| //===--------------------- SemaLookup.cpp - Name Lookup ------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements name lookup for C, C++, Objective-C, and |
| // Objective-C++. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "clang/AST/ASTContext.h" |
| #include "clang/AST/CXXInheritance.h" |
| #include "clang/AST/Decl.h" |
| #include "clang/AST/DeclCXX.h" |
| #include "clang/AST/DeclLookups.h" |
| #include "clang/AST/DeclObjC.h" |
| #include "clang/AST/DeclTemplate.h" |
| #include "clang/AST/Expr.h" |
| #include "clang/AST/ExprCXX.h" |
| #include "clang/Basic/Builtins.h" |
| #include "clang/Basic/LangOptions.h" |
| #include "clang/Lex/HeaderSearch.h" |
| #include "clang/Lex/ModuleLoader.h" |
| #include "clang/Lex/Preprocessor.h" |
| #include "clang/Sema/DeclSpec.h" |
| #include "clang/Sema/Lookup.h" |
| #include "clang/Sema/Overload.h" |
| #include "clang/Sema/RISCVIntrinsicManager.h" |
| #include "clang/Sema/Scope.h" |
| #include "clang/Sema/ScopeInfo.h" |
| #include "clang/Sema/Sema.h" |
| #include "clang/Sema/SemaInternal.h" |
| #include "clang/Sema/SemaRISCV.h" |
| #include "clang/Sema/TemplateDeduction.h" |
| #include "clang/Sema/TypoCorrection.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/STLForwardCompat.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/TinyPtrVector.h" |
| #include "llvm/ADT/edit_distance.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include <algorithm> |
| #include <iterator> |
| #include <list> |
| #include <optional> |
| #include <set> |
| #include <utility> |
| #include <vector> |
| |
| #include "OpenCLBuiltins.inc" |
| |
| using namespace clang; |
| using namespace sema; |
| |
| namespace { |
| class UnqualUsingEntry { |
| const DeclContext *Nominated; |
| const DeclContext *CommonAncestor; |
| |
| public: |
| UnqualUsingEntry(const DeclContext *Nominated, |
| const DeclContext *CommonAncestor) |
| : Nominated(Nominated), CommonAncestor(CommonAncestor) { |
| } |
| |
| const DeclContext *getCommonAncestor() const { |
| return CommonAncestor; |
| } |
| |
| const DeclContext *getNominatedNamespace() const { |
| return Nominated; |
| } |
| |
| // Sort by the pointer value of the common ancestor. |
| struct Comparator { |
| bool operator()(const UnqualUsingEntry &L, const UnqualUsingEntry &R) { |
| return L.getCommonAncestor() < R.getCommonAncestor(); |
| } |
| |
| bool operator()(const UnqualUsingEntry &E, const DeclContext *DC) { |
| return E.getCommonAncestor() < DC; |
| } |
| |
| bool operator()(const DeclContext *DC, const UnqualUsingEntry &E) { |
| return DC < E.getCommonAncestor(); |
| } |
| }; |
| }; |
| |
| /// A collection of using directives, as used by C++ unqualified |
| /// lookup. |
| class UnqualUsingDirectiveSet { |
| Sema &SemaRef; |
| |
| typedef SmallVector<UnqualUsingEntry, 8> ListTy; |
| |
| ListTy list; |
| llvm::SmallPtrSet<DeclContext*, 8> visited; |
| |
| public: |
| UnqualUsingDirectiveSet(Sema &SemaRef) : SemaRef(SemaRef) {} |
| |
| void visitScopeChain(Scope *S, Scope *InnermostFileScope) { |
| // C++ [namespace.udir]p1: |
| // During unqualified name lookup, the names appear as if they |
| // were declared in the nearest enclosing namespace which contains |
| // both the using-directive and the nominated namespace. |
| DeclContext *InnermostFileDC = InnermostFileScope->getEntity(); |
| assert(InnermostFileDC && InnermostFileDC->isFileContext()); |
| |
| for (; S; S = S->getParent()) { |
| // C++ [namespace.udir]p1: |
| // A using-directive shall not appear in class scope, but may |
| // appear in namespace scope or in block scope. |
| DeclContext *Ctx = S->getEntity(); |
| if (Ctx && Ctx->isFileContext()) { |
| visit(Ctx, Ctx); |
| } else if (!Ctx || Ctx->isFunctionOrMethod()) { |
| for (auto *I : S->using_directives()) |
| if (SemaRef.isVisible(I)) |
| visit(I, InnermostFileDC); |
| } |
| } |
| } |
| |
| // Visits a context and collect all of its using directives |
| // recursively. Treats all using directives as if they were |
| // declared in the context. |
| // |
| // A given context is only every visited once, so it is important |
| // that contexts be visited from the inside out in order to get |
| // the effective DCs right. |
| void visit(DeclContext *DC, DeclContext *EffectiveDC) { |
| if (!visited.insert(DC).second) |
| return; |
| |
| addUsingDirectives(DC, EffectiveDC); |
| } |
| |
| // Visits a using directive and collects all of its using |
| // directives recursively. Treats all using directives as if they |
| // were declared in the effective DC. |
| void visit(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) { |
| DeclContext *NS = UD->getNominatedNamespace(); |
| if (!visited.insert(NS).second) |
| return; |
| |
| addUsingDirective(UD, EffectiveDC); |
| addUsingDirectives(NS, EffectiveDC); |
| } |
| |
| // Adds all the using directives in a context (and those nominated |
| // by its using directives, transitively) as if they appeared in |
| // the given effective context. |
| void addUsingDirectives(DeclContext *DC, DeclContext *EffectiveDC) { |
| SmallVector<DeclContext*, 4> queue; |
| while (true) { |
| for (auto *UD : DC->using_directives()) { |
| DeclContext *NS = UD->getNominatedNamespace(); |
| if (SemaRef.isVisible(UD) && visited.insert(NS).second) { |
| addUsingDirective(UD, EffectiveDC); |
| queue.push_back(NS); |
| } |
| } |
| |
| if (queue.empty()) |
| return; |
| |
| DC = queue.pop_back_val(); |
| } |
| } |
| |
| // Add a using directive as if it had been declared in the given |
| // context. This helps implement C++ [namespace.udir]p3: |
| // The using-directive is transitive: if a scope contains a |
| // using-directive that nominates a second namespace that itself |
| // contains using-directives, the effect is as if the |
| // using-directives from the second namespace also appeared in |
| // the first. |
| void addUsingDirective(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) { |
| // Find the common ancestor between the effective context and |
| // the nominated namespace. |
| DeclContext *Common = UD->getNominatedNamespace(); |
| while (!Common->Encloses(EffectiveDC)) |
| Common = Common->getParent(); |
| Common = Common->getPrimaryContext(); |
| |
| list.push_back(UnqualUsingEntry(UD->getNominatedNamespace(), Common)); |
| } |
| |
| void done() { llvm::sort(list, UnqualUsingEntry::Comparator()); } |
| |
| typedef ListTy::const_iterator const_iterator; |
| |
| const_iterator begin() const { return list.begin(); } |
| const_iterator end() const { return list.end(); } |
| |
| llvm::iterator_range<const_iterator> |
| getNamespacesFor(const DeclContext *DC) const { |
| return llvm::make_range(std::equal_range(begin(), end(), |
| DC->getPrimaryContext(), |
| UnqualUsingEntry::Comparator())); |
| } |
| }; |
| } // end anonymous namespace |
| |
| // Retrieve the set of identifier namespaces that correspond to a |
| // specific kind of name lookup. |
| static inline unsigned getIDNS(Sema::LookupNameKind NameKind, |
| bool CPlusPlus, |
| bool Redeclaration) { |
| unsigned IDNS = 0; |
| switch (NameKind) { |
| case Sema::LookupObjCImplicitSelfParam: |
| case Sema::LookupOrdinaryName: |
| case Sema::LookupRedeclarationWithLinkage: |
| case Sema::LookupLocalFriendName: |
| case Sema::LookupDestructorName: |
| IDNS = Decl::IDNS_Ordinary; |
| if (CPlusPlus) { |
| IDNS |= Decl::IDNS_Tag | Decl::IDNS_Member | Decl::IDNS_Namespace; |
| if (Redeclaration) |
| IDNS |= Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend; |
| } |
| if (Redeclaration) |
| IDNS |= Decl::IDNS_LocalExtern; |
| break; |
| |
| case Sema::LookupOperatorName: |
| // Operator lookup is its own crazy thing; it is not the same |
| // as (e.g.) looking up an operator name for redeclaration. |
| assert(!Redeclaration && "cannot do redeclaration operator lookup"); |
| IDNS = Decl::IDNS_NonMemberOperator; |
| break; |
| |
| case Sema::LookupTagName: |
| if (CPlusPlus) { |
| IDNS = Decl::IDNS_Type; |
| |
| // When looking for a redeclaration of a tag name, we add: |
| // 1) TagFriend to find undeclared friend decls |
| // 2) Namespace because they can't "overload" with tag decls. |
| // 3) Tag because it includes class templates, which can't |
| // "overload" with tag decls. |
| if (Redeclaration) |
| IDNS |= Decl::IDNS_Tag | Decl::IDNS_TagFriend | Decl::IDNS_Namespace; |
| } else { |
| IDNS = Decl::IDNS_Tag; |
| } |
| break; |
| |
| case Sema::LookupLabel: |
| IDNS = Decl::IDNS_Label; |
| break; |
| |
| case Sema::LookupMemberName: |
| IDNS = Decl::IDNS_Member; |
| if (CPlusPlus) |
| IDNS |= Decl::IDNS_Tag | Decl::IDNS_Ordinary; |
| break; |
| |
| case Sema::LookupNestedNameSpecifierName: |
| IDNS = Decl::IDNS_Type | Decl::IDNS_Namespace; |
| break; |
| |
| case Sema::LookupNamespaceName: |
| IDNS = Decl::IDNS_Namespace; |
| break; |
| |
| case Sema::LookupUsingDeclName: |
| assert(Redeclaration && "should only be used for redecl lookup"); |
| IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member | |
| Decl::IDNS_Using | Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend | |
| Decl::IDNS_LocalExtern; |
| break; |
| |
| case Sema::LookupObjCProtocolName: |
| IDNS = Decl::IDNS_ObjCProtocol; |
| break; |
| |
| case Sema::LookupOMPReductionName: |
| IDNS = Decl::IDNS_OMPReduction; |
| break; |
| |
| case Sema::LookupOMPMapperName: |
| IDNS = Decl::IDNS_OMPMapper; |
| break; |
| |
| case Sema::LookupAnyName: |
| IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member |
| | Decl::IDNS_Using | Decl::IDNS_Namespace | Decl::IDNS_ObjCProtocol |
| | Decl::IDNS_Type; |
| break; |
| } |
| return IDNS; |
| } |
| |
| void LookupResult::configure() { |
| IDNS = getIDNS(LookupKind, getSema().getLangOpts().CPlusPlus, |
| isForRedeclaration()); |
| |
| // If we're looking for one of the allocation or deallocation |
| // operators, make sure that the implicitly-declared new and delete |
| // operators can be found. |
| switch (NameInfo.getName().getCXXOverloadedOperator()) { |
| case OO_New: |
| case OO_Delete: |
| case OO_Array_New: |
| case OO_Array_Delete: |
| getSema().DeclareGlobalNewDelete(); |
| break; |
| |
| default: |
| break; |
| } |
| |
| // Compiler builtins are always visible, regardless of where they end |
| // up being declared. |
| if (IdentifierInfo *Id = NameInfo.getName().getAsIdentifierInfo()) { |
| if (unsigned BuiltinID = Id->getBuiltinID()) { |
| if (!getSema().Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) |
| AllowHidden = true; |
| } |
| } |
| } |
| |
| bool LookupResult::checkDebugAssumptions() const { |
| // This function is never called by NDEBUG builds. |
| assert(ResultKind != NotFound || Decls.size() == 0); |
| assert(ResultKind != Found || Decls.size() == 1); |
| assert(ResultKind != FoundOverloaded || Decls.size() > 1 || |
| (Decls.size() == 1 && |
| isa<FunctionTemplateDecl>((*begin())->getUnderlyingDecl()))); |
| assert(ResultKind != FoundUnresolvedValue || checkUnresolved()); |
| assert(ResultKind != Ambiguous || Decls.size() > 1 || |
| (Decls.size() == 1 && (Ambiguity == AmbiguousBaseSubobjects || |
| Ambiguity == AmbiguousBaseSubobjectTypes))); |
| assert((Paths != nullptr) == (ResultKind == Ambiguous && |
| (Ambiguity == AmbiguousBaseSubobjectTypes || |
| Ambiguity == AmbiguousBaseSubobjects))); |
| return true; |
| } |
| |
| // Necessary because CXXBasePaths is not complete in Sema.h |
| void LookupResult::deletePaths(CXXBasePaths *Paths) { |
| delete Paths; |
| } |
| |
| /// Get a representative context for a declaration such that two declarations |
| /// will have the same context if they were found within the same scope. |
| static const DeclContext *getContextForScopeMatching(const Decl *D) { |
| // For function-local declarations, use that function as the context. This |
| // doesn't account for scopes within the function; the caller must deal with |
| // those. |
| if (const DeclContext *DC = D->getLexicalDeclContext(); |
| DC->isFunctionOrMethod()) |
| return DC; |
| |
| // Otherwise, look at the semantic context of the declaration. The |
| // declaration must have been found there. |
| return D->getDeclContext()->getRedeclContext(); |
| } |
| |
| /// Determine whether \p D is a better lookup result than \p Existing, |
| /// given that they declare the same entity. |
| static bool isPreferredLookupResult(Sema &S, Sema::LookupNameKind Kind, |
| const NamedDecl *D, |
| const NamedDecl *Existing) { |
| // When looking up redeclarations of a using declaration, prefer a using |
| // shadow declaration over any other declaration of the same entity. |
| if (Kind == Sema::LookupUsingDeclName && isa<UsingShadowDecl>(D) && |
| !isa<UsingShadowDecl>(Existing)) |
| return true; |
| |
| const auto *DUnderlying = D->getUnderlyingDecl(); |
| const auto *EUnderlying = Existing->getUnderlyingDecl(); |
| |
| // If they have different underlying declarations, prefer a typedef over the |
| // original type (this happens when two type declarations denote the same |
| // type), per a generous reading of C++ [dcl.typedef]p3 and p4. The typedef |
| // might carry additional semantic information, such as an alignment override. |
| // However, per C++ [dcl.typedef]p5, when looking up a tag name, prefer a tag |
| // declaration over a typedef. Also prefer a tag over a typedef for |
| // destructor name lookup because in some contexts we only accept a |
| // class-name in a destructor declaration. |
| if (DUnderlying->getCanonicalDecl() != EUnderlying->getCanonicalDecl()) { |
| assert(isa<TypeDecl>(DUnderlying) && isa<TypeDecl>(EUnderlying)); |
| bool HaveTag = isa<TagDecl>(EUnderlying); |
| bool WantTag = |
| Kind == Sema::LookupTagName || Kind == Sema::LookupDestructorName; |
| return HaveTag != WantTag; |
| } |
| |
| // Pick the function with more default arguments. |
| // FIXME: In the presence of ambiguous default arguments, we should keep both, |
| // so we can diagnose the ambiguity if the default argument is needed. |
| // See C++ [over.match.best]p3. |
| if (const auto *DFD = dyn_cast<FunctionDecl>(DUnderlying)) { |
| const auto *EFD = cast<FunctionDecl>(EUnderlying); |
| unsigned DMin = DFD->getMinRequiredArguments(); |
| unsigned EMin = EFD->getMinRequiredArguments(); |
| // If D has more default arguments, it is preferred. |
| if (DMin != EMin) |
| return DMin < EMin; |
| // FIXME: When we track visibility for default function arguments, check |
| // that we pick the declaration with more visible default arguments. |
| } |
| |
| // Pick the template with more default template arguments. |
| if (const auto *DTD = dyn_cast<TemplateDecl>(DUnderlying)) { |
| const auto *ETD = cast<TemplateDecl>(EUnderlying); |
| unsigned DMin = DTD->getTemplateParameters()->getMinRequiredArguments(); |
| unsigned EMin = ETD->getTemplateParameters()->getMinRequiredArguments(); |
| // If D has more default arguments, it is preferred. Note that default |
| // arguments (and their visibility) is monotonically increasing across the |
| // redeclaration chain, so this is a quick proxy for "is more recent". |
| if (DMin != EMin) |
| return DMin < EMin; |
| // If D has more *visible* default arguments, it is preferred. Note, an |
| // earlier default argument being visible does not imply that a later |
| // default argument is visible, so we can't just check the first one. |
| for (unsigned I = DMin, N = DTD->getTemplateParameters()->size(); |
| I != N; ++I) { |
| if (!S.hasVisibleDefaultArgument( |
| ETD->getTemplateParameters()->getParam(I)) && |
| S.hasVisibleDefaultArgument( |
| DTD->getTemplateParameters()->getParam(I))) |
| return true; |
| } |
| } |
| |
| // VarDecl can have incomplete array types, prefer the one with more complete |
| // array type. |
| if (const auto *DVD = dyn_cast<VarDecl>(DUnderlying)) { |
| const auto *EVD = cast<VarDecl>(EUnderlying); |
| if (EVD->getType()->isIncompleteType() && |
| !DVD->getType()->isIncompleteType()) { |
| // Prefer the decl with a more complete type if visible. |
| return S.isVisible(DVD); |
| } |
| return false; // Avoid picking up a newer decl, just because it was newer. |
| } |
| |
| // For most kinds of declaration, it doesn't really matter which one we pick. |
| if (!isa<FunctionDecl>(DUnderlying) && !isa<VarDecl>(DUnderlying)) { |
| // If the existing declaration is hidden, prefer the new one. Otherwise, |
| // keep what we've got. |
| return !S.isVisible(Existing); |
| } |
| |
| // Pick the newer declaration; it might have a more precise type. |
| for (const Decl *Prev = DUnderlying->getPreviousDecl(); Prev; |
| Prev = Prev->getPreviousDecl()) |
| if (Prev == EUnderlying) |
| return true; |
| return false; |
| } |
| |
| /// Determine whether \p D can hide a tag declaration. |
| static bool canHideTag(const NamedDecl *D) { |
| // C++ [basic.scope.declarative]p4: |
| // Given a set of declarations in a single declarative region [...] |
| // exactly one declaration shall declare a class name or enumeration name |
| // that is not a typedef name and the other declarations shall all refer to |
| // the same variable, non-static data member, or enumerator, or all refer |
| // to functions and function templates; in this case the class name or |
| // enumeration name is hidden. |
| // C++ [basic.scope.hiding]p2: |
| // A class name or enumeration name can be hidden by the name of a |
| // variable, data member, function, or enumerator declared in the same |
| // scope. |
| // An UnresolvedUsingValueDecl always instantiates to one of these. |
| D = D->getUnderlyingDecl(); |
| return isa<VarDecl>(D) || isa<EnumConstantDecl>(D) || isa<FunctionDecl>(D) || |
| isa<FunctionTemplateDecl>(D) || isa<FieldDecl>(D) || |
| isa<UnresolvedUsingValueDecl>(D); |
| } |
| |
| /// Resolves the result kind of this lookup. |
| void LookupResult::resolveKind() { |
| unsigned N = Decls.size(); |
| |
| // Fast case: no possible ambiguity. |
| if (N == 0) { |
| assert(ResultKind == NotFound || |
| ResultKind == NotFoundInCurrentInstantiation); |
| return; |
| } |
| |
| // If there's a single decl, we need to examine it to decide what |
| // kind of lookup this is. |
| if (N == 1) { |
| const NamedDecl *D = (*Decls.begin())->getUnderlyingDecl(); |
| if (isa<FunctionTemplateDecl>(D)) |
| ResultKind = FoundOverloaded; |
| else if (isa<UnresolvedUsingValueDecl>(D)) |
| ResultKind = FoundUnresolvedValue; |
| return; |
| } |
| |
| // Don't do any extra resolution if we've already resolved as ambiguous. |
| if (ResultKind == Ambiguous) return; |
| |
| llvm::SmallDenseMap<const NamedDecl *, unsigned, 16> Unique; |
| llvm::SmallDenseMap<QualType, unsigned, 16> UniqueTypes; |
| |
| bool Ambiguous = false; |
| bool ReferenceToPlaceHolderVariable = false; |
| bool HasTag = false, HasFunction = false; |
| bool HasFunctionTemplate = false, HasUnresolved = false; |
| const NamedDecl *HasNonFunction = nullptr; |
| |
| llvm::SmallVector<const NamedDecl *, 4> EquivalentNonFunctions; |
| llvm::BitVector RemovedDecls(N); |
| |
| for (unsigned I = 0; I < N; I++) { |
| const NamedDecl *D = Decls[I]->getUnderlyingDecl(); |
| D = cast<NamedDecl>(D->getCanonicalDecl()); |
| |
| // Ignore an invalid declaration unless it's the only one left. |
| // Also ignore HLSLBufferDecl which not have name conflict with other Decls. |
| if ((D->isInvalidDecl() || isa<HLSLBufferDecl>(D)) && |
| N - RemovedDecls.count() > 1) { |
| RemovedDecls.set(I); |
| continue; |
| } |
| |
| // C++ [basic.scope.hiding]p2: |
| // A class name or enumeration name can be hidden by the name of |
| // an object, function, or enumerator declared in the same |
| // scope. If a class or enumeration name and an object, function, |
| // or enumerator are declared in the same scope (in any order) |
| // with the same name, the class or enumeration name is hidden |
| // wherever the object, function, or enumerator name is visible. |
| if (HideTags && isa<TagDecl>(D)) { |
| bool Hidden = false; |
| for (auto *OtherDecl : Decls) { |
| if (canHideTag(OtherDecl) && !OtherDecl->isInvalidDecl() && |
| getContextForScopeMatching(OtherDecl)->Equals( |
| getContextForScopeMatching(Decls[I]))) { |
| RemovedDecls.set(I); |
| Hidden = true; |
| break; |
| } |
| } |
| if (Hidden) |
| continue; |
| } |
| |
| std::optional<unsigned> ExistingI; |
| |
| // Redeclarations of types via typedef can occur both within a scope |
| // and, through using declarations and directives, across scopes. There is |
| // no ambiguity if they all refer to the same type, so unique based on the |
| // canonical type. |
| if (const auto *TD = dyn_cast<TypeDecl>(D)) { |
| QualType T = getSema().Context.getTypeDeclType(TD); |
| auto UniqueResult = UniqueTypes.insert( |
| std::make_pair(getSema().Context.getCanonicalType(T), I)); |
| if (!UniqueResult.second) { |
| // The type is not unique. |
| ExistingI = UniqueResult.first->second; |
| } |
| } |
| |
| // For non-type declarations, check for a prior lookup result naming this |
| // canonical declaration. |
| if (!ExistingI) { |
| auto UniqueResult = Unique.insert(std::make_pair(D, I)); |
| if (!UniqueResult.second) { |
| // We've seen this entity before. |
| ExistingI = UniqueResult.first->second; |
| } |
| } |
| |
| if (ExistingI) { |
| // This is not a unique lookup result. Pick one of the results and |
| // discard the other. |
| if (isPreferredLookupResult(getSema(), getLookupKind(), Decls[I], |
| Decls[*ExistingI])) |
| Decls[*ExistingI] = Decls[I]; |
| RemovedDecls.set(I); |
| continue; |
| } |
| |
| // Otherwise, do some decl type analysis and then continue. |
| |
| if (isa<UnresolvedUsingValueDecl>(D)) { |
| HasUnresolved = true; |
| } else if (isa<TagDecl>(D)) { |
| if (HasTag) |
| Ambiguous = true; |
| HasTag = true; |
| } else if (isa<FunctionTemplateDecl>(D)) { |
| HasFunction = true; |
| HasFunctionTemplate = true; |
| } else if (isa<FunctionDecl>(D)) { |
| HasFunction = true; |
| } else { |
| if (HasNonFunction) { |
| // If we're about to create an ambiguity between two declarations that |
| // are equivalent, but one is an internal linkage declaration from one |
| // module and the other is an internal linkage declaration from another |
| // module, just skip it. |
| if (getSema().isEquivalentInternalLinkageDeclaration(HasNonFunction, |
| D)) { |
| EquivalentNonFunctions.push_back(D); |
| RemovedDecls.set(I); |
| continue; |
| } |
| if (D->isPlaceholderVar(getSema().getLangOpts()) && |
| getContextForScopeMatching(D) == |
| getContextForScopeMatching(Decls[I])) { |
| ReferenceToPlaceHolderVariable = true; |
| } |
| Ambiguous = true; |
| } |
| HasNonFunction = D; |
| } |
| } |
| |
| // FIXME: This diagnostic should really be delayed until we're done with |
| // the lookup result, in case the ambiguity is resolved by the caller. |
| if (!EquivalentNonFunctions.empty() && !Ambiguous) |
| getSema().diagnoseEquivalentInternalLinkageDeclarations( |
| getNameLoc(), HasNonFunction, EquivalentNonFunctions); |
| |
| // Remove decls by replacing them with decls from the end (which |
| // means that we need to iterate from the end) and then truncating |
| // to the new size. |
| for (int I = RemovedDecls.find_last(); I >= 0; I = RemovedDecls.find_prev(I)) |
| Decls[I] = Decls[--N]; |
| Decls.truncate(N); |
| |
| if ((HasNonFunction && (HasFunction || HasUnresolved)) || |
| (HideTags && HasTag && (HasFunction || HasNonFunction || HasUnresolved))) |
| Ambiguous = true; |
| |
| if (Ambiguous && ReferenceToPlaceHolderVariable) |
| setAmbiguous(LookupResult::AmbiguousReferenceToPlaceholderVariable); |
| else if (Ambiguous) |
| setAmbiguous(LookupResult::AmbiguousReference); |
| else if (HasUnresolved) |
| ResultKind = LookupResult::FoundUnresolvedValue; |
| else if (N > 1 || HasFunctionTemplate) |
| ResultKind = LookupResult::FoundOverloaded; |
| else |
| ResultKind = LookupResult::Found; |
| } |
| |
| void LookupResult::addDeclsFromBasePaths(const CXXBasePaths &P) { |
| CXXBasePaths::const_paths_iterator I, E; |
| for (I = P.begin(), E = P.end(); I != E; ++I) |
| for (DeclContext::lookup_iterator DI = I->Decls, DE = DI.end(); DI != DE; |
| ++DI) |
| addDecl(*DI); |
| } |
| |
| void LookupResult::setAmbiguousBaseSubobjects(CXXBasePaths &P) { |
| Paths = new CXXBasePaths; |
| Paths->swap(P); |
| addDeclsFromBasePaths(*Paths); |
| resolveKind(); |
| setAmbiguous(AmbiguousBaseSubobjects); |
| } |
| |
| void LookupResult::setAmbiguousBaseSubobjectTypes(CXXBasePaths &P) { |
| Paths = new CXXBasePaths; |
| Paths->swap(P); |
| addDeclsFromBasePaths(*Paths); |
| resolveKind(); |
| setAmbiguous(AmbiguousBaseSubobjectTypes); |
| } |
| |
| void LookupResult::print(raw_ostream &Out) { |
| Out << Decls.size() << " result(s)"; |
| if (isAmbiguous()) Out << ", ambiguous"; |
| if (Paths) Out << ", base paths present"; |
| |
| for (iterator I = begin(), E = end(); I != E; ++I) { |
| Out << "\n"; |
| (*I)->print(Out, 2); |
| } |
| } |
| |
| LLVM_DUMP_METHOD void LookupResult::dump() { |
| llvm::errs() << "lookup results for " << getLookupName().getAsString() |
| << ":\n"; |
| for (NamedDecl *D : *this) |
| D->dump(); |
| } |
| |
| /// Diagnose a missing builtin type. |
| static QualType diagOpenCLBuiltinTypeError(Sema &S, llvm::StringRef TypeClass, |
| llvm::StringRef Name) { |
| S.Diag(SourceLocation(), diag::err_opencl_type_not_found) |
| << TypeClass << Name; |
| return S.Context.VoidTy; |
| } |
| |
| /// Lookup an OpenCL enum type. |
| static QualType getOpenCLEnumType(Sema &S, llvm::StringRef Name) { |
| LookupResult Result(S, &S.Context.Idents.get(Name), SourceLocation(), |
| Sema::LookupTagName); |
| S.LookupName(Result, S.TUScope); |
| if (Result.empty()) |
| return diagOpenCLBuiltinTypeError(S, "enum", Name); |
| EnumDecl *Decl = Result.getAsSingle<EnumDecl>(); |
| if (!Decl) |
| return diagOpenCLBuiltinTypeError(S, "enum", Name); |
| return S.Context.getEnumType(Decl); |
| } |
| |
| /// Lookup an OpenCL typedef type. |
| static QualType getOpenCLTypedefType(Sema &S, llvm::StringRef Name) { |
| LookupResult Result(S, &S.Context.Idents.get(Name), SourceLocation(), |
| Sema::LookupOrdinaryName); |
| S.LookupName(Result, S.TUScope); |
| if (Result.empty()) |
| return diagOpenCLBuiltinTypeError(S, "typedef", Name); |
| TypedefNameDecl *Decl = Result.getAsSingle<TypedefNameDecl>(); |
| if (!Decl) |
| return diagOpenCLBuiltinTypeError(S, "typedef", Name); |
| return S.Context.getTypedefType(Decl); |
| } |
| |
| /// Get the QualType instances of the return type and arguments for an OpenCL |
| /// builtin function signature. |
| /// \param S (in) The Sema instance. |
| /// \param OpenCLBuiltin (in) The signature currently handled. |
| /// \param GenTypeMaxCnt (out) Maximum number of types contained in a generic |
| /// type used as return type or as argument. |
| /// Only meaningful for generic types, otherwise equals 1. |
| /// \param RetTypes (out) List of the possible return types. |
| /// \param ArgTypes (out) List of the possible argument types. For each |
| /// argument, ArgTypes contains QualTypes for the Cartesian product |
| /// of (vector sizes) x (types) . |
| static void GetQualTypesForOpenCLBuiltin( |
| Sema &S, const OpenCLBuiltinStruct &OpenCLBuiltin, unsigned &GenTypeMaxCnt, |
| SmallVector<QualType, 1> &RetTypes, |
| SmallVector<SmallVector<QualType, 1>, 5> &ArgTypes) { |
| // Get the QualType instances of the return types. |
| unsigned Sig = SignatureTable[OpenCLBuiltin.SigTableIndex]; |
| OCL2Qual(S, TypeTable[Sig], RetTypes); |
| GenTypeMaxCnt = RetTypes.size(); |
| |
| // Get the QualType instances of the arguments. |
| // First type is the return type, skip it. |
| for (unsigned Index = 1; Index < OpenCLBuiltin.NumTypes; Index++) { |
| SmallVector<QualType, 1> Ty; |
| OCL2Qual(S, TypeTable[SignatureTable[OpenCLBuiltin.SigTableIndex + Index]], |
| Ty); |
| GenTypeMaxCnt = (Ty.size() > GenTypeMaxCnt) ? Ty.size() : GenTypeMaxCnt; |
| ArgTypes.push_back(std::move(Ty)); |
| } |
| } |
| |
| /// Create a list of the candidate function overloads for an OpenCL builtin |
| /// function. |
| /// \param Context (in) The ASTContext instance. |
| /// \param GenTypeMaxCnt (in) Maximum number of types contained in a generic |
| /// type used as return type or as argument. |
| /// Only meaningful for generic types, otherwise equals 1. |
| /// \param FunctionList (out) List of FunctionTypes. |
| /// \param RetTypes (in) List of the possible return types. |
| /// \param ArgTypes (in) List of the possible types for the arguments. |
| static void GetOpenCLBuiltinFctOverloads( |
| ASTContext &Context, unsigned GenTypeMaxCnt, |
| std::vector<QualType> &FunctionList, SmallVector<QualType, 1> &RetTypes, |
| SmallVector<SmallVector<QualType, 1>, 5> &ArgTypes) { |
| FunctionProtoType::ExtProtoInfo PI( |
| Context.getDefaultCallingConvention(false, false, true)); |
| PI.Variadic = false; |
| |
| // Do not attempt to create any FunctionTypes if there are no return types, |
| // which happens when a type belongs to a disabled extension. |
| if (RetTypes.size() == 0) |
| return; |
| |
| // Create FunctionTypes for each (gen)type. |
| for (unsigned IGenType = 0; IGenType < GenTypeMaxCnt; IGenType++) { |
| SmallVector<QualType, 5> ArgList; |
| |
| for (unsigned A = 0; A < ArgTypes.size(); A++) { |
| // Bail out if there is an argument that has no available types. |
| if (ArgTypes[A].size() == 0) |
| return; |
| |
| // Builtins such as "max" have an "sgentype" argument that represents |
| // the corresponding scalar type of a gentype. The number of gentypes |
| // must be a multiple of the number of sgentypes. |
| assert(GenTypeMaxCnt % ArgTypes[A].size() == 0 && |
| "argument type count not compatible with gentype type count"); |
| unsigned Idx = IGenType % ArgTypes[A].size(); |
| ArgList.push_back(ArgTypes[A][Idx]); |
| } |
| |
| FunctionList.push_back(Context.getFunctionType( |
| RetTypes[(RetTypes.size() != 1) ? IGenType : 0], ArgList, PI)); |
| } |
| } |
| |
| /// When trying to resolve a function name, if isOpenCLBuiltin() returns a |
| /// non-null <Index, Len> pair, then the name is referencing an OpenCL |
| /// builtin function. Add all candidate signatures to the LookUpResult. |
| /// |
| /// \param S (in) The Sema instance. |
| /// \param LR (inout) The LookupResult instance. |
| /// \param II (in) The identifier being resolved. |
| /// \param FctIndex (in) Starting index in the BuiltinTable. |
| /// \param Len (in) The signature list has Len elements. |
| static void InsertOCLBuiltinDeclarationsFromTable(Sema &S, LookupResult &LR, |
| IdentifierInfo *II, |
| const unsigned FctIndex, |
| const unsigned Len) { |
| // The builtin function declaration uses generic types (gentype). |
| bool HasGenType = false; |
| |
| // Maximum number of types contained in a generic type used as return type or |
| // as argument. Only meaningful for generic types, otherwise equals 1. |
| unsigned GenTypeMaxCnt; |
| |
| ASTContext &Context = S.Context; |
| |
| for (unsigned SignatureIndex = 0; SignatureIndex < Len; SignatureIndex++) { |
| const OpenCLBuiltinStruct &OpenCLBuiltin = |
| BuiltinTable[FctIndex + SignatureIndex]; |
| |
| // Ignore this builtin function if it is not available in the currently |
| // selected language version. |
| if (!isOpenCLVersionContainedInMask(Context.getLangOpts(), |
| OpenCLBuiltin.Versions)) |
| continue; |
| |
| // Ignore this builtin function if it carries an extension macro that is |
| // not defined. This indicates that the extension is not supported by the |
| // target, so the builtin function should not be available. |
| StringRef Extensions = FunctionExtensionTable[OpenCLBuiltin.Extension]; |
| if (!Extensions.empty()) { |
| SmallVector<StringRef, 2> ExtVec; |
| Extensions.split(ExtVec, " "); |
| bool AllExtensionsDefined = true; |
| for (StringRef Ext : ExtVec) { |
| if (!S.getPreprocessor().isMacroDefined(Ext)) { |
| AllExtensionsDefined = false; |
| break; |
| } |
| } |
| if (!AllExtensionsDefined) |
| continue; |
| } |
| |
| SmallVector<QualType, 1> RetTypes; |
| SmallVector<SmallVector<QualType, 1>, 5> ArgTypes; |
| |
| // Obtain QualType lists for the function signature. |
| GetQualTypesForOpenCLBuiltin(S, OpenCLBuiltin, GenTypeMaxCnt, RetTypes, |
| ArgTypes); |
| if (GenTypeMaxCnt > 1) { |
| HasGenType = true; |
| } |
| |
| // Create function overload for each type combination. |
| std::vector<QualType> FunctionList; |
| GetOpenCLBuiltinFctOverloads(Context, GenTypeMaxCnt, FunctionList, RetTypes, |
| ArgTypes); |
| |
| SourceLocation Loc = LR.getNameLoc(); |
| DeclContext *Parent = Context.getTranslationUnitDecl(); |
| FunctionDecl *NewOpenCLBuiltin; |
| |
| for (const auto &FTy : FunctionList) { |
| NewOpenCLBuiltin = FunctionDecl::Create( |
| Context, Parent, Loc, Loc, II, FTy, /*TInfo=*/nullptr, SC_Extern, |
| S.getCurFPFeatures().isFPConstrained(), false, |
| FTy->isFunctionProtoType()); |
| NewOpenCLBuiltin->setImplicit(); |
| |
| // Create Decl objects for each parameter, adding them to the |
| // FunctionDecl. |
| const auto *FP = cast<FunctionProtoType>(FTy); |
| SmallVector<ParmVarDecl *, 4> ParmList; |
| for (unsigned IParm = 0, e = FP->getNumParams(); IParm != e; ++IParm) { |
| ParmVarDecl *Parm = ParmVarDecl::Create( |
| Context, NewOpenCLBuiltin, SourceLocation(), SourceLocation(), |
| nullptr, FP->getParamType(IParm), nullptr, SC_None, nullptr); |
| Parm->setScopeInfo(0, IParm); |
| ParmList.push_back(Parm); |
| } |
| NewOpenCLBuiltin->setParams(ParmList); |
| |
| // Add function attributes. |
| if (OpenCLBuiltin.IsPure) |
| NewOpenCLBuiltin->addAttr(PureAttr::CreateImplicit(Context)); |
| if (OpenCLBuiltin.IsConst) |
| NewOpenCLBuiltin->addAttr(ConstAttr::CreateImplicit(Context)); |
| if (OpenCLBuiltin.IsConv) |
| NewOpenCLBuiltin->addAttr(ConvergentAttr::CreateImplicit(Context)); |
| |
| if (!S.getLangOpts().OpenCLCPlusPlus) |
| NewOpenCLBuiltin->addAttr(OverloadableAttr::CreateImplicit(Context)); |
| |
| LR.addDecl(NewOpenCLBuiltin); |
| } |
| } |
| |
| // If we added overloads, need to resolve the lookup result. |
| if (Len > 1 || HasGenType) |
| LR.resolveKind(); |
| } |
| |
| bool Sema::LookupBuiltin(LookupResult &R) { |
| Sema::LookupNameKind NameKind = R.getLookupKind(); |
| |
| // If we didn't find a use of this identifier, and if the identifier |
| // corresponds to a compiler builtin, create the decl object for the builtin |
| // now, injecting it into translation unit scope, and return it. |
| if (NameKind == Sema::LookupOrdinaryName || |
| NameKind == Sema::LookupRedeclarationWithLinkage) { |
| IdentifierInfo *II = R.getLookupName().getAsIdentifierInfo(); |
| if (II) { |
| if (getLangOpts().CPlusPlus && NameKind == Sema::LookupOrdinaryName) { |
| if (II == getASTContext().getMakeIntegerSeqName()) { |
| R.addDecl(getASTContext().getMakeIntegerSeqDecl()); |
| return true; |
| } |
| if (II == getASTContext().getTypePackElementName()) { |
| R.addDecl(getASTContext().getTypePackElementDecl()); |
| return true; |
| } |
| if (II == getASTContext().getBuiltinCommonTypeName()) { |
| R.addDecl(getASTContext().getBuiltinCommonTypeDecl()); |
| return true; |
| } |
| } |
| |
| // Check if this is an OpenCL Builtin, and if so, insert its overloads. |
| if (getLangOpts().OpenCL && getLangOpts().DeclareOpenCLBuiltins) { |
| auto Index = isOpenCLBuiltin(II->getName()); |
| if (Index.first) { |
| InsertOCLBuiltinDeclarationsFromTable(*this, R, II, Index.first - 1, |
| Index.second); |
| return true; |
| } |
| } |
| |
| if (RISCV().DeclareRVVBuiltins || RISCV().DeclareSiFiveVectorBuiltins) { |
| if (!RISCV().IntrinsicManager) |
| RISCV().IntrinsicManager = CreateRISCVIntrinsicManager(*this); |
| |
| RISCV().IntrinsicManager->InitIntrinsicList(); |
| |
| if (RISCV().IntrinsicManager->CreateIntrinsicIfFound(R, II, PP)) |
| return true; |
| } |
| |
| // If this is a builtin on this (or all) targets, create the decl. |
| if (unsigned BuiltinID = II->getBuiltinID()) { |
| // In C++ and OpenCL (spec v1.2 s6.9.f), we don't have any predefined |
| // library functions like 'malloc'. Instead, we'll just error. |
| if ((getLangOpts().CPlusPlus || getLangOpts().OpenCL) && |
| Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) |
| return false; |
| |
| if (NamedDecl *D = |
| LazilyCreateBuiltin(II, BuiltinID, TUScope, |
| R.isForRedeclaration(), R.getNameLoc())) { |
| R.addDecl(D); |
| return true; |
| } |
| } |
| } |
| } |
| |
| return false; |
| } |
| |
| /// Looks up the declaration of "struct objc_super" and |
| /// saves it for later use in building builtin declaration of |
| /// objc_msgSendSuper and objc_msgSendSuper_stret. |
| static void LookupPredefedObjCSuperType(Sema &Sema, Scope *S) { |
| ASTContext &Context = Sema.Context; |
| LookupResult Result(Sema, &Context.Idents.get("objc_super"), SourceLocation(), |
| Sema::LookupTagName); |
| Sema.LookupName(Result, S); |
| if (Result.getResultKind() == LookupResult::Found) |
| if (const TagDecl *TD = Result.getAsSingle<TagDecl>()) |
| Context.setObjCSuperType(Context.getTagDeclType(TD)); |
| } |
| |
| void Sema::LookupNecessaryTypesForBuiltin(Scope *S, unsigned ID) { |
| if (ID == Builtin::BIobjc_msgSendSuper) |
| LookupPredefedObjCSuperType(*this, S); |
| } |
| |
| /// Determine whether we can declare a special member function within |
| /// the class at this point. |
| static bool CanDeclareSpecialMemberFunction(const CXXRecordDecl *Class) { |
| // We need to have a definition for the class. |
| if (!Class->getDefinition() || Class->isDependentContext()) |
| return false; |
| |
| // We can't be in the middle of defining the class. |
| return !Class->isBeingDefined(); |
| } |
| |
| void Sema::ForceDeclarationOfImplicitMembers(CXXRecordDecl *Class) { |
| if (!CanDeclareSpecialMemberFunction(Class)) |
| return; |
| |
| // If the default constructor has not yet been declared, do so now. |
| if (Class->needsImplicitDefaultConstructor()) |
| DeclareImplicitDefaultConstructor(Class); |
| |
| // If the copy constructor has not yet been declared, do so now. |
| if (Class->needsImplicitCopyConstructor()) |
| DeclareImplicitCopyConstructor(Class); |
| |
| // If the copy assignment operator has not yet been declared, do so now. |
| if (Class->needsImplicitCopyAssignment()) |
| DeclareImplicitCopyAssignment(Class); |
| |
| if (getLangOpts().CPlusPlus11) { |
| // If the move constructor has not yet been declared, do so now. |
| if (Class->needsImplicitMoveConstructor()) |
| DeclareImplicitMoveConstructor(Class); |
| |
| // If the move assignment operator has not yet been declared, do so now. |
| if (Class->needsImplicitMoveAssignment()) |
| DeclareImplicitMoveAssignment(Class); |
| } |
| |
| // If the destructor has not yet been declared, do so now. |
| if (Class->needsImplicitDestructor()) |
| DeclareImplicitDestructor(Class); |
| } |
| |
| /// Determine whether this is the name of an implicitly-declared |
| /// special member function. |
| static bool isImplicitlyDeclaredMemberFunctionName(DeclarationName Name) { |
| switch (Name.getNameKind()) { |
| case DeclarationName::CXXConstructorName: |
| case DeclarationName::CXXDestructorName: |
| return true; |
| |
| case DeclarationName::CXXOperatorName: |
| return Name.getCXXOverloadedOperator() == OO_Equal; |
| |
| default: |
| break; |
| } |
| |
| return false; |
| } |
| |
| /// If there are any implicit member functions with the given name |
| /// that need to be declared in the given declaration context, do so. |
| static void DeclareImplicitMemberFunctionsWithName(Sema &S, |
| DeclarationName Name, |
| SourceLocation Loc, |
| const DeclContext *DC) { |
| if (!DC) |
| return; |
| |
| switch (Name.getNameKind()) { |
| case DeclarationName::CXXConstructorName: |
| if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC)) |
| if (Record->getDefinition() && CanDeclareSpecialMemberFunction(Record)) { |
| CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record); |
| if (Record->needsImplicitDefaultConstructor()) |
| S.DeclareImplicitDefaultConstructor(Class); |
| if (Record->needsImplicitCopyConstructor()) |
| S.DeclareImplicitCopyConstructor(Class); |
| if (S.getLangOpts().CPlusPlus11 && |
| Record->needsImplicitMoveConstructor()) |
| S.DeclareImplicitMoveConstructor(Class); |
| } |
| break; |
| |
| case DeclarationName::CXXDestructorName: |
| if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC)) |
| if (Record->getDefinition() && Record->needsImplicitDestructor() && |
| CanDeclareSpecialMemberFunction(Record)) |
| S.DeclareImplicitDestructor(const_cast<CXXRecordDecl *>(Record)); |
| break; |
| |
| case DeclarationName::CXXOperatorName: |
| if (Name.getCXXOverloadedOperator() != OO_Equal) |
| break; |
| |
| if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC)) { |
| if (Record->getDefinition() && CanDeclareSpecialMemberFunction(Record)) { |
| CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record); |
| if (Record->needsImplicitCopyAssignment()) |
| S.DeclareImplicitCopyAssignment(Class); |
| if (S.getLangOpts().CPlusPlus11 && |
| Record->needsImplicitMoveAssignment()) |
| S.DeclareImplicitMoveAssignment(Class); |
| } |
| } |
| break; |
| |
| case DeclarationName::CXXDeductionGuideName: |
| S.DeclareImplicitDeductionGuides(Name.getCXXDeductionGuideTemplate(), Loc); |
| break; |
| |
| default: |
| break; |
| } |
| } |
| |
| // Adds all qualifying matches for a name within a decl context to the |
| // given lookup result. Returns true if any matches were found. |
| static bool LookupDirect(Sema &S, LookupResult &R, const DeclContext *DC) { |
| bool Found = false; |
| |
| // Lazily declare C++ special member functions. |
| if (S.getLangOpts().CPlusPlus) |
| DeclareImplicitMemberFunctionsWithName(S, R.getLookupName(), R.getNameLoc(), |
| DC); |
| |
| // Perform lookup into this declaration context. |
| DeclContext::lookup_result DR = DC->lookup(R.getLookupName()); |
| for (NamedDecl *D : DR) { |
| if ((D = R.getAcceptableDecl(D))) { |
| R.addDecl(D); |
| Found = true; |
| } |
| } |
| |
| if (!Found && DC->isTranslationUnit() && S.LookupBuiltin(R)) |
| return true; |
| |
| if (R.getLookupName().getNameKind() |
| != DeclarationName::CXXConversionFunctionName || |
| R.getLookupName().getCXXNameType()->isDependentType() || |
| !isa<CXXRecordDecl>(DC)) |
| return Found; |
| |
| // C++ [temp.mem]p6: |
| // A specialization of a conversion function template is not found by |
| // name lookup. Instead, any conversion function templates visible in the |
| // context of the use are considered. [...] |
| const CXXRecordDecl *Record = cast<CXXRecordDecl>(DC); |
| if (!Record->isCompleteDefinition()) |
| return Found; |
| |
| // For conversion operators, 'operator auto' should only match |
| // 'operator auto'. Since 'auto' is not a type, it shouldn't be considered |
| // as a candidate for template substitution. |
| auto *ContainedDeducedType = |
| R.getLookupName().getCXXNameType()->getContainedDeducedType(); |
| if (R.getLookupName().getNameKind() == |
| DeclarationName::CXXConversionFunctionName && |
| ContainedDeducedType && ContainedDeducedType->isUndeducedType()) |
| return Found; |
| |
| for (CXXRecordDecl::conversion_iterator U = Record->conversion_begin(), |
| UEnd = Record->conversion_end(); U != UEnd; ++U) { |
| FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(*U); |
| if (!ConvTemplate) |
| continue; |
| |
| // When we're performing lookup for the purposes of redeclaration, just |
| // add the conversion function template. When we deduce template |
| // arguments for specializations, we'll end up unifying the return |
| // type of the new declaration with the type of the function template. |
| if (R.isForRedeclaration()) { |
| R.addDecl(ConvTemplate); |
| Found = true; |
| continue; |
| } |
| |
| // C++ [temp.mem]p6: |
| // [...] For each such operator, if argument deduction succeeds |
| // (14.9.2.3), the resulting specialization is used as if found by |
| // name lookup. |
| // |
| // When referencing a conversion function for any purpose other than |
| // a redeclaration (such that we'll be building an expression with the |
| // result), perform template argument deduction and place the |
| // specialization into the result set. We do this to avoid forcing all |
| // callers to perform special deduction for conversion functions. |
| TemplateDeductionInfo Info(R.getNameLoc()); |
| FunctionDecl *Specialization = nullptr; |
| |
| const FunctionProtoType *ConvProto |
| = ConvTemplate->getTemplatedDecl()->getType()->getAs<FunctionProtoType>(); |
| assert(ConvProto && "Nonsensical conversion function template type"); |
| |
| // Compute the type of the function that we would expect the conversion |
| // function to have, if it were to match the name given. |
| // FIXME: Calling convention! |
| FunctionProtoType::ExtProtoInfo EPI = ConvProto->getExtProtoInfo(); |
| EPI.ExtInfo = EPI.ExtInfo.withCallingConv(CC_C); |
| EPI.ExceptionSpec = EST_None; |
| QualType ExpectedType = R.getSema().Context.getFunctionType( |
| R.getLookupName().getCXXNameType(), {}, EPI); |
| |
| // Perform template argument deduction against the type that we would |
| // expect the function to have. |
| if (R.getSema().DeduceTemplateArguments(ConvTemplate, nullptr, ExpectedType, |
| Specialization, Info) == |
| TemplateDeductionResult::Success) { |
| R.addDecl(Specialization); |
| Found = true; |
| } |
| } |
| |
| return Found; |
| } |
| |
| // Performs C++ unqualified lookup into the given file context. |
| static bool CppNamespaceLookup(Sema &S, LookupResult &R, ASTContext &Context, |
| const DeclContext *NS, |
| UnqualUsingDirectiveSet &UDirs) { |
| |
| assert(NS && NS->isFileContext() && "CppNamespaceLookup() requires namespace!"); |
| |
| // Perform direct name lookup into the LookupCtx. |
| bool Found = LookupDirect(S, R, NS); |
| |
| // Perform direct name lookup into the namespaces nominated by the |
| // using directives whose common ancestor is this namespace. |
| for (const UnqualUsingEntry &UUE : UDirs.getNamespacesFor(NS)) |
| if (LookupDirect(S, R, UUE.getNominatedNamespace())) |
| Found = true; |
| |
| R.resolveKind(); |
| |
| return Found; |
| } |
| |
| static bool isNamespaceOrTranslationUnitScope(Scope *S) { |
| if (DeclContext *Ctx = S->getEntity()) |
| return Ctx->isFileContext(); |
| return false; |
| } |
| |
| /// Find the outer declaration context from this scope. This indicates the |
| /// context that we should search up to (exclusive) before considering the |
| /// parent of the specified scope. |
| static DeclContext *findOuterContext(Scope *S) { |
| for (Scope *OuterS = S->getParent(); OuterS; OuterS = OuterS->getParent()) |
| if (DeclContext *DC = OuterS->getLookupEntity()) |
| return DC; |
| return nullptr; |
| } |
| |
| namespace { |
| /// An RAII object to specify that we want to find block scope extern |
| /// declarations. |
| struct FindLocalExternScope { |
| FindLocalExternScope(LookupResult &R) |
| : R(R), OldFindLocalExtern(R.getIdentifierNamespace() & |
| Decl::IDNS_LocalExtern) { |
| R.setFindLocalExtern(R.getIdentifierNamespace() & |
| (Decl::IDNS_Ordinary | Decl::IDNS_NonMemberOperator)); |
| } |
| void restore() { |
| R.setFindLocalExtern(OldFindLocalExtern); |
| } |
| ~FindLocalExternScope() { |
| restore(); |
| } |
| LookupResult &R; |
| bool OldFindLocalExtern; |
| }; |
| } // end anonymous namespace |
| |
| bool Sema::CppLookupName(LookupResult &R, Scope *S) { |
| assert(getLangOpts().CPlusPlus && "Can perform only C++ lookup"); |
| |
| DeclarationName Name = R.getLookupName(); |
| Sema::LookupNameKind NameKind = R.getLookupKind(); |
| |
| // If this is the name of an implicitly-declared special member function, |
| // go through the scope stack to implicitly declare |
| if (isImplicitlyDeclaredMemberFunctionName(Name)) { |
| for (Scope *PreS = S; PreS; PreS = PreS->getParent()) |
| if (DeclContext *DC = PreS->getEntity()) |
| DeclareImplicitMemberFunctionsWithName(*this, Name, R.getNameLoc(), DC); |
| } |
| |
| // C++23 [temp.dep.general]p2: |
| // The component name of an unqualified-id is dependent if |
| // - it is a conversion-function-id whose conversion-type-id |
| // is dependent, or |
| // - it is operator= and the current class is a templated entity, or |
| // - the unqualified-id is the postfix-expression in a dependent call. |
| if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName && |
| Name.getCXXNameType()->isDependentType()) { |
| R.setNotFoundInCurrentInstantiation(); |
| return false; |
| } |
| |
| // Implicitly declare member functions with the name we're looking for, if in |
| // fact we are in a scope where it matters. |
| |
| Scope *Initial = S; |
| IdentifierResolver::iterator |
| I = IdResolver.begin(Name), |
| IEnd = IdResolver.end(); |
| |
| // First we lookup local scope. |
| // We don't consider using-directives, as per 7.3.4.p1 [namespace.udir] |
| // ...During unqualified name lookup (3.4.1), the names appear as if |
| // they were declared in the nearest enclosing namespace which contains |
| // both the using-directive and the nominated namespace. |
| // [Note: in this context, "contains" means "contains directly or |
| // indirectly". |
| // |
| // For example: |
| // namespace A { int i; } |
| // void foo() { |
| // int i; |
| // { |
| // using namespace A; |
| // ++i; // finds local 'i', A::i appears at global scope |
| // } |
| // } |
| // |
| UnqualUsingDirectiveSet UDirs(*this); |
| bool VisitedUsingDirectives = false; |
| bool LeftStartingScope = false; |
| |
| // When performing a scope lookup, we want to find local extern decls. |
| FindLocalExternScope FindLocals(R); |
| |
| for (; S && !isNamespaceOrTranslationUnitScope(S); S = S->getParent()) { |
| bool SearchNamespaceScope = true; |
| // Check whether the IdResolver has anything in this scope. |
| for (; I != IEnd && S->isDeclScope(*I); ++I) { |
| if (NamedDecl *ND = R.getAcceptableDecl(*I)) { |
| if (NameKind == LookupRedeclarationWithLinkage && |
| !(*I)->isTemplateParameter()) { |
| // If it's a template parameter, we still find it, so we can diagnose |
| // the invalid redeclaration. |
| |
| // Determine whether this (or a previous) declaration is |
| // out-of-scope. |
| if (!LeftStartingScope && !Initial->isDeclScope(*I)) |
| LeftStartingScope = true; |
| |
| // If we found something outside of our starting scope that |
| // does not have linkage, skip it. |
| if (LeftStartingScope && !((*I)->hasLinkage())) { |
| R.setShadowed(); |
| continue; |
| } |
| } else { |
| // We found something in this scope, we should not look at the |
| // namespace scope |
| SearchNamespaceScope = false; |
| } |
| R.addDecl(ND); |
| } |
| } |
| if (!SearchNamespaceScope) { |
| R.resolveKind(); |
| if (S->isClassScope()) |
| if (auto *Record = dyn_cast_if_present<CXXRecordDecl>(S->getEntity())) |
| R.setNamingClass(Record); |
| return true; |
| } |
| |
| if (NameKind == LookupLocalFriendName && !S->isClassScope()) { |
| // C++11 [class.friend]p11: |
| // If a friend declaration appears in a local class and the name |
| // specified is an unqualified name, a prior declaration is |
| // looked up without considering scopes that are outside the |
| // innermost enclosing non-class scope. |
| return false; |
| } |
| |
| if (DeclContext *Ctx = S->getLookupEntity()) { |
| DeclContext *OuterCtx = findOuterContext(S); |
| for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) { |
| // We do not directly look into transparent contexts, since |
| // those entities will be found in the nearest enclosing |
| // non-transparent context. |
| if (Ctx->isTransparentContext()) |
| continue; |
| |
| // We do not look directly into function or method contexts, |
| // since all of the local variables and parameters of the |
| // function/method are present within the Scope. |
| if (Ctx->isFunctionOrMethod()) { |
| // If we have an Objective-C instance method, look for ivars |
| // in the corresponding interface. |
| if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) { |
| if (Method->isInstanceMethod() && Name.getAsIdentifierInfo()) |
| if (ObjCInterfaceDecl *Class = Method->getClassInterface()) { |
| ObjCInterfaceDecl *ClassDeclared; |
| if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable( |
| Name.getAsIdentifierInfo(), |
| ClassDeclared)) { |
| if (NamedDecl *ND = R.getAcceptableDecl(Ivar)) { |
| R.addDecl(ND); |
| R.resolveKind(); |
| return true; |
| } |
| } |
| } |
| } |
| |
| continue; |
| } |
| |
| // If this is a file context, we need to perform unqualified name |
| // lookup considering using directives. |
| if (Ctx->isFileContext()) { |
| // If we haven't handled using directives yet, do so now. |
| if (!VisitedUsingDirectives) { |
| // Add using directives from this context up to the top level. |
| for (DeclContext *UCtx = Ctx; UCtx; UCtx = UCtx->getParent()) { |
| if (UCtx->isTransparentContext()) |
| continue; |
| |
| UDirs.visit(UCtx, UCtx); |
| } |
| |
| // Find the innermost file scope, so we can add using directives |
| // from local scopes. |
| Scope *InnermostFileScope = S; |
| while (InnermostFileScope && |
| !isNamespaceOrTranslationUnitScope(InnermostFileScope)) |
| InnermostFileScope = InnermostFileScope->getParent(); |
| UDirs.visitScopeChain(Initial, InnermostFileScope); |
| |
| UDirs.done(); |
| |
| VisitedUsingDirectives = true; |
| } |
| |
| if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs)) { |
| R.resolveKind(); |
| return true; |
| } |
| |
| continue; |
| } |
| |
| // Perform qualified name lookup into this context. |
| // FIXME: In some cases, we know that every name that could be found by |
| // this qualified name lookup will also be on the identifier chain. For |
| // example, inside a class without any base classes, we never need to |
| // perform qualified lookup because all of the members are on top of the |
| // identifier chain. |
| if (LookupQualifiedName(R, Ctx, /*InUnqualifiedLookup=*/true)) |
| return true; |
| } |
| } |
| } |
| |
| // Stop if we ran out of scopes. |
| // FIXME: This really, really shouldn't be happening. |
| if (!S) return false; |
| |
| // If we are looking for members, no need to look into global/namespace scope. |
| if (NameKind == LookupMemberName) |
| return false; |
| |
| // Collect UsingDirectiveDecls in all scopes, and recursively all |
| // nominated namespaces by those using-directives. |
| // |
| // FIXME: Cache this sorted list in Scope structure, and DeclContext, so we |
| // don't build it for each lookup! |
| if (!VisitedUsingDirectives) { |
| UDirs.visitScopeChain(Initial, S); |
| UDirs.done(); |
| } |
| |
| // If we're not performing redeclaration lookup, do not look for local |
| // extern declarations outside of a function scope. |
| if (!R.isForRedeclaration()) |
| FindLocals.restore(); |
| |
| // Lookup namespace scope, and global scope. |
| // Unqualified name lookup in C++ requires looking into scopes |
| // that aren't strictly lexical, and therefore we walk through the |
| // context as well as walking through the scopes. |
| for (; S; S = S->getParent()) { |
| // Check whether the IdResolver has anything in this scope. |
| bool Found = false; |
| for (; I != IEnd && S->isDeclScope(*I); ++I) { |
| if (NamedDecl *ND = R.getAcceptableDecl(*I)) { |
| // We found something. Look for anything else in our scope |
| // with this same name and in an acceptable identifier |
| // namespace, so that we can construct an overload set if we |
| // need to. |
| Found = true; |
| R.addDecl(ND); |
| } |
| } |
| |
| if (Found && S->isTemplateParamScope()) { |
| R.resolveKind(); |
| return true; |
| } |
| |
| DeclContext *Ctx = S->getLookupEntity(); |
| if (Ctx) { |
| DeclContext *OuterCtx = findOuterContext(S); |
| for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) { |
| // We do not directly look into transparent contexts, since |
| // those entities will be found in the nearest enclosing |
| // non-transparent context. |
| if (Ctx->isTransparentContext()) |
| continue; |
| |
| // If we have a context, and it's not a context stashed in the |
| // template parameter scope for an out-of-line definition, also |
| // look into that context. |
| if (!(Found && S->isTemplateParamScope())) { |
| assert(Ctx->isFileContext() && |
| "We should have been looking only at file context here already."); |
| |
| // Look into context considering using-directives. |
| if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs)) |
| Found = true; |
| } |
| |
| if (Found) { |
| R.resolveKind(); |
| return true; |
| } |
| |
| if (R.isForRedeclaration() && !Ctx->isTransparentContext()) |
| return false; |
| } |
| } |
| |
| if (R.isForRedeclaration() && Ctx && !Ctx->isTransparentContext()) |
| return false; |
| } |
| |
| return !R.empty(); |
| } |
| |
| void Sema::makeMergedDefinitionVisible(NamedDecl *ND) { |
| if (auto *M = getCurrentModule()) |
| Context.mergeDefinitionIntoModule(ND, M); |
| else |
| // We're not building a module; just make the definition visible. |
| ND->setVisibleDespiteOwningModule(); |
| |
| // If ND is a template declaration, make the template parameters |
| // visible too. They're not (necessarily) within a mergeable DeclContext. |
| if (auto *TD = dyn_cast<TemplateDecl>(ND)) |
| for (auto *Param : *TD->getTemplateParameters()) |
| makeMergedDefinitionVisible(Param); |
| } |
| |
| /// Find the module in which the given declaration was defined. |
| static Module *getDefiningModule(Sema &S, Decl *Entity) { |
| if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Entity)) { |
| // If this function was instantiated from a template, the defining module is |
| // the module containing the pattern. |
| if (FunctionDecl *Pattern = FD->getTemplateInstantiationPattern()) |
| Entity = Pattern; |
| } else if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Entity)) { |
| if (CXXRecordDecl *Pattern = RD->getTemplateInstantiationPattern()) |
| Entity = Pattern; |
| } else if (EnumDecl *ED = dyn_cast<EnumDecl>(Entity)) { |
| if (auto *Pattern = ED->getTemplateInstantiationPattern()) |
| Entity = Pattern; |
| } else if (VarDecl *VD = dyn_cast<VarDecl>(Entity)) { |
| if (VarDecl *Pattern = VD->getTemplateInstantiationPattern()) |
| Entity = Pattern; |
| } |
| |
| // Walk up to the containing context. That might also have been instantiated |
| // from a template. |
| DeclContext *Context = Entity->getLexicalDeclContext(); |
| if (Context->isFileContext()) |
| return S.getOwningModule(Entity); |
| return getDefiningModule(S, cast<Decl>(Context)); |
| } |
| |
| llvm::DenseSet<Module*> &Sema::getLookupModules() { |
| unsigned N = CodeSynthesisContexts.size(); |
| for (unsigned I = CodeSynthesisContextLookupModules.size(); |
| I != N; ++I) { |
| Module *M = CodeSynthesisContexts[I].Entity ? |
| getDefiningModule(*this, CodeSynthesisContexts[I].Entity) : |
| nullptr; |
| if (M && !LookupModulesCache.insert(M).second) |
| M = nullptr; |
| CodeSynthesisContextLookupModules.push_back(M); |
| } |
| return LookupModulesCache; |
| } |
| |
| bool Sema::isUsableModule(const Module *M) { |
| assert(M && "We shouldn't check nullness for module here"); |
| // Return quickly if we cached the result. |
| if (UsableModuleUnitsCache.count(M)) |
| return true; |
| |
| // If M is the global module fragment of the current translation unit. So it |
| // should be usable. |
| // [module.global.frag]p1: |
| // The global module fragment can be used to provide declarations that are |
| // attached to the global module and usable within the module unit. |
| if (M == TheGlobalModuleFragment || M == TheImplicitGlobalModuleFragment) { |
| UsableModuleUnitsCache.insert(M); |
| return true; |
| } |
| |
| // Otherwise, the global module fragment from other translation unit is not |
| // directly usable. |
| if (M->isExplicitGlobalModule()) |
| return false; |
| |
| Module *Current = getCurrentModule(); |
| |
| // If we're not parsing a module, we can't use all the declarations from |
| // another module easily. |
| if (!Current) |
| return false; |
| |
| // For implicit global module, the decls in the same modules with the parent |
| // module should be visible to the decls in the implicit global module. |
| if (Current->isImplicitGlobalModule()) |
| Current = Current->getTopLevelModule(); |
| if (M->isImplicitGlobalModule()) |
| M = M->getTopLevelModule(); |
| |
| // If M is the module we're parsing or M and the current module unit lives in |
| // the same module, M should be usable. |
| // |
| // Note: It should be fine to search the vector `ModuleScopes` linearly since |
| // it should be generally small enough. There should be rare module fragments |
| // in a named module unit. |
| if (llvm::count_if(ModuleScopes, |
| [&M](const ModuleScope &MS) { return MS.Module == M; }) || |
| getASTContext().isInSameModule(M, Current)) { |
| UsableModuleUnitsCache.insert(M); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| bool Sema::hasVisibleMergedDefinition(const NamedDecl *Def) { |
| for (const Module *Merged : Context.getModulesWithMergedDefinition(Def)) |
| if (isModuleVisible(Merged)) |
| return true; |
| return false; |
| } |
| |
| bool Sema::hasMergedDefinitionInCurrentModule(const NamedDecl *Def) { |
| for (const Module *Merged : Context.getModulesWithMergedDefinition(Def)) |
| if (isUsableModule(Merged)) |
| return true; |
| return false; |
| } |
| |
| template <typename ParmDecl> |
| static bool |
| hasAcceptableDefaultArgument(Sema &S, const ParmDecl *D, |
| llvm::SmallVectorImpl<Module *> *Modules, |
| Sema::AcceptableKind Kind) { |
| if (!D->hasDefaultArgument()) |
| return false; |
| |
| llvm::SmallPtrSet<const ParmDecl *, 4> Visited; |
| while (D && Visited.insert(D).second) { |
| auto &DefaultArg = D->getDefaultArgStorage(); |
| if (!DefaultArg.isInherited() && S.isAcceptable(D, Kind)) |
| return true; |
| |
| if (!DefaultArg.isInherited() && Modules) { |
| auto *NonConstD = const_cast<ParmDecl*>(D); |
| Modules->push_back(S.getOwningModule(NonConstD)); |
| } |
| |
| // If there was a previous default argument, maybe its parameter is |
| // acceptable. |
| D = DefaultArg.getInheritedFrom(); |
| } |
| return false; |
| } |
| |
| bool Sema::hasAcceptableDefaultArgument( |
| const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules, |
| Sema::AcceptableKind Kind) { |
| if (auto *P = dyn_cast<TemplateTypeParmDecl>(D)) |
| return ::hasAcceptableDefaultArgument(*this, P, Modules, Kind); |
| |
| if (auto *P = dyn_cast<NonTypeTemplateParmDecl>(D)) |
| return ::hasAcceptableDefaultArgument(*this, P, Modules, Kind); |
| |
| return ::hasAcceptableDefaultArgument( |
| *this, cast<TemplateTemplateParmDecl>(D), Modules, Kind); |
| } |
| |
| bool Sema::hasVisibleDefaultArgument(const NamedDecl *D, |
| llvm::SmallVectorImpl<Module *> *Modules) { |
| return hasAcceptableDefaultArgument(D, Modules, |
| Sema::AcceptableKind::Visible); |
| } |
| |
| bool Sema::hasReachableDefaultArgument( |
| const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) { |
| return hasAcceptableDefaultArgument(D, Modules, |
| Sema::AcceptableKind::Reachable); |
| } |
| |
| template <typename Filter> |
| static bool |
| hasAcceptableDeclarationImpl(Sema &S, const NamedDecl *D, |
| llvm::SmallVectorImpl<Module *> *Modules, Filter F, |
| Sema::AcceptableKind Kind) { |
| bool HasFilteredRedecls = false; |
| |
| for (auto *Redecl : D->redecls()) { |
| auto *R = cast<NamedDecl>(Redecl); |
| if (!F(R)) |
| continue; |
| |
| if (S.isAcceptable(R, Kind)) |
| return true; |
| |
| HasFilteredRedecls = true; |
| |
| if (Modules) |
| Modules->push_back(R->getOwningModule()); |
| } |
| |
| // Only return false if there is at least one redecl that is not filtered out. |
| if (HasFilteredRedecls) |
| return false; |
| |
| return true; |
| } |
| |
| static bool |
| hasAcceptableExplicitSpecialization(Sema &S, const NamedDecl *D, |
| llvm::SmallVectorImpl<Module *> *Modules, |
| Sema::AcceptableKind Kind) { |
| return hasAcceptableDeclarationImpl( |
| S, D, Modules, |
| [](const NamedDecl *D) { |
| if (auto *RD = dyn_cast<CXXRecordDecl>(D)) |
| return RD->getTemplateSpecializationKind() == |
| TSK_ExplicitSpecialization; |
| if (auto *FD = dyn_cast<FunctionDecl>(D)) |
| return FD->getTemplateSpecializationKind() == |
| TSK_ExplicitSpecialization; |
| if (auto *VD = dyn_cast<VarDecl>(D)) |
| return VD->getTemplateSpecializationKind() == |
| TSK_ExplicitSpecialization; |
| llvm_unreachable("unknown explicit specialization kind"); |
| }, |
| Kind); |
| } |
| |
| bool Sema::hasVisibleExplicitSpecialization( |
| const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) { |
| return ::hasAcceptableExplicitSpecialization(*this, D, Modules, |
| Sema::AcceptableKind::Visible); |
| } |
| |
| bool Sema::hasReachableExplicitSpecialization( |
| const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) { |
| return ::hasAcceptableExplicitSpecialization(*this, D, Modules, |
| Sema::AcceptableKind::Reachable); |
| } |
| |
| static bool |
| hasAcceptableMemberSpecialization(Sema &S, const NamedDecl *D, |
| llvm::SmallVectorImpl<Module *> *Modules, |
| Sema::AcceptableKind Kind) { |
| assert(isa<CXXRecordDecl>(D->getDeclContext()) && |
| "not a member specialization"); |
| return hasAcceptableDeclarationImpl( |
| S, D, Modules, |
| [](const NamedDecl *D) { |
| // If the specialization is declared at namespace scope, then it's a |
| // member specialization declaration. If it's lexically inside the class |
| // definition then it was instantiated. |
| // |
| // FIXME: This is a hack. There should be a better way to determine |
| // this. |
| // FIXME: What about MS-style explicit specializations declared within a |
| // class definition? |
| return D->getLexicalDeclContext()->isFileContext(); |
| }, |
| Kind); |
| } |
| |
| bool Sema::hasVisibleMemberSpecialization( |
| const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) { |
| return hasAcceptableMemberSpecialization(*this, D, Modules, |
| Sema::AcceptableKind::Visible); |
| } |
| |
| bool Sema::hasReachableMemberSpecialization( |
| const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) { |
| return hasAcceptableMemberSpecialization(*this, D, Modules, |
| Sema::AcceptableKind::Reachable); |
| } |
| |
| /// Determine whether a declaration is acceptable to name lookup. |
| /// |
| /// This routine determines whether the declaration D is acceptable in the |
| /// current lookup context, taking into account the current template |
| /// instantiation stack. During template instantiation, a declaration is |
| /// acceptable if it is acceptable from a module containing any entity on the |
| /// template instantiation path (by instantiating a template, you allow it to |
| /// see the declarations that your module can see, including those later on in |
| /// your module). |
| bool LookupResult::isAcceptableSlow(Sema &SemaRef, NamedDecl *D, |
| Sema::AcceptableKind Kind) { |
| assert(!D->isUnconditionallyVisible() && |
| "should not call this: not in slow case"); |
| |
| Module *DeclModule = SemaRef.getOwningModule(D); |
| assert(DeclModule && "hidden decl has no owning module"); |
| |
| // If the owning module is visible, the decl is acceptable. |
| if (SemaRef.isModuleVisible(DeclModule, |
| D->isInvisibleOutsideTheOwningModule())) |
| return true; |
| |
| // Determine whether a decl context is a file context for the purpose of |
| // visibility/reachability. This looks through some (export and linkage spec) |
| // transparent contexts, but not others (enums). |
| auto IsEffectivelyFileContext = [](const DeclContext *DC) { |
| return DC->isFileContext() || isa<LinkageSpecDecl>(DC) || |
| isa<ExportDecl>(DC); |
| }; |
| |
| // If this declaration is not at namespace scope |
| // then it is acceptable if its lexical parent has a acceptable definition. |
| DeclContext *DC = D->getLexicalDeclContext(); |
| if (DC && !IsEffectivelyFileContext(DC)) { |
| // For a parameter, check whether our current template declaration's |
| // lexical context is acceptable, not whether there's some other acceptable |
| // definition of it, because parameters aren't "within" the definition. |
| // |
| // In C++ we need to check for a acceptable definition due to ODR merging, |
| // and in C we must not because each declaration of a function gets its own |
| // set of declarations for tags in prototype scope. |
| bool AcceptableWithinParent; |
| if (D->isTemplateParameter()) { |
| bool SearchDefinitions = true; |
| if (const auto *DCD = dyn_cast<Decl>(DC)) { |
| if (const auto *TD = DCD->getDescribedTemplate()) { |
| TemplateParameterList *TPL = TD->getTemplateParameters(); |
| auto Index = getDepthAndIndex(D).second; |
| SearchDefinitions = Index >= TPL->size() || TPL->getParam(Index) != D; |
| } |
| } |
| if (SearchDefinitions) |
| AcceptableWithinParent = |
| SemaRef.hasAcceptableDefinition(cast<NamedDecl>(DC), Kind); |
| else |
| AcceptableWithinParent = |
| isAcceptable(SemaRef, cast<NamedDecl>(DC), Kind); |
| } else if (isa<ParmVarDecl>(D) || |
| (isa<FunctionDecl>(DC) && !SemaRef.getLangOpts().CPlusPlus)) |
| AcceptableWithinParent = isAcceptable(SemaRef, cast<NamedDecl>(DC), Kind); |
| else if (D->isModulePrivate()) { |
| // A module-private declaration is only acceptable if an enclosing lexical |
| // parent was merged with another definition in the current module. |
| AcceptableWithinParent = false; |
| do { |
| if (SemaRef.hasMergedDefinitionInCurrentModule(cast<NamedDecl>(DC))) { |
| AcceptableWithinParent = true; |
| break; |
| } |
| DC = DC->getLexicalParent(); |
| } while (!IsEffectivelyFileContext(DC)); |
| } else { |
| AcceptableWithinParent = |
| SemaRef.hasAcceptableDefinition(cast<NamedDecl>(DC), Kind); |
| } |
| |
| if (AcceptableWithinParent && SemaRef.CodeSynthesisContexts.empty() && |
| Kind == Sema::AcceptableKind::Visible && |
| // FIXME: Do something better in this case. |
| !SemaRef.getLangOpts().ModulesLocalVisibility) { |
| // Cache the fact that this declaration is implicitly visible because |
| // its parent has a visible definition. |
| D->setVisibleDespiteOwningModule(); |
| } |
| return AcceptableWithinParent; |
| } |
| |
| if (Kind == Sema::AcceptableKind::Visible) |
| return false; |
| |
| assert(Kind == Sema::AcceptableKind::Reachable && |
| "Additional Sema::AcceptableKind?"); |
| return isReachableSlow(SemaRef, D); |
| } |
| |
| bool Sema::isModuleVisible(const Module *M, bool ModulePrivate) { |
| // The module might be ordinarily visible. For a module-private query, that |
| // means it is part of the current module. |
| if (ModulePrivate && isUsableModule(M)) |
| return true; |
| |
| // For a query which is not module-private, that means it is in our visible |
| // module set. |
| if (!ModulePrivate && VisibleModules.isVisible(M)) |
| return true; |
| |
| // Otherwise, it might be visible by virtue of the query being within a |
| // template instantiation or similar that is permitted to look inside M. |
| |
| // Find the extra places where we need to look. |
| const auto &LookupModules = getLookupModules(); |
| if (LookupModules.empty()) |
| return false; |
| |
| // If our lookup set contains the module, it's visible. |
| if (LookupModules.count(M)) |
| return true; |
| |
| // The global module fragments are visible to its corresponding module unit. |
| // So the global module fragment should be visible if the its corresponding |
| // module unit is visible. |
| if (M->isGlobalModule() && LookupModules.count(M->getTopLevelModule())) |
| return true; |
| |
| // For a module-private query, that's everywhere we get to look. |
| if (ModulePrivate) |
| return false; |
| |
| // Check whether M is transitively exported to an import of the lookup set. |
| return llvm::any_of(LookupModules, [&](const Module *LookupM) { |
| return LookupM->isModuleVisible(M); |
| }); |
| } |
| |
| // FIXME: Return false directly if we don't have an interface dependency on the |
| // translation unit containing D. |
| bool LookupResult::isReachableSlow(Sema &SemaRef, NamedDecl *D) { |
| assert(!isVisible(SemaRef, D) && "Shouldn't call the slow case.\n"); |
| |
| Module *DeclModule = SemaRef.getOwningModule(D); |
| assert(DeclModule && "hidden decl has no owning module"); |
| |
| // Entities in header like modules are reachable only if they're visible. |
| if (DeclModule->isHeaderLikeModule()) |
| return false; |
| |
| if (!D->isInAnotherModuleUnit()) |
| return true; |
| |
| // [module.reach]/p3: |
| // A declaration D is reachable from a point P if: |
| // ... |
| // - D is not discarded ([module.global.frag]), appears in a translation unit |
| // that is reachable from P, and does not appear within a private module |
| // fragment. |
| // |
| // A declaration that's discarded in the GMF should be module-private. |
| if (D->isModulePrivate()) |
| return false; |
| |
| // [module.reach]/p1 |
| // A translation unit U is necessarily reachable from a point P if U is a |
| // module interface unit on which the translation unit containing P has an |
| // interface dependency, or the translation unit containing P imports U, in |
| // either case prior to P ([module.import]). |
| // |
| // [module.import]/p10 |
| // A translation unit has an interface dependency on a translation unit U if |
| // it contains a declaration (possibly a module-declaration) that imports U |
| // or if it has an interface dependency on a translation unit that has an |
| // interface dependency on U. |
| // |
| // So we could conclude the module unit U is necessarily reachable if: |
| // (1) The module unit U is module interface unit. |
| // (2) The current unit has an interface dependency on the module unit U. |
| // |
| // Here we only check for the first condition. Since we couldn't see |
| // DeclModule if it isn't (transitively) imported. |
| if (DeclModule->getTopLevelModule()->isModuleInterfaceUnit()) |
| return true; |
| |
| // [module.reach]/p2 |
| // Additional translation units on |
| // which the point within the program has an interface dependency may be |
| // considered reachable, but it is unspecified which are and under what |
| // circumstances. |
| // |
| // The decision here is to treat all additional tranditional units as |
| // unreachable. |
| return false; |
| } |
| |
| bool Sema::isAcceptableSlow(const NamedDecl *D, Sema::AcceptableKind Kind) { |
| return LookupResult::isAcceptable(*this, const_cast<NamedDecl *>(D), Kind); |
| } |
| |
| bool Sema::shouldLinkPossiblyHiddenDecl(LookupResult &R, const NamedDecl *New) { |
| // FIXME: If there are both visible and hidden declarations, we need to take |
| // into account whether redeclaration is possible. Example: |
| // |
| // Non-imported module: |
| // int f(T); // #1 |
| // Some TU: |
| // static int f(U); // #2, not a redeclaration of #1 |
| // int f(T); // #3, finds both, should link with #1 if T != U, but |
| // // with #2 if T == U; neither should be ambiguous. |
| for (auto *D : R) { |
| if (isVisible(D)) |
| return true; |
| assert(D->isExternallyDeclarable() && |
| "should not have hidden, non-externally-declarable result here"); |
| } |
| |
| // This function is called once "New" is essentially complete, but before a |
| // previous declaration is attached. We can't query the linkage of "New" in |
| // general, because attaching the previous declaration can change the |
| // linkage of New to match the previous declaration. |
| // |
| // However, because we've just determined that there is no *visible* prior |
| // declaration, we can compute the linkage here. There are two possibilities: |
| // |
| // * This is not a redeclaration; it's safe to compute the linkage now. |
| // |
| // * This is a redeclaration of a prior declaration that is externally |
| // redeclarable. In that case, the linkage of the declaration is not |
| // changed by attaching the prior declaration, because both are externally |
| // declarable (and thus ExternalLinkage or VisibleNoLinkage). |
| // |
| // FIXME: This is subtle and fragile. |
| return New->isExternallyDeclarable(); |
| } |
| |
| /// Retrieve the visible declaration corresponding to D, if any. |
| /// |
| /// This routine determines whether the declaration D is visible in the current |
| /// module, with the current imports. If not, it checks whether any |
| /// redeclaration of D is visible, and if so, returns that declaration. |
| /// |
| /// \returns D, or a visible previous declaration of D, whichever is more recent |
| /// and visible. If no declaration of D is visible, returns null. |
| static NamedDecl *findAcceptableDecl(Sema &SemaRef, NamedDecl *D, |
| unsigned IDNS) { |
| assert(!LookupResult::isAvailableForLookup(SemaRef, D) && "not in slow case"); |
| |
| for (auto *RD : D->redecls()) { |
| // Don't bother with extra checks if we already know this one isn't visible. |
| if (RD == D) |
| continue; |
| |
| auto ND = cast<NamedDecl>(RD); |
| // FIXME: This is wrong in the case where the previous declaration is not |
| // visible in the same scope as D. This needs to be done much more |
| // carefully. |
| if (ND->isInIdentifierNamespace(IDNS) && |
| LookupResult::isAvailableForLookup(SemaRef, ND)) |
| return ND; |
| } |
| |
| return nullptr; |
| } |
| |
| bool Sema::hasVisibleDeclarationSlow(const NamedDecl *D, |
| llvm::SmallVectorImpl<Module *> *Modules) { |
| assert(!isVisible(D) && "not in slow case"); |
| return hasAcceptableDeclarationImpl( |
| *this, D, Modules, [](const NamedDecl *) { return true; }, |
| Sema::AcceptableKind::Visible); |
| } |
| |
| bool Sema::hasReachableDeclarationSlow( |
| const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) { |
| assert(!isReachable(D) && "not in slow case"); |
| return hasAcceptableDeclarationImpl( |
| *this, D, Modules, [](const NamedDecl *) { return true; }, |
| Sema::AcceptableKind::Reachable); |
| } |
| |
| NamedDecl *LookupResult::getAcceptableDeclSlow(NamedDecl *D) const { |
| if (auto *ND = dyn_cast<NamespaceDecl>(D)) { |
| // Namespaces are a bit of a special case: we expect there to be a lot of |
| // redeclarations of some namespaces, all declarations of a namespace are |
| // essentially interchangeable, all declarations are found by name lookup |
| // if any is, and namespaces are never looked up during template |
| // instantiation. So we benefit from caching the check in this case, and |
| // it is correct to do so. |
| auto *Key = ND->getCanonicalDecl(); |
| if (auto *Acceptable = getSema().VisibleNamespaceCache.lookup(Key)) |
| return Acceptable; |
| auto *Acceptable = isVisible(getSema(), Key) |
| ? Key |
| : findAcceptableDecl(getSema(), Key, IDNS); |
| if (Acceptable) |
| getSema().VisibleNamespaceCache.insert(std::make_pair(Key, Acceptable)); |
| return Acceptable; |
| } |
| |
| return findAcceptableDecl(getSema(), D, IDNS); |
| } |
| |
| bool LookupResult::isVisible(Sema &SemaRef, NamedDecl *D) { |
| // If this declaration is already visible, return it directly. |
| if (D->isUnconditionallyVisible()) |
| return true; |
| |
| // During template instantiation, we can refer to hidden declarations, if |
| // they were visible in any module along the path of instantiation. |
| return isAcceptableSlow(SemaRef, D, Sema::AcceptableKind::Visible); |
| } |
| |
| bool LookupResult::isReachable(Sema &SemaRef, NamedDecl *D) { |
| if (D->isUnconditionallyVisible()) |
| return true; |
| |
| return isAcceptableSlow(SemaRef, D, Sema::AcceptableKind::Reachable); |
| } |
| |
| bool LookupResult::isAvailableForLookup(Sema &SemaRef, NamedDecl *ND) { |
| // We should check the visibility at the callsite already. |
| if (isVisible(SemaRef, ND)) |
| return true; |
| |
| // Deduction guide lives in namespace scope generally, but it is just a |
| // hint to the compilers. What we actually lookup for is the generated member |
| // of the corresponding template. So it is sufficient to check the |
| // reachability of the template decl. |
| if (auto *DeductionGuide = ND->getDeclName().getCXXDeductionGuideTemplate()) |
| return SemaRef.hasReachableDefinition(DeductionGuide); |
| |
| // FIXME: The lookup for allocation function is a standalone process. |
| // (We can find the logics in Sema::FindAllocationFunctions) |
| // |
| // Such structure makes it a problem when we instantiate a template |
| // declaration using placement allocation function if the placement |
| // allocation function is invisible. |
| // (See https://github.com/llvm/llvm-project/issues/59601) |
| // |
| // Here we workaround it by making the placement allocation functions |
| // always acceptable. The downside is that we can't diagnose the direct |
| // use of the invisible placement allocation functions. (Although such uses |
| // should be rare). |
| if (auto *FD = dyn_cast<FunctionDecl>(ND); |
| FD && FD->isReservedGlobalPlacementOperator()) |
| return true; |
| |
| auto *DC = ND->getDeclContext(); |
| // If ND is not visible and it is at namespace scope, it shouldn't be found |
| // by name lookup. |
| if (DC->isFileContext()) |
| return false; |
| |
| // [module.interface]p7 |
| // Class and enumeration member names can be found by name lookup in any |
| // context in which a definition of the type is reachable. |
| // |
| // FIXME: The current implementation didn't consider about scope. For example, |
| // ``` |
| // // m.cppm |
| // export module m; |
| // enum E1 { e1 }; |
| // // Use.cpp |
| // import m; |
| // void test() { |
| // auto a = E1::e1; // Error as expected. |
| // auto b = e1; // Should be error. namespace-scope name e1 is not visible |
| // } |
| // ``` |
| // For the above example, the current implementation would emit error for `a` |
| // correctly. However, the implementation wouldn't diagnose about `b` now. |
| // Since we only check the reachability for the parent only. |
| // See clang/test/CXX/module/module.interface/p7.cpp for example. |
| if (auto *TD = dyn_cast<TagDecl>(DC)) |
| return SemaRef.hasReachableDefinition(TD); |
| |
| return false; |
| } |
| |
| bool Sema::LookupName(LookupResult &R, Scope *S, bool AllowBuiltinCreation, |
| bool ForceNoCPlusPlus) { |
| DeclarationName Name = R.getLookupName(); |
| if (!Name) return false; |
| |
| LookupNameKind NameKind = R.getLookupKind(); |
| |
| if (!getLangOpts().CPlusPlus || ForceNoCPlusPlus) { |
| // Unqualified name lookup in C/Objective-C is purely lexical, so |
| // search in the declarations attached to the name. |
| if (NameKind == Sema::LookupRedeclarationWithLinkage) { |
| // Find the nearest non-transparent declaration scope. |
| while (!(S->getFlags() & Scope::DeclScope) || |
| (S->getEntity() && S->getEntity()->isTransparentContext())) |
| S = S->getParent(); |
| } |
| |
| // When performing a scope lookup, we want to find local extern decls. |
| FindLocalExternScope FindLocals(R); |
| |
| // Scan up the scope chain looking for a decl that matches this |
| // identifier that is in the appropriate namespace. This search |
| // should not take long, as shadowing of names is uncommon, and |
| // deep shadowing is extremely uncommon. |
| bool LeftStartingScope = false; |
| |
| for (IdentifierResolver::iterator I = IdResolver.begin(Name), |
| IEnd = IdResolver.end(); |
| I != IEnd; ++I) |
| if (NamedDecl *D = R.getAcceptableDecl(*I)) { |
| if (NameKind == LookupRedeclarationWithLinkage) { |
| // Determine whether this (or a previous) declaration is |
| // out-of-scope. |
| if (!LeftStartingScope && !S->isDeclScope(*I)) |
| LeftStartingScope = true; |
| |
| // If we found something outside of our starting scope that |
| // does not have linkage, skip it. |
| if (LeftStartingScope && !((*I)->hasLinkage())) { |
| R.setShadowed(); |
| continue; |
| } |
| } |
| else if (NameKind == LookupObjCImplicitSelfParam && |
| !isa<ImplicitParamDecl>(*I)) |
| continue; |
| |
| R.addDecl(D); |
| |
| // Check whether there are any other declarations with the same name |
| // and in the same scope. |
| if (I != IEnd) { |
| // Find the scope in which this declaration was declared (if it |
| // actually exists in a Scope). |
| while (S && !S->isDeclScope(D)) |
| S = S->getParent(); |
| |
| // If the scope containing the declaration is the translation unit, |
| // then we'll need to perform our checks based on the matching |
| // DeclContexts rather than matching scopes. |
| if (S && isNamespaceOrTranslationUnitScope(S)) |
| S = nullptr; |
| |
| // Compute the DeclContext, if we need it. |
| DeclContext *DC = nullptr; |
| if (!S) |
| DC = (*I)->getDeclContext()->getRedeclContext(); |
| |
| IdentifierResolver::iterator LastI = I; |
| for (++LastI; LastI != IEnd; ++LastI) { |
| if (S) { |
| // Match based on scope. |
| if (!S->isDeclScope(*LastI)) |
| break; |
| } else { |
| // Match based on DeclContext. |
| DeclContext *LastDC |
| = (*LastI)->getDeclContext()->getRedeclContext(); |
| if (!LastDC->Equals(DC)) |
| break; |
| } |
| |
| // If the declaration is in the right namespace and visible, add it. |
| if (NamedDecl *LastD = R.getAcceptableDecl(*LastI)) |
| R.addDecl(LastD); |
| } |
| |
| R.resolveKind(); |
| } |
| |
| return true; |
| } |
| } else { |
| // Perform C++ unqualified name lookup. |
| if (CppLookupName(R, S)) |
| return true; |
| } |
| |
| // If we didn't find a use of this identifier, and if the identifier |
| // corresponds to a compiler builtin, create the decl object for the builtin |
| // now, injecting it into translation unit scope, and return it. |
| if (AllowBuiltinCreation && LookupBuiltin(R)) |
| return true; |
| |
| // If we didn't find a use of this identifier, the ExternalSource |
| // may be able to handle the situation. |
| // Note: some lookup failures are expected! |
| // See e.g. R.isForRedeclaration(). |
| return (ExternalSource && ExternalSource->LookupUnqualified(R, S)); |
| } |
| |
| /// Perform qualified name lookup in the namespaces nominated by |
| /// using directives by the given context. |
| /// |
| /// C++98 [namespace.qual]p2: |
| /// Given X::m (where X is a user-declared namespace), or given \::m |
| /// (where X is the global namespace), let S be the set of all |
| /// declarations of m in X and in the transitive closure of all |
| /// namespaces nominated by using-directives in X and its used |
| /// namespaces, except that using-directives are ignored in any |
| /// namespace, including X, directly containing one or more |
| /// declarations of m. No namespace is searched more than once in |
| /// the lookup of a name. If S is the empty set, the program is |
| /// ill-formed. Otherwise, if S has exactly one member, or if the |
| /// context of the reference is a using-declaration |
| /// (namespace.udecl), S is the required set of declarations of |
| /// m. Otherwise if the use of m is not one that allows a unique |
| /// declaration to be chosen from S, the program is ill-formed. |
| /// |
| /// C++98 [namespace.qual]p5: |
| /// During the lookup of a qualified namespace member name, if the |
| /// lookup finds more than one declaration of the member, and if one |
| /// declaration introduces a class name or enumeration name and the |
| /// other declarations either introduce the same object, the same |
| /// enumerator or a set of functions, the non-type name hides the |
| /// class or enumeration name if and only if the declarations are |
| /// from the same namespace; otherwise (the declarations are from |
| /// different namespaces), the program is ill-formed. |
| static bool LookupQualifiedNameInUsingDirectives(Sema &S, LookupResult &R, |
| DeclContext *StartDC) { |
| assert(StartDC->isFileContext() && "start context is not a file context"); |
| |
| // We have not yet looked into these namespaces, much less added |
| // their "using-children" to the queue. |
| SmallVector<NamespaceDecl*, 8> Queue; |
| |
| // We have at least added all these contexts to the queue. |
| llvm::SmallPtrSet<DeclContext*, 8> Visited; |
| Visited.insert(StartDC); |
| |
| // We have already looked into the initial namespace; seed the queue |
| // with its using-children. |
| for (auto *I : StartDC->using_directives()) { |
| NamespaceDecl *ND = I->getNominatedNamespace()->getFirstDecl(); |
| if (S.isVisible(I) && Visited.insert(ND).second) |
| Queue.push_back(ND); |
| } |
| |
| // The easiest way to implement the restriction in [namespace.qual]p5 |
| // is to check whether any of the individual results found a tag |
| // and, if so, to declare an ambiguity if the final result is not |
| // a tag. |
| bool FoundTag = false; |
| bool FoundNonTag = false; |
| |
| LookupResult LocalR(LookupResult::Temporary, R); |
| |
| bool Found = false; |
| while (!Queue.empty()) { |
| NamespaceDecl *ND = Queue.pop_back_val(); |
| |
| // We go through some convolutions here to avoid copying results |
| // between LookupResults. |
| bool UseLocal = !R.empty(); |
| LookupResult &DirectR = UseLocal ? LocalR : R; |
| bool FoundDirect = LookupDirect(S, DirectR, ND); |
| |
| if (FoundDirect) { |
| // First do any local hiding. |
| DirectR.resolveKind(); |
| |
| // If the local result is a tag, remember that. |
| if (DirectR.isSingleTagDecl()) |
| FoundTag = true; |
| else |
| FoundNonTag = true; |
| |
| // Append the local results to the total results if necessary. |
| if (UseLocal) { |
| R.addAllDecls(LocalR); |
| LocalR.clear(); |
| } |
| } |
| |
| // If we find names in this namespace, ignore its using directives. |
| if (FoundDirect) { |
| Found = true; |
| continue; |
| } |
| |
| for (auto *I : ND->using_directives()) { |
| NamespaceDecl *Nom = I->getNominatedNamespace(); |
| if (S.isVisible(I) && Visited.insert(Nom).second) |
| Queue.push_back(Nom); |
| } |
| } |
| |
| if (Found) { |
| if (FoundTag && FoundNonTag) |
| R.setAmbiguousQualifiedTagHiding(); |
| else |
| R.resolveKind(); |
| } |
| |
| return Found; |
| } |
| |
| bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx, |
| bool InUnqualifiedLookup) { |
| assert(LookupCtx && "Sema::LookupQualifiedName requires a lookup context"); |
| |
| if (!R.getLookupName()) |
| return false; |
| |
| // Make sure that the declaration context is complete. |
| assert((!isa<TagDecl>(LookupCtx) || |
| LookupCtx->isDependentContext() || |
| cast<TagDecl>(LookupCtx)->isCompleteDefinition() || |
| cast<TagDecl>(LookupCtx)->isBeingDefined()) && |
| "Declaration context must already be complete!"); |
| |
| struct QualifiedLookupInScope { |
| bool oldVal; |
| DeclContext *Context; |
| // Set flag in DeclContext informing debugger that we're looking for qualified name |
| QualifiedLookupInScope(DeclContext *ctx) |
| : oldVal(ctx->shouldUseQualifiedLookup()), Context(ctx) { |
| ctx->setUseQualifiedLookup(); |
| } |
| ~QualifiedLookupInScope() { |
| Context->setUseQualifiedLookup(oldVal); |
| } |
| } QL(LookupCtx); |
| |
| CXXRecordDecl *LookupRec = dyn_cast<CXXRecordDecl>(LookupCtx); |
| // FIXME: Per [temp.dep.general]p2, an unqualified name is also dependent |
| // if it's a dependent conversion-function-id or operator= where the current |
| // class is a templated entity. This should be handled in LookupName. |
| if (!InUnqualifiedLookup && !R.isForRedeclaration()) { |
| // C++23 [temp.dep.type]p5: |
| // A qualified name is dependent if |
| // - it is a conversion-function-id whose conversion-type-id |
| // is dependent, or |
| // - [...] |
| // - its lookup context is the current instantiation and it |
| // is operator=, or |
| // - [...] |
| if (DeclarationName Name = R.getLookupName(); |
| Name.getNameKind() == DeclarationName::CXXConversionFunctionName && |
| Name.getCXXNameType()->isDependentType()) { |
| R.setNotFoundInCurrentInstantiation(); |
| return false; |
| } |
| } |
| |
| if (LookupDirect(*this, R, LookupCtx)) { |
| R.resolveKind(); |
| if (LookupRec) |
| R.setNamingClass(LookupRec); |
| return true; |
| } |
| |
| // Don't descend into implied contexts for redeclarations. |
| // C++98 [namespace.qual]p6: |
| // In a declaration for a namespace member in which the |
| // declarator-id is a qualified-id, given that the qualified-id |
| // for the namespace member has the form |
| // nested-name-specifier unqualified-id |
| // the unqualified-id shall name a member of the namespace |
| // designated by the nested-name-specifier. |
| // See also [class.mfct]p5 and [class.static.data]p2. |
| if (R.isForRedeclaration()) |
| return false; |
| |
| // If this is a namespace, look it up in the implied namespaces. |
| if (LookupCtx->isFileContext()) |
| return LookupQualifiedNameInUsingDirectives(*this, R, LookupCtx); |
| |
| // If this isn't a C++ class, we aren't allowed to look into base |
| // classes, we're done. |
| if (!LookupRec || !LookupRec->getDefinition()) |
| return false; |
| |
| // We're done for lookups that can never succeed for C++ classes. |
| if (R.getLookupKind() == LookupOperatorName || |
| R.getLookupKind() == LookupNamespaceName || |
| R.getLookupKind() == LookupObjCProtocolName || |
| R.getLookupKind() == LookupLabel) |
| return false; |
| |
| // If we're performing qualified name lookup into a dependent class, |
| // then we are actually looking into a current instantiation. If we have any |
| // dependent base classes, then we either have to delay lookup until |
| // template instantiation time (at which point all bases will be available) |
| // or we have to fail. |
| if (!InUnqualifiedLookup && LookupRec->isDependentContext() && |
| LookupRec->hasAnyDependentBases()) { |
| R.setNotFoundInCurrentInstantiation(); |
| return false; |
| } |
| |
| // Perform lookup into our base classes. |
| |
| DeclarationName Name = R.getLookupName(); |
| unsigned IDNS = R.getIdentifierNamespace(); |
| |
| // Look for this member in our base classes. |
| auto BaseCallback = [Name, IDNS](const CXXBaseSpecifier *Specifier, |
| CXXBasePath &Path) -> bool { |
| CXXRecordDecl *BaseRecord = Specifier->getType()->getAsCXXRecordDecl(); |
| // Drop leading non-matching lookup results from the declaration list so |
| // we don't need to consider them again below. |
| for (Path.Decls = BaseRecord->lookup(Name).begin(); |
| Path.Decls != Path.Decls.end(); ++Path.Decls) { |
| if ((*Path.Decls)->isInIdentifierNamespace(IDNS)) |
| return true; |
| } |
| return false; |
| }; |
| |
| CXXBasePaths Paths; |
| Paths.setOrigin(LookupRec); |
| if (!LookupRec->lookupInBases(BaseCallback, Paths)) |
| return false; |
| |
| R.setNamingClass(LookupRec); |
| |
| // C++ [class.member.lookup]p2: |
| // [...] If the resulting set of declarations are not all from |
| // sub-objects of the same type, or the set has a nonstatic member |
| // and includes members from distinct sub-objects, there is an |
| // ambiguity and the program is ill-formed. Otherwise that set is |
| // the result of the lookup. |
| QualType SubobjectType; |
| int SubobjectNumber = 0; |
| AccessSpecifier SubobjectAccess = AS_none; |
| |
| // Check whether the given lookup result contains only static members. |
| auto HasOnlyStaticMembers = [&](DeclContext::lookup_iterator Result) { |
| for (DeclContext::lookup_iterator I = Result, E = I.end(); I != E; ++I) |
| if ((*I)->isInIdentifierNamespace(IDNS) && (*I)->isCXXInstanceMember()) |
| return false; |
| return true; |
| }; |
| |
| bool TemplateNameLookup = R.isTemplateNameLookup(); |
| |
| // Determine whether two sets of members contain the same members, as |
| // required by C++ [class.member.lookup]p6. |
| auto HasSameDeclarations = [&](DeclContext::lookup_iterator A, |
| DeclContext::lookup_iterator B) { |
| using Iterator = DeclContextLookupResult::iterator; |
| using Result = const void *; |
| |
| auto Next = [&](Iterator &It, Iterator End) -> Result { |
| while (It != End) { |
| NamedDecl *ND = *It++; |
| if (!ND->isInIdentifierNamespace(IDNS)) |
| continue; |
| |
| // C++ [temp.local]p3: |
| // A lookup that finds an injected-class-name (10.2) can result in |
| // an ambiguity in certain cases (for example, if it is found in |
| // more than one base class). If all of the injected-class-names |
| // that are found refer to specializations of the same class |
| // template, and if the name is used as a template-name, the |
| // reference refers to the class template itself and not a |
| // specialization thereof, and is not ambiguous. |
| if (TemplateNameLookup) |
| if (auto *TD = getAsTemplateNameDecl(ND)) |
| ND = TD; |
| |
| // C++ [class.member.lookup]p3: |
| // type declarations (including injected-class-names) are replaced by |
| // the types they designate |
| if (const TypeDecl *TD = dyn_cast<TypeDecl>(ND->getUnderlyingDecl())) { |
| QualType T = Context.getTypeDeclType(TD); |
| return T.getCanonicalType().getAsOpaquePtr(); |
| } |
| |
| return ND->getUnderlyingDecl()->getCanonicalDecl(); |
| } |
| return nullptr; |
| }; |
| |
| // We'll often find the declarations are in the same order. Handle this |
| // case (and the special case of only one declaration) efficiently. |
| Iterator AIt = A, BIt = B, AEnd, BEnd; |
| while (true) { |
| Result AResult = Next(AIt, AEnd); |
| Result BResult = Next(BIt, BEnd); |
| if (!AResult && !BResult) |
| return true; |
| if (!AResult || !BResult) |
| return false; |
| if (AResult != BResult) { |
| // Found a mismatch; carefully check both lists, accounting for the |
| // possibility of declarations appearing more than once. |
| llvm::SmallDenseMap<Result, bool, 32> AResults; |
| for (; AResult; AResult = Next(AIt, AEnd)) |
| AResults.insert({AResult, /*FoundInB*/false}); |
| unsigned Found = 0; |
| for (; BResult; BResult = Next(BIt, BEnd)) { |
| auto It = AResults.find(BResult); |
| if (It == AResults.end()) |
| return false; |
| if (!It->second) { |
| It->second = true; |
| ++Found; |
| } |
| } |
| return AResults.size() == Found; |
| } |
| } |
| }; |
| |
| for (CXXBasePaths::paths_iterator Path = Paths.begin(), PathEnd = Paths.end(); |
| Path != PathEnd; ++Path) { |
| const CXXBasePathElement &PathElement = Path->back(); |
| |
| // Pick the best (i.e. most permissive i.e. numerically lowest) access |
| // across all paths. |
| SubobjectAccess = std::min(SubobjectAccess, Path->Access); |
| |
| // Determine whether we're looking at a distinct sub-object or not. |
| if (SubobjectType.isNull()) { |
| // This is the first subobject we've looked at. Record its type. |
| SubobjectType = Context.getCanonicalType(PathElement.Base->getType()); |
| SubobjectNumber = PathElement.SubobjectNumber; |
| continue; |
| } |
| |
| if (SubobjectType != |
| Context.getCanonicalType(PathElement.Base->getType())) { |
| // We found members of the given name in two subobjects of |
| // different types. If the declaration sets aren't the same, this |
| // lookup is ambiguous. |
| // |
| // FIXME: The language rule says that this applies irrespective of |
| // whether the sets contain only static members. |
| if (HasOnlyStaticMembers(Path->Decls) && |
| HasSameDeclarations(Paths.begin()->Decls, Path->Decls)) |
| continue; |
| |
| R.setAmbiguousBaseSubobjectTypes(Paths); |
| return true; |
| } |
| |
| // FIXME: This language rule no longer exists. Checking for ambiguous base |
| // subobjects should be done as part of formation of a class member access |
| // expression (when converting the object parameter to the member's type). |
| if (SubobjectNumber != PathElement.SubobjectNumber) { |
| // We have a different subobject of the same type. |
| |
| // C++ [class.member.lookup]p5: |
| // A static member, a nested type or an enumerator defined in |
| // a base class T can unambiguously be found even if an object |
| // has more than one base class subobject of type T. |
| if (HasOnlyStaticMembers(Path->Decls)) |
| continue; |
| |
| // We have found a nonstatic member name in multiple, distinct |
| // subobjects. Name lookup is ambiguous. |
| R.setAmbiguousBaseSubobjects(Paths); |
| return true; |
| } |
| } |
| |
| // Lookup in a base class succeeded; return these results. |
| |
| for (DeclContext::lookup_iterator I = Paths.front().Decls, E = I.end(); |
| I != E; ++I) { |
| AccessSpecifier AS = CXXRecordDecl::MergeAccess(SubobjectAccess, |
| (*I)->getAccess()); |
| if (NamedDecl *ND = R.getAcceptableDecl(*I)) |
| R.addDecl(ND, AS); |
| } |
| R.resolveKind(); |
| return true; |
| } |
| |
| bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx, |
| CXXScopeSpec &SS) { |
| auto *NNS = SS.getScopeRep(); |
| if (NNS && NNS->getKind() == NestedNameSpecifier::Super) |
| return LookupInSuper(R, NNS->getAsRecordDecl()); |
| else |
| |
| return LookupQualifiedName(R, LookupCtx); |
| } |
| |
| bool Sema::LookupParsedName(LookupResult &R, Scope *S, CXXScopeSpec *SS, |
| QualType ObjectType, bool AllowBuiltinCreation, |
| bool EnteringContext) { |
| // When the scope specifier is invalid, don't even look for anything. |
| if (SS && SS->isInvalid()) |
| return false; |
| |
| // Determine where to perform name lookup |
| DeclContext *DC = nullptr; |
| bool IsDependent = false; |
| if (!ObjectType.isNull()) { |
| // This nested-name-specifier occurs in a member access expression, e.g., |
| // x->B::f, and we are looking into the type of the object. |
| assert((!SS || SS->isEmpty()) && |
| "ObjectType and scope specifier cannot coexist"); |
| DC = computeDeclContext(ObjectType); |
| IsDependent = !DC && ObjectType->isDependentType(); |
| assert(((!DC && ObjectType->isDependentType()) || |
| !ObjectType->isIncompleteType() || !ObjectType->getAs<TagType>() || |
| ObjectType->castAs<TagType>()->isBeingDefined()) && |
| "Caller should have completed object type"); |
| } else if (SS && SS->isNotEmpty()) { |
| // This nested-name-specifier occurs after another nested-name-specifier, |
| // so long into the context associated with the prior nested-name-specifier. |
| if ((DC = computeDeclContext(*SS, EnteringContext))) { |
| // The declaration context must be complete. |
| if (!DC->isDependentContext() && RequireCompleteDeclContext(*SS, DC)) |
| return false; |
| R.setContextRange(SS->getRange()); |
| // FIXME: '__super' lookup semantics could be implemented by a |
| // LookupResult::isSuperLookup flag which skips the initial search of |
| // the lookup context in LookupQualified. |
| if (NestedNameSpecifier *NNS = SS->getScopeRep(); |
| NNS->getKind() == NestedNameSpecifier::Super) |
| return LookupInSuper(R, NNS->getAsRecordDecl()); |
| } |
| IsDependent = !DC && isDependentScopeSpecifier(*SS); |
| } else { |
| // Perform unqualified name lookup starting in the given scope. |
| return LookupName(R, S, AllowBuiltinCreation); |
| } |
| |
| // If we were able to compute a declaration context, perform qualified name |
| // lookup in that context. |
| if (DC) |
| return LookupQualifiedName(R, DC); |
| else if (IsDependent) |
| // We could not resolve the scope specified to a specific declaration |
| // context, which means that SS refers to an unknown specialization. |
| // Name lookup can't find anything in this case. |
| R.setNotFoundInCurrentInstantiation(); |
| return false; |
| } |
| |
| bool Sema::LookupInSuper(LookupResult &R, CXXRecordDecl *Class) { |
| // The access-control rules we use here are essentially the rules for |
| // doing a lookup in Class that just magically skipped the direct |
| // members of Class itself. That is, the naming class is Class, and the |
| // access includes the access of the base. |
| for (const auto &BaseSpec : Class->bases()) { |
| CXXRecordDecl *RD = cast<CXXRecordDecl>( |
| BaseSpec.getType()->castAs<RecordType>()->getDecl()); |
| LookupResult Result(*this, R.getLookupNameInfo(), R.getLookupKind()); |
| Result.setBaseObjectType(Context.getRecordType(Class)); |
| LookupQualifiedName(Result, RD); |
| |
| // Copy the lookup results into the target, merging the base's access into |
| // the path access. |
| for (auto I = Result.begin(), E = Result.end(); I != E; ++I) { |
| R.addDecl(I.getDecl(), |
| CXXRecordDecl::MergeAccess(BaseSpec.getAccessSpecifier(), |
| I.getAccess())); |
| } |
| |
| Result.suppressDiagnostics(); |
| } |
| |
| R.resolveKind(); |
| R.setNamingClass(Class); |
| |
| return !R.empty(); |
| } |
| |
| void Sema::DiagnoseAmbiguousLookup(LookupResult &Result) { |
| assert(Result.isAmbiguous() && "Lookup result must be ambiguous"); |
| |
| DeclarationName Name = Result.getLookupName(); |
| SourceLocation NameLoc = Result.getNameLoc(); |
| SourceRange LookupRange = Result.getContextRange(); |
| |
| switch (Result.getAmbiguityKind()) { |
| case LookupResult::AmbiguousBaseSubobjects: { |
| CXXBasePaths *Paths = Result.getBasePaths(); |
| QualType SubobjectType = Paths->front().back().Base->getType(); |
| Diag(NameLoc, diag::err_ambiguous_member_multiple_subobjects) |
| << Name << SubobjectType << getAmbiguousPathsDisplayString(*Paths) |
| << LookupRange; |
| |
| DeclContext::lookup_iterator Found = Paths->front().Decls; |
| while (isa<CXXMethodDecl>(*Found) && |
| cast<CXXMethodDecl>(*Found)->isStatic()) |
| ++Found; |
| |
| Diag((*Found)->getLocation(), diag::note_ambiguous_member_found); |
| break; |
| } |
| |
| case LookupResult::AmbiguousBaseSubobjectTypes: { |
| Diag(NameLoc, diag::err_ambiguous_member_multiple_subobject_types) |
| << Name << LookupRange; |
| |
| CXXBasePaths *Paths = Result.getBasePaths(); |
| std::set<const NamedDecl *> DeclsPrinted; |
| for (CXXBasePaths::paths_iterator Path = Paths->begin(), |
| PathEnd = Paths->end(); |
| Path != PathEnd; ++Path) { |
| const NamedDecl *D = *Path->Decls; |
| if (!D->isInIdentifierNamespace(Result.getIdentifierNamespace())) |
| continue; |
| if (DeclsPrinted.insert(D).second) { |
| if (const auto *TD = dyn_cast<TypedefNameDecl>(D->getUnderlyingDecl())) |
| Diag(D->getLocation(), diag::note_ambiguous_member_type_found) |
| << TD->getUnderlyingType(); |
| else if (const auto *TD = dyn_cast<TypeDecl>(D->getUnderlyingDecl())) |
| Diag(D->getLocation(), diag::note_ambiguous_member_type_found) |
| << Context.getTypeDeclType(TD); |
| else |
| Diag(D->getLocation(), diag::note_ambiguous_member_found); |
| } |
| } |
| break; |
| } |
| |
| case LookupResult::AmbiguousTagHiding: { |
| Diag(NameLoc, diag::err_ambiguous_tag_hiding) << Name << LookupRange; |
| |
| llvm::SmallPtrSet<NamedDecl*, 8> TagDecls; |
| |
| for (auto *D : Result) |
| if (TagDecl *TD = dyn_cast<TagDecl>(D)) { |
| TagDecls.insert(TD); |
| Diag(TD->getLocation(), diag::note_hidden_tag); |
| } |
| |
| for (auto *D : Result) |
| if (!isa<TagDecl>(D)) |
| Diag(D->getLocation(), diag::note_hiding_object); |
| |
| // For recovery purposes, go ahead and implement the hiding. |
| LookupResult::Filter F = Result.makeFilter(); |
| while (F.hasNext()) { |
| if (TagDecls.count(F.next())) |
| F.erase(); |
| } |
| F.done(); |
| break; |
| } |
| |
| case LookupResult::AmbiguousReferenceToPlaceholderVariable: { |
| Diag(NameLoc, diag::err_using_placeholder_variable) << Name << LookupRange; |
| DeclContext *DC = nullptr; |
| for (auto *D : Result) { |
| Diag(D->getLocation(), diag::note_reference_placeholder) << D; |
| if (DC != nullptr && DC != D->getDeclContext()) |
| break; |
| DC = D->getDeclContext(); |
| } |
| break; |
| } |
| |
| case LookupResult::AmbiguousReference: { |
| Diag(NameLoc, diag::err_ambiguous_reference) << Name << LookupRange; |
| |
| for (auto *D : Result) |
| Diag(D->getLocation(), diag::note_ambiguous_candidate) << D; |
| break; |
| } |
| } |
| } |
| |
| namespace { |
| struct AssociatedLookup { |
| AssociatedLookup(Sema &S, SourceLocation InstantiationLoc, |
| Sema::AssociatedNamespaceSet &Namespaces, |
| Sema::AssociatedClassSet &Classes) |
| : S(S), Namespaces(Namespaces), Classes(Classes), |
| InstantiationLoc(InstantiationLoc) { |
| } |
| |
| bool addClassTransitive(CXXRecordDecl *RD) { |
| Classes.insert(RD); |
| return ClassesTransitive.insert(RD); |
| } |
| |
| Sema &S; |
| Sema::AssociatedNamespaceSet &Namespaces; |
| Sema::AssociatedClassSet &Classes; |
| SourceLocation InstantiationLoc; |
| |
| private: |
| Sema::AssociatedClassSet ClassesTransitive; |
| }; |
| } // end anonymous namespace |
| |
| static void |
| addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType T); |
| |
| // Given the declaration context \param Ctx of a class, class template or |
| // enumeration, add the associated namespaces to \param Namespaces as described |
| // in [basic.lookup.argdep]p2. |
| static void CollectEnclosingNamespace(Sema::AssociatedNamespaceSet &Namespaces, |
| DeclContext *Ctx) { |
| // The exact wording has been changed in C++14 as a result of |
| // CWG 1691 (see also CWG 1690 and CWG 1692). We apply it unconditionally |
| // to all language versions since it is possible to return a local type |
| // from a lambda in C++11. |
| // |
| // C++14 [basic.lookup.argdep]p2: |
| // If T is a class type [...]. Its associated namespaces are the innermost |
| // enclosing namespaces of its associated classes. [...] |
| // |
| // If T is an enumeration type, its associated namespace is the innermost |
| // enclosing namespace of its declaration. [...] |
| |
| // We additionally skip inline namespaces. The innermost non-inline namespace |
| // contains all names of all its nested inline namespaces anyway, so we can |
| // replace the entire inline namespace tree with its root. |
| while (!Ctx->isFileContext() || Ctx->isInlineNamespace()) |
| Ctx = Ctx->getParent(); |
| |
| // Actually it is fine to always do `Namespaces.insert(Ctx);` simply. But it |
| // may cause more allocations in Namespaces and more unnecessary lookups. So |
| // we'd like to insert the representative namespace only. |
| DeclContext *PrimaryCtx = Ctx->getPrimaryContext(); |
| Decl *PrimaryD = cast<Decl>(PrimaryCtx); |
| Decl *D = cast<Decl>(Ctx); |
| ASTContext &AST = D->getASTContext(); |
| |
| // TODO: Technically it is better to insert one namespace per module. e.g., |
| // |
| // ``` |
| // //--- first.cppm |
| // export module first; |
| // namespace ns { ... } // first namespace |
| // |
| // //--- m-partA.cppm |
| // export module m:partA; |
| // import first; |
| // |
| // namespace ns { ... } |
| // namespace ns { ... } |
| // |
| // //--- m-partB.cppm |
| // export module m:partB; |
| // import first; |
| // import :partA; |
| // |
| // namespace ns { ... } |
| // namespace ns { ... } |
| // |
| // ... |
| // |
| // //--- m-partN.cppm |
| // export module m:partN; |
| // import first; |
| // import :partA; |
| // ... |
| // import :part$(N-1); |
| // |
| // namespace ns { ... } |
| // namespace ns { ... } |
| // |
| // consume(ns::any_decl); // the lookup |
| // ``` |
| // |
| // We should only insert once for all namespaces in module m. |
| if (D->isInNamedModule() && |
| !AST.isInSameModule(D->getOwningModule(), PrimaryD->getOwningModule())) |
| Namespaces.insert(Ctx); |
| else |
| Namespaces.insert(PrimaryCtx); |
| } |
| |
| // Add the associated classes and namespaces for argument-dependent |
| // lookup that involves a template argument (C++ [basic.lookup.argdep]p2). |
| static void |
| addAssociatedClassesAndNamespaces(AssociatedLookup &Result, |
| const TemplateArgument &Arg) { |
| // C++ [basic.lookup.argdep]p2, last bullet: |
| // -- [...] ; |
| switch (Arg.getKind()) { |
| case TemplateArgument::Null: |
| break; |
| |
| case TemplateArgument::Type: |
| // [...] the namespaces and classes associated with the types of the |
| // template arguments provided for template type parameters (excluding |
| // template template parameters) |
| addAssociatedClassesAndNamespaces(Result, Arg.getAsType()); |
| break; |
| |
| case TemplateArgument::Template: |
| case TemplateArgument::TemplateExpansion: { |
| // [...] the namespaces in which any template template arguments are |
| // defined; and the classes in which any member templates used as |
| // template template arguments are defined. |
| TemplateName Template = Arg.getAsTemplateOrTemplatePattern(); |
| if (ClassTemplateDecl *ClassTemplate |
| = dyn_cast<ClassTemplateDecl>(Template.getAsTemplateDecl())) { |
| DeclContext *Ctx = ClassTemplate->getDeclContext(); |
| if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx)) |
| Result.Classes.insert(EnclosingClass); |
| // Add the associated namespace for this class. |
| CollectEnclosingNamespace(Result.Namespaces, Ctx); |
| } |
| break; |
| } |
| |
| case TemplateArgument::Declaration: |
| case TemplateArgument::Integral: |
| case TemplateArgument::Expression: |
| case TemplateArgument::NullPtr: |
| case TemplateArgument::StructuralValue: |
| // [Note: non-type template arguments do not contribute to the set of |
| // associated namespaces. ] |
| break; |
| |
| case TemplateArgument::Pack: |
| for (const auto &P : Arg.pack_elements()) |
| addAssociatedClassesAndNamespaces(Result, P); |
| break; |
| } |
| } |
| |
| // Add the associated classes and namespaces for argument-dependent lookup |
| // with an argument of class type (C++ [basic.lookup.argdep]p2). |
| static void |
| addAssociatedClassesAndNamespaces(AssociatedLookup &Result, |
| CXXRecordDecl *Class) { |
| |
| // Just silently ignore anything whose name is __va_list_tag. |
| if (Class->getDeclName() == Result.S.VAListTagName) |
| return; |
| |
| // C++ [basic.lookup.argdep]p2: |
| // [...] |
| // -- If T is a class type (including unions), its associated |
| // classes are: the class itself; the class of which it is a |
| // member, if any; and its direct and indirect base classes. |
| // Its associated namespaces are the innermost enclosing |
| // namespaces of its associated classes. |
| |
| // Add the class of which it is a member, if any. |
| DeclContext *Ctx = Class->getDeclContext(); |
| if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx)) |
| Result.Classes.insert(EnclosingClass); |
| |
| // Add the associated namespace for this class. |
| CollectEnclosingNamespace(Result.Namespaces, Ctx); |
| |
| // -- If T is a template-id, its associated namespaces and classes are |
| // the namespace in which the template is defined; for member |
| // templates, the member template's class; the namespaces and classes |
| // associated with the types of the template arguments provided for |
| // template type parameters (excluding template template parameters); the |
| // namespaces in which any template template arguments are defined; and |
| // the classes in which any member templates used as template template |
| // arguments are defined. [Note: non-type template arguments do not |
| // contribute to the set of associated namespaces. ] |
| if (ClassTemplateSpecializationDecl *Spec |
| = dyn_cast<ClassTemplateSpecializationDecl>(Class)) { |
| DeclContext *Ctx = Spec->getSpecializedTemplate()->getDeclContext(); |
| if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx)) |
| Result.Classes.insert(EnclosingClass); |
| // Add the associated namespace for this class. |
| CollectEnclosingNamespace(Result.Namespaces, Ctx); |
| |
| const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs(); |
| for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) |
| addAssociatedClassesAndNamespaces(Result, TemplateArgs[I]); |
| } |
| |
| // Add the class itself. If we've already transitively visited this class, |
| // we don't need to visit base classes. |
| if (!Result.addClassTransitive(Class)) |
| return; |
| |
| // Only recurse into base classes for complete types. |
| if (!Result.S.isCompleteType(Result.InstantiationLoc, |
| Result.S.Context.getRecordType(Class))) |
| return; |
| |
| // Add direct and indirect base classes along with their associated |
| // namespaces. |
| SmallVector<CXXRecordDecl *, 32> Bases; |
| Bases.push_back(Class); |
| while (!Bases.empty()) { |
| // Pop this class off the stack. |
| Class = Bases.pop_back_val(); |
| |
| // Visit the base classes. |
| for (const auto &Base : Class->bases()) { |
| const RecordType *BaseType = Base.getType()->getAs<RecordType>(); |
| // In dependent contexts, we do ADL twice, and the first time around, |
| // the base type might be a dependent TemplateSpecializationType, or a |
| // TemplateTypeParmType. If that happens, simply ignore it. |
| // FIXME: If we want to support export, we probably need to add the |
| // namespace of the template in a TemplateSpecializationType, or even |
| // the classes and namespaces of known non-dependent arguments. |
| if (!BaseType) |
| continue; |
| CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(BaseType->getDecl()); |
| if (Result.addClassTransitive(BaseDecl)) { |
| // Find the associated namespace for this base class. |
| DeclContext *BaseCtx = BaseDecl->getDeclContext(); |
| CollectEnclosingNamespace(Result.Namespaces, BaseCtx); |
| |
| // Make sure we visit the bases of this base class. |
| if (BaseDecl->bases_begin() != BaseDecl->bases_end()) |
| Bases.push_back(BaseDecl); |
| } |
| } |
| } |
| } |
| |
| // Add the associated classes and namespaces for |
| // argument-dependent lookup with an argument of type T |
| // (C++ [basic.lookup.koenig]p2). |
| static void |
| addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType Ty) { |
| // C++ [basic.lookup.koenig]p2: |
| // |
| // For each argument type T in the function call, there is a set |
| // of zero or more associated namespaces and a set of zero or more |
| // associated classes to be considered. The sets of namespaces and |
| // classes is determined entirely by the types of the function |
| // arguments (and the namespace of any template template |
| // argument). Typedef names and using-declarations used to specify |
| // the types do not contribute to this set. The sets of namespaces |
| // and classes are determined in the following way: |
| |
| SmallVector<const Type *, 16> Queue; |
| const Type *T = Ty->getCanonicalTypeInternal().getTypePtr(); |
| |
| while (true) { |
| switch (T->getTypeClass()) { |
| |
| #define TYPE(Class, Base) |
| #define DEPENDENT_TYPE(Class, Base) case Type::Class: |
| #define NON_CANONICAL_TYPE(Class, Base) case Type::Class: |
| #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class: |
| #define ABSTRACT_TYPE(Class, Base) |
| #include "clang/AST/TypeNodes.inc" |
| // T is canonical. We can also ignore dependent types because |
| // we don't need to do ADL at the definition point, but if we |
| // wanted to implement template export (or if we find some other |
| // use for associated classes and namespaces...) this would be |
| // wrong. |
| break; |
| |
| // -- If T is a pointer to U or an array of U, its associated |
| // namespaces and classes are those associated with U. |
| case Type::Pointer: |
| T = cast<PointerType>(T)->getPointeeType().getTypePtr(); |
| continue; |
| case Type::ConstantArray: |
| case Type::IncompleteArray: |
| case Type::VariableArray: |
| T = cast<ArrayType>(T)->getElementType().getTypePtr(); |
| continue; |
| |
| // -- If T is a fundamental type, its associated sets of |
| // namespaces and classes are both empty. |
| case Type::Builtin: |
| break; |
| |
| // -- If T is a class type (including unions), its associated |
| // classes are: the class itself; the class of which it is |
| // a member, if any; and its direct and indirect base classes. |
| // Its associated namespaces are the innermost enclosing |
| // namespaces of its associated classes. |
| case Type::Record: { |
| CXXRecordDecl *Class = |
| cast<CXXRecordDecl>(cast<RecordType>(T)->getDecl()); |
| addAssociatedClassesAndNamespaces(Result, Class); |
| break; |
| } |
| |
| // -- If T is an enumeration type, its associated namespace |
| // is the innermost enclosing namespace of its declaration. |
| // If it is a class member, its associated class is the |
| // member’s class; else it has no associated class. |
| case Type::Enum: { |
| EnumDecl *Enum = cast<EnumType>(T)->getDecl(); |
| |
| DeclContext *Ctx = Enum->getDeclContext(); |
| if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx)) |
| Result.Classes.insert(EnclosingClass); |
| |
| // Add the associated namespace for this enumeration. |
| CollectEnclosingNamespace(Result.Namespaces, Ctx); |
| |
| break; |
| } |
| |
| // -- If T is a function type, its associated namespaces and |
| // classes are those associated with the function parameter |
| // types and those associated with the return type. |
| case Type::FunctionProto: { |
| const FunctionProtoType *Proto = cast<FunctionProtoType>(T); |
| for (const auto &Arg : Proto->param_types()) |
| Queue.push_back(Arg.getTypePtr()); |
| // fallthrough |
| [[fallthrough]]; |
| } |
| case Type::FunctionNoProto: { |
| const FunctionType *FnType = cast<FunctionType>(T); |
| T = FnType->getReturnType().getTypePtr(); |
| continue; |
| } |
| |
| // -- If T is a pointer to a member function of a class X, its |
| // associated namespaces and classes are those associated |
| // with the function parameter types and return type, |
| // together with those associated with X. |
| // |
| // -- If T is a pointer to a data member of class X, its |
| // associated namespaces and classes are those associated |
| // with the member type together with those associated with |
| // X. |
| case Type::MemberPointer: { |
| const MemberPointerType *MemberPtr = cast<MemberPointerType>(T); |
| |
| // Queue up the class type into which this points. |
| Queue.push_back(MemberPtr->getClass()); |
| |
| // And directly continue with the pointee type. |
| T = MemberPtr->getPointeeType().getTypePtr(); |
| continue; |
| } |
| |
| // As an extension, treat this like a normal pointer. |
| case Type::BlockPointer: |
| T = cast<BlockPointerType>(T)->getPointeeType().getTypePtr(); |
| continue; |
| |
| // References aren't covered by the standard, but that's such an |
| // obvious defect that we cover them anyway. |
| case Type::LValueReference: |
| case Type::RValueReference: |
| T = cast<ReferenceType>(T)->getPointeeType().getTypePtr(); |
| continue; |
| |
| // These are fundamental types. |
| case Type::Vector: |
| case Type::ExtVector: |
| case Type::ConstantMatrix: |
| case Type::Complex: |
| case Type::BitInt: |
| break; |
| |
| // Non-deduced auto types only get here for error cases. |
| case Type::Auto: |
| case Type::DeducedTemplateSpecialization: |
| break; |
| |
| // If T is an Objective-C object or interface type, or a pointer to an |
| // object or interface type, the associated namespace is the global |
| // namespace. |
| case Type::ObjCObject: |
| case Type::ObjCInterface: |
| case Type::ObjCObjectPointer: |
| Result.Namespaces.insert(Result.S.Context.getTranslationUnitDecl()); |
| break; |
| |
| // Atomic types are just wrappers; use the associations of the |
| // contained type. |
| case Type::Atomic: |
| T = cast<AtomicType>(T)->getValueType().getTypePtr(); |
| continue; |
| case Type::Pipe: |
| T = cast<PipeType>(T)->getElementType().getTypePtr(); |
| continue; |
| |
| // Array parameter types are treated as fundamental types. |
| case Type::ArrayParameter: |
| break; |
| |
| case Type::HLSLAttributedResource: |
| T = cast<HLSLAttributedResourceType>(T)->getWrappedType().getTypePtr(); |
| } |
| |
| if (Queue.empty()) |
| break; |
| T = Queue.pop_back_val(); |
| } |
| } |
| |
| void Sema::FindAssociatedClassesAndNamespaces( |
| SourceLocation InstantiationLoc, ArrayRef<Expr *> Args, |
| AssociatedNamespaceSet &AssociatedNamespaces, |
| AssociatedClassSet &AssociatedClasses) { |
| AssociatedNamespaces.clear(); |
| AssociatedClasses.clear(); |
| |
| AssociatedLookup Result(*this, InstantiationLoc, |
| AssociatedNamespaces, AssociatedClasses); |
| |
| // C++ [basic.lookup.koenig]p2: |
| // For each argument type T in the function call, there is a set |
| // of zero or more associated namespaces and a set of zero or more |
| // associated classes to be considered. The sets of namespaces and |
| // classes is determined entirely by the types of the function |
| // arguments (and the namespace of any template template |
| // argument). |
| for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) { |
| Expr *Arg = Args[ArgIdx]; |
| |
| if (Arg->getType() != Context.OverloadTy) { |
| addAssociatedClassesAndNamespaces(Result, Arg->getType()); |
| continue; |
| } |
| |
| // [...] In addition, if the argument is the name or address of a |
| // set of overloaded functions and/or function templates, its |
| // associated classes and namespaces are the union of those |
| // associated with each of the members of the set: the namespace |
| // in which the function or function template is defined and the |
| // classes and namespaces associated with its (non-dependent) |
| // parameter types and return type. |
| OverloadExpr *OE = OverloadExpr::find(Arg).Expression; |
| |
| for (const NamedDecl *D : OE->decls()) { |
| // Look through any using declarations to find the underlying function. |
| const FunctionDecl *FDecl = D->getUnderlyingDecl()->getAsFunction(); |
| |
| // Add the classes and namespaces associated with the parameter |
| // types and return type of this function. |
| addAssociatedClassesAndNamespaces(Result, FDecl->getType()); |
| } |
| } |
| } |
| |
| NamedDecl *Sema::LookupSingleName(Scope *S, DeclarationName Name, |
| SourceLocation Loc, |
| LookupNameKind NameKind, |
| RedeclarationKind Redecl) { |
| LookupResult R(*this, Name, Loc, NameKind, Redecl); |
| LookupName(R, S); |
| return R.getAsSingle<NamedDecl>(); |
| } |
| |
| void Sema::LookupOverloadedOperatorName(OverloadedOperatorKind Op, Scope *S, |
| UnresolvedSetImpl &Functions) { |
| // C++ [over.match.oper]p3: |
| // -- The set of non-member candidates is the result of the |
| // unqualified lookup of operator@ in the context of the |
| // expression according to the usual rules for name lookup in |
| // unqualified function calls (3.4.2) except that all member |
| // functions are ignored. |
| DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); |
| LookupResult Operators(*this, OpName, SourceLocation(), LookupOperatorName); |
| LookupName(Operators, S); |
| |
| assert(!Operators.isAmbiguous() && "Operator lookup cannot be ambiguous"); |
| Functions.append(Operators.begin(), Operators.end()); |
| } |
| |
| Sema::SpecialMemberOverloadResult |
| Sema::LookupSpecialMember(CXXRecordDecl *RD, CXXSpecialMemberKind SM, |
| bool ConstArg, bool VolatileArg, bool RValueThis, |
| bool ConstThis, bool VolatileThis) { |
| assert(CanDeclareSpecialMemberFunction(RD) && |
| "doing special member lookup into record that isn't fully complete"); |
| RD = RD->getDefinition(); |
| if (RValueThis || ConstThis || VolatileThis) |
| assert((SM == CXXSpecialMemberKind::CopyAssignment || |
| SM == CXXSpecialMemberKind::MoveAssignment) && |
| "constructors and destructors always have unqualified lvalue this"); |
| if (ConstArg || VolatileArg) |
| assert((SM != CXXSpecialMemberKind::DefaultConstructor && |
| SM != CXXSpecialMemberKind::Destructor) && |
| "parameter-less special members can't have qualified arguments"); |
| |
| // FIXME: Get the caller to pass in a location for the lookup. |
| SourceLocation LookupLoc = RD->getLocation(); |
| |
| llvm::FoldingSetNodeID ID; |
| ID.AddPointer(RD); |
| ID.AddInteger(llvm::to_underlying(SM)); |
| ID.AddInteger(ConstArg); |
| ID.AddInteger(VolatileArg); |
| ID.AddInteger(RValueThis); |
| ID.AddInteger(ConstThis); |
| ID.AddInteger(VolatileThis); |
| |
| void *InsertPoint; |
| SpecialMemberOverloadResultEntry *Result = |
| SpecialMemberCache.FindNodeOrInsertPos(ID, InsertPoint); |
| |
| // This was already cached |
| if (Result) |
| return *Result; |
| |
| Result = BumpAlloc.Allocate<SpecialMemberOverloadResultEntry>(); |
| Result = new (Result) SpecialMemberOverloadResultEntry(ID); |
| SpecialMemberCache.InsertNode(Result, InsertPoint); |
| |
| if (SM == CXXSpecialMemberKind::Destructor) { |
| if (RD->needsImplicitDestructor()) { |
| runWithSufficientStackSpace(RD->getLocation(), [&] { |
| DeclareImplicitDestructor(RD); |
| }); |
| } |
| CXXDestructorDecl *DD = RD->getDestructor(); |
| Result->setMethod(DD); |
| Result->setKind(DD && !DD->isDeleted() |
| ? SpecialMemberOverloadResult::Success |
| : SpecialMemberOverloadResult::NoMemberOrDeleted); |
| return *Result; |
| } |
| |
| // Prepare for overload resolution. Here we construct a synthetic argument |
| // if necessary and make sure that implicit functions are declared. |
| CanQualType CanTy = Context.getCanonicalType(Context.getTagDeclType(RD)); |
| DeclarationName Name; |
| Expr *Arg = nullptr; |
| unsigned NumArgs; |
| |
| QualType ArgType = CanTy; |
| ExprValueKind VK = VK_LValue; |
| |
| if (SM == CXXSpecialMemberKind::DefaultConstructor) { |
| Name = Context.DeclarationNames.getCXXConstructorName(CanTy); |
| NumArgs = 0; |
| if (RD->needsImplicitDefaultConstructor()) { |
| runWithSufficientStackSpace(RD->getLocation(), [&] { |
| DeclareImplicitDefaultConstructor(RD); |
| }); |
| } |
| } else { |
| if (SM == CXXSpecialMemberKind::CopyConstructor || |
| SM == CXXSpecialMemberKind::MoveConstructor) { |
| Name = Context.DeclarationNames.getCXXConstructorName(CanTy); |
| if (RD->needsImplicitCopyConstructor()) { |
| runWithSufficientStackSpace(RD->getLocation(), [&] { |
| DeclareImplicitCopyConstructor(RD); |
| }); |
| } |
| if (getLangOpts().CPlusPlus11 && RD->needsImplicitMoveConstructor()) { |
| runWithSufficientStackSpace(RD->getLocation(), [&] { |
| DeclareImplicitMoveConstructor(RD); |
| }); |
| } |
| } else { |
| Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal); |
| if (RD->needsImplicitCopyAssignment()) { |
| runWithSufficientStackSpace(RD->getLocation(), [&] { |
| DeclareImplicitCopyAssignment(RD); |
| }); |
| } |
| if (getLangOpts().CPlusPlus11 && RD->needsImplicitMoveAssignment()) { |
| runWithSufficientStackSpace(RD->getLocation(), [&] { |
| DeclareImplicitMoveAssignment(RD); |
| }); |
| } |
| } |
| |
| if (ConstArg) |
| ArgType.addConst(); |
| if (VolatileArg) |
| ArgType.addVolatile(); |
| |
| // This isn't /really/ specified by the standard, but it's implied |
| // we should be working from a PRValue in the case of move to ensure |
| // that we prefer to bind to rvalue references, and an LValue in the |
| // case of copy to ensure we don't bind to rvalue references. |
| // Possibly an XValue is actually correct in the case of move, but |
| // there is no semantic difference for class types in this restricted |
| // case. |
| if (SM == CXXSpecialMemberKind::CopyConstructor || |
| SM == CXXSpecialMemberKind::CopyAssignment) |
| VK = VK_LValue; |
| else |
| VK = VK_PRValue; |
| } |
| |
| OpaqueValueExpr FakeArg(LookupLoc, ArgType, VK); |
| |
| if (SM != CXXSpecialMemberKind::DefaultConstructor) { |
| NumArgs = 1; |
| Arg = &FakeArg; |
| } |
| |
| // Create the object argument |
| QualType ThisTy = CanTy; |
| if (ConstThis) |
| ThisTy.addConst(); |
| if (VolatileThis) |
| ThisTy.addVolatile(); |
| Expr::Classification Classification = |
| OpaqueValueExpr(LookupLoc, ThisTy, RValueThis ? VK_PRValue : VK_LValue) |
| .Classify(Context); |
| |
| // Now we perform lookup on the name we computed earlier and do overload |
| // resolution. Lookup is only performed directly into the class since there |
| // will always be a (possibly implicit) declaration to shadow any others. |
| OverloadCandidateSet OCS(LookupLoc, OverloadCandidateSet::CSK_Normal); |
| DeclContext::lookup_result R = RD->lookup(Name); |
| |
| if (R.empty()) { |
| // We might have no default constructor because we have a lambda's closure |
| // type, rather than because there's some other declared constructor. |
| // Every class has a copy/move constructor, copy/move assignment, and |
| // destructor. |
| assert(SM == CXXSpecialMemberKind::DefaultConstructor && |
| "lookup for a constructor or assignment operator was empty"); |
| Result->setMethod(nullptr); |
| Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted); |
| return *Result; |
| } |
| |
| // Copy the candidates as our processing of them may load new declarations |
| // from an external source and invalidate lookup_result. |
| SmallVector<NamedDecl *, 8> Candidates(R.begin(), R.end()); |
| |
| for (NamedDecl *CandDecl : Candidates) { |
| if (CandDecl->isInvalidDecl()) |
| continue; |
| |
| DeclAccessPair Cand = DeclAccessPair::make(CandDecl, AS_public); |
| auto CtorInfo = getConstructorInfo(Cand); |
| if (CXXMethodDecl *M = dyn_cast<CXXMethodDecl>(Cand->getUnderlyingDecl())) { |
| if (SM == CXXSpecialMemberKind::CopyAssignment || |
| SM == CXXSpecialMemberKind::MoveAssignment) |
| AddMethodCandidate(M, Cand, RD, ThisTy, Classification, |
| llvm::ArrayRef(&Arg, NumArgs), OCS, true); |
| else if (CtorInfo) |
| AddOverloadCandidate(CtorInfo.Constructor, CtorInfo.FoundDecl, |
| llvm::ArrayRef(&Arg, NumArgs), OCS, |
| /*SuppressUserConversions*/ true); |
| else |
| AddOverloadCandidate(M, Cand, llvm::ArrayRef(&Arg, NumArgs), OCS, |
| /*SuppressUserConversions*/ true); |
| } else if (FunctionTemplateDecl *Tmpl = |
| dyn_cast<FunctionTemplateDecl>(Cand->getUnderlyingDecl())) { |
| if (SM == CXXSpecialMemberKind::CopyAssignment || |
| SM == CXXSpecialMemberKind::MoveAssignment) |
| AddMethodTemplateCandidate(Tmpl, Cand, RD, nullptr, ThisTy, |
| Classification, |
| llvm::ArrayRef(&Arg, NumArgs), OCS, true); |
| else if (CtorInfo) |
| AddTemplateOverloadCandidate(CtorInfo.ConstructorTmpl, |
| CtorInfo.FoundDecl, nullptr, |
| llvm::ArrayRef(&Arg, NumArgs), OCS, true); |
| else |
| AddTemplateOverloadCandidate(Tmpl, Cand, nullptr, |
| llvm::ArrayRef(&Arg, NumArgs), OCS, true); |
| } else { |
| assert(isa<UsingDecl>(Cand.getDecl()) && |
| "illegal Kind of operator = Decl"); |
| } |
| } |
| |
| OverloadCandidateSet::iterator Best; |
| switch (OCS.BestViableFunction(*this, LookupLoc, Best)) { |
| case OR_Success: |
| Result->setMethod(cast<CXXMethodDecl>(Best->Function)); |
| Result->setKind(SpecialMemberOverloadResult::Success); |
| break; |
| |
| case OR_Deleted: |
| Result->setMethod(cast<CXXMethodDecl>(Best->Function)); |
| Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted); |
| break; |
| |
| case OR_Ambiguous: |
| Result->setMethod(nullptr); |
| Result->setKind(SpecialMemberOverloadResult::Ambiguous); |
| break; |
| |
| case OR_No_Viable_Function: |
| Result->setMethod(nullptr); |
| Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted); |
| break; |
| } |
| |
| return *Result; |
| } |
| |
| CXXConstructorDecl *Sema::LookupDefaultConstructor(CXXRecordDecl *Class) { |
| SpecialMemberOverloadResult Result = |
| LookupSpecialMember(Class, CXXSpecialMemberKind::DefaultConstructor, |
| false, false, false, false, false); |
| |
| return cast_or_null<CXXConstructorDecl>(Result.getMethod()); |
| } |
| |
| CXXConstructorDecl *Sema::LookupCopyingConstructor(CXXRecordDecl *Class, |
| unsigned Quals) { |
| assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) && |
| "non-const, non-volatile qualifiers for copy ctor arg"); |
| SpecialMemberOverloadResult Result = LookupSpecialMember( |
| Class, CXXSpecialMemberKind::CopyConstructor, Quals & Qualifiers::Const, |
| Quals & Qualifiers::Volatile, false, false, false); |
| |
| return cast_or_null<CXXConstructorDecl>(Result.getMethod()); |
| } |
| |
| CXXConstructorDecl *Sema::LookupMovingConstructor(CXXRecordDecl *Class, |
| unsigned Quals) { |
| SpecialMemberOverloadResult Result = LookupSpecialMember( |
| Class, CXXSpecialMemberKind::MoveConstructor, Quals & Qualifiers::Const, |
| Quals & Qualifiers::Volatile, false, false, false); |
| |
| return cast_or_null<CXXConstructorDecl>(Result.getMethod()); |
| } |
| |
| DeclContext::lookup_result Sema::LookupConstructors(CXXRecordDecl *Class) { |
| // If the implicit constructors have not yet been declared, do so now. |
| if (CanDeclareSpecialMemberFunction(Class)) { |
| runWithSufficientStackSpace(Class->getLocation(), [&] { |
| if (Class->needsImplicitDefaultConstructor()) |
| DeclareImplicitDefaultConstructor(Class); |
| if (Class->needsImplicitCopyConstructor()) |
| DeclareImplicitCopyConstructor(Class); |
| if (getLangOpts().CPlusPlus11 && Class->needsImplicitMoveConstructor()) |
| DeclareImplicitMoveConstructor(Class); |
| }); |
| } |
| |
| CanQualType T = Context.getCanonicalType(Context.getTypeDeclType(Class)); |
| DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(T); |
| return Class->lookup(Name); |
| } |
| |
| CXXMethodDecl *Sema::LookupCopyingAssignment(CXXRecordDecl *Class, |
| unsigned Quals, bool RValueThis, |
| unsigned ThisQuals) { |
| assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) && |
| "non-const, non-volatile qualifiers for copy assignment arg"); |
| assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) && |
| "non-const, non-volatile qualifiers for copy assignment this"); |
| SpecialMemberOverloadResult Result = LookupSpecialMember( |
| Class, CXXSpecialMemberKind::CopyAssignment, Quals & Qualifiers::Const, |
| Quals & Qualifiers::Volatile, RValueThis, ThisQuals & Qualifiers::Const, |
| ThisQuals & Qualifiers::Volatile); |
| |
| return Result.getMethod(); |
| } |
| |
| CXXMethodDecl *Sema::LookupMovingAssignment(CXXRecordDecl *Class, |
| unsigned Quals, |
| bool RValueThis, |
| unsigned ThisQuals) { |
| assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) && |
| "non-const, non-volatile qualifiers for copy assignment this"); |
| SpecialMemberOverloadResult Result = LookupSpecialMember( |
| Class, CXXSpecialMemberKind::MoveAssignment, Quals & Qualifiers::Const, |
| Quals & Qualifiers::Volatile, RValueThis, ThisQuals & Qualifiers::Const, |
| ThisQuals & Qualifiers::Volatile); |
| |
| return Result.getMethod(); |
| } |
| |
| CXXDestructorDecl *Sema::LookupDestructor(CXXRecordDecl *Class) { |
| return cast_or_null<CXXDestructorDecl>( |
| LookupSpecialMember(Class, CXXSpecialMemberKind::Destructor, false, false, |
| false, false, false) |
| .getMethod()); |
| } |
| |
| Sema::LiteralOperatorLookupResult |
| Sema::LookupLiteralOperator(Scope *S, LookupResult &R, |
| ArrayRef<QualType> ArgTys, bool AllowRaw, |
| bool AllowTemplate, bool AllowStringTemplatePack, |
| bool DiagnoseMissing, StringLiteral *StringLit) { |
| LookupName(R, S); |
| assert(R.getResultKind() != LookupResult::Ambiguous && |
| "literal operator lookup can't be ambiguous"); |
| |
| // Filter the lookup results appropriately. |
| LookupResult::Filter F = R.makeFilter(); |
| |
| bool AllowCooked = true; |
| bool FoundRaw = false; |
| bool FoundTemplate = false; |
| bool FoundStringTemplatePack = false; |
| bool FoundCooked = false; |
| |
| while (F.hasNext()) { |
| Decl *D = F.next(); |
| if (UsingShadowDecl *USD = dyn_cast<UsingShadowDecl>(D)) |
| D = USD->getTargetDecl(); |
| |
| // If the declaration we found is invalid, skip it. |
| if (D->isInvalidDecl()) { |
| F.erase(); |
| continue; |
| } |
| |
| bool IsRaw = false; |
| bool IsTemplate = false; |
| bool IsStringTemplatePack = false; |
| bool IsCooked = false; |
| |
| if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { |
| if (FD->getNumParams() == 1 && |
| FD->getParamDecl(0)->getType()->getAs<PointerType>()) |
| IsRaw = true; |
| else if (FD->getNumParams() == ArgTys.size()) { |
| IsCooked = true; |
| for (unsigned ArgIdx = 0; ArgIdx != ArgTys.size(); ++ArgIdx) { |
| QualType ParamTy = FD->getParamDecl(ArgIdx)->getType(); |
| if (!Context.hasSameUnqualifiedType(ArgTys[ArgIdx], ParamTy)) { |
| IsCooked = false; |
| break; |
| } |
| } |
| } |
| } |
| if (FunctionTemplateDecl *FD = dyn_cast<FunctionTemplateDecl>(D)) { |
| TemplateParameterList *Params = FD->getTemplateParameters(); |
| if (Params->size() == 1) { |
| IsTemplate = true; |
| if (!Params->getParam(0)->isTemplateParameterPack() && !StringLit) { |
| // Implied but not stated: user-defined integer and floating literals |
| // only ever use numeric literal operator templates, not templates |
| // taking a parameter of class type. |
| F.erase(); |
| continue; |
| } |
| |
| // A string literal template is only considered if the string literal |
| // is a well-formed template argument for the template parameter. |
| if (StringLit) { |
| SFINAETrap Trap(*this); |
| CheckTemplateArgumentInfo CTAI; |
| TemplateArgumentLoc Arg(TemplateArgument(StringLit), StringLit); |
| if (CheckTemplateArgument( |
| Params->getParam(0), Arg, FD, R.getNameLoc(), R.getNameLoc(), |
| /*ArgumentPackIndex=*/0, CTAI, CTAK_Specified) || |
| Trap.hasErrorOccurred()) |
| IsTemplate = false; |
| } |
| } else { |
| IsStringTemplatePack = true; |
| } |
| } |
| |
| if (AllowTemplate && StringLit && IsTemplate) { |
| FoundTemplate = true; |
| AllowRaw = false; |
| AllowCooked = false; |
| AllowStringTemplatePack = false; |
| if (FoundRaw || FoundCooked || FoundStringTemplatePack) { |
| F.restart(); |
| FoundRaw = FoundCooked = FoundStringTemplatePack = false; |
| } |
| } else if (AllowCooked && IsCooked) { |
| FoundCooked = true; |
| AllowRaw = false; |
| AllowTemplate = StringLit; |
| AllowStringTemplatePack = false; |
| if (FoundRaw || FoundTemplate || FoundStringTemplatePack) { |
| // Go through again and remove the raw and template decls we've |
| // already found. |
| F.restart(); |
| FoundRaw = FoundTemplate = FoundStringTemplatePack = false; |
| } |
| } else if (AllowRaw && IsRaw) { |
| FoundRaw = true; |
| } else if (AllowTemplate && IsTemplate) { |
| FoundTemplate = true; |
| } else if (AllowStringTemplatePack && IsStringTemplatePack) { |
| FoundStringTemplatePack = true; |
| } else { |
| F.erase(); |
| } |
| } |
| |
| F.done(); |
| |
| // Per C++20 [lex.ext]p5, we prefer the template form over the non-template |
| // form for string literal operator templates. |
| if (StringLit && FoundTemplate) |
| return LOLR_Template; |
| |
| // C++11 [lex.ext]p3, p4: If S contains a literal operator with a matching |
| // parameter type, that is used in preference to a raw literal operator |
| // or literal operator template. |
| if (FoundCooked) |
| return LOLR_Cooked; |
| |
| // C++11 [lex.ext]p3, p4: S shall contain a raw literal operator or a literal |
| // operator template, but not both. |
| if (FoundRaw && FoundTemplate) { |
| Diag(R.getNameLoc(), diag::err_ovl_ambiguous_call) << R.getLookupName(); |
| for (const NamedDecl *D : R) |
| NoteOverloadCandidate(D, D->getUnderlyingDecl()->getAsFunction()); |
| return LOLR_Error; |
| } |
| |
| if (FoundRaw) |
| return LOLR_Raw; |
| |
| if (FoundTemplate) |
| return LOLR_Template; |
| |
| if (FoundStringTemplatePack) |
| return LOLR_StringTemplatePack; |
| |
| // Didn't find anything we could use. |
| if (DiagnoseMissing) { |
| Diag(R.getNameLoc(), diag::err_ovl_no_viable_literal_operator) |
| << R.getLookupName() << (int)ArgTys.size() << ArgTys[0] |
| << (ArgTys.size() == 2 ? ArgTys[1] : QualType()) << AllowRaw |
| << (AllowTemplate || AllowStringTemplatePack); |
| return LOLR_Error; |
| } |
| |
| return LOLR_ErrorNoDiagnostic; |
| } |
| |
| void ADLResult::insert(NamedDecl *New) { |
| NamedDecl *&Old = Decls[cast<NamedDecl>(New->getCanonicalDecl())]; |
| |
| // If we haven't yet seen a decl for this key, or the last decl |
| // was exactly this one, we're done. |
| if (Old == nullptr || Old == New) { |
| Old = New; |
| return; |
| } |
| |
| // Otherwise, decide which is a more recent redeclaration. |
| FunctionDecl *OldFD = Old->getAsFunction(); |
| FunctionDecl *NewFD = New->getAsFunction(); |
| |
| FunctionDecl *Cursor = NewFD; |
| while (true) { |
| Cursor = Cursor->getPreviousDecl(); |
| |
| // If we got to the end without finding OldFD, OldFD is the newer |
| // declaration; leave things as they are. |
| if (!Cursor) return; |
| |
| // If we do find OldFD, then NewFD is newer. |
| if (Cursor == OldFD) break; |
| |
| // Otherwise, keep looking. |
| } |
| |
| Old = New; |
| } |
| |
| void Sema::ArgumentDependentLookup(DeclarationName Name, SourceLocation Loc, |
| ArrayRef<Expr *> Args, ADLResult &Result) { |
| // Find all of the associated namespaces and classes based on the |
| // arguments we have. |
| AssociatedNamespaceSet AssociatedNamespaces; |
| AssociatedClassSet AssociatedClasses; |
| FindAssociatedClassesAndNamespaces(Loc, Args, |
| AssociatedNamespaces, |
| AssociatedClasses); |
| |
| // C++ [basic.lookup.argdep]p3: |
| // Let X be the lookup set produced by unqualified lookup (3.4.1) |
| // and let Y be the lookup set produced by argument dependent |
| // lookup (defined as follows). If X contains [...] then Y is |
| // empty. Otherwise Y is the set of declarations found in the |
| // namespaces associated with the argument types as described |
| // below. The set of declarations found by the lookup of the name |
| // is the union of X and Y. |
| // |
| // Here, we compute Y and add its members to the overloaded |
| // candidate set. |
| for (auto *NS : AssociatedNamespaces) { |
| // When considering an associated namespace, the lookup is the |
| // same as the lookup performed when the associated namespace is |
| // used as a qualifier (3.4.3.2) except that: |
| // |
| // -- Any using-directives in the associated namespace are |
| // ignored. |
| // |
| // -- Any namespace-scope friend functions declared in |
| // associated classes are visible within their respective |
| // namespaces even if they are not visible during an ordinary |
| // lookup (11.4). |
| // |
| // C++20 [basic.lookup.argdep] p4.3 |
| // -- are exported, are attached to a named module M, do not appear |
| // in the translation unit containing the point of the lookup, and |
| // have the same innermost enclosing non-inline namespace scope as |
| // a declaration of an associated entity attached to M. |
| DeclContext::lookup_result R = NS->lookup(Name); |
| for (auto *D : R) { |
| auto *Underlying = D; |
| if (auto *USD = dyn_cast<UsingShadowDecl>(D)) |
| Underlying = USD->getTargetDecl(); |
| |
| if (!isa<FunctionDecl>(Underlying) && |
| !isa<FunctionTemplateDecl>(Underlying)) |
| continue; |
| |
| // The declaration is visible to argument-dependent lookup if either |
| // it's ordinarily visible or declared as a friend in an associated |
| // class. |
| bool Visible = false; |
| for (D = D->getMostRecentDecl(); D; |
| D = cast_or_null<NamedDecl>(D->getPreviousDecl())) { |
| if (D->getIdentifierNamespace() & Decl::IDNS_Ordinary) { |
| if (isVisible(D)) { |
| Visible = true; |
| break; |
| } |
| |
| if (!getLangOpts().CPlusPlusModules) |
| continue; |
| |
| if (D->isInExportDeclContext()) { |
| Module *FM = D->getOwningModule(); |
| // C++20 [basic.lookup.argdep] p4.3 .. are exported ... |
| // exports are only valid in module purview and outside of any |
| // PMF (although a PMF should not even be present in a module |
| // with an import). |
| assert(FM && |
| (FM->isNamedModule() || FM->isImplicitGlobalModule()) && |
| !FM->isPrivateModule() && "bad export context"); |
| // .. are attached to a named module M, do not appear in the |
| // translation unit containing the point of the lookup.. |
| if (D->isInAnotherModuleUnit() && |
| llvm::any_of(AssociatedClasses, [&](auto *E) { |
| // ... and have the same innermost enclosing non-inline |
| // namespace scope as a declaration of an associated entity |
| // attached to M |
| if (E->getOwningModule() != FM) |
| return false; |
| // TODO: maybe this could be cached when generating the |
| // associated namespaces / entities. |
| DeclContext *Ctx = E->getDeclContext(); |
| while (!Ctx->isFileContext() || Ctx->isInlineNamespace()) |
| Ctx = Ctx->getParent(); |
| return Ctx == NS; |
| })) { |
| Visible = true; |
| break; |
| } |
| } |
| } else if (D->getFriendObjectKind()) { |
| auto *RD = cast<CXXRecordDecl>(D->getLexicalDeclContext()); |
| // [basic.lookup.argdep]p4: |
| // Argument-dependent lookup finds all declarations of functions and |
| // function templates that |
| // - ... |
| // - are declared as a friend ([class.friend]) of any class with a |
| // reachable definition in the set of associated entities, |
| // |
| // FIXME: If there's a merged definition of D that is reachable, then |
| // the friend declaration should be considered. |
| if (AssociatedClasses.count(RD) && isReachable(D)) { |
| Visible = true; |
| break; |
| } |
| } |
| } |
| |
| // FIXME: Preserve D as the FoundDecl. |
| if (Visible) |
| Result.insert(Underlying); |
| } |
| } |
| } |
| |
| //---------------------------------------------------------------------------- |
| // Search for all visible declarations. |
| //---------------------------------------------------------------------------- |
| VisibleDeclConsumer::~VisibleDeclConsumer() { } |
| |
| bool VisibleDeclConsumer::includeHiddenDecls() const { return false; } |
| |
| namespace { |
| |
| class ShadowContextRAII; |
| |
| class VisibleDeclsRecord { |
| public: |
| /// An entry in the shadow map, which is optimized to store a |
| /// single declaration (the common case) but can also store a list |
| /// of declarations. |
| typedef llvm::TinyPtrVector<NamedDecl*> ShadowMapEntry; |
| |
| private: |
| /// A mapping from declaration names to the declarations that have |
| /// this name within a particular scope. |
| typedef llvm::DenseMap<DeclarationName, ShadowMapEntry> ShadowMap; |
| |
| /// A list of shadow maps, which is used to model name hiding. |
| std::list<ShadowMap> ShadowMaps; |
| |
| /// The declaration contexts we have already visited. |
| llvm::SmallPtrSet<DeclContext *, 8> VisitedContexts; |
| |
| friend class ShadowContextRAII; |
| |
| public: |
| /// Determine whether we have already visited this context |
| /// (and, if not, note that we are going to visit that context now). |
| bool visitedContext(DeclContext *Ctx) { |
| return !VisitedContexts.insert(Ctx).second; |
| } |
| |
| bool alreadyVisitedContext(DeclContext *Ctx) { |
| return VisitedContexts.count(Ctx); |
| } |
| |
| /// Determine whether the given declaration is hidden in the |
| /// current scope. |
| /// |
| /// \returns the declaration that hides the given declaration, or |
| /// NULL if no such declaration exists. |
| NamedDecl *checkHidden(NamedDecl *ND); |
| |
| /// Add a declaration to the current shadow map. |
| void add(NamedDecl *ND) { |
| ShadowMaps.back()[ND->getDeclName()].push_back(ND); |
| } |
| }; |
| |
| /// RAII object that records when we've entered a shadow context. |
| class ShadowContextRAII { |
| VisibleDeclsRecord &Visible; |
| |
| typedef VisibleDeclsRecord::ShadowMap ShadowMap; |
| |
| public: |
| ShadowContextRAII(VisibleDeclsRecord &Visible) : Visible(Visible) { |
| Visible.ShadowMaps.emplace_back(); |
| } |
| |
| ~ShadowContextRAII() { |
| Visible.ShadowMaps.pop_back(); |
| } |
| }; |
| |
| } // end anonymous namespace |
| |
| NamedDecl *VisibleDeclsRecord::checkHidden(NamedDecl *ND) { |
| unsigned IDNS = ND->getIdentifierNamespace(); |
| std::list<ShadowMap>::reverse_iterator SM = ShadowMaps.rbegin(); |
| for (std::list<ShadowMap>::reverse_iterator SMEnd = ShadowMaps.rend(); |
| SM != SMEnd; ++SM) { |
| ShadowMap::iterator Pos = SM->find(ND->getDeclName()); |
| if (Pos == SM->end()) |
| continue; |
| |
| for (auto *D : Pos->second) { |
| // A tag declaration does not hide a non-tag declaration. |
| if (D->hasTagIdentifierNamespace() && |
| (IDNS & (Decl::IDNS_Member | Decl::IDNS_Ordinary | |
| Decl::IDNS_ObjCProtocol))) |
| continue; |
| |
| // Protocols are in distinct namespaces from everything else. |
| if (((D->getIdentifierNamespace() & Decl::IDNS_ObjCProtocol) |
| || (IDNS & Decl::IDNS_ObjCProtocol)) && |
| D->getIdentifierNamespace() != IDNS) |
| continue; |
| |
| // Functions and function templates in the same scope overload |
| // rather than hide. FIXME: Look for hiding based on function |
| // signatures! |
| if (D->getUnderlyingDecl()->isFunctionOrFunctionTemplate() && |
| ND->getUnderlyingDecl()->isFunctionOrFunctionTemplate() && |
| SM == ShadowMaps.rbegin()) |
| continue; |
| |
| // A shadow declaration that's created by a resolved using declaration |
| // is not hidden by the same using declaration. |
| if (isa<UsingShadowDecl>(ND) && isa<UsingDecl>(D) && |
| cast<UsingShadowDecl>(ND)->getIntroducer() == D) |
| continue; |
| |
| // We've found a declaration that hides this one. |
| return D; |
| } |
| } |
| |
| return nullptr; |
| } |
| |
| namespace { |
| class LookupVisibleHelper { |
| public: |
| LookupVisibleHelper(VisibleDeclConsumer &Consumer, bool IncludeDependentBases, |
| bool LoadExternal) |
| : Consumer(Consumer), IncludeDependentBases(IncludeDependentBases), |
| LoadExternal(LoadExternal) {} |
| |
| void lookupVisibleDecls(Sema &SemaRef, Scope *S, Sema::LookupNameKind Kind, |
| bool IncludeGlobalScope) { |
| // Determine the set of using directives available during |
| // unqualified name lookup. |
| Scope *Initial = S; |
| UnqualUsingDirectiveSet UDirs(SemaRef); |
| if (SemaRef.getLangOpts().CPlusPlus) { |
| // Find the first namespace or translation-unit scope. |
| while (S && !isNamespaceOrTranslationUnitScope(S)) |
| S = S->getParent(); |
| |
| UDirs.visitScopeChain(Initial, S); |
| } |
| UDirs.done(); |
| |
| // Look for visible declarations. |
| LookupResult Result(SemaRef, DeclarationName(), SourceLocation(), Kind); |
| Result.setAllowHidden(Consumer.includeHiddenDecls()); |
| if (!IncludeGlobalScope) |
| Visited.visitedContext(SemaRef.getASTContext().getTranslationUnitDecl()); |
| ShadowContextRAII Shadow(Visited); |
| lookupInScope(Initial, Result, UDirs); |
| } |
| |
| void lookupVisibleDecls(Sema &SemaRef, DeclContext *Ctx, |
| Sema::LookupNameKind Kind, bool IncludeGlobalScope) { |
| LookupResult Result(SemaRef, DeclarationName(), SourceLocation(), Kind); |
| Result.setAllowHidden(Consumer.includeHiddenDecls()); |
| if (!IncludeGlobalScope) |
| Visited.visitedContext(SemaRef.getASTContext().getTranslationUnitDecl()); |
| |
| ShadowContextRAII Shadow(Visited); |
| lookupInDeclContext(Ctx, Result, /*QualifiedNameLookup=*/true, |
| /*InBaseClass=*/false); |
| } |
| |
| private: |
| void lookupInDeclContext(DeclContext *Ctx, LookupResult &Result, |
| bool QualifiedNameLookup, bool InBaseClass) { |
| if (!Ctx) |
| return; |
| |
| // Make sure we don't visit the same context twice. |
| if (Visited.visitedContext(Ctx->getPrimaryContext())) |
| return; |
| |
| Consumer.EnteredContext(Ctx); |
| |
| // Outside C++, lookup results for the TU live on identifiers. |
| if (isa<TranslationUnitDecl>(Ctx) && |
| !Result.getSema().getLangOpts().CPlusPlus) { |
| auto &S = Result.getSema(); |
| auto &Idents = S.Context.Idents; |
| |
| // Ensure all external identifiers are in the identifier table. |
| if (LoadExternal) |
| if (IdentifierInfoLookup *External = |
| Idents.getExternalIdentifierLookup()) { |
| std::unique_ptr<IdentifierIterator> Iter(External->getIdentifiers()); |
| for (StringRef Name = Iter->Next(); !Name.empty(); |
| Name = Iter->Next()) |
| Idents.get(Name); |
| } |
| |
| // Walk all lookup results in the TU for each identifier. |
| for (const auto &Ident : Idents) { |
| for (auto I = S.IdResolver.begin(Ident.getValue()), |
| E = S.IdResolver.end(); |
| I != E; ++I) { |
| if (S.IdResolver.isDeclInScope(*I, Ctx)) { |
| if (NamedDecl *ND = Result.getAcceptableDecl(*I)) { |
| Consumer.FoundDecl(ND, Visited.checkHidden(ND), Ctx, InBaseClass); |
| Visited.add(ND); |
| } |
| } |
| } |
| } |
| |
| return; |
| } |
| |
| if (CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(Ctx)) |
| Result.getSema().ForceDeclarationOfImplicitMembers(Class); |
| |
| llvm::SmallVector<NamedDecl *, 4> DeclsToVisit; |
| // We sometimes skip loading namespace-level results (they tend to be huge). |
| bool Load = LoadExternal || |
| !(isa<TranslationUnitDecl>(Ctx) || isa<NamespaceDecl>(Ctx)); |
| // Enumerate all of the results in this context. |
| for (DeclContextLookupResult R : |
| Load ? Ctx->lookups() |
| : Ctx->noload_lookups(/*PreserveInternalState=*/false)) |
| for (auto *D : R) |
| // Rather than visit immediately, we put ND into a vector and visit |
| // all decls, in order, outside of this loop. The reason is that |
| // Consumer.FoundDecl() and LookupResult::getAcceptableDecl(D) |
| // may invalidate the iterators used in the two |
| // loops above. |
| DeclsToVisit.push_back(D); |
| |
| for (auto *D : DeclsToVisit) |
| if (auto *ND = Result.getAcceptableDecl(D)) { |
| Consumer.FoundDecl(ND, Visited.checkHidden(ND), Ctx, InBaseClass); |
| Visited.add(ND); |
| } |
| |
| DeclsToVisit.clear(); |
| |
| // Traverse using directives for qualified name lookup. |
| if (QualifiedNameLookup) { |
| ShadowContextRAII Shadow(Visited); |
| for (auto *I : Ctx->using_directives()) { |
| if (!Result.getSema().isVisible(I)) |
| continue; |
| lookupInDeclContext(I->getNominatedNamespace(), Result, |
| QualifiedNameLookup, InBaseClass); |
| } |
| } |
| |
| // Traverse the contexts of inherited C++ classes. |
| if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx)) { |
| if (!Record->hasDefinition()) |
| return; |
| |
| for (const auto &B : Record->bases()) { |
| QualType BaseType = B.getType(); |
| |
| RecordDecl *RD; |
| if (BaseType->isDependentType()) { |
| if (!IncludeDependentBases) { |
| // Don't look into dependent bases, because name lookup can't look |
| // there anyway. |
| continue; |
| } |
| const auto *TST = BaseType->getAs<TemplateSpecializationType>(); |
| if (!TST) |
| continue; |
| TemplateName TN = TST->getTemplateName(); |
| const auto *TD = |
| dyn_cast_or_null<ClassTemplateDecl>(TN.getAsTemplateDecl()); |
| if (!TD) |
| continue; |
| RD = TD->getTemplatedDecl(); |
| } else { |
| const auto *Record = BaseType->getAs<RecordType>(); |
| if (!Record) |
| continue; |
| RD = Record->getDecl(); |
| } |
| |
| // FIXME: It would be nice to be able to determine whether referencing |
| // a particular member would be ambiguous. For example, given |
| // |
| // struct A { int member; }; |
| // struct B { int member; }; |
| // struct C : A, B { }; |
| // |
| // void f(C *c) { c->### } |
| // |
| // accessing 'member' would result in an ambiguity. However, we |
| // could be smart enough to qualify the member with the base |
| // class, e.g., |
| // |
| // c->B::member |
| // |
| // or |
| // |
| // c->A::member |
| |
| // Find results in this base class (and its bases). |
| ShadowContextRAII Shadow(Visited); |
| lookupInDeclContext(RD, Result, QualifiedNameLookup, |
| /*InBaseClass=*/true); |
| } |
| } |
| |
| // Traverse the contexts of Objective-C classes. |
| if (ObjCInterfaceDecl *IFace = dyn_cast<ObjCInterfaceDecl>(Ctx)) { |
| // Traverse categories. |
| for (auto *Cat : IFace->visible_categories()) { |
| ShadowContextRAII Shadow(Visited); |
| lookupInDeclContext(Cat, Result, QualifiedNameLookup, |
| /*InBaseClass=*/false); |
| } |
| |
| // Traverse protocols. |
| for (auto *I : IFace->all_referenced_protocols()) { |
| ShadowContextRAII Shadow(Visited); |
| lookupInDeclContext(I, Result, QualifiedNameLookup, |
| /*InBaseClass=*/false); |
| } |
| |
| // Traverse the superclass. |
| if (IFace->getSuperClass()) { |
| ShadowContextRAII Shadow(Visited); |
| lookupInDeclContext(IFace->getSuperClass(), Result, QualifiedNameLookup, |
| /*InBaseClass=*/true); |
| } |
| |
| // If there is an implementation, traverse it. We do this to find |
| // synthesized ivars. |
| if (IFace->getImplementation()) { |
| ShadowContextRAII Shadow(Visited); |
| lookupInDeclContext(IFace->getImplementation(), Result, |
| QualifiedNameLookup, InBaseClass); |
| } |
| } else if (ObjCProtocolDecl *Protocol = dyn_cast<ObjCProtocolDecl>(Ctx)) { |
| for (auto *I : Protocol->protocols()) { |
| ShadowContextRAII Shadow(Visited); |
| lookupInDeclContext(I, Result, QualifiedNameLookup, |
| /*InBaseClass=*/false); |
| } |
| } else if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(Ctx)) { |
| for (auto *I : Category->protocols()) { |
| ShadowContextRAII Shadow(Visited); |
| lookupInDeclContext(I, Result, QualifiedNameLookup, |
| /*InBaseClass=*/false); |
| } |
| |
| // If there is an implementation, traverse it. |
| if (Category->getImplementation()) { |
| ShadowContextRAII Shadow(Visited); |
| lookupInDeclContext(Category->getImplementation(), Result, |
| QualifiedNameLookup, /*InBaseClass=*/true); |
| } |
| } |
| } |
| |
| void lookupInScope(Scope *S, LookupResult &Result, |
| UnqualUsingDirectiveSet &UDirs) { |
| // No clients run in this mode and it's not supported. Please add tests and |
| // remove the assertion if you start relying on it. |
| assert(!IncludeDependentBases && "Unsupported flag for lookupInScope"); |
| |
| if (!S) |
| return; |
| |
| if (!S->getEntity() || |
| (!S->getParent() && !Visited.alreadyVisitedContext(S->getEntity())) || |
| (S->getEntity())->isFunctionOrMethod()) { |
| FindLocalExternScope FindLocals(Result); |
| // Walk through the declarations in this Scope. The consumer might add new |
| // decls to the scope as part of deserialization, so make a copy first. |
| SmallVector<Decl *, 8> ScopeDecls(S->decls().begin(), S->decls().end()); |
| for (Decl *D : ScopeDecls) { |
| if (NamedDecl *ND = dyn_cast<NamedDecl>(D)) |
| if ((ND = Result.getAcceptableDecl(ND))) { |
| Consumer.FoundDecl(ND, Visited.checkHidden(ND), nullptr, false); |
| Visited.add(ND); |
| } |
| } |
| } |
| |
| DeclContext *Entity = S->getLookupEntity(); |
| if (Entity) { |
| // Look into this scope's declaration context, along with any of its |
| // parent lookup contexts (e.g., enclosing classes), up to the point |
| // where we hit the context stored in the next outer scope. |
| DeclContext *OuterCtx = findOuterContext(S); |
| |
| for (DeclContext *Ctx = Entity; Ctx && !Ctx->Equals(OuterCtx); |
| Ctx = Ctx->getLookupParent()) { |
| if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) { |
| if (Method->isInstanceMethod()) { |
| // For instance methods, look for ivars in the method's interface. |
| LookupResult IvarResult(Result.getSema(), Result.getLookupName(), |
| Result.getNameLoc(), |
| Sema::LookupMemberName); |
| if (ObjCInterfaceDecl *IFace = Method->getClassInterface()) { |
| lookupInDeclContext(IFace, IvarResult, |
| /*QualifiedNameLookup=*/false, |
| /*InBaseClass=*/false); |
| } |
| } |
| |
| // We've already performed all of the name lookup that we need |
| // to for Objective-C methods; the next context will be the |
| // outer scope. |
| break; |
| } |
| |
| if (Ctx->isFunctionOrMethod()) |
| continue; |
| |
| lookupInDeclContext(Ctx, Result, /*QualifiedNameLookup=*/false, |
| /*InBaseClass=*/false); |
| } |
| } else if (!S->getParent()) { |
| // Look into the translation unit scope. We walk through the translation |
| // unit's declaration context, because the Scope itself won't have all of |
| // the declarations if we loaded a precompiled header. |
| // FIXME: We would like the translation unit's Scope object to point to |
| // the translation unit, so we don't need this special "if" branch. |
| // However, doing so would force the normal C++ name-lookup code to look |
| // into the translation unit decl when the IdentifierInfo chains would |
| // suffice. Once we fix that problem (which is part of a more general |
| // "don't look in DeclContexts unless we have to" optimization), we can |
| // eliminate this. |
| Entity = Result.getSema().Context.getTranslationUnitDecl(); |
| lookupInDeclContext(Entity, Result, /*QualifiedNameLookup=*/false, |
| /*InBaseClass=*/false); |
| } |
| |
| if (Entity) { |
| // Lookup visible declarations in any namespaces found by using |
| // directives. |
| for (const UnqualUsingEntry &UUE : UDirs.getNamespacesFor(Entity)) |
| lookupInDeclContext( |
| const_cast<DeclContext *>(UUE.getNominatedNamespace()), Result, |
| /*QualifiedNameLookup=*/false, |
| /*InBaseClass=*/false); |
| } |
| |
| // Lookup names in the parent scope. |
| ShadowContextRAII Shadow(Visited); |
| lookupInScope(S->getParent(), Result, UDirs); |
| } |
| |
| private: |
| VisibleDeclsRecord Visited; |
| VisibleDeclConsumer &Consumer; |
| bool IncludeDependentBases; |
| bool LoadExternal; |
| }; |
| } // namespace |
| |
| void Sema::LookupVisibleDecls(Scope *S, LookupNameKind Kind, |
| VisibleDeclConsumer &Consumer, |
| bool IncludeGlobalScope, bool LoadExternal) { |
| LookupVisibleHelper H(Consumer, /*IncludeDependentBases=*/false, |
| LoadExternal); |
| H.lookupVisibleDecls(*this, S, Kind, IncludeGlobalScope); |
| } |
| |
| void Sema::LookupVisibleDecls(DeclContext *Ctx, LookupNameKind Kind, |
| VisibleDeclConsumer &Consumer, |
| bool IncludeGlobalScope, |
| bool IncludeDependentBases, bool LoadExternal) { |
| LookupVisibleHelper H(Consumer, IncludeDependentBases, LoadExternal); |
| H.lookupVisibleDecls(*this, Ctx, Kind, IncludeGlobalScope); |
| } |
| |
| LabelDecl *Sema::LookupOrCreateLabel(IdentifierInfo *II, SourceLocation Loc, |
| SourceLocation GnuLabelLoc) { |
| // Do a lookup to see if we have a label with this name already. |
| NamedDecl *Res = nullptr; |
| |
| if (GnuLabelLoc.isValid()) { |
| // Local label definitions always shadow existing labels. |
| Res = LabelDecl::Create(Context, CurContext, Loc, II, GnuLabelLoc); |
| Scope *S = CurScope; |
| PushOnScopeChains(Res, S, true); |
| return cast<LabelDecl>(Res); |
| } |
| |
| // Not a GNU local label. |
| Res = LookupSingleName(CurScope, II, Loc, LookupLabel, |
| RedeclarationKind::NotForRedeclaration); |
| // If we found a label, check to see if it is in the same context as us. |
| // When in a Block, we don't want to reuse a label in an enclosing function. |
| if (Res && Res->getDeclContext() != CurContext) |
| Res = nullptr; |
| if (!Res) { |
| // If not forward referenced or defined already, create the backing decl. |
| Res = LabelDecl::Create(Context, CurContext, Loc, II); |
| Scope *S = CurScope->getFnParent(); |
| assert(S && "Not in a function?"); |
| PushOnScopeChains(Res, S, true); |
| } |
| return cast<LabelDecl>(Res); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Typo correction |
| //===----------------------------------------------------------------------===// |
| |
| static bool isCandidateViable(CorrectionCandidateCallback &CCC, |
| TypoCorrection &Candidate) { |
| Candidate.setCallbackDistance(CCC.RankCandidate(Candidate)); |
| return Candidate.getEditDistance(false) != TypoCorrection::InvalidDistance; |
| } |
| |
| static void LookupPotentialTypoResult(Sema &SemaRef, |
| LookupResult &Res, |
| IdentifierInfo *Name, |
| Scope *S, CXXScopeSpec *SS, |
| DeclContext *MemberContext, |
| bool EnteringContext, |
| bool isObjCIvarLookup, |
| bool FindHidden); |
| |
| /// Check whether the declarations found for a typo correction are |
| /// visible. Set the correction's RequiresImport flag to true if none of the |
| /// declarations are visible, false otherwise. |
| static void checkCorrectionVisibility(Sema &SemaRef, TypoCorrection &TC) { |
| TypoCorrection::decl_iterator DI = TC.begin(), DE = TC.end(); |
| |
| for (/**/; DI != DE; ++DI) |
| if (!LookupResult::isVisible(SemaRef, *DI)) |
| break; |
| // No filtering needed if all decls are visible. |
| if (DI == DE) { |
| TC.setRequiresImport(false); |
| return; |
| } |
| |
| llvm::SmallVector<NamedDecl*, 4> NewDecls(TC.begin(), DI); |
| bool AnyVisibleDecls = !NewDecls.empty(); |
| |
| for (/**/; DI != DE; ++DI) { |
| if (LookupResult::isVisible(SemaRef, *DI)) { |
| if (!AnyVisibleDecls) { |
| // Found a visible decl, discard all hidden ones. |
| AnyVisibleDecls = true; |
| NewDecls.clear(); |
| } |
| NewDecls.push_back(*DI); |
| } else if (!AnyVisibleDecls && !(*DI)->isModulePrivate()) |
| NewDecls.push_back(*DI); |
| } |
| |
| if (NewDecls.empty()) |
| TC = TypoCorrection(); |
| else { |
| TC.setCorrectionDecls(NewDecls); |
| TC.setRequiresImport(!AnyVisibleDecls); |
| } |
| } |
| |
| // Fill the supplied vector with the IdentifierInfo pointers for each piece of |
| // the given NestedNameSpecifier (i.e. given a NestedNameSpecifier "foo::bar::", |
| // fill the vector with the IdentifierInfo pointers for "foo" and "bar"). |
| static void getNestedNameSpecifierIdentifiers( |
| NestedNameSpecifier *NNS, |
| SmallVectorImpl<const IdentifierInfo*> &Identifiers) { |
| if (NestedNameSpecifier *Prefix = NNS->getPrefix()) |
| getNestedNameSpecifierIdentifiers(Prefix, Identifiers); |
| else |
| Identifiers.clear(); |
| |
| const IdentifierInfo *II = nullptr; |
| |
| switch (NNS->getKind()) { |
| case NestedNameSpecifier::Identifier: |
| II = NNS->getAsIdentifier(); |
| break; |
| |
| case NestedNameSpecifier::Namespace: |
| if (NNS->getAsNamespace()->isAnonymousNamespace()) |
| return; |
| II = NNS->getAsNamespace()->getIdentifier(); |
| break; |
| |
| case NestedNameSpecifier::NamespaceAlias: |
| II = NNS->getAsNamespaceAlias()->getIdentifier(); |
| break; |
| |
| case NestedNameSpecifier::TypeSpecWithTemplate: |
| case NestedNameSpecifier::TypeSpec: |
| II = QualType(NNS->getAsType(), 0).getBaseTypeIdentifier(); |
| break; |
| |
| case NestedNameSpecifier::Global: |
| case NestedNameSpecifier::Super: |
| return; |
| } |
| |
| if (II) |
| Identifiers.push_back(II); |
| } |
| |
| void TypoCorrectionConsumer::FoundDecl(NamedDecl *ND, NamedDecl *Hiding, |
| DeclContext *Ctx, bool InBaseClass) { |
| // Don't consider hidden names for typo correction. |
| if (Hiding) |
| return; |
| |
| // Only consider entities with identifiers for names, ignoring |
| // special names (constructors, overloaded operators, selectors, |
| // etc.). |
| IdentifierInfo *Name = ND->getIdentifier(); |
| if (!Name) |
| return; |
| |
| // Only consider visible declarations and declarations from modules with |
| // names that exactly match. |
| if (!LookupResult::isVisible(SemaRef, ND) && Name != Typo) |
| return; |
| |
| FoundName(Name->getName()); |
| } |
| |
| void TypoCorrectionConsumer::FoundName(StringRef Name) { |
| // Compute the edit distance between the typo and the name of this |
| // entity, and add the identifier to the list of results. |
| addName(Name, nullptr); |
| } |
| |
| void TypoCorrectionConsumer::addKeywordResult(StringRef Keyword) { |
| // Compute the edit distance between the typo and this keyword, |
| // and add the keyword to the list of results. |
| addName(Keyword, nullptr, nullptr, true); |
| } |
| |
| void TypoCorrectionConsumer::addName(StringRef Name, NamedDecl *ND, |
| NestedNameSpecifier *NNS, bool isKeyword) { |
| // Use a simple length-based heuristic to determine the minimum possible |
| // edit distance. If the minimum isn't good enough, bail out early. |
| StringRef TypoStr = Typo->getName(); |
| unsigned MinED = abs((int)Name.size() - (int)TypoStr.size()); |
| if (MinED && TypoStr.size() / MinED < 3) |
| return; |
| |
| // Compute an upper bound on the allowable edit distance, so that the |
| // edit-distance algorithm can short-circuit. |
| unsigned UpperBound = (TypoStr.size() + 2) / 3; |
| unsigned ED = TypoStr.edit_distance(Name, true, UpperBound); |
| if (ED > UpperBound) return; |
| |
| TypoCorrection TC(&SemaRef.Context.Idents.get(Name), ND, NNS, ED); |
| if (isKeyword) TC.makeKeyword(); |
| TC.setCorrectionRange(nullptr, Result.getLookupNameInfo()); |
| addCorrection(TC); |
| } |
| |
| static const unsigned MaxTypoDistanceResultSets = 5; |
| |
| void TypoCorrectionConsumer::addCorrection(TypoCorrection Correction) { |
| StringRef TypoStr = Typo->getName(); |
| StringRef Name = Correction.getCorrectionAsIdentifierInfo()->getName(); |
| |
| // For very short typos, ignore potential corrections that have a different |
| // base identifier from the typo or which have a normalized edit distance |
| // longer than the typo itself. |
| if (TypoStr.size() < 3 && |
| (Name != TypoStr || Correction.getEditDistance(true) > TypoStr.size())) |
| return; |
| |
| // If the correction is resolved but is not viable, ignore it. |
| if (Correction.isResolved()) { |
| checkCorrectionVisibility(SemaRef, Correction); |
| if (!Correction || !isCandidateViable(*CorrectionValidator, Correction)) |
| return; |
| } |
| |
| TypoResultList &CList = |
| CorrectionResults[Correction.getEditDistance(false)][Name]; |
| |
| if (!CList.empty() && !CList.back().isResolved()) |
| CList.pop_back(); |
| if (NamedDecl *NewND = Correction.getCorrectionDecl()) { |
| auto RI = llvm::find_if(CList, [NewND](const TypoCorrection &TypoCorr) { |
| return TypoCorr.getCorrectionDecl() == NewND; |
| }); |
| if (RI != CList.end()) { |
| // The Correction refers to a decl already in the list. No insertion is |
| // necessary and all further cases will return. |
| |
| auto IsDeprecated = [](Decl *D) { |
| while (D) { |
| if (D->isDeprecated()) |
| return true; |
| D = llvm::dyn_cast_or_null<NamespaceDecl>(D->getDeclContext()); |
| } |
| return false; |
| }; |
| |
| // Prefer non deprecated Corrections over deprecated and only then |
| // sort using an alphabetical order. |
| std::pair<bool, std::string> NewKey = { |
| IsDeprecated(Correction.getFoundDecl()), |
| Correction.getAsString(SemaRef.getLangOpts())}; |
| |
| std::pair<bool, std::string> PrevKey = { |
| IsDeprecated(RI->getFoundDecl()), |
| RI->getAsString(SemaRef.getLangOpts())}; |
| |
| if (NewKey < PrevKey) |
| *RI = Correction; |
| return; |
| } |
| } |
| if (CList.empty() || Correction.isResolved()) |
| CList.push_back(Correction); |
| |
| while (CorrectionResults.size() > MaxTypoDistanceResultSets) |
| CorrectionResults.erase(std::prev(CorrectionResults.end())); |
| } |
| |
| void TypoCorrectionConsumer::addNamespaces( |
| const llvm::MapVector<NamespaceDecl *, bool> &KnownNamespaces) { |
| SearchNamespaces = true; |
| |
| for (auto KNPair : KnownNamespaces) |
| Namespaces.addNameSpecifier(KNPair.first); |
| |
| bool SSIsTemplate = false; |
| if (NestedNameSpecifier *NNS = |
| (SS && SS->isValid()) ? SS->getScopeRep() : nullptr) { |
| if (const Type *T = NNS->getAsType()) |
| SSIsTemplate = T->getTypeClass() == Type::TemplateSpecialization; |
| } |
| // Do not transform this into an iterator-based loop. The loop body can |
| // trigger the creation of further types (through lazy deserialization) and |
| // invalid iterators into this list. |
| auto &Types = SemaRef.getASTContext().getTypes(); |
| for (unsigned I = 0; I != Types.size(); ++I) { |
| const auto *TI = Types[I]; |
| if (CXXRecordDecl *CD = TI->getAsCXXRecordDecl()) { |
| CD = CD->getCanonicalDecl(); |
| if (!CD->isDependentType() && !CD->isAnonymousStructOrUnion() && |
| !CD->isUnion() && CD->getIdentifier() && |
| (SSIsTemplate || !isa<ClassTemplateSpecializationDecl>(CD)) && |
| (CD->isBeingDefined() || CD->isCompleteDefinition())) |
| Namespaces.addNameSpecifier(CD); |
| } |
| } |
| } |
| |
| const TypoCorrection &TypoCorrectionConsumer::getNextCorrection() { |
| if (++CurrentTCIndex < ValidatedCorrections.size()) |
| return ValidatedCorrections[CurrentTCIndex]; |
| |
| CurrentTCIndex = ValidatedCorrections.size(); |
| while (!CorrectionResults.empty()) { |
| auto DI = CorrectionResults.begin(); |
| if (DI->second.empty()) { |
| CorrectionResults.erase(DI); |
| continue; |
| } |
| |
| auto RI = DI->second.begin(); |
| if (RI->second.empty()) { |
| DI->second.erase(RI); |
| performQualifiedLookups(); |
| continue; |
| } |
| |
| TypoCorrection TC = RI->second.pop_back_val(); |
| if (TC.isResolved() || TC.requiresImport() || resolveCorrection(TC)) { |
| ValidatedCorrections.push_back(TC); |
| return ValidatedCorrections[CurrentTCIndex]; |
| } |
| } |
| return ValidatedCorrections[0]; // The empty correction. |
| } |
| |
| bool TypoCorrectionConsumer::resolveCorrection(TypoCorrection &Candidate) { |
| IdentifierInfo *Name = Candidate.getCorrectionAsIdentifierInfo(); |
| DeclContext *TempMemberContext = MemberContext; |
| CXXScopeSpec *TempSS = SS.get(); |
| retry_lookup: |
| LookupPotentialTypoResult(SemaRef, Result, Name, S, TempSS, TempMemberContext, |
| EnteringContext, |
| CorrectionValidator->IsObjCIvarLookup, |
| Name == Typo && !Candidate.WillReplaceSpecifier()); |
| switch (Result.getResultKind()) { |
| case LookupResult::NotFound: |
| case LookupResult::NotFoundInCurrentInstantiation: |
| case LookupResult::FoundUnresolvedValue: |
| if (TempSS) { |
| // Immediately retry the lookup without the given CXXScopeSpec |
| TempSS = nullptr; |
| Candidate.WillReplaceSpecifier(true); |
| goto retry_lookup; |
| } |
| if (TempMemberContext) { |
| if (SS && !TempSS) |
| TempSS = SS.get(); |
| TempMemberContext = nullptr; |
| goto retry_lookup; |
| } |
| if (SearchNamespaces) |
| QualifiedResults.push_back(Candidate); |
| break; |
| |
| case LookupResult::Ambiguous: |
| // We don't deal with ambiguities. |
| break; |
| |
| case LookupResult::Found: |
| case LookupResult::FoundOverloaded: |
| // Store all of the Decls for overloaded symbols |
| for (auto *TRD : Result) |
| Candidate.addCorrectionDecl(TRD); |
| checkCorrectionVisibility(SemaRef, Candidate); |
| if (!isCandidateViable(*CorrectionValidator, Candidate)) { |
| if (SearchNamespaces) |
| QualifiedResults.push_back(Candidate); |
| break; |
| } |
| Candidate.setCorrectionRange(SS.get(), Result.getLookupNameInfo()); |
| return true; |
| } |
| return false; |
| } |
| |
| void TypoCorrectionConsumer::performQualifiedLookups() { |
| unsigned TypoLen = Typo->getName().size(); |
| for (const TypoCorrection &QR : QualifiedResults) { |
| for (const auto &NSI : Namespaces) { |
| DeclContext *Ctx = NSI.DeclCtx; |
| const Type *NSType = NSI.NameSpecifier->getAsType(); |
| |
| // If the current NestedNameSpecifier refers to a class and the |
| // current correction candidate is the name of that class, then skip |
| // it as it is unlikely a qualified version of the class' constructor |
| // is an appropriate correction. |
| if (CXXRecordDecl *NSDecl = NSType ? NSType->getAsCXXRecordDecl() : |
| nullptr) { |
| if (NSDecl->getIdentifier() == QR.getCorrectionAsIdentifierInfo()) |
| continue; |
| } |
| |
| TypoCorrection TC(QR); |
| TC.ClearCorrectionDecls(); |
| TC.setCorrectionSpecifier(NSI.NameSpecifier); |
| TC.setQualifierDistance(NSI.EditDistance); |
| TC.setCallbackDistance(0); // Reset the callback distance |
| |
| // If the current correction candidate and namespace combination are |
| // too far away from the original typo based on the normalized edit |
| // distance, then skip performing a qualified name lookup. |
| unsigned TmpED = TC.getEditDistance(true); |
| if (QR.getCorrectionAsIdentifierInfo() != Typo && TmpED && |
| TypoLen / TmpED < 3) |
| continue; |
| |
| Result.clear(); |
| Result.setLookupName(QR.getCorrectionAsIdentifierInfo()); |
| if (!SemaRef.LookupQualifiedName(Result, Ctx)) |
| continue; |
| |
| // Any corrections added below will be validated in subsequent |
| // iterations of the main while() loop over the Consumer's contents. |
| switch (Result.getResultKind()) { |
| case LookupResult::Found: |
| case LookupResult::FoundOverloaded: { |
| if (SS && SS->isValid()) { |
| std::string NewQualified = TC.getAsString(SemaRef.getLangOpts()); |
| std::string OldQualified; |
| llvm::raw_string_ostream OldOStream(OldQualified); |
| SS->getScopeRep()->print(OldOStream, SemaRef.getPrintingPolicy()); |
| OldOStream << Typo->getName(); |
| // If correction candidate would be an identical written qualified |
| // identifier, then the existing CXXScopeSpec probably included a |
| // typedef that didn't get accounted for properly. |
| if (OldOStream.str() == NewQualified) |
| break; |
| } |
| for (LookupResult::iterator TRD = Result.begin(), TRDEnd = Result.end(); |
| TRD != TRDEnd; ++TRD) { |
| if (SemaRef.CheckMemberAccess(TC.getCorrectionRange().getBegin(), |
| NSType ? NSType->getAsCXXRecordDecl() |
| : nullptr, |
| TRD.getPair()) == Sema::AR_accessible) |
| TC.addCorrectionDecl(*TRD); |
| } |
| if (TC.isResolved()) { |
| TC.setCorrectionRange(SS.get(), Result.getLookupNameInfo()); |
| addCorrection(TC); |
| } |
| break; |
| } |
| case LookupResult::NotFound: |
| case LookupResult::NotFoundInCurrentInstantiation: |
| case LookupResult::Ambiguous: |
| case LookupResult::FoundUnresolvedValue: |
| break; |
| } |
| } |
| } |
| QualifiedResults.clear(); |
| } |
| |
| TypoCorrectionConsumer::NamespaceSpecifierSet::NamespaceSpecifierSet( |
| ASTContext &Context, DeclContext *CurContext, CXXScopeSpec *CurScopeSpec) |
| : Context(Context), CurContextChain(buildContextChain(CurContext)) { |
| if (NestedNameSpecifier *NNS = |
| CurScopeSpec ? CurScopeSpec->getScopeRep() : nullptr) { |
| llvm::raw_string_ostream SpecifierOStream(CurNameSpecifier); |
| NNS->print(SpecifierOStream, Context.getPrintingPolicy()); |
| |
| getNestedNameSpecifierIdentifiers(NNS, CurNameSpecifierIdentifiers); |
| } |
| // Build the list of identifiers that would be used for an absolute |
| // (from the global context) NestedNameSpecifier referring to the current |
| // context. |
| for (DeclContext *C : llvm::reverse(CurContextChain)) { |
| if (auto *ND = dyn_cast_or_null<NamespaceDecl>(C)) |
| CurContextIdentifiers.push_back(ND->getIdentifier()); |
| } |
| |
| // Add the global context as a NestedNameSpecifier |
| SpecifierInfo SI = {cast<DeclContext>(Context.getTranslationUnitDecl()), |
| NestedNameSpecifier::GlobalSpecifier(Context), 1}; |
| DistanceMap[1].push_back(SI); |
| } |
| |
| auto TypoCorrectionConsumer::NamespaceSpecifierSet::buildContextChain( |
| DeclContext *Start) -> DeclContextList { |
| assert(Start && "Building a context chain from a null context"); |
| DeclContextList Chain; |
| for (DeclContext *DC = Start->getPrimaryContext(); DC != nullptr; |
| DC = DC->getLookupParent()) { |
| NamespaceDecl *ND = dyn_cast_or_null<NamespaceDecl>(DC); |
| if (!DC->isInlineNamespace() && !DC->isTransparentContext() && |
| !(ND && ND->isAnonymousNamespace())) |
| Chain.push_back(DC->getPrimaryContext()); |
| } |
| return Chain; |
| } |
| |
| unsigned |
| TypoCorrectionConsumer::NamespaceSpecifierSet::buildNestedNameSpecifier( |
| DeclContextList &DeclChain, NestedNameSpecifier *&NNS) { |
| unsigned NumSpecifiers = 0; |
| for (DeclContext *C : llvm::reverse(DeclChain)) { |
| if (auto *ND = dyn_cast_or_null<NamespaceDecl>(C)) { |
| NNS = NestedNameSpecifier::Create(Context, NNS, ND); |
| ++NumSpecifiers; |
| } else if (auto *RD = dyn_cast_or_null<RecordDecl>(C)) { |
| NNS = NestedNameSpecifier::Create(Context, NNS, RD->isTemplateDecl(), |
| RD->getTypeForDecl()); |
| ++NumSpecifiers; |
| } |
| } |
| return NumSpecifiers; |
| } |
| |
| void TypoCorrectionConsumer::NamespaceSpecifierSet::addNameSpecifier( |
| DeclContext *Ctx) { |
| NestedNameSpecifier *NNS = nullptr; |
| unsigned NumSpecifiers = 0; |
| DeclContextList NamespaceDeclChain(buildContextChain(Ctx)); |
| DeclContextList FullNamespaceDeclChain(NamespaceDeclChain); |
| |
| // Eliminate common elements from the two DeclContext chains. |
| for (DeclContext *C : llvm::reverse(CurContextChain)) { |
| if (NamespaceDeclChain.empty() || NamespaceDeclChain.back() != C) |
| break; |
| NamespaceDeclChain.pop_back(); |
| } |
| |
| // Build the NestedNameSpecifier from what is left of the NamespaceDeclChain |
| NumSpecifiers = buildNestedNameSpecifier(NamespaceDeclChain, NNS); |
| |
| // Add an explicit leading '::' specifier if needed. |
| if (NamespaceDeclChain.empty()) { |
| // Rebuild the NestedNameSpecifier as a globally-qualified specifier. |
| NNS = NestedNameSpecifier::GlobalSpecifier(Context); |
| NumSpecifiers = |
| buildNestedNameSpecifier(FullNamespaceDeclChain, NNS); |
| } else if (NamedDecl *ND = |
| dyn_cast_or_null<NamedDecl>(NamespaceDeclChain.back())) { |
| IdentifierInfo *Name = ND->getIdentifier(); |
| bool SameNameSpecifier = false; |
| if (llvm::is_contained(CurNameSpecifierIdentifiers, Name)) { |
| std::string NewNameSpecifier; |
| llvm::raw_string_ostream SpecifierOStream(NewNameSpecifier); |
| SmallVector<const IdentifierInfo *, 4> NewNameSpecifierIdentifiers; |
| getNestedNameSpecifierIdentifiers(NNS, NewNameSpecifierIdentifiers); |
| NNS->print(SpecifierOStream, Context.getPrintingPolicy()); |
| SameNameSpecifier = NewNameSpecifier == CurNameSpecifier; |
| } |
| if (SameNameSpecifier || llvm::is_contained(CurContextIdentifiers, Name)) { |
| // Rebuild the NestedNameSpecifier as a globally-qualified specifier. |
| NNS = NestedNameSpecifier::GlobalSpecifier(Context); |
| NumSpecifiers = |
| buildNestedNameSpecifier(FullNamespaceDeclChain, NNS); |
| } |
| } |
| |
| // If the built NestedNameSpecifier would be replacing an existing |
| // NestedNameSpecifier, use the number of component identifiers that |
| // would need to be changed as the edit distance instead of the number |
| // of components in the built NestedNameSpecifier. |
| if (NNS && !CurNameSpecifierIdentifiers.empty()) { |
| SmallVector<const IdentifierInfo*, 4> NewNameSpecifierIdentifiers; |
| getNestedNameSpecifierIdentifiers(NNS, NewNameSpecifierIdentifiers); |
| NumSpecifiers = |
| llvm::ComputeEditDistance(llvm::ArrayRef(CurNameSpecifierIdentifiers), |
| llvm::ArrayRef(NewNameSpecifierIdentifiers)); |
| } |
| |
| SpecifierInfo SI = {Ctx, NNS, NumSpecifiers}; |
| DistanceMap[NumSpecifiers].push_back(SI); |
| } |
| |
| /// Perform name lookup for a possible result for typo correction. |
| static void LookupPotentialTypoResult(Sema &SemaRef, |
| LookupResult &Res, |
| IdentifierInfo *Name, |
| Scope *S, CXXScopeSpec *SS, |
| DeclContext *MemberContext, |
| bool EnteringContext, |
| bool isObjCIvarLookup, |
| bool FindHidden) { |
| Res.suppressDiagnostics(); |
| Res.clear(); |
| Res.setLookupName(Name); |
| Res.setAllowHidden(FindHidden); |
| if (MemberContext) { |
| if (ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(MemberContext)) { |
| if (isObjCIvarLookup) { |
| if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(Name)) { |
| Res.addDecl(Ivar); |
| Res.resolveKind(); |
| return; |
| } |
| } |
| |
| if (ObjCPropertyDecl *Prop = Class->FindPropertyDeclaration( |
| Name, ObjCPropertyQueryKind::OBJC_PR_query_instance)) { |
| Res.addDecl(Prop); |
| Res.resolveKind(); |
| return; |
| } |
| } |
| |
| SemaRef.LookupQualifiedName(Res, MemberContext); |
| return; |
| } |
| |
| SemaRef.LookupParsedName(Res, S, SS, |
| /*ObjectType=*/QualType(), |
| /*AllowBuiltinCreation=*/false, EnteringContext); |
| |
| // Fake ivar lookup; this should really be part of |
| // LookupParsedName. |
| if (ObjCMethodDecl *Method = SemaRef.getCurMethodDecl()) { |
| if (Method->isInstanceMethod() && Method->getClassInterface() && |
| (Res.empty() || |
| (Res.isSingleResult() && |
| Res.getFoundDecl()->isDefinedOutsideFunctionOrMethod()))) { |
| if (ObjCIvarDecl *IV |
| = Method->getClassInterface()->lookupInstanceVariable(Name)) { |
| Res.addDecl(IV); |
| Res.resolveKind(); |
| } |
| } |
| } |
| } |
| |
| /// Add keywords to the consumer as possible typo corrections. |
| static void AddKeywordsToConsumer(Sema &SemaRef, |
| TypoCorrectionConsumer &Consumer, |
| Scope *S, CorrectionCandidateCallback &CCC, |
| bool AfterNestedNameSpecifier) { |
| if (AfterNestedNameSpecifier) { |
| // For 'X::', we know exactly which keywords can appear next. |
| Consumer.addKeywordResult("template"); |
| if (CCC.WantExpressionKeywords) |
| Consumer.addKeywordResult("operator"); |
| return; |
| } |
| |
| if (CCC.WantObjCSuper) |
| Consumer.addKeywordResult("super"); |
| |
| if (CCC.WantTypeSpecifiers) { |
| // Add type-specifier keywords to the set of results. |
| static const char *const CTypeSpecs[] = { |
| "char", "const", "double", "enum", "float", "int", "long", "short", |
| "signed", "struct", "union", "unsigned", "void", "volatile", |
| "_Complex", |
| // storage-specifiers as well |
| "extern", "inline", "static", "typedef" |
| }; |
| |
| for (const auto *CTS : CTypeSpecs) |
| Consumer.addKeywordResult(CTS); |
| |
| if (SemaRef.getLangOpts().C99 && !SemaRef.getLangOpts().C2y) |
| Consumer.addKeywordResult("_Imaginary"); |
| |
| if (SemaRef.getLangOpts().C99) |
| Consumer.addKeywordResult("restrict"); |
| if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus) |
| Consumer.addKeywordResult("bool"); |
| else if (SemaRef.getLangOpts().C99) |
| Consumer.addKeywordResult("_Bool"); |
| |
| if (SemaRef.getLangOpts().CPlusPlus) { |
| Consumer.addKeywordResult("class"); |
| Consumer.addKeywordResult("typename"); |
| Consumer.addKeywordResult("wchar_t"); |
| |
| if (SemaRef.getLangOpts().CPlusPlus11) { |
| Consumer.addKeywordResult("char16_t"); |
| Consumer.addKeywordResult("char32_t"); |
| Consumer.addKeywordResult("constexpr"); |
| Consumer.addKeywordResult("decltype"); |
| Consumer.addKeywordResult("thread_local"); |
| } |
| } |
| |
| if (SemaRef.getLangOpts().GNUKeywords) |
| Consumer.addKeywordResult("typeof"); |
| } else if (CCC.WantFunctionLikeCasts) { |
| static const char *const CastableTypeSpecs[] = { |
| "char", "double", "float", "int", "long", "short", |
| "signed", "unsigned", "void" |
| }; |
| for (auto *kw : CastableTypeSpecs) |
| Consumer.addKeywordResult(kw); |
| } |
| |
| if (CCC.WantCXXNamedCasts && SemaRef.getLangOpts().CPlusPlus) { |
| Consumer.addKeywordResult("const_cast"); |
| Consumer.addKeywordResult("dynamic_cast"); |
| Consumer.addKeywordResult("reinterpret_cast"); |
| Consumer.addKeywordResult("static_cast"); |
| } |
| |
| if (CCC.WantExpressionKeywords) { |
| Consumer.addKeywordResult("sizeof"); |
| if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus) { |
| Consumer.addKeywordResult("false"); |
| Consumer.addKeywordResult("true"); |
| } |
| |
| if (SemaRef.getLangOpts().CPlusPlus) { |
| static const char *const CXXExprs[] = { |
| "delete", "new", "operator", "throw", "typeid" |
| }; |
| for (const auto *CE : CXXExprs) |
| Consumer.addKeywordResult(CE); |
| |
| if (isa<CXXMethodDecl>(SemaRef.CurContext) && |
| cast<CXXMethodDecl>(SemaRef.CurContext)->isInstance()) |
| Consumer.addKeywordResult("this"); |
| |
| if (SemaRef.getLangOpts().CPlusPlus11) { |
| Consumer.addKeywordResult("alignof"); |
| Consumer.addKeywordResult("nullptr"); |
| } |
| } |
| |
| if (SemaRef.getLangOpts().C11) { |
| // FIXME: We should not suggest _Alignof if the alignof macro |
| // is present. |
| Consumer.addKeywordResult("_Alignof"); |
| } |
| } |
| |
| if (CCC.WantRemainingKeywords) { |
| if (SemaRef.getCurFunctionOrMethodDecl() || SemaRef.getCurBlock()) { |
| // Statements. |
| static const char *const CStmts[] = { |
| "do", "else", "for", "goto", "if", "return", "switch", "while" }; |
| for (const auto *CS : CStmts) |
| Consumer.addKeywordResult(CS); |
| |
| if (SemaRef.getLangOpts().CPlusPlus) { |
| Consumer.addKeywordResult("catch"); |
| Consumer.addKeywordResult("try"); |
| } |
| |
| if (S && S->getBreakParent()) |
| Consumer.addKeywordResult("break"); |
| |
| if (S && S->getContinueParent()) |
| Consumer.addKeywordResult("continue"); |
| |
| if (SemaRef.getCurFunction() && |
| !SemaRef.getCurFunction()->SwitchStack.empty()) { |
| Consumer.addKeywordResult("case"); |
| Consumer.addKeywordResult("default"); |
| } |
| } else { |
| if (SemaRef.getLangOpts().CPlusPlus) { |
| Consumer.addKeywordResult("namespace"); |
| Consumer.addKeywordResult("template"); |
| } |
| |
| if (S && S->isClassScope()) { |
| Consumer.addKeywordResult("explicit"); |
| Consumer.addKeywordResult("friend"); |
| Consumer.addKeywordResult("mutable"); |
| Consumer.addKeywordResult("private"); |
| Consumer.addKeywordResult("protected"); |
| Consumer.addKeywordResult("public"); |
| Consumer.addKeywordResult("virtual"); |
| } |
| } |
| |
| if (SemaRef.getLangOpts().CPlusPlus) { |
| Consumer.addKeywordResult("using"); |
| |
| if (SemaRef.getLangOpts().CPlusPlus11) |
| Consumer.addKeywordResult("static_assert"); |
| } |
| } |
| } |
| |
| std::unique_ptr<TypoCorrectionConsumer> Sema::makeTypoCorrectionConsumer( |
| const DeclarationNameInfo &TypoName, Sema::LookupNameKind LookupKind, |
| Scope *S, CXXScopeSpec *SS, CorrectionCandidateCallback &CCC, |
| DeclContext *MemberContext, bool EnteringContext, |
| const ObjCObjectPointerType *OPT, bool ErrorRecovery) { |
| |
| if (Diags.hasFatalErrorOccurred() || !getLangOpts().SpellChecking || |
| DisableTypoCorrection) |
| return nullptr; |
| |
| // In Microsoft mode, don't perform typo correction in a template member |
| // function dependent context because it interferes with the "lookup into |
| // dependent bases of class templates" feature. |
| if (getLangOpts().MSVCCompat && CurContext->isDependentContext() && |
| isa<CXXMethodDecl>(CurContext)) |
| return nullptr; |
| |
| // We only attempt to correct typos for identifiers. |
| IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo(); |
| if (!Typo) |
| return nullptr; |
| |
| // If the scope specifier itself was invalid, don't try to correct |
| // typos. |
| if (SS && SS->isInvalid()) |
| return nullptr; |
| |
| // Never try to correct typos during any kind of code synthesis. |
| if (!CodeSynthesisContexts.empty()) |
| return nullptr; |
| |
| // Don't try to correct 'super'. |
| if (S && S->isInObjcMethodScope() && Typo == getSuperIdentifier()) |
| return nullptr; |
| |
| // Abort if typo correction already failed for this specific typo. |
| IdentifierSourceLocations::iterator locs = TypoCorrectionFailures.find(Typo); |
| if (locs != TypoCorrectionFailures.end() && |
| locs->second.count(TypoName.getLoc())) |
| return nullptr; |
| |
| // Don't try to correct the identifier "vector" when in AltiVec mode. |
| // TODO: Figure out why typo correction misbehaves in this case, fix it, and |
| // remove this workaround. |
| if ((getLangOpts().AltiVec || getLangOpts().ZVector) && Typo->isStr("vector")) |
| return nullptr; |
| |
| // Provide a stop gap for files that are just seriously broken. Trying |
| // to correct all typos can turn into a HUGE performance penalty, causing |
| // some files to take minutes to get rejected by the parser. |
| unsigned Limit = getDiagnostics().getDiagnosticOptions().SpellCheckingLimit; |
| if (Limit && TyposCorrected >= Limit) |
| return nullptr; |
| ++TyposCorrected; |
| |
| // If we're handling a missing symbol error, using modules, and the |
| // special search all modules option is used, look for a missing import. |
| if (ErrorRecovery && getLangOpts().Modules && |
| getLangOpts().ModulesSearchAll) { |
| // The following has the side effect of loading the missing module. |
| getModuleLoader().lookupMissingImports(Typo->getName(), |
| TypoName.getBeginLoc()); |
| } |
| |
| // Extend the lifetime of the callback. We delayed this until here |
| // to avoid allocations in the hot path (which is where no typo correction |
| // occurs). Note that CorrectionCandidateCallback is polymorphic and |
| // initially stack-allocated. |
| std::unique_ptr<CorrectionCandidateCallback> ClonedCCC = CCC.clone(); |
| auto Consumer = std::make_unique<TypoCorrectionConsumer>( |
| *this, TypoName, LookupKind, S, SS, std::move(ClonedCCC), MemberContext, |
| EnteringContext); |
| |
| // Perform name lookup to find visible, similarly-named entities. |
| bool IsUnqualifiedLookup = false; |
| DeclContext *QualifiedDC = MemberContext; |
| if (MemberContext) { |
| LookupVisibleDecls(MemberContext, LookupKind, *Consumer); |
| |
| // Look in qualified interfaces. |
| if (OPT) { |
| for (auto *I : OPT->quals()) |
| LookupVisibleDecls(I, LookupKind, *Consumer); |
| } |
| } else if (SS && SS->isSet()) { |
| QualifiedDC = computeDeclContext(*SS, EnteringContext); |
| if (!QualifiedDC) |
| return nullptr; |
| |
| LookupVisibleDecls(QualifiedDC, LookupKind, *Consumer); |
| } else { |
| IsUnqualifiedLookup = true; |
| } |
| |
| // Determine whether we are going to search in the various namespaces for |
| // corrections. |
| bool SearchNamespaces |
| = getLangOpts().CPlusPlus && |
| (IsUnqualifiedLookup || (SS && SS->isSet())); |
| |
| if (IsUnqualifiedLookup || SearchNamespaces) { |
| // For unqualified lookup, look through all of the names that we have |
| // seen in this translation unit. |
| // FIXME: Re-add the ability to skip very unlikely potential corrections. |
| for (const auto &I : Context.Idents) |
| Consumer->FoundName(I.getKey()); |
| |
| // Walk through identifiers in external identifier sources. |
| // FIXME: Re-add the ability to skip very unlikely potential corrections. |
| if (IdentifierInfoLookup *External |
| = Context.Idents.getExternalIdentifierLookup()) { |
| std::unique_ptr<IdentifierIterator> Iter(External->getIdentifiers()); |
| do { |
| StringRef Name = Iter->Next(); |
| if (Name.empty()) |
| break; |
| |
| Consumer->FoundName(Name); |
| } while (true); |
| } |
| } |
| |
| AddKeywordsToConsumer(*this, *Consumer, S, |
| *Consumer->getCorrectionValidator(), |
| SS && SS->isNotEmpty()); |
| |
| // Build the NestedNameSpecifiers for the KnownNamespaces, if we're going |
| // to search those namespaces. |
| if (SearchNamespaces) { |
| // Load any externally-known namespaces. |
| if (ExternalSource && !LoadedExternalKnownNamespaces) { |
| SmallVector<NamespaceDecl *, 4> ExternalKnownNamespaces; |
| LoadedExternalKnownNamespaces = true; |
| ExternalSource->ReadKnownNamespaces(ExternalKnownNamespaces); |
| for (auto *N : ExternalKnownNamespaces) |
| KnownNamespaces[N] = true; |
| } |
| |
| Consumer->addNamespaces(KnownNamespaces); |
| } |
| |
| return Consumer; |
| } |
| |
| TypoCorrection Sema::CorrectTypo(const DeclarationNameInfo &TypoName, |
| Sema::LookupNameKind LookupKind, |
| Scope *S, CXXScopeSpec *SS, |
| CorrectionCandidateCallback &CCC, |
| CorrectTypoKind Mode, |
| DeclContext *MemberContext, |
| bool EnteringContext, |
| const ObjCObjectPointerType *OPT, |
| bool RecordFailure) { |
| // Always let the ExternalSource have the first chance at correction, even |
| // if we would otherwise have given up. |
| if (ExternalSource) { |
| if (TypoCorrection Correction = |
| ExternalSource->CorrectTypo(TypoName, LookupKind, S, SS, CCC, |
| MemberContext, EnteringContext, OPT)) |
| return Correction; |
| } |
| |
| // Ugly hack equivalent to CTC == CTC_ObjCMessageReceiver; |
| // WantObjCSuper is only true for CTC_ObjCMessageReceiver and for |
| // some instances of CTC_Unknown, while WantRemainingKeywords is true |
| // for CTC_Unknown but not for CTC_ObjCMessageReceiver. |
| bool ObjCMessageReceiver = CCC.WantObjCSuper && !CCC.WantRemainingKeywords; |
| |
| IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo(); |
| auto Consumer = makeTypoCorrectionConsumer(TypoName, LookupKind, S, SS, CCC, |
| MemberContext, EnteringContext, |
| OPT, Mode == CTK_ErrorRecovery); |
| |
| if (!Consumer) |
| return TypoCorrection(); |
| |
| // If we haven't found anything, we're done. |
| if (Consumer->empty()) |
| return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure); |
| |
| // Make sure the best edit distance (prior to adding any namespace qualifiers) |
| // is not more that about a third of the length of the typo's identifier. |
| unsigned ED = Consumer->getBestEditDistance(true); |
| unsigned TypoLen = Typo->getName().size(); |
| if (ED > 0 && TypoLen / ED < 3) |
| return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure); |
| |
| TypoCorrection BestTC = Consumer->getNextCorrection(); |
| TypoCorrection SecondBestTC = Consumer->getNextCorrection(); |
| if (!BestTC) |
| return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure); |
| |
| ED = BestTC.getEditDistance(); |
| |
| if (TypoLen >= 3 && ED > 0 && TypoLen / ED < 3) { |
| // If this was an unqualified lookup and we believe the callback |
| // object wouldn't have filtered out possible corrections, note |
| // that no correction was found. |
| return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure); |
| } |
| |
| // If only a single name remains, return that result. |
| if (!SecondBestTC || |
| SecondBestTC.getEditDistance(false) > BestTC.getEditDistance(false)) { |
| const TypoCorrection &Result = BestTC; |
| |
| // Don't correct to a keyword that's the same as the typo; the keyword |
| // wasn't actually in scope. |
| if (ED == 0 && Result.isKeyword()) |
| return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure); |
| |
| TypoCorrection TC = Result; |
| TC.setCorrectionRange(SS, TypoName); |
| checkCorrectionVisibility(*this, TC); |
| return TC; |
| } else if (SecondBestTC && ObjCMessageReceiver) { |
| // Prefer 'super' when we're completing in a message-receiver |
| // context. |
| |
| if (BestTC.getCorrection().getAsString() != "super") { |
| if (SecondBestTC.getCorrection().getAsString() == "super") |
| BestTC = SecondBestTC; |
| else if ((*Consumer)["super"].front().isKeyword()) |
| BestTC = (*Consumer)["super"].front(); |
| } |
| // Don't correct to a keyword that's the same as the typo; the keyword |
| // wasn't actually in scope. |
| if (BestTC.getEditDistance() == 0 || |
| BestTC.getCorrection().getAsString() != "super") |
| return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure); |
| |
| BestTC.setCorrectionRange(SS, TypoName); |
| return BestTC; |
| } |
| |
| // Record the failure's location if needed and return an empty correction. If |
| // this was an unqualified lookup and we believe the callback object did not |
| // filter out possible corrections, also cache the failure for the typo. |
| return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure && !SecondBestTC); |
| } |
| |
| TypoExpr *Sema::CorrectTypoDelayed( |
| const DeclarationNameInfo &TypoName, Sema::LookupNameKind LookupKind, |
| Scope *S, CXXScopeSpec *SS, CorrectionCandidateCallback &CCC, |
| TypoDiagnosticGenerator TDG, TypoRecoveryCallback TRC, CorrectTypoKind Mode, |
| DeclContext *MemberContext, bool EnteringContext, |
| const ObjCObjectPointerType *OPT) { |
| auto Consumer = makeTypoCorrectionConsumer(TypoName, LookupKind, S, SS, CCC, |
| MemberContext, EnteringContext, |
| OPT, Mode == CTK_ErrorRecovery); |
| |
| // Give the external sema source a chance to correct the typo. |
| TypoCorrection ExternalTypo; |
| if (ExternalSource && Consumer) { |
| ExternalTypo = ExternalSource->CorrectTypo( |
| TypoName, LookupKind, S, SS, *Consumer->getCorrectionValidator(), |
| MemberContext, EnteringContext, OPT); |
| if (ExternalTypo) |
| Consumer->addCorrection(ExternalTypo); |
| } |
| |
| if (!Consumer || Consumer->empty()) |
| return nullptr; |
| |
| // Make sure the best edit distance (prior to adding any namespace qualifiers) |
| // is not more that about a third of the length of the typo's identifier. |
| unsigned ED = Consumer->getBestEditDistance(true); |
| IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo(); |
| if (!ExternalTypo && ED > 0 && Typo->getName().size() / ED < 3) |
| return nullptr; |
| ExprEvalContexts.back().NumTypos++; |
| return createDelayedTypo(std::move(Consumer), std::move(TDG), std::move(TRC), |
| TypoName.getLoc()); |
| } |
| |
| void TypoCorrection::addCorrectionDecl(NamedDecl *CDecl) { |
| if (!CDecl) return; |
| |
| if (isKeyword()) |
| CorrectionDecls.clear(); |
| |
| CorrectionDecls.push_back(CDecl); |
| |
| if (!CorrectionName) |
| CorrectionName = CDecl->getDeclName(); |
| } |
| |
| std::string TypoCorrection::getAsString(const LangOptions &LO) const { |
| if (CorrectionNameSpec) { |
| std::string tmpBuffer; |
| llvm::raw_string_ostream PrefixOStream(tmpBuffer); |
| CorrectionNameSpec->print(PrefixOStream, PrintingPolicy(LO)); |
| PrefixOStream << CorrectionName; |
| return PrefixOStream.str(); |
| } |
| |
| return CorrectionName.getAsString(); |
| } |
| |
| bool CorrectionCandidateCallback::ValidateCandidate( |
| const TypoCorrection &candidate) { |
| if (!candidate.isResolved()) |
| return true; |
| |
| if (candidate.isKeyword()) |
| return WantTypeSpecifiers || WantExpressionKeywords || WantCXXNamedCasts || |
| WantRemainingKeywords || WantObjCSuper; |
| |
| bool HasNonType = false; |
| bool HasStaticMethod = false; |
| bool HasNonStaticMethod = false; |
| for (Decl *D : candidate) { |
| if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(D)) |
| D = FTD->getTemplatedDecl(); |
| if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { |
| if (Method->isStatic()) |
| HasStaticMethod = true; |
| else |
| HasNonStaticMethod = true; |
| } |
| if (!isa<TypeDecl>(D)) |
| HasNonType = true; |
| } |
| |
| if (IsAddressOfOperand && HasNonStaticMethod && !HasStaticMethod && |
| !candidate.getCorrectionSpecifier()) |
| return false; |
| |
| return WantTypeSpecifiers || HasNonType; |
| } |
| |
| FunctionCallFilterCCC::FunctionCallFilterCCC(Sema &SemaRef, unsigned NumArgs, |
| bool HasExplicitTemplateArgs, |
| MemberExpr *ME) |
| : NumArgs(NumArgs), HasExplicitTemplateArgs(HasExplicitTemplateArgs), |
| CurContext(SemaRef.CurContext), MemberFn(ME) { |
| WantTypeSpecifiers = false; |
| WantFunctionLikeCasts = SemaRef.getLangOpts().CPlusPlus && |
| !HasExplicitTemplateArgs && NumArgs == 1; |
| WantCXXNamedCasts = HasExplicitTemplateArgs && NumArgs == 1; |
| WantRemainingKeywords = false; |
| } |
| |
| bool FunctionCallFilterCCC::ValidateCandidate(const TypoCorrection &candidate) { |
| if (!candidate.getCorrectionDecl()) |
| return candidate.isKeyword(); |
| |
| for (auto *C : candidate) { |
| FunctionDecl *FD = nullptr; |
| NamedDecl *ND = C->getUnderlyingDecl(); |
| if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND)) |
| FD = FTD->getTemplatedDecl(); |
| if (!HasExplicitTemplateArgs && !FD) { |
| if (!(FD = dyn_cast<FunctionDecl>(ND)) && isa<ValueDecl>(ND)) { |
| // If the Decl is neither a function nor a template function, |
| // determine if it is a pointer or reference to a function. If so, |
| // check against the number of arguments expected for the pointee. |
| QualType ValType = cast<ValueDecl>(ND)->getType(); |
| if (ValType.isNull()) |
| continue; |
| if (ValType->isAnyPointerType() || ValType->isReferenceType()) |
| ValType = ValType->getPointeeType(); |
| if (const FunctionProtoType *FPT = ValType->getAs<FunctionProtoType>()) |
| if (FPT->getNumParams() == NumArgs) |
| return true; |
| } |
| } |
| |
| // A typo for a function-style cast can look like a function call in C++. |
| if ((HasExplicitTemplateArgs ? getAsTypeTemplateDecl(ND) != nullptr |
| : isa<TypeDecl>(ND)) && |
| CurContext->getParentASTContext().getLangOpts().CPlusPlus) |
| // Only a class or class template can take two or more arguments. |
| return NumArgs <= 1 || HasExplicitTemplateArgs || isa<CXXRecordDecl>(ND); |
| |
| // Skip the current candidate if it is not a FunctionDecl or does not accept |
| // the current number of arguments. |
| if (!FD || !(FD->getNumParams() >= NumArgs && |
| FD->getMinRequiredArguments() <= NumArgs)) |
| continue; |
| |
| // If the current candidate is a non-static C++ method, skip the candidate |
| // unless the method being corrected--or the current DeclContext, if the |
| // function being corrected is not a method--is a method in the same class |
| // or a descendent class of the candidate's parent class. |
| if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) { |
| if (MemberFn || !MD->isStatic()) { |
| const auto *CurMD = |
| MemberFn |
| ? dyn_cast_if_present<CXXMethodDecl>(MemberFn->getMemberDecl()) |
| : dyn_cast_if_present<CXXMethodDecl>(CurContext); |
| const CXXRecordDecl *CurRD = |
| CurMD ? CurMD->getParent()->getCanonicalDecl() : nullptr; |
| const CXXRecordDecl *RD = MD->getParent()->getCanonicalDecl(); |
| if (!CurRD || (CurRD != RD && !CurRD->isDerivedFrom(RD))) |
| continue; |
| } |
| } |
| return true; |
| } |
| return false; |
| } |
| |
| void Sema::diagnoseTypo(const TypoCorrection &Correction, |
| const PartialDiagnostic &TypoDiag, |
| bool ErrorRecovery) { |
| diagnoseTypo(Correction, TypoDiag, PDiag(diag::note_previous_decl), |
| ErrorRecovery); |
| } |
| |
| /// Find which declaration we should import to provide the definition of |
| /// the given declaration. |
| static const NamedDecl *getDefinitionToImport(const NamedDecl *D) { |
| if (const auto *VD = dyn_cast<VarDecl>(D)) |
| return VD->getDefinition(); |
| if (const auto *FD = dyn_cast<FunctionDecl>(D)) |
| return FD->getDefinition(); |
| if (const auto *TD = dyn_cast<TagDecl>(D)) |
| return TD->getDefinition(); |
| if (const auto *ID = dyn_cast<ObjCInterfaceDecl>(D)) |
| return ID->getDefinition(); |
| if (const auto *PD = dyn_cast<ObjCProtocolDecl>(D)) |
| return PD->getDefinition(); |
| if (const auto *TD = dyn_cast<TemplateDecl>(D)) |
| if (const NamedDecl *TTD = TD->getTemplatedDecl()) |
| return getDefinitionToImport(TTD); |
| return nullptr; |
| } |
| |
| void Sema::diagnoseMissingImport(SourceLocation Loc, const NamedDecl *Decl, |
| MissingImportKind MIK, bool Recover) { |
| // Suggest importing a module providing the definition of this entity, if |
| // possible. |
| const NamedDecl *Def = getDefinitionToImport(Decl); |
| if (!Def) |
| Def = Decl; |
| |
| Module *Owner = getOwningModule(Def); |
| assert(Owner && "definition of hidden declaration is not in a module"); |
| |
| llvm::SmallVector<Module*, 8> OwningModules; |
| OwningModules.push_back(Owner); |
| auto Merged = Context.getModulesWithMergedDefinition(Def); |
| OwningModules.insert(OwningModules.end(), Merged.begin(), Merged.end()); |
| |
| diagnoseMissingImport(Loc, Def, Def->getLocation(), OwningModules, MIK, |
| Recover); |
| } |
| |
| /// Get a "quoted.h" or <angled.h> include path to use in a diagnostic |
| /// suggesting the addition of a #include of the specified file. |
| static std::string getHeaderNameForHeader(Preprocessor &PP, FileEntryRef E, |
| llvm::StringRef IncludingFile) { |
| bool IsAngled = false; |
| auto Path = PP.getHeaderSearchInfo().suggestPathToFileForDiagnostics( |
| E, IncludingFile, &IsAngled); |
| return (IsAngled ? '<' : '"') + Path + (IsAngled ? '>' : '"'); |
| } |
| |
| void Sema::diagnoseMissingImport(SourceLocation UseLoc, const NamedDecl *Decl, |
| SourceLocation DeclLoc, |
| ArrayRef<Module *> Modules, |
| MissingImportKind MIK, bool Recover) { |
| assert(!Modules.empty()); |
| |
| // See https://github.com/llvm/llvm-project/issues/73893. It is generally |
| // confusing than helpful to show the namespace is not visible. |
| if (isa<NamespaceDecl>(Decl)) |
| return; |
| |
| auto NotePrevious = [&] { |
| // FIXME: Suppress the note backtrace even under |
| // -fdiagnostics-show-note-include-stack. We don't care how this |
| // declaration was previously reached. |
| Diag(DeclLoc, diag::note_unreachable_entity) << (int)MIK; |
| }; |
| |
| // Weed out duplicates from module list. |
| llvm::SmallVector<Module*, 8> UniqueModules; |
| llvm::SmallDenseSet<Module*, 8> UniqueModuleSet; |
| for (auto *M : Modules) { |
| if (M->isExplicitGlobalModule() || M->isPrivateModule()) |
| continue; |
| if (UniqueModuleSet.insert(M).second) |
| UniqueModules.push_back(M); |
| } |
| |
| // Try to find a suitable header-name to #include. |
| std::string HeaderName; |
| if (OptionalFileEntryRef Header = |
| PP.getHeaderToIncludeForDiagnostics(UseLoc, DeclLoc)) { |
| if (const FileEntry *FE = |
| SourceMgr.getFileEntryForID(SourceMgr.getFileID(UseLoc))) |
| HeaderName = |
| getHeaderNameForHeader(PP, *Header, FE->tryGetRealPathName()); |
| } |
| |
| // If we have a #include we should suggest, or if all definition locations |
| // were in global module fragments, don't suggest an import. |
| if (!HeaderName.empty() || UniqueModules.empty()) { |
| // FIXME: Find a smart place to suggest inserting a #include, and add |
| // a FixItHint there. |
| Diag(UseLoc, diag::err_module_unimported_use_header) |
| << (int)MIK << Decl << !HeaderName.empty() << HeaderName; |
| // Produce a note showing where the entity was declared. |
| NotePrevious(); |
| if (Recover) |
| createImplicitModuleImportForErrorRecovery(UseLoc, Modules[0]); |
| return; |
| } |
| |
| Modules = UniqueModules; |
| |
| auto GetModuleNameForDiagnostic = [this](const Module *M) -> std::string { |
| if (M->isModuleMapModule()) |
| return M->getFullModuleName(); |
| |
| if (M->isImplicitGlobalModule()) |
| M = M->getTopLevelModule(); |
| |
| // If the current module unit is in the same module with M, it is OK to show |
| // the partition name. Otherwise, it'll be sufficient to show the primary |
| // module name. |
| if (getASTContext().isInSameModule(M, getCurrentModule())) |
| return M->getTopLevelModuleName().str(); |
| else |
| return M->getPrimaryModuleInterfaceName().str(); |
| }; |
| |
| if (Modules.size() > 1) { |
| std::string ModuleList; |
| unsigned N = 0; |
| for (const auto *M : Modules) { |
| ModuleList += "\n "; |
| if (++N == 5 && N != Modules.size()) { |
| ModuleList += "[...]"; |
| break; |
| } |
| ModuleList += GetModuleNameForDiagnostic(M); |
| } |
| |
| Diag(UseLoc, diag::err_module_unimported_use_multiple) |
| << (int)MIK << Decl << ModuleList; |
| } else { |
| // FIXME: Add a FixItHint that imports the corresponding module. |
| Diag(UseLoc, diag::err_module_unimported_use) |
| << (int)MIK << Decl << GetModuleNameForDiagnostic(Modules[0]); |
| } |
| |
| NotePrevious(); |
| |
| // Try to recover by implicitly importing this module. |
| if (Recover) |
| createImplicitModuleImportForErrorRecovery(UseLoc, Modules[0]); |
| } |
| |
| void Sema::diagnoseTypo(const TypoCorrection &Correction, |
| const PartialDiagnostic &TypoDiag, |
| const PartialDiagnostic &PrevNote, |
| bool ErrorRecovery) { |
| std::string CorrectedStr = Correction.getAsString(getLangOpts()); |
| std::string CorrectedQuotedStr = Correction.getQuoted(getLangOpts()); |
| FixItHint FixTypo = FixItHint::CreateReplacement( |
| Correction.getCorrectionRange(), CorrectedStr); |
| |
| // Maybe we're just missing a module import. |
| if (Correction.requiresImport()) { |
| NamedDecl *Decl = Correction.getFoundDecl(); |
| assert(Decl && "import required but no declaration to import"); |
| |
| diagnoseMissingImport(Correction.getCorrectionRange().getBegin(), Decl, |
| MissingImportKind::Declaration, ErrorRecovery); |
| return; |
| } |
| |
| Diag(Correction.getCorrectionRange().getBegin(), TypoDiag) |
| << CorrectedQuotedStr << (ErrorRecovery ? FixTypo : FixItHint()); |
| |
| NamedDecl *ChosenDecl = |
| Correction.isKeyword() ? nullptr : Correction.getFoundDecl(); |
| |
| // For builtin functions which aren't declared anywhere in source, |
| // don't emit the "declared here" note. |
| if (const auto *FD = dyn_cast_if_present<FunctionDecl>(ChosenDecl); |
| FD && FD->getBuiltinID() && |
| PrevNote.getDiagID() == diag::note_previous_decl && |
| Correction.getCorrectionRange().getBegin() == FD->getBeginLoc()) { |
| ChosenDecl = nullptr; |
| } |
| |
| if (PrevNote.getDiagID() && ChosenDecl) |
| Diag(ChosenDecl->getLocation(), PrevNote) |
| << CorrectedQuotedStr << (ErrorRecovery ? FixItHint() : FixTypo); |
| |
| // Add any extra diagnostics. |
| for (const PartialDiagnostic &PD : Correction.getExtraDiagnostics()) |
| Diag(Correction.getCorrectionRange().getBegin(), PD); |
| } |
| |
| TypoExpr *Sema::createDelayedTypo(std::unique_ptr<TypoCorrectionConsumer> TCC, |
| TypoDiagnosticGenerator TDG, |
| TypoRecoveryCallback TRC, |
| SourceLocation TypoLoc) { |
| assert(TCC && "createDelayedTypo requires a valid TypoCorrectionConsumer"); |
| auto TE = new (Context) TypoExpr(Context.DependentTy, TypoLoc); |
| auto &State = DelayedTypos[TE]; |
| State.Consumer = std::move(TCC); |
| State.DiagHandler = std::move(TDG); |
| State.RecoveryHandler = std::move(TRC); |
| if (TE) |
| TypoExprs.push_back(TE); |
| return TE; |
| } |
| |
| const Sema::TypoExprState &Sema::getTypoExprState(TypoExpr *TE) const { |
| auto Entry = DelayedTypos.find(TE); |
| assert(Entry != DelayedTypos.end() && |
| "Failed to get the state for a TypoExpr!"); |
| return Entry->second; |
| } |
| |
| void Sema::clearDelayedTypo(TypoExpr *TE) { |
| DelayedTypos.erase(TE); |
| } |
| |
| void Sema::ActOnPragmaDump(Scope *S, SourceLocation IILoc, IdentifierInfo *II) { |
| DeclarationNameInfo Name(II, IILoc); |
| LookupResult R(*this, Name, LookupAnyName, |
| RedeclarationKind::NotForRedeclaration); |
| R.suppressDiagnostics(); |
| R.setHideTags(false); |
| LookupName(R, S); |
| R.dump(); |
| } |
| |
| void Sema::ActOnPragmaDump(Expr *E) { |
| E->dump(); |
| } |
| |
| RedeclarationKind Sema::forRedeclarationInCurContext() const { |
| // A declaration with an owning module for linkage can never link against |
| // anything that is not visible. We don't need to check linkage here; if |
| // the context has internal linkage, redeclaration lookup won't find things |
| // from other TUs, and we can't safely compute linkage yet in general. |
| if (cast<Decl>(CurContext)->getOwningModuleForLinkage()) |
| return RedeclarationKind::ForVisibleRedeclaration; |
| return RedeclarationKind::ForExternalRedeclaration; |
| } |