| //===--- SemaModule.cpp - Semantic Analysis for Modules -------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements semantic analysis for modules (C++ modules syntax, |
| // Objective-C modules syntax, and Clang header modules). |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "clang/AST/ASTConsumer.h" |
| #include "clang/AST/ASTMutationListener.h" |
| #include "clang/Lex/HeaderSearch.h" |
| #include "clang/Lex/Preprocessor.h" |
| #include "clang/Sema/SemaInternal.h" |
| #include "llvm/ADT/StringExtras.h" |
| |
| using namespace clang; |
| using namespace sema; |
| |
| static void checkModuleImportContext(Sema &S, Module *M, |
| SourceLocation ImportLoc, DeclContext *DC, |
| bool FromInclude = false) { |
| SourceLocation ExternCLoc; |
| |
| if (auto *LSD = dyn_cast<LinkageSpecDecl>(DC)) { |
| switch (LSD->getLanguage()) { |
| case LinkageSpecLanguageIDs::C: |
| if (ExternCLoc.isInvalid()) |
| ExternCLoc = LSD->getBeginLoc(); |
| break; |
| case LinkageSpecLanguageIDs::CXX: |
| break; |
| } |
| DC = LSD->getParent(); |
| } |
| |
| while (isa<LinkageSpecDecl>(DC) || isa<ExportDecl>(DC)) |
| DC = DC->getParent(); |
| |
| if (!isa<TranslationUnitDecl>(DC)) { |
| S.Diag(ImportLoc, (FromInclude && S.isModuleVisible(M)) |
| ? diag::ext_module_import_not_at_top_level_noop |
| : diag::err_module_import_not_at_top_level_fatal) |
| << M->getFullModuleName() << DC; |
| S.Diag(cast<Decl>(DC)->getBeginLoc(), |
| diag::note_module_import_not_at_top_level) |
| << DC; |
| } else if (!M->IsExternC && ExternCLoc.isValid()) { |
| S.Diag(ImportLoc, diag::ext_module_import_in_extern_c) |
| << M->getFullModuleName(); |
| S.Diag(ExternCLoc, diag::note_extern_c_begins_here); |
| } |
| } |
| |
| // We represent the primary and partition names as 'Paths' which are sections |
| // of the hierarchical access path for a clang module. However for C++20 |
| // the periods in a name are just another character, and we will need to |
| // flatten them into a string. |
| static std::string stringFromPath(ModuleIdPath Path) { |
| std::string Name; |
| if (Path.empty()) |
| return Name; |
| |
| for (auto &Piece : Path) { |
| if (!Name.empty()) |
| Name += "."; |
| Name += Piece.first->getName(); |
| } |
| return Name; |
| } |
| |
| /// Helper function for makeTransitiveImportsVisible to decide whether |
| /// the \param Imported module unit is in the same module with the \param |
| /// CurrentModule. |
| /// \param FoundPrimaryModuleInterface is a helper parameter to record the |
| /// primary module interface unit corresponding to the module \param |
| /// CurrentModule. Since currently it is expensive to decide whether two module |
| /// units come from the same module by comparing the module name. |
| static bool |
| isImportingModuleUnitFromSameModule(ASTContext &Ctx, Module *Imported, |
| Module *CurrentModule, |
| Module *&FoundPrimaryModuleInterface) { |
| if (!Imported->isNamedModule()) |
| return false; |
| |
| // The a partition unit we're importing must be in the same module of the |
| // current module. |
| if (Imported->isModulePartition()) |
| return true; |
| |
| // If we found the primary module interface during the search process, we can |
| // return quickly to avoid expensive string comparison. |
| if (FoundPrimaryModuleInterface) |
| return Imported == FoundPrimaryModuleInterface; |
| |
| if (!CurrentModule) |
| return false; |
| |
| // Then the imported module must be a primary module interface unit. It |
| // is only allowed to import the primary module interface unit from the same |
| // module in the implementation unit and the implementation partition unit. |
| |
| // Since we'll handle implementation unit above. We can only care |
| // about the implementation partition unit here. |
| if (!CurrentModule->isModulePartitionImplementation()) |
| return false; |
| |
| if (Ctx.isInSameModule(Imported, CurrentModule)) { |
| assert(!FoundPrimaryModuleInterface || |
| FoundPrimaryModuleInterface == Imported); |
| FoundPrimaryModuleInterface = Imported; |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /// [module.import]p7: |
| /// Additionally, when a module-import-declaration in a module unit of some |
| /// module M imports another module unit U of M, it also imports all |
| /// translation units imported by non-exported module-import-declarations in |
| /// the module unit purview of U. These rules can in turn lead to the |
| /// importation of yet more translation units. |
| static void |
| makeTransitiveImportsVisible(ASTContext &Ctx, VisibleModuleSet &VisibleModules, |
| Module *Imported, Module *CurrentModule, |
| SourceLocation ImportLoc, |
| bool IsImportingPrimaryModuleInterface = false) { |
| assert(Imported->isNamedModule() && |
| "'makeTransitiveImportsVisible()' is intended for standard C++ named " |
| "modules only."); |
| |
| llvm::SmallVector<Module *, 4> Worklist; |
| Worklist.push_back(Imported); |
| |
| Module *FoundPrimaryModuleInterface = |
| IsImportingPrimaryModuleInterface ? Imported : nullptr; |
| |
| while (!Worklist.empty()) { |
| Module *Importing = Worklist.pop_back_val(); |
| |
| if (VisibleModules.isVisible(Importing)) |
| continue; |
| |
| // FIXME: The ImportLoc here is not meaningful. It may be problematic if we |
| // use the sourcelocation loaded from the visible modules. |
| VisibleModules.setVisible(Importing, ImportLoc); |
| |
| if (isImportingModuleUnitFromSameModule(Ctx, Importing, CurrentModule, |
| FoundPrimaryModuleInterface)) |
| for (Module *TransImported : Importing->Imports) |
| if (!VisibleModules.isVisible(TransImported)) |
| Worklist.push_back(TransImported); |
| } |
| } |
| |
| Sema::DeclGroupPtrTy |
| Sema::ActOnGlobalModuleFragmentDecl(SourceLocation ModuleLoc) { |
| // We start in the global module; |
| Module *GlobalModule = |
| PushGlobalModuleFragment(ModuleLoc); |
| |
| // All declarations created from now on are owned by the global module. |
| auto *TU = Context.getTranslationUnitDecl(); |
| // [module.global.frag]p2 |
| // A global-module-fragment specifies the contents of the global module |
| // fragment for a module unit. The global module fragment can be used to |
| // provide declarations that are attached to the global module and usable |
| // within the module unit. |
| // |
| // So the declations in the global module shouldn't be visible by default. |
| TU->setModuleOwnershipKind(Decl::ModuleOwnershipKind::ReachableWhenImported); |
| TU->setLocalOwningModule(GlobalModule); |
| |
| // FIXME: Consider creating an explicit representation of this declaration. |
| return nullptr; |
| } |
| |
| void Sema::HandleStartOfHeaderUnit() { |
| assert(getLangOpts().CPlusPlusModules && |
| "Header units are only valid for C++20 modules"); |
| SourceLocation StartOfTU = |
| SourceMgr.getLocForStartOfFile(SourceMgr.getMainFileID()); |
| |
| StringRef HUName = getLangOpts().CurrentModule; |
| if (HUName.empty()) { |
| HUName = |
| SourceMgr.getFileEntryRefForID(SourceMgr.getMainFileID())->getName(); |
| const_cast<LangOptions &>(getLangOpts()).CurrentModule = HUName.str(); |
| } |
| |
| // TODO: Make the C++20 header lookup independent. |
| // When the input is pre-processed source, we need a file ref to the original |
| // file for the header map. |
| auto F = SourceMgr.getFileManager().getOptionalFileRef(HUName); |
| // For the sake of error recovery (if someone has moved the original header |
| // after creating the pre-processed output) fall back to obtaining the file |
| // ref for the input file, which must be present. |
| if (!F) |
| F = SourceMgr.getFileEntryRefForID(SourceMgr.getMainFileID()); |
| assert(F && "failed to find the header unit source?"); |
| Module::Header H{HUName.str(), HUName.str(), *F}; |
| auto &Map = PP.getHeaderSearchInfo().getModuleMap(); |
| Module *Mod = Map.createHeaderUnit(StartOfTU, HUName, H); |
| assert(Mod && "module creation should not fail"); |
| ModuleScopes.push_back({}); // No GMF |
| ModuleScopes.back().BeginLoc = StartOfTU; |
| ModuleScopes.back().Module = Mod; |
| VisibleModules.setVisible(Mod, StartOfTU); |
| |
| // From now on, we have an owning module for all declarations we see. |
| // All of these are implicitly exported. |
| auto *TU = Context.getTranslationUnitDecl(); |
| TU->setModuleOwnershipKind(Decl::ModuleOwnershipKind::Visible); |
| TU->setLocalOwningModule(Mod); |
| } |
| |
| /// Tests whether the given identifier is reserved as a module name and |
| /// diagnoses if it is. Returns true if a diagnostic is emitted and false |
| /// otherwise. |
| static bool DiagReservedModuleName(Sema &S, const IdentifierInfo *II, |
| SourceLocation Loc) { |
| enum { |
| Valid = -1, |
| Invalid = 0, |
| Reserved = 1, |
| } Reason = Valid; |
| |
| if (II->isStr("module") || II->isStr("import")) |
| Reason = Invalid; |
| else if (II->isReserved(S.getLangOpts()) != |
| ReservedIdentifierStatus::NotReserved) |
| Reason = Reserved; |
| |
| // If the identifier is reserved (not invalid) but is in a system header, |
| // we do not diagnose (because we expect system headers to use reserved |
| // identifiers). |
| if (Reason == Reserved && S.getSourceManager().isInSystemHeader(Loc)) |
| Reason = Valid; |
| |
| switch (Reason) { |
| case Valid: |
| return false; |
| case Invalid: |
| return S.Diag(Loc, diag::err_invalid_module_name) << II; |
| case Reserved: |
| S.Diag(Loc, diag::warn_reserved_module_name) << II; |
| return false; |
| } |
| llvm_unreachable("fell off a fully covered switch"); |
| } |
| |
| Sema::DeclGroupPtrTy |
| Sema::ActOnModuleDecl(SourceLocation StartLoc, SourceLocation ModuleLoc, |
| ModuleDeclKind MDK, ModuleIdPath Path, |
| ModuleIdPath Partition, ModuleImportState &ImportState) { |
| assert(getLangOpts().CPlusPlusModules && |
| "should only have module decl in standard C++ modules"); |
| |
| bool IsFirstDecl = ImportState == ModuleImportState::FirstDecl; |
| bool SeenGMF = ImportState == ModuleImportState::GlobalFragment; |
| // If any of the steps here fail, we count that as invalidating C++20 |
| // module state; |
| ImportState = ModuleImportState::NotACXX20Module; |
| |
| bool IsPartition = !Partition.empty(); |
| if (IsPartition) |
| switch (MDK) { |
| case ModuleDeclKind::Implementation: |
| MDK = ModuleDeclKind::PartitionImplementation; |
| break; |
| case ModuleDeclKind::Interface: |
| MDK = ModuleDeclKind::PartitionInterface; |
| break; |
| default: |
| llvm_unreachable("how did we get a partition type set?"); |
| } |
| |
| // A (non-partition) module implementation unit requires that we are not |
| // compiling a module of any kind. A partition implementation emits an |
| // interface (and the AST for the implementation), which will subsequently |
| // be consumed to emit a binary. |
| // A module interface unit requires that we are not compiling a module map. |
| switch (getLangOpts().getCompilingModule()) { |
| case LangOptions::CMK_None: |
| // It's OK to compile a module interface as a normal translation unit. |
| break; |
| |
| case LangOptions::CMK_ModuleInterface: |
| if (MDK != ModuleDeclKind::Implementation) |
| break; |
| |
| // We were asked to compile a module interface unit but this is a module |
| // implementation unit. |
| Diag(ModuleLoc, diag::err_module_interface_implementation_mismatch) |
| << FixItHint::CreateInsertion(ModuleLoc, "export "); |
| MDK = ModuleDeclKind::Interface; |
| break; |
| |
| case LangOptions::CMK_ModuleMap: |
| Diag(ModuleLoc, diag::err_module_decl_in_module_map_module); |
| return nullptr; |
| |
| case LangOptions::CMK_HeaderUnit: |
| Diag(ModuleLoc, diag::err_module_decl_in_header_unit); |
| return nullptr; |
| } |
| |
| assert(ModuleScopes.size() <= 1 && "expected to be at global module scope"); |
| |
| // FIXME: Most of this work should be done by the preprocessor rather than |
| // here, in order to support macro import. |
| |
| // Only one module-declaration is permitted per source file. |
| if (isCurrentModulePurview()) { |
| Diag(ModuleLoc, diag::err_module_redeclaration); |
| Diag(VisibleModules.getImportLoc(ModuleScopes.back().Module), |
| diag::note_prev_module_declaration); |
| return nullptr; |
| } |
| |
| assert((!getLangOpts().CPlusPlusModules || |
| SeenGMF == (bool)this->TheGlobalModuleFragment) && |
| "mismatched global module state"); |
| |
| // In C++20, the module-declaration must be the first declaration if there |
| // is no global module fragment. |
| if (getLangOpts().CPlusPlusModules && !IsFirstDecl && !SeenGMF) { |
| Diag(ModuleLoc, diag::err_module_decl_not_at_start); |
| SourceLocation BeginLoc = |
| ModuleScopes.empty() |
| ? SourceMgr.getLocForStartOfFile(SourceMgr.getMainFileID()) |
| : ModuleScopes.back().BeginLoc; |
| if (BeginLoc.isValid()) { |
| Diag(BeginLoc, diag::note_global_module_introducer_missing) |
| << FixItHint::CreateInsertion(BeginLoc, "module;\n"); |
| } |
| } |
| |
| // C++23 [module.unit]p1: ... The identifiers module and import shall not |
| // appear as identifiers in a module-name or module-partition. All |
| // module-names either beginning with an identifier consisting of std |
| // followed by zero or more digits or containing a reserved identifier |
| // ([lex.name]) are reserved and shall not be specified in a |
| // module-declaration; no diagnostic is required. |
| |
| // Test the first part of the path to see if it's std[0-9]+ but allow the |
| // name in a system header. |
| StringRef FirstComponentName = Path[0].first->getName(); |
| if (!getSourceManager().isInSystemHeader(Path[0].second) && |
| (FirstComponentName == "std" || |
| (FirstComponentName.starts_with("std") && |
| llvm::all_of(FirstComponentName.drop_front(3), &llvm::isDigit)))) |
| Diag(Path[0].second, diag::warn_reserved_module_name) << Path[0].first; |
| |
| // Then test all of the components in the path to see if any of them are |
| // using another kind of reserved or invalid identifier. |
| for (auto Part : Path) { |
| if (DiagReservedModuleName(*this, Part.first, Part.second)) |
| return nullptr; |
| } |
| |
| // Flatten the dots in a module name. Unlike Clang's hierarchical module map |
| // modules, the dots here are just another character that can appear in a |
| // module name. |
| std::string ModuleName = stringFromPath(Path); |
| if (IsPartition) { |
| ModuleName += ":"; |
| ModuleName += stringFromPath(Partition); |
| } |
| // If a module name was explicitly specified on the command line, it must be |
| // correct. |
| if (!getLangOpts().CurrentModule.empty() && |
| getLangOpts().CurrentModule != ModuleName) { |
| Diag(Path.front().second, diag::err_current_module_name_mismatch) |
| << SourceRange(Path.front().second, IsPartition |
| ? Partition.back().second |
| : Path.back().second) |
| << getLangOpts().CurrentModule; |
| return nullptr; |
| } |
| const_cast<LangOptions&>(getLangOpts()).CurrentModule = ModuleName; |
| |
| auto &Map = PP.getHeaderSearchInfo().getModuleMap(); |
| Module *Mod; // The module we are creating. |
| Module *Interface = nullptr; // The interface for an implementation. |
| switch (MDK) { |
| case ModuleDeclKind::Interface: |
| case ModuleDeclKind::PartitionInterface: { |
| // We can't have parsed or imported a definition of this module or parsed a |
| // module map defining it already. |
| if (auto *M = Map.findModule(ModuleName)) { |
| Diag(Path[0].second, diag::err_module_redefinition) << ModuleName; |
| if (M->DefinitionLoc.isValid()) |
| Diag(M->DefinitionLoc, diag::note_prev_module_definition); |
| else if (OptionalFileEntryRef FE = M->getASTFile()) |
| Diag(M->DefinitionLoc, diag::note_prev_module_definition_from_ast_file) |
| << FE->getName(); |
| Mod = M; |
| break; |
| } |
| |
| // Create a Module for the module that we're defining. |
| Mod = Map.createModuleForInterfaceUnit(ModuleLoc, ModuleName); |
| if (MDK == ModuleDeclKind::PartitionInterface) |
| Mod->Kind = Module::ModulePartitionInterface; |
| assert(Mod && "module creation should not fail"); |
| break; |
| } |
| |
| case ModuleDeclKind::Implementation: { |
| // C++20 A module-declaration that contains neither an export- |
| // keyword nor a module-partition implicitly imports the primary |
| // module interface unit of the module as if by a module-import- |
| // declaration. |
| std::pair<IdentifierInfo *, SourceLocation> ModuleNameLoc( |
| PP.getIdentifierInfo(ModuleName), Path[0].second); |
| |
| // The module loader will assume we're trying to import the module that |
| // we're building if `LangOpts.CurrentModule` equals to 'ModuleName'. |
| // Change the value for `LangOpts.CurrentModule` temporarily to make the |
| // module loader work properly. |
| const_cast<LangOptions &>(getLangOpts()).CurrentModule = ""; |
| Interface = getModuleLoader().loadModule(ModuleLoc, {ModuleNameLoc}, |
| Module::AllVisible, |
| /*IsInclusionDirective=*/false); |
| const_cast<LangOptions&>(getLangOpts()).CurrentModule = ModuleName; |
| |
| if (!Interface) { |
| Diag(ModuleLoc, diag::err_module_not_defined) << ModuleName; |
| // Create an empty module interface unit for error recovery. |
| Mod = Map.createModuleForInterfaceUnit(ModuleLoc, ModuleName); |
| } else { |
| Mod = Map.createModuleForImplementationUnit(ModuleLoc, ModuleName); |
| } |
| } break; |
| |
| case ModuleDeclKind::PartitionImplementation: |
| // Create an interface, but note that it is an implementation |
| // unit. |
| Mod = Map.createModuleForInterfaceUnit(ModuleLoc, ModuleName); |
| Mod->Kind = Module::ModulePartitionImplementation; |
| break; |
| } |
| |
| if (!this->TheGlobalModuleFragment) { |
| ModuleScopes.push_back({}); |
| if (getLangOpts().ModulesLocalVisibility) |
| ModuleScopes.back().OuterVisibleModules = std::move(VisibleModules); |
| } else { |
| // We're done with the global module fragment now. |
| ActOnEndOfTranslationUnitFragment(TUFragmentKind::Global); |
| } |
| |
| // Switch from the global module fragment (if any) to the named module. |
| ModuleScopes.back().BeginLoc = StartLoc; |
| ModuleScopes.back().Module = Mod; |
| VisibleModules.setVisible(Mod, ModuleLoc); |
| |
| // From now on, we have an owning module for all declarations we see. |
| // In C++20 modules, those declaration would be reachable when imported |
| // unless explicitily exported. |
| // Otherwise, those declarations are module-private unless explicitly |
| // exported. |
| auto *TU = Context.getTranslationUnitDecl(); |
| TU->setModuleOwnershipKind(Decl::ModuleOwnershipKind::ReachableWhenImported); |
| TU->setLocalOwningModule(Mod); |
| |
| // We are in the module purview, but before any other (non import) |
| // statements, so imports are allowed. |
| ImportState = ModuleImportState::ImportAllowed; |
| |
| getASTContext().setCurrentNamedModule(Mod); |
| |
| if (auto *Listener = getASTMutationListener()) |
| Listener->EnteringModulePurview(); |
| |
| // We already potentially made an implicit import (in the case of a module |
| // implementation unit importing its interface). Make this module visible |
| // and return the import decl to be added to the current TU. |
| if (Interface) { |
| |
| makeTransitiveImportsVisible(getASTContext(), VisibleModules, Interface, |
| Mod, ModuleLoc, |
| /*IsImportingPrimaryModuleInterface=*/true); |
| |
| // Make the import decl for the interface in the impl module. |
| ImportDecl *Import = ImportDecl::Create(Context, CurContext, ModuleLoc, |
| Interface, Path[0].second); |
| CurContext->addDecl(Import); |
| |
| // Sequence initialization of the imported module before that of the current |
| // module, if any. |
| Context.addModuleInitializer(ModuleScopes.back().Module, Import); |
| Mod->Imports.insert(Interface); // As if we imported it. |
| // Also save this as a shortcut to checking for decls in the interface |
| ThePrimaryInterface = Interface; |
| // If we made an implicit import of the module interface, then return the |
| // imported module decl. |
| return ConvertDeclToDeclGroup(Import); |
| } |
| |
| return nullptr; |
| } |
| |
| Sema::DeclGroupPtrTy |
| Sema::ActOnPrivateModuleFragmentDecl(SourceLocation ModuleLoc, |
| SourceLocation PrivateLoc) { |
| // C++20 [basic.link]/2: |
| // A private-module-fragment shall appear only in a primary module |
| // interface unit. |
| switch (ModuleScopes.empty() ? Module::ExplicitGlobalModuleFragment |
| : ModuleScopes.back().Module->Kind) { |
| case Module::ModuleMapModule: |
| case Module::ExplicitGlobalModuleFragment: |
| case Module::ImplicitGlobalModuleFragment: |
| case Module::ModulePartitionImplementation: |
| case Module::ModulePartitionInterface: |
| case Module::ModuleHeaderUnit: |
| Diag(PrivateLoc, diag::err_private_module_fragment_not_module); |
| return nullptr; |
| |
| case Module::PrivateModuleFragment: |
| Diag(PrivateLoc, diag::err_private_module_fragment_redefined); |
| Diag(ModuleScopes.back().BeginLoc, diag::note_previous_definition); |
| return nullptr; |
| |
| case Module::ModuleImplementationUnit: |
| Diag(PrivateLoc, diag::err_private_module_fragment_not_module_interface); |
| Diag(ModuleScopes.back().BeginLoc, |
| diag::note_not_module_interface_add_export) |
| << FixItHint::CreateInsertion(ModuleScopes.back().BeginLoc, "export "); |
| return nullptr; |
| |
| case Module::ModuleInterfaceUnit: |
| break; |
| } |
| |
| // FIXME: Check that this translation unit does not import any partitions; |
| // such imports would violate [basic.link]/2's "shall be the only module unit" |
| // restriction. |
| |
| // We've finished the public fragment of the translation unit. |
| ActOnEndOfTranslationUnitFragment(TUFragmentKind::Normal); |
| |
| auto &Map = PP.getHeaderSearchInfo().getModuleMap(); |
| Module *PrivateModuleFragment = |
| Map.createPrivateModuleFragmentForInterfaceUnit( |
| ModuleScopes.back().Module, PrivateLoc); |
| assert(PrivateModuleFragment && "module creation should not fail"); |
| |
| // Enter the scope of the private module fragment. |
| ModuleScopes.push_back({}); |
| ModuleScopes.back().BeginLoc = ModuleLoc; |
| ModuleScopes.back().Module = PrivateModuleFragment; |
| VisibleModules.setVisible(PrivateModuleFragment, ModuleLoc); |
| |
| // All declarations created from now on are scoped to the private module |
| // fragment (and are neither visible nor reachable in importers of the module |
| // interface). |
| auto *TU = Context.getTranslationUnitDecl(); |
| TU->setModuleOwnershipKind(Decl::ModuleOwnershipKind::ModulePrivate); |
| TU->setLocalOwningModule(PrivateModuleFragment); |
| |
| // FIXME: Consider creating an explicit representation of this declaration. |
| return nullptr; |
| } |
| |
| DeclResult Sema::ActOnModuleImport(SourceLocation StartLoc, |
| SourceLocation ExportLoc, |
| SourceLocation ImportLoc, ModuleIdPath Path, |
| bool IsPartition) { |
| assert((!IsPartition || getLangOpts().CPlusPlusModules) && |
| "partition seen in non-C++20 code?"); |
| |
| // For a C++20 module name, flatten into a single identifier with the source |
| // location of the first component. |
| std::pair<IdentifierInfo *, SourceLocation> ModuleNameLoc; |
| |
| std::string ModuleName; |
| if (IsPartition) { |
| // We already checked that we are in a module purview in the parser. |
| assert(!ModuleScopes.empty() && "in a module purview, but no module?"); |
| Module *NamedMod = ModuleScopes.back().Module; |
| // If we are importing into a partition, find the owning named module, |
| // otherwise, the name of the importing named module. |
| ModuleName = NamedMod->getPrimaryModuleInterfaceName().str(); |
| ModuleName += ":"; |
| ModuleName += stringFromPath(Path); |
| ModuleNameLoc = {PP.getIdentifierInfo(ModuleName), Path[0].second}; |
| Path = ModuleIdPath(ModuleNameLoc); |
| } else if (getLangOpts().CPlusPlusModules) { |
| ModuleName = stringFromPath(Path); |
| ModuleNameLoc = {PP.getIdentifierInfo(ModuleName), Path[0].second}; |
| Path = ModuleIdPath(ModuleNameLoc); |
| } |
| |
| // Diagnose self-import before attempting a load. |
| // [module.import]/9 |
| // A module implementation unit of a module M that is not a module partition |
| // shall not contain a module-import-declaration nominating M. |
| // (for an implementation, the module interface is imported implicitly, |
| // but that's handled in the module decl code). |
| |
| if (getLangOpts().CPlusPlusModules && isCurrentModulePurview() && |
| getCurrentModule()->Name == ModuleName) { |
| Diag(ImportLoc, diag::err_module_self_import_cxx20) |
| << ModuleName << currentModuleIsImplementation(); |
| return true; |
| } |
| |
| Module *Mod = getModuleLoader().loadModule( |
| ImportLoc, Path, Module::AllVisible, /*IsInclusionDirective=*/false); |
| if (!Mod) |
| return true; |
| |
| if (!Mod->isInterfaceOrPartition() && !ModuleName.empty() && |
| !getLangOpts().ObjC) { |
| Diag(ImportLoc, diag::err_module_import_non_interface_nor_parition) |
| << ModuleName; |
| return true; |
| } |
| |
| return ActOnModuleImport(StartLoc, ExportLoc, ImportLoc, Mod, Path); |
| } |
| |
| /// Determine whether \p D is lexically within an export-declaration. |
| static const ExportDecl *getEnclosingExportDecl(const Decl *D) { |
| for (auto *DC = D->getLexicalDeclContext(); DC; DC = DC->getLexicalParent()) |
| if (auto *ED = dyn_cast<ExportDecl>(DC)) |
| return ED; |
| return nullptr; |
| } |
| |
| DeclResult Sema::ActOnModuleImport(SourceLocation StartLoc, |
| SourceLocation ExportLoc, |
| SourceLocation ImportLoc, Module *Mod, |
| ModuleIdPath Path) { |
| if (Mod->isHeaderUnit()) |
| Diag(ImportLoc, diag::warn_experimental_header_unit); |
| |
| if (Mod->isNamedModule()) |
| makeTransitiveImportsVisible(getASTContext(), VisibleModules, Mod, |
| getCurrentModule(), ImportLoc); |
| else |
| VisibleModules.setVisible(Mod, ImportLoc); |
| |
| assert((!Mod->isModulePartitionImplementation() || getCurrentModule()) && |
| "We can only import a partition unit in a named module."); |
| if (Mod->isModulePartitionImplementation() && |
| getCurrentModule()->isModuleInterfaceUnit()) |
| Diag(ImportLoc, |
| diag::warn_import_implementation_partition_unit_in_interface_unit) |
| << Mod->Name; |
| |
| checkModuleImportContext(*this, Mod, ImportLoc, CurContext); |
| |
| // FIXME: we should support importing a submodule within a different submodule |
| // of the same top-level module. Until we do, make it an error rather than |
| // silently ignoring the import. |
| // FIXME: Should we warn on a redundant import of the current module? |
| if (Mod->isForBuilding(getLangOpts())) { |
| Diag(ImportLoc, getLangOpts().isCompilingModule() |
| ? diag::err_module_self_import |
| : diag::err_module_import_in_implementation) |
| << Mod->getFullModuleName() << getLangOpts().CurrentModule; |
| } |
| |
| SmallVector<SourceLocation, 2> IdentifierLocs; |
| |
| if (Path.empty()) { |
| // If this was a header import, pad out with dummy locations. |
| // FIXME: Pass in and use the location of the header-name token in this |
| // case. |
| for (Module *ModCheck = Mod; ModCheck; ModCheck = ModCheck->Parent) |
| IdentifierLocs.push_back(SourceLocation()); |
| } else if (getLangOpts().CPlusPlusModules && !Mod->Parent) { |
| // A single identifier for the whole name. |
| IdentifierLocs.push_back(Path[0].second); |
| } else { |
| Module *ModCheck = Mod; |
| for (unsigned I = 0, N = Path.size(); I != N; ++I) { |
| // If we've run out of module parents, just drop the remaining |
| // identifiers. We need the length to be consistent. |
| if (!ModCheck) |
| break; |
| ModCheck = ModCheck->Parent; |
| |
| IdentifierLocs.push_back(Path[I].second); |
| } |
| } |
| |
| ImportDecl *Import = ImportDecl::Create(Context, CurContext, StartLoc, |
| Mod, IdentifierLocs); |
| CurContext->addDecl(Import); |
| |
| // Sequence initialization of the imported module before that of the current |
| // module, if any. |
| if (!ModuleScopes.empty()) |
| Context.addModuleInitializer(ModuleScopes.back().Module, Import); |
| |
| // A module (partition) implementation unit shall not be exported. |
| if (getLangOpts().CPlusPlusModules && ExportLoc.isValid() && |
| Mod->Kind == Module::ModuleKind::ModulePartitionImplementation) { |
| Diag(ExportLoc, diag::err_export_partition_impl) |
| << SourceRange(ExportLoc, Path.back().second); |
| } else if (!ModuleScopes.empty() && !currentModuleIsImplementation()) { |
| // Re-export the module if the imported module is exported. |
| // Note that we don't need to add re-exported module to Imports field |
| // since `Exports` implies the module is imported already. |
| if (ExportLoc.isValid() || getEnclosingExportDecl(Import)) |
| getCurrentModule()->Exports.emplace_back(Mod, false); |
| else |
| getCurrentModule()->Imports.insert(Mod); |
| } else if (ExportLoc.isValid()) { |
| // [module.interface]p1: |
| // An export-declaration shall inhabit a namespace scope and appear in the |
| // purview of a module interface unit. |
| Diag(ExportLoc, diag::err_export_not_in_module_interface); |
| } |
| |
| return Import; |
| } |
| |
| void Sema::ActOnAnnotModuleInclude(SourceLocation DirectiveLoc, Module *Mod) { |
| checkModuleImportContext(*this, Mod, DirectiveLoc, CurContext, true); |
| BuildModuleInclude(DirectiveLoc, Mod); |
| } |
| |
| void Sema::BuildModuleInclude(SourceLocation DirectiveLoc, Module *Mod) { |
| // Determine whether we're in the #include buffer for a module. The #includes |
| // in that buffer do not qualify as module imports; they're just an |
| // implementation detail of us building the module. |
| // |
| // FIXME: Should we even get ActOnAnnotModuleInclude calls for those? |
| bool IsInModuleIncludes = |
| TUKind == TU_ClangModule && |
| getSourceManager().isWrittenInMainFile(DirectiveLoc); |
| |
| // If we are really importing a module (not just checking layering) due to an |
| // #include in the main file, synthesize an ImportDecl. |
| if (getLangOpts().Modules && !IsInModuleIncludes) { |
| TranslationUnitDecl *TU = getASTContext().getTranslationUnitDecl(); |
| ImportDecl *ImportD = ImportDecl::CreateImplicit(getASTContext(), TU, |
| DirectiveLoc, Mod, |
| DirectiveLoc); |
| if (!ModuleScopes.empty()) |
| Context.addModuleInitializer(ModuleScopes.back().Module, ImportD); |
| TU->addDecl(ImportD); |
| Consumer.HandleImplicitImportDecl(ImportD); |
| } |
| |
| getModuleLoader().makeModuleVisible(Mod, Module::AllVisible, DirectiveLoc); |
| VisibleModules.setVisible(Mod, DirectiveLoc); |
| |
| if (getLangOpts().isCompilingModule()) { |
| Module *ThisModule = PP.getHeaderSearchInfo().lookupModule( |
| getLangOpts().CurrentModule, DirectiveLoc, false, false); |
| (void)ThisModule; |
| assert(ThisModule && "was expecting a module if building one"); |
| } |
| } |
| |
| void Sema::ActOnAnnotModuleBegin(SourceLocation DirectiveLoc, Module *Mod) { |
| checkModuleImportContext(*this, Mod, DirectiveLoc, CurContext, true); |
| |
| ModuleScopes.push_back({}); |
| ModuleScopes.back().Module = Mod; |
| if (getLangOpts().ModulesLocalVisibility) |
| ModuleScopes.back().OuterVisibleModules = std::move(VisibleModules); |
| |
| VisibleModules.setVisible(Mod, DirectiveLoc); |
| |
| // The enclosing context is now part of this module. |
| // FIXME: Consider creating a child DeclContext to hold the entities |
| // lexically within the module. |
| if (getLangOpts().trackLocalOwningModule()) { |
| for (auto *DC = CurContext; DC; DC = DC->getLexicalParent()) { |
| cast<Decl>(DC)->setModuleOwnershipKind( |
| getLangOpts().ModulesLocalVisibility |
| ? Decl::ModuleOwnershipKind::VisibleWhenImported |
| : Decl::ModuleOwnershipKind::Visible); |
| cast<Decl>(DC)->setLocalOwningModule(Mod); |
| } |
| } |
| } |
| |
| void Sema::ActOnAnnotModuleEnd(SourceLocation EomLoc, Module *Mod) { |
| if (getLangOpts().ModulesLocalVisibility) { |
| VisibleModules = std::move(ModuleScopes.back().OuterVisibleModules); |
| // Leaving a module hides namespace names, so our visible namespace cache |
| // is now out of date. |
| VisibleNamespaceCache.clear(); |
| } |
| |
| assert(!ModuleScopes.empty() && ModuleScopes.back().Module == Mod && |
| "left the wrong module scope"); |
| ModuleScopes.pop_back(); |
| |
| // We got to the end of processing a local module. Create an |
| // ImportDecl as we would for an imported module. |
| FileID File = getSourceManager().getFileID(EomLoc); |
| SourceLocation DirectiveLoc; |
| if (EomLoc == getSourceManager().getLocForEndOfFile(File)) { |
| // We reached the end of a #included module header. Use the #include loc. |
| assert(File != getSourceManager().getMainFileID() && |
| "end of submodule in main source file"); |
| DirectiveLoc = getSourceManager().getIncludeLoc(File); |
| } else { |
| // We reached an EOM pragma. Use the pragma location. |
| DirectiveLoc = EomLoc; |
| } |
| BuildModuleInclude(DirectiveLoc, Mod); |
| |
| // Any further declarations are in whatever module we returned to. |
| if (getLangOpts().trackLocalOwningModule()) { |
| // The parser guarantees that this is the same context that we entered |
| // the module within. |
| for (auto *DC = CurContext; DC; DC = DC->getLexicalParent()) { |
| cast<Decl>(DC)->setLocalOwningModule(getCurrentModule()); |
| if (!getCurrentModule()) |
| cast<Decl>(DC)->setModuleOwnershipKind( |
| Decl::ModuleOwnershipKind::Unowned); |
| } |
| } |
| } |
| |
| void Sema::createImplicitModuleImportForErrorRecovery(SourceLocation Loc, |
| Module *Mod) { |
| // Bail if we're not allowed to implicitly import a module here. |
| if (isSFINAEContext() || !getLangOpts().ModulesErrorRecovery || |
| VisibleModules.isVisible(Mod)) |
| return; |
| |
| // Create the implicit import declaration. |
| TranslationUnitDecl *TU = getASTContext().getTranslationUnitDecl(); |
| ImportDecl *ImportD = ImportDecl::CreateImplicit(getASTContext(), TU, |
| Loc, Mod, Loc); |
| TU->addDecl(ImportD); |
| Consumer.HandleImplicitImportDecl(ImportD); |
| |
| // Make the module visible. |
| getModuleLoader().makeModuleVisible(Mod, Module::AllVisible, Loc); |
| VisibleModules.setVisible(Mod, Loc); |
| } |
| |
| Decl *Sema::ActOnStartExportDecl(Scope *S, SourceLocation ExportLoc, |
| SourceLocation LBraceLoc) { |
| ExportDecl *D = ExportDecl::Create(Context, CurContext, ExportLoc); |
| |
| // Set this temporarily so we know the export-declaration was braced. |
| D->setRBraceLoc(LBraceLoc); |
| |
| CurContext->addDecl(D); |
| PushDeclContext(S, D); |
| |
| // C++2a [module.interface]p1: |
| // An export-declaration shall appear only [...] in the purview of a module |
| // interface unit. An export-declaration shall not appear directly or |
| // indirectly within [...] a private-module-fragment. |
| if (!getLangOpts().HLSL) { |
| if (!isCurrentModulePurview()) { |
| Diag(ExportLoc, diag::err_export_not_in_module_interface) << 0; |
| D->setInvalidDecl(); |
| return D; |
| } else if (currentModuleIsImplementation()) { |
| Diag(ExportLoc, diag::err_export_not_in_module_interface) << 1; |
| Diag(ModuleScopes.back().BeginLoc, |
| diag::note_not_module_interface_add_export) |
| << FixItHint::CreateInsertion(ModuleScopes.back().BeginLoc, "export "); |
| D->setInvalidDecl(); |
| return D; |
| } else if (ModuleScopes.back().Module->Kind == |
| Module::PrivateModuleFragment) { |
| Diag(ExportLoc, diag::err_export_in_private_module_fragment); |
| Diag(ModuleScopes.back().BeginLoc, diag::note_private_module_fragment); |
| D->setInvalidDecl(); |
| return D; |
| } |
| } |
| |
| for (const DeclContext *DC = CurContext; DC; DC = DC->getLexicalParent()) { |
| if (const auto *ND = dyn_cast<NamespaceDecl>(DC)) { |
| // An export-declaration shall not appear directly or indirectly within |
| // an unnamed namespace [...] |
| if (ND->isAnonymousNamespace()) { |
| Diag(ExportLoc, diag::err_export_within_anonymous_namespace); |
| Diag(ND->getLocation(), diag::note_anonymous_namespace); |
| // Don't diagnose internal-linkage declarations in this region. |
| D->setInvalidDecl(); |
| return D; |
| } |
| |
| // A declaration is exported if it is [...] a namespace-definition |
| // that contains an exported declaration. |
| // |
| // Defer exporting the namespace until after we leave it, in order to |
| // avoid marking all subsequent declarations in the namespace as exported. |
| if (!getLangOpts().HLSL && !DeferredExportedNamespaces.insert(ND).second) |
| break; |
| } |
| } |
| |
| // [...] its declaration or declaration-seq shall not contain an |
| // export-declaration. |
| if (auto *ED = getEnclosingExportDecl(D)) { |
| Diag(ExportLoc, diag::err_export_within_export); |
| if (ED->hasBraces()) |
| Diag(ED->getLocation(), diag::note_export); |
| D->setInvalidDecl(); |
| return D; |
| } |
| |
| if (!getLangOpts().HLSL) |
| D->setModuleOwnershipKind(Decl::ModuleOwnershipKind::VisibleWhenImported); |
| |
| return D; |
| } |
| |
| static bool checkExportedDecl(Sema &, Decl *, SourceLocation); |
| |
| /// Check that it's valid to export all the declarations in \p DC. |
| static bool checkExportedDeclContext(Sema &S, DeclContext *DC, |
| SourceLocation BlockStart) { |
| bool AllUnnamed = true; |
| for (auto *D : DC->decls()) |
| AllUnnamed &= checkExportedDecl(S, D, BlockStart); |
| return AllUnnamed; |
| } |
| |
| /// Check that it's valid to export \p D. |
| static bool checkExportedDecl(Sema &S, Decl *D, SourceLocation BlockStart) { |
| |
| // HLSL: export declaration is valid only on functions |
| if (S.getLangOpts().HLSL) { |
| // Export-within-export was already diagnosed in ActOnStartExportDecl |
| if (!dyn_cast<FunctionDecl>(D) && !dyn_cast<ExportDecl>(D)) { |
| S.Diag(D->getBeginLoc(), diag::err_hlsl_export_not_on_function); |
| D->setInvalidDecl(); |
| return false; |
| } |
| } |
| |
| // C++20 [module.interface]p3: |
| // [...] it shall not declare a name with internal linkage. |
| bool HasName = false; |
| if (auto *ND = dyn_cast<NamedDecl>(D)) { |
| // Don't diagnose anonymous union objects; we'll diagnose their members |
| // instead. |
| HasName = (bool)ND->getDeclName(); |
| if (HasName && ND->getFormalLinkage() == Linkage::Internal) { |
| S.Diag(ND->getLocation(), diag::err_export_internal) << ND; |
| if (BlockStart.isValid()) |
| S.Diag(BlockStart, diag::note_export); |
| return false; |
| } |
| } |
| |
| // C++2a [module.interface]p5: |
| // all entities to which all of the using-declarators ultimately refer |
| // shall have been introduced with a name having external linkage |
| if (auto *USD = dyn_cast<UsingShadowDecl>(D)) { |
| NamedDecl *Target = USD->getUnderlyingDecl(); |
| Linkage Lk = Target->getFormalLinkage(); |
| if (Lk == Linkage::Internal || Lk == Linkage::Module) { |
| S.Diag(USD->getLocation(), diag::err_export_using_internal) |
| << (Lk == Linkage::Internal ? 0 : 1) << Target; |
| S.Diag(Target->getLocation(), diag::note_using_decl_target); |
| if (BlockStart.isValid()) |
| S.Diag(BlockStart, diag::note_export); |
| return false; |
| } |
| } |
| |
| // Recurse into namespace-scope DeclContexts. (Only namespace-scope |
| // declarations are exported). |
| if (auto *DC = dyn_cast<DeclContext>(D)) { |
| if (!isa<NamespaceDecl>(D)) |
| return true; |
| |
| if (auto *ND = dyn_cast<NamedDecl>(D)) { |
| if (!ND->getDeclName()) { |
| S.Diag(ND->getLocation(), diag::err_export_anon_ns_internal); |
| if (BlockStart.isValid()) |
| S.Diag(BlockStart, diag::note_export); |
| return false; |
| } else if (!DC->decls().empty() && |
| DC->getRedeclContext()->isFileContext()) { |
| return checkExportedDeclContext(S, DC, BlockStart); |
| } |
| } |
| } |
| return true; |
| } |
| |
| Decl *Sema::ActOnFinishExportDecl(Scope *S, Decl *D, SourceLocation RBraceLoc) { |
| auto *ED = cast<ExportDecl>(D); |
| if (RBraceLoc.isValid()) |
| ED->setRBraceLoc(RBraceLoc); |
| |
| PopDeclContext(); |
| |
| if (!D->isInvalidDecl()) { |
| SourceLocation BlockStart = |
| ED->hasBraces() ? ED->getBeginLoc() : SourceLocation(); |
| for (auto *Child : ED->decls()) { |
| checkExportedDecl(*this, Child, BlockStart); |
| if (auto *FD = dyn_cast<FunctionDecl>(Child)) { |
| // [dcl.inline]/7 |
| // If an inline function or variable that is attached to a named module |
| // is declared in a definition domain, it shall be defined in that |
| // domain. |
| // So, if the current declaration does not have a definition, we must |
| // check at the end of the TU (or when the PMF starts) to see that we |
| // have a definition at that point. |
| if (FD->isInlineSpecified() && !FD->isDefined()) |
| PendingInlineFuncDecls.insert(FD); |
| } |
| } |
| } |
| |
| // Anything exported from a module should never be considered unused. |
| for (auto *Exported : ED->decls()) |
| Exported->markUsed(getASTContext()); |
| |
| return D; |
| } |
| |
| Module *Sema::PushGlobalModuleFragment(SourceLocation BeginLoc) { |
| // We shouldn't create new global module fragment if there is already |
| // one. |
| if (!TheGlobalModuleFragment) { |
| ModuleMap &Map = PP.getHeaderSearchInfo().getModuleMap(); |
| TheGlobalModuleFragment = Map.createGlobalModuleFragmentForModuleUnit( |
| BeginLoc, getCurrentModule()); |
| } |
| |
| assert(TheGlobalModuleFragment && "module creation should not fail"); |
| |
| // Enter the scope of the global module. |
| ModuleScopes.push_back({BeginLoc, TheGlobalModuleFragment, |
| /*OuterVisibleModules=*/{}}); |
| VisibleModules.setVisible(TheGlobalModuleFragment, BeginLoc); |
| |
| return TheGlobalModuleFragment; |
| } |
| |
| void Sema::PopGlobalModuleFragment() { |
| assert(!ModuleScopes.empty() && |
| getCurrentModule()->isExplicitGlobalModule() && |
| "left the wrong module scope, which is not global module fragment"); |
| ModuleScopes.pop_back(); |
| } |
| |
| Module *Sema::PushImplicitGlobalModuleFragment(SourceLocation BeginLoc) { |
| if (!TheImplicitGlobalModuleFragment) { |
| ModuleMap &Map = PP.getHeaderSearchInfo().getModuleMap(); |
| TheImplicitGlobalModuleFragment = |
| Map.createImplicitGlobalModuleFragmentForModuleUnit(BeginLoc, |
| getCurrentModule()); |
| } |
| assert(TheImplicitGlobalModuleFragment && "module creation should not fail"); |
| |
| // Enter the scope of the global module. |
| ModuleScopes.push_back({BeginLoc, TheImplicitGlobalModuleFragment, |
| /*OuterVisibleModules=*/{}}); |
| VisibleModules.setVisible(TheImplicitGlobalModuleFragment, BeginLoc); |
| return TheImplicitGlobalModuleFragment; |
| } |
| |
| void Sema::PopImplicitGlobalModuleFragment() { |
| assert(!ModuleScopes.empty() && |
| getCurrentModule()->isImplicitGlobalModule() && |
| "left the wrong module scope, which is not global module fragment"); |
| ModuleScopes.pop_back(); |
| } |
| |
| bool Sema::isCurrentModulePurview() const { |
| if (!getCurrentModule()) |
| return false; |
| |
| /// Does this Module scope describe part of the purview of a standard named |
| /// C++ module? |
| switch (getCurrentModule()->Kind) { |
| case Module::ModuleInterfaceUnit: |
| case Module::ModuleImplementationUnit: |
| case Module::ModulePartitionInterface: |
| case Module::ModulePartitionImplementation: |
| case Module::PrivateModuleFragment: |
| case Module::ImplicitGlobalModuleFragment: |
| return true; |
| default: |
| return false; |
| } |
| } |