| //===--- CheckExprLifetime.cpp --------------------------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "CheckExprLifetime.h" |
| #include "clang/AST/Decl.h" |
| #include "clang/AST/Expr.h" |
| #include "clang/AST/Type.h" |
| #include "clang/Basic/DiagnosticSema.h" |
| #include "clang/Sema/Initialization.h" |
| #include "clang/Sema/Sema.h" |
| #include "llvm/ADT/PointerIntPair.h" |
| |
| namespace clang::sema { |
| namespace { |
| enum LifetimeKind { |
| /// The lifetime of a temporary bound to this entity ends at the end of the |
| /// full-expression, and that's (probably) fine. |
| LK_FullExpression, |
| |
| /// The lifetime of a temporary bound to this entity is extended to the |
| /// lifeitme of the entity itself. |
| LK_Extended, |
| |
| /// The lifetime of a temporary bound to this entity probably ends too soon, |
| /// because the entity is allocated in a new-expression. |
| LK_New, |
| |
| /// The lifetime of a temporary bound to this entity ends too soon, because |
| /// the entity is a return object. |
| LK_Return, |
| |
| /// The lifetime of a temporary bound to this entity ends too soon, because |
| /// the entity passed to a musttail function call. |
| LK_MustTail, |
| |
| /// The lifetime of a temporary bound to this entity ends too soon, because |
| /// the entity is the result of a statement expression. |
| LK_StmtExprResult, |
| |
| /// This is a mem-initializer: if it would extend a temporary (other than via |
| /// a default member initializer), the program is ill-formed. |
| LK_MemInitializer, |
| |
| /// The lifetime of a temporary bound to this entity may end too soon, |
| /// because the entity is a pointer and we assign the address of a temporary |
| /// object to it. |
| LK_Assignment, |
| |
| /// The lifetime of a temporary bound to this entity may end too soon, |
| /// because the entity may capture the reference to a temporary object. |
| LK_LifetimeCapture, |
| }; |
| using LifetimeResult = |
| llvm::PointerIntPair<const InitializedEntity *, 3, LifetimeKind>; |
| } // namespace |
| |
| /// Determine the declaration which an initialized entity ultimately refers to, |
| /// for the purpose of lifetime-extending a temporary bound to a reference in |
| /// the initialization of \p Entity. |
| static LifetimeResult |
| getEntityLifetime(const InitializedEntity *Entity, |
| const InitializedEntity *InitField = nullptr) { |
| // C++11 [class.temporary]p5: |
| switch (Entity->getKind()) { |
| case InitializedEntity::EK_Variable: |
| // The temporary [...] persists for the lifetime of the reference |
| return {Entity, LK_Extended}; |
| |
| case InitializedEntity::EK_Member: |
| // For subobjects, we look at the complete object. |
| if (Entity->getParent()) |
| return getEntityLifetime(Entity->getParent(), Entity); |
| |
| // except: |
| // C++17 [class.base.init]p8: |
| // A temporary expression bound to a reference member in a |
| // mem-initializer is ill-formed. |
| // C++17 [class.base.init]p11: |
| // A temporary expression bound to a reference member from a |
| // default member initializer is ill-formed. |
| // |
| // The context of p11 and its example suggest that it's only the use of a |
| // default member initializer from a constructor that makes the program |
| // ill-formed, not its mere existence, and that it can even be used by |
| // aggregate initialization. |
| return {Entity, Entity->isDefaultMemberInitializer() ? LK_Extended |
| : LK_MemInitializer}; |
| |
| case InitializedEntity::EK_Binding: |
| // Per [dcl.decomp]p3, the binding is treated as a variable of reference |
| // type. |
| return {Entity, LK_Extended}; |
| |
| case InitializedEntity::EK_Parameter: |
| case InitializedEntity::EK_Parameter_CF_Audited: |
| // -- A temporary bound to a reference parameter in a function call |
| // persists until the completion of the full-expression containing |
| // the call. |
| return {nullptr, LK_FullExpression}; |
| |
| case InitializedEntity::EK_TemplateParameter: |
| // FIXME: This will always be ill-formed; should we eagerly diagnose it |
| // here? |
| return {nullptr, LK_FullExpression}; |
| |
| case InitializedEntity::EK_Result: |
| // -- The lifetime of a temporary bound to the returned value in a |
| // function return statement is not extended; the temporary is |
| // destroyed at the end of the full-expression in the return statement. |
| return {nullptr, LK_Return}; |
| |
| case InitializedEntity::EK_StmtExprResult: |
| // FIXME: Should we lifetime-extend through the result of a statement |
| // expression? |
| return {nullptr, LK_StmtExprResult}; |
| |
| case InitializedEntity::EK_New: |
| // -- A temporary bound to a reference in a new-initializer persists |
| // until the completion of the full-expression containing the |
| // new-initializer. |
| return {nullptr, LK_New}; |
| |
| case InitializedEntity::EK_Temporary: |
| case InitializedEntity::EK_CompoundLiteralInit: |
| case InitializedEntity::EK_RelatedResult: |
| // We don't yet know the storage duration of the surrounding temporary. |
| // Assume it's got full-expression duration for now, it will patch up our |
| // storage duration if that's not correct. |
| return {nullptr, LK_FullExpression}; |
| |
| case InitializedEntity::EK_ArrayElement: |
| // For subobjects, we look at the complete object. |
| return getEntityLifetime(Entity->getParent(), InitField); |
| |
| case InitializedEntity::EK_Base: |
| // For subobjects, we look at the complete object. |
| if (Entity->getParent()) |
| return getEntityLifetime(Entity->getParent(), InitField); |
| return {InitField, LK_MemInitializer}; |
| |
| case InitializedEntity::EK_Delegating: |
| // We can reach this case for aggregate initialization in a constructor: |
| // struct A { int &&r; }; |
| // struct B : A { B() : A{0} {} }; |
| // In this case, use the outermost field decl as the context. |
| return {InitField, LK_MemInitializer}; |
| |
| case InitializedEntity::EK_BlockElement: |
| case InitializedEntity::EK_LambdaToBlockConversionBlockElement: |
| case InitializedEntity::EK_LambdaCapture: |
| case InitializedEntity::EK_VectorElement: |
| case InitializedEntity::EK_ComplexElement: |
| return {nullptr, LK_FullExpression}; |
| |
| case InitializedEntity::EK_Exception: |
| // FIXME: Can we diagnose lifetime problems with exceptions? |
| return {nullptr, LK_FullExpression}; |
| |
| case InitializedEntity::EK_ParenAggInitMember: |
| // -- A temporary object bound to a reference element of an aggregate of |
| // class type initialized from a parenthesized expression-list |
| // [dcl.init, 9.3] persists until the completion of the full-expression |
| // containing the expression-list. |
| return {nullptr, LK_FullExpression}; |
| } |
| |
| llvm_unreachable("unknown entity kind"); |
| } |
| |
| namespace { |
| enum ReferenceKind { |
| /// Lifetime would be extended by a reference binding to a temporary. |
| RK_ReferenceBinding, |
| /// Lifetime would be extended by a std::initializer_list object binding to |
| /// its backing array. |
| RK_StdInitializerList, |
| }; |
| |
| /// A temporary or local variable. This will be one of: |
| /// * A MaterializeTemporaryExpr. |
| /// * A DeclRefExpr whose declaration is a local. |
| /// * An AddrLabelExpr. |
| /// * A BlockExpr for a block with captures. |
| using Local = Expr *; |
| |
| /// Expressions we stepped over when looking for the local state. Any steps |
| /// that would inhibit lifetime extension or take us out of subexpressions of |
| /// the initializer are included. |
| struct IndirectLocalPathEntry { |
| enum EntryKind { |
| DefaultInit, |
| AddressOf, |
| VarInit, |
| LValToRVal, |
| LifetimeBoundCall, |
| TemporaryCopy, |
| LambdaCaptureInit, |
| MemberExpr, |
| GslReferenceInit, |
| GslPointerInit, |
| GslPointerAssignment, |
| DefaultArg, |
| ParenAggInit, |
| } Kind; |
| Expr *E; |
| union { |
| const Decl *D = nullptr; |
| const LambdaCapture *Capture; |
| }; |
| IndirectLocalPathEntry() {} |
| IndirectLocalPathEntry(EntryKind K, Expr *E) : Kind(K), E(E) {} |
| IndirectLocalPathEntry(EntryKind K, Expr *E, const Decl *D) |
| : Kind(K), E(E), D(D) {} |
| IndirectLocalPathEntry(EntryKind K, Expr *E, const LambdaCapture *Capture) |
| : Kind(K), E(E), Capture(Capture) {} |
| }; |
| |
| using IndirectLocalPath = llvm::SmallVectorImpl<IndirectLocalPathEntry>; |
| |
| struct RevertToOldSizeRAII { |
| IndirectLocalPath &Path; |
| unsigned OldSize = Path.size(); |
| RevertToOldSizeRAII(IndirectLocalPath &Path) : Path(Path) {} |
| ~RevertToOldSizeRAII() { Path.resize(OldSize); } |
| }; |
| |
| using LocalVisitor = llvm::function_ref<bool(IndirectLocalPath &Path, Local L, |
| ReferenceKind RK)>; |
| } // namespace |
| |
| static bool isVarOnPath(const IndirectLocalPath &Path, VarDecl *VD) { |
| for (auto E : Path) |
| if (E.Kind == IndirectLocalPathEntry::VarInit && E.D == VD) |
| return true; |
| return false; |
| } |
| |
| static bool pathContainsInit(const IndirectLocalPath &Path) { |
| return llvm::any_of(Path, [=](IndirectLocalPathEntry E) { |
| return E.Kind == IndirectLocalPathEntry::DefaultInit || |
| E.Kind == IndirectLocalPathEntry::VarInit; |
| }); |
| } |
| |
| static void visitLocalsRetainedByInitializer(IndirectLocalPath &Path, |
| Expr *Init, LocalVisitor Visit, |
| bool RevisitSubinits); |
| |
| static void visitLocalsRetainedByReferenceBinding(IndirectLocalPath &Path, |
| Expr *Init, ReferenceKind RK, |
| LocalVisitor Visit); |
| |
| template <typename T> static bool isRecordWithAttr(QualType Type) { |
| auto *RD = Type->getAsCXXRecordDecl(); |
| if (!RD) |
| return false; |
| // Generally, if a primary template class declaration is annotated with an |
| // attribute, all its specializations generated from template instantiations |
| // should inherit the attribute. |
| // |
| // However, since lifetime analysis occurs during parsing, we may encounter |
| // cases where a full definition of the specialization is not required. In |
| // such cases, the specialization declaration remains incomplete and lacks the |
| // attribute. Therefore, we fall back to checking the primary template class. |
| // |
| // Note: it is possible for a specialization declaration to have an attribute |
| // even if the primary template does not. |
| // |
| // FIXME: What if the primary template and explicit specialization |
| // declarations have conflicting attributes? We should consider diagnosing |
| // this scenario. |
| bool Result = RD->hasAttr<T>(); |
| |
| if (auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(RD)) |
| Result |= CTSD->getSpecializedTemplate()->getTemplatedDecl()->hasAttr<T>(); |
| |
| return Result; |
| } |
| |
| // Tells whether the type is annotated with [[gsl::Pointer]]. |
| bool isGLSPointerType(QualType QT) { return isRecordWithAttr<PointerAttr>(QT); } |
| |
| static bool isPointerLikeType(QualType QT) { |
| return isGLSPointerType(QT) || QT->isPointerType() || QT->isNullPtrType(); |
| } |
| |
| // Decl::isInStdNamespace will return false for iterators in some STL |
| // implementations due to them being defined in a namespace outside of the std |
| // namespace. |
| static bool isInStlNamespace(const Decl *D) { |
| const DeclContext *DC = D->getDeclContext(); |
| if (!DC) |
| return false; |
| if (const auto *ND = dyn_cast<NamespaceDecl>(DC)) |
| if (const IdentifierInfo *II = ND->getIdentifier()) { |
| StringRef Name = II->getName(); |
| if (Name.size() >= 2 && Name.front() == '_' && |
| (Name[1] == '_' || isUppercase(Name[1]))) |
| return true; |
| } |
| |
| return DC->isStdNamespace(); |
| } |
| |
| // Returns true if the given Record decl is a form of `GSLOwner<Pointer>` |
| // type, e.g. std::vector<string_view>, std::optional<string_view>. |
| static bool isContainerOfPointer(const RecordDecl *Container) { |
| if (const auto *CTSD = |
| dyn_cast_if_present<ClassTemplateSpecializationDecl>(Container)) { |
| if (!CTSD->hasAttr<OwnerAttr>()) // Container must be a GSL owner type. |
| return false; |
| const auto &TAs = CTSD->getTemplateArgs(); |
| return TAs.size() > 0 && TAs[0].getKind() == TemplateArgument::Type && |
| isPointerLikeType(TAs[0].getAsType()); |
| } |
| return false; |
| } |
| static bool isContainerOfOwner(const RecordDecl *Container) { |
| const auto *CTSD = |
| dyn_cast_if_present<ClassTemplateSpecializationDecl>(Container); |
| if (!CTSD) |
| return false; |
| if (!CTSD->hasAttr<OwnerAttr>()) // Container must be a GSL owner type. |
| return false; |
| const auto &TAs = CTSD->getTemplateArgs(); |
| return TAs.size() > 0 && TAs[0].getKind() == TemplateArgument::Type && |
| isRecordWithAttr<OwnerAttr>(TAs[0].getAsType()); |
| } |
| |
| // Returns true if the given Record is `std::initializer_list<pointer>`. |
| static bool isStdInitializerListOfPointer(const RecordDecl *RD) { |
| if (const auto *CTSD = |
| dyn_cast_if_present<ClassTemplateSpecializationDecl>(RD)) { |
| const auto &TAs = CTSD->getTemplateArgs(); |
| return isInStlNamespace(RD) && RD->getIdentifier() && |
| RD->getName() == "initializer_list" && TAs.size() > 0 && |
| TAs[0].getKind() == TemplateArgument::Type && |
| isPointerLikeType(TAs[0].getAsType()); |
| } |
| return false; |
| } |
| |
| static bool shouldTrackImplicitObjectArg(const CXXMethodDecl *Callee) { |
| if (auto *Conv = dyn_cast_or_null<CXXConversionDecl>(Callee)) |
| if (isRecordWithAttr<PointerAttr>(Conv->getConversionType()) && |
| Callee->getParent()->hasAttr<OwnerAttr>()) |
| return true; |
| if (!isInStlNamespace(Callee->getParent())) |
| return false; |
| if (!isRecordWithAttr<PointerAttr>( |
| Callee->getFunctionObjectParameterType()) && |
| !isRecordWithAttr<OwnerAttr>(Callee->getFunctionObjectParameterType())) |
| return false; |
| if (isPointerLikeType(Callee->getReturnType())) { |
| if (!Callee->getIdentifier()) |
| return false; |
| return llvm::StringSwitch<bool>(Callee->getName()) |
| .Cases("begin", "rbegin", "cbegin", "crbegin", true) |
| .Cases("end", "rend", "cend", "crend", true) |
| .Cases("c_str", "data", "get", true) |
| // Map and set types. |
| .Cases("find", "equal_range", "lower_bound", "upper_bound", true) |
| .Default(false); |
| } |
| if (Callee->getReturnType()->isReferenceType()) { |
| if (!Callee->getIdentifier()) { |
| auto OO = Callee->getOverloadedOperator(); |
| if (!Callee->getParent()->hasAttr<OwnerAttr>()) |
| return false; |
| return OO == OverloadedOperatorKind::OO_Subscript || |
| OO == OverloadedOperatorKind::OO_Star; |
| } |
| return llvm::StringSwitch<bool>(Callee->getName()) |
| .Cases("front", "back", "at", "top", "value", true) |
| .Default(false); |
| } |
| return false; |
| } |
| |
| static bool shouldTrackFirstArgument(const FunctionDecl *FD) { |
| if (!FD->getIdentifier() || FD->getNumParams() != 1) |
| return false; |
| const auto *RD = FD->getParamDecl(0)->getType()->getPointeeCXXRecordDecl(); |
| if (!FD->isInStdNamespace() || !RD || !RD->isInStdNamespace()) |
| return false; |
| if (!RD->hasAttr<PointerAttr>() && !RD->hasAttr<OwnerAttr>()) |
| return false; |
| if (FD->getReturnType()->isPointerType() || |
| isRecordWithAttr<PointerAttr>(FD->getReturnType())) { |
| return llvm::StringSwitch<bool>(FD->getName()) |
| .Cases("begin", "rbegin", "cbegin", "crbegin", true) |
| .Cases("end", "rend", "cend", "crend", true) |
| .Case("data", true) |
| .Default(false); |
| } |
| if (FD->getReturnType()->isReferenceType()) { |
| return llvm::StringSwitch<bool>(FD->getName()) |
| .Cases("get", "any_cast", true) |
| .Default(false); |
| } |
| return false; |
| } |
| |
| // Returns true if the given constructor is a copy-like constructor, such as |
| // `Ctor(Owner<U>&&)` or `Ctor(const Owner<U>&)`. |
| static bool isCopyLikeConstructor(const CXXConstructorDecl *Ctor) { |
| if (!Ctor || Ctor->param_size() != 1) |
| return false; |
| const auto *ParamRefType = |
| Ctor->getParamDecl(0)->getType()->getAs<ReferenceType>(); |
| if (!ParamRefType) |
| return false; |
| |
| // Check if the first parameter type is "Owner<U>". |
| if (const auto *TST = |
| ParamRefType->getPointeeType()->getAs<TemplateSpecializationType>()) |
| return TST->getTemplateName() |
| .getAsTemplateDecl() |
| ->getTemplatedDecl() |
| ->hasAttr<OwnerAttr>(); |
| return false; |
| } |
| |
| // Returns true if we should perform the GSL analysis on the first argument for |
| // the given constructor. |
| static bool |
| shouldTrackFirstArgumentForConstructor(const CXXConstructExpr *Ctor) { |
| const auto *LHSRecordDecl = Ctor->getConstructor()->getParent(); |
| |
| // Case 1, construct a GSL pointer, e.g. std::string_view |
| // Always inspect when LHS is a pointer. |
| if (LHSRecordDecl->hasAttr<PointerAttr>()) |
| return true; |
| |
| if (Ctor->getConstructor()->param_empty() || |
| !isContainerOfPointer(LHSRecordDecl)) |
| return false; |
| |
| // Now, the LHS is an Owner<Pointer> type, e.g., std::vector<string_view>. |
| // |
| // At a high level, we cannot precisely determine what the nested pointer |
| // owns. However, by analyzing the RHS owner type, we can use heuristics to |
| // infer ownership information. These heuristics are designed to be |
| // conservative, minimizing false positives while still providing meaningful |
| // diagnostics. |
| // |
| // While this inference isn't perfect, it helps catch common use-after-free |
| // patterns. |
| auto RHSArgType = Ctor->getArg(0)->getType(); |
| const auto *RHSRD = RHSArgType->getAsRecordDecl(); |
| // LHS is constructed from an intializer_list. |
| // |
| // std::initializer_list is a proxy object that provides access to the backing |
| // array. We perform analysis on it to determine if there are any dangling |
| // temporaries in the backing array. |
| // E.g. std::vector<string_view> abc = {string()}; |
| if (isStdInitializerListOfPointer(RHSRD)) |
| return true; |
| |
| // RHS must be an owner. |
| if (!isRecordWithAttr<OwnerAttr>(RHSArgType)) |
| return false; |
| |
| // Bail out if the RHS is Owner<Pointer>. |
| // |
| // We cannot reliably determine what the LHS nested pointer owns -- it could |
| // be the entire RHS or the nested pointer in RHS. To avoid false positives, |
| // we skip this case, such as: |
| // std::stack<std::string_view> s(std::deque<std::string_view>{}); |
| // |
| // TODO: this also has a false negative, it doesn't catch the case like: |
| // std::optional<span<int*>> os = std::vector<int*>{} |
| if (isContainerOfPointer(RHSRD)) |
| return false; |
| |
| // Assume that the nested Pointer is constructed from the nested Owner. |
| // E.g. std::optional<string_view> sv = std::optional<string>(s); |
| if (isContainerOfOwner(RHSRD)) |
| return true; |
| |
| // Now, the LHS is an Owner<Pointer> and the RHS is an Owner<X>, where X is |
| // neither an `Owner` nor a `Pointer`. |
| // |
| // Use the constructor's signature as a hint. If it is a copy-like constructor |
| // `Owner1<Pointer>(Owner2<X>&&)`, we assume that the nested pointer is |
| // constructed from X. In such cases, we do not diagnose, as `X` is not an |
| // owner, e.g. |
| // std::optional<string_view> sv = std::optional<Foo>(); |
| if (const auto *PrimaryCtorTemplate = |
| Ctor->getConstructor()->getPrimaryTemplate(); |
| PrimaryCtorTemplate && |
| isCopyLikeConstructor(dyn_cast_if_present<CXXConstructorDecl>( |
| PrimaryCtorTemplate->getTemplatedDecl()))) { |
| return false; |
| } |
| // Assume that the nested pointer is constructed from the whole RHS. |
| // E.g. optional<string_view> s = std::string(); |
| return true; |
| } |
| |
| // Return true if this is an "normal" assignment operator. |
| // We assume that a normal assignment operator always returns *this, that is, |
| // an lvalue reference that is the same type as the implicit object parameter |
| // (or the LHS for a non-member operator$=). |
| static bool isNormalAssignmentOperator(const FunctionDecl *FD) { |
| OverloadedOperatorKind OO = FD->getDeclName().getCXXOverloadedOperator(); |
| if (OO == OO_Equal || isCompoundAssignmentOperator(OO)) { |
| QualType RetT = FD->getReturnType(); |
| if (RetT->isLValueReferenceType()) { |
| ASTContext &Ctx = FD->getASTContext(); |
| QualType LHST; |
| auto *MD = dyn_cast<CXXMethodDecl>(FD); |
| if (MD && MD->isCXXInstanceMember()) |
| LHST = Ctx.getLValueReferenceType(MD->getFunctionObjectParameterType()); |
| else |
| LHST = FD->getParamDecl(0)->getType(); |
| if (Ctx.hasSameType(RetT, LHST)) |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| static const FunctionDecl * |
| getDeclWithMergedLifetimeBoundAttrs(const FunctionDecl *FD) { |
| return FD != nullptr ? FD->getMostRecentDecl() : nullptr; |
| } |
| |
| static const CXXMethodDecl * |
| getDeclWithMergedLifetimeBoundAttrs(const CXXMethodDecl *CMD) { |
| const FunctionDecl *FD = CMD; |
| return cast_if_present<CXXMethodDecl>( |
| getDeclWithMergedLifetimeBoundAttrs(FD)); |
| } |
| |
| bool implicitObjectParamIsLifetimeBound(const FunctionDecl *FD) { |
| FD = getDeclWithMergedLifetimeBoundAttrs(FD); |
| const TypeSourceInfo *TSI = FD->getTypeSourceInfo(); |
| if (!TSI) |
| return false; |
| // Don't declare this variable in the second operand of the for-statement; |
| // GCC miscompiles that by ending its lifetime before evaluating the |
| // third operand. See gcc.gnu.org/PR86769. |
| AttributedTypeLoc ATL; |
| for (TypeLoc TL = TSI->getTypeLoc(); |
| (ATL = TL.getAsAdjusted<AttributedTypeLoc>()); |
| TL = ATL.getModifiedLoc()) { |
| if (ATL.getAttrAs<LifetimeBoundAttr>()) |
| return true; |
| } |
| |
| return isNormalAssignmentOperator(FD); |
| } |
| |
| // Visit lifetimebound or gsl-pointer arguments. |
| static void visitFunctionCallArguments(IndirectLocalPath &Path, Expr *Call, |
| LocalVisitor Visit) { |
| const FunctionDecl *Callee; |
| ArrayRef<Expr *> Args; |
| |
| if (auto *CE = dyn_cast<CallExpr>(Call)) { |
| Callee = CE->getDirectCallee(); |
| Args = llvm::ArrayRef(CE->getArgs(), CE->getNumArgs()); |
| } else { |
| auto *CCE = cast<CXXConstructExpr>(Call); |
| Callee = CCE->getConstructor(); |
| Args = llvm::ArrayRef(CCE->getArgs(), CCE->getNumArgs()); |
| } |
| if (!Callee) |
| return; |
| |
| bool EnableGSLAnalysis = !Callee->getASTContext().getDiagnostics().isIgnored( |
| diag::warn_dangling_lifetime_pointer, SourceLocation()); |
| Expr *ObjectArg = nullptr; |
| if (isa<CXXOperatorCallExpr>(Call) && Callee->isCXXInstanceMember()) { |
| ObjectArg = Args[0]; |
| Args = Args.slice(1); |
| } else if (auto *MCE = dyn_cast<CXXMemberCallExpr>(Call)) { |
| ObjectArg = MCE->getImplicitObjectArgument(); |
| } |
| |
| auto VisitLifetimeBoundArg = [&](const Decl *D, Expr *Arg) { |
| Path.push_back({IndirectLocalPathEntry::LifetimeBoundCall, Arg, D}); |
| if (Arg->isGLValue()) |
| visitLocalsRetainedByReferenceBinding(Path, Arg, RK_ReferenceBinding, |
| Visit); |
| else |
| visitLocalsRetainedByInitializer(Path, Arg, Visit, true); |
| Path.pop_back(); |
| }; |
| auto VisitGSLPointerArg = [&](const FunctionDecl *Callee, Expr *Arg) { |
| auto ReturnType = Callee->getReturnType(); |
| |
| // Once we initialized a value with a non gsl-owner reference, it can no |
| // longer dangle. |
| if (ReturnType->isReferenceType() && |
| !isRecordWithAttr<OwnerAttr>(ReturnType->getPointeeType())) { |
| for (const IndirectLocalPathEntry &PE : llvm::reverse(Path)) { |
| if (PE.Kind == IndirectLocalPathEntry::GslReferenceInit || |
| PE.Kind == IndirectLocalPathEntry::LifetimeBoundCall) |
| continue; |
| if (PE.Kind == IndirectLocalPathEntry::GslPointerInit || |
| PE.Kind == IndirectLocalPathEntry::GslPointerAssignment) |
| return; |
| break; |
| } |
| } |
| Path.push_back({ReturnType->isReferenceType() |
| ? IndirectLocalPathEntry::GslReferenceInit |
| : IndirectLocalPathEntry::GslPointerInit, |
| Arg, Callee}); |
| if (Arg->isGLValue()) |
| visitLocalsRetainedByReferenceBinding(Path, Arg, RK_ReferenceBinding, |
| Visit); |
| else |
| visitLocalsRetainedByInitializer(Path, Arg, Visit, true); |
| Path.pop_back(); |
| }; |
| |
| bool CheckCoroCall = false; |
| if (const auto *RD = Callee->getReturnType()->getAsRecordDecl()) { |
| CheckCoroCall = RD->hasAttr<CoroLifetimeBoundAttr>() && |
| RD->hasAttr<CoroReturnTypeAttr>() && |
| !Callee->hasAttr<CoroDisableLifetimeBoundAttr>(); |
| } |
| |
| if (ObjectArg) { |
| bool CheckCoroObjArg = CheckCoroCall; |
| // Coroutine lambda objects with empty capture list are not lifetimebound. |
| if (auto *LE = dyn_cast<LambdaExpr>(ObjectArg->IgnoreImplicit()); |
| LE && LE->captures().empty()) |
| CheckCoroObjArg = false; |
| // Allow `get_return_object()` as the object param (__promise) is not |
| // lifetimebound. |
| if (Sema::CanBeGetReturnObject(Callee)) |
| CheckCoroObjArg = false; |
| if (implicitObjectParamIsLifetimeBound(Callee) || CheckCoroObjArg) |
| VisitLifetimeBoundArg(Callee, ObjectArg); |
| else if (EnableGSLAnalysis) { |
| if (auto *CME = dyn_cast<CXXMethodDecl>(Callee); |
| CME && shouldTrackImplicitObjectArg(CME)) |
| VisitGSLPointerArg(Callee, ObjectArg); |
| } |
| } |
| |
| const FunctionDecl *CanonCallee = getDeclWithMergedLifetimeBoundAttrs(Callee); |
| unsigned NP = std::min(Callee->getNumParams(), CanonCallee->getNumParams()); |
| for (unsigned I = 0, N = std::min<unsigned>(NP, Args.size()); I != N; ++I) { |
| Expr *Arg = Args[I]; |
| RevertToOldSizeRAII RAII(Path); |
| if (auto *DAE = dyn_cast<CXXDefaultArgExpr>(Arg)) { |
| Path.push_back( |
| {IndirectLocalPathEntry::DefaultArg, DAE, DAE->getParam()}); |
| Arg = DAE->getExpr(); |
| } |
| if (CheckCoroCall || |
| CanonCallee->getParamDecl(I)->hasAttr<LifetimeBoundAttr>()) |
| VisitLifetimeBoundArg(CanonCallee->getParamDecl(I), Arg); |
| else if (const auto *CaptureAttr = |
| CanonCallee->getParamDecl(I)->getAttr<LifetimeCaptureByAttr>(); |
| CaptureAttr && isa<CXXConstructorDecl>(CanonCallee) && |
| llvm::any_of(CaptureAttr->params(), [](int ArgIdx) { |
| return ArgIdx == LifetimeCaptureByAttr::THIS; |
| })) |
| // `lifetime_capture_by(this)` in a class constructor has the same |
| // semantics as `lifetimebound`: |
| // |
| // struct Foo { |
| // const int& a; |
| // // Equivalent to Foo(const int& t [[clang::lifetimebound]]) |
| // Foo(const int& t [[clang::lifetime_capture_by(this)]]) : a(t) {} |
| // }; |
| // |
| // In the implementation, `lifetime_capture_by` is treated as an alias for |
| // `lifetimebound` and shares the same code path. This implies the emitted |
| // diagnostics will be emitted under `-Wdangling`, not |
| // `-Wdangling-capture`. |
| VisitLifetimeBoundArg(CanonCallee->getParamDecl(I), Arg); |
| else if (EnableGSLAnalysis && I == 0) { |
| // Perform GSL analysis for the first argument |
| if (shouldTrackFirstArgument(CanonCallee)) { |
| VisitGSLPointerArg(CanonCallee, Arg); |
| } else if (auto *Ctor = dyn_cast<CXXConstructExpr>(Call); |
| Ctor && shouldTrackFirstArgumentForConstructor(Ctor)) { |
| VisitGSLPointerArg(Ctor->getConstructor(), Arg); |
| } |
| } |
| } |
| } |
| |
| /// Visit the locals that would be reachable through a reference bound to the |
| /// glvalue expression \c Init. |
| static void visitLocalsRetainedByReferenceBinding(IndirectLocalPath &Path, |
| Expr *Init, ReferenceKind RK, |
| LocalVisitor Visit) { |
| RevertToOldSizeRAII RAII(Path); |
| |
| // Walk past any constructs which we can lifetime-extend across. |
| Expr *Old; |
| do { |
| Old = Init; |
| |
| if (auto *FE = dyn_cast<FullExpr>(Init)) |
| Init = FE->getSubExpr(); |
| |
| if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) { |
| // If this is just redundant braces around an initializer, step over it. |
| if (ILE->isTransparent()) |
| Init = ILE->getInit(0); |
| } |
| |
| if (MemberExpr *ME = dyn_cast<MemberExpr>(Init->IgnoreImpCasts())) |
| Path.push_back( |
| {IndirectLocalPathEntry::MemberExpr, ME, ME->getMemberDecl()}); |
| // Step over any subobject adjustments; we may have a materialized |
| // temporary inside them. |
| Init = const_cast<Expr *>(Init->skipRValueSubobjectAdjustments()); |
| |
| // Per current approach for DR1376, look through casts to reference type |
| // when performing lifetime extension. |
| if (CastExpr *CE = dyn_cast<CastExpr>(Init)) |
| if (CE->getSubExpr()->isGLValue()) |
| Init = CE->getSubExpr(); |
| |
| // Per the current approach for DR1299, look through array element access |
| // on array glvalues when performing lifetime extension. |
| if (auto *ASE = dyn_cast<ArraySubscriptExpr>(Init)) { |
| Init = ASE->getBase(); |
| auto *ICE = dyn_cast<ImplicitCastExpr>(Init); |
| if (ICE && ICE->getCastKind() == CK_ArrayToPointerDecay) |
| Init = ICE->getSubExpr(); |
| else |
| // We can't lifetime extend through this but we might still find some |
| // retained temporaries. |
| return visitLocalsRetainedByInitializer(Path, Init, Visit, true); |
| } |
| |
| // Step into CXXDefaultInitExprs so we can diagnose cases where a |
| // constructor inherits one as an implicit mem-initializer. |
| if (auto *DIE = dyn_cast<CXXDefaultInitExpr>(Init)) { |
| Path.push_back( |
| {IndirectLocalPathEntry::DefaultInit, DIE, DIE->getField()}); |
| Init = DIE->getExpr(); |
| } |
| } while (Init != Old); |
| |
| if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(Init)) { |
| if (Visit(Path, Local(MTE), RK)) |
| visitLocalsRetainedByInitializer(Path, MTE->getSubExpr(), Visit, true); |
| } |
| |
| if (auto *M = dyn_cast<MemberExpr>(Init)) { |
| // Lifetime of a non-reference type field is same as base object. |
| if (auto *F = dyn_cast<FieldDecl>(M->getMemberDecl()); |
| F && !F->getType()->isReferenceType()) |
| visitLocalsRetainedByInitializer(Path, M->getBase(), Visit, true); |
| } |
| |
| if (isa<CallExpr>(Init)) |
| return visitFunctionCallArguments(Path, Init, Visit); |
| |
| switch (Init->getStmtClass()) { |
| case Stmt::DeclRefExprClass: { |
| // If we find the name of a local non-reference parameter, we could have a |
| // lifetime problem. |
| auto *DRE = cast<DeclRefExpr>(Init); |
| auto *VD = dyn_cast<VarDecl>(DRE->getDecl()); |
| if (VD && VD->hasLocalStorage() && |
| !DRE->refersToEnclosingVariableOrCapture()) { |
| if (!VD->getType()->isReferenceType()) { |
| Visit(Path, Local(DRE), RK); |
| } else if (isa<ParmVarDecl>(DRE->getDecl())) { |
| // The lifetime of a reference parameter is unknown; assume it's OK |
| // for now. |
| break; |
| } else if (VD->getInit() && !isVarOnPath(Path, VD)) { |
| Path.push_back({IndirectLocalPathEntry::VarInit, DRE, VD}); |
| visitLocalsRetainedByReferenceBinding(Path, VD->getInit(), |
| RK_ReferenceBinding, Visit); |
| } |
| } |
| break; |
| } |
| |
| case Stmt::UnaryOperatorClass: { |
| // The only unary operator that make sense to handle here |
| // is Deref. All others don't resolve to a "name." This includes |
| // handling all sorts of rvalues passed to a unary operator. |
| const UnaryOperator *U = cast<UnaryOperator>(Init); |
| if (U->getOpcode() == UO_Deref) |
| visitLocalsRetainedByInitializer(Path, U->getSubExpr(), Visit, true); |
| break; |
| } |
| |
| case Stmt::ArraySectionExprClass: { |
| visitLocalsRetainedByInitializer( |
| Path, cast<ArraySectionExpr>(Init)->getBase(), Visit, true); |
| break; |
| } |
| |
| case Stmt::ConditionalOperatorClass: |
| case Stmt::BinaryConditionalOperatorClass: { |
| auto *C = cast<AbstractConditionalOperator>(Init); |
| if (!C->getTrueExpr()->getType()->isVoidType()) |
| visitLocalsRetainedByReferenceBinding(Path, C->getTrueExpr(), RK, Visit); |
| if (!C->getFalseExpr()->getType()->isVoidType()) |
| visitLocalsRetainedByReferenceBinding(Path, C->getFalseExpr(), RK, Visit); |
| break; |
| } |
| |
| case Stmt::CompoundLiteralExprClass: { |
| if (auto *CLE = dyn_cast<CompoundLiteralExpr>(Init)) { |
| if (!CLE->isFileScope()) |
| Visit(Path, Local(CLE), RK); |
| } |
| break; |
| } |
| |
| // FIXME: Visit the left-hand side of an -> or ->*. |
| |
| default: |
| break; |
| } |
| } |
| |
| /// Visit the locals that would be reachable through an object initialized by |
| /// the prvalue expression \c Init. |
| static void visitLocalsRetainedByInitializer(IndirectLocalPath &Path, |
| Expr *Init, LocalVisitor Visit, |
| bool RevisitSubinits) { |
| RevertToOldSizeRAII RAII(Path); |
| |
| Expr *Old; |
| do { |
| Old = Init; |
| |
| // Step into CXXDefaultInitExprs so we can diagnose cases where a |
| // constructor inherits one as an implicit mem-initializer. |
| if (auto *DIE = dyn_cast<CXXDefaultInitExpr>(Init)) { |
| Path.push_back( |
| {IndirectLocalPathEntry::DefaultInit, DIE, DIE->getField()}); |
| Init = DIE->getExpr(); |
| } |
| |
| if (auto *FE = dyn_cast<FullExpr>(Init)) |
| Init = FE->getSubExpr(); |
| |
| // Dig out the expression which constructs the extended temporary. |
| Init = const_cast<Expr *>(Init->skipRValueSubobjectAdjustments()); |
| |
| if (CXXBindTemporaryExpr *BTE = dyn_cast<CXXBindTemporaryExpr>(Init)) |
| Init = BTE->getSubExpr(); |
| |
| Init = Init->IgnoreParens(); |
| |
| // Step over value-preserving rvalue casts. |
| if (auto *CE = dyn_cast<CastExpr>(Init)) { |
| switch (CE->getCastKind()) { |
| case CK_LValueToRValue: |
| // If we can match the lvalue to a const object, we can look at its |
| // initializer. |
| Path.push_back({IndirectLocalPathEntry::LValToRVal, CE}); |
| return visitLocalsRetainedByReferenceBinding( |
| Path, Init, RK_ReferenceBinding, |
| [&](IndirectLocalPath &Path, Local L, ReferenceKind RK) -> bool { |
| if (auto *DRE = dyn_cast<DeclRefExpr>(L)) { |
| auto *VD = dyn_cast<VarDecl>(DRE->getDecl()); |
| if (VD && VD->getType().isConstQualified() && VD->getInit() && |
| !isVarOnPath(Path, VD)) { |
| Path.push_back({IndirectLocalPathEntry::VarInit, DRE, VD}); |
| visitLocalsRetainedByInitializer(Path, VD->getInit(), Visit, |
| true); |
| } |
| } else if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(L)) { |
| if (MTE->getType().isConstQualified()) |
| visitLocalsRetainedByInitializer(Path, MTE->getSubExpr(), |
| Visit, true); |
| } |
| return false; |
| }); |
| |
| // We assume that objects can be retained by pointers cast to integers, |
| // but not if the integer is cast to floating-point type or to _Complex. |
| // We assume that casts to 'bool' do not preserve enough information to |
| // retain a local object. |
| case CK_NoOp: |
| case CK_BitCast: |
| case CK_BaseToDerived: |
| case CK_DerivedToBase: |
| case CK_UncheckedDerivedToBase: |
| case CK_Dynamic: |
| case CK_ToUnion: |
| case CK_UserDefinedConversion: |
| case CK_ConstructorConversion: |
| case CK_IntegralToPointer: |
| case CK_PointerToIntegral: |
| case CK_VectorSplat: |
| case CK_IntegralCast: |
| case CK_CPointerToObjCPointerCast: |
| case CK_BlockPointerToObjCPointerCast: |
| case CK_AnyPointerToBlockPointerCast: |
| case CK_AddressSpaceConversion: |
| break; |
| |
| case CK_ArrayToPointerDecay: |
| // Model array-to-pointer decay as taking the address of the array |
| // lvalue. |
| Path.push_back({IndirectLocalPathEntry::AddressOf, CE}); |
| return visitLocalsRetainedByReferenceBinding( |
| Path, CE->getSubExpr(), RK_ReferenceBinding, Visit); |
| |
| default: |
| return; |
| } |
| |
| Init = CE->getSubExpr(); |
| } |
| } while (Old != Init); |
| |
| // C++17 [dcl.init.list]p6: |
| // initializing an initializer_list object from the array extends the |
| // lifetime of the array exactly like binding a reference to a temporary. |
| if (auto *ILE = dyn_cast<CXXStdInitializerListExpr>(Init)) |
| return visitLocalsRetainedByReferenceBinding(Path, ILE->getSubExpr(), |
| RK_StdInitializerList, Visit); |
| |
| if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) { |
| // We already visited the elements of this initializer list while |
| // performing the initialization. Don't visit them again unless we've |
| // changed the lifetime of the initialized entity. |
| if (!RevisitSubinits) |
| return; |
| |
| if (ILE->isTransparent()) |
| return visitLocalsRetainedByInitializer(Path, ILE->getInit(0), Visit, |
| RevisitSubinits); |
| |
| if (ILE->getType()->isArrayType()) { |
| for (unsigned I = 0, N = ILE->getNumInits(); I != N; ++I) |
| visitLocalsRetainedByInitializer(Path, ILE->getInit(I), Visit, |
| RevisitSubinits); |
| return; |
| } |
| |
| if (CXXRecordDecl *RD = ILE->getType()->getAsCXXRecordDecl()) { |
| assert(RD->isAggregate() && "aggregate init on non-aggregate"); |
| |
| // If we lifetime-extend a braced initializer which is initializing an |
| // aggregate, and that aggregate contains reference members which are |
| // bound to temporaries, those temporaries are also lifetime-extended. |
| if (RD->isUnion() && ILE->getInitializedFieldInUnion() && |
| ILE->getInitializedFieldInUnion()->getType()->isReferenceType()) |
| visitLocalsRetainedByReferenceBinding(Path, ILE->getInit(0), |
| RK_ReferenceBinding, Visit); |
| else { |
| unsigned Index = 0; |
| for (; Index < RD->getNumBases() && Index < ILE->getNumInits(); ++Index) |
| visitLocalsRetainedByInitializer(Path, ILE->getInit(Index), Visit, |
| RevisitSubinits); |
| for (const auto *I : RD->fields()) { |
| if (Index >= ILE->getNumInits()) |
| break; |
| if (I->isUnnamedBitField()) |
| continue; |
| Expr *SubInit = ILE->getInit(Index); |
| if (I->getType()->isReferenceType()) |
| visitLocalsRetainedByReferenceBinding(Path, SubInit, |
| RK_ReferenceBinding, Visit); |
| else |
| // This might be either aggregate-initialization of a member or |
| // initialization of a std::initializer_list object. Regardless, |
| // we should recursively lifetime-extend that initializer. |
| visitLocalsRetainedByInitializer(Path, SubInit, Visit, |
| RevisitSubinits); |
| ++Index; |
| } |
| } |
| } |
| return; |
| } |
| |
| // The lifetime of an init-capture is that of the closure object constructed |
| // by a lambda-expression. |
| if (auto *LE = dyn_cast<LambdaExpr>(Init)) { |
| LambdaExpr::capture_iterator CapI = LE->capture_begin(); |
| for (Expr *E : LE->capture_inits()) { |
| assert(CapI != LE->capture_end()); |
| const LambdaCapture &Cap = *CapI++; |
| if (!E) |
| continue; |
| if (Cap.capturesVariable()) |
| Path.push_back({IndirectLocalPathEntry::LambdaCaptureInit, E, &Cap}); |
| if (E->isGLValue()) |
| visitLocalsRetainedByReferenceBinding(Path, E, RK_ReferenceBinding, |
| Visit); |
| else |
| visitLocalsRetainedByInitializer(Path, E, Visit, true); |
| if (Cap.capturesVariable()) |
| Path.pop_back(); |
| } |
| } |
| |
| // Assume that a copy or move from a temporary references the same objects |
| // that the temporary does. |
| if (auto *CCE = dyn_cast<CXXConstructExpr>(Init)) { |
| if (CCE->getConstructor()->isCopyOrMoveConstructor()) { |
| if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(CCE->getArg(0))) { |
| Expr *Arg = MTE->getSubExpr(); |
| Path.push_back({IndirectLocalPathEntry::TemporaryCopy, Arg, |
| CCE->getConstructor()}); |
| visitLocalsRetainedByInitializer(Path, Arg, Visit, true); |
| Path.pop_back(); |
| } |
| } |
| } |
| |
| if (isa<CallExpr>(Init) || isa<CXXConstructExpr>(Init)) |
| return visitFunctionCallArguments(Path, Init, Visit); |
| |
| if (auto *CPE = dyn_cast<CXXParenListInitExpr>(Init)) { |
| RevertToOldSizeRAII RAII(Path); |
| Path.push_back({IndirectLocalPathEntry::ParenAggInit, CPE}); |
| for (auto *I : CPE->getInitExprs()) { |
| if (I->isGLValue()) |
| visitLocalsRetainedByReferenceBinding(Path, I, RK_ReferenceBinding, |
| Visit); |
| else |
| visitLocalsRetainedByInitializer(Path, I, Visit, true); |
| } |
| } |
| switch (Init->getStmtClass()) { |
| case Stmt::UnaryOperatorClass: { |
| auto *UO = cast<UnaryOperator>(Init); |
| // If the initializer is the address of a local, we could have a lifetime |
| // problem. |
| if (UO->getOpcode() == UO_AddrOf) { |
| // If this is &rvalue, then it's ill-formed and we have already diagnosed |
| // it. Don't produce a redundant warning about the lifetime of the |
| // temporary. |
| if (isa<MaterializeTemporaryExpr>(UO->getSubExpr())) |
| return; |
| |
| Path.push_back({IndirectLocalPathEntry::AddressOf, UO}); |
| visitLocalsRetainedByReferenceBinding(Path, UO->getSubExpr(), |
| RK_ReferenceBinding, Visit); |
| } |
| break; |
| } |
| |
| case Stmt::BinaryOperatorClass: { |
| // Handle pointer arithmetic. |
| auto *BO = cast<BinaryOperator>(Init); |
| BinaryOperatorKind BOK = BO->getOpcode(); |
| if (!BO->getType()->isPointerType() || (BOK != BO_Add && BOK != BO_Sub)) |
| break; |
| |
| if (BO->getLHS()->getType()->isPointerType()) |
| visitLocalsRetainedByInitializer(Path, BO->getLHS(), Visit, true); |
| else if (BO->getRHS()->getType()->isPointerType()) |
| visitLocalsRetainedByInitializer(Path, BO->getRHS(), Visit, true); |
| break; |
| } |
| |
| case Stmt::ConditionalOperatorClass: |
| case Stmt::BinaryConditionalOperatorClass: { |
| auto *C = cast<AbstractConditionalOperator>(Init); |
| // In C++, we can have a throw-expression operand, which has 'void' type |
| // and isn't interesting from a lifetime perspective. |
| if (!C->getTrueExpr()->getType()->isVoidType()) |
| visitLocalsRetainedByInitializer(Path, C->getTrueExpr(), Visit, true); |
| if (!C->getFalseExpr()->getType()->isVoidType()) |
| visitLocalsRetainedByInitializer(Path, C->getFalseExpr(), Visit, true); |
| break; |
| } |
| |
| case Stmt::BlockExprClass: |
| if (cast<BlockExpr>(Init)->getBlockDecl()->hasCaptures()) { |
| // This is a local block, whose lifetime is that of the function. |
| Visit(Path, Local(cast<BlockExpr>(Init)), RK_ReferenceBinding); |
| } |
| break; |
| |
| case Stmt::AddrLabelExprClass: |
| // We want to warn if the address of a label would escape the function. |
| Visit(Path, Local(cast<AddrLabelExpr>(Init)), RK_ReferenceBinding); |
| break; |
| |
| default: |
| break; |
| } |
| } |
| |
| /// Whether a path to an object supports lifetime extension. |
| enum PathLifetimeKind { |
| /// Lifetime-extend along this path. |
| Extend, |
| /// Do not lifetime extend along this path. |
| NoExtend |
| }; |
| |
| /// Determine whether this is an indirect path to a temporary that we are |
| /// supposed to lifetime-extend along. |
| static PathLifetimeKind |
| shouldLifetimeExtendThroughPath(const IndirectLocalPath &Path) { |
| for (auto Elem : Path) { |
| if (Elem.Kind == IndirectLocalPathEntry::MemberExpr || |
| Elem.Kind == IndirectLocalPathEntry::LambdaCaptureInit) |
| continue; |
| return Elem.Kind == IndirectLocalPathEntry::DefaultInit |
| ? PathLifetimeKind::Extend |
| : PathLifetimeKind::NoExtend; |
| } |
| return PathLifetimeKind::Extend; |
| } |
| |
| /// Find the range for the first interesting entry in the path at or after I. |
| static SourceRange nextPathEntryRange(const IndirectLocalPath &Path, unsigned I, |
| Expr *E) { |
| for (unsigned N = Path.size(); I != N; ++I) { |
| switch (Path[I].Kind) { |
| case IndirectLocalPathEntry::AddressOf: |
| case IndirectLocalPathEntry::LValToRVal: |
| case IndirectLocalPathEntry::LifetimeBoundCall: |
| case IndirectLocalPathEntry::TemporaryCopy: |
| case IndirectLocalPathEntry::GslReferenceInit: |
| case IndirectLocalPathEntry::GslPointerInit: |
| case IndirectLocalPathEntry::GslPointerAssignment: |
| case IndirectLocalPathEntry::ParenAggInit: |
| case IndirectLocalPathEntry::MemberExpr: |
| // These exist primarily to mark the path as not permitting or |
| // supporting lifetime extension. |
| break; |
| |
| case IndirectLocalPathEntry::VarInit: |
| if (cast<VarDecl>(Path[I].D)->isImplicit()) |
| return SourceRange(); |
| [[fallthrough]]; |
| case IndirectLocalPathEntry::DefaultInit: |
| return Path[I].E->getSourceRange(); |
| |
| case IndirectLocalPathEntry::LambdaCaptureInit: |
| if (!Path[I].Capture->capturesVariable()) |
| continue; |
| return Path[I].E->getSourceRange(); |
| |
| case IndirectLocalPathEntry::DefaultArg: |
| return cast<CXXDefaultArgExpr>(Path[I].E)->getUsedLocation(); |
| } |
| } |
| return E->getSourceRange(); |
| } |
| |
| static bool pathOnlyHandlesGslPointer(const IndirectLocalPath &Path) { |
| for (const auto &It : llvm::reverse(Path)) { |
| switch (It.Kind) { |
| case IndirectLocalPathEntry::VarInit: |
| case IndirectLocalPathEntry::AddressOf: |
| case IndirectLocalPathEntry::LifetimeBoundCall: |
| case IndirectLocalPathEntry::MemberExpr: |
| continue; |
| case IndirectLocalPathEntry::GslPointerInit: |
| case IndirectLocalPathEntry::GslReferenceInit: |
| case IndirectLocalPathEntry::GslPointerAssignment: |
| return true; |
| default: |
| return false; |
| } |
| } |
| return false; |
| } |
| // Result of analyzing the Path for GSLPointer. |
| enum AnalysisResult { |
| // Path does not correspond to a GSLPointer. |
| NotGSLPointer, |
| |
| // A relevant case was identified. |
| Report, |
| // Stop the entire traversal. |
| Abandon, |
| // Skip this step and continue traversing inner AST nodes. |
| Skip, |
| }; |
| // Analyze cases where a GSLPointer is initialized or assigned from a |
| // temporary owner object. |
| static AnalysisResult analyzePathForGSLPointer(const IndirectLocalPath &Path, |
| Local L, LifetimeKind LK) { |
| if (!pathOnlyHandlesGslPointer(Path)) |
| return NotGSLPointer; |
| |
| // At this point, Path represents a series of operations involving a |
| // GSLPointer, either in the process of initialization or assignment. |
| |
| // Process temporary base objects for MemberExpr cases, e.g. Temp().field. |
| for (const auto &E : Path) { |
| if (E.Kind == IndirectLocalPathEntry::MemberExpr) { |
| // Avoid interfering with the local base object. |
| if (pathContainsInit(Path)) |
| return Abandon; |
| |
| // We are not interested in the temporary base objects of gsl Pointers: |
| // auto p1 = Temp().ptr; // Here p1 might not dangle. |
| // However, we want to diagnose for gsl owner fields: |
| // auto p2 = Temp().owner; // Here p2 is dangling. |
| if (const auto *FD = llvm::dyn_cast_or_null<FieldDecl>(E.D); |
| FD && !FD->getType()->isReferenceType() && |
| isRecordWithAttr<OwnerAttr>(FD->getType()) && |
| LK != LK_MemInitializer) { |
| return Report; |
| } |
| return Abandon; |
| } |
| } |
| |
| // Note: A LifetimeBoundCall can appear interleaved in this sequence. |
| // For example: |
| // const std::string& Ref(const std::string& a [[clang::lifetimebound]]); |
| // string_view abc = Ref(std::string()); |
| // The "Path" is [GSLPointerInit, LifetimeboundCall], where "L" is the |
| // temporary "std::string()" object. We need to check the return type of the |
| // function with the lifetimebound attribute. |
| if (Path.back().Kind == IndirectLocalPathEntry::LifetimeBoundCall) { |
| // The lifetimebound applies to the implicit object parameter of a method. |
| const FunctionDecl *FD = |
| llvm::dyn_cast_or_null<FunctionDecl>(Path.back().D); |
| // The lifetimebound applies to a function parameter. |
| if (const auto *PD = llvm::dyn_cast<ParmVarDecl>(Path.back().D)) |
| FD = llvm::dyn_cast<FunctionDecl>(PD->getDeclContext()); |
| |
| if (isa_and_present<CXXConstructorDecl>(FD)) { |
| // Constructor case: the parameter is annotated with lifetimebound |
| // e.g., GSLPointer(const S& s [[clang::lifetimebound]]) |
| // We still respect this case even the type S is not an owner. |
| return Report; |
| } |
| // Check the return type, e.g. |
| // const GSLOwner& func(const Foo& foo [[clang::lifetimebound]]) |
| // GSLPointer func(const Foo& foo [[clang::lifetimebound]]) |
| if (FD && |
| ((FD->getReturnType()->isReferenceType() && |
| isRecordWithAttr<OwnerAttr>(FD->getReturnType()->getPointeeType())) || |
| isPointerLikeType(FD->getReturnType()))) |
| return Report; |
| |
| return Abandon; |
| } |
| |
| if (isa<DeclRefExpr>(L)) { |
| // We do not want to follow the references when returning a pointer |
| // originating from a local owner to avoid the following false positive: |
| // int &p = *localUniquePtr; |
| // someContainer.add(std::move(localUniquePtr)); |
| // return p; |
| if (!pathContainsInit(Path) && isRecordWithAttr<OwnerAttr>(L->getType())) |
| return Report; |
| return Abandon; |
| } |
| |
| // The GSLPointer is from a temporary object. |
| auto *MTE = dyn_cast<MaterializeTemporaryExpr>(L); |
| |
| bool IsGslPtrValueFromGslTempOwner = |
| MTE && !MTE->getExtendingDecl() && |
| isRecordWithAttr<OwnerAttr>(MTE->getType()); |
| // Skipping a chain of initializing gsl::Pointer annotated objects. |
| // We are looking only for the final source to find out if it was |
| // a local or temporary owner or the address of a local |
| // variable/param. |
| if (!IsGslPtrValueFromGslTempOwner) |
| return Skip; |
| return Report; |
| } |
| |
| static bool isAssignmentOperatorLifetimeBound(const CXXMethodDecl *CMD) { |
| CMD = getDeclWithMergedLifetimeBoundAttrs(CMD); |
| return CMD && isNormalAssignmentOperator(CMD) && CMD->param_size() == 1 && |
| CMD->getParamDecl(0)->hasAttr<LifetimeBoundAttr>(); |
| } |
| |
| static bool shouldRunGSLAssignmentAnalysis(const Sema &SemaRef, |
| const AssignedEntity &Entity) { |
| bool EnableGSLAssignmentWarnings = !SemaRef.getDiagnostics().isIgnored( |
| diag::warn_dangling_lifetime_pointer_assignment, SourceLocation()); |
| return (EnableGSLAssignmentWarnings && |
| (isRecordWithAttr<PointerAttr>(Entity.LHS->getType()) || |
| isAssignmentOperatorLifetimeBound(Entity.AssignmentOperator))); |
| } |
| |
| static void |
| checkExprLifetimeImpl(Sema &SemaRef, const InitializedEntity *InitEntity, |
| const InitializedEntity *ExtendingEntity, LifetimeKind LK, |
| const AssignedEntity *AEntity, |
| const CapturingEntity *CapEntity, Expr *Init) { |
| assert(!AEntity || LK == LK_Assignment); |
| assert(!CapEntity || LK == LK_LifetimeCapture); |
| assert(!InitEntity || (LK != LK_Assignment && LK != LK_LifetimeCapture)); |
| // If this entity doesn't have an interesting lifetime, don't bother looking |
| // for temporaries within its initializer. |
| if (LK == LK_FullExpression) |
| return; |
| |
| // FIXME: consider moving the TemporaryVisitor and visitLocalsRetained* |
| // functions to a dedicated class. |
| auto TemporaryVisitor = [&](const IndirectLocalPath &Path, Local L, |
| ReferenceKind RK) -> bool { |
| SourceRange DiagRange = nextPathEntryRange(Path, 0, L); |
| SourceLocation DiagLoc = DiagRange.getBegin(); |
| |
| auto *MTE = dyn_cast<MaterializeTemporaryExpr>(L); |
| |
| bool IsGslPtrValueFromGslTempOwner = true; |
| switch (analyzePathForGSLPointer(Path, L, LK)) { |
| case Abandon: |
| return false; |
| case Skip: |
| return true; |
| case NotGSLPointer: |
| IsGslPtrValueFromGslTempOwner = false; |
| LLVM_FALLTHROUGH; |
| case Report: |
| break; |
| } |
| |
| switch (LK) { |
| case LK_FullExpression: |
| llvm_unreachable("already handled this"); |
| |
| case LK_Extended: { |
| if (!MTE) { |
| // The initialized entity has lifetime beyond the full-expression, |
| // and the local entity does too, so don't warn. |
| // |
| // FIXME: We should consider warning if a static / thread storage |
| // duration variable retains an automatic storage duration local. |
| return false; |
| } |
| |
| if (IsGslPtrValueFromGslTempOwner && DiagLoc.isValid()) { |
| SemaRef.Diag(DiagLoc, diag::warn_dangling_lifetime_pointer) |
| << DiagRange; |
| return false; |
| } |
| |
| switch (shouldLifetimeExtendThroughPath(Path)) { |
| case PathLifetimeKind::Extend: |
| // Update the storage duration of the materialized temporary. |
| // FIXME: Rebuild the expression instead of mutating it. |
| MTE->setExtendingDecl(ExtendingEntity->getDecl(), |
| ExtendingEntity->allocateManglingNumber()); |
| // Also visit the temporaries lifetime-extended by this initializer. |
| return true; |
| |
| case PathLifetimeKind::NoExtend: |
| // If the path goes through the initialization of a variable or field, |
| // it can't possibly reach a temporary created in this full-expression. |
| // We will have already diagnosed any problems with the initializer. |
| if (pathContainsInit(Path)) |
| return false; |
| |
| SemaRef.Diag(DiagLoc, diag::warn_dangling_variable) |
| << RK << !InitEntity->getParent() |
| << ExtendingEntity->getDecl()->isImplicit() |
| << ExtendingEntity->getDecl() << Init->isGLValue() << DiagRange; |
| break; |
| } |
| break; |
| } |
| |
| case LK_LifetimeCapture: { |
| // The captured entity has lifetime beyond the full-expression, |
| // and the capturing entity does too, so don't warn. |
| if (!MTE) |
| return false; |
| if (CapEntity->Entity) |
| SemaRef.Diag(DiagLoc, diag::warn_dangling_reference_captured) |
| << CapEntity->Entity << DiagRange; |
| else |
| SemaRef.Diag(DiagLoc, diag::warn_dangling_reference_captured_by_unknown) |
| << DiagRange; |
| return false; |
| } |
| |
| case LK_Assignment: { |
| if (!MTE || pathContainsInit(Path)) |
| return false; |
| if (IsGslPtrValueFromGslTempOwner) |
| SemaRef.Diag(DiagLoc, diag::warn_dangling_lifetime_pointer_assignment) |
| << AEntity->LHS << DiagRange; |
| else |
| SemaRef.Diag(DiagLoc, diag::warn_dangling_pointer_assignment) |
| << AEntity->LHS->getType()->isPointerType() << AEntity->LHS |
| << DiagRange; |
| return false; |
| } |
| case LK_MemInitializer: { |
| if (MTE) { |
| // Under C++ DR1696, if a mem-initializer (or a default member |
| // initializer used by the absence of one) would lifetime-extend a |
| // temporary, the program is ill-formed. |
| if (auto *ExtendingDecl = |
| ExtendingEntity ? ExtendingEntity->getDecl() : nullptr) { |
| if (IsGslPtrValueFromGslTempOwner) { |
| SemaRef.Diag(DiagLoc, diag::warn_dangling_lifetime_pointer_member) |
| << ExtendingDecl << DiagRange; |
| SemaRef.Diag(ExtendingDecl->getLocation(), |
| diag::note_ref_or_ptr_member_declared_here) |
| << true; |
| return false; |
| } |
| bool IsSubobjectMember = ExtendingEntity != InitEntity; |
| SemaRef.Diag(DiagLoc, shouldLifetimeExtendThroughPath(Path) != |
| PathLifetimeKind::NoExtend |
| ? diag::err_dangling_member |
| : diag::warn_dangling_member) |
| << ExtendingDecl << IsSubobjectMember << RK << DiagRange; |
| // Don't bother adding a note pointing to the field if we're inside |
| // its default member initializer; our primary diagnostic points to |
| // the same place in that case. |
| if (Path.empty() || |
| Path.back().Kind != IndirectLocalPathEntry::DefaultInit) { |
| SemaRef.Diag(ExtendingDecl->getLocation(), |
| diag::note_lifetime_extending_member_declared_here) |
| << RK << IsSubobjectMember; |
| } |
| } else { |
| // We have a mem-initializer but no particular field within it; this |
| // is either a base class or a delegating initializer directly |
| // initializing the base-class from something that doesn't live long |
| // enough. |
| // |
| // FIXME: Warn on this. |
| return false; |
| } |
| } else { |
| // Paths via a default initializer can only occur during error recovery |
| // (there's no other way that a default initializer can refer to a |
| // local). Don't produce a bogus warning on those cases. |
| if (pathContainsInit(Path)) |
| return false; |
| |
| auto *DRE = dyn_cast<DeclRefExpr>(L); |
| // Suppress false positives for code like the one below: |
| // Ctor(unique_ptr<T> up) : pointer(up.get()), owner(move(up)) {} |
| // FIXME: move this logic to analyzePathForGSLPointer. |
| if (DRE && isRecordWithAttr<OwnerAttr>(DRE->getType())) |
| return false; |
| |
| auto *VD = DRE ? dyn_cast<VarDecl>(DRE->getDecl()) : nullptr; |
| if (!VD) { |
| // A member was initialized to a local block. |
| // FIXME: Warn on this. |
| return false; |
| } |
| |
| if (auto *Member = |
| ExtendingEntity ? ExtendingEntity->getDecl() : nullptr) { |
| bool IsPointer = !Member->getType()->isReferenceType(); |
| SemaRef.Diag(DiagLoc, |
| IsPointer ? diag::warn_init_ptr_member_to_parameter_addr |
| : diag::warn_bind_ref_member_to_parameter) |
| << Member << VD << isa<ParmVarDecl>(VD) << DiagRange; |
| SemaRef.Diag(Member->getLocation(), |
| diag::note_ref_or_ptr_member_declared_here) |
| << (unsigned)IsPointer; |
| } |
| } |
| break; |
| } |
| |
| case LK_New: |
| if (isa<MaterializeTemporaryExpr>(L)) { |
| if (IsGslPtrValueFromGslTempOwner) |
| SemaRef.Diag(DiagLoc, diag::warn_dangling_lifetime_pointer) |
| << DiagRange; |
| else |
| SemaRef.Diag(DiagLoc, RK == RK_ReferenceBinding |
| ? diag::warn_new_dangling_reference |
| : diag::warn_new_dangling_initializer_list) |
| << !InitEntity->getParent() << DiagRange; |
| } else { |
| // We can't determine if the allocation outlives the local declaration. |
| return false; |
| } |
| break; |
| |
| case LK_Return: |
| case LK_MustTail: |
| case LK_StmtExprResult: |
| if (auto *DRE = dyn_cast<DeclRefExpr>(L)) { |
| // We can't determine if the local variable outlives the statement |
| // expression. |
| if (LK == LK_StmtExprResult) |
| return false; |
| SemaRef.Diag(DiagLoc, diag::warn_ret_stack_addr_ref) |
| << InitEntity->getType()->isReferenceType() << DRE->getDecl() |
| << isa<ParmVarDecl>(DRE->getDecl()) << (LK == LK_MustTail) |
| << DiagRange; |
| } else if (isa<BlockExpr>(L)) { |
| SemaRef.Diag(DiagLoc, diag::err_ret_local_block) << DiagRange; |
| } else if (isa<AddrLabelExpr>(L)) { |
| // Don't warn when returning a label from a statement expression. |
| // Leaving the scope doesn't end its lifetime. |
| if (LK == LK_StmtExprResult) |
| return false; |
| SemaRef.Diag(DiagLoc, diag::warn_ret_addr_label) << DiagRange; |
| } else if (auto *CLE = dyn_cast<CompoundLiteralExpr>(L)) { |
| SemaRef.Diag(DiagLoc, diag::warn_ret_stack_addr_ref) |
| << InitEntity->getType()->isReferenceType() << CLE->getInitializer() |
| << 2 << (LK == LK_MustTail) << DiagRange; |
| } else { |
| // P2748R5: Disallow Binding a Returned Glvalue to a Temporary. |
| // [stmt.return]/p6: In a function whose return type is a reference, |
| // other than an invented function for std::is_convertible ([meta.rel]), |
| // a return statement that binds the returned reference to a temporary |
| // expression ([class.temporary]) is ill-formed. |
| if (SemaRef.getLangOpts().CPlusPlus26 && |
| InitEntity->getType()->isReferenceType()) |
| SemaRef.Diag(DiagLoc, diag::err_ret_local_temp_ref) |
| << InitEntity->getType()->isReferenceType() << DiagRange; |
| else if (LK == LK_MustTail) |
| SemaRef.Diag(DiagLoc, diag::warn_musttail_local_temp_addr_ref) |
| << InitEntity->getType()->isReferenceType() << DiagRange; |
| else |
| SemaRef.Diag(DiagLoc, diag::warn_ret_local_temp_addr_ref) |
| << InitEntity->getType()->isReferenceType() << DiagRange; |
| } |
| break; |
| } |
| |
| for (unsigned I = 0; I != Path.size(); ++I) { |
| auto Elem = Path[I]; |
| |
| switch (Elem.Kind) { |
| case IndirectLocalPathEntry::AddressOf: |
| case IndirectLocalPathEntry::LValToRVal: |
| case IndirectLocalPathEntry::ParenAggInit: |
| // These exist primarily to mark the path as not permitting or |
| // supporting lifetime extension. |
| break; |
| |
| case IndirectLocalPathEntry::LifetimeBoundCall: |
| case IndirectLocalPathEntry::TemporaryCopy: |
| case IndirectLocalPathEntry::MemberExpr: |
| case IndirectLocalPathEntry::GslPointerInit: |
| case IndirectLocalPathEntry::GslReferenceInit: |
| case IndirectLocalPathEntry::GslPointerAssignment: |
| // FIXME: Consider adding a note for these. |
| break; |
| |
| case IndirectLocalPathEntry::DefaultInit: { |
| auto *FD = cast<FieldDecl>(Elem.D); |
| SemaRef.Diag(FD->getLocation(), |
| diag::note_init_with_default_member_initializer) |
| << FD << nextPathEntryRange(Path, I + 1, L); |
| break; |
| } |
| |
| case IndirectLocalPathEntry::VarInit: { |
| const VarDecl *VD = cast<VarDecl>(Elem.D); |
| SemaRef.Diag(VD->getLocation(), diag::note_local_var_initializer) |
| << VD->getType()->isReferenceType() << VD->isImplicit() |
| << VD->getDeclName() << nextPathEntryRange(Path, I + 1, L); |
| break; |
| } |
| |
| case IndirectLocalPathEntry::LambdaCaptureInit: { |
| if (!Elem.Capture->capturesVariable()) |
| break; |
| // FIXME: We can't easily tell apart an init-capture from a nested |
| // capture of an init-capture. |
| const ValueDecl *VD = Elem.Capture->getCapturedVar(); |
| SemaRef.Diag(Elem.Capture->getLocation(), |
| diag::note_lambda_capture_initializer) |
| << VD << VD->isInitCapture() << Elem.Capture->isExplicit() |
| << (Elem.Capture->getCaptureKind() == LCK_ByRef) << VD |
| << nextPathEntryRange(Path, I + 1, L); |
| break; |
| } |
| |
| case IndirectLocalPathEntry::DefaultArg: { |
| const auto *DAE = cast<CXXDefaultArgExpr>(Elem.E); |
| const ParmVarDecl *Param = DAE->getParam(); |
| SemaRef.Diag(Param->getDefaultArgRange().getBegin(), |
| diag::note_init_with_default_argument) |
| << Param << nextPathEntryRange(Path, I + 1, L); |
| break; |
| } |
| } |
| } |
| |
| // We didn't lifetime-extend, so don't go any further; we don't need more |
| // warnings or errors on inner temporaries within this one's initializer. |
| return false; |
| }; |
| |
| llvm::SmallVector<IndirectLocalPathEntry, 8> Path; |
| switch (LK) { |
| case LK_Assignment: { |
| if (shouldRunGSLAssignmentAnalysis(SemaRef, *AEntity)) |
| Path.push_back( |
| {isAssignmentOperatorLifetimeBound(AEntity->AssignmentOperator) |
| ? IndirectLocalPathEntry::LifetimeBoundCall |
| : IndirectLocalPathEntry::GslPointerAssignment, |
| Init}); |
| break; |
| } |
| case LK_LifetimeCapture: { |
| if (isPointerLikeType(Init->getType())) |
| Path.push_back({IndirectLocalPathEntry::GslPointerInit, Init}); |
| break; |
| } |
| default: |
| break; |
| } |
| |
| if (Init->isGLValue()) |
| visitLocalsRetainedByReferenceBinding(Path, Init, RK_ReferenceBinding, |
| TemporaryVisitor); |
| else |
| visitLocalsRetainedByInitializer( |
| Path, Init, TemporaryVisitor, |
| // Don't revisit the sub inits for the intialization case. |
| /*RevisitSubinits=*/!InitEntity); |
| } |
| |
| void checkInitLifetime(Sema &SemaRef, const InitializedEntity &Entity, |
| Expr *Init) { |
| auto LTResult = getEntityLifetime(&Entity); |
| LifetimeKind LK = LTResult.getInt(); |
| const InitializedEntity *ExtendingEntity = LTResult.getPointer(); |
| checkExprLifetimeImpl(SemaRef, &Entity, ExtendingEntity, LK, |
| /*AEntity=*/nullptr, /*CapEntity=*/nullptr, Init); |
| } |
| |
| void checkExprLifetimeMustTailArg(Sema &SemaRef, |
| const InitializedEntity &Entity, Expr *Init) { |
| checkExprLifetimeImpl(SemaRef, &Entity, nullptr, LK_MustTail, |
| /*AEntity=*/nullptr, /*CapEntity=*/nullptr, Init); |
| } |
| |
| void checkAssignmentLifetime(Sema &SemaRef, const AssignedEntity &Entity, |
| Expr *Init) { |
| bool EnableDanglingPointerAssignment = !SemaRef.getDiagnostics().isIgnored( |
| diag::warn_dangling_pointer_assignment, SourceLocation()); |
| bool RunAnalysis = (EnableDanglingPointerAssignment && |
| Entity.LHS->getType()->isPointerType()) || |
| shouldRunGSLAssignmentAnalysis(SemaRef, Entity); |
| |
| if (!RunAnalysis) |
| return; |
| |
| checkExprLifetimeImpl(SemaRef, /*InitEntity=*/nullptr, |
| /*ExtendingEntity=*/nullptr, LK_Assignment, &Entity, |
| /*CapEntity=*/nullptr, Init); |
| } |
| |
| void checkCaptureByLifetime(Sema &SemaRef, const CapturingEntity &Entity, |
| Expr *Init) { |
| if (SemaRef.getDiagnostics().isIgnored(diag::warn_dangling_reference_captured, |
| SourceLocation()) && |
| SemaRef.getDiagnostics().isIgnored( |
| diag::warn_dangling_reference_captured_by_unknown, SourceLocation())) |
| return; |
| return checkExprLifetimeImpl(SemaRef, /*InitEntity=*/nullptr, |
| /*ExtendingEntity=*/nullptr, LK_LifetimeCapture, |
| /*AEntity=*/nullptr, |
| /*CapEntity=*/&Entity, Init); |
| } |
| |
| } // namespace clang::sema |