigned Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue(); |
| auto *Ty = cast<llvm::FixedVectorType>(Ops[0]->getType()); |
| unsigned NumElts = Ty->getNumElements(); |
| |
| // These intrinsics operate on 256-bit lanes of four 64-bit elements. |
| int Indices[8]; |
| for (unsigned l = 0; l != NumElts; l += 4) |
| for (unsigned i = 0; i != 4; ++i) |
| Indices[l + i] = l + ((Imm >> (2 * i)) & 0x3); |
| |
| return Builder.CreateShuffleVector(Ops[0], ArrayRef(Indices, NumElts), |
| "perm"); |
| } |
| case X86::BI__builtin_ia32_palignr128: |
| case X86::BI__builtin_ia32_palignr256: |
| case X86::BI__builtin_ia32_palignr512: { |
| unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0xff; |
| |
| unsigned NumElts = |
| cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements(); |
| assert(NumElts % 16 == 0); |
| |
| // If palignr is shifting the pair of vectors more than the size of two |
| // lanes, emit zero. |
| if (ShiftVal >= 32) |
| return llvm::Constant::getNullValue(ConvertType(E->getType())); |
| |
| // If palignr is shifting the pair of input vectors more than one lane, |
| // but less than two lanes, convert to shifting in zeroes. |
| if (ShiftVal > 16) { |
| ShiftVal -= 16; |
| Ops[1] = Ops[0]; |
| Ops[0] = llvm::Constant::getNullValue(Ops[0]->getType()); |
| } |
| |
| int Indices[64]; |
| // 256-bit palignr operates on 128-bit lanes so we need to handle that |
| for (unsigned l = 0; l != NumElts; l += 16) { |
| for (unsigned i = 0; i != 16; ++i) { |
| unsigned Idx = ShiftVal + i; |
| if (Idx >= 16) |
| Idx += NumElts - 16; // End of lane, switch operand. |
| Indices[l + i] = Idx + l; |
| } |
| } |
| |
| return Builder.CreateShuffleVector(Ops[1], Ops[0], |
| ArrayRef(Indices, NumElts), "palignr"); |
| } |
| case X86::BI__builtin_ia32_alignd128: |
| case X86::BI__builtin_ia32_alignd256: |
| case X86::BI__builtin_ia32_alignd512: |
| case X86::BI__builtin_ia32_alignq128: |
| case X86::BI__builtin_ia32_alignq256: |
| case X86::BI__builtin_ia32_alignq512: { |
| unsigned NumElts = |
| cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements(); |
| unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0xff; |
| |
| // Mask the shift amount to width of a vector. |
| ShiftVal &= NumElts - 1; |
| |
| int Indices[16]; |
| for (unsigned i = 0; i != NumElts; ++i) |
| Indices[i] = i + ShiftVal; |
| |
| return Builder.CreateShuffleVector(Ops[1], Ops[0], |
| ArrayRef(Indices, NumElts), "valign"); |
| } |
| case X86::BI__builtin_ia32_shuf_f32x4_256: |
| case X86::BI__builtin_ia32_shuf_f64x2_256: |
| case X86::BI__builtin_ia32_shuf_i32x4_256: |
| case X86::BI__builtin_ia32_shuf_i64x2_256: |
| case X86::BI__builtin_ia32_shuf_f32x4: |
| case X86::BI__builtin_ia32_shuf_f64x2: |
| case X86::BI__builtin_ia32_shuf_i32x4: |
| case X86::BI__builtin_ia32_shuf_i64x2: { |
| unsigned Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue(); |
| auto *Ty = cast<llvm::FixedVectorType>(Ops[0]->getType()); |
| unsigned NumElts = Ty->getNumElements(); |
| unsigned NumLanes = Ty->getPrimitiveSizeInBits() == 512 ? 4 : 2; |
| unsigned NumLaneElts = NumElts / NumLanes; |
| |
| int Indices[16]; |
| for (unsigned l = 0; l != NumElts; l += NumLaneElts) { |
| unsigned Index = (Imm % NumLanes) * NumLaneElts; |
| Imm /= NumLanes; // Discard the bits we just used. |
| if (l >= (NumElts / 2)) |
| Index += NumElts; // Switch to other source. |
| for (unsigned i = 0; i != NumLaneElts; ++i) { |
| Indices[l + i] = Index + i; |
| } |
| } |
| |
| return Builder.CreateShuffleVector(Ops[0], Ops[1], |
| ArrayRef(Indices, NumElts), "shuf"); |
| } |
| |
| case X86::BI__builtin_ia32_vperm2f128_pd256: |
| case X86::BI__builtin_ia32_vperm2f128_ps256: |
| case X86::BI__builtin_ia32_vperm2f128_si256: |
| case X86::BI__builtin_ia32_permti256: { |
| unsigned Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue(); |
| unsigned NumElts = |
| cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements(); |
| |
| // This takes a very simple approach since there are two lanes and a |
| // shuffle can have 2 inputs. So we reserve the first input for the first |
| // lane and the second input for the second lane. This may result in |
| // duplicate sources, but this can be dealt with in the backend. |
| |
| Value *OutOps[2]; |
| int Indices[8]; |
| for (unsigned l = 0; l != 2; ++l) { |
| // Determine the source for this lane. |
| if (Imm & (1 << ((l * 4) + 3))) |
| OutOps[l] = llvm::ConstantAggregateZero::get(Ops[0]->getType()); |
| else if (Imm & (1 << ((l * 4) + 1))) |
| OutOps[l] = Ops[1]; |
| else |
| OutOps[l] = Ops[0]; |
| |
| for (unsigned i = 0; i != NumElts/2; ++i) { |
| // Start with ith element of the source for this lane. |
| unsigned Idx = (l * NumElts) + i; |
| // If bit 0 of the immediate half is set, switch to the high half of |
| // the source. |
| if (Imm & (1 << (l * 4))) |
| Idx += NumElts/2; |
| Indices[(l * (NumElts/2)) + i] = Idx; |
| } |
| } |
| |
| return Builder.CreateShuffleVector(OutOps[0], OutOps[1], |
| ArrayRef(Indices, NumElts), "vperm"); |
| } |
| |
| case X86::BI__builtin_ia32_pslldqi128_byteshift: |
| case X86::BI__builtin_ia32_pslldqi256_byteshift: |
| case X86::BI__builtin_ia32_pslldqi512_byteshift: { |
| unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff; |
| auto *ResultType = cast<llvm::FixedVectorType>(Ops[0]->getType()); |
| // Builtin type is vXi64 so multiply by 8 to get bytes. |
| unsigned NumElts = ResultType->getNumElements() * 8; |
| |
| // If pslldq is shifting the vector more than 15 bytes, emit zero. |
| if (ShiftVal >= 16) |
| return llvm::Constant::getNullValue(ResultType); |
| |
| int Indices[64]; |
| // 256/512-bit pslldq operates on 128-bit lanes so we need to handle that |
| for (unsigned l = 0; l != NumElts; l += 16) { |
| for (unsigned i = 0; i != 16; ++i) { |
| unsigned Idx = NumElts + i - ShiftVal; |
| if (Idx < NumElts) Idx -= NumElts - 16; // end of lane, switch operand. |
| Indices[l + i] = Idx + l; |
| } |
| } |
| |
| auto *VecTy = llvm::FixedVectorType::get(Int8Ty, NumElts); |
| Value *Cast = Builder.CreateBitCast(Ops[0], VecTy, "cast"); |
| Value *Zero = llvm::Constant::getNullValue(VecTy); |
| Value *SV = Builder.CreateShuffleVector( |
| Zero, Cast, ArrayRef(Indices, NumElts), "pslldq"); |
| return Builder.CreateBitCast(SV, Ops[0]->getType(), "cast"); |
| } |
| case X86::BI__builtin_ia32_psrldqi128_byteshift: |
| case X86::BI__builtin_ia32_psrldqi256_byteshift: |
| case X86::BI__builtin_ia32_psrldqi512_byteshift: { |
| unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff; |
| auto *ResultType = cast<llvm::FixedVectorType>(Ops[0]->getType()); |
| // Builtin type is vXi64 so multiply by 8 to get bytes. |
| unsigned NumElts = ResultType->getNumElements() * 8; |
| |
| // If psrldq is shifting the vector more than 15 bytes, emit zero. |
| if (ShiftVal >= 16) |
| return llvm::Constant::getNullValue(ResultType); |
| |
| int Indices[64]; |
| // 256/512-bit psrldq operates on 128-bit lanes so we need to handle that |
| for (unsigned l = 0; l != NumElts; l += 16) { |
| for (unsigned i = 0; i != 16; ++i) { |
| unsigned Idx = i + ShiftVal; |
| if (Idx >= 16) Idx += NumElts - 16; // end of lane, switch operand. |
| Indices[l + i] = Idx + l; |
| } |
| } |
| |
| auto *VecTy = llvm::FixedVectorType::get(Int8Ty, NumElts); |
| Value *Cast = Builder.CreateBitCast(Ops[0], VecTy, "cast"); |
| Value *Zero = llvm::Constant::getNullValue(VecTy); |
| Value *SV = Builder.CreateShuffleVector( |
| Cast, Zero, ArrayRef(Indices, NumElts), "psrldq"); |
| return Builder.CreateBitCast(SV, ResultType, "cast"); |
| } |
| case X86::BI__builtin_ia32_kshiftliqi: |
| case X86::BI__builtin_ia32_kshiftlihi: |
| case X86::BI__builtin_ia32_kshiftlisi: |
| case X86::BI__builtin_ia32_kshiftlidi: { |
| unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff; |
| unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth(); |
| |
| if (ShiftVal >= NumElts) |
| return llvm::Constant::getNullValue(Ops[0]->getType()); |
| |
| Value *In = getMaskVecValue(*this, Ops[0], NumElts); |
| |
| int Indices[64]; |
| for (unsigned i = 0; i != NumElts; ++i) |
| Indices[i] = NumElts + i - ShiftVal; |
| |
| Value *Zero = llvm::Constant::getNullValue(In->getType()); |
| Value *SV = Builder.CreateShuffleVector( |
| Zero, In, ArrayRef(Indices, NumElts), "kshiftl"); |
| return Builder.CreateBitCast(SV, Ops[0]->getType()); |
| } |
| case X86::BI__builtin_ia32_kshiftriqi: |
| case X86::BI__builtin_ia32_kshiftrihi: |
| case X86::BI__builtin_ia32_kshiftrisi: |
| case X86::BI__builtin_ia32_kshiftridi: { |
| unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff; |
| unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth(); |
| |
| if (ShiftVal >= NumElts) |
| return llvm::Constant::getNullValue(Ops[0]->getType()); |
| |
| Value *In = getMaskVecValue(*this, Ops[0], NumElts); |
| |
| int Indices[64]; |
| for (unsigned i = 0; i != NumElts; ++i) |
| Indices[i] = i + ShiftVal; |
| |
| Value *Zero = llvm::Constant::getNullValue(In->getType()); |
| Value *SV = Builder.CreateShuffleVector( |
| In, Zero, ArrayRef(Indices, NumElts), "kshiftr"); |
| return Builder.CreateBitCast(SV, Ops[0]->getType()); |
| } |
| case X86::BI__builtin_ia32_movnti: |
| case X86::BI__builtin_ia32_movnti64: |
| case X86::BI__builtin_ia32_movntsd: |
| case X86::BI__builtin_ia32_movntss: { |
| llvm::MDNode *Node = llvm::MDNode::get( |
| getLLVMContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1))); |
| |
| Value *Ptr = Ops[0]; |
| Value *Src = Ops[1]; |
| |
| // Extract the 0'th element of the source vector. |
| if (BuiltinID == X86::BI__builtin_ia32_movntsd || |
| BuiltinID == X86::BI__builtin_ia32_movntss) |
| Src = Builder.CreateExtractElement(Src, (uint64_t)0, "extract"); |
| |
| // Unaligned nontemporal store of the scalar value. |
| StoreInst *SI = Builder.CreateDefaultAlignedStore(Src, Ptr); |
| SI->setMetadata(llvm::LLVMContext::MD_nontemporal, Node); |
| SI->setAlignment(llvm::Align(1)); |
| return SI; |
| } |
| // Rotate is a special case of funnel shift - 1st 2 args are the same. |
| case X86::BI__builtin_ia32_vprotb: |
| case X86::BI__builtin_ia32_vprotw: |
| case X86::BI__builtin_ia32_vprotd: |
| case X86::BI__builtin_ia32_vprotq: |
| case X86::BI__builtin_ia32_vprotbi: |
| case X86::BI__builtin_ia32_vprotwi: |
| case X86::BI__builtin_ia32_vprotdi: |
| case X86::BI__builtin_ia32_vprotqi: |
| case X86::BI__builtin_ia32_prold128: |
| case X86::BI__builtin_ia32_prold256: |
| case X86::BI__builtin_ia32_prold512: |
| case X86::BI__builtin_ia32_prolq128: |
| case X86::BI__builtin_ia32_prolq256: |
| case X86::BI__builtin_ia32_prolq512: |
| case X86::BI__builtin_ia32_prolvd128: |
| case X86::BI__builtin_ia32_prolvd256: |
| case X86::BI__builtin_ia32_prolvd512: |
| case X86::BI__builtin_ia32_prolvq128: |
| case X86::BI__builtin_ia32_prolvq256: |
| case X86::BI__builtin_ia32_prolvq512: |
| return EmitX86FunnelShift(*this, Ops[0], Ops[0], Ops[1], false); |
| case X86::BI__builtin_ia32_prord128: |
| case X86::BI__builtin_ia32_prord256: |
| case X86::BI__builtin_ia32_prord512: |
| case X86::BI__builtin_ia32_prorq128: |
| case X86::BI__builtin_ia32_prorq256: |
| case X86::BI__builtin_ia32_prorq512: |
| case X86::BI__builtin_ia32_prorvd128: |
| case X86::BI__builtin_ia32_prorvd256: |
| case X86::BI__builtin_ia32_prorvd512: |
| case X86::BI__builtin_ia32_prorvq128: |
| case X86::BI__builtin_ia32_prorvq256: |
| case X86::BI__builtin_ia32_prorvq512: |
| return EmitX86FunnelShift(*this, Ops[0], Ops[0], Ops[1], true); |
| case X86::BI__builtin_ia32_selectb_128: |
| case X86::BI__builtin_ia32_selectb_256: |
| case X86::BI__builtin_ia32_selectb_512: |
| case X86::BI__builtin_ia32_selectw_128: |
| case X86::BI__builtin_ia32_selectw_256: |
| case X86::BI__builtin_ia32_selectw_512: |
| case X86::BI__builtin_ia32_selectd_128: |
| case X86::BI__builtin_ia32_selectd_256: |
| case X86::BI__builtin_ia32_selectd_512: |
| case X86::BI__builtin_ia32_selectq_128: |
| case X86::BI__builtin_ia32_selectq_256: |
| case X86::BI__builtin_ia32_selectq_512: |
| case X86::BI__builtin_ia32_selectph_128: |
| case X86::BI__builtin_ia32_selectph_256: |
| case X86::BI__builtin_ia32_selectph_512: |
| case X86::BI__builtin_ia32_selectpbf_128: |
| case X86::BI__builtin_ia32_selectpbf_256: |
| case X86::BI__builtin_ia32_selectpbf_512: |
| case X86::BI__builtin_ia32_selectps_128: |
| case X86::BI__builtin_ia32_selectps_256: |
| case X86::BI__builtin_ia32_selectps_512: |
| case X86::BI__builtin_ia32_selectpd_128: |
| case X86::BI__builtin_ia32_selectpd_256: |
| case X86::BI__builtin_ia32_selectpd_512: |
| return EmitX86Select(*this, Ops[0], Ops[1], Ops[2]); |
| case X86::BI__builtin_ia32_selectsh_128: |
| case X86::BI__builtin_ia32_selectsbf_128: |
| case X86::BI__builtin_ia32_selectss_128: |
| case X86::BI__builtin_ia32_selectsd_128: { |
| Value *A = Builder.CreateExtractElement(Ops[1], (uint64_t)0); |
| Value *B = Builder.CreateExtractElement(Ops[2], (uint64_t)0); |
| A = EmitX86ScalarSelect(*this, Ops[0], A, B); |
| return Builder.CreateInsertElement(Ops[1], A, (uint64_t)0); |
| } |
| case X86::BI__builtin_ia32_cmpb128_mask: |
| case X86::BI__builtin_ia32_cmpb256_mask: |
| case X86::BI__builtin_ia32_cmpb512_mask: |
| case X86::BI__builtin_ia32_cmpw128_mask: |
| case X86::BI__builtin_ia32_cmpw256_mask: |
| case X86::BI__builtin_ia32_cmpw512_mask: |
| case X86::BI__builtin_ia32_cmpd128_mask: |
| case X86::BI__builtin_ia32_cmpd256_mask: |
| case X86::BI__builtin_ia32_cmpd512_mask: |
| case X86::BI__builtin_ia32_cmpq128_mask: |
| case X86::BI__builtin_ia32_cmpq256_mask: |
| case X86::BI__builtin_ia32_cmpq512_mask: { |
| unsigned CC = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x7; |
| return EmitX86MaskedCompare(*this, CC, true, Ops); |
| } |
| case X86::BI__builtin_ia32_ucmpb128_mask: |
| case X86::BI__builtin_ia32_ucmpb256_mask: |
| case X86::BI__builtin_ia32_ucmpb512_mask: |
| case X86::BI__builtin_ia32_ucmpw128_mask: |
| case X86::BI__builtin_ia32_ucmpw256_mask: |
| case X86::BI__builtin_ia32_ucmpw512_mask: |
| case X86::BI__builtin_ia32_ucmpd128_mask: |
| case X86::BI__builtin_ia32_ucmpd256_mask: |
| case X86::BI__builtin_ia32_ucmpd512_mask: |
| case X86::BI__builtin_ia32_ucmpq128_mask: |
| case X86::BI__builtin_ia32_ucmpq256_mask: |
| case X86::BI__builtin_ia32_ucmpq512_mask: { |
| unsigned CC = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x7; |
| return EmitX86MaskedCompare(*this, CC, false, Ops); |
| } |
| case X86::BI__builtin_ia32_vpcomb: |
| case X86::BI__builtin_ia32_vpcomw: |
| case X86::BI__builtin_ia32_vpcomd: |
| case X86::BI__builtin_ia32_vpcomq: |
| return EmitX86vpcom(*this, Ops, true); |
| case X86::BI__builtin_ia32_vpcomub: |
| case X86::BI__builtin_ia32_vpcomuw: |
| case X86::BI__builtin_ia32_vpcomud: |
| case X86::BI__builtin_ia32_vpcomuq: |
| return EmitX86vpcom(*this, Ops, false); |
| |
| case X86::BI__builtin_ia32_kortestcqi: |
| case X86::BI__builtin_ia32_kortestchi: |
| case X86::BI__builtin_ia32_kortestcsi: |
| case X86::BI__builtin_ia32_kortestcdi: { |
| Value *Or = EmitX86MaskLogic(*this, Instruction::Or, Ops); |
| Value *C = llvm::Constant::getAllOnesValue(Ops[0]->getType()); |
| Value *Cmp = Builder.CreateICmpEQ(Or, C); |
| return Builder.CreateZExt(Cmp, ConvertType(E->getType())); |
| } |
| case X86::BI__builtin_ia32_kortestzqi: |
| case X86::BI__builtin_ia32_kortestzhi: |
| case X86::BI__builtin_ia32_kortestzsi: |
| case X86::BI__builtin_ia32_kortestzdi: { |
| Value *Or = EmitX86MaskLogic(*this, Instruction::Or, Ops); |
| Value *C = llvm::Constant::getNullValue(Ops[0]->getType()); |
| Value *Cmp = Builder.CreateICmpEQ(Or, C); |
| return Builder.CreateZExt(Cmp, ConvertType(E->getType())); |
| } |
| |
| case X86::BI__builtin_ia32_ktestcqi: |
| case X86::BI__builtin_ia32_ktestzqi: |
| case X86::BI__builtin_ia32_ktestchi: |
| case X86::BI__builtin_ia32_ktestzhi: |
| case X86::BI__builtin_ia32_ktestcsi: |
| case X86::BI__builtin_ia32_ktestzsi: |
| case X86::BI__builtin_ia32_ktestcdi: |
| case X86::BI__builtin_ia32_ktestzdi: { |
| Intrinsic::ID IID; |
| switch (BuiltinID) { |
| default: llvm_unreachable("Unsupported intrinsic!"); |
| case X86::BI__builtin_ia32_ktestcqi: |
| IID = Intrinsic::x86_avx512_ktestc_b; |
| break; |
| case X86::BI__builtin_ia32_ktestzqi: |
| IID = Intrinsic::x86_avx512_ktestz_b; |
| break; |
| case X86::BI__builtin_ia32_ktestchi: |
| IID = Intrinsic::x86_avx512_ktestc_w; |
| break; |
| case X86::BI__builtin_ia32_ktestzhi: |
| IID = Intrinsic::x86_avx512_ktestz_w; |
| break; |
| case X86::BI__builtin_ia32_ktestcsi: |
| IID = Intrinsic::x86_avx512_ktestc_d; |
| break; |
| case X86::BI__builtin_ia32_ktestzsi: |
| IID = Intrinsic::x86_avx512_ktestz_d; |
| break; |
| case X86::BI__builtin_ia32_ktestcdi: |
| IID = Intrinsic::x86_avx512_ktestc_q; |
| break; |
| case X86::BI__builtin_ia32_ktestzdi: |
| IID = Intrinsic::x86_avx512_ktestz_q; |
| break; |
| } |
| |
| unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth(); |
| Value *LHS = getMaskVecValue(*this, Ops[0], NumElts); |
| Value *RHS = getMaskVecValue(*this, Ops[1], NumElts); |
| Function *Intr = CGM.getIntrinsic(IID); |
| return Builder.CreateCall(Intr, {LHS, RHS}); |
| } |
| |
| case X86::BI__builtin_ia32_kaddqi: |
| case X86::BI__builtin_ia32_kaddhi: |
| case X86::BI__builtin_ia32_kaddsi: |
| case X86::BI__builtin_ia32_kadddi: { |
| Intrinsic::ID IID; |
| switch (BuiltinID) { |
| default: llvm_unreachable("Unsupported intrinsic!"); |
| case X86::BI__builtin_ia32_kaddqi: |
| IID = Intrinsic::x86_avx512_kadd_b; |
| break; |
| case X86::BI__builtin_ia32_kaddhi: |
| IID = Intrinsic::x86_avx512_kadd_w; |
| break; |
| case X86::BI__builtin_ia32_kaddsi: |
| IID = Intrinsic::x86_avx512_kadd_d; |
| break; |
| case X86::BI__builtin_ia32_kadddi: |
| IID = Intrinsic::x86_avx512_kadd_q; |
| break; |
| } |
| |
| unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth(); |
| Value *LHS = getMaskVecValue(*this, Ops[0], NumElts); |
| Value *RHS = getMaskVecValue(*this, Ops[1], NumElts); |
| Function *Intr = CGM.getIntrinsic(IID); |
| Value *Res = Builder.CreateCall(Intr, {LHS, RHS}); |
| return Builder.CreateBitCast(Res, Ops[0]->getType()); |
| } |
| case X86::BI__builtin_ia32_kandqi: |
| case X86::BI__builtin_ia32_kandhi: |
| case X86::BI__builtin_ia32_kandsi: |
| case X86::BI__builtin_ia32_kanddi: |
| return EmitX86MaskLogic(*this, Instruction::And, Ops); |
| case X86::BI__builtin_ia32_kandnqi: |
| case X86::BI__builtin_ia32_kandnhi: |
| case X86::BI__builtin_ia32_kandnsi: |
| case X86::BI__builtin_ia32_kandndi: |
| return EmitX86MaskLogic(*this, Instruction::And, Ops, true); |
| case X86::BI__builtin_ia32_korqi: |
| case X86::BI__builtin_ia32_korhi: |
| case X86::BI__builtin_ia32_korsi: |
| case X86::BI__builtin_ia32_kordi: |
| return EmitX86MaskLogic(*this, Instruction::Or, Ops); |
| case X86::BI__builtin_ia32_kxnorqi: |
| case X86::BI__builtin_ia32_kxnorhi: |
| case X86::BI__builtin_ia32_kxnorsi: |
| case X86::BI__builtin_ia32_kxnordi: |
| return EmitX86MaskLogic(*this, Instruction::Xor, Ops, true); |
| case X86::BI__builtin_ia32_kxorqi: |
| case X86::BI__builtin_ia32_kxorhi: |
| case X86::BI__builtin_ia32_kxorsi: |
| case X86::BI__builtin_ia32_kxordi: |
| return EmitX86MaskLogic(*this, Instruction::Xor, Ops); |
| case X86::BI__builtin_ia32_knotqi: |
| case X86::BI__builtin_ia32_knothi: |
| case X86::BI__builtin_ia32_knotsi: |
| case X86::BI__builtin_ia32_knotdi: { |
| unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth(); |
| Value *Res = getMaskVecValue(*this, Ops[0], NumElts); |
| return Builder.CreateBitCast(Builder.CreateNot(Res), |
| Ops[0]->getType()); |
| } |
| case X86::BI__builtin_ia32_kmovb: |
| case X86::BI__builtin_ia32_kmovw: |
| case X86::BI__builtin_ia32_kmovd: |
| case X86::BI__builtin_ia32_kmovq: { |
| // Bitcast to vXi1 type and then back to integer. This gets the mask |
| // register type into the IR, but might be optimized out depending on |
| // what's around it. |
| unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth(); |
| Value *Res = getMaskVecValue(*this, Ops[0], NumElts); |
| return Builder.CreateBitCast(Res, Ops[0]->getType()); |
| } |
| |
| case X86::BI__builtin_ia32_kunpckdi: |
| case X86::BI__builtin_ia32_kunpcksi: |
| case X86::BI__builtin_ia32_kunpckhi: { |
| unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth(); |
| Value *LHS = getMaskVecValue(*this, Ops[0], NumElts); |
| Value *RHS = getMaskVecValue(*this, Ops[1], NumElts); |
| int Indices[64]; |
| for (unsigned i = 0; i != NumElts; ++i) |
| Indices[i] = i; |
| |
| // First extract half of each vector. This gives better codegen than |
| // doing it in a single shuffle. |
| LHS = Builder.CreateShuffleVector(LHS, LHS, ArrayRef(Indices, NumElts / 2)); |
| RHS = Builder.CreateShuffleVector(RHS, RHS, ArrayRef(Indices, NumElts / 2)); |
| // Concat the vectors. |
| // NOTE: Operands are swapped to match the intrinsic definition. |
| Value *Res = |
| Builder.CreateShuffleVector(RHS, LHS, ArrayRef(Indices, NumElts)); |
| return Builder.CreateBitCast(Res, Ops[0]->getType()); |
| } |
| |
| case X86::BI__builtin_ia32_vplzcntd_128: |
| case X86::BI__builtin_ia32_vplzcntd_256: |
| case X86::BI__builtin_ia32_vplzcntd_512: |
| case X86::BI__builtin_ia32_vplzcntq_128: |
| case X86::BI__builtin_ia32_vplzcntq_256: |
| case X86::BI__builtin_ia32_vplzcntq_512: { |
| Function *F = CGM.getIntrinsic(Intrinsic::ctlz, Ops[0]->getType()); |
| return Builder.CreateCall(F, {Ops[0],Builder.getInt1(false)}); |
| } |
| case X86::BI__builtin_ia32_sqrtss: |
| case X86::BI__builtin_ia32_sqrtsd: { |
| Value *A = Builder.CreateExtractElement(Ops[0], (uint64_t)0); |
| Function *F; |
| if (Builder.getIsFPConstrained()) { |
| CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E); |
| F = CGM.getIntrinsic(Intrinsic::experimental_constrained_sqrt, |
| A->getType()); |
| A = Builder.CreateConstrainedFPCall(F, {A}); |
| } else { |
| F = CGM.getIntrinsic(Intrinsic::sqrt, A->getType()); |
| A = Builder.CreateCall(F, {A}); |
| } |
| return Builder.CreateInsertElement(Ops[0], A, (uint64_t)0); |
| } |
| case X86::BI__builtin_ia32_sqrtsh_round_mask: |
| case X86::BI__builtin_ia32_sqrtsd_round_mask: |
| case X86::BI__builtin_ia32_sqrtss_round_mask: { |
| unsigned CC = cast<llvm::ConstantInt>(Ops[4])->getZExtValue(); |
| // Support only if the rounding mode is 4 (AKA CUR_DIRECTION), |
| // otherwise keep the intrinsic. |
| if (CC != 4) { |
| Intrinsic::ID IID; |
| |
| switch (BuiltinID) { |
| default: |
| llvm_unreachable("Unsupported intrinsic!"); |
| case X86::BI__builtin_ia32_sqrtsh_round_mask: |
| IID = Intrinsic::x86_avx512fp16_mask_sqrt_sh; |
| break; |
| case X86::BI__builtin_ia32_sqrtsd_round_mask: |
| IID = Intrinsic::x86_avx512_mask_sqrt_sd; |
| break; |
| case X86::BI__builtin_ia32_sqrtss_round_mask: |
| IID = Intrinsic::x86_avx512_mask_sqrt_ss; |
| break; |
| } |
| return Builder.CreateCall(CGM.getIntrinsic(IID), Ops); |
| } |
| Value *A = Builder.CreateExtractElement(Ops[1], (uint64_t)0); |
| Function *F; |
| if (Builder.getIsFPConstrained()) { |
| CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E); |
| F = CGM.getIntrinsic(Intrinsic::experimental_constrained_sqrt, |
| A->getType()); |
| A = Builder.CreateConstrainedFPCall(F, A); |
| } else { |
| F = CGM.getIntrinsic(Intrinsic::sqrt, A->getType()); |
| A = Builder.CreateCall(F, A); |
| } |
| Value *Src = Builder.CreateExtractElement(Ops[2], (uint64_t)0); |
| A = EmitX86ScalarSelect(*this, Ops[3], A, Src); |
| return Builder.CreateInsertElement(Ops[0], A, (uint64_t)0); |
| } |
| case X86::BI__builtin_ia32_sqrtpd256: |
| case X86::BI__builtin_ia32_sqrtpd: |
| case X86::BI__builtin_ia32_sqrtps256: |
| case X86::BI__builtin_ia32_sqrtps: |
| case X86::BI__builtin_ia32_sqrtph256: |
| case X86::BI__builtin_ia32_sqrtph: |
| case X86::BI__builtin_ia32_sqrtph512: |
| case X86::BI__builtin_ia32_vsqrtbf16256: |
| case X86::BI__builtin_ia32_vsqrtbf16: |
| case X86::BI__builtin_ia32_vsqrtbf16512: |
| case X86::BI__builtin_ia32_sqrtps512: |
| case X86::BI__builtin_ia32_sqrtpd512: { |
| if (Ops.size() == 2) { |
| unsigned CC = cast<llvm::ConstantInt>(Ops[1])->getZExtValue(); |
| // Support only if the rounding mode is 4 (AKA CUR_DIRECTION), |
| // otherwise keep the intrinsic. |
| if (CC != 4) { |
| Intrinsic::ID IID; |
| |
| switch (BuiltinID) { |
| default: |
| llvm_unreachable("Unsupported intrinsic!"); |
| case X86::BI__builtin_ia32_sqrtph512: |
| IID = Intrinsic::x86_avx512fp16_sqrt_ph_512; |
| break; |
| case X86::BI__builtin_ia32_sqrtps512: |
| IID = Intrinsic::x86_avx512_sqrt_ps_512; |
| break; |
| case X86::BI__builtin_ia32_sqrtpd512: |
| IID = Intrinsic::x86_avx512_sqrt_pd_512; |
| break; |
| } |
| return Builder.CreateCall(CGM.getIntrinsic(IID), Ops); |
| } |
| } |
| if (Builder.getIsFPConstrained()) { |
| CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E); |
| Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_sqrt, |
| Ops[0]->getType()); |
| return Builder.CreateConstrainedFPCall(F, Ops[0]); |
| } else { |
| Function *F = CGM.getIntrinsic(Intrinsic::sqrt, Ops[0]->getType()); |
| return Builder.CreateCall(F, Ops[0]); |
| } |
| } |
| |
| case X86::BI__builtin_ia32_pmuludq128: |
| case X86::BI__builtin_ia32_pmuludq256: |
| case X86::BI__builtin_ia32_pmuludq512: |
| return EmitX86Muldq(*this, /*IsSigned*/false, Ops); |
| |
| case X86::BI__builtin_ia32_pmuldq128: |
| case X86::BI__builtin_ia32_pmuldq256: |
| case X86::BI__builtin_ia32_pmuldq512: |
| return EmitX86Muldq(*this, /*IsSigned*/true, Ops); |
| |
| case X86::BI__builtin_ia32_pternlogd512_mask: |
| case X86::BI__builtin_ia32_pternlogq512_mask: |
| case X86::BI__builtin_ia32_pternlogd128_mask: |
| case X86::BI__builtin_ia32_pternlogd256_mask: |
| case X86::BI__builtin_ia32_pternlogq128_mask: |
| case X86::BI__builtin_ia32_pternlogq256_mask: |
| return EmitX86Ternlog(*this, /*ZeroMask*/false, Ops); |
| |
| case X86::BI__builtin_ia32_pternlogd512_maskz: |
| case X86::BI__builtin_ia32_pternlogq512_maskz: |
| case X86::BI__builtin_ia32_pternlogd128_maskz: |
| case X86::BI__builtin_ia32_pternlogd256_maskz: |
| case X86::BI__builtin_ia32_pternlogq128_maskz: |
| case X86::BI__builtin_ia32_pternlogq256_maskz: |
| return EmitX86Ternlog(*this, /*ZeroMask*/true, Ops); |
| |
| case X86::BI__builtin_ia32_vpshldd128: |
| case X86::BI__builtin_ia32_vpshldd256: |
| case X86::BI__builtin_ia32_vpshldd512: |
| case X86::BI__builtin_ia32_vpshldq128: |
| case X86::BI__builtin_ia32_vpshldq256: |
| case X86::BI__builtin_ia32_vpshldq512: |
| case X86::BI__builtin_ia32_vpshldw128: |
| case X86::BI__builtin_ia32_vpshldw256: |
| case X86::BI__builtin_ia32_vpshldw512: |
| return EmitX86FunnelShift(*this, Ops[0], Ops[1], Ops[2], false); |
| |
| case X86::BI__builtin_ia32_vpshrdd128: |
| case X86::BI__builtin_ia32_vpshrdd256: |
| case X86::BI__builtin_ia32_vpshrdd512: |
| case X86::BI__builtin_ia32_vpshrdq128: |
| case X86::BI__builtin_ia32_vpshrdq256: |
| case X86::BI__builtin_ia32_vpshrdq512: |
| case X86::BI__builtin_ia32_vpshrdw128: |
| case X86::BI__builtin_ia32_vpshrdw256: |
| case X86::BI__builtin_ia32_vpshrdw512: |
| // Ops 0 and 1 are swapped. |
| return EmitX86FunnelShift(*this, Ops[1], Ops[0], Ops[2], true); |
| |
| case X86::BI__builtin_ia32_vpshldvd128: |
| case X86::BI__builtin_ia32_vpshldvd256: |
| case X86::BI__builtin_ia32_vpshldvd512: |
| case X86::BI__builtin_ia32_vpshldvq128: |
| case X86::BI__builtin_ia32_vpshldvq256: |
| case X86::BI__builtin_ia32_vpshldvq512: |
| case X86::BI__builtin_ia32_vpshldvw128: |
| case X86::BI__builtin_ia32_vpshldvw256: |
| case X86::BI__builtin_ia32_vpshldvw512: |
| return EmitX86FunnelShift(*this, Ops[0], Ops[1], Ops[2], false); |
| |
| case X86::BI__builtin_ia32_vpshrdvd128: |
| case X86::BI__builtin_ia32_vpshrdvd256: |
| case X86::BI__builtin_ia32_vpshrdvd512: |
| case X86::BI__builtin_ia32_vpshrdvq128: |
| case X86::BI__builtin_ia32_vpshrdvq256: |
| case X86::BI__builtin_ia32_vpshrdvq512: |
| case X86::BI__builtin_ia32_vpshrdvw128: |
| case X86::BI__builtin_ia32_vpshrdvw256: |
| case X86::BI__builtin_ia32_vpshrdvw512: |
| // Ops 0 and 1 are swapped. |
| return EmitX86FunnelShift(*this, Ops[1], Ops[0], Ops[2], true); |
| |
| // Reductions |
| case X86::BI__builtin_ia32_reduce_fadd_pd512: |
| case X86::BI__builtin_ia32_reduce_fadd_ps512: |
| case X86::BI__builtin_ia32_reduce_fadd_ph512: |
| case X86::BI__builtin_ia32_reduce_fadd_ph256: |
| case X86::BI__builtin_ia32_reduce_fadd_ph128: { |
| Function *F = |
| CGM.getIntrinsic(Intrinsic::vector_reduce_fadd, Ops[1]->getType()); |
| IRBuilder<>::FastMathFlagGuard FMFGuard(Builder); |
| Builder.getFastMathFlags().setAllowReassoc(); |
| return Builder.CreateCall(F, {Ops[0], Ops[1]}); |
| } |
| case X86::BI__builtin_ia32_reduce_fmul_pd512: |
| case X86::BI__builtin_ia32_reduce_fmul_ps512: |
| case X86::BI__builtin_ia32_reduce_fmul_ph512: |
| case X86::BI__builtin_ia32_reduce_fmul_ph256: |
| case X86::BI__builtin_ia32_reduce_fmul_ph128: { |
| Function *F = |
| CGM.getIntrinsic(Intrinsic::vector_reduce_fmul, Ops[1]->getType()); |
| IRBuilder<>::FastMathFlagGuard FMFGuard(Builder); |
| Builder.getFastMathFlags().setAllowReassoc(); |
| return Builder.CreateCall(F, {Ops[0], Ops[1]}); |
| } |
| case X86::BI__builtin_ia32_reduce_fmax_pd512: |
| case X86::BI__builtin_ia32_reduce_fmax_ps512: |
| case X86::BI__builtin_ia32_reduce_fmax_ph512: |
| case X86::BI__builtin_ia32_reduce_fmax_ph256: |
| case X86::BI__builtin_ia32_reduce_fmax_ph128: { |
| Function *F = |
| CGM.getIntrinsic(Intrinsic::vector_reduce_fmax, Ops[0]->getType()); |
| IRBuilder<>::FastMathFlagGuard FMFGuard(Builder); |
| Builder.getFastMathFlags().setNoNaNs(); |
| return Builder.CreateCall(F, {Ops[0]}); |
| } |
| case X86::BI__builtin_ia32_reduce_fmin_pd512: |
| case X86::BI__builtin_ia32_reduce_fmin_ps512: |
| case X86::BI__builtin_ia32_reduce_fmin_ph512: |
| case X86::BI__builtin_ia32_reduce_fmin_ph256: |
| case X86::BI__builtin_ia32_reduce_fmin_ph128: { |
| Function *F = |
| CGM.getIntrinsic(Intrinsic::vector_reduce_fmin, Ops[0]->getType()); |
| IRBuilder<>::FastMathFlagGuard FMFGuard(Builder); |
| Builder.getFastMathFlags().setNoNaNs(); |
| return Builder.CreateCall(F, {Ops[0]}); |
| } |
| |
| case X86::BI__builtin_ia32_rdrand16_step: |
| case X86::BI__builtin_ia32_rdrand32_step: |
| case X86::BI__builtin_ia32_rdrand64_step: |
| case X86::BI__builtin_ia32_rdseed16_step: |
| case X86::BI__builtin_ia32_rdseed32_step: |
| case X86::BI__builtin_ia32_rdseed64_step: { |
| Intrinsic::ID ID; |
| switch (BuiltinID) { |
| default: llvm_unreachable("Unsupported intrinsic!"); |
| case X86::BI__builtin_ia32_rdrand16_step: |
| ID = Intrinsic::x86_rdrand_16; |
| break; |
| case X86::BI__builtin_ia32_rdrand32_step: |
| ID = Intrinsic::x86_rdrand_32; |
| break; |
| case X86::BI__builtin_ia32_rdrand64_step: |
| ID = Intrinsic::x86_rdrand_64; |
| break; |
| case X86::BI__builtin_ia32_rdseed16_step: |
| ID = Intrinsic::x86_rdseed_16; |
| break; |
| case X86::BI__builtin_ia32_rdseed32_step: |
| ID = Intrinsic::x86_rdseed_32; |
| break; |
| case X86::BI__builtin_ia32_rdseed64_step: |
| ID = Intrinsic::x86_rdseed_64; |
| break; |
| } |
| |
| Value *Call = Builder.CreateCall(CGM.getIntrinsic(ID)); |
| Builder.CreateDefaultAlignedStore(Builder.CreateExtractValue(Call, 0), |
| Ops[0]); |
| return Builder.CreateExtractValue(Call, 1); |
| } |
| case X86::BI__builtin_ia32_addcarryx_u32: |
| case X86::BI__builtin_ia32_addcarryx_u64: |
| case X86::BI__builtin_ia32_subborrow_u32: |
| case X86::BI__builtin_ia32_subborrow_u64: { |
| Intrinsic::ID IID; |
| switch (BuiltinID) { |
| default: llvm_unreachable("Unsupported intrinsic!"); |
| case X86::BI__builtin_ia32_addcarryx_u32: |
| IID = Intrinsic::x86_addcarry_32; |
| break; |
| case X86::BI__builtin_ia32_addcarryx_u64: |
| IID = Intrinsic::x86_addcarry_64; |
| break; |
| case X86::BI__builtin_ia32_subborrow_u32: |
| IID = Intrinsic::x86_subborrow_32; |
| break; |
| case X86::BI__builtin_ia32_subborrow_u64: |
| IID = Intrinsic::x86_subborrow_64; |
| break; |
| } |
| |
| Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID), |
| { Ops[0], Ops[1], Ops[2] }); |
| Builder.CreateDefaultAlignedStore(Builder.CreateExtractValue(Call, 1), |
| Ops[3]); |
| return Builder.CreateExtractValue(Call, 0); |
| } |
| |
| case X86::BI__builtin_ia32_fpclassps128_mask: |
| case X86::BI__builtin_ia32_fpclassps256_mask: |
| case X86::BI__builtin_ia32_fpclassps512_mask: |
| case X86::BI__builtin_ia32_vfpclassbf16128_mask: |
| case X86::BI__builtin_ia32_vfpclassbf16256_mask: |
| case X86::BI__builtin_ia32_vfpclassbf16512_mask: |
| case X86::BI__builtin_ia32_fpclassph128_mask: |
| case X86::BI__builtin_ia32_fpclassph256_mask: |
| case X86::BI__builtin_ia32_fpclassph512_mask: |
| case X86::BI__builtin_ia32_fpclasspd128_mask: |
| case X86::BI__builtin_ia32_fpclasspd256_mask: |
| case X86::BI__builtin_ia32_fpclasspd512_mask: { |
| unsigned NumElts = |
| cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements(); |
| Value *MaskIn = Ops[2]; |
| Ops.erase(&Ops[2]); |
| |
| Intrinsic::ID ID; |
| switch (BuiltinID) { |
| default: llvm_unreachable("Unsupported intrinsic!"); |
| case X86::BI__builtin_ia32_vfpclassbf16128_mask: |
| ID = Intrinsic::x86_avx10_fpclass_bf16_128; |
| break; |
| case X86::BI__builtin_ia32_vfpclassbf16256_mask: |
| ID = Intrinsic::x86_avx10_fpclass_bf16_256; |
| break; |
| case X86::BI__builtin_ia32_vfpclassbf16512_mask: |
| ID = Intrinsic::x86_avx10_fpclass_bf16_512; |
| break; |
| case X86::BI__builtin_ia32_fpclassph128_mask: |
| ID = Intrinsic::x86_avx512fp16_fpclass_ph_128; |
| break; |
| case X86::BI__builtin_ia32_fpclassph256_mask: |
| ID = Intrinsic::x86_avx512fp16_fpclass_ph_256; |
| break; |
| case X86::BI__builtin_ia32_fpclassph512_mask: |
| ID = Intrinsic::x86_avx512fp16_fpclass_ph_512; |
| break; |
| case X86::BI__builtin_ia32_fpclassps128_mask: |
| ID = Intrinsic::x86_avx512_fpclass_ps_128; |
| break; |
| case X86::BI__builtin_ia32_fpclassps256_mask: |
| ID = Intrinsic::x86_avx512_fpclass_ps_256; |
| break; |
| case X86::BI__builtin_ia32_fpclassps512_mask: |
| ID = Intrinsic::x86_avx512_fpclass_ps_512; |
| break; |
| case X86::BI__builtin_ia32_fpclasspd128_mask: |
| ID = Intrinsic::x86_avx512_fpclass_pd_128; |
| break; |
| case X86::BI__builtin_ia32_fpclasspd256_mask: |
| ID = Intrinsic::x86_avx512_fpclass_pd_256; |
| break; |
| case X86::BI__builtin_ia32_fpclasspd512_mask: |
| ID = Intrinsic::x86_avx512_fpclass_pd_512; |
| break; |
| } |
| |
| Value *Fpclass = Builder.CreateCall(CGM.getIntrinsic(ID), Ops); |
| return EmitX86MaskedCompareResult(*this, Fpclass, NumElts, MaskIn); |
| } |
| |
| case X86::BI__builtin_ia32_vp2intersect_q_512: |
| case X86::BI__builtin_ia32_vp2intersect_q_256: |
| case X86::BI__builtin_ia32_vp2intersect_q_128: |
| case X86::BI__builtin_ia32_vp2intersect_d_512: |
| case X86::BI__builtin_ia32_vp2intersect_d_256: |
| case X86::BI__builtin_ia32_vp2intersect_d_128: { |
| unsigned NumElts = |
| cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements(); |
| Intrinsic::ID ID; |
| |
| switch (BuiltinID) { |
| default: llvm_unreachable("Unsupported intrinsic!"); |
| case X86::BI__builtin_ia32_vp2intersect_q_512: |
| ID = Intrinsic::x86_avx512_vp2intersect_q_512; |
| break; |
| case X86::BI__builtin_ia32_vp2intersect_q_256: |
| ID = Intrinsic::x86_avx512_vp2intersect_q_256; |
| break; |
| case X86::BI__builtin_ia32_vp2intersect_q_128: |
| ID = Intrinsic::x86_avx512_vp2intersect_q_128; |
| break; |
| case X86::BI__builtin_ia32_vp2intersect_d_512: |
| ID = Intrinsic::x86_avx512_vp2intersect_d_512; |
| break; |
| case X86::BI__builtin_ia32_vp2intersect_d_256: |
| ID = Intrinsic::x86_avx512_vp2intersect_d_256; |
| break; |
| case X86::BI__builtin_ia32_vp2intersect_d_128: |
| ID = Intrinsic::x86_avx512_vp2intersect_d_128; |
| break; |
| } |
| |
| Value *Call = Builder.CreateCall(CGM.getIntrinsic(ID), {Ops[0], Ops[1]}); |
| Value *Result = Builder.CreateExtractValue(Call, 0); |
| Result = EmitX86MaskedCompareResult(*this, Result, NumElts, nullptr); |
| Builder.CreateDefaultAlignedStore(Result, Ops[2]); |
| |
| Result = Builder.CreateExtractValue(Call, 1); |
| Result = EmitX86MaskedCompareResult(*this, Result, NumElts, nullptr); |
| return Builder.CreateDefaultAlignedStore(Result, Ops[3]); |
| } |
| |
| case X86::BI__builtin_ia32_vpmultishiftqb128: |
| case X86::BI__builtin_ia32_vpmultishiftqb256: |
| case X86::BI__builtin_ia32_vpmultishiftqb512: { |
| Intrinsic::ID ID; |
| switch (BuiltinID) { |
| default: llvm_unreachable("Unsupported intrinsic!"); |
| case X86::BI__builtin_ia32_vpmultishiftqb128: |
| ID = Intrinsic::x86_avx512_pmultishift_qb_128; |
| break; |
| case X86::BI__builtin_ia32_vpmultishiftqb256: |
| ID = Intrinsic::x86_avx512_pmultishift_qb_256; |
| break; |
| case X86::BI__builtin_ia32_vpmultishiftqb512: |
| ID = Intrinsic::x86_avx512_pmultishift_qb_512; |
| break; |
| } |
| |
| return Builder.CreateCall(CGM.getIntrinsic(ID), Ops); |
| } |
| |
| case X86::BI__builtin_ia32_vpshufbitqmb128_mask: |
| case X86::BI__builtin_ia32_vpshufbitqmb256_mask: |
| case X86::BI__builtin_ia32_vpshufbitqmb512_mask: { |
| unsigned NumElts = |
| cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements(); |
| Value *MaskIn = Ops[2]; |
| Ops.erase(&Ops[2]); |
| |
| Intrinsic::ID ID; |
| switch (BuiltinID) { |
| default: llvm_unreachable("Unsupported intrinsic!"); |
| case X86::BI__builtin_ia32_vpshufbitqmb128_mask: |
| ID = Intrinsic::x86_avx512_vpshufbitqmb_128; |
| break; |
| case X86::BI__builtin_ia32_vpshufbitqmb256_mask: |
| ID = Intrinsic::x86_avx512_vpshufbitqmb_256; |
| break; |
| case X86::BI__builtin_ia32_vpshufbitqmb512_mask: |
| ID = Intrinsic::x86_avx512_vpshufbitqmb_512; |
| break; |
| } |
| |
| Value *Shufbit = Builder.CreateCall(CGM.getIntrinsic(ID), Ops); |
| return EmitX86MaskedCompareResult(*this, Shufbit, NumElts, MaskIn); |
| } |
| |
| // packed comparison intrinsics |
| case X86::BI__builtin_ia32_cmpeqps: |
| case X86::BI__builtin_ia32_cmpeqpd: |
| return getVectorFCmpIR(CmpInst::FCMP_OEQ, /*IsSignaling*/false); |
| case X86::BI__builtin_ia32_cmpltps: |
| case X86::BI__builtin_ia32_cmpltpd: |
| return getVectorFCmpIR(CmpInst::FCMP_OLT, /*IsSignaling*/true); |
| case X86::BI__builtin_ia32_cmpleps: |
| case X86::BI__builtin_ia32_cmplepd: |
| return getVectorFCmpIR(CmpInst::FCMP_OLE, /*IsSignaling*/true); |
| case X86::BI__builtin_ia32_cmpunordps: |
| case X86::BI__builtin_ia32_cmpunordpd: |
| return getVectorFCmpIR(CmpInst::FCMP_UNO, /*IsSignaling*/false); |
| case X86::BI__builtin_ia32_cmpneqps: |
| case X86::BI__builtin_ia32_cmpneqpd: |
| return getVectorFCmpIR(CmpInst::FCMP_UNE, /*IsSignaling*/false); |
| case X86::BI__builtin_ia32_cmpnltps: |
| case X86::BI__builtin_ia32_cmpnltpd: |
| return getVectorFCmpIR(CmpInst::FCMP_UGE, /*IsSignaling*/true); |
| case X86::BI__builtin_ia32_cmpnleps: |
| case X86::BI__builtin_ia32_cmpnlepd: |
| return getVectorFCmpIR(CmpInst::FCMP_UGT, /*IsSignaling*/true); |
| case X86::BI__builtin_ia32_cmpordps: |
| case X86::BI__builtin_ia32_cmpordpd: |
| return getVectorFCmpIR(CmpInst::FCMP_ORD, /*IsSignaling*/false); |
| case X86::BI__builtin_ia32_cmpph128_mask: |
| case X86::BI__builtin_ia32_cmpph256_mask: |
| case X86::BI__builtin_ia32_cmpph512_mask: |
| case X86::BI__builtin_ia32_cmpps128_mask: |
| case X86::BI__builtin_ia32_cmpps256_mask: |
| case X86::BI__builtin_ia32_cmpps512_mask: |
| case X86::BI__builtin_ia32_cmppd128_mask: |
| case X86::BI__builtin_ia32_cmppd256_mask: |
| case X86::BI__builtin_ia32_cmppd512_mask: |
| case X86::BI__builtin_ia32_vcmppd256_round_mask: |
| case X86::BI__builtin_ia32_vcmpps256_round_mask: |
| case X86::BI__builtin_ia32_vcmpph256_round_mask: |
| case X86::BI__builtin_ia32_vcmpbf16512_mask: |
| case X86::BI__builtin_ia32_vcmpbf16256_mask: |
| case X86::BI__builtin_ia32_vcmpbf16128_mask: |
| IsMaskFCmp = true; |
| [[fallthrough]]; |
| case X86::BI__builtin_ia32_cmpps: |
| case X86::BI__builtin_ia32_cmpps256: |
| case X86::BI__builtin_ia32_cmppd: |
| case X86::BI__builtin_ia32_cmppd256: { |
| // Lowering vector comparisons to fcmp instructions, while |
| // ignoring signalling behaviour requested |
| // ignoring rounding mode requested |
| // This is only possible if fp-model is not strict and FENV_ACCESS is off. |
| |
| // The third argument is the comparison condition, and integer in the |
| // range [0, 31] |
| unsigned CC = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x1f; |
| |
| // Lowering to IR fcmp instruction. |
| // Ignoring requested signaling behaviour, |
| // e.g. both _CMP_GT_OS & _CMP_GT_OQ are translated to FCMP_OGT. |
| FCmpInst::Predicate Pred; |
| bool IsSignaling; |
| // Predicates for 16-31 repeat the 0-15 predicates. Only the signalling |
| // behavior is inverted. We'll handle that after the switch. |
| switch (CC & 0xf) { |
| case 0x00: Pred = FCmpInst::FCMP_OEQ; IsSignaling = false; break; |
| case 0x01: Pred = FCmpInst::FCMP_OLT; IsSignaling = true; break; |
| case 0x02: Pred = FCmpInst::FCMP_OLE; IsSignaling = true; break; |
| case 0x03: Pred = FCmpInst::FCMP_UNO; IsSignaling = false; break; |
| case 0x04: Pred = FCmpInst::FCMP_UNE; IsSignaling = false; break; |
| case 0x05: Pred = FCmpInst::FCMP_UGE; IsSignaling = true; break; |
| case 0x06: Pred = FCmpInst::FCMP_UGT; IsSignaling = true; break; |
| case 0x07: Pred = FCmpInst::FCMP_ORD; IsSignaling = false; break; |
| case 0x08: Pred = FCmpInst::FCMP_UEQ; IsSignaling = false; break; |
| case 0x09: Pred = FCmpInst::FCMP_ULT; IsSignaling = true; break; |
| case 0x0a: Pred = FCmpInst::FCMP_ULE; IsSignaling = true; break; |
| case 0x0b: Pred = FCmpInst::FCMP_FALSE; IsSignaling = false; break; |
| case 0x0c: Pred = FCmpInst::FCMP_ONE; IsSignaling = false; break; |
| case 0x0d: Pred = FCmpInst::FCMP_OGE; IsSignaling = true; break; |
| case 0x0e: Pred = FCmpInst::FCMP_OGT; IsSignaling = true; break; |
| case 0x0f: Pred = FCmpInst::FCMP_TRUE; IsSignaling = false; break; |
| default: llvm_unreachable("Unhandled CC"); |
| } |
| |
| // Invert the signalling behavior for 16-31. |
| if (CC & 0x10) |
| IsSignaling = !IsSignaling; |
| |
| // If the predicate is true or false and we're using constrained intrinsics, |
| // we don't have a compare intrinsic we can use. Just use the legacy X86 |
| // specific intrinsic. |
| // If the intrinsic is mask enabled and we're using constrained intrinsics, |
| // use the legacy X86 specific intrinsic. |
| if (Builder.getIsFPConstrained() && |
| (Pred == FCmpInst::FCMP_TRUE || Pred == FCmpInst::FCMP_FALSE || |
| IsMaskFCmp)) { |
| |
| Intrinsic::ID IID; |
| switch (BuiltinID) { |
| default: llvm_unreachable("Unexpected builtin"); |
| case X86::BI__builtin_ia32_cmpps: |
| IID = Intrinsic::x86_sse_cmp_ps; |
| break; |
| case X86::BI__builtin_ia32_cmpps256: |
| IID = Intrinsic::x86_avx_cmp_ps_256; |
| break; |
| case X86::BI__builtin_ia32_cmppd: |
| IID = Intrinsic::x86_sse2_cmp_pd; |
| break; |
| case X86::BI__builtin_ia32_cmppd256: |
| IID = Intrinsic::x86_avx_cmp_pd_256; |
| break; |
| case X86::BI__builtin_ia32_cmpph128_mask: |
| IID = Intrinsic::x86_avx512fp16_mask_cmp_ph_128; |
| break; |
| case X86::BI__builtin_ia32_cmpph256_mask: |
| IID = Intrinsic::x86_avx512fp16_mask_cmp_ph_256; |
| break; |
| case X86::BI__builtin_ia32_cmpph512_mask: |
| IID = Intrinsic::x86_avx512fp16_mask_cmp_ph_512; |
| break; |
| case X86::BI__builtin_ia32_cmpps512_mask: |
| IID = Intrinsic::x86_avx512_mask_cmp_ps_512; |
| break; |
| case X86::BI__builtin_ia32_cmppd512_mask: |
| IID = Intrinsic::x86_avx512_mask_cmp_pd_512; |
| break; |
| case X86::BI__builtin_ia32_cmpps128_mask: |
| IID = Intrinsic::x86_avx512_mask_cmp_ps_128; |
| break; |
| case X86::BI__builtin_ia32_cmpps256_mask: |
| IID = Intrinsic::x86_avx512_mask_cmp_ps_256; |
| break; |
| case X86::BI__builtin_ia32_cmppd128_mask: |
| IID = Intrinsic::x86_avx512_mask_cmp_pd_128; |
| break; |
| case X86::BI__builtin_ia32_cmppd256_mask: |
| IID = Intrinsic::x86_avx512_mask_cmp_pd_256; |
| break; |
| } |
| |
| Function *Intr = CGM.getIntrinsic(IID); |
| if (IsMaskFCmp) { |
| unsigned NumElts = |
| cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements(); |
| Ops[3] = getMaskVecValue(*this, Ops[3], NumElts); |
| Value *Cmp = Builder.CreateCall(Intr, Ops); |
| return EmitX86MaskedCompareResult(*this, Cmp, NumElts, nullptr); |
| } |
| |
| return Builder.CreateCall(Intr, Ops); |
| } |
| |
| // Builtins without the _mask suffix return a vector of integers |
| // of the same width as the input vectors |
| if (IsMaskFCmp) { |
| // We ignore SAE if strict FP is disabled. We only keep precise |
| // exception behavior under strict FP. |
| // NOTE: If strict FP does ever go through here a CGFPOptionsRAII |
| // object will be required. |
| unsigned NumElts = |
| cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements(); |
| Value *Cmp; |
| if (IsSignaling) |
| Cmp = Builder.CreateFCmpS(Pred, Ops[0], Ops[1]); |
| else |
| Cmp = Builder.CreateFCmp(Pred, Ops[0], Ops[1]); |
| return EmitX86MaskedCompareResult(*this, Cmp, NumElts, Ops[3]); |
| } |
| |
| return getVectorFCmpIR(Pred, IsSignaling); |
| } |
| |
| // SSE scalar comparison intrinsics |
| case X86::BI__builtin_ia32_cmpeqss: |
| return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 0); |
| case X86::BI__builtin_ia32_cmpltss: |
| return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 1); |
| case X86::BI__builtin_ia32_cmpless: |
| return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 2); |
| case X86::BI__builtin_ia32_cmpunordss: |
| return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 3); |
| case X86::BI__builtin_ia32_cmpneqss: |
| return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 4); |
| case X86::BI__builtin_ia32_cmpnltss: |
| return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 5); |
| case X86::BI__builtin_ia32_cmpnless: |
| return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 6); |
| case X86::BI__builtin_ia32_cmpordss: |
| return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 7); |
| case X86::BI__builtin_ia32_cmpeqsd: |
| return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 0); |
| case X86::BI__builtin_ia32_cmpltsd: |
| return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 1); |
| case X86::BI__builtin_ia32_cmplesd: |
| return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 2); |
| case X86::BI__builtin_ia32_cmpunordsd: |
| return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 3); |
| case X86::BI__builtin_ia32_cmpneqsd: |
| return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 4); |
| case X86::BI__builtin_ia32_cmpnltsd: |
| return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 5); |
| case X86::BI__builtin_ia32_cmpnlesd: |
| return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 6); |
| case X86::BI__builtin_ia32_cmpordsd: |
| return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 7); |
| |
| // f16c half2float intrinsics |
| case X86::BI__builtin_ia32_vcvtph2ps: |
| case X86::BI__builtin_ia32_vcvtph2ps256: |
| case X86::BI__builtin_ia32_vcvtph2ps_mask: |
| case X86::BI__builtin_ia32_vcvtph2ps256_mask: |
| case X86::BI__builtin_ia32_vcvtph2ps512_mask: { |
| CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E); |
| return EmitX86CvtF16ToFloatExpr(*this, Ops, ConvertType(E->getType())); |
| } |
| |
| // AVX512 bf16 intrinsics |
| case X86::BI__builtin_ia32_cvtneps2bf16_128_mask: { |
| Ops[2] = getMaskVecValue( |
| *this, Ops[2], |
| cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements()); |
| Intrinsic::ID IID = Intrinsic::x86_avx512bf16_mask_cvtneps2bf16_128; |
| return Builder.CreateCall(CGM.getIntrinsic(IID), Ops); |
| } |
| case X86::BI__builtin_ia32_cvtsbf162ss_32: |
| return Builder.CreateFPExt(Ops[0], Builder.getFloatTy()); |
| |
| case X86::BI__builtin_ia32_cvtneps2bf16_256_mask: |
| case X86::BI__builtin_ia32_cvtneps2bf16_512_mask: { |
| Intrinsic::ID IID; |
| switch (BuiltinID) { |
| default: llvm_unreachable("Unsupported intrinsic!"); |
| case X86::BI__builtin_ia32_cvtneps2bf16_256_mask: |
| IID = Intrinsic::x86_avx512bf16_cvtneps2bf16_256; |
| break; |
| case X86::BI__builtin_ia32_cvtneps2bf16_512_mask: |
| IID = Intrinsic::x86_avx512bf16_cvtneps2bf16_512; |
| break; |
| } |
| Value *Res = Builder.CreateCall(CGM.getIntrinsic(IID), Ops[0]); |
| return EmitX86Select(*this, Ops[2], Res, Ops[1]); |
| } |
| |
| case X86::BI__cpuid: |
| case X86::BI__cpuidex: { |
| Value *FuncId = EmitScalarExpr(E->getArg(1)); |
| Value *SubFuncId = BuiltinID == X86::BI__cpuidex |
| ? EmitScalarExpr(E->getArg(2)) |
| : llvm::ConstantInt::get(Int32Ty, 0); |
| |
| llvm::StructType *CpuidRetTy = |
| llvm::StructType::get(Int32Ty, Int32Ty, Int32Ty, Int32Ty); |
| llvm::FunctionType *FTy = |
| llvm::FunctionType::get(CpuidRetTy, {Int32Ty, Int32Ty}, false); |
| |
| StringRef Asm, Constraints; |
| if (getTarget().getTriple().getArch() == llvm::Triple::x86) { |
| Asm = "cpuid"; |
| Constraints = "={ax},={bx},={cx},={dx},{ax},{cx}"; |
| } else { |
| // x86-64 uses %rbx as the base register, so preserve it. |
| Asm = "xchgq %rbx, ${1:q}\n" |
| "cpuid\n" |
| "xchgq %rbx, ${1:q}"; |
| Constraints = "={ax},=r,={cx},={dx},0,2"; |
| } |
| |
| llvm::InlineAsm *IA = llvm::InlineAsm::get(FTy, Asm, Constraints, |
| /*hasSideEffects=*/false); |
| Value *IACall = Builder.CreateCall(IA, {FuncId, SubFuncId}); |
| Value *BasePtr = EmitScalarExpr(E->getArg(0)); |
| Value *Store = nullptr; |
| for (unsigned i = 0; i < 4; i++) { |
| Value *Extracted = Builder.CreateExtractValue(IACall, i); |
| Value *StorePtr = Builder.CreateConstInBoundsGEP1_32(Int32Ty, BasePtr, i); |
| Store = Builder.CreateAlignedStore(Extracted, StorePtr, getIntAlign()); |
| } |
| |
| // Return the last store instruction to signal that we have emitted the |
| // the intrinsic. |
| return Store; |
| } |
| |
| case X86::BI__emul: |
| case X86::BI__emulu: { |
| llvm::Type *Int64Ty = llvm::IntegerType::get(getLLVMContext(), 64); |
| bool isSigned = (BuiltinID == X86::BI__emul); |
| Value *LHS = Builder.CreateIntCast(Ops[0], Int64Ty, isSigned); |
| Value *RHS = Builder.CreateIntCast(Ops[1], Int64Ty, isSigned); |
| return Builder.CreateMul(LHS, RHS, "", !isSigned, isSigned); |
| } |
| case X86::BI__mulh: |
| case X86::BI__umulh: |
| case X86::BI_mul128: |
| case X86::BI_umul128: { |
| llvm::Type *ResType = ConvertType(E->getType()); |
| llvm::Type *Int128Ty = llvm::IntegerType::get(getLLVMContext(), 128); |
| |
| bool IsSigned = (BuiltinID == X86::BI__mulh || BuiltinID == X86::BI_mul128); |
| Value *LHS = Builder.CreateIntCast(Ops[0], Int128Ty, IsSigned); |
| Value *RHS = Builder.CreateIntCast(Ops[1], Int128Ty, IsSigned); |
| |
| Value *MulResult, *HigherBits; |
| if (IsSigned) { |
| MulResult = Builder.CreateNSWMul(LHS, RHS); |
| HigherBits = Builder.CreateAShr(MulResult, 64); |
| } else { |
| MulResult = Builder.CreateNUWMul(LHS, RHS); |
| HigherBits = Builder.CreateLShr(MulResult, 64); |
| } |
| HigherBits = Builder.CreateIntCast(HigherBits, ResType, IsSigned); |
| |
| if (BuiltinID == X86::BI__mulh || BuiltinID == X86::BI__umulh) |
| return HigherBits; |
| |
| Address HighBitsAddress = EmitPointerWithAlignment(E->getArg(2)); |
| Builder.CreateStore(HigherBits, HighBitsAddress); |
| return Builder.CreateIntCast(MulResult, ResType, IsSigned); |
| } |
| |
| case X86::BI__faststorefence: { |
| return Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent, |
| llvm::SyncScope::System); |
| } |
| case X86::BI__shiftleft128: |
| case X86::BI__shiftright128: { |
| llvm::Function *F = CGM.getIntrinsic( |
| BuiltinID == X86::BI__shiftleft128 ? Intrinsic::fshl : Intrinsic::fshr, |
| Int64Ty); |
| // Flip low/high ops and zero-extend amount to matching type. |
| // shiftleft128(Low, High, Amt) -> fshl(High, Low, Amt) |
| // shiftright128(Low, High, Amt) -> fshr(High, Low, Amt) |
| std::swap(Ops[0], Ops[1]); |
| Ops[2] = Builder.CreateZExt(Ops[2], Int64Ty); |
| return Builder.CreateCall(F, Ops); |
| } |
| case X86::BI_ReadWriteBarrier: |
| case X86::BI_ReadBarrier: |
| case X86::BI_WriteBarrier: { |
| return Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent, |
| llvm::SyncScope::SingleThread); |
| } |
| |
| case X86::BI_AddressOfReturnAddress: { |
| Function *F = |
| CGM.getIntrinsic(Intrinsic::addressofreturnaddress, AllocaInt8PtrTy); |
| return Builder.CreateCall(F); |
| } |
| case X86::BI__stosb: { |
| // We treat __stosb as a volatile memset - it may not generate "rep stosb" |
| // instruction, but it will create a memset that won't be optimized away. |
| return Builder.CreateMemSet(Ops[0], Ops[1], Ops[2], Align(1), true); |
| } |
| // Corresponding to intrisics which will return 2 tiles (tile0_tile1). |
| case X86::BI__builtin_ia32_t2rpntlvwz0_internal: |
| case X86::BI__builtin_ia32_t2rpntlvwz0rs_internal: |
| case X86::BI__builtin_ia32_t2rpntlvwz0t1_internal: |
| case X86::BI__builtin_ia32_t2rpntlvwz0rst1_internal: |
| case X86::BI__builtin_ia32_t2rpntlvwz1_internal: |
| case X86::BI__builtin_ia32_t2rpntlvwz1rs_internal: |
| case X86::BI__builtin_ia32_t2rpntlvwz1t1_internal: |
| case X86::BI__builtin_ia32_t2rpntlvwz1rst1_internal: { |
| Intrinsic::ID IID; |
| switch (BuiltinID) { |
| default: |
| llvm_unreachable("Unsupported intrinsic!"); |
| case X86::BI__builtin_ia32_t2rpntlvwz0_internal: |
| IID = Intrinsic::x86_t2rpntlvwz0_internal; |
| break; |
| case X86::BI__builtin_ia32_t2rpntlvwz0rs_internal: |
| IID = Intrinsic::x86_t2rpntlvwz0rs_internal; |
| break; |
| case X86::BI__builtin_ia32_t2rpntlvwz0t1_internal: |
| IID = Intrinsic::x86_t2rpntlvwz0t1_internal; |
| break; |
| case X86::BI__builtin_ia32_t2rpntlvwz0rst1_internal: |
| IID = Intrinsic::x86_t2rpntlvwz0rst1_internal; |
| break; |
| case X86::BI__builtin_ia32_t2rpntlvwz1_internal: |
| IID = Intrinsic::x86_t2rpntlvwz1_internal; |
| break; |
| case X86::BI__builtin_ia32_t2rpntlvwz1rs_internal: |
| IID = Intrinsic::x86_t2rpntlvwz1rs_internal; |
| break; |
| case X86::BI__builtin_ia32_t2rpntlvwz1t1_internal: |
| IID = Intrinsic::x86_t2rpntlvwz1t1_internal; |
| break; |
| case X86::BI__builtin_ia32_t2rpntlvwz1rst1_internal: |
| IID = Intrinsic::x86_t2rpntlvwz1rst1_internal; |
| break; |
| } |
| |
| // Ops = (Row0, Col0, Col1, DstPtr0, DstPtr1, SrcPtr, Stride) |
| Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID), |
| {Ops[0], Ops[1], Ops[2], Ops[5], Ops[6]}); |
| |
| auto *PtrTy = E->getArg(3)->getType()->getAs<PointerType>(); |
| assert(PtrTy && "arg3 must be of pointer type"); |
| QualType PtreeTy = PtrTy->getPointeeType(); |
| llvm::Type *TyPtee = ConvertType(PtreeTy); |
| |
| // Bitcast amx type (x86_amx) to vector type (256 x i32) |
| // Then store tile0 into DstPtr0 |
| Value *T0 = Builder.CreateExtractValue(Call, 0); |
| Value *VecT0 = Builder.CreateIntrinsic(Intrinsic::x86_cast_tile_to_vector, |
| {TyPtee}, {T0}); |
| Builder.CreateDefaultAlignedStore(VecT0, Ops[3]); |
| |
| // Then store tile1 into DstPtr1 |
| Value *T1 = Builder.CreateExtractValue(Call, 1); |
| Value *VecT1 = Builder.CreateIntrinsic(Intrinsic::x86_cast_tile_to_vector, |
| {TyPtee}, {T1}); |
| Value *Store = Builder.CreateDefaultAlignedStore(VecT1, Ops[4]); |
| |
| // Note: Here we escape directly use x86_tilestored64_internal to store |
| // the results due to it can't make sure the Mem written scope. This may |
| // cause shapes reloads after first amx intrinsic, which current amx reg- |
| // ister allocation has no ability to handle it. |
| |
| return Store; |
| } |
| case X86::BI__ud2: |
| // llvm.trap makes a ud2a instruction on x86. |
| return EmitTrapCall(Intrinsic::trap); |
| case X86::BI__int2c: { |
| // This syscall signals a driver assertion failure in x86 NT kernels. |
| llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false); |
| llvm::InlineAsm *IA = |
| llvm::InlineAsm::get(FTy, "int $$0x2c", "", /*hasSideEffects=*/true); |
| llvm::AttributeList NoReturnAttr = llvm::AttributeList::get( |
| getLLVMContext(), llvm::AttributeList::FunctionIndex, |
| llvm::Attribute::NoReturn); |
| llvm::CallInst *CI = Builder.CreateCall(IA); |
| CI->setAttributes(NoReturnAttr); |
| return CI; |
| } |
| case X86::BI__readfsbyte: |
| case X86::BI__readfsword: |
| case X86::BI__readfsdword: |
| case X86::BI__readfsqword: { |
| llvm::Type *IntTy = ConvertType(E->getType()); |
| Value *Ptr = Builder.CreateIntToPtr( |
| Ops[0], llvm::PointerType::get(getLLVMContext(), 257)); |
| LoadInst *Load = Builder.CreateAlignedLoad( |
| IntTy, Ptr, getContext().getTypeAlignInChars(E->getType())); |
| Load->setVolatile(true); |
| return Load; |
| } |
| case X86::BI__readgsbyte: |
| case X86::BI__readgsword: |
| case X86::BI__readgsdword: |
| case X86::BI__readgsqword: { |
| llvm::Type *IntTy = ConvertType(E->getType()); |
| Value *Ptr = Builder.CreateIntToPtr( |
| Ops[0], llvm::PointerType::get(getLLVMContext(), 256)); |
| LoadInst *Load = Builder.CreateAlignedLoad( |
| IntTy, Ptr, getContext().getTypeAlignInChars(E->getType())); |
| Load->setVolatile(true); |
| return Load; |
| } |
| case X86::BI__builtin_ia32_encodekey128_u32: { |
| Intrinsic::ID IID = Intrinsic::x86_encodekey128; |
| |
| Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID), {Ops[0], Ops[1]}); |
| |
| for (int i = 0; i < 3; ++i) { |
| Value *Extract = Builder.CreateExtractValue(Call, i + 1); |
| Value *Ptr = Builder.CreateConstGEP1_32(Int8Ty, Ops[2], i * 16); |
| Builder.CreateAlignedStore(Extract, Ptr, Align(1)); |
| } |
| |
| return Builder.CreateExtractValue(Call, 0); |
| } |
| case X86::BI__builtin_ia32_encodekey256_u32: { |
| Intrinsic::ID IID = Intrinsic::x86_encodekey256; |
| |
| Value *Call = |
| Builder.CreateCall(CGM.getIntrinsic(IID), {Ops[0], Ops[1], Ops[2]}); |
| |
| for (int i = 0; i < 4; ++i) { |
| Value *Extract = Builder.CreateExtractValue(Call, i + 1); |
| Value *Ptr = Builder.CreateConstGEP1_32(Int8Ty, Ops[3], i * 16); |
| Builder.CreateAlignedStore(Extract, Ptr, Align(1)); |
| } |
| |
| return Builder.CreateExtractValue(Call, 0); |
| } |
| case X86::BI__builtin_ia32_aesenc128kl_u8: |
| case X86::BI__builtin_ia32_aesdec128kl_u8: |
| case X86::BI__builtin_ia32_aesenc256kl_u8: |
| case X86::BI__builtin_ia32_aesdec256kl_u8: { |
| Intrinsic::ID IID; |
| StringRef BlockName; |
| switch (BuiltinID) { |
| default: |
| llvm_unreachable("Unexpected builtin"); |
| case X86::BI__builtin_ia32_aesenc128kl_u8: |
| IID = Intrinsic::x86_aesenc128kl; |
| BlockName = "aesenc128kl"; |
| break; |
| case X86::BI__builtin_ia32_aesdec128kl_u8: |
| IID = Intrinsic::x86_aesdec128kl; |
| BlockName = "aesdec128kl"; |
| break; |
| case X86::BI__builtin_ia32_aesenc256kl_u8: |
| IID = Intrinsic::x86_aesenc256kl; |
| BlockName = "aesenc256kl"; |
| break; |
| case X86::BI__builtin_ia32_aesdec256kl_u8: |
| IID = Intrinsic::x86_aesdec256kl; |
| BlockName = "aesdec256kl"; |
| break; |
| } |
| |
| Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID), {Ops[1], Ops[2]}); |
| |
| BasicBlock *NoError = |
| createBasicBlock(BlockName + "_no_error", this->CurFn); |
| BasicBlock *Error = createBasicBlock(BlockName + "_error", this->CurFn); |
| BasicBlock *End = createBasicBlock(BlockName + "_end", this->CurFn); |
| |
| Value *Ret = Builder.CreateExtractValue(Call, 0); |
| Value *Succ = Builder.CreateTrunc(Ret, Builder.getInt1Ty()); |
| Value *Out = Builder.CreateExtractValue(Call, 1); |
| Builder.CreateCondBr(Succ, NoError, Error); |
| |
| Builder.SetInsertPoint(NoError); |
| Builder.CreateDefaultAlignedStore(Out, Ops[0]); |
| Builder.CreateBr(End); |
| |
| Builder.SetInsertPoint(Error); |
| Constant *Zero = llvm::Constant::getNullValue(Out->getType()); |
| Builder.CreateDefaultAlignedStore(Zero, Ops[0]); |
| Builder.CreateBr(End); |
| |
| Builder.SetInsertPoint(End); |
| return Builder.CreateExtractValue(Call, 0); |
| } |
| case X86::BI__builtin_ia32_aesencwide128kl_u8: |
| case X86::BI__builtin_ia32_aesdecwide128kl_u8: |
| case X86::BI__builtin_ia32_aesencwide256kl_u8: |
| case X86::BI__builtin_ia32_aesdecwide256kl_u8: { |
| Intrinsic::ID IID; |
| StringRef BlockName; |
| switch (BuiltinID) { |
| case X86::BI__builtin_ia32_aesencwide128kl_u8: |
| IID = Intrinsic::x86_aesencwide128kl; |
| BlockName = "aesencwide128kl"; |
| break; |
| case X86::BI__builtin_ia32_aesdecwide128kl_u8: |
| IID = Intrinsic::x86_aesdecwide128kl; |
| BlockName = "aesdecwide128kl"; |
| break; |
| case X86::BI__builtin_ia32_aesencwide256kl_u8: |
| IID = Intrinsic::x86_aesencwide256kl; |
| BlockName = "aesencwide256kl"; |
| break; |
| case X86::BI__builtin_ia32_aesdecwide256kl_u8: |
| IID = Intrinsic::x86_aesdecwide256kl; |
| BlockName = "aesdecwide256kl"; |
| break; |
| } |
| |
| llvm::Type *Ty = FixedVectorType::get(Builder.getInt64Ty(), 2); |
| Value *InOps[9]; |
| InOps[0] = Ops[2]; |
| for (int i = 0; i != 8; ++i) { |
| Value *Ptr = Builder.CreateConstGEP1_32(Ty, Ops[1], i); |
| InOps[i + 1] = Builder.CreateAlignedLoad(Ty, Ptr, Align(16)); |
| } |
| |
| Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID), InOps); |
| |
| BasicBlock *NoError = |
| createBasicBlock(BlockName + "_no_error", this->CurFn); |
| BasicBlock *Error = createBasicBlock(BlockName + "_error", this->CurFn); |
| BasicBlock *End = createBasicBlock(BlockName + "_end", this->CurFn); |
| |
| Value *Ret = Builder.CreateExtractValue(Call, 0); |
| Value *Succ = Builder.CreateTrunc(Ret, Builder.getInt1Ty()); |
| Builder.CreateCondBr(Succ, NoError, Error); |
| |
| Builder.SetInsertPoint(NoError); |
| for (int i = 0; i != 8; ++i) { |
| Value *Extract = Builder.CreateExtractValue(Call, i + 1); |
| Value *Ptr = Builder.CreateConstGEP1_32(Extract->getType(), Ops[0], i); |
| Builder.CreateAlignedStore(Extract, Ptr, Align(16)); |
| } |
| Builder.CreateBr(End); |
| |
| Builder.SetInsertPoint(Error); |
| for (int i = 0; i != 8; ++i) { |
| Value *Out = Builder.CreateExtractValue(Call, i + 1); |
| Constant *Zero = llvm::Constant::getNullValue(Out->getType()); |
| Value *Ptr = Builder.CreateConstGEP1_32(Out->getType(), Ops[0], i); |
| Builder.CreateAlignedStore(Zero, Ptr, Align(16)); |
| } |
| Builder.CreateBr(End); |
| |
| Builder.SetInsertPoint(End); |
| return Builder.CreateExtractValue(Call, 0); |
| } |
| case X86::BI__builtin_ia32_vfcmaddcph512_mask: |
| IsConjFMA = true; |
| [[fallthrough]]; |
| case X86::BI__builtin_ia32_vfmaddcph512_mask: { |
| Intrinsic::ID IID = IsConjFMA |
| ? Intrinsic::x86_avx512fp16_mask_vfcmadd_cph_512 |
| : Intrinsic::x86_avx512fp16_mask_vfmadd_cph_512; |
| Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID), Ops); |
| return EmitX86Select(*this, Ops[3], Call, Ops[0]); |
| } |
| case X86::BI__builtin_ia32_vfcmaddcph256_round_mask: |
| IsConjFMA = true; |
| LLVM_FALLTHROUGH; |
| case X86::BI__builtin_ia32_vfmaddcph256_round_mask: { |
| Intrinsic::ID IID = IsConjFMA ? Intrinsic::x86_avx10_mask_vfcmaddcph256 |
| : Intrinsic::x86_avx10_mask_vfmaddcph256; |
| Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID), Ops); |
| return EmitX86Select(*this, Ops[3], Call, Ops[0]); |
| } |
| case X86::BI__builtin_ia32_vfcmaddcsh_round_mask: |
| IsConjFMA = true; |
| [[fallthrough]]; |
| case X86::BI__builtin_ia32_vfmaddcsh_round_mask: { |
| Intrinsic::ID IID = IsConjFMA ? Intrinsic::x86_avx512fp16_mask_vfcmadd_csh |
| : Intrinsic::x86_avx512fp16_mask_vfmadd_csh; |
| Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID), Ops); |
| Value *And = Builder.CreateAnd(Ops[3], llvm::ConstantInt::get(Int8Ty, 1)); |
| return EmitX86Select(*this, And, Call, Ops[0]); |
| } |
| case X86::BI__builtin_ia32_vfcmaddcsh_round_mask3: |
| IsConjFMA = true; |
| [[fallthrough]]; |
| case X86::BI__builtin_ia32_vfmaddcsh_round_mask3: { |
| Intrinsic::ID IID = IsConjFMA ? Intrinsic::x86_avx512fp16_mask_vfcmadd_csh |
| : Intrinsic::x86_avx512fp16_mask_vfmadd_csh; |
| Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID), Ops); |
| static constexpr int Mask[] = {0, 5, 6, 7}; |
| return Builder.CreateShuffleVector(Call, Ops[2], Mask); |
| } |
| case X86::BI__builtin_ia32_prefetchi: |
| return Builder.CreateCall( |
| CGM.getIntrinsic(Intrinsic::prefetch, Ops[0]->getType()), |
| {Ops[0], llvm::ConstantInt::get(Int32Ty, 0), Ops[1], |
| llvm::ConstantInt::get(Int32Ty, 0)}); |
| } |
| } |
| |
| Value *CodeGenFunction::EmitPPCBuiltinExpr(unsigned BuiltinID, |
| const CallExpr *E) { |
| // Do not emit the builtin arguments in the arguments of a function call, |
| // because the evaluation order of function arguments is not specified in C++. |
| // This is important when testing to ensure the arguments are emitted in the |
| // same order every time. Eg: |
| // Instead of: |
| // return Builder.CreateFDiv(EmitScalarExpr(E->getArg(0)), |
| // EmitScalarExpr(E->getArg(1)), "swdiv"); |
| // Use: |
| // Value *Op0 = EmitScalarExpr(E->getArg(0)); |
| // Value *Op1 = EmitScalarExpr(E->getArg(1)); |
| // return Builder.CreateFDiv(Op0, Op1, "swdiv") |
| |
| Intrinsic::ID ID = Intrinsic::not_intrinsic; |
| |
| #include "llvm/TargetParser/PPCTargetParser.def" |
| auto GenAIXPPCBuiltinCpuExpr = [&](unsigned SupportMethod, unsigned FieldIdx, |
| unsigned Mask, CmpInst::Predicate CompOp, |
| unsigned OpValue) -> Value * { |
| if (SupportMethod == BUILTIN_PPC_FALSE) |
| return llvm::ConstantInt::getFalse(ConvertType(E->getType())); |
| |
| if (SupportMethod == BUILTIN_PPC_TRUE) |
| return llvm::ConstantInt::getTrue(ConvertType(E->getType())); |
| |
| assert(SupportMethod <= SYS_CALL && "Invalid value for SupportMethod."); |
| |
| llvm::Value *FieldValue = nullptr; |
| if (SupportMethod == USE_SYS_CONF) { |
| llvm::Type *STy = llvm::StructType::get(PPC_SYSTEMCONFIG_TYPE); |
| llvm::Constant *SysConf = |
| CGM.CreateRuntimeVariable(STy, "_system_configuration"); |
| |
| // Grab the appropriate field from _system_configuration. |
| llvm::Value *Idxs[] = {ConstantInt::get(Int32Ty, 0), |
| ConstantInt::get(Int32Ty, FieldIdx)}; |
| |
| FieldValue = Builder.CreateInBoundsGEP(STy, SysConf, Idxs); |
| FieldValue = Builder.CreateAlignedLoad(Int32Ty, FieldValue, |
| CharUnits::fromQuantity(4)); |
| } else if (SupportMethod == SYS_CALL) { |
| llvm::FunctionType *FTy = |
| llvm::FunctionType::get(Int64Ty, Int32Ty, false); |
| llvm::FunctionCallee Func = |
| CGM.CreateRuntimeFunction(FTy, "getsystemcfg"); |
| |
| FieldValue = |
| Builder.CreateCall(Func, {ConstantInt::get(Int32Ty, FieldIdx)}); |
| } |
| assert(FieldValue && |
| "SupportMethod value is not defined in PPCTargetParser.def."); |
| |
| if (Mask) |
| FieldValue = Builder.CreateAnd(FieldValue, Mask); |
| |
| llvm::Type *ValueType = FieldValue->getType(); |
| bool IsValueType64Bit = ValueType->isIntegerTy(64); |
| assert( |
| (IsValueType64Bit || ValueType->isIntegerTy(32)) && |
| "Only 32/64-bit integers are supported in GenAIXPPCBuiltinCpuExpr()."); |
| |
| return Builder.CreateICmp( |
| CompOp, FieldValue, |
| ConstantInt::get(IsValueType64Bit ? Int64Ty : Int32Ty, OpValue)); |
| }; |
| |
| switch (BuiltinID) { |
| default: return nullptr; |
| |
| case Builtin::BI__builtin_cpu_is: { |
| const Expr *CPUExpr = E->getArg(0)->IgnoreParenCasts(); |
| StringRef CPUStr = cast<clang::StringLiteral>(CPUExpr)->getString(); |
| llvm::Triple Triple = getTarget().getTriple(); |
| |
| unsigned LinuxSupportMethod, LinuxIDValue, AIXSupportMethod, AIXIDValue; |
| typedef std::tuple<unsigned, unsigned, unsigned, unsigned> CPUInfo; |
| |
| std::tie(LinuxSupportMethod, LinuxIDValue, AIXSupportMethod, AIXIDValue) = |
| static_cast<CPUInfo>(StringSwitch<CPUInfo>(CPUStr) |
| #define PPC_CPU(NAME, Linux_SUPPORT_METHOD, LinuxID, AIX_SUPPORT_METHOD, \ |
| AIXID) \ |
| .Case(NAME, {Linux_SUPPORT_METHOD, LinuxID, AIX_SUPPORT_METHOD, AIXID}) |
| #include "llvm/TargetParser/PPCTargetParser.def" |
| .Default({BUILTIN_PPC_UNSUPPORTED, 0, |
| BUILTIN_PPC_UNSUPPORTED, 0})); |
| |
| if (Triple.isOSAIX()) { |
| assert((AIXSupportMethod != BUILTIN_PPC_UNSUPPORTED) && |
| "Invalid CPU name. Missed by SemaChecking?"); |
| return GenAIXPPCBuiltinCpuExpr(AIXSupportMethod, AIX_SYSCON_IMPL_IDX, 0, |
| ICmpInst::ICMP_EQ, AIXIDValue); |
| } |
| |
| assert(Triple.isOSLinux() && |
| "__builtin_cpu_is() is only supported for AIX and Linux."); |
| |
| assert((LinuxSupportMethod != BUILTIN_PPC_UNSUPPORTED) && |
| "Invalid CPU name. Missed by SemaChecking?"); |
| |
| if (LinuxSupportMethod == BUILTIN_PPC_FALSE) |
| return llvm::ConstantInt::getFalse(ConvertType(E->getType())); |
| |
| Value *Op0 = llvm::ConstantInt::get(Int32Ty, PPC_FAWORD_CPUID); |
| llvm::Function *F = CGM.getIntrinsic(Intrinsic::ppc_fixed_addr_ld); |
| Value *TheCall = Builder.CreateCall(F, {Op0}, "cpu_is"); |
| return Builder.CreateICmpEQ(TheCall, |
| llvm::ConstantInt::get(Int32Ty, LinuxIDValue)); |
| } |
| case Builtin::BI__builtin_cpu_supports: { |
| llvm::Triple Triple = getTarget().getTriple(); |
| const Expr *CPUExpr = E->getArg(0)->IgnoreParenCasts(); |
| StringRef CPUStr = cast<clang::StringLiteral>(CPUExpr)->getString(); |
| if (Triple.isOSAIX()) { |
| unsigned SupportMethod, FieldIdx, Mask, Value; |
| CmpInst::Predicate CompOp; |
| typedef std::tuple<unsigned, unsigned, unsigned, CmpInst::Predicate, |
| unsigned> |
| CPUSupportType; |
| std::tie(SupportMethod, FieldIdx, Mask, CompOp, Value) = |
| static_cast<CPUSupportType>(StringSwitch<CPUSupportType>(CPUStr) |
| #define PPC_AIX_FEATURE(NAME, DESC, SUPPORT_METHOD, INDEX, MASK, COMP_OP, \ |
| VALUE) \ |
| .Case(NAME, {SUPPORT_METHOD, INDEX, MASK, COMP_OP, VALUE}) |
| #include "llvm/TargetParser/PPCTargetParser.def" |
| .Default({BUILTIN_PPC_FALSE, 0, 0, |
| CmpInst::Predicate(), 0})); |
| return GenAIXPPCBuiltinCpuExpr(SupportMethod, FieldIdx, Mask, CompOp, |
| Value); |
| } |
| |
| assert(Triple.isOSLinux() && |
| "__builtin_cpu_supports() is only supported for AIX and Linux."); |
| unsigned FeatureWord; |
| unsigned BitMask; |
| std::tie(FeatureWord, BitMask) = |
| StringSwitch<std::pair<unsigned, unsigned>>(CPUStr) |
| #define PPC_LNX_FEATURE(Name, Description, EnumName, Bitmask, FA_WORD) \ |
| .Case(Name, {FA_WORD, Bitmask}) |
| #include "llvm/TargetParser/PPCTargetParser.def" |
| .Default({0, 0}); |
| if (!BitMask) |
| return Builder.getFalse(); |
| Value *Op0 = llvm::ConstantInt::get(Int32Ty, FeatureWord); |
| llvm::Function *F = CGM.getIntrinsic(Intrinsic::ppc_fixed_addr_ld); |
| Value *TheCall = Builder.CreateCall(F, {Op0}, "cpu_supports"); |
| Value *Mask = |
| Builder.CreateAnd(TheCall, llvm::ConstantInt::get(Int32Ty, BitMask)); |
| return Builder.CreateICmpNE(Mask, llvm::Constant::getNullValue(Int32Ty)); |
| #undef PPC_FAWORD_HWCAP |
| #undef PPC_FAWORD_HWCAP2 |
| #undef PPC_FAWORD_CPUID |
| } |
| |
| // __builtin_ppc_get_timebase is GCC 4.8+'s PowerPC-specific name for what we |
| // call __builtin_readcyclecounter. |
| case PPC::BI__builtin_ppc_get_timebase: |
| return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::readcyclecounter)); |
| |
| // vec_ld, vec_xl_be, vec_lvsl, vec_lvsr |
| case PPC::BI__builtin_altivec_lvx: |
| case PPC::BI__builtin_altivec_lvxl: |
| case PPC::BI__builtin_altivec_lvebx: |
| case PPC::BI__builtin_altivec_lvehx: |
| case PPC::BI__builtin_altivec_lvewx: |
| case PPC::BI__builtin_altivec_lvsl: |
| case PPC::BI__builtin_altivec_lvsr: |
| case PPC::BI__builtin_vsx_lxvd2x: |
| case PPC::BI__builtin_vsx_lxvw4x: |
| case PPC::BI__builtin_vsx_lxvd2x_be: |
| case PPC::BI__builtin_vsx_lxvw4x_be: |
| case PPC::BI__builtin_vsx_lxvl: |
| case PPC::BI__builtin_vsx_lxvll: |
| { |
| SmallVector<Value *, 2> Ops; |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| Ops.push_back(EmitScalarExpr(E->getArg(1))); |
| if (!(BuiltinID == PPC::BI__builtin_vsx_lxvl || |
| BuiltinID == PPC::BI__builtin_vsx_lxvll)) { |
| Ops[0] = Builder.CreateGEP(Int8Ty, Ops[1], Ops[0]); |
| Ops.pop_back(); |
| } |
| |
| switch (BuiltinID) { |
| default: llvm_unreachable("Unsupported ld/lvsl/lvsr intrinsic!"); |
| case PPC::BI__builtin_altivec_lvx: |
| ID = Intrinsic::ppc_altivec_lvx; |
| break; |
| case PPC::BI__builtin_altivec_lvxl: |
| ID = Intrinsic::ppc_altivec_lvxl; |
| break; |
| case PPC::BI__builtin_altivec_lvebx: |
| ID = Intrinsic::ppc_altivec_lvebx; |
| break; |
| case PPC::BI__builtin_altivec_lvehx: |
| ID = Intrinsic::ppc_altivec_lvehx; |
| break; |
| case PPC::BI__builtin_altivec_lvewx: |
| ID = Intrinsic::ppc_altivec_lvewx; |
| break; |
| case PPC::BI__builtin_altivec_lvsl: |
| ID = Intrinsic::ppc_altivec_lvsl; |
| break; |
| case PPC::BI__builtin_altivec_lvsr: |
| ID = Intrinsic::ppc_altivec_lvsr; |
| break; |
| case PPC::BI__builtin_vsx_lxvd2x: |
| ID = Intrinsic::ppc_vsx_lxvd2x; |
| break; |
| case PPC::BI__builtin_vsx_lxvw4x: |
| ID = Intrinsic::ppc_vsx_lxvw4x; |
| break; |
| case PPC::BI__builtin_vsx_lxvd2x_be: |
| ID = Intrinsic::ppc_vsx_lxvd2x_be; |
| break; |
| case PPC::BI__builtin_vsx_lxvw4x_be: |
| ID = Intrinsic::ppc_vsx_lxvw4x_be; |
| break; |
| case PPC::BI__builtin_vsx_lxvl: |
| ID = Intrinsic::ppc_vsx_lxvl; |
| break; |
| case PPC::BI__builtin_vsx_lxvll: |
| ID = Intrinsic::ppc_vsx_lxvll; |
| break; |
| } |
| llvm::Function *F = CGM.getIntrinsic(ID); |
| return Builder.CreateCall(F, Ops, ""); |
| } |
| |
| // vec_st, vec_xst_be |
| case PPC::BI__builtin_altivec_stvx: |
| case PPC::BI__builtin_altivec_stvxl: |
| case PPC::BI__builtin_altivec_stvebx: |
| case PPC::BI__builtin_altivec_stvehx: |
| case PPC::BI__builtin_altivec_stvewx: |
| case PPC::BI__builtin_vsx_stxvd2x: |
| case PPC::BI__builtin_vsx_stxvw4x: |
| case PPC::BI__builtin_vsx_stxvd2x_be: |
| case PPC::BI__builtin_vsx_stxvw4x_be: |
| case PPC::BI__builtin_vsx_stxvl: |
| case PPC::BI__builtin_vsx_stxvll: |
| { |
| SmallVector<Value *, 3> Ops; |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| Ops.push_back(EmitScalarExpr(E->getArg(1))); |
| Ops.push_back(EmitScalarExpr(E->getArg(2))); |
| if (!(BuiltinID == PPC::BI__builtin_vsx_stxvl || |
| BuiltinID == PPC::BI__builtin_vsx_stxvll)) { |
| Ops[1] = Builder.CreateGEP(Int8Ty, Ops[2], Ops[1]); |
| Ops.pop_back(); |
| } |
| |
| switch (BuiltinID) { |
| default: llvm_unreachable("Unsupported st intrinsic!"); |
| case PPC::BI__builtin_altivec_stvx: |
| ID = Intrinsic::ppc_altivec_stvx; |
| break; |
| case PPC::BI__builtin_altivec_stvxl: |
| ID = Intrinsic::ppc_altivec_stvxl; |
| break; |
| case PPC::BI__builtin_altivec_stvebx: |
| ID = Intrinsic::ppc_altivec_stvebx; |
| break; |
| case PPC::BI__builtin_altivec_stvehx: |
| ID = Intrinsic::ppc_altivec_stvehx; |
| break; |
| case PPC::BI__builtin_altivec_stvewx: |
| ID = Intrinsic::ppc_altivec_stvewx; |
| break; |
| case PPC::BI__builtin_vsx_stxvd2x: |
| ID = Intrinsic::ppc_vsx_stxvd2x; |
| break; |
| case PPC::BI__builtin_vsx_stxvw4x: |
| ID = Intrinsic::ppc_vsx_stxvw4x; |
| break; |
| case PPC::BI__builtin_vsx_stxvd2x_be: |
| ID = Intrinsic::ppc_vsx_stxvd2x_be; |
| break; |
| case PPC::BI__builtin_vsx_stxvw4x_be: |
| ID = Intrinsic::ppc_vsx_stxvw4x_be; |
| break; |
| case PPC::BI__builtin_vsx_stxvl: |
| ID = Intrinsic::ppc_vsx_stxvl; |
| break; |
| case PPC::BI__builtin_vsx_stxvll: |
| ID = Intrinsic::ppc_vsx_stxvll; |
| break; |
| } |
| llvm::Function *F = CGM.getIntrinsic(ID); |
| return Builder.CreateCall(F, Ops, ""); |
| } |
| case PPC::BI__builtin_vsx_ldrmb: { |
| // Essentially boils down to performing an unaligned VMX load sequence so |
| // as to avoid crossing a page boundary and then shuffling the elements |
| // into the right side of the vector register. |
| Value *Op0 = EmitScalarExpr(E->getArg(0)); |
| Value *Op1 = EmitScalarExpr(E->getArg(1)); |
| int64_t NumBytes = cast<ConstantInt>(Op1)->getZExtValue(); |
| llvm::Type *ResTy = ConvertType(E->getType()); |
| bool IsLE = getTarget().isLittleEndian(); |
| |
| // If the user wants the entire vector, just load the entire vector. |
| if (NumBytes == 16) { |
| Value *LD = |
| Builder.CreateLoad(Address(Op0, ResTy, CharUnits::fromQuantity(1))); |
| if (!IsLE) |
| return LD; |
| |
| // Reverse the bytes on LE. |
| SmallVector<int, 16> RevMask; |
| for (int Idx = 0; Idx < 16; Idx++) |
| RevMask.push_back(15 - Idx); |
| return Builder.CreateShuffleVector(LD, LD, RevMask); |
| } |
| |
| llvm::Function *Lvx = CGM.getIntrinsic(Intrinsic::ppc_altivec_lvx); |
| llvm::Function *Lvs = CGM.getIntrinsic(IsLE ? Intrinsic::ppc_altivec_lvsr |
| : Intrinsic::ppc_altivec_lvsl); |
| llvm::Function *Vperm = CGM.getIntrinsic(Intrinsic::ppc_altivec_vperm); |
| Value *HiMem = Builder.CreateGEP( |
| Int8Ty, Op0, ConstantInt::get(Op1->getType(), NumBytes - 1)); |
| Value *LoLd = Builder.CreateCall(Lvx, Op0, "ld.lo"); |
| Value *HiLd = Builder.CreateCall(Lvx, HiMem, "ld.hi"); |
| Value *Mask1 = Builder.CreateCall(Lvs, Op0, "mask1"); |
| |
| Op0 = IsLE ? HiLd : LoLd; |
| Op1 = IsLE ? LoLd : HiLd; |
| Value *AllElts = Builder.CreateCall(Vperm, {Op0, Op1, Mask1}, "shuffle1"); |
| Constant *Zero = llvm::Constant::getNullValue(IsLE ? ResTy : AllElts->getType()); |
| |
| if (IsLE) { |
| SmallVector<int, 16> Consts; |
| for (int Idx = 0; Idx < 16; Idx++) { |
| int Val = (NumBytes - Idx - 1 >= 0) ? (NumBytes - Idx - 1) |
| : 16 - (NumBytes - Idx); |
| Consts.push_back(Val); |
| } |
| return Builder.CreateShuffleVector(Builder.CreateBitCast(AllElts, ResTy), |
| Zero, Consts); |
| } |
| SmallVector<Constant *, 16> Consts; |
| for (int Idx = 0; Idx < 16; Idx++) |
| Consts.push_back(Builder.getInt8(NumBytes + Idx)); |
| Value *Mask2 = ConstantVector::get(Consts); |
| return Builder.CreateBitCast( |
| Builder.CreateCall(Vperm, {Zero, AllElts, Mask2}, "shuffle2"), ResTy); |
| } |
| case PPC::BI__builtin_vsx_strmb: { |
| Value *Op0 = EmitScalarExpr(E->getArg(0)); |
| Value *Op1 = EmitScalarExpr(E->getArg(1)); |
| Value *Op2 = EmitScalarExpr(E->getArg(2)); |
| int64_t NumBytes = cast<ConstantInt>(Op1)->getZExtValue(); |
| bool IsLE = getTarget().isLittleEndian(); |
| auto StoreSubVec = [&](unsigned Width, unsigned Offset, unsigned EltNo) { |
| // Storing the whole vector, simply store it on BE and reverse bytes and |
| // store on LE. |
| if (Width == 16) { |
| Value *StVec = Op2; |
| if (IsLE) { |
| SmallVector<int, 16> RevMask; |
| for (int Idx = 0; Idx < 16; Idx++) |
| RevMask.push_back(15 - Idx); |
| StVec = Builder.CreateShuffleVector(Op2, Op2, RevMask); |
| } |
| return Builder.CreateStore( |
| StVec, Address(Op0, Op2->getType(), CharUnits::fromQuantity(1))); |
| } |
| auto *ConvTy = Int64Ty; |
| unsigned NumElts = 0; |
| switch (Width) { |
| default: |
| llvm_unreachable("width for stores must be a power of 2"); |
| case 8: |
| ConvTy = Int64Ty; |
| NumElts = 2; |
| break; |
| case 4: |
| ConvTy = Int32Ty; |
| NumElts = 4; |
| break; |
| case 2: |
| ConvTy = Int16Ty; |
| NumElts = 8; |
| break; |
| case 1: |
| ConvTy = Int8Ty; |
| NumElts = 16; |
| break; |
| } |
| Value *Vec = Builder.CreateBitCast( |
| Op2, llvm::FixedVectorType::get(ConvTy, NumElts)); |
| Value *Ptr = |
| Builder.CreateGEP(Int8Ty, Op0, ConstantInt::get(Int64Ty, Offset)); |
| Value *Elt = Builder.CreateExtractElement(Vec, EltNo); |
| if (IsLE && Width > 1) { |
| Function *F = CGM.getIntrinsic(Intrinsic::bswap, ConvTy); |
| Elt = Builder.CreateCall(F, Elt); |
| } |
| return Builder.CreateStore( |
| Elt, Address(Ptr, ConvTy, CharUnits::fromQuantity(1))); |
| }; |
| unsigned Stored = 0; |
| unsigned RemainingBytes = NumBytes; |
| Value *Result; |
| if (NumBytes == 16) |
| return StoreSubVec(16, 0, 0); |
| if (NumBytes >= 8) { |
| Result = StoreSubVec(8, NumBytes - 8, IsLE ? 0 : 1); |
| RemainingBytes -= 8; |
| Stored += 8; |
| } |
| if (RemainingBytes >= 4) { |
| Result = StoreSubVec(4, NumBytes - Stored - 4, |
| IsLE ? (Stored >> 2) : 3 - (Stored >> 2)); |
| RemainingBytes -= 4; |
| Stored += 4; |
| } |
| if (RemainingBytes >= 2) { |
| Result = StoreSubVec(2, NumBytes - Stored - 2, |
| IsLE ? (Stored >> 1) : 7 - (Stored >> 1)); |
| RemainingBytes -= 2; |
| Stored += 2; |
| } |
| if (RemainingBytes) |
| Result = |
| StoreSubVec(1, NumBytes - Stored - 1, IsLE ? Stored : 15 - Stored); |
| return Result; |
| } |
| // Square root |
| case PPC::BI__builtin_vsx_xvsqrtsp: |
| case PPC::BI__builtin_vsx_xvsqrtdp: { |
| llvm::Type *ResultType = ConvertType(E->getType()); |
| Value *X = EmitScalarExpr(E->getArg(0)); |
| if (Builder.getIsFPConstrained()) { |
| llvm::Function *F = CGM.getIntrinsic( |
| Intrinsic::experimental_constrained_sqrt, ResultType); |
| return Builder.CreateConstrainedFPCall(F, X); |
| } else { |
| llvm::Function *F = CGM.getIntrinsic(Intrinsic::sqrt, ResultType); |
| return Builder.CreateCall(F, X); |
| } |
| } |
| // Count leading zeros |
| case PPC::BI__builtin_altivec_vclzb: |
| case PPC::BI__builtin_altivec_vclzh: |
| case PPC::BI__builtin_altivec_vclzw: |
| case PPC::BI__builtin_altivec_vclzd: { |
| llvm::Type *ResultType = ConvertType(E->getType()); |
| Value *X = EmitScalarExpr(E->getArg(0)); |
| Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false); |
| Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ResultType); |
| return Builder.CreateCall(F, {X, Undef}); |
| } |
| case PPC::BI__builtin_altivec_vctzb: |
| case PPC::BI__builtin_altivec_vctzh: |
| case PPC::BI__builtin_altivec_vctzw: |
| case PPC::BI__builtin_altivec_vctzd: { |
| llvm::Type *ResultType = ConvertType(E->getType()); |
| Value *X = EmitScalarExpr(E->getArg(0)); |
| Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false); |
| Function *F = CGM.getIntrinsic(Intrinsic::cttz, ResultType); |
| return Builder.CreateCall(F, {X, Undef}); |
| } |
| case PPC::BI__builtin_altivec_vinsd: |
| case PPC::BI__builtin_altivec_vinsw: |
| case PPC::BI__builtin_altivec_vinsd_elt: |
| case PPC::BI__builtin_altivec_vinsw_elt: { |
| llvm::Type *ResultType = ConvertType(E->getType()); |
| Value *Op0 = EmitScalarExpr(E->getArg(0)); |
| Value *Op1 = EmitScalarExpr(E->getArg(1)); |
| Value *Op2 = EmitScalarExpr(E->getArg(2)); |
| |
| bool IsUnaligned = (BuiltinID == PPC::BI__builtin_altivec_vinsw || |
| BuiltinID == PPC::BI__builtin_altivec_vinsd); |
| |
| bool Is32bit = (BuiltinID == PPC::BI__builtin_altivec_vinsw || |
| BuiltinID == PPC::BI__builtin_altivec_vinsw_elt); |
| |
| // The third argument must be a compile time constant. |
| ConstantInt *ArgCI = dyn_cast<ConstantInt>(Op2); |
| assert(ArgCI && |
| "Third Arg to vinsw/vinsd intrinsic must be a constant integer!"); |
| |
| // Valid value for the third argument is dependent on the input type and |
| // builtin called. |
| int ValidMaxValue = 0; |
| if (IsUnaligned) |
| ValidMaxValue = (Is32bit) ? 12 : 8; |
| else |
| ValidMaxValue = (Is32bit) ? 3 : 1; |
| |
| // Get value of third argument. |
| int64_t ConstArg = ArgCI->getSExtValue(); |
| |
| // Compose range checking error message. |
| std::string RangeErrMsg = IsUnaligned ? "byte" : "element"; |
| RangeErrMsg += " number " + llvm::to_string(ConstArg); |
| RangeErrMsg += " is outside of the valid range [0, "; |
| RangeErrMsg += llvm::to_string(ValidMaxValue) + "]"; |
| |
| // Issue error if third argument is not within the valid range. |
| if (ConstArg < 0 || ConstArg > ValidMaxValue) |
| CGM.Error(E->getExprLoc(), RangeErrMsg); |
| |
| // Input to vec_replace_elt is an element index, convert to byte index. |
| if (!IsUnaligned) { |
| ConstArg *= Is32bit ? 4 : 8; |
| // Fix the constant according to endianess. |
| if (getTarget().isLittleEndian()) |
| ConstArg = (Is32bit ? 12 : 8) - ConstArg; |
| } |
| |
| ID = Is32bit ? Intrinsic::ppc_altivec_vinsw : Intrinsic::ppc_altivec_vinsd; |
| Op2 = ConstantInt::getSigned(Int32Ty, ConstArg); |
| // Casting input to vector int as per intrinsic definition. |
| Op0 = |
| Is32bit |
| ? Builder.CreateBitCast(Op0, llvm::FixedVectorType::get(Int32Ty, 4)) |
| : Builder.CreateBitCast(Op0, |
| llvm::FixedVectorType::get(Int64Ty, 2)); |
| return Builder.CreateBitCast( |
| Builder.CreateCall(CGM.getIntrinsic(ID), {Op0, Op1, Op2}), ResultType); |
| } |
| case PPC::BI__builtin_altivec_vadduqm: |
| case PPC::BI__builtin_altivec_vsubuqm: { |
| Value *Op0 = EmitScalarExpr(E->getArg(0)); |
| Value *Op1 = EmitScalarExpr(E->getArg(1)); |
| llvm::Type *Int128Ty = llvm::IntegerType::get(getLLVMContext(), 128); |
| Op0 = Builder.CreateBitCast(Op0, llvm::FixedVectorType::get(Int128Ty, 1)); |
| Op1 = Builder.CreateBitCast(Op1, llvm::FixedVectorType::get(Int128Ty, 1)); |
| if (BuiltinID == PPC::BI__builtin_altivec_vadduqm) |
| return Builder.CreateAdd(Op0, Op1, "vadduqm"); |
| else |
| return Builder.CreateSub(Op0, Op1, "vsubuqm"); |
| } |
| case PPC::BI__builtin_altivec_vaddcuq_c: |
| case PPC::BI__builtin_altivec_vsubcuq_c: { |
| SmallVector<Value *, 2> Ops; |
| Value *Op0 = EmitScalarExpr(E->getArg(0)); |
| Value *Op1 = EmitScalarExpr(E->getArg(1)); |
| llvm::Type *V1I128Ty = llvm::FixedVectorType::get( |
| llvm::IntegerType::get(getLLVMContext(), 128), 1); |
| Ops.push_back(Builder.CreateBitCast(Op0, V1I128Ty)); |
| Ops.push_back(Builder.CreateBitCast(Op1, V1I128Ty)); |
| ID = (BuiltinID == PPC::BI__builtin_altivec_vaddcuq_c) |
| ? Intrinsic::ppc_altivec_vaddcuq |
| : Intrinsic::ppc_altivec_vsubcuq; |
| return Builder.CreateCall(CGM.getIntrinsic(ID), Ops, ""); |
| } |
| case PPC::BI__builtin_altivec_vaddeuqm_c: |
| case PPC::BI__builtin_altivec_vaddecuq_c: |
| case PPC::BI__builtin_altivec_vsubeuqm_c: |
| case PPC::BI__builtin_altivec_vsubecuq_c: { |
| SmallVector<Value *, 3> Ops; |
| Value *Op0 = EmitScalarExpr(E->getArg(0)); |
| Value *Op1 = EmitScalarExpr(E->getArg(1)); |
| Value *Op2 = EmitScalarExpr(E->getArg(2)); |
| llvm::Type *V1I128Ty = llvm::FixedVectorType::get( |
| llvm::IntegerType::get(getLLVMContext(), 128), 1); |
| Ops.push_back(Builder.CreateBitCast(Op0, V1I128Ty)); |
| Ops.push_back(Builder.CreateBitCast(Op1, V1I128Ty)); |
| Ops.push_back(Builder.CreateBitCast(Op2, V1I128Ty)); |
| switch (BuiltinID) { |
| default: |
| llvm_unreachable("Unsupported intrinsic!"); |
| case PPC::BI__builtin_altivec_vaddeuqm_c: |
| ID = Intrinsic::ppc_altivec_vaddeuqm; |
| break; |
| case PPC::BI__builtin_altivec_vaddecuq_c: |
| ID = Intrinsic::ppc_altivec_vaddecuq; |
| break; |
| case PPC::BI__builtin_altivec_vsubeuqm_c: |
| ID = Intrinsic::ppc_altivec_vsubeuqm; |
| break; |
| case PPC::BI__builtin_altivec_vsubecuq_c: |
| ID = Intrinsic::ppc_altivec_vsubecuq; |
| break; |
| } |
| return Builder.CreateCall(CGM.getIntrinsic(ID), Ops, ""); |
| } |
| case PPC::BI__builtin_ppc_rldimi: |
| case PPC::BI__builtin_ppc_rlwimi: { |
| Value *Op0 = EmitScalarExpr(E->getArg(0)); |
| Value *Op1 = EmitScalarExpr(E->getArg(1)); |
| Value *Op2 = EmitScalarExpr(E->getArg(2)); |
| Value *Op3 = EmitScalarExpr(E->getArg(3)); |
| // rldimi is 64-bit instruction, expand the intrinsic before isel to |
| // leverage peephole and avoid legalization efforts. |
| if (BuiltinID == PPC::BI__builtin_ppc_rldimi && |
| !getTarget().getTriple().isPPC64()) { |
| Function *F = CGM.getIntrinsic(Intrinsic::fshl, Op0->getType()); |
| Op2 = Builder.CreateZExt(Op2, Int64Ty); |
| Value *Shift = Builder.CreateCall(F, {Op0, Op0, Op2}); |
| return Builder.CreateOr(Builder.CreateAnd(Shift, Op3), |
| Builder.CreateAnd(Op1, Builder.CreateNot(Op3))); |
| } |
| return Builder.CreateCall( |
| CGM.getIntrinsic(BuiltinID == PPC::BI__builtin_ppc_rldimi |
| ? Intrinsic::ppc_rldimi |
| : Intrinsic::ppc_rlwimi), |
| {Op0, Op1, Op2, Op3}); |
| } |
| case PPC::BI__builtin_ppc_rlwnm: { |
| Value *Op0 = EmitScalarExpr(E->getArg(0)); |
| Value *Op1 = EmitScalarExpr(E->getArg(1)); |
| Value *Op2 = EmitScalarExpr(E->getArg(2)); |
| return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::ppc_rlwnm), |
| {Op0, Op1, Op2}); |
| } |
| case PPC::BI__builtin_ppc_poppar4: |
| case PPC::BI__builtin_ppc_poppar8: { |
| Value *Op0 = EmitScalarExpr(E->getArg(0)); |
| llvm::Type *ArgType = Op0->getType(); |
| Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType); |
| Value *Tmp = Builder.CreateCall(F, Op0); |
| |
| llvm::Type *ResultType = ConvertType(E->getType()); |
| Value *Result = Builder.CreateAnd(Tmp, llvm::ConstantInt::get(ArgType, 1)); |
| if (Result->getType() != ResultType) |
| Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true, |
| "cast"); |
| return Result; |
| } |
| case PPC::BI__builtin_ppc_cmpb: { |
| Value *Op0 = EmitScalarExpr(E->getArg(0)); |
| Value *Op1 = EmitScalarExpr(E->getArg(1)); |
| if (getTarget().getTriple().isPPC64()) { |
| Function *F = |
| CGM.getIntrinsic(Intrinsic::ppc_cmpb, {Int64Ty, Int64Ty, Int64Ty}); |
| return Builder.CreateCall(F, {Op0, Op1}, "cmpb"); |
| } |
| // For 32 bit, emit the code as below: |
| // %conv = trunc i64 %a to i32 |
| // %conv1 = trunc i64 %b to i32 |
| // %shr = lshr i64 %a, 32 |
| // %conv2 = trunc i64 %shr to i32 |
| // %shr3 = lshr i64 %b, 32 |
| // %conv4 = trunc i64 %shr3 to i32 |
| // %0 = tail call i32 @llvm.ppc.cmpb32(i32 %conv, i32 %conv1) |
| // %conv5 = zext i32 %0 to i64 |
| // %1 = tail call i32 @llvm.ppc.cmpb32(i32 %conv2, i32 %conv4) |
| // %conv614 = zext i32 %1 to i64 |
| // %shl = shl nuw i64 %conv614, 32 |
| // %or = or i64 %shl, %conv5 |
| // ret i64 %or |
| Function *F = |
| CGM.getIntrinsic(Intrinsic::ppc_cmpb, {Int32Ty, Int32Ty, Int32Ty}); |
| Value *ArgOneLo = Builder.CreateTrunc(Op0, Int32Ty); |
| Value *ArgTwoLo = Builder.CreateTrunc(Op1, Int32Ty); |
| Constant *ShiftAmt = ConstantInt::get(Int64Ty, 32); |
| Value *ArgOneHi = |
| Builder.CreateTrunc(Builder.CreateLShr(Op0, ShiftAmt), Int32Ty); |
| Value *ArgTwoHi = |
| Builder.CreateTrunc(Builder.CreateLShr(Op1, ShiftAmt), Int32Ty); |
| Value *ResLo = Builder.CreateZExt( |
| Builder.CreateCall(F, {ArgOneLo, ArgTwoLo}, "cmpb"), Int64Ty); |
| Value *ResHiShift = Builder.CreateZExt( |
| Builder.CreateCall(F, {ArgOneHi, ArgTwoHi}, "cmpb"), Int64Ty); |
| Value *ResHi = Builder.CreateShl(ResHiShift, ShiftAmt); |
| return Builder.CreateOr(ResLo, ResHi); |
| } |
| // Copy sign |
| case PPC::BI__builtin_vsx_xvcpsgnsp: |
| case PPC::BI__builtin_vsx_xvcpsgndp: { |
| llvm::Type *ResultType = ConvertType(E->getType()); |
| Value *X = EmitScalarExpr(E->getArg(0)); |
| Value *Y = EmitScalarExpr(E->getArg(1)); |
| ID = Intrinsic::copysign; |
| llvm::Function *F = CGM.getIntrinsic(ID, ResultType); |
| return Builder.CreateCall(F, {X, Y}); |
| } |
| // Rounding/truncation |
| case PPC::BI__builtin_vsx_xvrspip: |
| case PPC::BI__builtin_vsx_xvrdpip: |
| case PPC::BI__builtin_vsx_xvrdpim: |
| case PPC::BI__builtin_vsx_xvrspim: |
| case PPC::BI__builtin_vsx_xvrdpi: |
| case PPC::BI__builtin_vsx_xvrspi: |
| case PPC::BI__builtin_vsx_xvrdpic: |
| case PPC::BI__builtin_vsx_xvrspic: |
| case PPC::BI__builtin_vsx_xvrdpiz: |
| case PPC::BI__builtin_vsx_xvrspiz: { |
| llvm::Type *ResultType = ConvertType(E->getType()); |
| Value *X = EmitScalarExpr(E->getArg(0)); |
| if (BuiltinID == PPC::BI__builtin_vsx_xvrdpim || |
| BuiltinID == PPC::BI__builtin_vsx_xvrspim) |
| ID = Builder.getIsFPConstrained() |
| ? Intrinsic::experimental_constrained_floor |
| : Intrinsic::floor; |
| else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpi || |
| BuiltinID == PPC::BI__builtin_vsx_xvrspi) |
| ID = Builder.getIsFPConstrained() |
| ? Intrinsic::experimental_constrained_round |
| : Intrinsic::round; |
| else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpic || |
| BuiltinID == PPC::BI__builtin_vsx_xvrspic) |
| ID = Builder.getIsFPConstrained() |
| ? Intrinsic::experimental_constrained_rint |
| : Intrinsic::rint; |
| else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpip || |
| BuiltinID == PPC::BI__builtin_vsx_xvrspip) |
| ID = Builder.getIsFPConstrained() |
| ? Intrinsic::experimental_constrained_ceil |
| : Intrinsic::ceil; |
| else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpiz || |
| BuiltinID == PPC::BI__builtin_vsx_xvrspiz) |
| ID = Builder.getIsFPConstrained() |
| ? Intrinsic::experimental_constrained_trunc |
| : Intrinsic::trunc; |
| llvm::Function *F = CGM.getIntrinsic(ID, ResultType); |
| return Builder.getIsFPConstrained() ? Builder.CreateConstrainedFPCall(F, X) |
| : Builder.CreateCall(F, X); |
| } |
| |
| // Absolute value |
| case PPC::BI__builtin_vsx_xvabsdp: |
| case PPC::BI__builtin_vsx_xvabssp: { |
| llvm::Type *ResultType = ConvertType(E->getType()); |
| Value *X = EmitScalarExpr(E->getArg(0)); |
| llvm::Function *F = CGM.getIntrinsic(Intrinsic::fabs, ResultType); |
| return Builder.CreateCall(F, X); |
| } |
| |
| // Fastmath by default |
| case PPC::BI__builtin_ppc_recipdivf: |
| case PPC::BI__builtin_ppc_recipdivd: |
| case PPC::BI__builtin_ppc_rsqrtf: |
| case PPC::BI__builtin_ppc_rsqrtd: { |
| FastMathFlags FMF = Builder.getFastMathFlags(); |
| Builder.getFastMathFlags().setFast(); |
| llvm::Type *ResultType = ConvertType(E->getType()); |
| Value *X = EmitScalarExpr(E->getArg(0)); |
| |
| if (BuiltinID == PPC::BI__builtin_ppc_recipdivf || |
| BuiltinID == PPC::BI__builtin_ppc_recipdivd) { |
| Value *Y = EmitScalarExpr(E->getArg(1)); |
| Value *FDiv = Builder.CreateFDiv(X, Y, "recipdiv"); |
| Builder.getFastMathFlags() &= (FMF); |
| return FDiv; |
| } |
| auto *One = ConstantFP::get(ResultType, 1.0); |
| llvm::Function *F = CGM.getIntrinsic(Intrinsic::sqrt, ResultType); |
| Value *FDiv = Builder.CreateFDiv(One, Builder.CreateCall(F, X), "rsqrt"); |
| Builder.getFastMathFlags() &= (FMF); |
| return FDiv; |
| } |
| case PPC::BI__builtin_ppc_alignx: { |
| Value *Op0 = EmitScalarExpr(E->getArg(0)); |
| Value *Op1 = EmitScalarExpr(E->getArg(1)); |
| ConstantInt *AlignmentCI = cast<ConstantInt>(Op0); |
| if (AlignmentCI->getValue().ugt(llvm::Value::MaximumAlignment)) |
| AlignmentCI = ConstantInt::get(AlignmentCI->getIntegerType(), |
| llvm::Value::MaximumAlignment); |
| |
| emitAlignmentAssumption(Op1, E->getArg(1), |
| /*The expr loc is sufficient.*/ SourceLocation(), |
| AlignmentCI, nullptr); |
| return Op1; |
| } |
| case PPC::BI__builtin_ppc_rdlam: { |
| Value *Op0 = EmitScalarExpr(E->getArg(0)); |
| Value *Op1 = EmitScalarExpr(E->getArg(1)); |
| Value *Op2 = EmitScalarExpr(E->getArg(2)); |
| llvm::Type *Ty = Op0->getType(); |
| Value *ShiftAmt = Builder.CreateIntCast(Op1, Ty, false); |
| Function *F = CGM.getIntrinsic(Intrinsic::fshl, Ty); |
| Value *Rotate = Builder.CreateCall(F, {Op0, Op0, ShiftAmt}); |
| return Builder.CreateAnd(Rotate, Op2); |
| } |
| case PPC::BI__builtin_ppc_load2r: { |
| Function *F = CGM.getIntrinsic(Intrinsic::ppc_load2r); |
| Value *Op0 = EmitScalarExpr(E->getArg(0)); |
| Value *LoadIntrinsic = Builder.CreateCall(F, {Op0}); |
| return Builder.CreateTrunc(LoadIntrinsic, Int16Ty); |
| } |
| // FMA variations |
| case PPC::BI__builtin_ppc_fnmsub: |
| case PPC::BI__builtin_ppc_fnmsubs: |
| case PPC::BI__builtin_vsx_xvmaddadp: |
| case PPC::BI__builtin_vsx_xvmaddasp: |
| case PPC::BI__builtin_vsx_xvnmaddadp: |
| case PPC::BI__builtin_vsx_xvnmaddasp: |
| case PPC::BI__builtin_vsx_xvmsubadp: |
| case PPC::BI__builtin_vsx_xvmsubasp: |
| case PPC::BI__builtin_vsx_xvnmsubadp: |
| case PPC::BI__builtin_vsx_xvnmsubasp: { |
| llvm::Type *ResultType = ConvertType(E->getType()); |
| Value *X = EmitScalarExpr(E->getArg(0)); |
| Value *Y = EmitScalarExpr(E->getArg(1)); |
| Value *Z = EmitScalarExpr(E->getArg(2)); |
| llvm::Function *F; |
| if (Builder.getIsFPConstrained()) |
| F = CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, ResultType); |
| else |
| F = CGM.getIntrinsic(Intrinsic::fma, ResultType); |
| switch (BuiltinID) { |
| case PPC::BI__builtin_vsx_xvmaddadp: |
| case PPC::BI__builtin_vsx_xvmaddasp: |
| if (Builder.getIsFPConstrained()) |
| return Builder.CreateConstrainedFPCall(F, {X, Y, Z}); |
| else |
| return Builder.CreateCall(F, {X, Y, Z}); |
| case PPC::BI__builtin_vsx_xvnmaddadp: |
| case PPC::BI__builtin_vsx_xvnmaddasp: |
| if (Builder.getIsFPConstrained()) |
| return Builder.CreateFNeg( |
| Builder.CreateConstrainedFPCall(F, {X, Y, Z}), "neg"); |
| else |
| return Builder.CreateFNeg(Builder.CreateCall(F, {X, Y, Z}), "neg"); |
| case PPC::BI__builtin_vsx_xvmsubadp: |
| case PPC::BI__builtin_vsx_xvmsubasp: |
| if (Builder.getIsFPConstrained()) |
| return Builder.CreateConstrainedFPCall( |
| F, {X, Y, Builder.CreateFNeg(Z, "neg")}); |
| else |
| return Builder.CreateCall(F, {X, Y, Builder.CreateFNeg(Z, "neg")}); |
| case PPC::BI__builtin_ppc_fnmsub: |
| case PPC::BI__builtin_ppc_fnmsubs: |
| case PPC::BI__builtin_vsx_xvnmsubadp: |
| case PPC::BI__builtin_vsx_xvnmsubasp: |
| if (Builder.getIsFPConstrained()) |
| return Builder.CreateFNeg( |
| Builder.CreateConstrainedFPCall( |
| F, {X, Y, Builder.CreateFNeg(Z, "neg")}), |
| "neg"); |
| else |
| return Builder.CreateCall( |
| CGM.getIntrinsic(Intrinsic::ppc_fnmsub, ResultType), {X, Y, Z}); |
| } |
| llvm_unreachable("Unknown FMA operation"); |
| return nullptr; // Suppress no-return warning |
| } |
| |
| case PPC::BI__builtin_vsx_insertword: { |
| Value *Op0 = EmitScalarExpr(E->getArg(0)); |
| Value *Op1 = EmitScalarExpr(E->getArg(1)); |
| Value *Op2 = EmitScalarExpr(E->getArg(2)); |
| llvm::Function *F = CGM.getIntrinsic(Intrinsic::ppc_vsx_xxinsertw); |
| |
| // Third argument is a compile time constant int. It must be clamped to |
| // to the range [0, 12]. |
| ConstantInt *ArgCI = dyn_cast<ConstantInt>(Op2); |
| assert(ArgCI && |
| "Third arg to xxinsertw intrinsic must be constant integer"); |
| const int64_t MaxIndex = 12; |
| int64_t Index = std::clamp(ArgCI->getSExtValue(), (int64_t)0, MaxIndex); |
| |
| // The builtin semantics don't exactly match the xxinsertw instructions |
| // semantics (which ppc_vsx_xxinsertw follows). The builtin extracts the |
| // word from the first argument, and inserts it in the second argument. The |
| // instruction extracts the word from its second input register and inserts |
| // it into its first input register, so swap the first and second arguments. |
| std::swap(Op0, Op1); |
| |
| // Need to cast the second argument from a vector of unsigned int to a |
| // vector of long long. |
| Op1 = Builder.CreateBitCast(Op1, llvm::FixedVectorType::get(Int64Ty, 2)); |
| |
| if (getTarget().isLittleEndian()) { |
| // Reverse the double words in the vector we will extract from. |
| Op0 = Builder.CreateBitCast(Op0, llvm::FixedVectorType::get(Int64Ty, 2)); |
| Op0 = Builder.CreateShuffleVector(Op0, Op0, ArrayRef<int>{1, 0}); |
| |
| // Reverse the index. |
| Index = MaxIndex - Index; |
| } |
| |
| // Intrinsic expects the first arg to be a vector of int. |
| Op0 = Builder.CreateBitCast(Op0, llvm::FixedVectorType::get(Int32Ty, 4)); |
| Op2 = ConstantInt::getSigned(Int32Ty, Index); |
| return Builder.CreateCall(F, {Op0, Op1, Op2}); |
| } |
| |
| case PPC::BI__builtin_vsx_extractuword: { |
| Value *Op0 = EmitScalarExpr(E->getArg(0)); |
| Value *Op1 = EmitScalarExpr(E->getArg(1)); |
| llvm::Function *F = CGM.getIntrinsic(Intrinsic::ppc_vsx_xxextractuw); |
| |
| // Intrinsic expects the first argument to be a vector of doublewords. |
| Op0 = Builder.CreateBitCast(Op0, llvm::FixedVectorType::get(Int64Ty, 2)); |
| |
| // The second argument is a compile time constant int that needs to |
| // be clamped to the range [0, 12]. |
| ConstantInt *ArgCI = dyn_cast<ConstantInt>(Op1); |
| assert(ArgCI && |
| "Second Arg to xxextractuw intrinsic must be a constant integer!"); |
| const int64_t MaxIndex = 12; |
| int64_t Index = std::clamp(ArgCI->getSExtValue(), (int64_t)0, MaxIndex); |
| |
| if (getTarget().isLittleEndian()) { |
| // Reverse the index. |
| Index = MaxIndex - Index; |
| Op1 = ConstantInt::getSigned(Int32Ty, Index); |
| |
| // Emit the call, then reverse the double words of the results vector. |
| Value *Call = Builder.CreateCall(F, {Op0, Op1}); |
| |
| Value *ShuffleCall = |
| Builder.CreateShuffleVector(Call, Call, ArrayRef<int>{1, 0}); |
| return ShuffleCall; |
| } else { |
| Op1 = ConstantInt::getSigned(Int32Ty, Index); |
| return Builder.CreateCall(F, {Op0, Op1}); |
| } |
| } |
| |
| case PPC::BI__builtin_vsx_xxpermdi: { |
| Value *Op0 = EmitScalarExpr(E->getArg(0)); |
| Value *Op1 = EmitScalarExpr(E->getArg(1)); |
| Value *Op2 = EmitScalarExpr(E->getArg(2)); |
| ConstantInt *ArgCI = dyn_cast<ConstantInt>(Op2); |
| assert(ArgCI && "Third arg must be constant integer!"); |
| |
| unsigned Index = ArgCI->getZExtValue(); |
| Op0 = Builder.CreateBitCast(Op0, llvm::FixedVectorType::get(Int64Ty, 2)); |
| Op1 = Builder.CreateBitCast(Op1, llvm::FixedVectorType::get(Int64Ty, 2)); |
| |
| // Account for endianness by treating this as just a shuffle. So we use the |
| // same indices for both LE and BE in order to produce expected results in |
| // both cases. |
| int ElemIdx0 = (Index & 2) >> 1; |
| int ElemIdx1 = 2 + (Index & 1); |
| |
| int ShuffleElts[2] = {ElemIdx0, ElemIdx1}; |
| Value *ShuffleCall = Builder.CreateShuffleVector(Op0, Op1, ShuffleElts); |
| QualType BIRetType = E->getType(); |
| auto RetTy = ConvertType(BIRetType); |
| return Builder.CreateBitCast(ShuffleCall, RetTy); |
| } |
| |
| case PPC::BI__builtin_vsx_xxsldwi: { |
| Value *Op0 = EmitScalarExpr(E->getArg(0)); |
| Value *Op1 = EmitScalarExpr(E->getArg(1)); |
| Value *Op2 = EmitScalarExpr(E->getArg(2)); |
| ConstantInt *ArgCI = dyn_cast<ConstantInt>(Op2); |
| assert(ArgCI && "Third argument must be a compile time constant"); |
| unsigned Index = ArgCI->getZExtValue() & 0x3; |
| Op0 = Builder.CreateBitCast(Op0, llvm::FixedVectorType::get(Int32Ty, 4)); |
| Op1 = Builder.CreateBitCast(Op1, llvm::FixedVectorType::get(Int32Ty, 4)); |
| |
| // Create a shuffle mask |
| int ElemIdx0; |
| int ElemIdx1; |
| int ElemIdx2; |
| int ElemIdx3; |
| if (getTarget().isLittleEndian()) { |
| // Little endian element N comes from element 8+N-Index of the |
| // concatenated wide vector (of course, using modulo arithmetic on |
| // the total number of elements). |
| ElemIdx0 = (8 - Index) % 8; |
| ElemIdx1 = (9 - Index) % 8; |
| ElemIdx2 = (10 - Index) % 8; |
| ElemIdx3 = (11 - Index) % 8; |
| } else { |
| // Big endian ElemIdx<N> = Index + N |
| ElemIdx0 = Index; |
| ElemIdx1 = Index + 1; |
| ElemIdx2 = Index + 2; |
| ElemIdx3 = Index + 3; |
| } |
| |
| int ShuffleElts[4] = {ElemIdx0, ElemIdx1, ElemIdx2, ElemIdx3}; |
| Value *ShuffleCall = Builder.CreateShuffleVector(Op0, Op1, ShuffleElts); |
| QualType BIRetType = E->getType(); |
| auto RetTy = ConvertType(BIRetType); |
| return Builder.CreateBitCast(ShuffleCall, RetTy); |
| } |
| |
| case PPC::BI__builtin_pack_vector_int128: { |
| Value *Op0 = EmitScalarExpr(E->getArg(0)); |
| Value *Op1 = EmitScalarExpr(E->getArg(1)); |
| bool isLittleEndian = getTarget().isLittleEndian(); |
| Value *PoisonValue = |
| llvm::PoisonValue::get(llvm::FixedVectorType::get(Op0->getType(), 2)); |
| Value *Res = Builder.CreateInsertElement( |
| PoisonValue, Op0, (uint64_t)(isLittleEndian ? 1 : 0)); |
| Res = Builder.CreateInsertElement(Res, Op1, |
| (uint64_t)(isLittleEndian ? 0 : 1)); |
| return Builder.CreateBitCast(Res, ConvertType(E->getType())); |
| } |
| |
| case PPC::BI__builtin_unpack_vector_int128: { |
| Value *Op0 = EmitScalarExpr(E->getArg(0)); |
| Value *Op1 = EmitScalarExpr(E->getArg(1)); |
| ConstantInt *Index = cast<ConstantInt>(Op1); |
| Value *Unpacked = Builder.CreateBitCast( |
| Op0, llvm::FixedVectorType::get(ConvertType(E->getType()), 2)); |
| |
| if (getTarget().isLittleEndian()) |
| Index = |
| ConstantInt::get(Index->getIntegerType(), 1 - Index->getZExtValue()); |
| |
| return Builder.CreateExtractElement(Unpacked, Index); |
| } |
| |
| case PPC::BI__builtin_ppc_sthcx: { |
| llvm::Function *F = CGM.getIntrinsic(Intrinsic::ppc_sthcx); |
| Value *Op0 = EmitScalarExpr(E->getArg(0)); |
| Value *Op1 = Builder.CreateSExt(EmitScalarExpr(E->getArg(1)), Int32Ty); |
| return Builder.CreateCall(F, {Op0, Op1}); |
| } |
| |
| // The PPC MMA builtins take a pointer to a __vector_quad as an argument. |
| // Some of the MMA instructions accumulate their result into an existing |
| // accumulator whereas the others generate a new accumulator. So we need to |
| // use custom code generation to expand a builtin call with a pointer to a |
| // load (if the corresponding instruction accumulates its result) followed by |
| // the call to the intrinsic and a store of the result. |
| #define CUSTOM_BUILTIN(Name, Intr, Types, Accumulate, Feature) \ |
| case PPC::BI__builtin_##Name: |
| #include "clang/Basic/BuiltinsPPC.def" |
| { |
| SmallVector<Value *, 4> Ops; |
| for (unsigned i = 0, e = E->getNumArgs(); i != e; i++) |
| if (E->getArg(i)->getType()->isArrayType()) |
| Ops.push_back( |
| EmitArrayToPointerDecay(E->getArg(i)).emitRawPointer(*this)); |
| else |
| Ops.push_back(EmitScalarExpr(E->getArg(i))); |
| // The first argument of these two builtins is a pointer used to store their |
| // result. However, the llvm intrinsics return their result in multiple |
| // return values. So, here we emit code extracting these values from the |
| // intrinsic results and storing them using that pointer. |
| if (BuiltinID == PPC::BI__builtin_mma_disassemble_acc || |
| BuiltinID == PPC::BI__builtin_vsx_disassemble_pair || |
| BuiltinID == PPC::BI__builtin_mma_disassemble_pair) { |
| unsigned NumVecs = 2; |
| auto Intrinsic = Intrinsic::ppc_vsx_disassemble_pair; |
| if (BuiltinID == PPC::BI__builtin_mma_disassemble_acc) { |
| NumVecs = 4; |
| Intrinsic = Intrinsic::ppc_mma_disassemble_acc; |
| } |
| llvm::Function *F = CGM.getIntrinsic(Intrinsic); |
| Address Addr = EmitPointerWithAlignment(E->getArg(1)); |
| Value *Vec = Builder.CreateLoad(Addr); |
| Value *Call = Builder.CreateCall(F, {Vec}); |
| llvm::Type *VTy = llvm::FixedVectorType::get(Int8Ty, 16); |
| Value *Ptr = Ops[0]; |
| for (unsigned i=0; i<NumVecs; i++) { |
| Value *Vec = Builder.CreateExtractValue(Call, i); |
| llvm::ConstantInt* Index = llvm::ConstantInt::get(IntTy, i); |
| Value *GEP = Builder.CreateInBoundsGEP(VTy, Ptr, Index); |
| Builder.CreateAlignedStore(Vec, GEP, MaybeAlign(16)); |
| } |
| return Call; |
| } |
| if (BuiltinID == PPC::BI__builtin_vsx_build_pair || |
| BuiltinID == PPC::BI__builtin_mma_build_acc) { |
| // Reverse the order of the operands for LE, so the |
| // same builtin call can be used on both LE and BE |
| // without the need for the programmer to swap operands. |
| // The operands are reversed starting from the second argument, |
| // the first operand is the pointer to the pair/accumulator |
| // that is being built. |
| if (getTarget().isLittleEndian()) |
| std::reverse(Ops.begin() + 1, Ops.end()); |
| } |
| bool Accumulate; |
| switch (BuiltinID) { |
| #define CUSTOM_BUILTIN(Name, Intr, Types, Acc, Feature) \ |
| case PPC::BI__builtin_##Name: \ |
| ID = Intrinsic::ppc_##Intr; \ |
| Accumulate = Acc; \ |
| break; |
| #include "clang/Basic/BuiltinsPPC.def" |
| } |
| if (BuiltinID == PPC::BI__builtin_vsx_lxvp || |
| BuiltinID == PPC::BI__builtin_vsx_stxvp || |
| BuiltinID == PPC::BI__builtin_mma_lxvp || |
| BuiltinID == PPC::BI__builtin_mma_stxvp) { |
| if (BuiltinID == PPC::BI__builtin_vsx_lxvp || |
| BuiltinID == PPC::BI__builtin_mma_lxvp) { |
| Ops[0] = Builder.CreateGEP(Int8Ty, Ops[1], Ops[0]); |
| } else { |
| Ops[1] = Builder.CreateGEP(Int8Ty, Ops[2], Ops[1]); |
| } |
| Ops.pop_back(); |
| llvm::Function *F = CGM.getIntrinsic(ID); |
| return Builder.CreateCall(F, Ops, ""); |
| } |
| SmallVector<Value*, 4> CallOps; |
| if (Accumulate) { |
| Address Addr = EmitPointerWithAlignment(E->getArg(0)); |
| Value *Acc = Builder.CreateLoad(Addr); |
| CallOps.push_back(Acc); |
| } |
| for (unsigned i=1; i<Ops.size(); i++) |
| CallOps.push_back(Ops[i]); |
| llvm::Function *F = CGM.getIntrinsic(ID); |
| Value *Call = Builder.CreateCall(F, CallOps); |
| return Builder.CreateAlignedStore(Call, Ops[0], MaybeAlign()); |
| } |
| |
| case PPC::BI__builtin_ppc_compare_and_swap: |
| case PPC::BI__builtin_ppc_compare_and_swaplp: { |
| Address Addr = EmitPointerWithAlignment(E->getArg(0)); |
| Address OldValAddr = EmitPointerWithAlignment(E->getArg(1)); |
| Value *OldVal = Builder.CreateLoad(OldValAddr); |
| QualType AtomicTy = E->getArg(0)->getType()->getPointeeType(); |
| LValue LV = MakeAddrLValue(Addr, AtomicTy); |
| Value *Op2 = EmitScalarExpr(E->getArg(2)); |
| auto Pair = EmitAtomicCompareExchange( |
| LV, RValue::get(OldVal), RValue::get(Op2), E->getExprLoc(), |
| llvm::AtomicOrdering::Monotonic, llvm::AtomicOrdering::Monotonic, true); |
| // Unlike c11's atomic_compare_exchange, according to |
| // https://www.ibm.com/docs/en/xl-c-and-cpp-aix/16.1?topic=functions-compare-swap-compare-swaplp |
| // > In either case, the contents of the memory location specified by addr |
| // > are copied into the memory location specified by old_val_addr. |
| // But it hasn't specified storing to OldValAddr is atomic or not and |
| // which order to use. Now following XL's codegen, treat it as a normal |
| // store. |
| Value *LoadedVal = Pair.first.getScalarVal(); |
| Builder.CreateStore(LoadedVal, OldValAddr); |
| return Builder.CreateZExt(Pair.second, Builder.getInt32Ty()); |
| } |
| case PPC::BI__builtin_ppc_fetch_and_add: |
| case PPC::BI__builtin_ppc_fetch_and_addlp: { |
| return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E, |
| llvm::AtomicOrdering::Monotonic); |
| } |
| case PPC::BI__builtin_ppc_fetch_and_and: |
| case PPC::BI__builtin_ppc_fetch_and_andlp: { |
| return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E, |
| llvm::AtomicOrdering::Monotonic); |
| } |
| |
| case PPC::BI__builtin_ppc_fetch_and_or: |
| case PPC::BI__builtin_ppc_fetch_and_orlp: { |
| return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E, |
| llvm::AtomicOrdering::Monotonic); |
| } |
| case PPC::BI__builtin_ppc_fetch_and_swap: |
| case PPC::BI__builtin_ppc_fetch_and_swaplp: { |
| return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E, |
| llvm::AtomicOrdering::Monotonic); |
| } |
| case PPC::BI__builtin_ppc_ldarx: |
| case PPC::BI__builtin_ppc_lwarx: |
| case PPC::BI__builtin_ppc_lharx: |
| case PPC::BI__builtin_ppc_lbarx: |
| return emitPPCLoadReserveIntrinsic(*this, BuiltinID, E); |
| case PPC::BI__builtin_ppc_mfspr: { |
| Value *Op0 = EmitScalarExpr(E->getArg(0)); |
| llvm::Type *RetType = CGM.getDataLayout().getTypeSizeInBits(VoidPtrTy) == 32 |
| ? Int32Ty |
| : Int64Ty; |
| Function *F = CGM.getIntrinsic(Intrinsic::ppc_mfspr, RetType); |
| return Builder.CreateCall(F, {Op0}); |
| } |
| case PPC::BI__builtin_ppc_mtspr: { |
| Value *Op0 = EmitScalarExpr(E->getArg(0)); |
| Value *Op1 = EmitScalarExpr(E->getArg(1)); |
| llvm::Type *RetType = CGM.getDataLayout().getTypeSizeInBits(VoidPtrTy) == 32 |
| ? Int32Ty |
| : Int64Ty; |
| Function *F = CGM.getIntrinsic(Intrinsic::ppc_mtspr, RetType); |
| return Builder.CreateCall(F, {Op0, Op1}); |
| } |
| case PPC::BI__builtin_ppc_popcntb: { |
| Value *ArgValue = EmitScalarExpr(E->getArg(0)); |
| llvm::Type *ArgType = ArgValue->getType(); |
| Function *F = CGM.getIntrinsic(Intrinsic::ppc_popcntb, {ArgType, ArgType}); |
| return Builder.CreateCall(F, {ArgValue}, "popcntb"); |
| } |
| case PPC::BI__builtin_ppc_mtfsf: { |
| // The builtin takes a uint32 that needs to be cast to an |
| // f64 to be passed to the intrinsic. |
| Value *Op0 = EmitScalarExpr(E->getArg(0)); |
| Value *Op1 = EmitScalarExpr(E->getArg(1)); |
| Value *Cast = Builder.CreateUIToFP(Op1, DoubleTy); |
| llvm::Function *F = CGM.getIntrinsic(Intrinsic::ppc_mtfsf); |
| return Builder.CreateCall(F, {Op0, Cast}, ""); |
| } |
| |
| case PPC::BI__builtin_ppc_swdiv_nochk: |
| case PPC::BI__builtin_ppc_swdivs_nochk: { |
| Value *Op0 = EmitScalarExpr(E->getArg(0)); |
| Value *Op1 = EmitScalarExpr(E->getArg(1)); |
| FastMathFlags FMF = Builder.getFastMathFlags(); |
| Builder.getFastMathFlags().setFast(); |
| Value *FDiv = Builder.CreateFDiv(Op0, Op1, "swdiv_nochk"); |
| Builder.getFastMathFlags() &= (FMF); |
| return FDiv; |
| } |
| case PPC::BI__builtin_ppc_fric: |
| return RValue::get(emitUnaryMaybeConstrainedFPBuiltin( |
| *this, E, Intrinsic::rint, |
| Intrinsic::experimental_constrained_rint)) |
| .getScalarVal(); |
| case PPC::BI__builtin_ppc_frim: |
| case PPC::BI__builtin_ppc_frims: |
| return RValue::get(emitUnaryMaybeConstrainedFPBuiltin( |
| *this, E, Intrinsic::floor, |
| Intrinsic::experimental_constrained_floor)) |
| .getScalarVal(); |
| case PPC::BI__builtin_ppc_frin: |
| case PPC::BI__builtin_ppc_frins: |
| return RValue::get(emitUnaryMaybeConstrainedFPBuiltin( |
| *this, E, Intrinsic::round, |
| Intrinsic::experimental_constrained_round)) |
| .getScalarVal(); |
| case PPC::BI__builtin_ppc_frip: |
| case PPC::BI__builtin_ppc_frips: |
| return RValue::get(emitUnaryMaybeConstrainedFPBuiltin( |
| *this, E, Intrinsic::ceil, |
| Intrinsic::experimental_constrained_ceil)) |
| .getScalarVal(); |
| case PPC::BI__builtin_ppc_friz: |
| case PPC::BI__builtin_ppc_frizs: |
| return RValue::get(emitUnaryMaybeConstrainedFPBuiltin( |
| *this, E, Intrinsic::trunc, |
| Intrinsic::experimental_constrained_trunc)) |
| .getScalarVal(); |
| case PPC::BI__builtin_ppc_fsqrt: |
| case PPC::BI__builtin_ppc_fsqrts: |
| return RValue::get(emitUnaryMaybeConstrainedFPBuiltin( |
| *this, E, Intrinsic::sqrt, |
| Intrinsic::experimental_constrained_sqrt)) |
| .getScalarVal(); |
| case PPC::BI__builtin_ppc_test_data_class: { |
| Value *Op0 = EmitScalarExpr(E->getArg(0)); |
| Value *Op1 = EmitScalarExpr(E->getArg(1)); |
| return Builder.CreateCall( |
| CGM.getIntrinsic(Intrinsic::ppc_test_data_class, Op0->getType()), |
| {Op0, Op1}, "test_data_class"); |
| } |
| case PPC::BI__builtin_ppc_maxfe: { |
| Value *Op0 = EmitScalarExpr(E->getArg(0)); |
| Value *Op1 = EmitScalarExpr(E->getArg(1)); |
| Value *Op2 = EmitScalarExpr(E->getArg(2)); |
| Value *Op3 = EmitScalarExpr(E->getArg(3)); |
| return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::ppc_maxfe), |
| {Op0, Op1, Op2, Op3}); |
| } |
| case PPC::BI__builtin_ppc_maxfl: { |
| Value *Op0 = EmitScalarExpr(E->getArg(0)); |
| Value *Op1 = EmitScalarExpr(E->getArg(1)); |
| Value *Op2 = EmitScalarExpr(E->getArg(2)); |
| Value *Op3 = EmitScalarExpr(E->getArg(3)); |
| return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::ppc_maxfl), |
| {Op0, Op1, Op2, Op3}); |
| } |
| case PPC::BI__builtin_ppc_maxfs: { |
| Value *Op0 = EmitScalarExpr(E->getArg(0)); |
| Value *Op1 = EmitScalarExpr(E->getArg(1)); |
| Value *Op2 = EmitScalarExpr(E->getArg(2)); |
| Value *Op3 = EmitScalarExpr(E->getArg(3)); |
| return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::ppc_maxfs), |
| {Op0, Op1, Op2, Op3}); |
| } |
| case PPC::BI__builtin_ppc_minfe: { |
| Value *Op0 = EmitScalarExpr(E->getArg(0)); |
| Value *Op1 = EmitScalarExpr(E->getArg(1)); |
| Value *Op2 = EmitScalarExpr(E->getArg(2)); |
| Value *Op3 = EmitScalarExpr(E->getArg(3)); |
| return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::ppc_minfe), |
| {Op0, Op1, Op2, Op3}); |
| } |
| case PPC::BI__builtin_ppc_minfl: { |
| Value *Op0 = EmitScalarExpr(E->getArg(0)); |
| Value *Op1 = EmitScalarExpr(E->getArg(1)); |
| Value *Op2 = EmitScalarExpr(E->getArg(2)); |
| Value *Op3 = EmitScalarExpr(E->getArg(3)); |
| return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::ppc_minfl), |
| {Op0, Op1, Op2, Op3}); |
| } |
| case PPC::BI__builtin_ppc_minfs: { |
| Value *Op0 = EmitScalarExpr(E->getArg(0)); |
| Value *Op1 = EmitScalarExpr(E->getArg(1)); |
| Value *Op2 = EmitScalarExpr(E->getArg(2)); |
| Value *Op3 = EmitScalarExpr(E->getArg(3)); |
| return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::ppc_minfs), |
| {Op0, Op1, Op2, Op3}); |
| } |
| case PPC::BI__builtin_ppc_swdiv: |
| case PPC::BI__builtin_ppc_swdivs: { |
| Value *Op0 = EmitScalarExpr(E->getArg(0)); |
| Value *Op1 = EmitScalarExpr(E->getArg(1)); |
| return Builder.CreateFDiv(Op0, Op1, "swdiv"); |
| } |
| case PPC::BI__builtin_ppc_set_fpscr_rn: |
| return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::ppc_setrnd), |
| {EmitScalarExpr(E->getArg(0))}); |
| case PPC::BI__builtin_ppc_mffs: |
| return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::ppc_readflm)); |
| } |
| } |
| |
| namespace { |
| // If \p E is not null pointer, insert address space cast to match return |
| // type of \p E if necessary. |
| Value *EmitAMDGPUDispatchPtr(CodeGenFunction &CGF, |
| const CallExpr *E = nullptr) { |
| auto *F = CGF.CGM.getIntrinsic(Intrinsic::amdgcn_dispatch_ptr); |
| auto *Call = CGF.Builder.CreateCall(F); |
| Call->addRetAttr( |
| Attribute::getWithDereferenceableBytes(Call->getContext(), 64)); |
| Call->addRetAttr(Attribute::getWithAlignment(Call->getContext(), Align(4))); |
| if (!E) |
| return Call; |
| QualType BuiltinRetType = E->getType(); |
| auto *RetTy = cast<llvm::PointerType>(CGF.ConvertType(BuiltinRetType)); |
| if (RetTy == Call->getType()) |
| return Call; |
| return CGF.Builder.CreateAddrSpaceCast(Call, RetTy); |
| } |
| |
| Value *EmitAMDGPUImplicitArgPtr(CodeGenFunction &CGF) { |
| auto *F = CGF.CGM.getIntrinsic(Intrinsic::amdgcn_implicitarg_ptr); |
| auto *Call = CGF.Builder.CreateCall(F); |
| Call->addRetAttr( |
| Attribute::getWithDereferenceableBytes(Call->getContext(), 256)); |
| Call->addRetAttr(Attribute::getWithAlignment(Call->getContext(), Align(8))); |
| return Call; |
| } |
| |
| // \p Index is 0, 1, and 2 for x, y, and z dimension, respectively. |
| /// Emit code based on Code Object ABI version. |
| /// COV_4 : Emit code to use dispatch ptr |
| /// COV_5+ : Emit code to use implicitarg ptr |
| /// COV_NONE : Emit code to load a global variable "__oclc_ABI_version" |
| /// and use its value for COV_4 or COV_5+ approach. It is used for |
| /// compiling device libraries in an ABI-agnostic way. |
| /// |
| /// Note: "__oclc_ABI_version" is supposed to be emitted and intialized by |
| /// clang during compilation of user code. |
| Value *EmitAMDGPUWorkGroupSize(CodeGenFunction &CGF, unsigned Index) { |
| llvm::LoadInst *LD; |
| |
| auto Cov = CGF.getTarget().getTargetOpts().CodeObjectVersion; |
| |
| if (Cov == CodeObjectVersionKind::COV_None) { |
| StringRef Name = "__oclc_ABI_version"; |
| auto *ABIVersionC = CGF.CGM.getModule().getNamedGlobal(Name); |
| if (!ABIVersionC) |
| ABIVersionC = new llvm::GlobalVariable( |
| CGF.CGM.getModule(), CGF.Int32Ty, false, |
| llvm::GlobalValue::ExternalLinkage, nullptr, Name, nullptr, |
| llvm::GlobalVariable::NotThreadLocal, |
| CGF.CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant)); |
| |
| // This load will be eliminated by the IPSCCP because it is constant |
| // weak_odr without externally_initialized. Either changing it to weak or |
| // adding externally_initialized will keep the load. |
| Value *ABIVersion = CGF.Builder.CreateAlignedLoad(CGF.Int32Ty, ABIVersionC, |
| CGF.CGM.getIntAlign()); |
| |
| Value *IsCOV5 = CGF.Builder.CreateICmpSGE( |
| ABIVersion, |
| llvm::ConstantInt::get(CGF.Int32Ty, CodeObjectVersionKind::COV_5)); |
| |
| // Indexing the implicit kernarg segment. |
| Value *ImplicitGEP = CGF.Builder.CreateConstGEP1_32( |
| CGF.Int8Ty, EmitAMDGPUImplicitArgPtr(CGF), 12 + Index * 2); |
| |
| // Indexing the HSA kernel_dispatch_packet struct. |
| Value *DispatchGEP = CGF.Builder.CreateConstGEP1_32( |
| CGF.Int8Ty, EmitAMDGPUDispatchPtr(CGF), 4 + Index * 2); |
| |
| auto Result = CGF.Builder.CreateSelect(IsCOV5, ImplicitGEP, DispatchGEP); |
| LD = CGF.Builder.CreateLoad( |
| Address(Result, CGF.Int16Ty, CharUnits::fromQuantity(2))); |
| } else { |
| Value *GEP = nullptr; |
| if (Cov >= CodeObjectVersionKind::COV_5) { |
| // Indexing the implicit kernarg segment. |
| GEP = CGF.Builder.CreateConstGEP1_32( |
| CGF.Int8Ty, EmitAMDGPUImplicitArgPtr(CGF), 12 + Index * 2); |
| } else { |
| // Indexing the HSA kernel_dispatch_packet struct. |
| GEP = CGF.Builder.CreateConstGEP1_32( |
| CGF.Int8Ty, EmitAMDGPUDispatchPtr(CGF), 4 + Index * 2); |
| } |
| LD = CGF.Builder.CreateLoad( |
| Address(GEP, CGF.Int16Ty, CharUnits::fromQuantity(2))); |
| } |
| |
| llvm::MDBuilder MDHelper(CGF.getLLVMContext()); |
| llvm::MDNode *RNode = MDHelper.createRange(APInt(16, 1), |
| APInt(16, CGF.getTarget().getMaxOpenCLWorkGroupSize() + 1)); |
| LD->setMetadata(llvm::LLVMContext::MD_range, RNode); |
| LD->setMetadata(llvm::LLVMContext::MD_noundef, |
| llvm::MDNode::get(CGF.getLLVMContext(), {})); |
| LD->setMetadata(llvm::LLVMContext::MD_invariant_load, |
| llvm::MDNode::get(CGF.getLLVMContext(), {})); |
| return LD; |
| } |
| |
| // \p Index is 0, 1, and 2 for x, y, and z dimension, respectively. |
| Value *EmitAMDGPUGridSize(CodeGenFunction &CGF, unsigned Index) { |
| const unsigned XOffset = 12; |
| auto *DP = EmitAMDGPUDispatchPtr(CGF); |
| // Indexing the HSA kernel_dispatch_packet struct. |
| auto *Offset = llvm::ConstantInt::get(CGF.Int32Ty, XOffset + Index * 4); |
| auto *GEP = CGF.Builder.CreateGEP(CGF.Int8Ty, DP, Offset); |
| auto *LD = CGF.Builder.CreateLoad( |
| Address(GEP, CGF.Int32Ty, CharUnits::fromQuantity(4))); |
| |
| llvm::MDBuilder MDB(CGF.getLLVMContext()); |
| |
| // Known non-zero. |
| LD->setMetadata(llvm::LLVMContext::MD_range, |
| MDB.createRange(APInt(32, 1), APInt::getZero(32))); |
| LD->setMetadata(llvm::LLVMContext::MD_invariant_load, |
| llvm::MDNode::get(CGF.getLLVMContext(), {})); |
| return LD; |
| } |
| } // namespace |
| |
| // For processing memory ordering and memory scope arguments of various |
| // amdgcn builtins. |
| // \p Order takes a C++11 comptabile memory-ordering specifier and converts |
| // it into LLVM's memory ordering specifier using atomic C ABI, and writes |
| // to \p AO. \p Scope takes a const char * and converts it into AMDGCN |
| // specific SyncScopeID and writes it to \p SSID. |
| void CodeGenFunction::ProcessOrderScopeAMDGCN(Value *Order, Value *Scope, |
| llvm::AtomicOrdering &AO, |
| llvm::SyncScope::ID &SSID) { |
| int ord = cast<llvm::ConstantInt>(Order)->getZExtValue(); |
| |
| // Map C11/C++11 memory ordering to LLVM memory ordering |
| assert(llvm::isValidAtomicOrderingCABI(ord)); |
| switch (static_cast<llvm::AtomicOrderingCABI>(ord)) { |
| case llvm::AtomicOrderingCABI::acquire: |
| case llvm::AtomicOrderingCABI::consume: |
| AO = llvm::AtomicOrdering::Acquire; |
| break; |
| case llvm::AtomicOrderingCABI::release: |
| AO = llvm::AtomicOrdering::Release; |
| break; |
| case llvm::AtomicOrderingCABI::acq_rel: |
| AO = llvm::AtomicOrdering::AcquireRelease; |
| break; |
| case llvm::AtomicOrderingCABI::seq_cst: |
| AO = llvm::AtomicOrdering::SequentiallyConsistent; |
| break; |
| case llvm::AtomicOrderingCABI::relaxed: |
| AO = llvm::AtomicOrdering::Monotonic; |
| break; |
| } |
| |
| // Some of the atomic builtins take the scope as a string name. |
| StringRef scp; |
| if (llvm::getConstantStringInfo(Scope, scp)) { |
| SSID = getLLVMContext().getOrInsertSyncScopeID(scp); |
| return; |
| } |
| |
| // Older builtins had an enum argument for the memory scope. |
| int scope = cast<llvm::ConstantInt>(Scope)->getZExtValue(); |
| switch (scope) { |
| case 0: // __MEMORY_SCOPE_SYSTEM |
| SSID = llvm::SyncScope::System; |
| break; |
| case 1: // __MEMORY_SCOPE_DEVICE |
| SSID = getLLVMContext().getOrInsertSyncScopeID("agent"); |
| break; |
| case 2: // __MEMORY_SCOPE_WRKGRP |
| SSID = getLLVMContext().getOrInsertSyncScopeID("workgroup"); |
| break; |
| case 3: // __MEMORY_SCOPE_WVFRNT |
| SSID = getLLVMContext().getOrInsertSyncScopeID("wavefront"); |
| break; |
| case 4: // __MEMORY_SCOPE_SINGLE |
| SSID = llvm::SyncScope::SingleThread; |
| break; |
| default: |
| SSID = llvm::SyncScope::System; |
| break; |
| } |
| } |
| |
| llvm::Value *CodeGenFunction::EmitScalarOrConstFoldImmArg(unsigned ICEArguments, |
| unsigned Idx, |
| const CallExpr *E) { |
| llvm::Value *Arg = nullptr; |
| if ((ICEArguments & (1 << Idx)) == 0) { |
| Arg = EmitScalarExpr(E->getArg(Idx)); |
| } else { |
| // If this is required to be a constant, constant fold it so that we |
| // know that the generated intrinsic gets a ConstantInt. |
| std::optional<llvm::APSInt> Result = |
| E->getArg(Idx)->getIntegerConstantExpr(getContext()); |
| assert(Result && "Expected argument to be a constant"); |
| Arg = llvm::ConstantInt::get(getLLVMContext(), *Result); |
| } |
| return Arg; |
| } |
| |
| // Return dot product intrinsic that corresponds to the QT scalar type |
| static Intrinsic::ID getDotProductIntrinsic(CGHLSLRuntime &RT, QualType QT) { |
| if (QT->isFloatingType()) |
| return RT.getFDotIntrinsic(); |
| if (QT->isSignedIntegerType()) |
| return RT.getSDotIntrinsic(); |
| assert(QT->isUnsignedIntegerType()); |
| return RT.getUDotIntrinsic(); |
| } |
| |
| static Intrinsic::ID getFirstBitHighIntrinsic(CGHLSLRuntime &RT, QualType QT) { |
| if (QT->hasSignedIntegerRepresentation()) { |
| return RT.getFirstBitSHighIntrinsic(); |
| } |
| |
| assert(QT->hasUnsignedIntegerRepresentation()); |
| return RT.getFirstBitUHighIntrinsic(); |
| } |
| |
| // Return wave active sum that corresponds to the QT scalar type |
| static Intrinsic::ID getWaveActiveSumIntrinsic(llvm::Triple::ArchType Arch, |
| CGHLSLRuntime &RT, QualType QT) { |
| switch (Arch) { |
| case llvm::Triple::spirv: |
| return llvm::Intrinsic::spv_wave_reduce_sum; |
| case llvm::Triple::dxil: { |
| if (QT->isUnsignedIntegerType()) |
| return llvm::Intrinsic::dx_wave_reduce_usum; |
| return llvm::Intrinsic::dx_wave_reduce_sum; |
| } |
| default: |
| llvm_unreachable("Intrinsic WaveActiveSum" |
| " not supported by target architecture"); |
| } |
| } |
| |
| // Return wave active sum that corresponds to the QT scalar type |
| static Intrinsic::ID getWaveActiveMaxIntrinsic(llvm::Triple::ArchType Arch, |
| CGHLSLRuntime &RT, QualType QT) { |
| switch (Arch) { |
| case llvm::Triple::spirv: |
| if (QT->isUnsignedIntegerType()) |
| return llvm::Intrinsic::spv_wave_reduce_umax; |
| return llvm::Intrinsic::spv_wave_reduce_max; |
| case llvm::Triple::dxil: { |
| if (QT->isUnsignedIntegerType()) |
| return llvm::Intrinsic::dx_wave_reduce_umax; |
| return llvm::Intrinsic::dx_wave_reduce_max; |
| } |
| default: |
| llvm_unreachable("Intrinsic WaveActiveMax" |
| " not supported by target architecture"); |
| } |
| } |
| |
| Value *CodeGenFunction::EmitHLSLBuiltinExpr(unsigned BuiltinID, |
| const CallExpr *E, |
| ReturnValueSlot ReturnValue) { |
| if (!getLangOpts().HLSL) |
| return nullptr; |
| |
| switch (BuiltinID) { |
| case Builtin::BI__builtin_hlsl_resource_getpointer: { |
| Value *HandleOp = EmitScalarExpr(E->getArg(0)); |
| Value *IndexOp = EmitScalarExpr(E->getArg(1)); |
| |
| // TODO: Map to an hlsl_device address space. |
| llvm::Type *RetTy = llvm::PointerType::getUnqual(getLLVMContext()); |
| |
| return Builder.CreateIntrinsic( |
| RetTy, CGM.getHLSLRuntime().getCreateResourceGetPointerIntrinsic(), |
| ArrayRef<Value *>{HandleOp, IndexOp}); |
| } |
| case Builtin::BI__builtin_hlsl_all: { |
| Value *Op0 = EmitScalarExpr(E->getArg(0)); |
| return Builder.CreateIntrinsic( |
| /*ReturnType=*/llvm::Type::getInt1Ty(getLLVMContext()), |
| CGM.getHLSLRuntime().getAllIntrinsic(), ArrayRef<Value *>{Op0}, nullptr, |
| "hlsl.all"); |
| } |
| case Builtin::BI__builtin_hlsl_any: { |
| Value *Op0 = EmitScalarExpr(E->getArg(0)); |
| return Builder.CreateIntrinsic( |
| /*ReturnType=*/llvm::Type::getInt1Ty(getLLVMContext()), |
| CGM.getHLSLRuntime().getAnyIntrinsic(), ArrayRef<Value *>{Op0}, nullptr, |
| "hlsl.any"); |
| } |
| case Builtin::BI__builtin_hlsl_asdouble: |
| return handleAsDoubleBuiltin(*this, E); |
| case Builtin::BI__builtin_hlsl_elementwise_clamp: { |
| Value *OpX = EmitScalarExpr(E->getArg(0)); |
| Value *OpMin = EmitScalarExpr(E->getArg(1)); |
| Value *OpMax = EmitScalarExpr(E->getArg(2)); |
| |
| QualType Ty = E->getArg(0)->getType(); |
| if (auto *VecTy = Ty->getAs<VectorType>()) |
| Ty = VecTy->getElementType(); |
| |
| Intrinsic::ID Intr; |
| if (Ty->isFloatingType()) { |
| Intr = CGM.getHLSLRuntime().getNClampIntrinsic(); |
| } else if (Ty->isUnsignedIntegerType()) { |
| Intr = CGM.getHLSLRuntime().getUClampIntrinsic(); |
| } else { |
| assert(Ty->isSignedIntegerType()); |
| Intr = CGM.getHLSLRuntime().getSClampIntrinsic(); |
| } |
| return Builder.CreateIntrinsic( |
| /*ReturnType=*/OpX->getType(), Intr, |
| ArrayRef<Value *>{OpX, OpMin, OpMax}, nullptr, "hlsl.clamp"); |
| } |
| case Builtin::BI__builtin_hlsl_cross: { |
| Value *Op0 = EmitScalarExpr(E->getArg(0)); |
| Value *Op1 = EmitScalarExpr(E->getArg(1)); |
| assert(E->getArg(0)->getType()->hasFloatingRepresentation() && |
| E->getArg(1)->getType()->hasFloatingRepresentation() && |
| "cross operands must have a float representation"); |
| // make sure each vector has exactly 3 elements |
| assert( |
| E->getArg(0)->getType()->castAs<VectorType>()->getNumElements() == 3 && |
| E->getArg(1)->getType()->castAs<VectorType>()->getNumElements() == 3 && |
| "input vectors must have 3 elements each"); |
| return Builder.CreateIntrinsic( |
| /*ReturnType=*/Op0->getType(), CGM.getHLSLRuntime().getCrossIntrinsic(), |
| ArrayRef<Value *>{Op0, Op1}, nullptr, "hlsl.cross"); |
| } |
| case Builtin::BI__builtin_hlsl_dot: { |
| Value *Op0 = EmitScalarExpr(E->getArg(0)); |
| Value *Op1 = EmitScalarExpr(E->getArg(1)); |
| llvm::Type *T0 = Op0->getType(); |
| llvm::Type *T1 = Op1->getType(); |
| |
| // If the arguments are scalars, just emit a multiply |
| if (!T0->isVectorTy() && !T1->isVectorTy()) { |
| if (T0->isFloatingPointTy()) |
| return Builder.CreateFMul(Op0, Op1, "hlsl.dot"); |
| |
| if (T0->isIntegerTy()) |
| return Builder.CreateMul(Op0, Op1, "hlsl.dot"); |
| |
| llvm_unreachable( |
| "Scalar dot product is only supported on ints and floats."); |
| } |
| // For vectors, validate types and emit the appropriate intrinsic |
| |
| // A VectorSplat should have happened |
| assert(T0->isVectorTy() && T1->isVectorTy() && |
| "Dot product of vector and scalar is not supported."); |
| |
| auto *VecTy0 = E->getArg(0)->getType()->castAs<VectorType>(); |
| [[maybe_unused]] auto *VecTy1 = |
| E->getArg(1)->getType()->castAs<VectorType>(); |
| |
| assert(VecTy0->getElementType() == VecTy1->getElementType() && |
| "Dot product of vectors need the same element types."); |
| |
| assert(VecTy0->getNumElements() == VecTy1->getNumElements() && |
| "Dot product requires vectors to be of the same size."); |
| |
| return Builder.CreateIntrinsic( |
| /*ReturnType=*/T0->getScalarType(), |
| getDotProductIntrinsic(CGM.getHLSLRuntime(), VecTy0->getElementType()), |
| ArrayRef<Value *>{Op0, Op1}, nullptr, "hlsl.dot"); |
| } |
| case Builtin::BI__builtin_hlsl_dot4add_i8packed: { |
| Value *A = EmitScalarExpr(E->getArg(0)); |
| Value *B = EmitScalarExpr(E->getArg(1)); |
| Value *C = EmitScalarExpr(E->getArg(2)); |
| |
| Intrinsic::ID ID = CGM.getHLSLRuntime().getDot4AddI8PackedIntrinsic(); |
| return Builder.CreateIntrinsic( |
| /*ReturnType=*/C->getType(), ID, ArrayRef<Value *>{A, B, C}, nullptr, |
| "hlsl.dot4add.i8packed"); |
| } |
| case Builtin::BI__builtin_hlsl_dot4add_u8packed: { |
| Value *A = EmitScalarExpr(E->getArg(0)); |
| Value *B = EmitScalarExpr(E->getArg(1)); |
| Value *C = EmitScalarExpr(E->getArg(2)); |
| |
| Intrinsic::ID ID = CGM.getHLSLRuntime().getDot4AddU8PackedIntrinsic(); |
| return Builder.CreateIntrinsic( |
| /*ReturnType=*/C->getType(), ID, ArrayRef<Value *>{A, B, C}, nullptr, |
| "hlsl.dot4add.u8packed"); |
| } |
| case Builtin::BI__builtin_hlsl_elementwise_firstbithigh: { |
| Value *X = EmitScalarExpr(E->getArg(0)); |
| |
| return Builder.CreateIntrinsic( |
| /*ReturnType=*/ConvertType(E->getType()), |
| getFirstBitHighIntrinsic(CGM.getHLSLRuntime(), E->getArg(0)->getType()), |
| ArrayRef<Value *>{X}, nullptr, "hlsl.firstbithigh"); |
| } |
| case Builtin::BI__builtin_hlsl_elementwise_firstbitlow: { |
| Value *X = EmitScalarExpr(E->getArg(0)); |
| |
| return Builder.CreateIntrinsic( |
| /*ReturnType=*/ConvertType(E->getType()), |
| CGM.getHLSLRuntime().getFirstBitLowIntrinsic(), ArrayRef<Value *>{X}, |
| nullptr, "hlsl.firstbitlow"); |
| } |
| case Builtin::BI__builtin_hlsl_lerp: { |
| Value *X = EmitScalarExpr(E->getArg(0)); |
| Value *Y = EmitScalarExpr(E->getArg(1)); |
| Value *S = EmitScalarExpr(E->getArg(2)); |
| if (!E->getArg(0)->getType()->hasFloatingRepresentation()) |
| llvm_unreachable("lerp operand must have a float representation"); |
| return Builder.CreateIntrinsic( |
| /*ReturnType=*/X->getType(), CGM.getHLSLRuntime().getLerpIntrinsic(), |
| ArrayRef<Value *>{X, Y, S}, nullptr, "hlsl.lerp"); |
| } |
| case Builtin::BI__builtin_hlsl_normalize: { |
| Value *X = EmitScalarExpr(E->getArg(0)); |
| |
| assert(E->getArg(0)->getType()->hasFloatingRepresentation() && |
| "normalize operand must have a float representation"); |
| |
| return Builder.CreateIntrinsic( |
| /*ReturnType=*/X->getType(), |
| CGM.getHLSLRuntime().getNormalizeIntrinsic(), ArrayRef<Value *>{X}, |
| nullptr, "hlsl.normalize"); |
| } |
| case Builtin::BI__builtin_hlsl_elementwise_degrees: { |
| Value *X = EmitScalarExpr(E->getArg(0)); |
| |
| assert(E->getArg(0)->getType()->hasFloatingRepresentation() && |
| "degree operand must have a float representation"); |
| |
| return Builder.CreateIntrinsic( |
| /*ReturnType=*/X->getType(), CGM.getHLSLRuntime().getDegreesIntrinsic(), |
| ArrayRef<Value *>{X}, nullptr, "hlsl.degrees"); |
| } |
| case Builtin::BI__builtin_hlsl_elementwise_frac: { |
| Value *Op0 = EmitScalarExpr(E->getArg(0)); |
| if (!E->getArg(0)->getType()->hasFloatingRepresentation()) |
| llvm_unreachable("frac operand must have a float representation"); |
| return Builder.CreateIntrinsic( |
| /*ReturnType=*/Op0->getType(), CGM.getHLSLRuntime().getFracIntrinsic(), |
| ArrayRef<Value *>{Op0}, nullptr, "hlsl.frac"); |
| } |
| case Builtin::BI__builtin_hlsl_elementwise_isinf: { |
| Value *Op0 = EmitScalarExpr(E->getArg(0)); |
| llvm::Type *Xty = Op0->getType(); |
| llvm::Type *retType = llvm::Type::getInt1Ty(this->getLLVMContext()); |
| if (Xty->isVectorTy()) { |
| auto *XVecTy = E->getArg(0)->getType()->castAs<VectorType>(); |
| retType = llvm::VectorType::get( |
| retType, ElementCount::getFixed(XVecTy->getNumElements())); |
| } |
| if (!E->getArg(0)->getType()->hasFloatingRepresentation()) |
| llvm_unreachable("isinf operand must have a float representation"); |
| return Builder.CreateIntrinsic(retType, Intrinsic::dx_isinf, |
| ArrayRef<Value *>{Op0}, nullptr, "dx.isinf"); |
| } |
| case Builtin::BI__builtin_hlsl_mad: { |
| Value *M = EmitScalarExpr(E->getArg(0)); |
| Value *A = EmitScalarExpr(E->getArg(1)); |
| Value *B = EmitScalarExpr(E->getArg(2)); |
| if (E->getArg(0)->getType()->hasFloatingRepresentation()) |
| return Builder.CreateIntrinsic( |
| /*ReturnType*/ M->getType(), Intrinsic::fmuladd, |
| ArrayRef<Value *>{M, A, B}, nullptr, "hlsl.fmad"); |
| |
| if (E->getArg(0)->getType()->hasSignedIntegerRepresentation()) { |
| if (CGM.getTarget().getTriple().getArch() == llvm::Triple::dxil) |
| return Builder.CreateIntrinsic( |
| /*ReturnType*/ M->getType(), Intrinsic::dx_imad, |
| ArrayRef<Value *>{M, A, B}, nullptr, "dx.imad"); |
| |
| Value *Mul = Builder.CreateNSWMul(M, A); |
| return Builder.CreateNSWAdd(Mul, B); |
| } |
| assert(E->getArg(0)->getType()->hasUnsignedIntegerRepresentation()); |
| if (CGM.getTarget().getTriple().getArch() == llvm::Triple::dxil) |
| return Builder.CreateIntrinsic( |
| /*ReturnType=*/M->getType(), Intrinsic::dx_umad, |
| ArrayRef<Value *>{M, A, B}, nullptr, "dx.umad"); |
| |
| Value *Mul = Builder.CreateNUWMul(M, A); |
| return Builder.CreateNUWAdd(Mul, B); |
| } |
| case Builtin::BI__builtin_hlsl_elementwise_rcp: { |
| Value *Op0 = EmitScalarExpr(E->getArg(0)); |
| if (!E->getArg(0)->getType()->hasFloatingRepresentation()) |
| llvm_unreachable("rcp operand must have a float representation"); |
| llvm::Type *Ty = Op0->getType(); |
| llvm::Type *EltTy = Ty->getScalarType(); |
| Constant *One = Ty->isVectorTy() |
| ? ConstantVector::getSplat( |
| ElementCount::getFixed( |
| cast<FixedVectorType>(Ty)->getNumElements()), |
| ConstantFP::get(EltTy, 1.0)) |
| : ConstantFP::get(EltTy, 1.0); |
| return Builder.CreateFDiv(One, Op0, "hlsl.rcp"); |
| } |
| case Builtin::BI__builtin_hlsl_elementwise_rsqrt: { |
| Value *Op0 = EmitScalarExpr(E->getArg(0)); |
| if (!E->getArg(0)->getType()->hasFloatingRepresentation()) |
| llvm_unreachable("rsqrt operand must have a float representation"); |
| return Builder.CreateIntrinsic( |
| /*ReturnType=*/Op0->getType(), CGM.getHLSLRuntime().getRsqrtIntrinsic(), |
| ArrayRef<Value *>{Op0}, nullptr, "hlsl.rsqrt"); |
| } |
| case Builtin::BI__builtin_hlsl_elementwise_saturate: { |
| Value *Op0 = EmitScalarExpr(E->getArg(0)); |
| assert(E->getArg(0)->getType()->hasFloatingRepresentation() && |
| "saturate operand must have a float representation"); |
| return Builder.CreateIntrinsic( |
| /*ReturnType=*/Op0->getType(), |
| CGM.getHLSLRuntime().getSaturateIntrinsic(), ArrayRef<Value *>{Op0}, |
| nullptr, "hlsl.saturate"); |
| } |
| case Builtin::BI__builtin_hlsl_select: { |
| Value *OpCond = EmitScalarExpr(E->getArg(0)); |
| RValue RValTrue = EmitAnyExpr(E->getArg(1)); |
| Value *OpTrue = |
| RValTrue.isScalar() |
| ? RValTrue.getScalarVal() |
| : RValTrue.getAggregatePointer(E->getArg(1)->getType(), *this); |
| RValue RValFalse = EmitAnyExpr(E->getArg(2)); |
| Value *OpFalse = |
| RValFalse.isScalar() |
| ? RValFalse.getScalarVal() |
| : RValFalse.getAggregatePointer(E->getArg(2)->getType(), *this); |
| |
| Value *SelectVal = |
| Builder.CreateSelect(OpCond, OpTrue, OpFalse, "hlsl.select"); |
| if (!RValTrue.isScalar()) |
| Builder.CreateStore(SelectVal, ReturnValue.getAddress(), |
| ReturnValue.isVolatile()); |
| |
| return SelectVal; |
| } |
| case Builtin::BI__builtin_hlsl_step: { |
| Value *Op0 = EmitScalarExpr(E->getArg(0)); |
| Value *Op1 = EmitScalarExpr(E->getArg(1)); |
| assert(E->getArg(0)->getType()->hasFloatingRepresentation() && |
| E->getArg(1)->getType()->hasFloatingRepresentation() && |
| "step operands must have a float representation"); |
| return Builder.CreateIntrinsic( |
| /*ReturnType=*/Op0->getType(), CGM.getHLSLRuntime().getStepIntrinsic(), |
| ArrayRef<Value *>{Op0, Op1}, nullptr, "hlsl.step"); |
| } |
| case Builtin::BI__builtin_hlsl_wave_active_all_true: { |
| Value *Op = EmitScalarExpr(E->getArg(0)); |
| assert(Op->getType()->isIntegerTy(1) && |
| "Intrinsic WaveActiveAllTrue operand must be a bool"); |
| |
| Intrinsic::ID ID = CGM.getHLSLRuntime().getWaveActiveAllTrueIntrinsic(); |
| return EmitRuntimeCall( |
| Intrinsic::getOrInsertDeclaration(&CGM.getModule(), ID), {Op}); |
| } |
| case Builtin::BI__builtin_hlsl_wave_active_any_true: { |
| Value *Op = EmitScalarExpr(E->getArg(0)); |
| assert(Op->getType()->isIntegerTy(1) && |
| "Intrinsic WaveActiveAnyTrue operand must be a bool"); |
| |
| Intrinsic::ID ID = CGM.getHLSLRuntime().getWaveActiveAnyTrueIntrinsic(); |
| return EmitRuntimeCall( |
| Intrinsic::getOrInsertDeclaration(&CGM.getModule(), ID), {Op}); |
| } |
| case Builtin::BI__builtin_hlsl_wave_active_count_bits: { |
| Value *OpExpr = EmitScalarExpr(E->getArg(0)); |
| Intrinsic::ID ID = CGM.getHLSLRuntime().getWaveActiveCountBitsIntrinsic(); |
| return EmitRuntimeCall( |
| Intrinsic::getOrInsertDeclaration(&CGM.getModule(), ID), |
| ArrayRef{OpExpr}); |
| } |
| case Builtin::BI__builtin_hlsl_wave_active_sum: { |
| // Due to the use of variadic arguments, explicitly retreive argument |
| Value *OpExpr = EmitScalarExpr(E->getArg(0)); |
| llvm::FunctionType *FT = llvm::FunctionType::get( |
| OpExpr->getType(), ArrayRef{OpExpr->getType()}, false); |
| Intrinsic::ID IID = getWaveActiveSumIntrinsic( |
| getTarget().getTriple().getArch(), CGM.getHLSLRuntime(), |
| E->getArg(0)->getType()); |
| |
| // Get overloaded name |
| std::string Name = |
| Intrinsic::getName(IID, ArrayRef{OpExpr->getType()}, &CGM.getModule()); |
| return EmitRuntimeCall(CGM.CreateRuntimeFunction(FT, Name, {}, |
| /*Local=*/false, |
| /*AssumeConvergent=*/true), |
| ArrayRef{OpExpr}, "hlsl.wave.active.sum"); |
| } |
| case Builtin::BI__builtin_hlsl_wave_active_max: { |
| // Due to the use of variadic arguments, explicitly retreive argument |
| Value *OpExpr = EmitScalarExpr(E->getArg(0)); |
| llvm::FunctionType *FT = llvm::FunctionType::get( |
| OpExpr->getType(), ArrayRef{OpExpr->getType()}, false); |
| Intrinsic::ID IID = getWaveActiveMaxIntrinsic( |
| getTarget().getTriple().getArch(), CGM.getHLSLRuntime(), |
| E->getArg(0)->getType()); |
| |
| // Get overloaded name |
| std::string Name = |
| Intrinsic::getName(IID, ArrayRef{OpExpr->getType()}, &CGM.getModule()); |
| return EmitRuntimeCall(CGM.CreateRuntimeFunction(FT, Name, {}, |
| /*Local=*/false, |
| /*AssumeConvergent=*/true), |
| ArrayRef{OpExpr}, "hlsl.wave.active.max"); |
| } |
| case Builtin::BI__builtin_hlsl_wave_get_lane_index: { |
| // We don't define a SPIR-V intrinsic, instead it is a SPIR-V built-in |
| // defined in SPIRVBuiltins.td. So instead we manually get the matching name |
| // for the DirectX intrinsic and the demangled builtin name |
| switch (CGM.getTarget().getTriple().getArch()) { |
| case llvm::Triple::dxil: |
| return EmitRuntimeCall(Intrinsic::getOrInsertDeclaration( |
| &CGM.getModule(), Intrinsic::dx_wave_getlaneindex)); |
| case llvm::Triple::spirv: |
| return EmitRuntimeCall(CGM.CreateRuntimeFunction( |
| llvm::FunctionType::get(IntTy, {}, false), |
| "__hlsl_wave_get_lane_index", {}, false, true)); |
| default: |
| llvm_unreachable( |
| "Intrinsic WaveGetLaneIndex not supported by target architecture"); |
| } |
| } |
| case Builtin::BI__builtin_hlsl_wave_is_first_lane: { |
| Intrinsic::ID ID = CGM.getHLSLRuntime().getWaveIsFirstLaneIntrinsic(); |
| return EmitRuntimeCall( |
| Intrinsic::getOrInsertDeclaration(&CGM.getModule(), ID)); |
| } |
| case Builtin::BI__builtin_hlsl_wave_read_lane_at: { |
| // Due to the use of variadic arguments we must explicitly retreive them and |
| // create our function type. |
| Value *OpExpr = EmitScalarExpr(E->getArg(0)); |
| Value *OpIndex = EmitScalarExpr(E->getArg(1)); |
| llvm::FunctionType *FT = llvm::FunctionType::get( |
| OpExpr->getType(), ArrayRef{OpExpr->getType(), OpIndex->getType()}, |
| false); |
| |
| // Get overloaded name |
| std::string Name = |
| Intrinsic::getName(CGM.getHLSLRuntime().getWaveReadLaneAtIntrinsic(), |
| ArrayRef{OpExpr->getType()}, &CGM.getModule()); |
| return EmitRuntimeCall(CGM.CreateRuntimeFunction(FT, Name, {}, |
| /*Local=*/false, |
| /*AssumeConvergent=*/true), |
| ArrayRef{OpExpr, OpIndex}, "hlsl.wave.readlane"); |
| } |
| case Builtin::BI__builtin_hlsl_elementwise_sign: { |
| auto *Arg0 = E->getArg(0); |
| Value *Op0 = EmitScalarExpr(Arg0); |
| llvm::Type *Xty = Op0->getType(); |
| llvm::Type *retType = llvm::Type::getInt32Ty(this->getLLVMContext()); |
| if (Xty->isVectorTy()) { |
| auto *XVecTy = Arg0->getType()->castAs<VectorType>(); |
| retType = llvm::VectorType::get( |
| retType, ElementCount::getFixed(XVecTy->getNumElements())); |
| } |
| assert((Arg0->getType()->hasFloatingRepresentation() || |
| Arg0->getType()->hasIntegerRepresentation()) && |
| "sign operand must have a float or int representation"); |
| |
| if (Arg0->getType()->hasUnsignedIntegerRepresentation()) { |
| Value *Cmp = Builder.CreateICmpEQ(Op0, ConstantInt::get(Xty, 0)); |
| return Builder.CreateSelect(Cmp, ConstantInt::get(retType, 0), |
| ConstantInt::get(retType, 1), "hlsl.sign"); |
| } |
| |
| return Builder.CreateIntrinsic( |
| retType, CGM.getHLSLRuntime().getSignIntrinsic(), |
| ArrayRef<Value *>{Op0}, nullptr, "hlsl.sign"); |
| } |
| case Builtin::BI__builtin_hlsl_elementwise_radians: { |
| Value *Op0 = EmitScalarExpr(E->getArg(0)); |
| assert(E->getArg(0)->getType()->hasFloatingRepresentation() && |
| "radians operand must have a float representation"); |
| return Builder.CreateIntrinsic( |
| /*ReturnType=*/Op0->getType(), |
| CGM.getHLSLRuntime().getRadiansIntrinsic(), ArrayRef<Value *>{Op0}, |
| nullptr, "hlsl.radians"); |
| } |
| case Builtin::BI__builtin_hlsl_buffer_update_counter: { |
| Value *ResHandle = EmitScalarExpr(E->getArg(0)); |
| Value *Offset = EmitScalarExpr(E->getArg(1)); |
| Value *OffsetI8 = Builder.CreateIntCast(Offset, Int8Ty, true); |
| return Builder.CreateIntrinsic( |
| /*ReturnType=*/Offset->getType(), |
| CGM.getHLSLRuntime().getBufferUpdateCounterIntrinsic(), |
| ArrayRef<Value *>{ResHandle, OffsetI8}, nullptr); |
| } |
| case Builtin::BI__builtin_hlsl_elementwise_splitdouble: { |
| |
| assert((E->getArg(0)->getType()->hasFloatingRepresentation() && |
| E->getArg(1)->getType()->hasUnsignedIntegerRepresentation() && |
| E->getArg(2)->getType()->hasUnsignedIntegerRepresentation()) && |
| "asuint operands types mismatch"); |
| return handleHlslSplitdouble(E, this); |
| } |
| case Builtin::BI__builtin_hlsl_elementwise_clip: |
| assert(E->getArg(0)->getType()->hasFloatingRepresentation() && |
| "clip operands types mismatch"); |
| return handleHlslClip(E, this); |
| case Builtin::BI__builtin_hlsl_group_memory_barrier_with_group_sync: { |
| Intrinsic::ID ID = |
| CGM.getHLSLRuntime().getGroupMemoryBarrierWithGroupSyncIntrinsic(); |
| return EmitRuntimeCall( |
| Intrinsic::getOrInsertDeclaration(&CGM.getModule(), ID)); |
| } |
| } |
| return nullptr; |
| } |
| |
| void CodeGenFunction::AddAMDGPUFenceAddressSpaceMMRA(llvm::Instruction *Inst, |
| const CallExpr *E) { |
| constexpr const char *Tag = "amdgpu-as"; |
| |
| LLVMContext &Ctx = Inst->getContext(); |
| SmallVector<MMRAMetadata::TagT, 3> MMRAs; |
| for (unsigned K = 2; K < E->getNumArgs(); ++K) { |
| llvm::Value *V = EmitScalarExpr(E->getArg(K)); |
| StringRef AS; |
| if (llvm::getConstantStringInfo(V, AS)) { |
| MMRAs.push_back({Tag, AS}); |
| // TODO: Delete the resulting unused constant? |
| continue; |
| } |
| CGM.Error(E->getExprLoc(), |
| "expected an address space name as a string literal"); |
| } |
| |
| llvm::sort(MMRAs); |
| MMRAs.erase(llvm::unique(MMRAs), MMRAs.end()); |
| Inst->setMetadata(LLVMContext::MD_mmra, MMRAMetadata::getMD(Ctx, MMRAs)); |
| } |
| |
| Value *CodeGenFunction::EmitAMDGPUBuiltinExpr(unsigned BuiltinID, |
| const CallExpr *E) { |
| llvm::AtomicOrdering AO = llvm::AtomicOrdering::SequentiallyConsistent; |
| llvm::SyncScope::ID SSID; |
| switch (BuiltinID) { |
| case AMDGPU::BI__builtin_amdgcn_div_scale: |
| case AMDGPU::BI__builtin_amdgcn_div_scalef: { |
| // Translate from the intrinsics's struct return to the builtin's out |
| // argument. |
| |
| Address FlagOutPtr = EmitPointerWithAlignment(E->getArg(3)); |
| |
| llvm::Value *X = EmitScalarExpr(E->getArg(0)); |
| llvm::Value *Y = EmitScalarExpr(E->getArg(1)); |
| llvm::Value *Z = EmitScalarExpr(E->getArg(2)); |
| |
| llvm::Function *Callee = CGM.getIntrinsic(Intrinsic::amdgcn_div_scale, |
| X->getType()); |
| |
| llvm::Value *Tmp = Builder.CreateCall(Callee, {X, Y, Z}); |
| |
| llvm::Value *Result = Builder.CreateExtractValue(Tmp, 0); |
| llvm::Value *Flag = Builder.CreateExtractValue(Tmp, 1); |
| |
| llvm::Type *RealFlagType = FlagOutPtr.getElementType(); |
| |
| llvm::Value *FlagExt = Builder.CreateZExt(Flag, RealFlagType); |
| Builder.CreateStore(FlagExt, FlagOutPtr); |
| return Result; |
| } |
| case AMDGPU::BI__builtin_amdgcn_div_fmas: |
| case AMDGPU::BI__builtin_amdgcn_div_fmasf: { |
| llvm::Value *Src0 = EmitScalarExpr(E->getArg(0)); |
| llvm::Value *Src1 = EmitScalarExpr(E->getArg(1)); |
| llvm::Value *Src2 = EmitScalarExpr(E->getArg(2)); |
| llvm::Value *Src3 = EmitScalarExpr(E->getArg(3)); |
| |
| llvm::Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_div_fmas, |
| Src0->getType()); |
| llvm::Value *Src3ToBool = Builder.CreateIsNotNull(Src3); |
| return Builder.CreateCall(F, {Src0, Src1, Src2, Src3ToBool}); |
| } |
| |
| case AMDGPU::BI__builtin_amdgcn_ds_swizzle: |
| return emitBuiltinWithOneOverloadedType<2>(*this, E, |
| Intrinsic::amdgcn_ds_swizzle); |
| case AMDGPU::BI__builtin_amdgcn_mov_dpp8: |
| case AMDGPU::BI__builtin_amdgcn_mov_dpp: |
| case AMDGPU::BI__builtin_amdgcn_update_dpp: { |
| llvm::SmallVector<llvm::Value *, 6> Args; |
| // Find out if any arguments are required to be integer constant |
| // expressions. |
| unsigned ICEArguments = 0; |
| ASTContext::GetBuiltinTypeError Error; |
| getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments); |
| assert(Error == ASTContext::GE_None && "Should not codegen an error"); |
| llvm::Type *DataTy = ConvertType(E->getArg(0)->getType()); |
| unsigned Size = DataTy->getPrimitiveSizeInBits(); |
| llvm::Type *IntTy = |
| llvm::IntegerType::get(Builder.getContext(), std::max(Size, 32u)); |
| Function *F = |
| CGM.getIntrinsic(BuiltinID == AMDGPU::BI__builtin_amdgcn_mov_dpp8 |
| ? Intrinsic::amdgcn_mov_dpp8 |
| : Intrinsic::amdgcn_update_dpp, |
| IntTy); |
| assert(E->getNumArgs() == 5 || E->getNumArgs() == 6 || |
| E->getNumArgs() == 2); |
| bool InsertOld = BuiltinID == AMDGPU::BI__builtin_amdgcn_mov_dpp; |
| if (InsertOld) |
| Args.push_back(llvm::PoisonValue::get(IntTy)); |
| for (unsigned I = 0; I != E->getNumArgs(); ++I) { |
| llvm::Value *V = EmitScalarOrConstFoldImmArg(ICEArguments, I, E); |
| if (I < (BuiltinID == AMDGPU::BI__builtin_amdgcn_update_dpp ? 2u : 1u) && |
| Size < 32) { |
| if (!DataTy->isIntegerTy()) |
| V = Builder.CreateBitCast( |
| V, llvm::IntegerType::get(Builder.getContext(), Size)); |
| V = Builder.CreateZExtOrBitCast(V, IntTy); |
| } |
| llvm::Type *ExpTy = |
| F->getFunctionType()->getFunctionParamType(I + InsertOld); |
| Args.push_back(Builder.CreateTruncOrBitCast(V, ExpTy)); |
| } |
| Value *V = Builder.CreateCall(F, Args); |
| if (Size < 32 && !DataTy->isIntegerTy()) |
| V = Builder.CreateTrunc( |
| V, llvm::IntegerType::get(Builder.getContext(), Size)); |
| return Builder.CreateTruncOrBitCast(V, DataTy); |
| } |
| case AMDGPU::BI__builtin_amdgcn_permlane16: |
| case AMDGPU::BI__builtin_amdgcn_permlanex16: |
| return emitBuiltinWithOneOverloadedType<6>( |
| *this, E, |
| BuiltinID == AMDGPU::BI__builtin_amdgcn_permlane16 |
| ? Intrinsic::amdgcn_permlane16 |
| : Intrinsic::amdgcn_permlanex16); |
| case AMDGPU::BI__builtin_amdgcn_permlane64: |
| return emitBuiltinWithOneOverloadedType<1>(*this, E, |
| Intrinsic::amdgcn_permlane64); |
| case AMDGPU::BI__builtin_amdgcn_readlane: |
| return emitBuiltinWithOneOverloadedType<2>(*this, E, |
| Intrinsic::amdgcn_readlane); |
| case AMDGPU::BI__builtin_amdgcn_readfirstlane: |
| return emitBuiltinWithOneOverloadedType<1>(*this, E, |
| Intrinsic::amdgcn_readfirstlane); |
| case AMDGPU::BI__builtin_amdgcn_div_fixup: |
| case AMDGPU::BI__builtin_amdgcn_div_fixupf: |
| case AMDGPU::BI__builtin_amdgcn_div_fixuph: |
| return emitBuiltinWithOneOverloadedType<3>(*this, E, |
| Intrinsic::amdgcn_div_fixup); |
| case AMDGPU::BI__builtin_amdgcn_trig_preop: |
| case AMDGPU::BI__builtin_amdgcn_trig_preopf: |
| return emitFPIntBuiltin(*this, E, Intrinsic::amdgcn_trig_preop); |
| case AMDGPU::BI__builtin_amdgcn_rcp: |
| case AMDGPU::BI__builtin_amdgcn_rcpf: |
| case AMDGPU::BI__builtin_amdgcn_rcph: |
| return emitBuiltinWithOneOverloadedType<1>(*this, E, Intrinsic::amdgcn_rcp); |
| case AMDGPU::BI__builtin_amdgcn_sqrt: |
| case AMDGPU::BI__builtin_amdgcn_sqrtf: |
| case AMDGPU::BI__builtin_amdgcn_sqrth: |
| return emitBuiltinWithOneOverloadedType<1>(*this, E, |
| Intrinsic::amdgcn_sqrt); |
| case AMDGPU::BI__builtin_amdgcn_rsq: |
| case AMDGPU::BI__builtin_amdgcn_rsqf: |
| case AMDGPU::BI__builtin_amdgcn_rsqh: |
| return emitBuiltinWithOneOverloadedType<1>(*this, E, Intrinsic::amdgcn_rsq); |
| case AMDGPU::BI__builtin_amdgcn_rsq_clamp: |
| case AMDGPU::BI__builtin_amdgcn_rsq_clampf: |
| return emitBuiltinWithOneOverloadedType<1>(*this, E, |
| Intrinsic::amdgcn_rsq_clamp); |
| case AMDGPU::BI__builtin_amdgcn_sinf: |
| case AMDGPU::BI__builtin_amdgcn_sinh: |
| return emitBuiltinWithOneOverloadedType<1>(*this, E, Intrinsic::amdgcn_sin); |
| case AMDGPU::BI__builtin_amdgcn_cosf: |
| case AMDGPU::BI__builtin_amdgcn_cosh: |
| return emitBuiltinWithOneOverloadedType<1>(*this, E, Intrinsic::amdgcn_cos); |
| case AMDGPU::BI__builtin_amdgcn_dispatch_ptr: |
| return EmitAMDGPUDispatchPtr(*this, E); |
| case AMDGPU::BI__builtin_amdgcn_logf: |
| return emitBuiltinWithOneOverloadedType<1>(*this, E, Intrinsic::amdgcn_log); |
| case AMDGPU::BI__builtin_amdgcn_exp2f: |
| return emitBuiltinWithOneOverloadedType<1>(*this, E, |
| Intrinsic::amdgcn_exp2); |
| case AMDGPU::BI__builtin_amdgcn_log_clampf: |
| return emitBuiltinWithOneOverloadedType<1>(*this, E, |
| Intrinsic::amdgcn_log_clamp); |
| case AMDGPU::BI__builtin_amdgcn_ldexp: |
| case AMDGPU::BI__builtin_amdgcn_ldexpf: { |
| llvm::Value *Src0 = EmitScalarExpr(E->getArg(0)); |
| llvm::Value *Src1 = EmitScalarExpr(E->getArg(1)); |
| llvm::Function *F = |
| CGM.getIntrinsic(Intrinsic::ldexp, {Src0->getType(), Src1->getType()}); |
| return Builder.CreateCall(F, {Src0, Src1}); |
| } |
| case AMDGPU::BI__builtin_amdgcn_ldexph: { |
| // The raw instruction has a different behavior for out of bounds exponent |
| // values (implicit truncation instead of saturate to short_min/short_max). |
| llvm::Value *Src0 = EmitScalarExpr(E->getArg(0)); |
| llvm::Value *Src1 = EmitScalarExpr(E->getArg(1)); |
| llvm::Function *F = |
| CGM.getIntrinsic(Intrinsic::ldexp, {Src0->getType(), Int16Ty}); |
| return Builder.CreateCall(F, {Src0, Builder.CreateTrunc(Src1, Int16Ty)}); |
| } |
| case AMDGPU::BI__builtin_amdgcn_frexp_mant: |
| case AMDGPU::BI__builtin_amdgcn_frexp_mantf: |
| case AMDGPU::BI__builtin_amdgcn_frexp_manth: |
| return emitBuiltinWithOneOverloadedType<1>(*this, E, |
| Intrinsic::amdgcn_frexp_mant); |
| case AMDGPU::BI__builtin_amdgcn_frexp_exp: |
| case AMDGPU::BI__builtin_amdgcn_frexp_expf: { |
| Value *Src0 = EmitScalarExpr(E->getArg(0)); |
| Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_frexp_exp, |
| { Builder.getInt32Ty(), Src0->getType() }); |
| return Builder.CreateCall(F, Src0); |
| } |
| case AMDGPU::BI__builtin_amdgcn_frexp_exph: { |
| Value *Src0 = EmitScalarExpr(E->getArg(0)); |
| Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_frexp_exp, |
| { Builder.getInt16Ty(), Src0->getType() }); |
| return Builder.CreateCall(F, Src0); |
| } |
| case AMDGPU::BI__builtin_amdgcn_fract: |
| case AMDGPU::BI__builtin_amdgcn_fractf: |
| case AMDGPU::BI__builtin_amdgcn_fracth: |
| return emitBuiltinWithOneOverloadedType<1>(*this, E, |
| Intrinsic::amdgcn_fract); |
| case AMDGPU::BI__builtin_amdgcn_lerp: |
| return emitBuiltinWithOneOverloadedType<3>(*this, E, |
| Intrinsic::amdgcn_lerp); |
| case AMDGPU::BI__builtin_amdgcn_ubfe: |
| return emitBuiltinWithOneOverloadedType<3>(*this, E, |
| Intrinsic::amdgcn_ubfe); |
| case AMDGPU::BI__builtin_amdgcn_sbfe: |
| return emitBuiltinWithOneOverloadedType<3>(*this, E, |
| Intrinsic::amdgcn_sbfe); |
| case AMDGPU::BI__builtin_amdgcn_ballot_w32: |
| case AMDGPU::BI__builtin_amdgcn_ballot_w64: { |
| llvm::Type *ResultType = ConvertType(E->getType()); |
| llvm::Value *Src = EmitScalarExpr(E->getArg(0)); |
| Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_ballot, { ResultType }); |
| return Builder.CreateCall(F, { Src }); |
| } |
| case AMDGPU::BI__builtin_amdgcn_uicmp: |
| case AMDGPU::BI__builtin_amdgcn_uicmpl: |
| case AMDGPU::BI__builtin_amdgcn_sicmp: |
| case AMDGPU::BI__builtin_amdgcn_sicmpl: { |
| llvm::Value *Src0 = EmitScalarExpr(E->getArg(0)); |
| llvm::Value *Src1 = EmitScalarExpr(E->getArg(1)); |
| llvm::Value *Src2 = EmitScalarExpr(E->getArg(2)); |
| |
| // FIXME-GFX10: How should 32 bit mask be handled? |
| Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_icmp, |
| { Builder.getInt64Ty(), Src0->getType() }); |
| return Builder.CreateCall(F, { Src0, Src1, Src2 }); |
| } |
| case AMDGPU::BI__builtin_amdgcn_fcmp: |
| case AMDGPU::BI__builtin_amdgcn_fcmpf: { |
| llvm::Value *Src0 = EmitScalarExpr(E->getArg(0)); |
| llvm::Value *Src1 = EmitScalarExpr(E->getArg(1)); |
| llvm::Value *Src2 = EmitScalarExpr(E->getArg(2)); |
| |
| // FIXME-GFX10: How should 32 bit mask be handled? |
| Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_fcmp, |
| { Builder.getInt64Ty(), Src0->getType() }); |
| return Builder.CreateCall(F, { Src0, Src1, Src2 }); |
| } |
| case AMDGPU::BI__builtin_amdgcn_class: |
| case AMDGPU::BI__builtin_amdgcn_classf: |
| case AMDGPU::BI__builtin_amdgcn_classh: |
| return emitFPIntBuiltin(*this, E, Intrinsic::amdgcn_class); |
| case AMDGPU::BI__builtin_amdgcn_fmed3f: |
| case AMDGPU::BI__builtin_amdgcn_fmed3h: |
| return emitBuiltinWithOneOverloadedType<3>(*this, E, |
| Intrinsic::amdgcn_fmed3); |
| case AMDGPU::BI__builtin_amdgcn_ds_append: |
| case AMDGPU::BI__builtin_amdgcn_ds_consume: { |
| Intrinsic::ID Intrin = BuiltinID == AMDGPU::BI__builtin_amdgcn_ds_append ? |
| Intrinsic::amdgcn_ds_append : Intrinsic::amdgcn_ds_consume; |
| Value *Src0 = EmitScalarExpr(E->getArg(0)); |
| Function *F = CGM.getIntrinsic(Intrin, { Src0->getType() }); |
| return Builder.CreateCall(F, { Src0, Builder.getFalse() }); |
| } |
| case AMDGPU::BI__builtin_amdgcn_global_load_tr_b64_i32: |
| case AMDGPU::BI__builtin_amdgcn_global_load_tr_b64_v2i32: |
| case AMDGPU::BI__builtin_amdgcn_global_load_tr_b128_v4i16: |
| case AMDGPU::BI__builtin_amdgcn_global_load_tr_b128_v4f16: |
| case AMDGPU::BI__builtin_amdgcn_global_load_tr_b128_v4bf16: |
| case AMDGPU::BI__builtin_amdgcn_global_load_tr_b128_v8i16: |
| case AMDGPU::BI__builtin_amdgcn_global_load_tr_b128_v8f16: |
| case AMDGPU::BI__builtin_amdgcn_global_load_tr_b128_v8bf16: |
| case AMDGPU::BI__builtin_amdgcn_ds_read_tr4_b64_v2i32: |
| case AMDGPU::BI__builtin_amdgcn_ds_read_tr8_b64_v2i32: |
| case AMDGPU::BI__builtin_amdgcn_ds_read_tr6_b96_v3i32: |
| case AMDGPU::BI__builtin_amdgcn_ds_read_tr16_b64_v4f16: |
| case AMDGPU::BI__builtin_amdgcn_ds_read_tr16_b64_v4bf16: |
| case AMDGPU::BI__builtin_amdgcn_ds_read_tr16_b64_v4i16: { |
| Intrinsic::ID IID; |
| switch (BuiltinID) { |
| case AMDGPU::BI__builtin_amdgcn_global_load_tr_b64_i32: |
| case AMDGPU::BI__builtin_amdgcn_global_load_tr_b64_v2i32: |
| IID = Intrinsic::amdgcn_global_load_tr_b64; |
| break; |
| case AMDGPU::BI__builtin_amdgcn_global_load_tr_b128_v4i16: |
| case AMDGPU::BI__builtin_amdgcn_global_load_tr_b128_v4f16: |
| case AMDGPU::BI__builtin_amdgcn_global_load_tr_b128_v4bf16: |
| case AMDGPU::BI__builtin_amdgcn_global_load_tr_b128_v8i16: |
| case AMDGPU::BI__builtin_amdgcn_global_load_tr_b128_v8f16: |
| case AMDGPU::BI__builtin_amdgcn_global_load_tr_b128_v8bf16: |
| IID = Intrinsic::amdgcn_global_load_tr_b128; |
| break; |
| case AMDGPU::BI__builtin_amdgcn_ds_read_tr4_b64_v2i32: |
| IID = Intrinsic::amdgcn_ds_read_tr4_b64; |
| break; |
| case AMDGPU::BI__builtin_amdgcn_ds_read_tr8_b64_v2i32: |
| IID = Intrinsic::amdgcn_ds_read_tr8_b64; |
| break; |
| case AMDGPU::BI__builtin_amdgcn_ds_read_tr6_b96_v3i32: |
| IID = Intrinsic::amdgcn_ds_read_tr6_b96; |
| break; |
| case AMDGPU::BI__builtin_amdgcn_ds_read_tr16_b64_v4i16: |
| case AMDGPU::BI__builtin_amdgcn_ds_read_tr16_b64_v4f16: |
| case AMDGPU::BI__builtin_amdgcn_ds_read_tr16_b64_v4bf16: |
| IID = Intrinsic::amdgcn_ds_read_tr16_b64; |
| break; |
| } |
| llvm::Type *LoadTy = ConvertType(E->getType()); |
| llvm::Value *Addr = EmitScalarExpr(E->getArg(0)); |
| llvm::Function *F = CGM.getIntrinsic(IID, {LoadTy}); |
| return Builder.CreateCall(F, {Addr}); |
| } |
| case AMDGPU::BI__builtin_amdgcn_get_fpenv: { |
| Function *F = CGM.getIntrinsic(Intrinsic::get_fpenv, |
| {llvm::Type::getInt64Ty(getLLVMContext())}); |
| return Builder.CreateCall(F); |
| } |
| case AMDGPU::BI__builtin_amdgcn_set_fpenv: { |
| Function *F = CGM.getIntrinsic(Intrinsic::set_fpenv, |
| {llvm::Type::getInt64Ty(getLLVMContext())}); |
| llvm::Value *Env = EmitScalarExpr(E->getArg(0)); |
| return Builder.CreateCall(F, {Env}); |
| } |
| case AMDGPU::BI__builtin_amdgcn_read_exec: |
| return EmitAMDGCNBallotForExec(*this, E, Int64Ty, Int64Ty, false); |
| case AMDGPU::BI__builtin_amdgcn_read_exec_lo: |
| return EmitAMDGCNBallotForExec(*this, E, Int32Ty, Int32Ty, false); |
| case AMDGPU::BI__builtin_amdgcn_read_exec_hi: |
| return EmitAMDGCNBallotForExec(*this, E, Int64Ty, Int64Ty, true); |
| case AMDGPU::BI__builtin_amdgcn_image_bvh_intersect_ray: |
| case AMDGPU::BI__builtin_amdgcn_image_bvh_intersect_ray_h: |
| case AMDGPU::BI__builtin_amdgcn_image_bvh_intersect_ray_l: |
| case AMDGPU::BI__builtin_amdgcn_image_bvh_intersect_ray_lh: { |
| llvm::Value *NodePtr = EmitScalarExpr(E->getArg(0)); |
| llvm::Value *RayExtent = EmitScalarExpr(E->getArg(1)); |
| llvm::Value *RayOrigin = EmitScalarExpr(E->getArg(2)); |
| llvm::Value *RayDir = EmitScalarExpr(E->getArg(3)); |
| llvm::Value *RayInverseDir = EmitScalarExpr(E->getArg(4)); |
| llvm::Value *TextureDescr = EmitScalarExpr(E->getArg(5)); |
| |
| // The builtins take these arguments as vec4 where the last element is |
| // ignored. The intrinsic takes them as vec3. |
| RayOrigin = Builder.CreateShuffleVector(RayOrigin, RayOrigin, |
| ArrayRef<int>{0, 1, 2}); |
| RayDir = |
| Builder.CreateShuffleVector(RayDir, RayDir, ArrayRef<int>{0, 1, 2}); |
| RayInverseDir = Builder.CreateShuffleVector(RayInverseDir, RayInverseDir, |
| ArrayRef<int>{0, 1, 2}); |
| |
| Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_image_bvh_intersect_ray, |
| {NodePtr->getType(), RayDir->getType()}); |
| return Builder.CreateCall(F, {NodePtr, RayExtent, RayOrigin, RayDir, |
| RayInverseDir, TextureDescr}); |
| } |
| |
| case AMDGPU::BI__builtin_amdgcn_ds_bvh_stack_rtn: { |
| SmallVector<Value *, 4> Args; |
| for (int i = 0, e = E->getNumArgs(); i != e; ++i) |
| Args.push_back(EmitScalarExpr(E->getArg(i))); |
| |
| Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_ds_bvh_stack_rtn); |
| Value *Call = Builder.CreateCall(F, Args); |
| Value *Rtn = Builder.CreateExtractValue(Call, 0); |
| Value *A = Builder.CreateExtractValue(Call, 1); |
| llvm::Type *RetTy = ConvertType(E->getType()); |
| Value *I0 = Builder.CreateInsertElement(PoisonValue::get(RetTy), Rtn, |
| (uint64_t)0); |
| return Builder.CreateInsertElement(I0, A, 1); |
| } |
| case AMDGPU::BI__builtin_amdgcn_mfma_scale_f32_16x16x128_f8f6f4: |
| case AMDGPU::BI__builtin_amdgcn_mfma_scale_f32_32x32x64_f8f6f4: { |
| llvm::FixedVectorType *VT = FixedVectorType::get(Builder.getInt32Ty(), 8); |
| Function *F = CGM.getIntrinsic( |
| BuiltinID == AMDGPU::BI__builtin_amdgcn_mfma_scale_f32_32x32x64_f8f6f4 |
| ? Intrinsic::amdgcn_mfma_scale_f32_32x32x64_f8f6f4 |
| : Intrinsic::amdgcn_mfma_scale_f32_16x16x128_f8f6f4, |
| {VT, VT}); |
| |
| SmallVector<Value *, 9> Args; |
| for (unsigned I = 0, N = E->getNumArgs(); I != N; ++I) |
| Args.push_back(EmitScalarExpr(E->getArg(I))); |
| return Builder.CreateCall(F, Args); |
| } |
| case AMDGPU::BI__builtin_amdgcn_wmma_bf16_16x16x16_bf16_w32: |
| case AMDGPU::BI__builtin_amdgcn_wmma_bf16_16x16x16_bf16_tied_w32: |
| case AMDGPU::BI__builtin_amdgcn_wmma_bf16_16x16x16_bf16_w64: |
| case AMDGPU::BI__builtin_amdgcn_wmma_bf16_16x16x16_bf16_tied_w64: |
| case AMDGPU::BI__builtin_amdgcn_wmma_f16_16x16x16_f16_w32: |
| case AMDGPU::BI__builtin_amdgcn_wmma_f16_16x16x16_f16_tied_w32: |
| case AMDGPU::BI__builtin_amdgcn_wmma_f16_16x16x16_f16_w64: |
| case AMDGPU::BI__builtin_amdgcn_wmma_f16_16x16x16_f16_tied_w64: |
| case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_bf16_w32: |
| case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_bf16_w64: |
| case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_f16_w32: |
| case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_f16_w64: |
| case AMDGPU::BI__builtin_amdgcn_wmma_i32_16x16x16_iu4_w32: |
| case AMDGPU::BI__builtin_amdgcn_wmma_i32_16x16x16_iu4_w64: |
| case AMDGPU::BI__builtin_amdgcn_wmma_i32_16x16x16_iu8_w32: |
| case AMDGPU::BI__builtin_amdgcn_wmma_i32_16x16x16_iu8_w64: |
| case AMDGPU::BI__builtin_amdgcn_wmma_bf16_16x16x16_bf16_w32_gfx12: |
| case AMDGPU::BI__builtin_amdgcn_wmma_bf16_16x16x16_bf16_w64_gfx12: |
| case AMDGPU::BI__builtin_amdgcn_wmma_f16_16x16x16_f16_w32_gfx12: |
| case AMDGPU::BI__builtin_amdgcn_wmma_f16_16x16x16_f16_w64_gfx12: |
| case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_bf16_w32_gfx12: |
| case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_bf16_w64_gfx12: |
| case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_f16_w32_gfx12: |
| case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_f16_w64_gfx12: |
| case AMDGPU::BI__builtin_amdgcn_wmma_i32_16x16x16_iu4_w32_gfx12: |
| case AMDGPU::BI__builtin_amdgcn_wmma_i32_16x16x16_iu4_w64_gfx12: |
| case AMDGPU::BI__builtin_amdgcn_wmma_i32_16x16x16_iu8_w32_gfx12: |
| case AMDGPU::BI__builtin_amdgcn_wmma_i32_16x16x16_iu8_w64_gfx12: |
| case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_fp8_fp8_w32_gfx12: |
| case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_fp8_fp8_w64_gfx12: |
| case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_fp8_bf8_w32_gfx12: |
| case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_fp8_bf8_w64_gfx12: |
| case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_bf8_fp8_w32_gfx12: |
| case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_bf8_fp8_w64_gfx12: |
| case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_bf8_bf8_w32_gfx12: |
| case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_bf8_bf8_w64_gfx12: |
| case AMDGPU::BI__builtin_amdgcn_wmma_i32_16x16x32_iu4_w32_gfx12: |
| case AMDGPU::BI__builtin_amdgcn_wmma_i32_16x16x32_iu4_w64_gfx12: |
| case AMDGPU::BI__builtin_amdgcn_swmmac_f32_16x16x32_f16_w32: |
| case AMDGPU::BI__builtin_amdgcn_swmmac_f32_16x16x32_f16_w64: |
| case AMDGPU::BI__builtin_amdgcn_swmmac_f32_16x16x32_bf16_w32: |
| case AMDGPU::BI__builtin_amdgcn_swmmac_f32_16x16x32_bf16_w64: |
| case AMDGPU::BI__builtin_amdgcn_swmmac_f16_16x16x32_f16_w32: |
| case AMDGPU::BI__builtin_amdgcn_swmmac_f16_16x16x32_f16_w64: |
| case AMDGPU::BI__builtin_amdgcn_swmmac_bf16_16x16x32_bf16_w32: |
| case AMDGPU::BI__builtin_amdgcn_swmmac_bf16_16x16x32_bf16_w64: |
| case AMDGPU::BI__builtin_amdgcn_swmmac_i32_16x16x32_iu8_w32: |
| case AMDGPU::BI__builtin_amdgcn_swmmac_i32_16x16x32_iu8_w64: |
| case AMDGPU::BI__builtin_amdgcn_swmmac_i32_16x16x32_iu4_w32: |
| case AMDGPU::BI__builtin_amdgcn_swmmac_i32_16x16x32_iu4_w64: |
| case AMDGPU::BI__builtin_amdgcn_swmmac_i32_16x16x64_iu4_w32: |
| case AMDGPU::BI__builtin_amdgcn_swmmac_i32_16x16x64_iu4_w64: |
| case AMDGPU::BI__builtin_amdgcn_swmmac_f32_16x16x32_fp8_fp8_w32: |
| case AMDGPU::BI__builtin_amdgcn_swmmac_f32_16x16x32_fp8_fp8_w64: |
| case AMDGPU::BI__builtin_amdgcn_swmmac_f32_16x16x32_fp8_bf8_w32: |
| case AMDGPU::BI__builtin_amdgcn_swmmac_f32_16x16x32_fp8_bf8_w64: |
| case AMDGPU::BI__builtin_amdgcn_swmmac_f32_16x16x32_bf8_fp8_w32: |
| case AMDGPU::BI__builtin_amdgcn_swmmac_f32_16x16x32_bf8_fp8_w64: |
| case AMDGPU::BI__builtin_amdgcn_swmmac_f32_16x16x32_bf8_bf8_w32: |
| case AMDGPU::BI__builtin_amdgcn_swmmac_f32_16x16x32_bf8_bf8_w64: { |
| |
| // These operations perform a matrix multiplication and accumulation of |
| // the form: |
| // D = A * B + C |
| // We need to specify one type for matrices AB and one for matrices CD. |
| // Sparse matrix operations can have different types for A and B as well as |
| // an additional type for sparsity index. |
| // Destination type should be put before types used for source operands. |
| SmallVector<unsigned, 2> ArgsForMatchingMatrixTypes; |
| // On GFX12, the intrinsics with 16-bit accumulator use a packed layout. |
| // There is no need for the variable opsel argument, so always set it to |
| // "false". |
| bool AppendFalseForOpselArg = false; |
| unsigned BuiltinWMMAOp; |
| |
| switch (BuiltinID) { |
| case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_f16_w32: |
| case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_f16_w64: |
| case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_f16_w32_gfx12: |
| case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_f16_w64_gfx12: |
| ArgsForMatchingMatrixTypes = {2, 0}; // CD, AB |
| BuiltinWMMAOp = Intrinsic::amdgcn_wmma_f32_16x16x16_f16; |
| break; |
| case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_bf16_w32: |
| case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_bf16_w64: |
| case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_bf16_w32_gfx12: |
| case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_bf16_w64_gfx12: |
| ArgsForMatchingMatrixTypes = {2, 0}; // CD, AB |
| BuiltinWMMAOp = Intrinsic::amdgcn_wmma_f32_16x16x16_bf16; |
| break; |
| case AMDGPU::BI__builtin_amdgcn_wmma_f16_16x16x16_f16_w32_gfx12: |
| case AMDGPU::BI__builtin_amdgcn_wmma_f16_16x16x16_f16_w64_gfx12: |
| AppendFalseForOpselArg = true; |
| [[fallthrough]]; |
| case AMDGPU::BI__builtin_amdgcn_wmma_f16_16x16x16_f16_w32: |
| case AMDGPU::BI__builtin_amdgcn_wmma_f16_16x16x16_f16_w64: |
| ArgsForMatchingMatrixTypes = {2, 0}; // CD, AB |
| BuiltinWMMAOp = Intrinsic::amdgcn_wmma_f16_16x16x16_f16; |
| break; |
| case AMDGPU::BI__builtin_amdgcn_wmma_bf16_16x16x16_bf16_w32_gfx12: |
| case AMDGPU::BI__builtin_amdgcn_wmma_bf16_16x16x16_bf16_w64_gfx12: |
| AppendFalseForOpselArg = true; |
| [[fallthrough]]; |
| case AMDGPU::BI__builtin_amdgcn_wmma_bf16_16x16x16_bf16_w32: |
| case AMDGPU::BI__builtin_amdgcn_wmma_bf16_16x16x16_bf16_w64: |
| ArgsForMatchingMatrixTypes = {2, 0}; // CD, AB |
| BuiltinWMMAOp = Intrinsic::amdgcn_wmma_bf16_16x16x16_bf16; |
| break; |
| case AMDGPU::BI__builtin_amdgcn_wmma_f16_16x16x16_f16_tied_w32: |
| case AMDGPU::BI__builtin_amdgcn_wmma_f16_16x16x16_f16_tied_w64: |
| ArgsForMatchingMatrixTypes = {2, 0}; // CD, AB |
| BuiltinWMMAOp = Intrinsic::amdgcn_wmma_f16_16x16x16_f16_tied; |
| break; |
| case AMDGPU::BI__builtin_amdgcn_wmma_bf16_16x16x16_bf16_tied_w32: |
| case AMDGPU::BI__builtin_amdgcn_wmma_bf16_16x16x16_bf16_tied_w64: |
| ArgsForMatchingMatrixTypes = {2, 0}; // CD, AB |
| BuiltinWMMAOp = Intrinsic::amdgcn_wmma_bf16_16x16x16_bf16_tied; |
| break; |
| case AMDGPU::BI__builtin_amdgcn_wmma_i32_16x16x16_iu8_w32: |
| case AMDGPU::BI__builtin_amdgcn_wmma_i32_16x16x16_iu8_w64: |
| case AMDGPU::BI__builtin_amdgcn_wmma_i32_16x16x16_iu8_w32_gfx12: |
| case AMDGPU::BI__builtin_amdgcn_wmma_i32_16x16x16_iu8_w64_gfx12: |
| ArgsForMatchingMatrixTypes = {4, 1}; // CD, AB |
| BuiltinWMMAOp = Intrinsic::amdgcn_wmma_i32_16x16x16_iu8; |
| break; |
| case AMDGPU::BI__builtin_amdgcn_wmma_i32_16x16x16_iu4_w32: |
| case AMDGPU::BI__builtin_amdgcn_wmma_i32_16x16x16_iu4_w64: |
| case AMDGPU::BI__builtin_amdgcn_wmma_i32_16x16x16_iu4_w32_gfx12: |
| case AMDGPU::BI__builtin_amdgcn_wmma_i32_16x16x16_iu4_w64_gfx12: |
| ArgsForMatchingMatrixTypes = {4, 1}; // CD, AB |
| BuiltinWMMAOp = Intrinsic::amdgcn_wmma_i32_16x16x16_iu4; |
| break; |
| case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_fp8_fp8_w32_gfx12: |
| case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_fp8_fp8_w64_gfx12: |
| ArgsForMatchingMatrixTypes = {2, 0}; // CD, AB |
| BuiltinWMMAOp = Intrinsic::amdgcn_wmma_f32_16x16x16_fp8_fp8; |
| break; |
| case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_fp8_bf8_w32_gfx12: |
| case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_fp8_bf8_w64_gfx12: |
| ArgsForMatchingMatrixTypes = {2, 0}; // CD, AB |
| BuiltinWMMAOp = Intrinsic::amdgcn_wmma_f32_16x16x16_fp8_bf8; |
| break; |
| case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_bf8_fp8_w32_gfx12: |
| case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_bf8_fp8_w64_gfx12: |
| ArgsForMatchingMatrixTypes = {2, 0}; // CD, AB |
| BuiltinWMMAOp = Intrinsic::amdgcn_wmma_f32_16x16x16_bf8_fp8; |
| break; |
| case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_bf8_bf8_w32_gfx12: |
| case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_bf8_bf8_w64_gfx12: |
| ArgsForMatchingMatrixTypes = {2, 0}; // CD, AB |
| BuiltinWMMAOp = Intrinsic::amdgcn_wmma_f32_16x16x16_bf8_bf8; |
| break; |
| case AMDGPU::BI__builtin_amdgcn_wmma_i32_16x16x32_iu4_w32_gfx12: |
| case AMDGPU::BI__builtin_amdgcn_wmma_i32_16x16x32_iu4_w64_gfx12: |
| ArgsForMatchingMatrixTypes = {4, 1}; // CD, AB |
| BuiltinWMMAOp = Intrinsic::amdgcn_wmma_i32_16x16x32_iu4; |
| break; |
| case AMDGPU::BI__builtin_amdgcn_swmmac_f32_16x16x32_f16_w32: |
| case AMDGPU::BI__builtin_amdgcn_swmmac_f32_16x16x32_f16_w64: |
| ArgsForMatchingMatrixTypes = {2, 0, 1, 3}; // CD, A, B, Index |
| BuiltinWMMAOp = Intrinsic::amdgcn_swmmac_f32_16x16x32_f16; |
| break; |
| case AMDGPU::BI__builtin_amdgcn_swmmac_f32_16x16x32_bf16_w32: |
| case AMDGPU::BI__builtin_amdgcn_swmmac_f32_16x16x32_bf16_w64: |
| ArgsForMatchingMatrixTypes = {2, 0, 1, 3}; // CD, A, B, Index |
| BuiltinWMMAOp = Intrinsic::amdgcn_swmmac_f32_16x16x32_bf16; |
| break; |
| case AMDGPU::BI__builtin_amdgcn_swmmac_f16_16x16x32_f16_w32: |
| case AMDGPU::BI__builtin_amdgcn_swmmac_f16_16x16x32_f16_w64: |
| ArgsForMatchingMatrixTypes = {2, 0, 1, 3}; // CD, A, B, Index |
| BuiltinWMMAOp = Intrinsic::amdgcn_swmmac_f16_16x16x32_f16; |
| break; |
| case AMDGPU::BI__builtin_amdgcn_swmmac_bf16_16x16x32_bf16_w32: |
| case AMDGPU::BI__builtin_amdgcn_swmmac_bf16_16x16x32_bf16_w64: |
| ArgsForMatchingMatrixTypes = {2, 0, 1, 3}; // CD, A, B, Index |
| BuiltinWMMAOp = Intrinsic::amdgcn_swmmac_bf16_16x16x32_bf16; |
| break; |
| case AMDGPU::BI__builtin_amdgcn_swmmac_i32_16x16x32_iu8_w32: |
| case AMDGPU::BI__builtin_amdgcn_swmmac_i32_16x16x32_iu8_w64: |
| ArgsForMatchingMatrixTypes = {4, 1, 3, 5}; // CD, A, B, Index |
| BuiltinWMMAOp = Intrinsic::amdgcn_swmmac_i32_16x16x32_iu8; |
| break; |
| case AMDGPU::BI__builtin_amdgcn_swmmac_i32_16x16x32_iu4_w32: |
| case AMDGPU::BI__builtin_amdgcn_swmmac_i32_16x16x32_iu4_w64: |
| ArgsForMatchingMatrixTypes = {4, 1, 3, 5}; // CD, A, B, Index |
| BuiltinWMMAOp = Intrinsic::amdgcn_swmmac_i32_16x16x32_iu4; |
| break; |
| case AMDGPU::BI__builtin_amdgcn_swmmac_i32_16x16x64_iu4_w32: |
| case AMDGPU::BI__builtin_amdgcn_swmmac_i32_16x16x64_iu4_w64: |
| ArgsForMatchingMatrixTypes = {4, 1, 3, 5}; // CD, A, B, Index |
| BuiltinWMMAOp = Intrinsic::amdgcn_swmmac_i32_16x16x64_iu4; |
| break; |
| case AMDGPU::BI__builtin_amdgcn_swmmac_f32_16x16x32_fp8_fp8_w32: |
| case AMDGPU::BI__builtin_amdgcn_swmmac_f32_16x16x32_fp8_fp8_w64: |
| ArgsForMatchingMatrixTypes = {2, 0, 1, 3}; // CD, A, B, Index |
| BuiltinWMMAOp = Intrinsic::amdgcn_swmmac_f32_16x16x32_fp8_fp8; |
| break; |
| case AMDGPU::BI__builtin_amdgcn_swmmac_f32_16x16x32_fp8_bf8_w32: |
| case AMDGPU::BI__builtin_amdgcn_swmmac_f32_16x16x32_fp8_bf8_w64: |
| ArgsForMatchingMatrixTypes = {2, 0, 1, 3}; // CD, A, B, Index |
| BuiltinWMMAOp = Intrinsic::amdgcn_swmmac_f32_16x16x32_fp8_bf8; |
| break; |
| case AMDGPU::BI__builtin_amdgcn_swmmac_f32_16x16x32_bf8_fp8_w32: |
| case AMDGPU::BI__builtin_amdgcn_swmmac_f32_16x16x32_bf8_fp8_w64: |
| ArgsForMatchingMatrixTypes = {2, 0, 1, 3}; // CD, A, B, Index |
| BuiltinWMMAOp = Intrinsic::amdgcn_swmmac_f32_16x16x32_bf8_fp8; |
| break; |
| case AMDGPU::BI__builtin_amdgcn_swmmac_f32_16x16x32_bf8_bf8_w32: |
| case AMDGPU::BI__builtin_amdgcn_swmmac_f32_16x16x32_bf8_bf8_w64: |
| ArgsForMatchingMatrixTypes = {2, 0, 1, 3}; // CD, A, B, Index |
| BuiltinWMMAOp = Intrinsic::amdgcn_swmmac_f32_16x16x32_bf8_bf8; |
| break; |
| } |
| |
| SmallVector<Value *, 6> Args; |
| for (int i = 0, e = E->getNumArgs(); i != e; ++i) |
| Args.push_back(EmitScalarExpr(E->getArg(i))); |
| if (AppendFalseForOpselArg) |
| Args.push_back(Builder.getFalse()); |
| |
| SmallVector<llvm::Type *, 6> ArgTypes; |
| for (auto ArgIdx : ArgsForMatchingMatrixTypes) |
| ArgTypes.push_back(Args[ArgIdx]->getType()); |
| |
| Function *F = CGM.getIntrinsic(BuiltinWMMAOp, ArgTypes); |
| return Builder.CreateCall(F, Args); |
| } |
| |
| // amdgcn workitem |
| case AMDGPU::BI__builtin_amdgcn_workitem_id_x: |
| return emitRangedBuiltin(*this, Intrinsic::amdgcn_workitem_id_x, 0, 1024); |
| case AMDGPU::BI__builtin_amdgcn_workitem_id_y: |
| return emitRangedBuiltin(*this, Intrinsic::amdgcn_workitem_id_y, 0, 1024); |
| case AMDGPU::BI__builtin_amdgcn_workitem_id_z: |
| return emitRangedBuiltin(*this, Intrinsic::amdgcn_workitem_id_z, 0, 1024); |
| |
| // amdgcn workgroup size |
| case AMDGPU::BI__builtin_amdgcn_workgroup_size_x: |
| return EmitAMDGPUWorkGroupSize(*this, 0); |
| case AMDGPU::BI__builtin_amdgcn_workgroup_size_y: |
| return EmitAMDGPUWorkGroupSize(*this, 1); |
| case AMDGPU::BI__builtin_amdgcn_workgroup_size_z: |
| return EmitAMDGPUWorkGroupSize(*this, 2); |
| |
| // amdgcn grid size |
| case AMDGPU::BI__builtin_amdgcn_grid_size_x: |
| return EmitAMDGPUGridSize(*this, 0); |
| case AMDGPU::BI__builtin_amdgcn_grid_size_y: |
| return EmitAMDGPUGridSize(*this, 1); |
| case AMDGPU::BI__builtin_amdgcn_grid_size_z: |
| return EmitAMDGPUGridSize(*this, 2); |
| |
| // r600 intrinsics |
| case AMDGPU::BI__builtin_r600_recipsqrt_ieee: |
| case AMDGPU::BI__builtin_r600_recipsqrt_ieeef: |
| return emitBuiltinWithOneOverloadedType<1>(*this, E, |
| Intrinsic::r600_recipsqrt_ieee); |
| case AMDGPU::BI__builtin_r600_read_tidig_x: |
| return emitRangedBuiltin(*this, Intrinsic::r600_read_tidig_x, 0, 1024); |
| case AMDGPU::BI__builtin_r600_read_tidig_y: |
| return emitRangedBuiltin(*this, Intrinsic::r600_read_tidig_y, 0, 1024); |
| case AMDGPU::BI__builtin_r600_read_tidig_z: |
| return emitRangedBuiltin(*this, Intrinsic::r600_read_tidig_z, 0, 1024); |
| case AMDGPU::BI__builtin_amdgcn_alignbit: { |
| llvm::Value *Src0 = EmitScalarExpr(E->getArg(0)); |
| llvm::Value *Src1 = EmitScalarExpr(E->getArg(1)); |
| llvm::Value *Src2 = EmitScalarExpr(E->getArg(2)); |
| Function *F = CGM.getIntrinsic(Intrinsic::fshr, Src0->getType()); |
| return Builder.CreateCall(F, { Src0, Src1, Src2 }); |
| } |
| case AMDGPU::BI__builtin_amdgcn_fence: { |
| ProcessOrderScopeAMDGCN(EmitScalarExpr(E->getArg(0)), |
| EmitScalarExpr(E->getArg(1)), AO, SSID); |
| FenceInst *Fence = Builder.CreateFence(AO, SSID); |
| if (E->getNumArgs() > 2) |
| AddAMDGPUFenceAddressSpaceMMRA(Fence, E); |
| return Fence; |
| } |
| case AMDGPU::BI__builtin_amdgcn_atomic_inc32: |
| case AMDGPU::BI__builtin_amdgcn_atomic_inc64: |
| case AMDGPU::BI__builtin_amdgcn_atomic_dec32: |
| case AMDGPU::BI__builtin_amdgcn_atomic_dec64: |
| case AMDGPU::BI__builtin_amdgcn_ds_atomic_fadd_f64: |
| case AMDGPU::BI__builtin_amdgcn_ds_atomic_fadd_f32: |
| case AMDGPU::BI__builtin_amdgcn_ds_atomic_fadd_v2f16: |
| case AMDGPU::BI__builtin_amdgcn_ds_atomic_fadd_v2bf16: |
| case AMDGPU::BI__builtin_amdgcn_ds_faddf: |
| case AMDGPU::BI__builtin_amdgcn_ds_fminf: |
| case AMDGPU::BI__builtin_amdgcn_ds_fmaxf: |
| case AMDGPU::BI__builtin_amdgcn_global_atomic_fadd_f32: |
| case AMDGPU::BI__builtin_amdgcn_global_atomic_fadd_f64: |
| case AMDGPU::BI__builtin_amdgcn_global_atomic_fadd_v2f16: |
| case AMDGPU::BI__builtin_amdgcn_flat_atomic_fadd_v2f16: |
| case AMDGPU::BI__builtin_amdgcn_flat_atomic_fadd_f32: |
| case AMDGPU::BI__builtin_amdgcn_flat_atomic_fadd_f64: |
| case AMDGPU::BI__builtin_amdgcn_global_atomic_fadd_v2bf16: |
| case AMDGPU::BI__builtin_amdgcn_flat_atomic_fadd_v2bf16: |
| case AMDGPU::BI__builtin_amdgcn_global_atomic_fmin_f64: |
| case AMDGPU::BI__builtin_amdgcn_global_atomic_fmax_f64: |
| case AMDGPU::BI__builtin_amdgcn_flat_atomic_fmin_f64: |
| case AMDGPU::BI__builtin_amdgcn_flat_atomic_fmax_f64: { |
| llvm::AtomicRMWInst::BinOp BinOp; |
| switch (BuiltinID) { |
| case AMDGPU::BI__builtin_amdgcn_atomic_inc32: |
| case AMDGPU::BI__builtin_amdgcn_atomic_inc64: |
| BinOp = llvm::AtomicRMWInst::UIncWrap; |
| break; |
| case AMDGPU::BI__builtin_amdgcn_atomic_dec32: |
| case AMDGPU::BI__builtin_amdgcn_atomic_dec64: |
| BinOp = llvm::AtomicRMWInst::UDecWrap; |
| break; |
| case AMDGPU::BI__builtin_amdgcn_ds_faddf: |
| case AMDGPU::BI__builtin_amdgcn_ds_atomic_fadd_f64: |
| case AMDGPU::BI__builtin_amdgcn_ds_atomic_fadd_f32: |
| case AMDGPU::BI__builtin_amdgcn_ds_atomic_fadd_v2f16: |
| case AMDGPU::BI__builtin_amdgcn_ds_atomic_fadd_v2bf16: |
| case AMDGPU::BI__builtin_amdgcn_global_atomic_fadd_f32: |
| case AMDGPU::BI__builtin_amdgcn_global_atomic_fadd_f64: |
| case AMDGPU::BI__builtin_amdgcn_global_atomic_fadd_v2f16: |
| case AMDGPU::BI__builtin_amdgcn_flat_atomic_fadd_v2f16: |
| case AMDGPU::BI__builtin_amdgcn_flat_atomic_fadd_f32: |
| case AMDGPU::BI__builtin_amdgcn_flat_atomic_fadd_f64: |
| case AMDGPU::BI__builtin_amdgcn_global_atomic_fadd_v2bf16: |
| case AMDGPU::BI__builtin_amdgcn_flat_atomic_fadd_v2bf16: |
| BinOp = llvm::AtomicRMWInst::FAdd; |
| break; |
| case AMDGPU::BI__builtin_amdgcn_ds_fminf: |
| case AMDGPU::BI__builtin_amdgcn_global_atomic_fmin_f64: |
| case AMDGPU::BI__builtin_amdgcn_flat_atomic_fmin_f64: |
| BinOp = llvm::AtomicRMWInst::FMin; |
| break; |
| case AMDGPU::BI__builtin_amdgcn_global_atomic_fmax_f64: |
| case AMDGPU::BI__builtin_amdgcn_flat_atomic_fmax_f64: |
| case AMDGPU::BI__builtin_amdgcn_ds_fmaxf: |
| BinOp = llvm::AtomicRMWInst::FMax; |
| break; |
| } |
| |
| Address Ptr = CheckAtomicAlignment(*this, E); |
| Value *Val = EmitScalarExpr(E->getArg(1)); |
| llvm::Type *OrigTy = Val->getType(); |
| QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType(); |
| |
| bool Volatile; |
| |
| if (BuiltinID == AMDGPU::BI__builtin_amdgcn_ds_faddf || |
| BuiltinID == AMDGPU::BI__builtin_amdgcn_ds_fminf || |
| BuiltinID == AMDGPU::BI__builtin_amdgcn_ds_fmaxf) { |
| // __builtin_amdgcn_ds_faddf/fminf/fmaxf has an explicit volatile argument |
| Volatile = |
| cast<ConstantInt>(EmitScalarExpr(E->getArg(4)))->getZExtValue(); |
| } else { |
| // Infer volatile from the passed type. |
| Volatile = |
| PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified(); |
| } |
| |
| if (E->getNumArgs() >= 4) { |
| // Some of the builtins have explicit ordering and scope arguments. |
| ProcessOrderScopeAMDGCN(EmitScalarExpr(E->getArg(2)), |
| EmitScalarExpr(E->getArg(3)), AO, SSID); |
| } else { |
| // Most of the builtins do not have syncscope/order arguments. For DS |
| // atomics the scope doesn't really matter, as they implicitly operate at |
| // workgroup scope. |
| // |
| // The global/flat cases need to use agent scope to consistently produce |
| // the native instruction instead of a cmpxchg expansion. |
| SSID = getLLVMContext().getOrInsertSyncScopeID("agent"); |
| AO = AtomicOrdering::Monotonic; |
| |
| // The v2bf16 builtin uses i16 instead of a natural bfloat type. |
| if (BuiltinID == AMDGPU::BI__builtin_amdgcn_ds_atomic_fadd_v2bf16 || |
| BuiltinID == AMDGPU::BI__builtin_amdgcn_global_atomic_fadd_v2bf16 || |
| BuiltinID == AMDGPU::BI__builtin_amdgcn_flat_atomic_fadd_v2bf16) { |
| llvm::Type *V2BF16Ty = FixedVectorType::get( |
| llvm::Type::getBFloatTy(Builder.getContext()), 2); |
| Val = Builder.CreateBitCast(Val, V2BF16Ty); |
| } |
| } |
| |
| llvm::AtomicRMWInst *RMW = |
| Builder.CreateAtomicRMW(BinOp, Ptr, Val, AO, SSID); |
| if (Volatile) |
| RMW->setVolatile(true); |
| |
| unsigned AddrSpace = Ptr.getType()->getAddressSpace(); |
| if (AddrSpace != llvm::AMDGPUAS::LOCAL_ADDRESS) { |
| // Most targets require "amdgpu.no.fine.grained.memory" to emit the native |
| // instruction for flat and global operations. |
| llvm::MDTuple *EmptyMD = MDNode::get(getLLVMContext(), {}); |
| RMW->setMetadata("amdgpu.no.fine.grained.memory", EmptyMD); |
| |
| // Most targets require "amdgpu.ignore.denormal.mode" to emit the native |
| // instruction, but this only matters for float fadd. |
| if (BinOp == llvm::AtomicRMWInst::FAdd && Val->getType()->isFloatTy()) |
| RMW->setMetadata("amdgpu.ignore.denormal.mode", EmptyMD); |
| } |
| |
| return Builder.CreateBitCast(RMW, OrigTy); |
| } |
| case AMDGPU::BI__builtin_amdgcn_s_sendmsg_rtn: |
| case AMDGPU::BI__builtin_amdgcn_s_sendmsg_rtnl: { |
| llvm::Value *Arg = EmitScalarExpr(E->getArg(0)); |
| llvm::Type *ResultType = ConvertType(E->getType()); |
| // s_sendmsg_rtn is mangled using return type only. |
| Function *F = |
| CGM.getIntrinsic(Intrinsic::amdgcn_s_sendmsg_rtn, {ResultType}); |
| return Builder.CreateCall(F, {Arg}); |
| } |
| case AMDGPU::BI__builtin_amdgcn_permlane16_swap: |
| case AMDGPU::BI__builtin_amdgcn_permlane32_swap: { |
| // Because builtin types are limited, and the intrinsic uses a struct/pair |
| // output, marshal the pair-of-i32 to <2 x i32>. |
| Value *VDstOld = EmitScalarExpr(E->getArg(0)); |
| Value *VSrcOld = EmitScalarExpr(E->getArg(1)); |
| Value *FI = EmitScalarExpr(E->getArg(2)); |
| Value *BoundCtrl = EmitScalarExpr(E->getArg(3)); |
| Function *F = |
| CGM.getIntrinsic(BuiltinID == AMDGPU::BI__builtin_amdgcn_permlane16_swap |
| ? Intrinsic::amdgcn_permlane16_swap |
| : Intrinsic::amdgcn_permlane32_swap); |
| llvm::CallInst *Call = |
| Builder.CreateCall(F, {VDstOld, VSrcOld, FI, BoundCtrl}); |
| |
| llvm::Value *Elt0 = Builder.CreateExtractValue(Call, 0); |
| llvm::Value *Elt1 = Builder.CreateExtractValue(Call, 1); |
| |
| llvm::Type *ResultType = ConvertType(E->getType()); |
| |
| llvm::Value *Insert0 = Builder.CreateInsertElement( |
| llvm::PoisonValue::get(ResultType), Elt0, UINT64_C(0)); |
| llvm::Value *AsVector = |
| Builder.CreateInsertElement(Insert0, Elt1, UINT64_C(1)); |
| return AsVector; |
| } |
| case AMDGPU::BI__builtin_amdgcn_bitop3_b32: |
| case AMDGPU::BI__builtin_amdgcn_bitop3_b16: |
| return emitBuiltinWithOneOverloadedType<4>(*this, E, |
| Intrinsic::amdgcn_bitop3); |
| case AMDGPU::BI__builtin_amdgcn_make_buffer_rsrc: |
| return emitBuiltinWithOneOverloadedType<4>( |
| *this, E, Intrinsic::amdgcn_make_buffer_rsrc); |
| case AMDGPU::BI__builtin_amdgcn_raw_buffer_store_b8: |
| case AMDGPU::BI__builtin_amdgcn_raw_buffer_store_b16: |
| case AMDGPU::BI__builtin_amdgcn_raw_buffer_store_b32: |
| case AMDGPU::BI__builtin_amdgcn_raw_buffer_store_b64: |
| case AMDGPU::BI__builtin_amdgcn_raw_buffer_store_b96: |
| case AMDGPU::BI__builtin_amdgcn_raw_buffer_store_b128: |
| return emitBuiltinWithOneOverloadedType<5>( |
| *this, E, Intrinsic::amdgcn_raw_ptr_buffer_store); |
| case AMDGPU::BI__builtin_amdgcn_raw_buffer_load_b8: |
| case AMDGPU::BI__builtin_amdgcn_raw_buffer_load_b16: |
| case AMDGPU::BI__builtin_amdgcn_raw_buffer_load_b32: |
| case AMDGPU::BI__builtin_amdgcn_raw_buffer_load_b64: |
| case AMDGPU::BI__builtin_amdgcn_raw_buffer_load_b96: |
| case AMDGPU::BI__builtin_amdgcn_raw_buffer_load_b128: { |
| llvm::Type *RetTy = nullptr; |
| switch (BuiltinID) { |
| case AMDGPU::BI__builtin_amdgcn_raw_buffer_load_b8: |
| RetTy = Int8Ty; |
| break; |
| case AMDGPU::BI__builtin_amdgcn_raw_buffer_load_b16: |
| RetTy = Int16Ty; |
| break; |
| case AMDGPU::BI__builtin_amdgcn_raw_buffer_load_b32: |
| RetTy = Int32Ty; |
| break; |
| case AMDGPU::BI__builtin_amdgcn_raw_buffer_load_b64: |
| RetTy = llvm::FixedVectorType::get(Int32Ty, /*NumElements=*/2); |
| break; |
| case AMDGPU::BI__builtin_amdgcn_raw_buffer_load_b96: |
| RetTy = llvm::FixedVectorType::get(Int32Ty, /*NumElements=*/3); |
| break; |
| case AMDGPU::BI__builtin_amdgcn_raw_buffer_load_b128: |
| RetTy = llvm::FixedVectorType::get(Int32Ty, /*NumElements=*/4); |
| break; |
| } |
| Function *F = |
| CGM.getIntrinsic(Intrinsic::amdgcn_raw_ptr_buffer_load, RetTy); |
| return Builder.CreateCall( |
| F, {EmitScalarExpr(E->getArg(0)), EmitScalarExpr(E->getArg(1)), |
| EmitScalarExpr(E->getArg(2)), EmitScalarExpr(E->getArg(3))}); |
| } |
| case AMDGPU::BI__builtin_amdgcn_s_prefetch_data: |
| return emitBuiltinWithOneOverloadedType<2>( |
| *this, E, Intrinsic::amdgcn_s_prefetch_data); |
| default: |
| return nullptr; |
| } |
| } |
| |
| Value *CodeGenFunction::EmitSPIRVBuiltinExpr(unsigned BuiltinID, |
| const CallExpr *E) { |
| switch (BuiltinID) { |
| case SPIRV::BI__builtin_spirv_distance: { |
| Value *X = EmitScalarExpr(E->getArg(0)); |
| Value *Y = EmitScalarExpr(E->getArg(1)); |
| assert(E->getArg(0)->getType()->hasFloatingRepresentation() && |
| E->getArg(1)->getType()->hasFloatingRepresentation() && |
| "Distance operands must have a float representation"); |
| assert(E->getArg(0)->getType()->isVectorType() && |
| E->getArg(1)->getType()->isVectorType() && |
| "Distance operands must be a vector"); |
| return Builder.CreateIntrinsic( |
| /*ReturnType=*/X->getType()->getScalarType(), Intrinsic::spv_distance, |
| ArrayRef<Value *>{X, Y}, nullptr, "spv.distance"); |
| } |
| case SPIRV::BI__builtin_spirv_length: { |
| Value *X = EmitScalarExpr(E->getArg(0)); |
| assert(E->getArg(0)->getType()->hasFloatingRepresentation() && |
| "length operand must have a float representation"); |
| assert(E->getArg(0)->getType()->isVectorType() && |
| "length operand must be a vector"); |
| return Builder.CreateIntrinsic( |
| /*ReturnType=*/X->getType()->getScalarType(), Intrinsic::spv_length, |
| ArrayRef<Value *>{X}, nullptr, "spv.length"); |
| } |
| } |
| return nullptr; |
| } |
| |
| /// Handle a SystemZ function in which the final argument is a pointer |
| /// to an int that receives the post-instruction CC value. At the LLVM level |
| /// this is represented as a function that returns a {result, cc} pair. |
| static Value *EmitSystemZIntrinsicWithCC(CodeGenFunction &CGF, |
| unsigned IntrinsicID, |
| const CallExpr *E) { |
| unsigned NumArgs = E->getNumArgs() - 1; |
| SmallVector<Value *, 8> Args(NumArgs); |
| for (unsigned I = 0; I < NumArgs; ++I) |
| Args[I] = CGF.EmitScalarExpr(E->getArg(I)); |
| Address CCPtr = CGF.EmitPointerWithAlignment(E->getArg(NumArgs)); |
| Function *F = CGF.CGM.getIntrinsic(IntrinsicID); |
| Value *Call = CGF.Builder.CreateCall(F, Args); |
| Value *CC = CGF.Builder.CreateExtractValue(Call, 1); |
| CGF.Builder.CreateStore(CC, CCPtr); |
| return CGF.Builder.CreateExtractValue(Call, 0); |
| } |
| |
| Value *CodeGenFunction::EmitSystemZBuiltinExpr(unsigned BuiltinID, |
| const CallExpr *E) { |
| switch (BuiltinID) { |
| case SystemZ::BI__builtin_tbegin: { |
| Value *TDB = EmitScalarExpr(E->getArg(0)); |
| Value *Control = llvm::ConstantInt::get(Int32Ty, 0xff0c); |
| Function *F = CGM.getIntrinsic(Intrinsic::s390_tbegin); |
| return Builder.CreateCall(F, {TDB, Control}); |
| } |
| case SystemZ::BI__builtin_tbegin_nofloat: { |
| Value *TDB = EmitScalarExpr(E->getArg(0)); |
| Value *Control = llvm::ConstantInt::get(Int32Ty, 0xff0c); |
| Function *F = CGM.getIntrinsic(Intrinsic::s390_tbegin_nofloat); |
| return Builder.CreateCall(F, {TDB, Control}); |
| } |
| case SystemZ::BI__builtin_tbeginc: { |
| Value *TDB = llvm::ConstantPointerNull::get(Int8PtrTy); |
| Value *Control = llvm::ConstantInt::get(Int32Ty, 0xff08); |
| Function *F = CGM.getIntrinsic(Intrinsic::s390_tbeginc); |
| return Builder.CreateCall(F, {TDB, Control}); |
| } |
| case SystemZ::BI__builtin_tabort: { |
| Value *Data = EmitScalarExpr(E->getArg(0)); |
| Function *F = CGM.getIntrinsic(Intrinsic::s390_tabort); |
| return Builder.CreateCall(F, Builder.CreateSExt(Data, Int64Ty, "tabort")); |
| } |
| case SystemZ::BI__builtin_non_tx_store: { |
| Value *Address = EmitScalarExpr(E->getArg(0)); |
| Value *Data = EmitScalarExpr(E->getArg(1)); |
| Function *F = CGM.getIntrinsic(Intrinsic::s390_ntstg); |
| return Builder.CreateCall(F, {Data, Address}); |
| } |
| |
| // Vector builtins. Note that most vector builtins are mapped automatically |
| // to target-specific LLVM intrinsics. The ones handled specially here can |
| // be represented via standard LLVM IR, which is preferable to enable common |
| // LLVM optimizations. |
| |
| case SystemZ::BI__builtin_s390_vclzb: |
| case SystemZ::BI__builtin_s390_vclzh: |
| case SystemZ::BI__builtin_s390_vclzf: |
| case SystemZ::BI__builtin_s390_vclzg: |
| case SystemZ::BI__builtin_s390_vclzq: { |
| llvm::Type *ResultType = ConvertType(E->getType()); |
| Value *X = EmitScalarExpr(E->getArg(0)); |
| Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false); |
| Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ResultType); |
| return Builder.CreateCall(F, {X, Undef}); |
| } |
| |
| case SystemZ::BI__builtin_s390_vctzb: |
| case SystemZ::BI__builtin_s390_vctzh: |
| case SystemZ::BI__builtin_s390_vctzf: |
| case SystemZ::BI__builtin_s390_vctzg: |
| case SystemZ::BI__builtin_s390_vctzq: { |
| llvm::Type *ResultType = ConvertType(E->getType()); |
| Value *X = EmitScalarExpr(E->getArg(0)); |
| Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false); |
| Function *F = CGM.getIntrinsic(Intrinsic::cttz, ResultType); |
| return Builder.CreateCall(F, {X, Undef}); |
| } |
| |
| case SystemZ::BI__builtin_s390_verllb: |
| case SystemZ::BI__builtin_s390_verllh: |
| case SystemZ::BI__builtin_s390_verllf: |
| case SystemZ::BI__builtin_s390_verllg: { |
| llvm::Type *ResultType = ConvertType(E->getType()); |
| llvm::Value *Src = EmitScalarExpr(E->getArg(0)); |
| llvm::Value *Amt = EmitScalarExpr(E->getArg(1)); |
| // Splat scalar rotate amount to vector type. |
| unsigned NumElts = cast<llvm::FixedVectorType>(ResultType)->getNumElements(); |
| Amt = Builder.CreateIntCast(Amt, ResultType->getScalarType(), false); |
| Amt = Builder.CreateVectorSplat(NumElts, Amt); |
| Function *F = CGM.getIntrinsic(Intrinsic::fshl, ResultType); |
| return Builder.CreateCall(F, { Src, Src, Amt }); |
| } |
| |
| case SystemZ::BI__builtin_s390_verllvb: |
| case SystemZ::BI__builtin_s390_verllvh: |
| case SystemZ::BI__builtin_s390_verllvf: |
| case SystemZ::BI__builtin_s390_verllvg: { |
| llvm::Type *ResultType = ConvertType(E->getType()); |
| llvm::Value *Src = EmitScalarExpr(E->getArg(0)); |
| llvm::Value *Amt = EmitScalarExpr(E->getArg(1)); |
| Function *F = CGM.getIntrinsic(Intrinsic::fshl, ResultType); |
| return Builder.CreateCall(F, { Src, Src, Amt }); |
| } |
| |
| case SystemZ::BI__builtin_s390_vfsqsb: |
| case SystemZ::BI__builtin_s390_vfsqdb: { |
| llvm::Type *ResultType = ConvertType(E->getType()); |
| Value *X = EmitScalarExpr(E->getArg(0)); |
| if (Builder.getIsFPConstrained()) { |
| Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_sqrt, ResultType); |
| return Builder.CreateConstrainedFPCall(F, { X }); |
| } else { |
| Function *F = CGM.getIntrinsic(Intrinsic::sqrt, ResultType); |
| return Builder.CreateCall(F, X); |
| } |
| } |
| case SystemZ::BI__builtin_s390_vfmasb: |
| case SystemZ::BI__builtin_s390_vfmadb: { |
| llvm::Type *ResultType = ConvertType(E->getType()); |
| Value *X = EmitScalarExpr(E->getArg(0)); |
| Value *Y = EmitScalarExpr(E->getArg(1)); |
| Value *Z = EmitScalarExpr(E->getArg(2)); |
| if (Builder.getIsFPConstrained()) { |
| Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, ResultType); |
| return Builder.CreateConstrainedFPCall(F, {X, Y, Z}); |
| } else { |
| Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType); |
| return Builder.CreateCall(F, {X, Y, Z}); |
| } |
| } |
| case SystemZ::BI__builtin_s390_vfmssb: |
| case SystemZ::BI__builtin_s390_vfmsdb: { |
| llvm::Type *ResultType = ConvertType(E->getType()); |
| Value *X = EmitScalarExpr(E->getArg(0)); |
| Value *Y = EmitScalarExpr(E->getArg(1)); |
| Value *Z = EmitScalarExpr(E->getArg(2)); |
| if (Builder.getIsFPConstrained()) { |
| Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, ResultType); |
| return Builder.CreateConstrainedFPCall(F, {X, Y, Builder.CreateFNeg(Z, "neg")}); |
| } else { |
| Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType); |
| return Builder.CreateCall(F, {X, Y, Builder.CreateFNeg(Z, "neg")}); |
| } |
| } |
| case SystemZ::BI__builtin_s390_vfnmasb: |
| case SystemZ::BI__builtin_s390_vfnmadb: { |
| llvm::Type *ResultType = ConvertType(E->getType()); |
| Value *X = EmitScalarExpr(E->getArg(0)); |
| Value *Y = EmitScalarExpr(E->getArg(1)); |
| Value *Z = EmitScalarExpr(E->getArg(2)); |
| if (Builder.getIsFPConstrained()) { |
| Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, ResultType); |
| return Builder.CreateFNeg(Builder.CreateConstrainedFPCall(F, {X, Y, Z}), "neg"); |
| } else { |
| Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType); |
| return Builder.CreateFNeg(Builder.CreateCall(F, {X, Y, Z}), "neg"); |
| } |
| } |
| case SystemZ::BI__builtin_s390_vfnmssb: |
| case SystemZ::BI__builtin_s390_vfnmsdb: { |
| llvm::Type *ResultType = ConvertType(E->getType()); |
| Value *X = EmitScalarExpr(E->getArg(0)); |
| Value *Y = EmitScalarExpr(E->getArg(1)); |
| Value *Z = EmitScalarExpr(E->getArg(2)); |
| if (Builder.getIsFPConstrained()) { |
| Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, ResultType); |
| Value *NegZ = Builder.CreateFNeg(Z, "sub"); |
| return Builder.CreateFNeg(Builder.CreateConstrainedFPCall(F, {X, Y, NegZ})); |
| } else { |
| Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType); |
| Value *NegZ = Builder.CreateFNeg(Z, "neg"); |
| return Builder.CreateFNeg(Builder.CreateCall(F, {X, Y, NegZ})); |
| } |
| } |
| case SystemZ::BI__builtin_s390_vflpsb: |
| case SystemZ::BI__builtin_s390_vflpdb: { |
| llvm::Type *ResultType = ConvertType(E->getType()); |
| Value *X = EmitScalarExpr(E->getArg(0)); |
| Function *F = CGM.getIntrinsic(Intrinsic::fabs, ResultType); |
| return Builder.CreateCall(F, X); |
| } |
| case SystemZ::BI__builtin_s390_vflnsb: |
| case SystemZ::BI__builtin_s390_vflndb: { |
| llvm::Type *ResultType = ConvertType(E->getType()); |
| Value *X = EmitScalarExpr(E->getArg(0)); |
| Function *F = CGM.getIntrinsic(Intrinsic::fabs, ResultType); |
| return Builder.CreateFNeg(Builder.CreateCall(F, X), "neg"); |
| } |
| case SystemZ::BI__builtin_s390_vfisb: |
| case SystemZ::BI__builtin_s390_vfidb: { |
| llvm::Type *ResultType = ConvertType(E->getType()); |
| Value *X = EmitScalarExpr(E->getArg(0)); |
| // Constant-fold the M4 and M5 mask arguments. |
| llvm::APSInt M4 = *E->getArg(1)->getIntegerConstantExpr(getContext()); |
| llvm::APSInt M5 = *E->getArg(2)->getIntegerConstantExpr(getContext()); |
| // Check whether this instance can be represented via a LLVM standard |
| // intrinsic. We only support some combinations of M4 and M5. |
| Intrinsic::ID ID = Intrinsic::not_intrinsic; |
| Intrinsic::ID CI; |
| switch (M4.getZExtValue()) { |
| default: break; |
| case 0: // IEEE-inexact exception allowed |
| switch (M5.getZExtValue()) { |
| default: break; |
| case 0: ID = Intrinsic::rint; |
| CI = Intrinsic::experimental_constrained_rint; break; |
| } |
| break; |
| case 4: // IEEE-inexact exception suppressed |
| switch (M5.getZExtValue()) { |
| default: break; |
| case 0: ID = Intrinsic::nearbyint; |
| CI = Intrinsic::experimental_constrained_nearbyint; break; |
| case 1: ID = Intrinsic::round; |
| CI = Intrinsic::experimental_constrained_round; break; |
| case 5: ID = Intrinsic::trunc; |
| CI = Intrinsic::experimental_constrained_trunc; break; |
| case 6: ID = Intrinsic::ceil; |
| CI = Intrinsic::experimental_constrained_ceil; break; |
| case 7: ID = Intrinsic::floor; |
| CI = Intrinsic::experimental_constrained_floor; break; |
| } |
| break; |
| } |
| if (ID != Intrinsic::not_intrinsic) { |
| if (Builder.getIsFPConstrained()) { |
| Function *F = CGM.getIntrinsic(CI, ResultType); |
| return Builder.CreateConstrainedFPCall(F, X); |
| } else { |
| Function *F = CGM.getIntrinsic(ID, ResultType); |
| return Builder.CreateCall(F, X); |
| } |
| } |
| switch (BuiltinID) { // FIXME: constrained version? |
| case SystemZ::BI__builtin_s390_vfisb: ID = Intrinsic::s390_vfisb; break; |
| case SystemZ::BI__builtin_s390_vfidb: ID = Intrinsic::s390_vfidb; break; |
| default: llvm_unreachable("Unknown BuiltinID"); |
| } |
| Function *F = CGM.getIntrinsic(ID); |
| Value *M4Value = llvm::ConstantInt::get(getLLVMContext(), M4); |
| Value *M5Value = llvm::ConstantInt::get(getLLVMContext(), M5); |
| return Builder.CreateCall(F, {X, M4Value, M5Value}); |
| } |
| case SystemZ::BI__builtin_s390_vfmaxsb: |
| case SystemZ::BI__builtin_s390_vfmaxdb: { |
| llvm::Type *ResultType = ConvertType(E->getType()); |
| Value *X = EmitScalarExpr(E->getArg(0)); |
| Value *Y = EmitScalarExpr(E->getArg(1)); |
| // Constant-fold the M4 mask argument. |
| llvm::APSInt M4 = *E->getArg(2)->getIntegerConstantExpr(getContext()); |
| // Check whether this instance can be represented via a LLVM standard |
| // intrinsic. We only support some values of M4. |
| Intrinsic::ID ID = Intrinsic::not_intrinsic; |
| Intrinsic::ID CI; |
| switch (M4.getZExtValue()) { |
| default: break; |
| case 4: ID = Intrinsic::maxnum; |
| CI = Intrinsic::experimental_constrained_maxnum; break; |
| } |
| if (ID != Intrinsic::not_intrinsic) { |
| if (Builder.getIsFPConstrained()) { |
| Function *F = CGM.getIntrinsic(CI, ResultType); |
| return Builder.CreateConstrainedFPCall(F, {X, Y}); |
| } else { |
| Function *F = CGM.getIntrinsic(ID, ResultType); |
| return Builder.CreateCall(F, {X, Y}); |
| } |
| } |
| switch (BuiltinID) { |
| case SystemZ::BI__builtin_s390_vfmaxsb: ID = Intrinsic::s390_vfmaxsb; break; |
| case SystemZ::BI__builtin_s390_vfmaxdb: ID = Intrinsic::s390_vfmaxdb; break; |
| default: llvm_unreachable("Unknown BuiltinID"); |
| } |
| Function *F = CGM.getIntrinsic(ID); |
| Value *M4Value = llvm::ConstantInt::get(getLLVMContext(), M4); |
| return Builder.CreateCall(F, {X, Y, M4Value}); |
| } |
| case SystemZ::BI__builtin_s390_vfminsb: |
| case SystemZ::BI__builtin_s390_vfmindb: { |
| llvm::Type *ResultType = ConvertType(E->getType()); |
| Value *X = EmitScalarExpr(E->getArg(0)); |
| Value *Y = EmitScalarExpr(E->getArg(1)); |
| // Constant-fold the M4 mask argument. |
| llvm::APSInt M4 = *E->getArg(2)->getIntegerConstantExpr(getContext()); |
| // Check whether this instance can be represented via a LLVM standard |
| // intrinsic. We only support some values of M4. |
| Intrinsic::ID ID = Intrinsic::not_intrinsic; |
| Intrinsic::ID CI; |
| switch (M4.getZExtValue()) { |
| default: break; |
| case 4: ID = Intrinsic::minnum; |
| CI = Intrinsic::experimental_constrained_minnum; break; |
| } |
| if (ID != Intrinsic::not_intrinsic) { |
| if (Builder.getIsFPConstrained()) { |
| Function *F = CGM.getIntrinsic(CI, ResultType); |
| return Builder.CreateConstrainedFPCall(F, {X, Y}); |
| } else { |
| Function *F = CGM.getIntrinsic(ID, ResultType); |
| return Builder.CreateCall(F, {X, Y}); |
| } |
| } |
| switch (BuiltinID) { |
| case SystemZ::BI__builtin_s390_vfminsb: ID = Intrinsic::s390_vfminsb; break; |
| case SystemZ::BI__builtin_s390_vfmindb: ID = Intrinsic::s390_vfmindb; break; |
| default: llvm_unreachable("Unknown BuiltinID"); |
| } |
| Function *F = CGM.getIntrinsic(ID); |
| Value *M4Value = llvm::ConstantInt::get(getLLVMContext(), M4); |
| return Builder.CreateCall(F, {X, Y, M4Value}); |
| } |
| |
| case SystemZ::BI__builtin_s390_vlbrh: |
| case SystemZ::BI__builtin_s390_vlbrf: |
| case SystemZ::BI__builtin_s390_vlbrg: |
| case SystemZ::BI__builtin_s390_vlbrq: { |
| llvm::Type *ResultType = ConvertType(E->getType()); |
| Value *X = EmitScalarExpr(E->getArg(0)); |
| Function *F = CGM.getIntrinsic(Intrinsic::bswap, ResultType); |
| return Builder.CreateCall(F, X); |
| } |
| |
| // Vector intrinsics that output the post-instruction CC value. |
| |
| #define INTRINSIC_WITH_CC(NAME) \ |
| case SystemZ::BI__builtin_##NAME: \ |
| return EmitSystemZIntrinsicWithCC(*this, Intrinsic::NAME, E) |
| |
| INTRINSIC_WITH_CC(s390_vpkshs); |
| INTRINSIC_WITH_CC(s390_vpksfs); |
| INTRINSIC_WITH_CC(s390_vpksgs); |
| |
| INTRINSIC_WITH_CC(s390_vpklshs); |
| INTRINSIC_WITH_CC(s390_vpklsfs); |
| INTRINSIC_WITH_CC(s390_vpklsgs); |
| |
| INTRINSIC_WITH_CC(s390_vceqbs); |
| INTRINSIC_WITH_CC(s390_vceqhs); |
| INTRINSIC_WITH_CC(s390_vceqfs); |
| INTRINSIC_WITH_CC(s390_vceqgs); |
| INTRINSIC_WITH_CC(s390_vceqqs); |
| |
| INTRINSIC_WITH_CC(s390_vchbs); |
| INTRINSIC_WITH_CC(s390_vchhs); |
| INTRINSIC_WITH_CC(s390_vchfs); |
| INTRINSIC_WITH_CC(s390_vchgs); |
| INTRINSIC_WITH_CC(s390_vchqs); |
| |
| INTRINSIC_WITH_CC(s390_vchlbs); |
| INTRINSIC_WITH_CC(s390_vchlhs); |
| INTRINSIC_WITH_CC(s390_vchlfs); |
| INTRINSIC_WITH_CC(s390_vchlgs); |
| INTRINSIC_WITH_CC(s390_vchlqs); |
| |
| INTRINSIC_WITH_CC(s390_vfaebs); |
| INTRINSIC_WITH_CC(s390_vfaehs); |
| INTRINSIC_WITH_CC(s390_vfaefs); |
| |
| INTRINSIC_WITH_CC(s390_vfaezbs); |
| INTRINSIC_WITH_CC(s390_vfaezhs); |
| INTRINSIC_WITH_CC(s390_vfaezfs); |
| |
| INTRINSIC_WITH_CC(s390_vfeebs); |
| INTRINSIC_WITH_CC(s390_vfeehs); |
| INTRINSIC_WITH_CC(s390_vfeefs); |
| |
| INTRINSIC_WITH_CC(s390_vfeezbs); |
| INTRINSIC_WITH_CC(s390_vfeezhs); |
| INTRINSIC_WITH_CC(s390_vfeezfs); |
| |
| INTRINSIC_WITH_CC(s390_vfenebs); |
| INTRINSIC_WITH_CC(s390_vfenehs); |
| INTRINSIC_WITH_CC(s390_vfenefs); |
| |
| INTRINSIC_WITH_CC(s390_vfenezbs); |
| INTRINSIC_WITH_CC(s390_vfenezhs); |
| INTRINSIC_WITH_CC(s390_vfenezfs); |
| |
| INTRINSIC_WITH_CC(s390_vistrbs); |
| INTRINSIC_WITH_CC(s390_vistrhs); |
| INTRINSIC_WITH_CC(s390_vistrfs); |
| |
| INTRINSIC_WITH_CC(s390_vstrcbs); |
| INTRINSIC_WITH_CC(s390_vstrchs); |
| INTRINSIC_WITH_CC(s390_vstrcfs); |
| |
| INTRINSIC_WITH_CC(s390_vstrczbs); |
| INTRINSIC_WITH_CC(s390_vstrczhs); |
| INTRINSIC_WITH_CC(s390_vstrczfs); |
| |
| INTRINSIC_WITH_CC(s390_vfcesbs); |
| INTRINSIC_WITH_CC(s390_vfcedbs); |
| INTRINSIC_WITH_CC(s390_vfchsbs); |
| INTRINSIC_WITH_CC(s390_vfchdbs); |
| INTRINSIC_WITH_CC(s390_vfchesbs); |
| INTRINSIC_WITH_CC(s390_vfchedbs); |
| |
| INTRINSIC_WITH_CC(s390_vftcisb); |
| INTRINSIC_WITH_CC(s390_vftcidb); |
| |
| INTRINSIC_WITH_CC(s390_vstrsb); |
| INTRINSIC_WITH_CC(s390_vstrsh); |
| INTRINSIC_WITH_CC(s390_vstrsf); |
| |
| INTRINSIC_WITH_CC(s390_vstrszb); |
| INTRINSIC_WITH_CC(s390_vstrszh); |
| INTRINSIC_WITH_CC(s390_vstrszf); |
| |
| #undef INTRINSIC_WITH_CC |
| |
| default: |
| return nullptr; |
| } |
| } |
| |
| namespace { |
| // Helper classes for mapping MMA builtins to particular LLVM intrinsic variant. |
| struct NVPTXMmaLdstInfo { |
| unsigned NumResults; // Number of elements to load/store |
| // Intrinsic IDs for row/col variants. 0 if particular layout is unsupported. |
| unsigned IID_col; |
| unsigned IID_row; |
| }; |
| |
| #define MMA_INTR(geom_op_type, layout) \ |
| Intrinsic::nvvm_wmma_##geom_op_type##_##layout##_stride |
| #define MMA_LDST(n, geom_op_type) \ |
| { n, MMA_INTR(geom_op_type, col), MMA_INTR(geom_op_type, row) } |
| |
| static NVPTXMmaLdstInfo getNVPTXMmaLdstInfo(unsigned BuiltinID) { |
| switch (BuiltinID) { |
| // FP MMA loads |
| case NVPTX::BI__hmma_m16n16k16_ld_a: |
| return MMA_LDST(8, m16n16k16_load_a_f16); |
| case NVPTX::BI__hmma_m16n16k16_ld_b: |
| return MMA_LDST(8, m16n16k16_load_b_f16); |
| case NVPTX::BI__hmma_m16n16k16_ld_c_f16: |
| return MMA_LDST(4, m16n16k16_load_c_f16); |
| case NVPTX::BI__hmma_m16n16k16_ld_c_f32: |
| return MMA_LDST(8, m16n16k16_load_c_f32); |
| case NVPTX::BI__hmma_m32n8k16_ld_a: |
| return MMA_LDST(8, m32n8k16_load_a_f16); |
| case NVPTX::BI__hmma_m32n8k16_ld_b: |
| return MMA_LDST(8, m32n8k16_load_b_f16); |
| case NVPTX::BI__hmma_m32n8k16_ld_c_f16: |
| return MMA_LDST(4, m32n8k16_load_c_f16); |
| case NVPTX::BI__hmma_m32n8k16_ld_c_f32: |
| return MMA_LDST(8, m32n8k16_load_c_f32); |
| case NVPTX::BI__hmma_m8n32k16_ld_a: |
| return MMA_LDST(8, m8n32k16_load_a_f16); |
| case NVPTX::BI__hmma_m8n32k16_ld_b: |
| return MMA_LDST(8, m8n32k16_load_b_f16); |
| case NVPTX::BI__hmma_m8n32k16_ld_c_f16: |
| return MMA_LDST(4, m8n32k16_load_c_f16); |
| case NVPTX::BI__hmma_m8n32k16_ld_c_f32: |
| return MMA_LDST(8, m8n32k16_load_c_f32); |
| |
| // Integer MMA loads |
| case NVPTX::BI__imma_m16n16k16_ld_a_s8: |
| return MMA_LDST(2, m16n16k16_load_a_s8); |
| case NVPTX::BI__imma_m16n16k16_ld_a_u8: |
| return MMA_LDST(2, m16n16k16_load_a_u8); |
| case NVPTX::BI__imma_m16n16k16_ld_b_s8: |
| return MMA_LDST(2, m16n16k16_load_b_s8); |
| case NVPTX::BI__imma_m16n16k16_ld_b_u8: |
| return MMA_LDST(2, m16n16k16_load_b_u8); |
| case NVPTX::BI__imma_m16n16k16_ld_c: |
| return MMA_LDST(8, m16n16k16_load_c_s32); |
| case NVPTX::BI__imma_m32n8k16_ld_a_s8: |
| return MMA_LDST(4, m32n8k16_load_a_s8); |
| case NVPTX::BI__imma_m32n8k16_ld_a_u8: |
| return MMA_LDST(4, m32n8k16_load_a_u8); |
| case NVPTX::BI__imma_m32n8k16_ld_b_s8: |
| return MMA_LDST(1, m32n8k16_load_b_s8); |
| case NVPTX::BI__imma_m32n8k16_ld_b_u8: |
| return MMA_LDST(1, m32n8k16_load_b_u8); |
| case NVPTX::BI__imma_m32n8k16_ld_c: |
| return MMA_LDST(8, m32n8k16_load_c_s32); |
| case NVPTX::BI__imma_m8n32k16_ld_a_s8: |
| return MMA_LDST(1, m8n32k16_load_a_s8); |
| case NVPTX::BI__imma_m8n32k16_ld_a_u8: |
| return MMA_LDST(1, m8n32k16_load_a_u8); |
| case NVPTX::BI__imma_m8n32k16_ld_b_s8: |
| return MMA_LDST(4, m8n32k16_load_b_s8); |
| case NVPTX::BI__imma_m8n32k16_ld_b_u8: |
| return MMA_LDST(4, m8n32k16_load_b_u8); |
| case NVPTX::BI__imma_m8n32k16_ld_c: |
| return MMA_LDST(8, m8n32k16_load_c_s32); |
| |
| // Sub-integer MMA loads. |
| // Only row/col layout is supported by A/B fragments. |
| case NVPTX::BI__imma_m8n8k32_ld_a_s4: |
| return {1, 0, MMA_INTR(m8n8k32_load_a_s4, row)}; |
| case NVPTX::BI__imma_m8n8k32_ld_a_u4: |
| return {1, 0, MMA_INTR(m8n8k32_load_a_u4, row)}; |
| case NVPTX::BI__imma_m8n8k32_ld_b_s4: |
| return {1, MMA_INTR(m8n8k32_load_b_s4, col), 0}; |
| case NVPTX::BI__imma_m8n8k32_ld_b_u4: |
| return {1, MMA_INTR(m8n8k32_load_b_u4, col), 0}; |
| case NVPTX::BI__imma_m8n8k32_ld_c: |
| return MMA_LDST(2, m8n8k32_load_c_s32); |
| case NVPTX::BI__bmma_m8n8k128_ld_a_b1: |
| return {1, 0, MMA_INTR(m8n8k128_load_a_b1, row)}; |
| case NVPTX::BI__bmma_m8n8k128_ld_b_b1: |
| return {1, MMA_INTR(m8n8k128_load_b_b1, col), 0}; |
| case NVPTX::BI__bmma_m8n8k128_ld_c: |
| return MMA_LDST(2, m8n8k128_load_c_s32); |
| |
| // Double MMA loads |
| case NVPTX::BI__dmma_m8n8k4_ld_a: |
| return MMA_LDST(1, m8n8k4_load_a_f64); |
| case NVPTX::BI__dmma_m8n8k4_ld_b: |
| return MMA_LDST(1, m8n8k4_load_b_f64); |
| case NVPTX::BI__dmma_m8n8k4_ld_c: |
| return MMA_LDST(2, m8n8k4_load_c_f64); |
| |
| // Alternate float MMA loads |
| case NVPTX::BI__mma_bf16_m16n16k16_ld_a: |
| return MMA_LDST(4, m16n16k16_load_a_bf16); |
| case NVPTX::BI__mma_bf16_m16n16k16_ld_b: |
| return MMA_LDST(4, m16n16k16_load_b_bf16); |
| case NVPTX::BI__mma_bf16_m8n32k16_ld_a: |
| return MMA_LDST(2, m8n32k16_load_a_bf16); |
| case NVPTX::BI__mma_bf16_m8n32k16_ld_b: |
| return MMA_LDST(8, m8n32k16_load_b_bf16); |
| case NVPTX::BI__mma_bf16_m32n8k16_ld_a: |
| return MMA_LDST(8, m32n8k16_load_a_bf16); |
| case NVPTX::BI__mma_bf16_m32n8k16_ld_b: |
| return MMA_LDST(2, m32n8k16_load_b_bf16); |
| case NVPTX::BI__mma_tf32_m16n16k8_ld_a: |
| return MMA_LDST(4, m16n16k8_load_a_tf32); |
| case NVPTX::BI__mma_tf32_m16n16k8_ld_b: |
| return MMA_LDST(4, m16n16k8_load_b_tf32); |
| case NVPTX::BI__mma_tf32_m16n16k8_ld_c: |
| return MMA_LDST(8, m16n16k8_load_c_f32); |
| |
| // NOTE: We need to follow inconsitent naming scheme used by NVCC. Unlike |
| // PTX and LLVM IR where stores always use fragment D, NVCC builtins always |
| // use fragment C for both loads and stores. |
| // FP MMA stores. |
| case NVPTX::BI__hmma_m16n16k16_st_c_f16: |
| return MMA_LDST(4, m16n16k16_store_d_f16); |
| case NVPTX::BI__hmma_m16n16k16_st_c_f32: |
| return MMA_LDST(8, m16n16k16_store_d_f32); |
| case NVPTX::BI__hmma_m32n8k16_st_c_f16: |
| return MMA_LDST(4, m32n8k16_store_d_f16); |
| case NVPTX::BI__hmma_m32n8k16_st_c_f32: |
| return MMA_LDST(8, m32n8k16_store_d_f32); |
| case NVPTX::BI__hmma_m8n32k16_st_c_f16: |
| return MMA_LDST(4, m8n32k16_store_d_f16); |
| case NVPTX::BI__hmma_m8n32k16_st_c_f32: |
| return MMA_LDST(8, m8n32k16_store_d_f32); |
| |
| // Integer and sub-integer MMA stores. |
| // Another naming quirk. Unlike other MMA builtins that use PTX types in the |
| // name, integer loads/stores use LLVM's i32. |
| case NVPTX::BI__imma_m16n16k16_st_c_i32: |
| return MMA_LDST(8, m16n16k16_store_d_s32); |
| case NVPTX::BI__imma_m32n8k16_st_c_i32: |
| return MMA_LDST(8, m32n8k16_store_d_s32); |
| case NVPTX::BI__imma_m8n32k16_st_c_i32: |
| return MMA_LDST(8, m8n32k16_store_d_s32); |
| case NVPTX::BI__imma_m8n8k32_st_c_i32: |
| return MMA_LDST(2, m8n8k32_store_d_s32); |
| case NVPTX::BI__bmma_m8n8k128_st_c_i32: |
| return MMA_LDST(2, m8n8k128_store_d_s32); |
| |
| // Double MMA store |
| case NVPTX::BI__dmma_m8n8k4_st_c_f64: |
| return MMA_LDST(2, m8n8k4_store_d_f64); |
| |
| // Alternate float MMA store |
| case NVPTX::BI__mma_m16n16k8_st_c_f32: |
| return MMA_LDST(8, m16n16k8_store_d_f32); |
| |
| default: |
| llvm_unreachable("Unknown MMA builtin"); |
| } |
| } |
| #undef MMA_LDST |
| #undef MMA_INTR |
| |
| |
| struct NVPTXMmaInfo { |
| unsigned NumEltsA; |
| unsigned NumEltsB; |
| unsigned NumEltsC; |
| unsigned NumEltsD; |
| |
| // Variants are ordered by layout-A/layout-B/satf, where 'row' has priority |
| // over 'col' for layout. The index of non-satf variants is expected to match |
| // the undocumented layout constants used by CUDA's mma.hpp. |
| std::array<unsigned, 8> Variants; |
| |
| unsigned getMMAIntrinsic(int Layout, bool Satf) { |
| unsigned Index = Layout + 4 * Satf; |
| if (Index >= Variants.size()) |
| return 0; |
| return Variants[Index]; |
| } |
| }; |
| |
| // Returns an intrinsic that matches Layout and Satf for valid combinations of |
| // Layout and Satf, 0 otherwise. |
| static NVPTXMmaInfo getNVPTXMmaInfo(unsigned BuiltinID) { |
| // clang-format off |
| #define MMA_VARIANTS(geom, type) \ |
| Intrinsic::nvvm_wmma_##geom##_mma_row_row_##type, \ |
| Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type, \ |
| Intrinsic::nvvm_wmma_##geom##_mma_col_row_##type, \ |
| Intrinsic::nvvm_wmma_##geom##_mma_col_col_##type |
| #define MMA_SATF_VARIANTS(geom, type) \ |
| MMA_VARIANTS(geom, type), \ |
| Intrinsic::nvvm_wmma_##geom##_mma_row_row_##type##_satfinite, \ |
| Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type##_satfinite, \ |
| Intrinsic::nvvm_wmma_##geom##_mma_col_row_##type##_satfinite, \ |
| Intrinsic::nvvm_wmma_##geom##_mma_col_col_##type##_satfinite |
| // Sub-integer MMA only supports row.col layout. |
| #define MMA_VARIANTS_I4(geom, type) \ |
| 0, \ |
| Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type, \ |
| 0, \ |
| 0, \ |
| 0, \ |
| Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type##_satfinite, \ |
| 0, \ |
| 0 |
| // b1 MMA does not support .satfinite. |
| #define MMA_VARIANTS_B1_XOR(geom, type) \ |
| 0, \ |
| Intrinsic::nvvm_wmma_##geom##_mma_xor_popc_row_col_##type, \ |
| 0, \ |
| 0, \ |
| 0, \ |
| 0, \ |
| 0, \ |
| 0 |
| #define MMA_VARIANTS_B1_AND(geom, type) \ |
| 0, \ |
| Intrinsic::nvvm_wmma_##geom##_mma_and_popc_row_col_##type, \ |
| 0, \ |
| 0, \ |
| 0, \ |
| 0, \ |
| 0, \ |
| 0 |
| // clang-format on |
| switch (BuiltinID) { |
| // FP MMA |
| // Note that 'type' argument of MMA_SATF_VARIANTS uses D_C notation, while |
| // NumEltsN of return value are ordered as A,B,C,D. |
| case NVPTX::BI__hmma_m16n16k16_mma_f16f16: |
| return {8, 8, 4, 4, {{MMA_SATF_VARIANTS(m16n16k16, f16_f16)}}}; |
| case NVPTX::BI__hmma_m16n16k16_mma_f32f16: |
| return {8, 8, 4, 8, {{MMA_SATF_VARIANTS(m16n16k16, f32_f16)}}}; |
| case NVPTX::BI__hmma_m16n16k16_mma_f16f32: |
| return {8, 8, 8, 4, {{MMA_SATF_VARIANTS(m16n16k16, f16_f32)}}}; |
| case NVPTX::BI__hmma_m16n16k16_mma_f32f32: |
| return {8, 8, 8, 8, {{MMA_SATF_VARIANTS(m16n16k16, f32_f32)}}}; |
| case NVPTX::BI__hmma_m32n8k16_mma_f16f16: |
| return {8, 8, 4, 4, {{MMA_SATF_VARIANTS(m32n8k16, f16_f16)}}}; |
| case NVPTX::BI__hmma_m32n8k16_mma_f32f16: |
| return {8, 8, 4, 8, {{MMA_SATF_VARIANTS(m32n8k16, f32_f16)}}}; |
| case NVPTX::BI__hmma_m32n8k16_mma_f16f32: |
| return {8, 8, 8, 4, {{MMA_SATF_VARIANTS(m32n8k16, f16_f32)}}}; |
| case NVPTX::BI__hmma_m32n8k16_mma_f32f32: |
| return {8, 8, 8, 8, {{MMA_SATF_VARIANTS(m32n8k16, f32_f32)}}}; |
| case NVPTX::BI__hmma_m8n32k16_mma_f16f16: |
| return {8, 8, 4, 4, {{MMA_SATF_VARIANTS(m8n32k16, f16_f16)}}}; |
| case NVPTX::BI__hmma_m8n32k16_mma_f32f16: |
| return {8, 8, 4, 8, {{MMA_SATF_VARIANTS(m8n32k16, f32_f16)}}}; |
| case NVPTX::BI__hmma_m8n32k16_mma_f16f32: |
| return {8, 8, 8, 4, {{MMA_SATF_VARIANTS(m8n32k16, f16_f32)}}}; |
| case NVPTX::BI__hmma_m8n32k16_mma_f32f32: |
| return {8, 8, 8, 8, {{MMA_SATF_VARIANTS(m8n32k16, f32_f32)}}}; |
| |
| // Integer MMA |
| case NVPTX::BI__imma_m16n16k16_mma_s8: |
| return {2, 2, 8, 8, {{MMA_SATF_VARIANTS(m16n16k16, s8)}}}; |
| case NVPTX::BI__imma_m16n16k16_mma_u8: |
| return {2, 2, 8, 8, {{MMA_SATF_VARIANTS(m16n16k16, u8)}}}; |
| case NVPTX::BI__imma_m32n8k16_mma_s8: |
| return {4, 1, 8, 8, {{MMA_SATF_VARIANTS(m32n8k16, s8)}}}; |
| case NVPTX::BI__imma_m32n8k16_mma_u8: |
| return {4, 1, 8, 8, {{MMA_SATF_VARIANTS(m32n8k16, u8)}}}; |
| case NVPTX::BI__imma_m8n32k16_mma_s8: |
| return {1, 4, 8, 8, {{MMA_SATF_VARIANTS(m8n32k16, s8)}}}; |
| case NVPTX::BI__imma_m8n32k16_mma_u8: |
| return {1, 4, 8, 8, {{MMA_SATF_VARIANTS(m8n32k16, u8)}}}; |
| |
| // Sub-integer MMA |
| case NVPTX::BI__imma_m8n8k32_mma_s4: |
| return {1, 1, 2, 2, {{MMA_VARIANTS_I4(m8n8k32, s4)}}}; |
| case NVPTX::BI__imma_m8n8k32_mma_u4: |
| return {1, 1, 2, 2, {{MMA_VARIANTS_I4(m8n8k32, u4)}}}; |
| case NVPTX::BI__bmma_m8n8k128_mma_xor_popc_b1: |
| return {1, 1, 2, 2, {{MMA_VARIANTS_B1_XOR(m8n8k128, b1)}}}; |
| case NVPTX::BI__bmma_m8n8k128_mma_and_popc_b1: |
| return {1, 1, 2, 2, {{MMA_VARIANTS_B1_AND(m8n8k128, b1)}}}; |
| |
| // Double MMA |
| case NVPTX::BI__dmma_m8n8k4_mma_f64: |
| return {1, 1, 2, 2, {{MMA_VARIANTS(m8n8k4, f64)}}}; |
| |
| // Alternate FP MMA |
| case NVPTX::BI__mma_bf16_m16n16k16_mma_f32: |
| return {4, 4, 8, 8, {{MMA_VARIANTS(m16n16k16, bf16)}}}; |
| case NVPTX::BI__mma_bf16_m8n32k16_mma_f32: |
| return {2, 8, 8, 8, {{MMA_VARIANTS(m8n32k16, bf16)}}}; |
| case NVPTX::BI__mma_bf16_m32n8k16_mma_f32: |
| return {8, 2, 8, 8, {{MMA_VARIANTS(m32n8k16, bf16)}}}; |
| case NVPTX::BI__mma_tf32_m16n16k8_mma_f32: |
| return {4, 4, 8, 8, {{MMA_VARIANTS(m16n16k8, tf32)}}}; |
| default: |
| llvm_unreachable("Unexpected builtin ID."); |
| } |
| #undef MMA_VARIANTS |
| #undef MMA_SATF_VARIANTS |
| #undef MMA_VARIANTS_I4 |
| #undef MMA_VARIANTS_B1_AND |
| #undef MMA_VARIANTS_B1_XOR |
| } |
| |
| static Value *MakeLdu(unsigned IntrinsicID, CodeGenFunction &CGF, |
| const CallExpr *E) { |
| Value *Ptr = CGF.EmitScalarExpr(E->getArg(0)); |
| QualType ArgType = E->getArg(0)->getType(); |
| clang::CharUnits Align = CGF.CGM.getNaturalPointeeTypeAlignment(ArgType); |
| llvm::Type *ElemTy = CGF.ConvertTypeForMem(ArgType->getPointeeType()); |
| return CGF.Builder.CreateCall( |
| CGF.CGM.getIntrinsic(IntrinsicID, {ElemTy, Ptr->getType()}), |
| {Ptr, ConstantInt::get(CGF.Builder.getInt32Ty(), Align.getQuantity())}); |
| } |
| |
| static Value *MakeLdg(CodeGenFunction &CGF, const CallExpr *E) { |
| Value *Ptr = CGF.EmitScalarExpr(E->getArg(0)); |
| QualType ArgType = E->getArg(0)->getType(); |
| clang::CharUnits AlignV = CGF.CGM.getNaturalPointeeTypeAlignment(ArgType); |
| llvm::Type *ElemTy = CGF.ConvertTypeForMem(ArgType->getPointeeType()); |
| |
| // Use addrspace(1) for NVPTX ADDRESS_SPACE_GLOBAL |
| auto *ASC = CGF.Builder.CreateAddrSpaceCast(Ptr, CGF.Builder.getPtrTy(1)); |
| auto *LD = CGF.Builder.CreateAlignedLoad(ElemTy, ASC, AlignV.getAsAlign()); |
| MDNode *MD = MDNode::get(CGF.Builder.getContext(), {}); |
| LD->setMetadata(LLVMContext::MD_invariant_load, MD); |
| |
| return LD; |
| } |
| |
| static Value *MakeScopedAtomic(unsigned IntrinsicID, CodeGenFunction &CGF, |
| const CallExpr *E) { |
| Value *Ptr = CGF.EmitScalarExpr(E->getArg(0)); |
| llvm::Type *ElemTy = |
| CGF.ConvertTypeForMem(E->getArg(0)->getType()->getPointeeType()); |
| return CGF.Builder.CreateCall( |
| CGF.CGM.getIntrinsic(IntrinsicID, {ElemTy, Ptr->getType()}), |
| {Ptr, CGF.EmitScalarExpr(E->getArg(1))}); |
| } |
| |
| static Value *MakeCpAsync(unsigned IntrinsicID, unsigned IntrinsicIDS, |
| CodeGenFunction &CGF, const CallExpr *E, |
| int SrcSize) { |
| return E->getNumArgs() == 3 |
| ? CGF.Builder.CreateCall(CGF.CGM.getIntrinsic(IntrinsicIDS), |
| {CGF.EmitScalarExpr(E->getArg(0)), |
| CGF.EmitScalarExpr(E->getArg(1)), |
| CGF.EmitScalarExpr(E->getArg(2))}) |
| : CGF.Builder.CreateCall(CGF.CGM.getIntrinsic(IntrinsicID), |
| {CGF.EmitScalarExpr(E->getArg(0)), |
| CGF.EmitScalarExpr(E->getArg(1))}); |
| } |
| |
| static Value *MakeHalfType(unsigned IntrinsicID, unsigned BuiltinID, |
| const CallExpr *E, CodeGenFunction &CGF) { |
| auto &C = CGF.CGM.getContext(); |
| if (!(C.getLangOpts().NativeHalfType || |
| !C.getTargetInfo().useFP16ConversionIntrinsics())) { |
| CGF.CGM.Error(E->getExprLoc(), C.BuiltinInfo.getName(BuiltinID).str() + |
| " requires native half type support."); |
| return nullptr; |
| } |
| |
| if (BuiltinID == NVPTX::BI__nvvm_ldg_h || BuiltinID == NVPTX::BI__nvvm_ldg_h2) |
| return MakeLdg(CGF, E); |
| |
| if (IntrinsicID == Intrinsic::nvvm_ldu_global_f) |
| return MakeLdu(IntrinsicID, CGF, E); |
| |
| SmallVector<Value *, 16> Args; |
| auto *F = CGF.CGM.getIntrinsic(IntrinsicID); |
| auto *FTy = F->getFunctionType(); |
| unsigned ICEArguments = 0; |
| ASTContext::GetBuiltinTypeError Error; |
| C.GetBuiltinType(BuiltinID, Error, &ICEArguments); |
| assert(Error == ASTContext::GE_None && "Should not codegen an error"); |
| for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) { |
| assert((ICEArguments & (1 << i)) == 0); |
| auto *ArgValue = CGF.EmitScalarExpr(E->getArg(i)); |
| auto *PTy = FTy->getParamType(i); |
| if (PTy != ArgValue->getType()) |
| ArgValue = CGF.Builder.CreateBitCast(ArgValue, PTy); |
| Args.push_back(ArgValue); |
| } |
| |
| return CGF.Builder.CreateCall(F, Args); |
| } |
| } // namespace |
| |
| Value *CodeGenFunction::EmitNVPTXBuiltinExpr(unsigned BuiltinID, |
| const CallExpr *E) { |
| switch (BuiltinID) { |
| case NVPTX::BI__nvvm_atom_add_gen_i: |
| case NVPTX::BI__nvvm_atom_add_gen_l: |
| case NVPTX::BI__nvvm_atom_add_gen_ll: |
| return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Add, E); |
| |
| case NVPTX::BI__nvvm_atom_sub_gen_i: |
| case NVPTX::BI__nvvm_atom_sub_gen_l: |
| case NVPTX::BI__nvvm_atom_sub_gen_ll: |
| return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Sub, E); |
| |
| case NVPTX::BI__nvvm_atom_and_gen_i: |
| case NVPTX::BI__nvvm_atom_and_gen_l: |
| case NVPTX::BI__nvvm_atom_and_gen_ll: |
| return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::And, E); |
| |
| case NVPTX::BI__nvvm_atom_or_gen_i: |
| case NVPTX::BI__nvvm_atom_or_gen_l: |
| case NVPTX::BI__nvvm_atom_or_gen_ll: |
| return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Or, E); |
| |
| case NVPTX::BI__nvvm_atom_xor_gen_i: |
| case NVPTX::BI__nvvm_atom_xor_gen_l: |
| case NVPTX::BI__nvvm_atom_xor_gen_ll: |
| return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Xor, E); |
| |
| case NVPTX::BI__nvvm_atom_xchg_gen_i: |
| case NVPTX::BI__nvvm_atom_xchg_gen_l: |
| case NVPTX::BI__nvvm_atom_xchg_gen_ll: |
| return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Xchg, E); |
| |
| case NVPTX::BI__nvvm_atom_max_gen_i: |
| case NVPTX::BI__nvvm_atom_max_gen_l: |
| case NVPTX::BI__nvvm_atom_max_gen_ll: |
| return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Max, E); |
| |
| case NVPTX::BI__nvvm_atom_max_gen_ui: |
| case NVPTX::BI__nvvm_atom_max_gen_ul: |
| case NVPTX::BI__nvvm_atom_max_gen_ull: |
| return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::UMax, E); |
| |
| case NVPTX::BI__nvvm_atom_min_gen_i: |
| case NVPTX::BI__nvvm_atom_min_gen_l: |
| case NVPTX::BI__nvvm_atom_min_gen_ll: |
| return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Min, E); |
| |
| case NVPTX::BI__nvvm_atom_min_gen_ui: |
| case NVPTX::BI__nvvm_atom_min_gen_ul: |
| case NVPTX::BI__nvvm_atom_min_gen_ull: |
| return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::UMin, E); |
| |
| case NVPTX::BI__nvvm_atom_cas_gen_us: |
| case NVPTX::BI__nvvm_atom_cas_gen_i: |
| case NVPTX::BI__nvvm_atom_cas_gen_l: |
| case NVPTX::BI__nvvm_atom_cas_gen_ll: |
| // __nvvm_atom_cas_gen_* should return the old value rather than the |
| // success flag. |
| return MakeAtomicCmpXchgValue(*this, E, /*ReturnBool=*/false); |
| |
| case NVPTX::BI__nvvm_atom_add_gen_f: |
| case NVPTX::BI__nvvm_atom_add_gen_d: { |
| Address DestAddr = EmitPointerWithAlignment(E->getArg(0)); |
| Value *Val = EmitScalarExpr(E->getArg(1)); |
| |
| return Builder.CreateAtomicRMW(llvm::AtomicRMWInst::FAdd, DestAddr, Val, |
| AtomicOrdering::SequentiallyConsistent); |
| } |
| |
| case NVPTX::BI__nvvm_atom_inc_gen_ui: { |
| Value *Ptr = EmitScalarExpr(E->getArg(0)); |
| Value *Val = EmitScalarExpr(E->getArg(1)); |
| Function *FnALI32 = |
| CGM.getIntrinsic(Intrinsic::nvvm_atomic_load_inc_32, Ptr->getType()); |
| return Builder.CreateCall(FnALI32, {Ptr, Val}); |
| } |
| |
| case NVPTX::BI__nvvm_atom_dec_gen_ui: { |
| Value *Ptr = EmitScalarExpr(E->getArg(0)); |
| Value *Val = EmitScalarExpr(E->getArg(1)); |
| Function *FnALD32 = |
| CGM.getIntrinsic(Intrinsic::nvvm_atomic_load_dec_32, Ptr->getType()); |
| return Builder.CreateCall(FnALD32, {Ptr, Val}); |
| } |
| |
| case NVPTX::BI__nvvm_ldg_c: |
| case NVPTX::BI__nvvm_ldg_sc: |
| case NVPTX::BI__nvvm_ldg_c2: |
| case NVPTX::BI__nvvm_ldg_sc2: |
| case NVPTX::BI__nvvm_ldg_c4: |
| case NVPTX::BI__nvvm_ldg_sc4: |
| case NVPTX::BI__nvvm_ldg_s: |
| case NVPTX::BI__nvvm_ldg_s2: |
| case NVPTX::BI__nvvm_ldg_s4: |
| case NVPTX::BI__nvvm_ldg_i: |
| case NVPTX::BI__nvvm_ldg_i2: |
| case NVPTX::BI__nvvm_ldg_i4: |
| case NVPTX::BI__nvvm_ldg_l: |
| case NVPTX::BI__nvvm_ldg_l2: |
| case NVPTX::BI__nvvm_ldg_ll: |
| case NVPTX::BI__nvvm_ldg_ll2: |
| case NVPTX::BI__nvvm_ldg_uc: |
| case NVPTX::BI__nvvm_ldg_uc2: |
| case NVPTX::BI__nvvm_ldg_uc4: |
| case NVPTX::BI__nvvm_ldg_us: |
| case NVPTX::BI__nvvm_ldg_us2: |
| case NVPTX::BI__nvvm_ldg_us4: |
| case NVPTX::BI__nvvm_ldg_ui: |
| case NVPTX::BI__nvvm_ldg_ui2: |
| case NVPTX::BI__nvvm_ldg_ui4: |
| case NVPTX::BI__nvvm_ldg_ul: |
| case NVPTX::BI__nvvm_ldg_ul2: |
| case NVPTX::BI__nvvm_ldg_ull: |
| case NVPTX::BI__nvvm_ldg_ull2: |
| case NVPTX::BI__nvvm_ldg_f: |
| case NVPTX::BI__nvvm_ldg_f2: |
| case NVPTX::BI__nvvm_ldg_f4: |
| case NVPTX::BI__nvvm_ldg_d: |
| case NVPTX::BI__nvvm_ldg_d2: |
| // PTX Interoperability section 2.2: "For a vector with an even number of |
| // elements, its alignment is set to number of elements times the alignment |
| // of its member: n*alignof(t)." |
| return MakeLdg(*this, E); |
| |
| case NVPTX::BI__nvvm_ldu_c: |
| case NVPTX::BI__nvvm_ldu_sc: |
| case NVPTX::BI__nvvm_ldu_c2: |
| case NVPTX::BI__nvvm_ldu_sc2: |
| case NVPTX::BI__nvvm_ldu_c4: |
| case NVPTX::BI__nvvm_ldu_sc4: |
| case NVPTX::BI__nvvm_ldu_s: |
| case NVPTX::BI__nvvm_ldu_s2: |
| case NVPTX::BI__nvvm_ldu_s4: |
| case NVPTX::BI__nvvm_ldu_i: |
| case NVPTX::BI__nvvm_ldu_i2: |
| case NVPTX::BI__nvvm_ldu_i4: |
| case NVPTX::BI__nvvm_ldu_l: |
| case NVPTX::BI__nvvm_ldu_l2: |
| case NVPTX::BI__nvvm_ldu_ll: |
| case NVPTX::BI__nvvm_ldu_ll2: |
| case NVPTX::BI__nvvm_ldu_uc: |
| case NVPTX::BI__nvvm_ldu_uc2: |
| case NVPTX::BI__nvvm_ldu_uc4: |
| case NVPTX::BI__nvvm_ldu_us: |
| case NVPTX::BI__nvvm_ldu_us2: |
| case NVPTX::BI__nvvm_ldu_us4: |
| case NVPTX::BI__nvvm_ldu_ui: |
| case NVPTX::BI__nvvm_ldu_ui2: |
| case NVPTX::BI__nvvm_ldu_ui4: |
| case NVPTX::BI__nvvm_ldu_ul: |
| case NVPTX::BI__nvvm_ldu_ul2: |
| case NVPTX::BI__nvvm_ldu_ull: |
| case NVPTX::BI__nvvm_ldu_ull2: |
| return MakeLdu(Intrinsic::nvvm_ldu_global_i, *this, E); |
| case NVPTX::BI__nvvm_ldu_f: |
| case NVPTX::BI__nvvm_ldu_f2: |
| case NVPTX::BI__nvvm_ldu_f4: |
| case NVPTX::BI__nvvm_ldu_d: |
| case NVPTX::BI__nvvm_ldu_d2: |
| return MakeLdu(Intrinsic::nvvm_ldu_global_f, *this, E); |
| |
| case NVPTX::BI__nvvm_atom_cta_add_gen_i: |
| case NVPTX::BI__nvvm_atom_cta_add_gen_l: |
| case NVPTX::BI__nvvm_atom_cta_add_gen_ll: |
| return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_i_cta, *this, E); |
| case NVPTX::BI__nvvm_atom_sys_add_gen_i: |
| case NVPTX::BI__nvvm_atom_sys_add_gen_l: |
| case NVPTX::BI__nvvm_atom_sys_add_gen_ll: |
| return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_i_sys, *this, E); |
| case NVPTX::BI__nvvm_atom_cta_add_gen_f: |
| case NVPTX::BI__nvvm_atom_cta_add_gen_d: |
| return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_f_cta, *this, E); |
| case NVPTX::BI__nvvm_atom_sys_add_gen_f: |
| case NVPTX::BI__nvvm_atom_sys_add_gen_d: |
| return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_f_sys, *this, E); |
| case NVPTX::BI__nvvm_atom_cta_xchg_gen_i: |
| case NVPTX::BI__nvvm_atom_cta_xchg_gen_l: |
| case NVPTX::BI__nvvm_atom_cta_xchg_gen_ll: |
| return MakeScopedAtomic(Intrinsic::nvvm_atomic_exch_gen_i_cta, *this, E); |
| case NVPTX::BI__nvvm_atom_sys_xchg_gen_i: |
| case NVPTX::BI__nvvm_atom_sys_xchg_gen_l: |
| case NVPTX::BI__nvvm_atom_sys_xchg_gen_ll: |
| return MakeScopedAtomic(Intrinsic::nvvm_atomic_exch_gen_i_sys, *this, E); |
| case NVPTX::BI__nvvm_atom_cta_max_gen_i: |
| case NVPTX::BI__nvvm_atom_cta_max_gen_ui: |
| case NVPTX::BI__nvvm_atom_cta_max_gen_l: |
| case NVPTX::BI__nvvm_atom_cta_max_gen_ul: |
| case NVPTX::BI__nvvm_atom_cta_max_gen_ll: |
| case NVPTX::BI__nvvm_atom_cta_max_gen_ull: |
| return MakeScopedAtomic(Intrinsic::nvvm_atomic_max_gen_i_cta, *this, E); |
| case NVPTX::BI__nvvm_atom_sys_max_gen_i: |
| case NVPTX::BI__nvvm_atom_sys_max_gen_ui: |
| case NVPTX::BI__nvvm_atom_sys_max_gen_l: |
| case NVPTX::BI__nvvm_atom_sys_max_gen_ul: |
| case NVPTX::BI__nvvm_atom_sys_max_gen_ll: |
| case NVPTX::BI__nvvm_atom_sys_max_gen_ull: |
| return MakeScopedAtomic(Intrinsic::nvvm_atomic_max_gen_i_sys, *this, E); |
| case NVPTX::BI__nvvm_atom_cta_min_gen_i: |
| case NVPTX::BI__nvvm_atom_cta_min_gen_ui: |
| case NVPTX::BI__nvvm_atom_cta_min_gen_l: |
| case NVPTX::BI__nvvm_atom_cta_min_gen_ul: |
| case NVPTX::BI__nvvm_atom_cta_min_gen_ll: |
| case NVPTX::BI__nvvm_atom_cta_min_gen_ull: |
| return MakeScopedAtomic(Intrinsic::nvvm_atomic_min_gen_i_cta, *this, E); |
| case NVPTX::BI__nvvm_atom_sys_min_gen_i: |
| case NVPTX::BI__nvvm_atom_sys_min_gen_ui: |
| case NVPTX::BI__nvvm_atom_sys_min_gen_l: |
| case NVPTX::BI__nvvm_atom_sys_min_gen_ul: |
| case NVPTX::BI__nvvm_atom_sys_min_gen_ll: |
| case NVPTX::BI__nvvm_atom_sys_min_gen_ull: |
| return MakeScopedAtomic(Intrinsic::nvvm_atomic_min_gen_i_sys, *this, E); |
| case NVPTX::BI__nvvm_atom_cta_inc_gen_ui: |
| return MakeScopedAtomic(Intrinsic::nvvm_atomic_inc_gen_i_cta, *this, E); |
| case NVPTX::BI__nvvm_atom_cta_dec_gen_ui: |
| return MakeScopedAtomic(Intrinsic::nvvm_atomic_dec_gen_i_cta, *this, E); |
| case NVPTX::BI__nvvm_atom_sys_inc_gen_ui: |
| return MakeScopedAtomic(Intrinsic::nvvm_atomic_inc_gen_i_sys, *this, E); |
| case NVPTX::BI__nvvm_atom_sys_dec_gen_ui: |
| return MakeScopedAtomic(Intrinsic::nvvm_atomic_dec_gen_i_sys, *this, E); |
| case NVPTX::BI__nvvm_atom_cta_and_gen_i: |
| case NVPTX::BI__nvvm_atom_cta_and_gen_l: |
| case NVPTX::BI__nvvm_atom_cta_and_gen_ll: |
| return MakeScopedAtomic(Intrinsic::nvvm_atomic_and_gen_i_cta, *this, E); |
| case NVPTX::BI__nvvm_atom_sys_and_gen_i: |
| case NVPTX::BI__nvvm_atom_sys_and_gen_l: |
| case NVPTX::BI__nvvm_atom_sys_and_gen_ll: |
| return MakeScopedAtomic(Intrinsic::nvvm_atomic_and_gen_i_sys, *this, E); |
| case NVPTX::BI__nvvm_atom_cta_or_gen_i: |
| case NVPTX::BI__nvvm_atom_cta_or_gen_l: |
| case NVPTX::BI__nvvm_atom_cta_or_gen_ll: |
| return MakeScopedAtomic(Intrinsic::nvvm_atomic_or_gen_i_cta, *this, E); |
| case NVPTX::BI__nvvm_atom_sys_or_gen_i: |
| case NVPTX::BI__nvvm_atom_sys_or_gen_l: |
| case NVPTX::BI__nvvm_atom_sys_or_gen_ll: |
| return MakeScopedAtomic(Intrinsic::nvvm_atomic_or_gen_i_sys, *this, E); |
| case NVPTX::BI__nvvm_atom_cta_xor_gen_i: |
| case NVPTX::BI__nvvm_atom_cta_xor_gen_l: |
| case NVPTX::BI__nvvm_atom_cta_xor_gen_ll: |
| return MakeScopedAtomic(Intrinsic::nvvm_atomic_xor_gen_i_cta, *this, E); |
| case NVPTX::BI__nvvm_atom_sys_xor_gen_i: |
| case NVPTX::BI__nvvm_atom_sys_xor_gen_l: |
| case NVPTX::BI__nvvm_atom_sys_xor_gen_ll: |
| return MakeScopedAtomic(Intrinsic::nvvm_atomic_xor_gen_i_sys, *this, E); |
| case NVPTX::BI__nvvm_atom_cta_cas_gen_us: |
| case NVPTX::BI__nvvm_atom_cta_cas_gen_i: |
| case NVPTX::BI__nvvm_atom_cta_cas_gen_l: |
| case NVPTX::BI__nvvm_atom_cta_cas_gen_ll: { |
| Value *Ptr = EmitScalarExpr(E->getArg(0)); |
| llvm::Type *ElemTy = |
| ConvertTypeForMem(E->getArg(0)->getType()->getPointeeType()); |
| return Builder.CreateCall( |
| CGM.getIntrinsic( |
| Intrinsic::nvvm_atomic_cas_gen_i_cta, {ElemTy, Ptr->getType()}), |
| {Ptr, EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2))}); |
| } |
| case NVPTX::BI__nvvm_atom_sys_cas_gen_us: |
| case NVPTX::BI__nvvm_atom_sys_cas_gen_i: |
| case NVPTX::BI__nvvm_atom_sys_cas_gen_l: |
| case NVPTX::BI__nvvm_atom_sys_cas_gen_ll: { |
| Value *Ptr = EmitScalarExpr(E->getArg(0)); |
| llvm::Type *ElemTy = |
| ConvertTypeForMem(E->getArg(0)->getType()->getPointeeType()); |
| return Builder.CreateCall( |
| CGM.getIntrinsic( |
| Intrinsic::nvvm_atomic_cas_gen_i_sys, {ElemTy, Ptr->getType()}), |
| {Ptr, EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2))}); |
| } |
| case NVPTX::BI__nvvm_match_all_sync_i32p: |
| case NVPTX::BI__nvvm_match_all_sync_i64p: { |
| Value *Mask = EmitScalarExpr(E->getArg(0)); |
| Value *Val = EmitScalarExpr(E->getArg(1)); |
| Address PredOutPtr = EmitPointerWithAlignment(E->getArg(2)); |
| Value *ResultPair = Builder.CreateCall( |
| CGM.getIntrinsic(BuiltinID == NVPTX::BI__nvvm_match_all_sync_i32p |
| ? Intrinsic::nvvm_match_all_sync_i32p |
| : Intrinsic::nvvm_match_all_sync_i64p), |
| {Mask, Val}); |
| Value *Pred = Builder.CreateZExt(Builder.CreateExtractValue(ResultPair, 1), |
| PredOutPtr.getElementType()); |
| Builder.CreateStore(Pred, PredOutPtr); |
| return Builder.CreateExtractValue(ResultPair, 0); |
| } |
| |
| // FP MMA loads |
| case NVPTX::BI__hmma_m16n16k16_ld_a: |
| case NVPTX::BI__hmma_m16n16k16_ld_b: |
| case NVPTX::BI__hmma_m16n16k16_ld_c_f16: |
| case NVPTX::BI__hmma_m16n16k16_ld_c_f32: |
| case NVPTX::BI__hmma_m32n8k16_ld_a: |
| case NVPTX::BI__hmma_m32n8k16_ld_b: |
| case NVPTX::BI__hmma_m32n8k16_ld_c_f16: |
| case NVPTX::BI__hmma_m32n8k16_ld_c_f32: |
| case NVPTX::BI__hmma_m8n32k16_ld_a: |
| case NVPTX::BI__hmma_m8n32k16_ld_b: |
| case NVPTX::BI__hmma_m8n32k16_ld_c_f16: |
| case NVPTX::BI__hmma_m8n32k16_ld_c_f32: |
| // Integer MMA loads. |
| case NVPTX::BI__imma_m16n16k16_ld_a_s8: |
| case NVPTX::BI__imma_m16n16k16_ld_a_u8: |
| case NVPTX::BI__imma_m16n16k16_ld_b_s8: |
| case NVPTX::BI__imma_m16n16k16_ld_b_u8: |
| case NVPTX::BI__imma_m16n16k16_ld_c: |
| case NVPTX::BI__imma_m32n8k16_ld_a_s8: |
| case NVPTX::BI__imma_m32n8k16_ld_a_u8: |
| case NVPTX::BI__imma_m32n8k16_ld_b_s8: |
| case NVPTX::BI__imma_m32n8k16_ld_b_u8: |
| case NVPTX::BI__imma_m32n8k16_ld_c: |
| case NVPTX::BI__imma_m8n32k16_ld_a_s8: |
| case NVPTX::BI__imma_m8n32k16_ld_a_u8: |
| case NVPTX::BI__imma_m8n32k16_ld_b_s8: |
| case NVPTX::BI__imma_m8n32k16_ld_b_u8: |
| case NVPTX::BI__imma_m8n32k16_ld_c: |
| // Sub-integer MMA loads. |
| case NVPTX::BI__imma_m8n8k32_ld_a_s4: |
| case NVPTX::BI__imma_m8n8k32_ld_a_u4: |
| case NVPTX::BI__imma_m8n8k32_ld_b_s4: |
| case NVPTX::BI__imma_m8n8k32_ld_b_u4: |
| case NVPTX::BI__imma_m8n8k32_ld_c: |
| case NVPTX::BI__bmma_m8n8k128_ld_a_b1: |
| case NVPTX::BI__bmma_m8n8k128_ld_b_b1: |
| case NVPTX::BI__bmma_m8n8k128_ld_c: |
| // Double MMA loads. |
| case NVPTX::BI__dmma_m8n8k4_ld_a: |
| case NVPTX::BI__dmma_m8n8k4_ld_b: |
| case NVPTX::BI__dmma_m8n8k4_ld_c: |
| // Alternate float MMA loads. |
| case NVPTX::BI__mma_bf16_m16n16k16_ld_a: |
| case NVPTX::BI__mma_bf16_m16n16k16_ld_b: |
| case NVPTX::BI__mma_bf16_m8n32k16_ld_a: |
| case NVPTX::BI__mma_bf16_m8n32k16_ld_b: |
| case NVPTX::BI__mma_bf16_m32n8k16_ld_a: |
| case NVPTX::BI__mma_bf16_m32n8k16_ld_b: |
| case NVPTX::BI__mma_tf32_m16n16k8_ld_a: |
| case NVPTX::BI__mma_tf32_m16n16k8_ld_b: |
| case NVPTX::BI__mma_tf32_m16n16k8_ld_c: { |
| Address Dst = EmitPointerWithAlignment(E->getArg(0)); |
| Value *Src = EmitScalarExpr(E->getArg(1)); |
| Value *Ldm = EmitScalarExpr(E->getArg(2)); |
| std::optional<llvm::APSInt> isColMajorArg = |
| E->getArg(3)->getIntegerConstantExpr(getContext()); |
| if (!isColMajorArg) |
| return nullptr; |
| bool isColMajor = isColMajorArg->getSExtValue(); |
| NVPTXMmaLdstInfo II = getNVPTXMmaLdstInfo(BuiltinID); |
| unsigned IID = isColMajor ? II.IID_col : II.IID_row; |
| if (IID == 0) |
| return nullptr; |
| |
| Value *Result = |
| Builder.CreateCall(CGM.getIntrinsic(IID, Src->getType()), {Src, Ldm}); |
| |
| // Save returned values. |
| assert(II.NumResults); |
| if (II.NumResults == 1) { |
| Builder.CreateAlignedStore(Result, Dst.emitRawPointer(*this), |
| CharUnits::fromQuantity(4)); |
| } else { |
| for (unsigned i = 0; i < II.NumResults; ++i) { |
| Builder.CreateAlignedStore( |
| Builder.CreateBitCast(Builder.CreateExtractValue(Result, i), |
| Dst.getElementType()), |
| Builder.CreateGEP(Dst.getElementType(), Dst.emitRawPointer(*this), |
| llvm::ConstantInt::get(IntTy, i)), |
| CharUnits::fromQuantity(4)); |
| } |
| } |
| return Result; |
| } |
| |
| case NVPTX::BI__hmma_m16n16k16_st_c_f16: |
| case NVPTX::BI__hmma_m16n16k16_st_c_f32: |
| case NVPTX::BI__hmma_m32n8k16_st_c_f16: |
| case NVPTX::BI__hmma_m32n8k16_st_c_f32: |
| case NVPTX::BI__hmma_m8n32k16_st_c_f16: |
| case NVPTX::BI__hmma_m8n32k16_st_c_f32: |
| case NVPTX::BI__imma_m16n16k16_st_c_i32: |
| case NVPTX::BI__imma_m32n8k16_st_c_i32: |
| case NVPTX::BI__imma_m8n32k16_st_c_i32: |
| case NVPTX::BI__imma_m8n8k32_st_c_i32: |
| case NVPTX::BI__bmma_m8n8k128_st_c_i32: |
| case NVPTX::BI__dmma_m8n8k4_st_c_f64: |
| case NVPTX::BI__mma_m16n16k8_st_c_f32: { |
| Value *Dst = EmitScalarExpr(E->getArg(0)); |
| Address Src = EmitPointerWithAlignment(E->getArg(1)); |
| Value *Ldm = EmitScalarExpr(E->getArg(2)); |
| std::optional<llvm::APSInt> isColMajorArg = |
| E->getArg(3)->getIntegerConstantExpr(getContext()); |
| if (!isColMajorArg) |
| return nullptr; |
| bool isColMajor = isColMajorArg->getSExtValue(); |
| NVPTXMmaLdstInfo II = getNVPTXMmaLdstInfo(BuiltinID); |
| unsigned IID = isColMajor ? II.IID_col : II.IID_row; |
| if (IID == 0) |
| return nullptr; |
| Function *Intrinsic = |
| CGM.getIntrinsic(IID, Dst->getType()); |
| llvm::Type *ParamType = Intrinsic->getFunctionType()->getParamType(1); |
| SmallVector<Value *, 10> Values = {Dst}; |
| for (unsigned i = 0; i < II.NumResults; ++i) { |
| Value *V = Builder.CreateAlignedLoad( |
| Src.getElementType(), |
| Builder.CreateGEP(Src.getElementType(), Src.emitRawPointer(*this), |
| llvm::ConstantInt::get(IntTy, i)), |
| CharUnits::fromQuantity(4)); |
| Values.push_back(Builder.CreateBitCast(V, ParamType)); |
| } |
| Values.push_back(Ldm); |
| Value *Result = Builder.CreateCall(Intrinsic, Values); |
| return Result; |
| } |
| |
| // BI__hmma_m16n16k16_mma_<Dtype><CType>(d, a, b, c, layout, satf) --> |
| // Intrinsic::nvvm_wmma_m16n16k16_mma_sync<layout A,B><DType><CType><Satf> |
| case NVPTX::BI__hmma_m16n16k16_mma_f16f16: |
| case NVPTX::BI__hmma_m16n16k16_mma_f32f16: |
| case NVPTX::BI__hmma_m16n16k16_mma_f32f32: |
| case NVPTX::BI__hmma_m16n16k16_mma_f16f32: |
| case NVPTX::BI__hmma_m32n8k16_mma_f16f16: |
| case NVPTX::BI__hmma_m32n8k16_mma_f32f16: |
| case NVPTX::BI__hmma_m32n8k16_mma_f32f32: |
| case NVPTX::BI__hmma_m32n8k16_mma_f16f32: |
| case NVPTX::BI__hmma_m8n32k16_mma_f16f16: |
| case NVPTX::BI__hmma_m8n32k16_mma_f32f16: |
| case NVPTX::BI__hmma_m8n32k16_mma_f32f32: |
| case NVPTX::BI__hmma_m8n32k16_mma_f16f32: |
| case NVPTX::BI__imma_m16n16k16_mma_s8: |
| case NVPTX::BI__imma_m16n16k16_mma_u8: |
| case NVPTX::BI__imma_m32n8k16_mma_s8: |
| case NVPTX::BI__imma_m32n8k16_mma_u8: |
| case NVPTX::BI__imma_m8n32k16_mma_s8: |
| case NVPTX::BI__imma_m8n32k16_mma_u8: |
| case NVPTX::BI__imma_m8n8k32_mma_s4: |
| case NVPTX::BI__imma_m8n8k32_mma_u4: |
| case NVPTX::BI__bmma_m8n8k128_mma_xor_popc_b1: |
| case NVPTX::BI__bmma_m8n8k128_mma_and_popc_b1: |
| case NVPTX::BI__dmma_m8n8k4_mma_f64: |
| case NVPTX::BI__mma_bf16_m16n16k16_mma_f32: |
| case NVPTX::BI__mma_bf16_m8n32k16_mma_f32: |
| case NVPTX::BI__mma_bf16_m32n8k16_mma_f32: |
| case NVPTX::BI__mma_tf32_m16n16k8_mma_f32: { |
| Address Dst = EmitPointerWithAlignment(E->getArg(0)); |
| Address SrcA = EmitPointerWithAlignment(E->getArg(1)); |
| Address SrcB = EmitPointerWithAlignment(E->getArg(2)); |
| Address SrcC = EmitPointerWithAlignment(E->getArg(3)); |
| std::optional<llvm::APSInt> LayoutArg = |
| E->getArg(4)->getIntegerConstantExpr(getContext()); |
| if (!LayoutArg) |
| return nullptr; |
| int Layout = LayoutArg->getSExtValue(); |
| if (Layout < 0 || Layout > 3) |
| return nullptr; |
| llvm::APSInt SatfArg; |
| if (BuiltinID == NVPTX::BI__bmma_m8n8k128_mma_xor_popc_b1 || |
| BuiltinID == NVPTX::BI__bmma_m8n8k128_mma_and_popc_b1) |
| SatfArg = 0; // .b1 does not have satf argument. |
| else if (std::optional<llvm::APSInt> OptSatfArg = |
| E->getArg(5)->getIntegerConstantExpr(getContext())) |
| SatfArg = *OptSatfArg; |
| else |
| return nullptr; |
| bool Satf = SatfArg.getSExtValue(); |
| NVPTXMmaInfo MI = getNVPTXMmaInfo(BuiltinID); |
| unsigned IID = MI.getMMAIntrinsic(Layout, Satf); |
| if (IID == 0) // Unsupported combination of Layout/Satf. |
| return nullptr; |
| |
| SmallVector<Value *, 24> Values; |
| Function *Intrinsic = CGM.getIntrinsic(IID); |
| llvm::Type *AType = Intrinsic->getFunctionType()->getParamType(0); |
| // Load A |
| for (unsigned i = 0; i < MI.NumEltsA; ++i) { |
| Value *V = Builder.CreateAlignedLoad( |
| SrcA.getElementType(), |
| Builder.CreateGEP(SrcA.getElementType(), SrcA.emitRawPointer(*this), |
| llvm::ConstantInt::get(IntTy, i)), |
| CharUnits::fromQuantity(4)); |
| Values.push_back(Builder.CreateBitCast(V, AType)); |
| } |
| // Load B |
| llvm::Type *BType = Intrinsic->getFunctionType()->getParamType(MI.NumEltsA); |
| for (unsigned i = 0; i < MI.NumEltsB; ++i) { |
| Value *V = Builder.CreateAlignedLoad( |
| SrcB.getElementType(), |
| Builder.CreateGEP(SrcB.getElementType(), SrcB.emitRawPointer(*this), |
| llvm::ConstantInt::get(IntTy, i)), |
| CharUnits::fromQuantity(4)); |
| Values.push_back(Builder.CreateBitCast(V, BType)); |
| } |
| // Load C |
| llvm::Type *CType = |
| Intrinsic->getFunctionType()->getParamType(MI.NumEltsA + MI.NumEltsB); |
| for (unsigned i = 0; i < MI.NumEltsC; ++i) { |
| Value *V = Builder.CreateAlignedLoad( |
| SrcC.getElementType(), |
| Builder.CreateGEP(SrcC.getElementType(), SrcC.emitRawPointer(*this), |
| llvm::ConstantInt::get(IntTy, i)), |
| CharUnits::fromQuantity(4)); |
| Values.push_back(Builder.CreateBitCast(V, CType)); |
| } |
| Value *Result = Builder.CreateCall(Intrinsic, Values); |
| llvm::Type *DType = Dst.getElementType(); |
| for (unsigned i = 0; i < MI.NumEltsD; ++i) |
| Builder.CreateAlignedStore( |
| Builder.CreateBitCast(Builder.CreateExtractValue(Result, i), DType), |
| Builder.CreateGEP(Dst.getElementType(), Dst.emitRawPointer(*this), |
| llvm::ConstantInt::get(IntTy, i)), |
| CharUnits::fromQuantity(4)); |
| return Result; |
| } |
| // The following builtins require half type support |
| case NVPTX::BI__nvvm_ex2_approx_f16: |
| return MakeHalfType(Intrinsic::nvvm_ex2_approx_f16, BuiltinID, E, *this); |
| case NVPTX::BI__nvvm_ex2_approx_f16x2: |
| return MakeHalfType(Intrinsic::nvvm_ex2_approx_f16x2, BuiltinID, E, *this); |
| case NVPTX::BI__nvvm_ff2f16x2_rn: |
| return MakeHalfType(Intrinsic::nvvm_ff2f16x2_rn, BuiltinID, E, *this); |
| case NVPTX::BI__nvvm_ff2f16x2_rn_relu: |
| return MakeHalfType(Intrinsic::nvvm_ff2f16x2_rn_relu, BuiltinID, E, *this); |
| case NVPTX::BI__nvvm_ff2f16x2_rz: |
| return MakeHalfType(Intrinsic::nvvm_ff2f16x2_rz, BuiltinID, E, *this); |
| case NVPTX::BI__nvvm_ff2f16x2_rz_relu: |
| return MakeHalfType(Intrinsic::nvvm_ff2f16x2_rz_relu, BuiltinID, E, *this); |
| case NVPTX::BI__nvvm_fma_rn_f16: |
| return MakeHalfType(Intrinsic::nvvm_fma_rn_f16, BuiltinID, E, *this); |
| case NVPTX::BI__nvvm_fma_rn_f16x2: |
| return MakeHalfType(Intrinsic::nvvm_fma_rn_f16x2, BuiltinID, E, *this); |
| case NVPTX::BI__nvvm_fma_rn_ftz_f16: |
| return MakeHalfType(Intrinsic::nvvm_fma_rn_ftz_f16, BuiltinID, E, *this); |
| case NVPTX::BI__nvvm_fma_rn_ftz_f16x2: |
| return MakeHalfType(Intrinsic::nvvm_fma_rn_ftz_f16x2, BuiltinID, E, *this); |
| case NVPTX::BI__nvvm_fma_rn_ftz_relu_f16: |
| return MakeHalfType(Intrinsic::nvvm_fma_rn_ftz_relu_f16, BuiltinID, E, |
| *this); |
| case NVPTX::BI__nvvm_fma_rn_ftz_relu_f16x2: |
| return MakeHalfType(Intrinsic::nvvm_fma_rn_ftz_relu_f16x2, BuiltinID, E, |
| *this); |
| case NVPTX::BI__nvvm_fma_rn_ftz_sat_f16: |
| return MakeHalfType(Intrinsic::nvvm_fma_rn_ftz_sat_f16, BuiltinID, E, |
| *this); |
| case NVPTX::BI__nvvm_fma_rn_ftz_sat_f16x2: |
| return MakeHalfType(Intrinsic::nvvm_fma_rn_ftz_sat_f16x2, BuiltinID, E, |
| *this); |
| case NVPTX::BI__nvvm_fma_rn_relu_f16: |
| return MakeHalfType(Intrinsic::nvvm_fma_rn_relu_f16, BuiltinID, E, *this); |
| case NVPTX::BI__nvvm_fma_rn_relu_f16x2: |
| return MakeHalfType(Intrinsic::nvvm_fma_rn_relu_f16x2, BuiltinID, E, *this); |
| case NVPTX::BI__nvvm_fma_rn_sat_f16: |
| return MakeHalfType(Intrinsic::nvvm_fma_rn_sat_f16, BuiltinID, E, *this); |
| case NVPTX::BI__nvvm_fma_rn_sat_f16x2: |
| return MakeHalfType(Intrinsic::nvvm_fma_rn_sat_f16x2, BuiltinID, E, *this); |
| case NVPTX::BI__nvvm_fmax_f16: |
| return MakeHalfType(Intrinsic::nvvm_fmax_f16, BuiltinID, E, *this); |
| case NVPTX::BI__nvvm_fmax_f16x2: |
| return MakeHalfType(Intrinsic::nvvm_fmax_f16x2, BuiltinID, E, *this); |
| case NVPTX::BI__nvvm_fmax_ftz_f16: |
| return MakeHalfType(Intrinsic::nvvm_fmax_ftz_f16, BuiltinID, E, *this); |
| case NVPTX::BI__nvvm_fmax_ftz_f16x2: |
| return MakeHalfType(Intrinsic::nvvm_fmax_ftz_f16x2, BuiltinID, E, *this); |
| case NVPTX::BI__nvvm_fmax_ftz_nan_f16: |
| return MakeHalfType(Intrinsic::nvvm_fmax_ftz_nan_f16, BuiltinID, E, *this); |
| case NVPTX::BI__nvvm_fmax_ftz_nan_f16x2: |
| return MakeHalfType(Intrinsic::nvvm_fmax_ftz_nan_f16x2, BuiltinID, E, |
| *this); |
| case NVPTX::BI__nvvm_fmax_ftz_nan_xorsign_abs_f16: |
| return MakeHalfType(Intrinsic::nvvm_fmax_ftz_nan_xorsign_abs_f16, BuiltinID, |
| E, *this); |
| case NVPTX::BI__nvvm_fmax_ftz_nan_xorsign_abs_f16x2: |
| return MakeHalfType(Intrinsic::nvvm_fmax_ftz_nan_xorsign_abs_f16x2, |
| BuiltinID, E, *this); |
| case NVPTX::BI__nvvm_fmax_ftz_xorsign_abs_f16: |
| return MakeHalfType(Intrinsic::nvvm_fmax_ftz_xorsign_abs_f16, BuiltinID, E, |
| *this); |
| case NVPTX::BI__nvvm_fmax_ftz_xorsign_abs_f16x2: |
| return MakeHalfType(Intrinsic::nvvm_fmax_ftz_xorsign_abs_f16x2, BuiltinID, |
| E, *this); |
| case NVPTX::BI__nvvm_fmax_nan_f16: |
| return MakeHalfType(Intrinsic::nvvm_fmax_nan_f16, BuiltinID, E, *this); |
| case NVPTX::BI__nvvm_fmax_nan_f16x2: |
| return MakeHalfType(Intrinsic::nvvm_fmax_nan_f16x2, BuiltinID, E, *this); |
| case NVPTX::BI__nvvm_fmax_nan_xorsign_abs_f16: |
| return MakeHalfType(Intrinsic::nvvm_fmax_nan_xorsign_abs_f16, BuiltinID, E, |
| *this); |
| case NVPTX::BI__nvvm_fmax_nan_xorsign_abs_f16x2: |
| return MakeHalfType(Intrinsic::nvvm_fmax_nan_xorsign_abs_f16x2, BuiltinID, |
| E, *this); |
| case NVPTX::BI__nvvm_fmax_xorsign_abs_f16: |
| return MakeHalfType(Intrinsic::nvvm_fmax_xorsign_abs_f16, BuiltinID, E, |
| *this); |
| case NVPTX::BI__nvvm_fmax_xorsign_abs_f16x2: |
| return MakeHalfType(Intrinsic::nvvm_fmax_xorsign_abs_f16x2, BuiltinID, E, |
| *this); |
| case NVPTX::BI__nvvm_fmin_f16: |
| return MakeHalfType(Intrinsic::nvvm_fmin_f16, BuiltinID, E, *this); |
| case NVPTX::BI__nvvm_fmin_f16x2: |
| return MakeHalfType(Intrinsic::nvvm_fmin_f16x2, BuiltinID, E, *this); |
| case NVPTX::BI__nvvm_fmin_ftz_f16: |
| return MakeHalfType(Intrinsic::nvvm_fmin_ftz_f16, BuiltinID, E, *this); |
| case NVPTX::BI__nvvm_fmin_ftz_f16x2: |
| return MakeHalfType(Intrinsic::nvvm_fmin_ftz_f16x2, BuiltinID, E, *this); |
| case NVPTX::BI__nvvm_fmin_ftz_nan_f16: |
| return MakeHalfType(Intrinsic::nvvm_fmin_ftz_nan_f16, BuiltinID, E, *this); |
| case NVPTX::BI__nvvm_fmin_ftz_nan_f16x2: |
| return MakeHalfType(Intrinsic::nvvm_fmin_ftz_nan_f16x2, BuiltinID, E, |
| *this); |
| case NVPTX::BI__nvvm_fmin_ftz_nan_xorsign_abs_f16: |
| return MakeHalfType(Intrinsic::nvvm_fmin_ftz_nan_xorsign_abs_f16, BuiltinID, |
| E, *this); |
| case NVPTX::BI__nvvm_fmin_ftz_nan_xorsign_abs_f16x2: |
| return MakeHalfType(Intrinsic::nvvm_fmin_ftz_nan_xorsign_abs_f16x2, |
| BuiltinID, E, *this); |
| case NVPTX::BI__nvvm_fmin_ftz_xorsign_abs_f16: |
| return MakeHalfType(Intrinsic::nvvm_fmin_ftz_xorsign_abs_f16, BuiltinID, E, |
| *this); |
| case NVPTX::BI__nvvm_fmin_ftz_xorsign_abs_f16x2: |
| return MakeHalfType(Intrinsic::nvvm_fmin_ftz_xorsign_abs_f16x2, BuiltinID, |
| E, *this); |
| case NVPTX::BI__nvvm_fmin_nan_f16: |
| return MakeHalfType(Intrinsic::nvvm_fmin_nan_f16, BuiltinID, E, *this); |
| case NVPTX::BI__nvvm_fmin_nan_f16x2: |
| return MakeHalfType(Intrinsic::nvvm_fmin_nan_f16x2, BuiltinID, E, *this); |
| case NVPTX::BI__nvvm_fmin_nan_xorsign_abs_f16: |
| return MakeHalfType(Intrinsic::nvvm_fmin_nan_xorsign_abs_f16, BuiltinID, E, |
| *this); |
| case NVPTX::BI__nvvm_fmin_nan_xorsign_abs_f16x2: |
| return MakeHalfType(Intrinsic::nvvm_fmin_nan_xorsign_abs_f16x2, BuiltinID, |
| E, *this); |
| case NVPTX::BI__nvvm_fmin_xorsign_abs_f16: |
| return MakeHalfType(Intrinsic::nvvm_fmin_xorsign_abs_f16, BuiltinID, E, |
| *this); |
| case NVPTX::BI__nvvm_fmin_xorsign_abs_f16x2: |
| return MakeHalfType(Intrinsic::nvvm_fmin_xorsign_abs_f16x2, BuiltinID, E, |
| *this); |
| case NVPTX::BI__nvvm_ldg_h: |
| case NVPTX::BI__nvvm_ldg_h2: |
| return MakeHalfType(Intrinsic::not_intrinsic, BuiltinID, E, *this); |
| case NVPTX::BI__nvvm_ldu_h: |
| case NVPTX::BI__nvvm_ldu_h2: |
| return MakeHalfType(Intrinsic::nvvm_ldu_global_f, BuiltinID, E, *this); |
| case NVPTX::BI__nvvm_cp_async_ca_shared_global_4: |
| return MakeCpAsync(Intrinsic::nvvm_cp_async_ca_shared_global_4, |
| Intrinsic::nvvm_cp_async_ca_shared_global_4_s, *this, E, |
| 4); |
| case NVPTX::BI__nvvm_cp_async_ca_shared_global_8: |
| return MakeCpAsync(Intrinsic::nvvm_cp_async_ca_shared_global_8, |
| Intrinsic::nvvm_cp_async_ca_shared_global_8_s, *this, E, |
| 8); |
| case NVPTX::BI__nvvm_cp_async_ca_shared_global_16: |
| return MakeCpAsync(Intrinsic::nvvm_cp_async_ca_shared_global_16, |
| Intrinsic::nvvm_cp_async_ca_shared_global_16_s, *this, E, |
| 16); |
| case NVPTX::BI__nvvm_cp_async_cg_shared_global_16: |
| return MakeCpAsync(Intrinsic::nvvm_cp_async_cg_shared_global_16, |
| Intrinsic::nvvm_cp_async_cg_shared_global_16_s, *this, E, |
| 16); |
| case NVPTX::BI__nvvm_read_ptx_sreg_clusterid_x: |
| return Builder.CreateCall( |
| CGM.getIntrinsic(Intrinsic::nvvm_read_ptx_sreg_clusterid_x)); |
| case NVPTX::BI__nvvm_read_ptx_sreg_clusterid_y: |
| return Builder.CreateCall( |
| CGM.getIntrinsic(Intrinsic::nvvm_read_ptx_sreg_clusterid_y)); |
| case NVPTX::BI__nvvm_read_ptx_sreg_clusterid_z: |
| return Builder.CreateCall( |
| CGM.getIntrinsic(Intrinsic::nvvm_read_ptx_sreg_clusterid_z)); |
| case NVPTX::BI__nvvm_read_ptx_sreg_clusterid_w: |
| return Builder.CreateCall( |
| CGM.getIntrinsic(Intrinsic::nvvm_read_ptx_sreg_clusterid_w)); |
| case NVPTX::BI__nvvm_read_ptx_sreg_nclusterid_x: |
| return Builder.CreateCall( |
| CGM.getIntrinsic(Intrinsic::nvvm_read_ptx_sreg_nclusterid_x)); |
| case NVPTX::BI__nvvm_read_ptx_sreg_nclusterid_y: |
| return Builder.CreateCall( |
| CGM.getIntrinsic(Intrinsic::nvvm_read_ptx_sreg_nclusterid_y)); |
| case NVPTX::BI__nvvm_read_ptx_sreg_nclusterid_z: |
| return Builder.CreateCall( |
| CGM.getIntrinsic(Intrinsic::nvvm_read_ptx_sreg_nclusterid_z)); |
| case NVPTX::BI__nvvm_read_ptx_sreg_nclusterid_w: |
| return Builder.CreateCall( |
| CGM.getIntrinsic(Intrinsic::nvvm_read_ptx_sreg_nclusterid_w)); |
| case NVPTX::BI__nvvm_read_ptx_sreg_cluster_ctaid_x: |
| return Builder.CreateCall( |
| CGM.getIntrinsic(Intrinsic::nvvm_read_ptx_sreg_cluster_ctaid_x)); |
| case NVPTX::BI__nvvm_read_ptx_sreg_cluster_ctaid_y: |
| return Builder.CreateCall( |
| CGM.getIntrinsic(Intrinsic::nvvm_read_ptx_sreg_cluster_ctaid_y)); |
| case NVPTX::BI__nvvm_read_ptx_sreg_cluster_ctaid_z: |
| return Builder.CreateCall( |
| CGM.getIntrinsic(Intrinsic::nvvm_read_ptx_sreg_cluster_ctaid_z)); |
| case NVPTX::BI__nvvm_read_ptx_sreg_cluster_ctaid_w: |
| return Builder.CreateCall( |
| CGM.getIntrinsic(Intrinsic::nvvm_read_ptx_sreg_cluster_ctaid_w)); |
| case NVPTX::BI__nvvm_read_ptx_sreg_cluster_nctaid_x: |
| return Builder.CreateCall( |
| CGM.getIntrinsic(Intrinsic::nvvm_read_ptx_sreg_cluster_nctaid_x)); |
| case NVPTX::BI__nvvm_read_ptx_sreg_cluster_nctaid_y: |
| return Builder.CreateCall( |
| CGM.getIntrinsic(Intrinsic::nvvm_read_ptx_sreg_cluster_nctaid_y)); |
| case NVPTX::BI__nvvm_read_ptx_sreg_cluster_nctaid_z: |
| return Builder.CreateCall( |
| CGM.getIntrinsic(Intrinsic::nvvm_read_ptx_sreg_cluster_nctaid_z)); |
| case NVPTX::BI__nvvm_read_ptx_sreg_cluster_nctaid_w: |
| return Builder.CreateCall( |
| CGM.getIntrinsic(Intrinsic::nvvm_read_ptx_sreg_cluster_nctaid_w)); |
| case NVPTX::BI__nvvm_read_ptx_sreg_cluster_ctarank: |
| return Builder.CreateCall( |
| CGM.getIntrinsic(Intrinsic::nvvm_read_ptx_sreg_cluster_ctarank)); |
| case NVPTX::BI__nvvm_read_ptx_sreg_cluster_nctarank: |
| return Builder.CreateCall( |
| CGM.getIntrinsic(Intrinsic::nvvm_read_ptx_sreg_cluster_nctarank)); |
| case NVPTX::BI__nvvm_is_explicit_cluster: |
| return Builder.CreateCall( |
| CGM.getIntrinsic(Intrinsic::nvvm_is_explicit_cluster)); |
| case NVPTX::BI__nvvm_isspacep_shared_cluster: |
| return Builder.CreateCall( |
| CGM.getIntrinsic(Intrinsic::nvvm_isspacep_shared_cluster), |
| EmitScalarExpr(E->getArg(0))); |
| case NVPTX::BI__nvvm_mapa: |
| return Builder.CreateCall( |
| CGM.getIntrinsic(Intrinsic::nvvm_mapa), |
| {EmitScalarExpr(E->getArg(0)), EmitScalarExpr(E->getArg(1))}); |
| case NVPTX::BI__nvvm_mapa_shared_cluster: |
| return Builder.CreateCall( |
| CGM.getIntrinsic(Intrinsic::nvvm_mapa_shared_cluster), |
| {EmitScalarExpr(E->getArg(0)), EmitScalarExpr(E->getArg(1))}); |
| case NVPTX::BI__nvvm_getctarank: |
| return Builder.CreateCall( |
| CGM.getIntrinsic(Intrinsic::nvvm_getctarank), |
| EmitScalarExpr(E->getArg(0))); |
| case NVPTX::BI__nvvm_getctarank_shared_cluster: |
| return Builder.CreateCall( |
| CGM.getIntrinsic(Intrinsic::nvvm_getctarank_shared_cluster), |
| EmitScalarExpr(E->getArg(0))); |
| case NVPTX::BI__nvvm_barrier_cluster_arrive: |
| return Builder.CreateCall( |
| CGM.getIntrinsic(Intrinsic::nvvm_barrier_cluster_arrive)); |
| case NVPTX::BI__nvvm_barrier_cluster_arrive_relaxed: |
| return Builder.CreateCall( |
| CGM.getIntrinsic(Intrinsic::nvvm_barrier_cluster_arrive_relaxed)); |
| case NVPTX::BI__nvvm_barrier_cluster_wait: |
| return Builder.CreateCall( |
| CGM.getIntrinsic(Intrinsic::nvvm_barrier_cluster_wait)); |
| case NVPTX::BI__nvvm_fence_sc_cluster: |
| return Builder.CreateCall( |
| CGM.getIntrinsic(Intrinsic::nvvm_fence_sc_cluster)); |
| default: |
| return nullptr; |
| } |
| } |
| |
| namespace { |
| struct BuiltinAlignArgs { |
| llvm::Value *Src = nullptr; |
| llvm::Type *SrcType = nullptr; |
| llvm::Value *Alignment = nullptr; |
| llvm::Value *Mask = nullptr; |
| llvm::IntegerType *IntType = nullptr; |
| |
| BuiltinAlignArgs(const CallExpr *E, CodeGenFunction &CGF) { |
| QualType AstType = E->getArg(0)->getType(); |
| if (AstType->isArrayType()) |
| Src = CGF.EmitArrayToPointerDecay(E->getArg(0)).emitRawPointer(CGF); |
| else |
| Src = CGF.EmitScalarExpr(E->getArg(0)); |
| SrcType = Src->getType(); |
| if (SrcType->isPointerTy()) { |
| IntType = IntegerType::get( |
| CGF.getLLVMContext(), |
| CGF.CGM.getDataLayout().getIndexTypeSizeInBits(SrcType)); |
| } else { |
| assert(SrcType->isIntegerTy()); |
| IntType = cast<llvm::IntegerType>(SrcType); |
| } |
| Alignment = CGF.EmitScalarExpr(E->getArg(1)); |
| Alignment = CGF.Builder.CreateZExtOrTrunc(Alignment, IntType, "alignment"); |
| auto *One = llvm::ConstantInt::get(IntType, 1); |
| Mask = CGF.Builder.CreateSub(Alignment, One, "mask"); |
| } |
| }; |
| } // namespace |
| |
| /// Generate (x & (y-1)) == 0. |
| RValue CodeGenFunction::EmitBuiltinIsAligned(const CallExpr *E) { |
| BuiltinAlignArgs Args(E, *this); |
| llvm::Value *SrcAddress = Args.Src; |
| if (Args.SrcType->isPointerTy()) |
| SrcAddress = |
| Builder.CreateBitOrPointerCast(Args.Src, Args.IntType, "src_addr"); |
| return RValue::get(Builder.CreateICmpEQ( |
| Builder.CreateAnd(SrcAddress, Args.Mask, "set_bits"), |
| llvm::Constant::getNullValue(Args.IntType), "is_aligned")); |
| } |
| |
| /// Generate (x & ~(y-1)) to align down or ((x+(y-1)) & ~(y-1)) to align up. |
| /// Note: For pointer types we can avoid ptrtoint/inttoptr pairs by using the |
| /// llvm.ptrmask intrinsic (with a GEP before in the align_up case). |
| RValue CodeGenFunction::EmitBuiltinAlignTo(const CallExpr *E, bool AlignUp) { |
| BuiltinAlignArgs Args(E, *this); |
| llvm::Value *SrcForMask = Args.Src; |
| if (AlignUp) { |
| // When aligning up we have to first add the mask to ensure we go over the |
| // next alignment value and then align down to the next valid multiple. |
| // By adding the mask, we ensure that align_up on an already aligned |
| // value will not change the value. |
| if (Args.Src->getType()->isPointerTy()) { |
| if (getLangOpts().PointerOverflowDefined) |
| SrcForMask = |
| Builder.CreateGEP(Int8Ty, SrcForMask, Args.Mask, "over_boundary"); |
| else |
| SrcForMask = EmitCheckedInBoundsGEP(Int8Ty, SrcForMask, Args.Mask, |
| /*SignedIndices=*/true, |
| /*isSubtraction=*/false, |
| E->getExprLoc(), "over_boundary"); |
| } else { |
| SrcForMask = Builder.CreateAdd(SrcForMask, Args.Mask, "over_boundary"); |
| } |
| } |
| // Invert the mask to only clear the lower bits. |
| llvm::Value *InvertedMask = Builder.CreateNot(Args.Mask, "inverted_mask"); |
| llvm::Value *Result = nullptr; |
| if (Args.Src->getType()->isPointerTy()) { |
| Result = Builder.CreateIntrinsic( |
| Intrinsic::ptrmask, {Args.SrcType, Args.IntType}, |
| {SrcForMask, InvertedMask}, nullptr, "aligned_result"); |
| } else { |
| Result = Builder.CreateAnd(SrcForMask, InvertedMask, "aligned_result"); |
| } |
| assert(Result->getType() == Args.SrcType); |
| return RValue::get(Result); |
| } |
| |
| Value *CodeGenFunction::EmitWebAssemblyBuiltinExpr(unsigned BuiltinID, |
| const CallExpr *E) { |
| switch (BuiltinID) { |
| case WebAssembly::BI__builtin_wasm_memory_size: { |
| llvm::Type *ResultType = ConvertType(E->getType()); |
| Value *I = EmitScalarExpr(E->getArg(0)); |
| Function *Callee = |
| CGM.getIntrinsic(Intrinsic::wasm_memory_size, ResultType); |
| return Builder.CreateCall(Callee, I); |
| } |
| case WebAssembly::BI__builtin_wasm_memory_grow: { |
| llvm::Type *ResultType = ConvertType(E->getType()); |
| Value *Args[] = {EmitScalarExpr(E->getArg(0)), |
| EmitScalarExpr(E->getArg(1))}; |
| Function *Callee = |
| CGM.getIntrinsic(Intrinsic::wasm_memory_grow, ResultType); |
| return Builder.CreateCall(Callee, Args); |
| } |
| case WebAssembly::BI__builtin_wasm_tls_size: { |
| llvm::Type *ResultType = ConvertType(E->getType()); |
| Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_tls_size, ResultType); |
| return Builder.CreateCall(Callee); |
| } |
| case WebAssembly::BI__builtin_wasm_tls_align: { |
| llvm::Type *ResultType = ConvertType(E->getType()); |
| Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_tls_align, ResultType); |
| return Builder.CreateCall(Callee); |
| } |
| case WebAssembly::BI__builtin_wasm_tls_base: { |
| Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_tls_base); |
| return Builder.CreateCall(Callee); |
| } |
| case WebAssembly::BI__builtin_wasm_throw: { |
| Value *Tag = EmitScalarExpr(E->getArg(0)); |
| Value *Obj = EmitScalarExpr(E->getArg(1)); |
| Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_throw); |
| return Builder.CreateCall(Callee, {Tag, Obj}); |
| } |
| case WebAssembly::BI__builtin_wasm_rethrow: { |
| Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_rethrow); |
| return Builder.CreateCall(Callee); |
| } |
| case WebAssembly::BI__builtin_wasm_memory_atomic_wait32: { |
| Value *Addr = EmitScalarExpr(E->getArg(0)); |
| Value *Expected = EmitScalarExpr(E->getArg(1)); |
| Value *Timeout = EmitScalarExpr(E->getArg(2)); |
| Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_memory_atomic_wait32); |
| return Builder.CreateCall(Callee, {Addr, Expected, Timeout}); |
| } |
| case WebAssembly::BI__builtin_wasm_memory_atomic_wait64: { |
| Value *Addr = EmitScalarExpr(E->getArg(0)); |
| Value *Expected = EmitScalarExpr(E->getArg(1)); |
| Value *Timeout = EmitScalarExpr(E->getArg(2)); |
| Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_memory_atomic_wait64); |
| return Builder.CreateCall(Callee, {Addr, Expected, Timeout}); |
| } |
| case WebAssembly::BI__builtin_wasm_memory_atomic_notify: { |
| Value *Addr = EmitScalarExpr(E->getArg(0)); |
| Value *Count = EmitScalarExpr(E->getArg(1)); |
| Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_memory_atomic_notify); |
| return Builder.CreateCall(Callee, {Addr, Count}); |
| } |
| case WebAssembly::BI__builtin_wasm_trunc_s_i32_f32: |
| case WebAssembly::BI__builtin_wasm_trunc_s_i32_f64: |
| case WebAssembly::BI__builtin_wasm_trunc_s_i64_f32: |
| case WebAssembly::BI__builtin_wasm_trunc_s_i64_f64: { |
| Value *Src = EmitScalarExpr(E->getArg(0)); |
| llvm::Type *ResT = ConvertType(E->getType()); |
| Function *Callee = |
| CGM.getIntrinsic(Intrinsic::wasm_trunc_signed, {ResT, Src->getType()}); |
| return Builder.CreateCall(Callee, {Src}); |
| } |
| case WebAssembly::BI__builtin_wasm_trunc_u_i32_f32: |
| case WebAssembly::BI__builtin_wasm_trunc_u_i32_f64: |
| case WebAssembly::BI__builtin_wasm_trunc_u_i64_f32: |
| case WebAssembly::BI__builtin_wasm_trunc_u_i64_f64: { |
| Value *Src = EmitScalarExpr(E->getArg(0)); |
| llvm::Type *ResT = ConvertType(E->getType()); |
| Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_trunc_unsigned, |
| {ResT, Src->getType()}); |
| return Builder.CreateCall(Callee, {Src}); |
| } |
| case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i32_f32: |
| case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i32_f64: |
| case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i64_f32: |
| case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i64_f64: |
| case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i16x8_f16x8: |
| case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i32x4_f32x4: { |
| Value *Src = EmitScalarExpr(E->getArg(0)); |
| llvm::Type *ResT = ConvertType(E->getType()); |
| Function *Callee = |
| CGM.getIntrinsic(Intrinsic::fptosi_sat, {ResT, Src->getType()}); |
| return Builder.CreateCall(Callee, {Src}); |
| } |
| case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i32_f32: |
| case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i32_f64: |
| case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i64_f32: |
| case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i64_f64: |
| case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i16x8_f16x8: |
| case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i32x4_f32x4: { |
| Value *Src = EmitScalarExpr(E->getArg(0)); |
| llvm::Type *ResT = ConvertType(E->getType()); |
| Function *Callee = |
| CGM.getIntrinsic(Intrinsic::fptoui_sat, {ResT, Src->getType()}); |
| return Builder.CreateCall(Callee, {Src}); |
| } |
| case WebAssembly::BI__builtin_wasm_min_f32: |
| case WebAssembly::BI__builtin_wasm_min_f64: |
| case WebAssembly::BI__builtin_wasm_min_f16x8: |
| case WebAssembly::BI__builtin_wasm_min_f32x4: |
| case WebAssembly::BI__builtin_wasm_min_f64x2: { |
| Value *LHS = EmitScalarExpr(E->getArg(0)); |
| Value *RHS = EmitScalarExpr(E->getArg(1)); |
| Function *Callee = |
| CGM.getIntrinsic(Intrinsic::minimum, ConvertType(E->getType())); |
| return Builder.CreateCall(Callee, {LHS, RHS}); |
| } |
| case WebAssembly::BI__builtin_wasm_max_f32: |
| case WebAssembly::BI__builtin_wasm_max_f64: |
| case WebAssembly::BI__builtin_wasm_max_f16x8: |
| case WebAssembly::BI__builtin_wasm_max_f32x4: |
| case WebAssembly::BI__builtin_wasm_max_f64x2: { |
| Value *LHS = EmitScalarExpr(E->getArg(0)); |
| Value *RHS = EmitScalarExpr(E->getArg(1)); |
| Function *Callee = |
| CGM.getIntrinsic(Intrinsic::maximum, ConvertType(E->getType())); |
| return Builder.CreateCall(Callee, {LHS, RHS}); |
| } |
| case WebAssembly::BI__builtin_wasm_pmin_f16x8: |
| case WebAssembly::BI__builtin_wasm_pmin_f32x4: |
| case WebAssembly::BI__builtin_wasm_pmin_f64x2: { |
| Value *LHS = EmitScalarExpr(E->getArg(0)); |
| Value *RHS = EmitScalarExpr(E->getArg(1)); |
| Function *Callee = |
| CGM.getIntrinsic(Intrinsic::wasm_pmin, ConvertType(E->getType())); |
| return Builder.CreateCall(Callee, {LHS, RHS}); |
| } |
| case WebAssembly::BI__builtin_wasm_pmax_f16x8: |
| case WebAssembly::BI__builtin_wasm_pmax_f32x4: |
| case WebAssembly::BI__builtin_wasm_pmax_f64x2: { |
| Value *LHS = EmitScalarExpr(E->getArg(0)); |
| Value *RHS = EmitScalarExpr(E->getArg(1)); |
| Function *Callee = |
| CGM.getIntrinsic(Intrinsic::wasm_pmax, ConvertType(E->getType())); |
| return Builder.CreateCall(Callee, {LHS, RHS}); |
| } |
| case WebAssembly::BI__builtin_wasm_ceil_f16x8: |
| case WebAssembly::BI__builtin_wasm_floor_f16x8: |
| case WebAssembly::BI__builtin_wasm_trunc_f16x8: |
| case WebAssembly::BI__builtin_wasm_nearest_f16x8: |
| case WebAssembly::BI__builtin_wasm_ceil_f32x4: |
| case WebAssembly::BI__builtin_wasm_floor_f32x4: |
| case WebAssembly::BI__builtin_wasm_trunc_f32x4: |
| case WebAssembly::BI__builtin_wasm_nearest_f32x4: |
| case WebAssembly::BI__builtin_wasm_ceil_f64x2: |
| case WebAssembly::BI__builtin_wasm_floor_f64x2: |
| case WebAssembly::BI__builtin_wasm_trunc_f64x2: |
| case WebAssembly::BI__builtin_wasm_nearest_f64x2: { |
| unsigned IntNo; |
| switch (BuiltinID) { |
| case WebAssembly::BI__builtin_wasm_ceil_f16x8: |
| case WebAssembly::BI__builtin_wasm_ceil_f32x4: |
| case WebAssembly::BI__builtin_wasm_ceil_f64x2: |
| IntNo = Intrinsic::ceil; |
| break; |
| case WebAssembly::BI__builtin_wasm_floor_f16x8: |
| case WebAssembly::BI__builtin_wasm_floor_f32x4: |
| case WebAssembly::BI__builtin_wasm_floor_f64x2: |
| IntNo = Intrinsic::floor; |
| break; |
| case WebAssembly::BI__builtin_wasm_trunc_f16x8: |
| case WebAssembly::BI__builtin_wasm_trunc_f32x4: |
| case WebAssembly::BI__builtin_wasm_trunc_f64x2: |
| IntNo = Intrinsic::trunc; |
| break; |
| case WebAssembly::BI__builtin_wasm_nearest_f16x8: |
| case WebAssembly::BI__builtin_wasm_nearest_f32x4: |
| case WebAssembly::BI__builtin_wasm_nearest_f64x2: |
| IntNo = Intrinsic::nearbyint; |
| break; |
| default: |
| llvm_unreachable("unexpected builtin ID"); |
| } |
| Value *Value = EmitScalarExpr(E->getArg(0)); |
| Function *Callee = CGM.getIntrinsic(IntNo, ConvertType(E->getType())); |
| return Builder.CreateCall(Callee, Value); |
| } |
| case WebAssembly::BI__builtin_wasm_ref_null_extern: { |
| Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_ref_null_extern); |
| return Builder.CreateCall(Callee); |
| } |
| case WebAssembly::BI__builtin_wasm_ref_null_func: { |
| Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_ref_null_func); |
| return Builder.CreateCall(Callee); |
| } |
| case WebAssembly::BI__builtin_wasm_swizzle_i8x16: { |
| Value *Src = EmitScalarExpr(E->getArg(0)); |
| Value *Indices = EmitScalarExpr(E->getArg(1)); |
| Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_swizzle); |
| return Builder.CreateCall(Callee, {Src, Indices}); |
| } |
| case WebAssembly::BI__builtin_wasm_abs_i8x16: |
| case WebAssembly::BI__builtin_wasm_abs_i16x8: |
| case WebAssembly::BI__builtin_wasm_abs_i32x4: |
| case WebAssembly::BI__builtin_wasm_abs_i64x2: { |
| Value *Vec = EmitScalarExpr(E->getArg(0)); |
| Value *Neg = Builder.CreateNeg(Vec, "neg"); |
| Constant *Zero = llvm::Constant::getNullValue(Vec->getType()); |
| Value *ICmp = Builder.CreateICmpSLT(Vec, Zero, "abscond"); |
| return Builder.CreateSelect(ICmp, Neg, Vec, "abs"); |
| } |
| case WebAssembly::BI__builtin_wasm_avgr_u_i8x16: |
| case WebAssembly::BI__builtin_wasm_avgr_u_i16x8: { |
| Value *LHS = EmitScalarExpr(E->getArg(0)); |
| Value *RHS = EmitScalarExpr(E->getArg(1)); |
| Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_avgr_unsigned, |
| ConvertType(E->getType())); |
| return Builder.CreateCall(Callee, {LHS, RHS}); |
| } |
| case WebAssembly::BI__builtin_wasm_q15mulr_sat_s_i16x8: { |
| Value *LHS = EmitScalarExpr(E->getArg(0)); |
| Value *RHS = EmitScalarExpr(E->getArg(1)); |
| Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_q15mulr_sat_signed); |
| return Builder.CreateCall(Callee, {LHS, RHS}); |
| } |
| case WebAssembly::BI__builtin_wasm_extadd_pairwise_i8x16_s_i16x8: |
| case WebAssembly::BI__builtin_wasm_extadd_pairwise_i8x16_u_i16x8: |
| case WebAssembly::BI__builtin_wasm_extadd_pairwise_i16x8_s_i32x4: |
| case WebAssembly::BI__builtin_wasm_extadd_pairwise_i16x8_u_i32x4: { |
| Value *Vec = EmitScalarExpr(E->getArg(0)); |
| unsigned IntNo; |
| switch (BuiltinID) { |
| case WebAssembly::BI__builtin_wasm_extadd_pairwise_i8x16_s_i16x8: |
| case WebAssembly::BI__builtin_wasm_extadd_pairwise_i16x8_s_i32x4: |
| IntNo = Intrinsic::wasm_extadd_pairwise_signed; |
| break; |
| case WebAssembly::BI__builtin_wasm_extadd_pairwise_i8x16_u_i16x8: |
| case WebAssembly::BI__builtin_wasm_extadd_pairwise_i16x8_u_i32x4: |
| IntNo = Intrinsic::wasm_extadd_pairwise_unsigned; |
| break; |
| default: |
| llvm_unreachable("unexpected builtin ID"); |
| } |
| |
| Function *Callee = CGM.getIntrinsic(IntNo, ConvertType(E->getType())); |
| return Builder.CreateCall(Callee, Vec); |
| } |
| case WebAssembly::BI__builtin_wasm_bitselect: { |
| Value *V1 = EmitScalarExpr(E->getArg(0)); |
| Value *V2 = EmitScalarExpr(E->getArg(1)); |
| Value *C = EmitScalarExpr(E->getArg(2)); |
| Function *Callee = |
| CGM.getIntrinsic(Intrinsic::wasm_bitselect, ConvertType(E->getType())); |
| return Builder.CreateCall(Callee, {V1, V2, C}); |
| } |
| case WebAssembly::BI__builtin_wasm_dot_s_i32x4_i16x8: { |
| Value *LHS = EmitScalarExpr(E->getArg(0)); |
| Value *RHS = EmitScalarExpr(E->getArg(1)); |
| Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_dot); |
| return Builder.CreateCall(Callee, {LHS, RHS}); |
| } |
| case WebAssembly::BI__builtin_wasm_any_true_v128: |
| case WebAssembly::BI__builtin_wasm_all_true_i8x16: |
| case WebAssembly::BI__builtin_wasm_all_true_i16x8: |
| case WebAssembly::BI__builtin_wasm_all_true_i32x4: |
| case WebAssembly::BI__builtin_wasm_all_true_i64x2: { |
| unsigned IntNo; |
| switch (BuiltinID) { |
| case WebAssembly::BI__builtin_wasm_any_true_v128: |
| IntNo = Intrinsic::wasm_anytrue; |
| break; |
| case WebAssembly::BI__builtin_wasm_all_true_i8x16: |
| case WebAssembly::BI__builtin_wasm_all_true_i16x8: |
| case WebAssembly::BI__builtin_wasm_all_true_i32x4: |
| case WebAssembly::BI__builtin_wasm_all_true_i64x2: |
| IntNo = Intrinsic::wasm_alltrue; |
| break; |
| default: |
| llvm_unreachable("unexpected builtin ID"); |
| } |
| Value *Vec = EmitScalarExpr(E->getArg(0)); |
| Function *Callee = CGM.getIntrinsic(IntNo, Vec->getType()); |
| return Builder.CreateCall(Callee, {Vec}); |
| } |
| case WebAssembly::BI__builtin_wasm_bitmask_i8x16: |
| case WebAssembly::BI__builtin_wasm_bitmask_i16x8: |
| case WebAssembly::BI__builtin_wasm_bitmask_i32x4: |
| case WebAssembly::BI__builtin_wasm_bitmask_i64x2: { |
| Value *Vec = EmitScalarExpr(E->getArg(0)); |
| Function *Callee = |
| CGM.getIntrinsic(Intrinsic::wasm_bitmask, Vec->getType()); |
| return Builder.CreateCall(Callee, {Vec}); |
| } |
| case WebAssembly::BI__builtin_wasm_abs_f16x8: |
| case WebAssembly::BI__builtin_wasm_abs_f32x4: |
| case WebAssembly::BI__builtin_wasm_abs_f64x2: { |
| Value *Vec = EmitScalarExpr(E->getArg(0)); |
| Function *Callee = CGM.getIntrinsic(Intrinsic::fabs, Vec->getType()); |
| return Builder.CreateCall(Callee, {Vec}); |
| } |
| case WebAssembly::BI__builtin_wasm_sqrt_f16x8: |
| case WebAssembly::BI__builtin_wasm_sqrt_f32x4: |
| case WebAssembly::BI__builtin_wasm_sqrt_f64x2: { |
| Value *Vec = EmitScalarExpr(E->getArg(0)); |
| Function *Callee = CGM.getIntrinsic(Intrinsic::sqrt, Vec->getType()); |
| return Builder.CreateCall(Callee, {Vec}); |
| } |
| case WebAssembly::BI__builtin_wasm_narrow_s_i8x16_i16x8: |
| case WebAssembly::BI__builtin_wasm_narrow_u_i8x16_i16x8: |
| case WebAssembly::BI__builtin_wasm_narrow_s_i16x8_i32x4: |
| case WebAssembly::BI__builtin_wasm_narrow_u_i16x8_i32x4: { |
| Value *Low = EmitScalarExpr(E->getArg(0)); |
| Value *High = EmitScalarExpr(E->getArg(1)); |
| unsigned IntNo; |
| switch (BuiltinID) { |
| case WebAssembly::BI__builtin_wasm_narrow_s_i8x16_i16x8: |
| case WebAssembly::BI__builtin_wasm_narrow_s_i16x8_i32x4: |
| IntNo = Intrinsic::wasm_narrow_signed; |
| break; |
| case WebAssembly::BI__builtin_wasm_narrow_u_i8x16_i16x8: |
| case WebAssembly::BI__builtin_wasm_narrow_u_i16x8_i32x4: |
| IntNo = Intrinsic::wasm_narrow_unsigned; |
| break; |
| default: |
| llvm_unreachable("unexpected builtin ID"); |
| } |
| Function *Callee = |
| CGM.getIntrinsic(IntNo, {ConvertType(E->getType()), Low->getType()}); |
| return Builder.CreateCall(Callee, {Low, High}); |
| } |
| case WebAssembly::BI__builtin_wasm_trunc_sat_s_zero_f64x2_i32x4: |
| case WebAssembly::BI__builtin_wasm_trunc_sat_u_zero_f64x2_i32x4: { |
| Value *Vec = EmitScalarExpr(E->getArg(0)); |
| unsigned IntNo; |
| switch (BuiltinID) { |
| case WebAssembly::BI__builtin_wasm_trunc_sat_s_zero_f64x2_i32x4: |
| IntNo = Intrinsic::fptosi_sat; |
| break; |
| case WebAssembly::BI__builtin_wasm_trunc_sat_u_zero_f64x2_i32x4: |
| IntNo = Intrinsic::fptoui_sat; |
| break; |
| default: |
| llvm_unreachable("unexpected builtin ID"); |
| } |
| llvm::Type *SrcT = Vec->getType(); |
| llvm::Type *TruncT = SrcT->getWithNewType(Builder.getInt32Ty()); |
| Function *Callee = CGM.getIntrinsic(IntNo, {TruncT, SrcT}); |
| Value *Trunc = Builder.CreateCall(Callee, Vec); |
| Value *Splat = Constant::getNullValue(TruncT); |
| return Builder.CreateShuffleVector(Trunc, Splat, ArrayRef<int>{0, 1, 2, 3}); |
| } |
| case WebAssembly::BI__builtin_wasm_shuffle_i8x16: { |
| Value *Ops[18]; |
| size_t OpIdx = 0; |
| Ops[OpIdx++] = EmitScalarExpr(E->getArg(0)); |
| Ops[OpIdx++] = EmitScalarExpr(E->getArg(1)); |
| while (OpIdx < 18) { |
| std::optional<llvm::APSInt> LaneConst = |
| E->getArg(OpIdx)->getIntegerConstantExpr(getContext()); |
| assert(LaneConst && "Constant arg isn't actually constant?"); |
| Ops[OpIdx++] = llvm::ConstantInt::get(getLLVMContext(), *LaneConst); |
| } |
| Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_shuffle); |
| return Builder.CreateCall(Callee, Ops); |
| } |
| case WebAssembly::BI__builtin_wasm_relaxed_madd_f16x8: |
| case WebAssembly::BI__builtin_wasm_relaxed_nmadd_f16x8: |
| case WebAssembly::BI__builtin_wasm_relaxed_madd_f32x4: |
| case WebAssembly::BI__builtin_wasm_relaxed_nmadd_f32x4: |
| case WebAssembly::BI__builtin_wasm_relaxed_madd_f64x2: |
| case WebAssembly::BI__builtin_wasm_relaxed_nmadd_f64x2: { |
| Value *A = EmitScalarExpr(E->getArg(0)); |
| Value *B = EmitScalarExpr(E->getArg(1)); |
| Value *C = EmitScalarExpr(E->getArg(2)); |
| unsigned IntNo; |
| switch (BuiltinID) { |
| case WebAssembly::BI__builtin_wasm_relaxed_madd_f16x8: |
| case WebAssembly::BI__builtin_wasm_relaxed_madd_f32x4: |
| case WebAssembly::BI__builtin_wasm_relaxed_madd_f64x2: |
| IntNo = Intrinsic::wasm_relaxed_madd; |
| break; |
| case WebAssembly::BI__builtin_wasm_relaxed_nmadd_f16x8: |
| case WebAssembly::BI__builtin_wasm_relaxed_nmadd_f32x4: |
| case WebAssembly::BI__builtin_wasm_relaxed_nmadd_f64x2: |
| IntNo = Intrinsic::wasm_relaxed_nmadd; |
| break; |
| default: |
| llvm_unreachable("unexpected builtin ID"); |
| } |
| Function *Callee = CGM.getIntrinsic(IntNo, A->getType()); |
| return Builder.CreateCall(Callee, {A, B, C}); |
| } |
| case WebAssembly::BI__builtin_wasm_relaxed_laneselect_i8x16: |
| case WebAssembly::BI__builtin_wasm_relaxed_laneselect_i16x8: |
| case WebAssembly::BI__builtin_wasm_relaxed_laneselect_i32x4: |
| case WebAssembly::BI__builtin_wasm_relaxed_laneselect_i64x2: { |
| Value *A = EmitScalarExpr(E->getArg(0)); |
| Value *B = EmitScalarExpr(E->getArg(1)); |
| Value *C = EmitScalarExpr(E->getArg(2)); |
| Function *Callee = |
| CGM.getIntrinsic(Intrinsic::wasm_relaxed_laneselect, A->getType()); |
| return Builder.CreateCall(Callee, {A, B, C}); |
| } |
| case WebAssembly::BI__builtin_wasm_relaxed_swizzle_i8x16: { |
| Value *Src = EmitScalarExpr(E->getArg(0)); |
| Value *Indices = EmitScalarExpr(E->getArg(1)); |
| Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_relaxed_swizzle); |
| return Builder.CreateCall(Callee, {Src, Indices}); |
| } |
| case WebAssembly::BI__builtin_wasm_relaxed_min_f32x4: |
| case WebAssembly::BI__builtin_wasm_relaxed_max_f32x4: |
| case WebAssembly::BI__builtin_wasm_relaxed_min_f64x2: |
| case WebAssembly::BI__builtin_wasm_relaxed_max_f64x2: { |
| Value *LHS = EmitScalarExpr(E->getArg(0)); |
| Value *RHS = EmitScalarExpr(E->getArg(1)); |
| unsigned IntNo; |
| switch (BuiltinID) { |
| case WebAssembly::BI__builtin_wasm_relaxed_min_f32x4: |
| case WebAssembly::BI__builtin_wasm_relaxed_min_f64x2: |
| IntNo = Intrinsic::wasm_relaxed_min; |
| break; |
| case WebAssembly::BI__builtin_wasm_relaxed_max_f32x4: |
| case WebAssembly::BI__builtin_wasm_relaxed_max_f64x2: |
| IntNo = Intrinsic::wasm_relaxed_max; |
| break; |
| default: |
| llvm_unreachable("unexpected builtin ID"); |
| } |
| Function *Callee = CGM.getIntrinsic(IntNo, LHS->getType()); |
| return Builder.CreateCall(Callee, {LHS, RHS}); |
| } |
| case WebAssembly::BI__builtin_wasm_relaxed_trunc_s_i32x4_f32x4: |
| case WebAssembly::BI__builtin_wasm_relaxed_trunc_u_i32x4_f32x4: |
| case WebAssembly::BI__builtin_wasm_relaxed_trunc_s_zero_i32x4_f64x2: |
| case WebAssembly::BI__builtin_wasm_relaxed_trunc_u_zero_i32x4_f64x2: { |
| Value *Vec = EmitScalarExpr(E->getArg(0)); |
| unsigned IntNo; |
| switch (BuiltinID) { |
| case WebAssembly::BI__builtin_wasm_relaxed_trunc_s_i32x4_f32x4: |
| IntNo = Intrinsic::wasm_relaxed_trunc_signed; |
| break; |
| case WebAssembly::BI__builtin_wasm_relaxed_trunc_u_i32x4_f32x4: |
| IntNo = Intrinsic::wasm_relaxed_trunc_unsigned; |
| break; |
| case WebAssembly::BI__builtin_wasm_relaxed_trunc_s_zero_i32x4_f64x2: |
| IntNo = Intrinsic::wasm_relaxed_trunc_signed_zero; |
| break; |
| case WebAssembly::BI__builtin_wasm_relaxed_trunc_u_zero_i32x4_f64x2: |
| IntNo = Intrinsic::wasm_relaxed_trunc_unsigned_zero; |
| break; |
| default: |
| llvm_unreachable("unexpected builtin ID"); |
| } |
| Function *Callee = CGM.getIntrinsic(IntNo); |
| return Builder.CreateCall(Callee, {Vec}); |
| } |
| case WebAssembly::BI__builtin_wasm_relaxed_q15mulr_s_i16x8: { |
| Value *LHS = EmitScalarExpr(E->getArg(0)); |
| Value *RHS = EmitScalarExpr(E->getArg(1)); |
| Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_relaxed_q15mulr_signed); |
| return Builder.CreateCall(Callee, {LHS, RHS}); |
| } |
| case WebAssembly::BI__builtin_wasm_relaxed_dot_i8x16_i7x16_s_i16x8: { |
| Value *LHS = EmitScalarExpr(E->getArg(0)); |
| Value *RHS = EmitScalarExpr(E->getArg(1)); |
| Function *Callee = |
| CGM.getIntrinsic(Intrinsic::wasm_relaxed_dot_i8x16_i7x16_signed); |
| return Builder.CreateCall(Callee, {LHS, RHS}); |
| } |
| case WebAssembly::BI__builtin_wasm_relaxed_dot_i8x16_i7x16_add_s_i32x4: { |
| Value *LHS = EmitScalarExpr(E->getArg(0)); |
| Value *RHS = EmitScalarExpr(E->getArg(1)); |
| Value *Acc = EmitScalarExpr(E->getArg(2)); |
| Function *Callee = |
| CGM.getIntrinsic(Intrinsic::wasm_relaxed_dot_i8x16_i7x16_add_signed); |
| return Builder.CreateCall(Callee, {LHS, RHS, Acc}); |
| } |
| case WebAssembly::BI__builtin_wasm_relaxed_dot_bf16x8_add_f32_f32x4: { |
| Value *LHS = EmitScalarExpr(E->getArg(0)); |
| Value *RHS = EmitScalarExpr(E->getArg(1)); |
| Value *Acc = EmitScalarExpr(E->getArg(2)); |
| Function *Callee = |
| CGM.getIntrinsic(Intrinsic::wasm_relaxed_dot_bf16x8_add_f32); |
| return Builder.CreateCall(Callee, {LHS, RHS, Acc}); |
| } |
| case WebAssembly::BI__builtin_wasm_loadf16_f32: { |
| Value *Addr = EmitScalarExpr(E->getArg(0)); |
| Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_loadf16_f32); |
| return Builder.CreateCall(Callee, {Addr}); |
| } |
| case WebAssembly::BI__builtin_wasm_storef16_f32: { |
| Value *Val = EmitScalarExpr(E->getArg(0)); |
| Value *Addr = EmitScalarExpr(E->getArg(1)); |
| Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_storef16_f32); |
| return Builder.CreateCall(Callee, {Val, Addr}); |
| } |
| case WebAssembly::BI__builtin_wasm_splat_f16x8: { |
| Value *Val = EmitScalarExpr(E->getArg(0)); |
| Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_splat_f16x8); |
| return Builder.CreateCall(Callee, {Val}); |
| } |
| case WebAssembly::BI__builtin_wasm_extract_lane_f16x8: { |
| Value *Vector = EmitScalarExpr(E->getArg(0)); |
| Value *Index = EmitScalarExpr(E->getArg(1)); |
| Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_extract_lane_f16x8); |
| return Builder.CreateCall(Callee, {Vector, Index}); |
| } |
| case WebAssembly::BI__builtin_wasm_replace_lane_f16x8: { |
| Value *Vector = EmitScalarExpr(E->getArg(0)); |
| Value *Index = EmitScalarExpr(E->getArg(1)); |
| Value *Val = EmitScalarExpr(E->getArg(2)); |
| Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_replace_lane_f16x8); |
| return Builder.CreateCall(Callee, {Vector, Index, Val}); |
| } |
| case WebAssembly::BI__builtin_wasm_table_get: { |
| assert(E->getArg(0)->getType()->isArrayType()); |
| Value *Table = EmitArrayToPointerDecay(E->getArg(0)).emitRawPointer(*this); |
| Value *Index = EmitScalarExpr(E->getArg(1)); |
| Function *Callee; |
| if (E->getType().isWebAssemblyExternrefType()) |
| Callee = CGM.getIntrinsic(Intrinsic::wasm_table_get_externref); |
| else if (E->getType().isWebAssemblyFuncrefType()) |
| Callee = CGM.getIntrinsic(Intrinsic::wasm_table_get_funcref); |
| else |
| llvm_unreachable( |
| "Unexpected reference type for __builtin_wasm_table_get"); |
| return Builder.CreateCall(Callee, {Table, Index}); |
| } |
| case WebAssembly::BI__builtin_wasm_table_set: { |
| assert(E->getArg(0)->getType()->isArrayType()); |
| Value *Table = EmitArrayToPointerDecay(E->getArg(0)).emitRawPointer(*this); |
| Value *Index = EmitScalarExpr(E->getArg(1)); |
| Value *Val = EmitScalarExpr(E->getArg(2)); |
| Function *Callee; |
| if (E->getArg(2)->getType().isWebAssemblyExternrefType()) |
| Callee = CGM.getIntrinsic(Intrinsic::wasm_table_set_externref); |
| else if (E->getArg(2)->getType().isWebAssemblyFuncrefType()) |
| Callee = CGM.getIntrinsic(Intrinsic::wasm_table_set_funcref); |
| else |
| llvm_unreachable( |
| "Unexpected reference type for __builtin_wasm_table_set"); |
| return Builder.CreateCall(Callee, {Table, Index, Val}); |
| } |
| case WebAssembly::BI__builtin_wasm_table_size: { |
| assert(E->getArg(0)->getType()->isArrayType()); |
| Value *Value = EmitArrayToPointerDecay(E->getArg(0)).emitRawPointer(*this); |
| Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_table_size); |
| return Builder.CreateCall(Callee, Value); |
| } |
| case WebAssembly::BI__builtin_wasm_table_grow: { |
| assert(E->getArg(0)->getType()->isArrayType()); |
| Value *Table = EmitArrayToPointerDecay(E->getArg(0)).emitRawPointer(*this); |
| Value *Val = EmitScalarExpr(E->getArg(1)); |
| Value *NElems = EmitScalarExpr(E->getArg(2)); |
| |
| Function *Callee; |
| if (E->getArg(1)->getType().isWebAssemblyExternrefType()) |
| Callee = CGM.getIntrinsic(Intrinsic::wasm_table_grow_externref); |
| else if (E->getArg(2)->getType().isWebAssemblyFuncrefType()) |
| Callee = CGM.getIntrinsic(Intrinsic::wasm_table_fill_funcref); |
| else |
| llvm_unreachable( |
| "Unexpected reference type for __builtin_wasm_table_grow"); |
| |
| return Builder.CreateCall(Callee, {Table, Val, NElems}); |
| } |
| case WebAssembly::BI__builtin_wasm_table_fill: { |
| assert(E->getArg(0)->getType()->isArrayType()); |
| Value *Table = EmitArrayToPointerDecay(E->getArg(0)).emitRawPointer(*this); |
| Value *Index = EmitScalarExpr(E->getArg(1)); |
| Value *Val = EmitScalarExpr(E->getArg(2)); |
| Value *NElems = EmitScalarExpr(E->getArg(3)); |
| |
| Function *Callee; |
| if (E->getArg(2)->getType().isWebAssemblyExternrefType()) |
| Callee = CGM.getIntrinsic(Intrinsic::wasm_table_fill_externref); |
| else if (E->getArg(2)->getType().isWebAssemblyFuncrefType()) |
| Callee = CGM.getIntrinsic(Intrinsic::wasm_table_fill_funcref); |
| else |
| llvm_unreachable( |
| "Unexpected reference type for __builtin_wasm_table_fill"); |
| |
| return Builder.CreateCall(Callee, {Table, Index, Val, NElems}); |
| } |
| case WebAssembly::BI__builtin_wasm_table_copy: { |
| assert(E->getArg(0)->getType()->isArrayType()); |
| Value *TableX = EmitArrayToPointerDecay(E->getArg(0)).emitRawPointer(*this); |
| Value *TableY = EmitArrayToPointerDecay(E->getArg(1)).emitRawPointer(*this); |
| Value *DstIdx = EmitScalarExpr(E->getArg(2)); |
| Value *SrcIdx = EmitScalarExpr(E->getArg(3)); |
| Value *NElems = EmitScalarExpr(E->getArg(4)); |
| |
| Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_table_copy); |
| |
| return Builder.CreateCall(Callee, {TableX, TableY, SrcIdx, DstIdx, NElems}); |
| } |
| default: |
| return nullptr; |
| } |
| } |
| |
| static std::pair<Intrinsic::ID, unsigned> |
| getIntrinsicForHexagonNonClangBuiltin(unsigned BuiltinID) { |
| struct Info { |
| unsigned BuiltinID; |
| Intrinsic::ID IntrinsicID; |
| unsigned VecLen; |
| }; |
| static Info Infos[] = { |
| #define CUSTOM_BUILTIN_MAPPING(x,s) \ |
| { Hexagon::BI__builtin_HEXAGON_##x, Intrinsic::hexagon_##x, s }, |
| CUSTOM_BUILTIN_MAPPING(L2_loadrub_pci, 0) |
| CUSTOM_BUILTIN_MAPPING(L2_loadrb_pci, 0) |
| CUSTOM_BUILTIN_MAPPING(L2_loadruh_pci, 0) |
| CUSTOM_BUILTIN_MAPPING(L2_loadrh_pci, 0) |
| CUSTOM_BUILTIN_MAPPING(L2_loadri_pci, 0) |
| CUSTOM_BUILTIN_MAPPING(L2_loadrd_pci, 0) |
| CUSTOM_BUILTIN_MAPPING(L2_loadrub_pcr, 0) |
| CUSTOM_BUILTIN_MAPPING(L2_loadrb_pcr, 0) |
| CUSTOM_BUILTIN_MAPPING(L2_loadruh_pcr, 0) |
| CUSTOM_BUILTIN_MAPPING(L2_loadrh_pcr, 0) |
| CUSTOM_BUILTIN_MAPPING(L2_loadri_pcr, 0) |
| CUSTOM_BUILTIN_MAPPING(L2_loadrd_pcr, 0) |
| CUSTOM_BUILTIN_MAPPING(S2_storerb_pci, 0) |
| CUSTOM_BUILTIN_MAPPING(S2_storerh_pci, 0) |
| CUSTOM_BUILTIN_MAPPING(S2_storerf_pci, 0) |
| CUSTOM_BUILTIN_MAPPING(S2_storeri_pci, 0) |
| CUSTOM_BUILTIN_MAPPING(S2_storerd_pci, 0) |
| CUSTOM_BUILTIN_MAPPING(S2_storerb_pcr, 0) |
| CUSTOM_BUILTIN_MAPPING(S2_storerh_pcr, 0) |
| CUSTOM_BUILTIN_MAPPING(S2_storerf_pcr, 0) |
| CUSTOM_BUILTIN_MAPPING(S2_storeri_pcr, 0) |
| CUSTOM_BUILTIN_MAPPING(S2_storerd_pcr, 0) |
| // Legacy builtins that take a vector in place of a vector predicate. |
| CUSTOM_BUILTIN_MAPPING(V6_vmaskedstoreq, 64) |
| CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorenq, 64) |
| CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorentq, 64) |
| CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorentnq, 64) |
| CUSTOM_BUILTIN_MAPPING(V6_vmaskedstoreq_128B, 128) |
| CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorenq_128B, 128) |
| CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorentq_128B, 128) |
| CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorentnq_128B, 128) |
| #include "clang/Basic/BuiltinsHexagonMapCustomDep.def" |
| #undef CUSTOM_BUILTIN_MAPPING |
| }; |
| |
| auto CmpInfo = [] (Info A, Info B) { return A.BuiltinID < B.BuiltinID; }; |
| static const bool SortOnce = (llvm::sort(Infos, CmpInfo), true); |
| (void)SortOnce; |
| |
| const Info *F = llvm::lower_bound(Infos, Info{BuiltinID, 0, 0}, CmpInfo); |
| if (F == std::end(Infos) || F->BuiltinID != BuiltinID) |
| return {Intrinsic::not_intrinsic, 0}; |
| |
| return {F->IntrinsicID, F->VecLen}; |
| } |
| |
| Value *CodeGenFunction::EmitHexagonBuiltinExpr(unsigned BuiltinID, |
| const CallExpr *E) { |
| Intrinsic::ID ID; |
| unsigned VecLen; |
| std::tie(ID, VecLen) = getIntrinsicForHexagonNonClangBuiltin(BuiltinID); |
| |
| auto MakeCircOp = [this, E](unsigned IntID, bool IsLoad) { |
| // The base pointer is passed by address, so it needs to be loaded. |
| Address A = EmitPointerWithAlignment(E->getArg(0)); |
| Address BP = Address(A.emitRawPointer(*this), Int8PtrTy, A.getAlignment()); |
| llvm::Value *Base = Builder.CreateLoad(BP); |
| // The treatment of both loads and stores is the same: the arguments for |
| // the builtin are the same as the arguments for the intrinsic. |
| // Load: |
| // builtin(Base, Inc, Mod, Start) -> intr(Base, Inc, Mod, Start) |
| // builtin(Base, Mod, Start) -> intr(Base, Mod, Start) |
| // Store: |
| // builtin(Base, Inc, Mod, Val, Start) -> intr(Base, Inc, Mod, Val, Start) |
| // builtin(Base, Mod, Val, Start) -> intr(Base, Mod, Val, Start) |
| SmallVector<llvm::Value*,5> Ops = { Base }; |
| for (unsigned i = 1, e = E->getNumArgs(); i != e; ++i) |
| Ops.push_back(EmitScalarExpr(E->getArg(i))); |
| |
| llvm::Value *Result = Builder.CreateCall(CGM.getIntrinsic(IntID), Ops); |
| // The load intrinsics generate two results (Value, NewBase), stores |
| // generate one (NewBase). The new base address needs to be stored. |
| llvm::Value *NewBase = IsLoad ? Builder.CreateExtractValue(Result, 1) |
| : Result; |
| llvm::Value *LV = EmitScalarExpr(E->getArg(0)); |
| Address Dest = EmitPointerWithAlignment(E->getArg(0)); |
| llvm::Value *RetVal = |
| Builder.CreateAlignedStore(NewBase, LV, Dest.getAlignment()); |
| if (IsLoad) |
| RetVal = Builder.CreateExtractValue(Result, 0); |
| return RetVal; |
| }; |
| |
| // Handle the conversion of bit-reverse load intrinsics to bit code. |
| // The intrinsic call after this function only reads from memory and the |
| // write to memory is dealt by the store instruction. |
| auto MakeBrevLd = [this, E](unsigned IntID, llvm::Type *DestTy) { |
| // The intrinsic generates one result, which is the new value for the base |
| // pointer. It needs to be returned. The result of the load instruction is |
| // passed to intrinsic by address, so the value needs to be stored. |
| llvm::Value *BaseAddress = EmitScalarExpr(E->getArg(0)); |
| |
| // Expressions like &(*pt++) will be incremented per evaluation. |
| // EmitPointerWithAlignment and EmitScalarExpr evaluates the expression |
| // per call. |
| Address DestAddr = EmitPointerWithAlignment(E->getArg(1)); |
| DestAddr = DestAddr.withElementType(Int8Ty); |
| llvm::Value *DestAddress = DestAddr.emitRawPointer(*this); |
| |
| // Operands are Base, Dest, Modifier. |
| // The intrinsic format in LLVM IR is defined as |
| // { ValueType, i8* } (i8*, i32). |
| llvm::Value *Result = Builder.CreateCall( |
| CGM.getIntrinsic(IntID), {BaseAddress, EmitScalarExpr(E->getArg(2))}); |
| |
| // The value needs to be stored as the variable is passed by reference. |
| llvm::Value *DestVal = Builder.CreateExtractValue(Result, 0); |
| |
| // The store needs to be truncated to fit the destination type. |
| // While i32 and i64 are natively supported on Hexagon, i8 and i16 needs |
| // to be handled with stores of respective destination type. |
| DestVal = Builder.CreateTrunc(DestVal, DestTy); |
| |
| Builder.CreateAlignedStore(DestVal, DestAddress, DestAddr.getAlignment()); |
| // The updated value of the base pointer is returned. |
| return Builder.CreateExtractValue(Result, 1); |
| }; |
| |
| auto V2Q = [this, VecLen] (llvm::Value *Vec) { |
| Intrinsic::ID ID = VecLen == 128 ? Intrinsic::hexagon_V6_vandvrt_128B |
| : Intrinsic::hexagon_V6_vandvrt; |
| return Builder.CreateCall(CGM.getIntrinsic(ID), |
| {Vec, Builder.getInt32(-1)}); |
| }; |
| auto Q2V = [this, VecLen] (llvm::Value *Pred) { |
| Intrinsic::ID ID = VecLen == 128 ? Intrinsic::hexagon_V6_vandqrt_128B |
| : Intrinsic::hexagon_V6_vandqrt; |
| return Builder.CreateCall(CGM.getIntrinsic(ID), |
| {Pred, Builder.getInt32(-1)}); |
| }; |
| |
| switch (BuiltinID) { |
| // These intrinsics return a tuple {Vector, VectorPred} in LLVM IR, |
| // and the corresponding C/C++ builtins use loads/stores to update |
| // the predicate. |
| case Hexagon::BI__builtin_HEXAGON_V6_vaddcarry: |
| case Hexagon::BI__builtin_HEXAGON_V6_vaddcarry_128B: |
| case Hexagon::BI__builtin_HEXAGON_V6_vsubcarry: |
| case Hexagon::BI__builtin_HEXAGON_V6_vsubcarry_128B: { |
| // Get the type from the 0-th argument. |
| llvm::Type *VecType = ConvertType(E->getArg(0)->getType()); |
| Address PredAddr = |
| EmitPointerWithAlignment(E->getArg(2)).withElementType(VecType); |
| llvm::Value *PredIn = V2Q(Builder.CreateLoad(PredAddr)); |
| llvm::Value *Result = Builder.CreateCall(CGM.getIntrinsic(ID), |
| {EmitScalarExpr(E->getArg(0)), EmitScalarExpr(E->getArg(1)), PredIn}); |
| |
| llvm::Value *PredOut = Builder.CreateExtractValue(Result, 1); |
| Builder.CreateAlignedStore(Q2V(PredOut), PredAddr.emitRawPointer(*this), |
| PredAddr.getAlignment()); |
| return Builder.CreateExtractValue(Result, 0); |
| } |
| // These are identical to the builtins above, except they don't consume |
| // input carry, only generate carry-out. Since they still produce two |
| // outputs, generate the store of the predicate, but no load. |
| case Hexagon::BI__builtin_HEXAGON_V6_vaddcarryo: |
| case Hexagon::BI__builtin_HEXAGON_V6_vaddcarryo_128B: |
| case Hexagon::BI__builtin_HEXAGON_V6_vsubcarryo: |
| case Hexagon::BI__builtin_HEXAGON_V6_vsubcarryo_128B: { |
| // Get the type from the 0-th argument. |
| llvm::Type *VecType = ConvertType(E->getArg(0)->getType()); |
| Address PredAddr = |
| EmitPointerWithAlignment(E->getArg(2)).withElementType(VecType); |
| llvm::Value *Result = Builder.CreateCall(CGM.getIntrinsic(ID), |
| {EmitScalarExpr(E->getArg(0)), EmitScalarExpr(E->getArg(1))}); |
| |
| llvm::Value *PredOut = Builder.CreateExtractValue(Result, 1); |
| Builder.CreateAlignedStore(Q2V(PredOut), PredAddr.emitRawPointer(*this), |
| PredAddr.getAlignment()); |
| return Builder.CreateExtractValue(Result, 0); |
| } |
| |
| case Hexagon::BI__builtin_HEXAGON_V6_vmaskedstoreq: |
| case Hexagon::BI__builtin_HEXAGON_V6_vmaskedstorenq: |
| case Hexagon::BI__builtin_HEXAGON_V6_vmaskedstorentq: |
| case Hexagon::BI__builtin_HEXAGON_V6_vmaskedstorentnq: |
| case Hexagon::BI__builtin_HEXAGON_V6_vmaskedstoreq_128B: |
| case Hexagon::BI__builtin_HEXAGON_V6_vmaskedstorenq_128B: |
| case Hexagon::BI__builtin_HEXAGON_V6_vmaskedstorentq_128B: |
| case Hexagon::BI__builtin_HEXAGON_V6_vmaskedstorentnq_128B: { |
| SmallVector<llvm::Value*,4> Ops; |
| const Expr *PredOp = E->getArg(0); |
| // There will be an implicit cast to a boolean vector. Strip it. |
| if (auto *Cast = dyn_cast<ImplicitCastExpr>(PredOp)) { |
| if (Cast->getCastKind() == CK_BitCast) |
| PredOp = Cast->getSubExpr(); |
| Ops.push_back(V2Q(EmitScalarExpr(PredOp))); |
| } |
| for (int i = 1, e = E->getNumArgs(); i != e; ++i) |
| Ops.push_back(EmitScalarExpr(E->getArg(i))); |
| return Builder.CreateCall(CGM.getIntrinsic(ID), Ops); |
| } |
| |
| case Hexagon::BI__builtin_HEXAGON_L2_loadrub_pci: |
| case Hexagon::BI__builtin_HEXAGON_L2_loadrb_pci: |
| case Hexagon::BI__builtin_HEXAGON_L2_loadruh_pci: |
| case Hexagon::BI__builtin_HEXAGON_L2_loadrh_pci: |
| case Hexagon::BI__builtin_HEXAGON_L2_loadri_pci: |
| case Hexagon::BI__builtin_HEXAGON_L2_loadrd_pci: |
| case Hexagon::BI__builtin_HEXAGON_L2_loadrub_pcr: |
| case Hexagon::BI__builtin_HEXAGON_L2_loadrb_pcr: |
| case Hexagon::BI__builtin_HEXAGON_L2_loadruh_pcr: |
| case Hexagon::BI__builtin_HEXAGON_L2_loadrh_pcr: |
| case Hexagon::BI__builtin_HEXAGON_L2_loadri_pcr: |
| case Hexagon::BI__builtin_HEXAGON_L2_loadrd_pcr: |
| return MakeCircOp(ID, /*IsLoad=*/true); |
| case Hexagon::BI__builtin_HEXAGON_S2_storerb_pci: |
| case Hexagon::BI__builtin_HEXAGON_S2_storerh_pci: |
| case Hexagon::BI__builtin_HEXAGON_S2_storerf_pci: |
| case Hexagon::BI__builtin_HEXAGON_S2_storeri_pci: |
| case Hexagon::BI__builtin_HEXAGON_S2_storerd_pci: |
| case Hexagon::BI__builtin_HEXAGON_S2_storerb_pcr: |
| case Hexagon::BI__builtin_HEXAGON_S2_storerh_pcr: |
| case Hexagon::BI__builtin_HEXAGON_S2_storerf_pcr: |
| case Hexagon::BI__builtin_HEXAGON_S2_storeri_pcr: |
| case Hexagon::BI__builtin_HEXAGON_S2_storerd_pcr: |
| return MakeCircOp(ID, /*IsLoad=*/false); |
| case Hexagon::BI__builtin_brev_ldub: |
| return MakeBrevLd(Intrinsic::hexagon_L2_loadrub_pbr, Int8Ty); |
| case Hexagon::BI__builtin_brev_ldb: |
| return MakeBrevLd(Intrinsic::hexagon_L2_loadrb_pbr, Int8Ty); |
| case Hexagon::BI__builtin_brev_lduh: |
| return MakeBrevLd(Intrinsic::hexagon_L2_loadruh_pbr, Int16Ty); |
| case Hexagon::BI__builtin_brev_ldh: |
| return MakeBrevLd(Intrinsic::hexagon_L2_loadrh_pbr, Int16Ty); |
| case Hexagon::BI__builtin_brev_ldw: |
| return MakeBrevLd(Intrinsic::hexagon_L2_loadri_pbr, Int32Ty); |
| case Hexagon::BI__builtin_brev_ldd: |
| return MakeBrevLd(Intrinsic::hexagon_L2_loadrd_pbr, Int64Ty); |
| } // switch |
| |
| return nullptr; |
| } |
| |
| Value *CodeGenFunction::EmitRISCVCpuIs(const CallExpr *E) { |
| const Expr *CPUExpr = E->getArg(0)->IgnoreParenCasts(); |
| StringRef CPUStr = cast<clang::StringLiteral>(CPUExpr)->getString(); |
| return EmitRISCVCpuIs(CPUStr); |
| } |
| |
| Value *CodeGenFunction::EmitRISCVCpuIs(StringRef CPUStr) { |
| llvm::Type *Int32Ty = Builder.getInt32Ty(); |
| llvm::Type *Int64Ty = Builder.getInt64Ty(); |
| llvm::StructType *StructTy = llvm::StructType::get(Int32Ty, Int64Ty, Int64Ty); |
| llvm::Constant *RISCVCPUModel = |
| CGM.CreateRuntimeVariable(StructTy, "__riscv_cpu_model"); |
| cast<llvm::GlobalValue>(RISCVCPUModel)->setDSOLocal(true); |
| |
| auto loadRISCVCPUID = [&](unsigned Index) { |
| Value *Ptr = Builder.CreateStructGEP(StructTy, RISCVCPUModel, Index); |
| Value *CPUID = Builder.CreateAlignedLoad(StructTy->getTypeAtIndex(Index), |
| Ptr, llvm::MaybeAlign()); |
| return CPUID; |
| }; |
| |
| const llvm::RISCV::CPUModel Model = llvm::RISCV::getCPUModel(CPUStr); |
| |
| // Compare mvendorid. |
| Value *VendorID = loadRISCVCPUID(0); |
| Value *Result = |
| Builder.CreateICmpEQ(VendorID, Builder.getInt32(Model.MVendorID)); |
| |
| // Compare marchid. |
| Value *ArchID = loadRISCVCPUID(1); |
| Result = Builder.CreateAnd( |
| Result, Builder.CreateICmpEQ(ArchID, Builder.getInt64(Model.MArchID))); |
| |
| // Compare mimpid. |
| Value *ImpID = loadRISCVCPUID(2); |
| Result = Builder.CreateAnd( |
| Result, Builder.CreateICmpEQ(ImpID, Builder.getInt64(Model.MImpID))); |
| |
| return Result; |
| } |
| |
| Value *CodeGenFunction::EmitRISCVBuiltinExpr(unsigned BuiltinID, |
| const CallExpr *E, |
| ReturnValueSlot ReturnValue) { |
| |
| if (BuiltinID == Builtin::BI__builtin_cpu_supports) |
| return EmitRISCVCpuSupports(E); |
| if (BuiltinID == Builtin::BI__builtin_cpu_init) |
| return EmitRISCVCpuInit(); |
| if (BuiltinID == Builtin::BI__builtin_cpu_is) |
| return EmitRISCVCpuIs(E); |
| |
| SmallVector<Value *, 4> Ops; |
| llvm::Type *ResultType = ConvertType(E->getType()); |
| |
| // Find out if any arguments are required to be integer constant expressions. |
| unsigned ICEArguments = 0; |
| ASTContext::GetBuiltinTypeError Error; |
| getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments); |
| if (Error == ASTContext::GE_Missing_type) { |
| // Vector intrinsics don't have a type string. |
| assert(BuiltinID >= clang::RISCV::FirstRVVBuiltin && |
| BuiltinID <= clang::RISCV::LastRVVBuiltin); |
| ICEArguments = 0; |
| if (BuiltinID == RISCVVector::BI__builtin_rvv_vget_v || |
| BuiltinID == RISCVVector::BI__builtin_rvv_vset_v) |
| ICEArguments = 1 << 1; |
| } else { |
| assert(Error == ASTContext::GE_None && "Unexpected error"); |
| } |
| |
| if (BuiltinID == RISCV::BI__builtin_riscv_ntl_load) |
| ICEArguments |= (1 << 1); |
| if (BuiltinID == RISCV::BI__builtin_riscv_ntl_store) |
| ICEArguments |= (1 << 2); |
| |
| for (unsigned i = 0, e = E->getNumArgs(); i != e; i++) { |
| // Handle aggregate argument, namely RVV tuple types in segment load/store |
| if (hasAggregateEvaluationKind(E->getArg(i)->getType())) { |
| LValue L = EmitAggExprToLValue(E->getArg(i)); |
| llvm::Value *AggValue = Builder.CreateLoad(L.getAddress()); |
| Ops.push_back(AggValue); |
| continue; |
| } |
| Ops.push_back(EmitScalarOrConstFoldImmArg(ICEArguments, i, E)); |
| } |
| |
| Intrinsic::ID ID = Intrinsic::not_intrinsic; |
| // The 0th bit simulates the `vta` of RVV |
| // The 1st bit simulates the `vma` of RVV |
| constexpr unsigned RVV_VTA = 0x1; |
| constexpr unsigned RVV_VMA = 0x2; |
| int PolicyAttrs = 0; |
| bool IsMasked = false; |
| // This is used by segment load/store to determine it's llvm type. |
| unsigned SegInstSEW = 8; |
| |
| // Required for overloaded intrinsics. |
| llvm::SmallVector<llvm::Type *, 2> IntrinsicTypes; |
| switch (BuiltinID) { |
| default: llvm_unreachable("unexpected builtin ID"); |
| case RISCV::BI__builtin_riscv_orc_b_32: |
| case RISCV::BI__builtin_riscv_orc_b_64: |
| case RISCV::BI__builtin_riscv_clmul_32: |
| case RISCV::BI__builtin_riscv_clmul_64: |
| case RISCV::BI__builtin_riscv_clmulh_32: |
| case RISCV::BI__builtin_riscv_clmulh_64: |
| case RISCV::BI__builtin_riscv_clmulr_32: |
| case RISCV::BI__builtin_riscv_clmulr_64: |
| case RISCV::BI__builtin_riscv_xperm4_32: |
| case RISCV::BI__builtin_riscv_xperm4_64: |
| case RISCV::BI__builtin_riscv_xperm8_32: |
| case RISCV::BI__builtin_riscv_xperm8_64: |
| case RISCV::BI__builtin_riscv_brev8_32: |
| case RISCV::BI__builtin_riscv_brev8_64: |
| case RISCV::BI__builtin_riscv_zip_32: |
| case RISCV::BI__builtin_riscv_unzip_32: { |
| switch (BuiltinID) { |
| default: llvm_unreachable("unexpected builtin ID"); |
| // Zbb |
| case RISCV::BI__builtin_riscv_orc_b_32: |
| case RISCV::BI__builtin_riscv_orc_b_64: |
| ID = Intrinsic::riscv_orc_b; |
| break; |
| |
| // Zbc |
| case RISCV::BI__builtin_riscv_clmul_32: |
| case RISCV::BI__builtin_riscv_clmul_64: |
| ID = Intrinsic::riscv_clmul; |
| break; |
| case RISCV::BI__builtin_riscv_clmulh_32: |
| case RISCV::BI__builtin_riscv_clmulh_64: |
| ID = Intrinsic::riscv_clmulh; |
| break; |
| case RISCV::BI__builtin_riscv_clmulr_32: |
| case RISCV::BI__builtin_riscv_clmulr_64: |
| ID = Intrinsic::riscv_clmulr; |
| break; |
| |
| // Zbkx |
| case RISCV::BI__builtin_riscv_xperm8_32: |
| case RISCV::BI__builtin_riscv_xperm8_64: |
| ID = Intrinsic::riscv_xperm8; |
| break; |
| case RISCV::BI__builtin_riscv_xperm4_32: |
| case RISCV::BI__builtin_riscv_xperm4_64: |
| ID = Intrinsic::riscv_xperm4; |
| break; |
| |
| // Zbkb |
| case RISCV::BI__builtin_riscv_brev8_32: |
| case RISCV::BI__builtin_riscv_brev8_64: |
| ID = Intrinsic::riscv_brev8; |
| break; |
| case RISCV::BI__builtin_riscv_zip_32: |
| ID = Intrinsic::riscv_zip; |
| break; |
| case RISCV::BI__builtin_riscv_unzip_32: |
| ID = Intrinsic::riscv_unzip; |
| break; |
| } |
| |
| IntrinsicTypes = {ResultType}; |
| break; |
| } |
| |
| // Zk builtins |
| |
| // Zknh |
| case RISCV::BI__builtin_riscv_sha256sig0: |
| ID = Intrinsic::riscv_sha256sig0; |
| break; |
| case RISCV::BI__builtin_riscv_sha256sig1: |
| ID = Intrinsic::riscv_sha256sig1; |
| break; |
| case RISCV::BI__builtin_riscv_sha256sum0: |
| ID = Intrinsic::riscv_sha256sum0; |
| break; |
| case RISCV::BI__builtin_riscv_sha256sum1: |
| ID = Intrinsic::riscv_sha256sum1; |
| break; |
| |
| // Zksed |
| case RISCV::BI__builtin_riscv_sm4ks: |
| ID = Intrinsic::riscv_sm4ks; |
| break; |
| case RISCV::BI__builtin_riscv_sm4ed: |
| ID = Intrinsic::riscv_sm4ed; |
| break; |
| |
| // Zksh |
| case RISCV::BI__builtin_riscv_sm3p0: |
| ID = Intrinsic::riscv_sm3p0; |
| break; |
| case RISCV::BI__builtin_riscv_sm3p1: |
| ID = Intrinsic::riscv_sm3p1; |
| break; |
| |
| case RISCV::BI__builtin_riscv_clz_32: |
| case RISCV::BI__builtin_riscv_clz_64: { |
| Function *F = CGM.getIntrinsic(Intrinsic::ctlz, Ops[0]->getType()); |
| Value *Result = Builder.CreateCall(F, {Ops[0], Builder.getInt1(false)}); |
| if (Result->getType() != ResultType) |
| Result = |
| Builder.CreateIntCast(Result, ResultType, /*isSigned*/ false, "cast"); |
| return Result; |
| } |
| case RISCV::BI__builtin_riscv_ctz_32: |
| case RISCV::BI__builtin_riscv_ctz_64: { |
| Function *F = CGM.getIntrinsic(Intrinsic::cttz, Ops[0]->getType()); |
| Value *Result = Builder.CreateCall(F, {Ops[0], Builder.getInt1(false)}); |
| if (Result->getType() != ResultType) |
| Result = |
| Builder.CreateIntCast(Result, ResultType, /*isSigned*/ false, "cast"); |
| return Result; |
| } |
| |
| // Zihintntl |
| case RISCV::BI__builtin_riscv_ntl_load: { |
| llvm::Type *ResTy = ConvertType(E->getType()); |
| unsigned DomainVal = 5; // Default __RISCV_NTLH_ALL |
| if (Ops.size() == 2) |
| DomainVal = cast<ConstantInt>(Ops[1])->getZExtValue(); |
| |
| llvm::MDNode *RISCVDomainNode = llvm::MDNode::get( |
| getLLVMContext(), |
| llvm::ConstantAsMetadata::get(Builder.getInt32(DomainVal))); |
| llvm::MDNode *NontemporalNode = llvm::MDNode::get( |
| getLLVMContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1))); |
| |
| int Width; |
| if(ResTy->isScalableTy()) { |
| const ScalableVectorType *SVTy = cast<ScalableVectorType>(ResTy); |
| llvm::Type *ScalarTy = ResTy->getScalarType(); |
| Width = ScalarTy->getPrimitiveSizeInBits() * |
| SVTy->getElementCount().getKnownMinValue(); |
| } else |
| Width = ResTy->getPrimitiveSizeInBits(); |
| LoadInst *Load = Builder.CreateLoad( |
| Address(Ops[0], ResTy, CharUnits::fromQuantity(Width / 8))); |
| |
| Load->setMetadata(llvm::LLVMContext::MD_nontemporal, NontemporalNode); |
| Load->setMetadata(CGM.getModule().getMDKindID("riscv-nontemporal-domain"), |
| RISCVDomainNode); |
| |
| return Load; |
| } |
| case RISCV::BI__builtin_riscv_ntl_store: { |
| unsigned DomainVal = 5; // Default __RISCV_NTLH_ALL |
| if (Ops.size() == 3) |
| DomainVal = cast<ConstantInt>(Ops[2])->getZExtValue(); |
| |
| llvm::MDNode *RISCVDomainNode = llvm::MDNode::get( |
| getLLVMContext(), |
| llvm::ConstantAsMetadata::get(Builder.getInt32(DomainVal))); |
| llvm::MDNode *NontemporalNode = llvm::MDNode::get( |
| getLLVMContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1))); |
| |
| StoreInst *Store = Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]); |
| Store->setMetadata(llvm::LLVMContext::MD_nontemporal, NontemporalNode); |
| Store->setMetadata(CGM.getModule().getMDKindID("riscv-nontemporal-domain"), |
| RISCVDomainNode); |
| |
| return Store; |
| } |
| // XCValu |
| case RISCV::BI__builtin_riscv_cv_alu_addN: |
| ID = Intrinsic::riscv_cv_alu_addN; |
| break; |
| case RISCV::BI__builtin_riscv_cv_alu_addRN: |
| ID = Intrinsic::riscv_cv_alu_addRN; |
| break; |
| case RISCV::BI__builtin_riscv_cv_alu_adduN: |
| ID = Intrinsic::riscv_cv_alu_adduN; |
| break; |
| case RISCV::BI__builtin_riscv_cv_alu_adduRN: |
| ID = Intrinsic::riscv_cv_alu_adduRN; |
| break; |
| case RISCV::BI__builtin_riscv_cv_alu_clip: |
| ID = Intrinsic::riscv_cv_alu_clip; |
| break; |
| case RISCV::BI__builtin_riscv_cv_alu_clipu: |
| ID = Intrinsic::riscv_cv_alu_clipu; |
| break; |
| case RISCV::BI__builtin_riscv_cv_alu_extbs: |
| return Builder.CreateSExt(Builder.CreateTrunc(Ops[0], Int8Ty), Int32Ty, |
| "extbs"); |
| case RISCV::BI__builtin_riscv_cv_alu_extbz: |
| return Builder.CreateZExt(Builder.CreateTrunc(Ops[0], Int8Ty), Int32Ty, |
| "extbz"); |
| case RISCV::BI__builtin_riscv_cv_alu_exths: |
| return Builder.CreateSExt(Builder.CreateTrunc(Ops[0], Int16Ty), Int32Ty, |
| "exths"); |
| case RISCV::BI__builtin_riscv_cv_alu_exthz: |
| return Builder.CreateZExt(Builder.CreateTrunc(Ops[0], Int16Ty), Int32Ty, |
| "exthz"); |
| case RISCV::BI__builtin_riscv_cv_alu_slet: |
| return Builder.CreateZExt(Builder.CreateICmpSLE(Ops[0], Ops[1]), Int32Ty, |
| "sle"); |
| case RISCV::BI__builtin_riscv_cv_alu_sletu: |
| return Builder.CreateZExt(Builder.CreateICmpULE(Ops[0], Ops[1]), Int32Ty, |
| "sleu"); |
| case RISCV::BI__builtin_riscv_cv_alu_subN: |
| ID = Intrinsic::riscv_cv_alu_subN; |
| break; |
| case RISCV::BI__builtin_riscv_cv_alu_subRN: |
| ID = Intrinsic::riscv_cv_alu_subRN; |
| break; |
| case RISCV::BI__builtin_riscv_cv_alu_subuN: |
| ID = Intrinsic::riscv_cv_alu_subuN; |
| break; |
| case RISCV::BI__builtin_riscv_cv_alu_subuRN: |
| ID = Intrinsic::riscv_cv_alu_subuRN; |
| break; |
| |
| // Vector builtins are handled from here. |
| #include "clang/Basic/riscv_vector_builtin_cg.inc" |
| |
| // SiFive Vector builtins are handled from here. |
| #include "clang/Basic/riscv_sifive_vector_builtin_cg.inc" |
| } |
| |
| assert(ID != Intrinsic::not_intrinsic); |
| |
| llvm::Function *F = CGM.getIntrinsic(ID, IntrinsicTypes); |
| return Builder.CreateCall(F, Ops, ""); |
| } |