| //===--- SemaStmt.cpp - Semantic Analysis for Statements ------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements semantic analysis for statements. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "CheckExprLifetime.h" |
| #include "clang/AST/ASTContext.h" |
| #include "clang/AST/ASTLambda.h" |
| #include "clang/AST/CXXInheritance.h" |
| #include "clang/AST/CharUnits.h" |
| #include "clang/AST/DeclObjC.h" |
| #include "clang/AST/DynamicRecursiveASTVisitor.h" |
| #include "clang/AST/EvaluatedExprVisitor.h" |
| #include "clang/AST/ExprCXX.h" |
| #include "clang/AST/ExprObjC.h" |
| #include "clang/AST/IgnoreExpr.h" |
| #include "clang/AST/StmtCXX.h" |
| #include "clang/AST/StmtObjC.h" |
| #include "clang/AST/TypeLoc.h" |
| #include "clang/AST/TypeOrdering.h" |
| #include "clang/Basic/TargetInfo.h" |
| #include "clang/Lex/Preprocessor.h" |
| #include "clang/Sema/EnterExpressionEvaluationContext.h" |
| #include "clang/Sema/Initialization.h" |
| #include "clang/Sema/Lookup.h" |
| #include "clang/Sema/Ownership.h" |
| #include "clang/Sema/Scope.h" |
| #include "clang/Sema/ScopeInfo.h" |
| #include "clang/Sema/SemaCUDA.h" |
| #include "clang/Sema/SemaObjC.h" |
| #include "clang/Sema/SemaOpenMP.h" |
| #include "llvm/ADT/ArrayRef.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/STLForwardCompat.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/StringExtras.h" |
| |
| using namespace clang; |
| using namespace sema; |
| |
| StmtResult Sema::ActOnExprStmt(ExprResult FE, bool DiscardedValue) { |
| if (FE.isInvalid()) |
| return StmtError(); |
| |
| FE = ActOnFinishFullExpr(FE.get(), FE.get()->getExprLoc(), DiscardedValue); |
| if (FE.isInvalid()) |
| return StmtError(); |
| |
| // C99 6.8.3p2: The expression in an expression statement is evaluated as a |
| // void expression for its side effects. Conversion to void allows any |
| // operand, even incomplete types. |
| |
| // Same thing in for stmt first clause (when expr) and third clause. |
| return StmtResult(FE.getAs<Stmt>()); |
| } |
| |
| |
| StmtResult Sema::ActOnExprStmtError() { |
| DiscardCleanupsInEvaluationContext(); |
| return StmtError(); |
| } |
| |
| StmtResult Sema::ActOnNullStmt(SourceLocation SemiLoc, |
| bool HasLeadingEmptyMacro) { |
| return new (Context) NullStmt(SemiLoc, HasLeadingEmptyMacro); |
| } |
| |
| StmtResult Sema::ActOnDeclStmt(DeclGroupPtrTy dg, SourceLocation StartLoc, |
| SourceLocation EndLoc) { |
| DeclGroupRef DG = dg.get(); |
| |
| // If we have an invalid decl, just return an error. |
| if (DG.isNull()) return StmtError(); |
| |
| return new (Context) DeclStmt(DG, StartLoc, EndLoc); |
| } |
| |
| void Sema::ActOnForEachDeclStmt(DeclGroupPtrTy dg) { |
| DeclGroupRef DG = dg.get(); |
| |
| // If we don't have a declaration, or we have an invalid declaration, |
| // just return. |
| if (DG.isNull() || !DG.isSingleDecl()) |
| return; |
| |
| Decl *decl = DG.getSingleDecl(); |
| if (!decl || decl->isInvalidDecl()) |
| return; |
| |
| // Only variable declarations are permitted. |
| VarDecl *var = dyn_cast<VarDecl>(decl); |
| if (!var) { |
| Diag(decl->getLocation(), diag::err_non_variable_decl_in_for); |
| decl->setInvalidDecl(); |
| return; |
| } |
| |
| // foreach variables are never actually initialized in the way that |
| // the parser came up with. |
| var->setInit(nullptr); |
| |
| // In ARC, we don't need to retain the iteration variable of a fast |
| // enumeration loop. Rather than actually trying to catch that |
| // during declaration processing, we remove the consequences here. |
| if (getLangOpts().ObjCAutoRefCount) { |
| QualType type = var->getType(); |
| |
| // Only do this if we inferred the lifetime. Inferred lifetime |
| // will show up as a local qualifier because explicit lifetime |
| // should have shown up as an AttributedType instead. |
| if (type.getLocalQualifiers().getObjCLifetime() == Qualifiers::OCL_Strong) { |
| // Add 'const' and mark the variable as pseudo-strong. |
| var->setType(type.withConst()); |
| var->setARCPseudoStrong(true); |
| } |
| } |
| } |
| |
| /// Diagnose unused comparisons, both builtin and overloaded operators. |
| /// For '==' and '!=', suggest fixits for '=' or '|='. |
| /// |
| /// Adding a cast to void (or other expression wrappers) will prevent the |
| /// warning from firing. |
| static bool DiagnoseUnusedComparison(Sema &S, const Expr *E) { |
| SourceLocation Loc; |
| bool CanAssign; |
| enum { Equality, Inequality, Relational, ThreeWay } Kind; |
| |
| if (const BinaryOperator *Op = dyn_cast<BinaryOperator>(E)) { |
| if (!Op->isComparisonOp()) |
| return false; |
| |
| if (Op->getOpcode() == BO_EQ) |
| Kind = Equality; |
| else if (Op->getOpcode() == BO_NE) |
| Kind = Inequality; |
| else if (Op->getOpcode() == BO_Cmp) |
| Kind = ThreeWay; |
| else { |
| assert(Op->isRelationalOp()); |
| Kind = Relational; |
| } |
| Loc = Op->getOperatorLoc(); |
| CanAssign = Op->getLHS()->IgnoreParenImpCasts()->isLValue(); |
| } else if (const CXXOperatorCallExpr *Op = dyn_cast<CXXOperatorCallExpr>(E)) { |
| switch (Op->getOperator()) { |
| case OO_EqualEqual: |
| Kind = Equality; |
| break; |
| case OO_ExclaimEqual: |
| Kind = Inequality; |
| break; |
| case OO_Less: |
| case OO_Greater: |
| case OO_GreaterEqual: |
| case OO_LessEqual: |
| Kind = Relational; |
| break; |
| case OO_Spaceship: |
| Kind = ThreeWay; |
| break; |
| default: |
| return false; |
| } |
| |
| Loc = Op->getOperatorLoc(); |
| CanAssign = Op->getArg(0)->IgnoreParenImpCasts()->isLValue(); |
| } else { |
| // Not a typo-prone comparison. |
| return false; |
| } |
| |
| // Suppress warnings when the operator, suspicious as it may be, comes from |
| // a macro expansion. |
| if (S.SourceMgr.isMacroBodyExpansion(Loc)) |
| return false; |
| |
| S.Diag(Loc, diag::warn_unused_comparison) |
| << (unsigned)Kind << E->getSourceRange(); |
| |
| // If the LHS is a plausible entity to assign to, provide a fixit hint to |
| // correct common typos. |
| if (CanAssign) { |
| if (Kind == Inequality) |
| S.Diag(Loc, diag::note_inequality_comparison_to_or_assign) |
| << FixItHint::CreateReplacement(Loc, "|="); |
| else if (Kind == Equality) |
| S.Diag(Loc, diag::note_equality_comparison_to_assign) |
| << FixItHint::CreateReplacement(Loc, "="); |
| } |
| |
| return true; |
| } |
| |
| static bool DiagnoseNoDiscard(Sema &S, const NamedDecl *OffendingDecl, |
| const WarnUnusedResultAttr *A, SourceLocation Loc, |
| SourceRange R1, SourceRange R2, bool IsCtor) { |
| if (!A) |
| return false; |
| StringRef Msg = A->getMessage(); |
| |
| if (Msg.empty()) { |
| if (OffendingDecl) |
| return S.Diag(Loc, diag::warn_unused_return_type) |
| << IsCtor << A << OffendingDecl << false << R1 << R2; |
| if (IsCtor) |
| return S.Diag(Loc, diag::warn_unused_constructor) |
| << A << false << R1 << R2; |
| return S.Diag(Loc, diag::warn_unused_result) << A << false << R1 << R2; |
| } |
| |
| if (OffendingDecl) |
| return S.Diag(Loc, diag::warn_unused_return_type) |
| << IsCtor << A << OffendingDecl << true << Msg << R1 << R2; |
| if (IsCtor) |
| return S.Diag(Loc, diag::warn_unused_constructor) |
| << A << true << Msg << R1 << R2; |
| return S.Diag(Loc, diag::warn_unused_result) << A << true << Msg << R1 << R2; |
| } |
| |
| namespace { |
| |
| // Diagnoses unused expressions that call functions marked [[nodiscard]], |
| // [[gnu::warn_unused_result]] and similar. |
| // Additionally, a DiagID can be provided to emit a warning in additional |
| // contexts (such as for an unused LHS of a comma expression) |
| void DiagnoseUnused(Sema &S, const Expr *E, std::optional<unsigned> DiagID) { |
| bool NoDiscardOnly = !DiagID.has_value(); |
| |
| // If we are in an unevaluated expression context, then there can be no unused |
| // results because the results aren't expected to be used in the first place. |
| if (S.isUnevaluatedContext()) |
| return; |
| |
| SourceLocation ExprLoc = E->IgnoreParenImpCasts()->getExprLoc(); |
| // In most cases, we don't want to warn if the expression is written in a |
| // macro body, or if the macro comes from a system header. If the offending |
| // expression is a call to a function with the warn_unused_result attribute, |
| // we warn no matter the location. Because of the order in which the various |
| // checks need to happen, we factor out the macro-related test here. |
| bool ShouldSuppress = S.SourceMgr.isMacroBodyExpansion(ExprLoc) || |
| S.SourceMgr.isInSystemMacro(ExprLoc); |
| |
| const Expr *WarnExpr; |
| SourceLocation Loc; |
| SourceRange R1, R2; |
| if (!E->isUnusedResultAWarning(WarnExpr, Loc, R1, R2, S.Context)) |
| return; |
| |
| if (!NoDiscardOnly) { |
| // If this is a GNU statement expression expanded from a macro, it is |
| // probably unused because it is a function-like macro that can be used as |
| // either an expression or statement. Don't warn, because it is almost |
| // certainly a false positive. |
| if (isa<StmtExpr>(E) && Loc.isMacroID()) |
| return; |
| |
| // Check if this is the UNREFERENCED_PARAMETER from the Microsoft headers. |
| // That macro is frequently used to suppress "unused parameter" warnings, |
| // but its implementation makes clang's -Wunused-value fire. Prevent this. |
| if (isa<ParenExpr>(E->IgnoreImpCasts()) && Loc.isMacroID()) { |
| SourceLocation SpellLoc = Loc; |
| if (S.findMacroSpelling(SpellLoc, "UNREFERENCED_PARAMETER")) |
| return; |
| } |
| } |
| |
| // Okay, we have an unused result. Depending on what the base expression is, |
| // we might want to make a more specific diagnostic. Check for one of these |
| // cases now. |
| if (const FullExpr *Temps = dyn_cast<FullExpr>(E)) |
| E = Temps->getSubExpr(); |
| if (const CXXBindTemporaryExpr *TempExpr = dyn_cast<CXXBindTemporaryExpr>(E)) |
| E = TempExpr->getSubExpr(); |
| |
| if (DiagnoseUnusedComparison(S, E)) |
| return; |
| |
| E = WarnExpr; |
| if (const auto *Cast = dyn_cast<CastExpr>(E)) |
| if (Cast->getCastKind() == CK_NoOp || |
| Cast->getCastKind() == CK_ConstructorConversion || |
| Cast->getCastKind() == CK_IntegralCast) |
| E = Cast->getSubExpr()->IgnoreImpCasts(); |
| |
| if (const CallExpr *CE = dyn_cast<CallExpr>(E)) { |
| if (E->getType()->isVoidType()) |
| return; |
| |
| auto [OffendingDecl, A] = CE->getUnusedResultAttr(S.Context); |
| if (DiagnoseNoDiscard(S, OffendingDecl, |
| cast_or_null<WarnUnusedResultAttr>(A), Loc, R1, R2, |
| /*isCtor=*/false)) |
| return; |
| |
| // If the callee has attribute pure, const, or warn_unused_result, warn with |
| // a more specific message to make it clear what is happening. If the call |
| // is written in a macro body, only warn if it has the warn_unused_result |
| // attribute. |
| if (const Decl *FD = CE->getCalleeDecl()) { |
| if (ShouldSuppress) |
| return; |
| if (FD->hasAttr<PureAttr>()) { |
| S.Diag(Loc, diag::warn_unused_call) << R1 << R2 << "pure"; |
| return; |
| } |
| if (FD->hasAttr<ConstAttr>()) { |
| S.Diag(Loc, diag::warn_unused_call) << R1 << R2 << "const"; |
| return; |
| } |
| } |
| } else if (const auto *CE = dyn_cast<CXXConstructExpr>(E)) { |
| if (const CXXConstructorDecl *Ctor = CE->getConstructor()) { |
| const NamedDecl *OffendingDecl = nullptr; |
| const auto *A = Ctor->getAttr<WarnUnusedResultAttr>(); |
| if (!A) { |
| OffendingDecl = Ctor->getParent(); |
| A = OffendingDecl->getAttr<WarnUnusedResultAttr>(); |
| } |
| if (DiagnoseNoDiscard(S, OffendingDecl, A, Loc, R1, R2, |
| /*isCtor=*/true)) |
| return; |
| } |
| } else if (const auto *ILE = dyn_cast<InitListExpr>(E)) { |
| if (const TagDecl *TD = ILE->getType()->getAsTagDecl()) { |
| |
| if (DiagnoseNoDiscard(S, TD, TD->getAttr<WarnUnusedResultAttr>(), Loc, R1, |
| R2, /*isCtor=*/false)) |
| return; |
| } |
| } else if (ShouldSuppress) |
| return; |
| |
| E = WarnExpr; |
| if (const ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(E)) { |
| if (S.getLangOpts().ObjCAutoRefCount && ME->isDelegateInitCall()) { |
| S.Diag(Loc, diag::err_arc_unused_init_message) << R1; |
| return; |
| } |
| const ObjCMethodDecl *MD = ME->getMethodDecl(); |
| if (MD) { |
| if (DiagnoseNoDiscard(S, nullptr, MD->getAttr<WarnUnusedResultAttr>(), |
| Loc, R1, R2, |
| /*isCtor=*/false)) |
| return; |
| } |
| } else if (const PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E)) { |
| const Expr *Source = POE->getSyntacticForm(); |
| // Handle the actually selected call of an OpenMP specialized call. |
| if (S.LangOpts.OpenMP && isa<CallExpr>(Source) && |
| POE->getNumSemanticExprs() == 1 && |
| isa<CallExpr>(POE->getSemanticExpr(0))) |
| return DiagnoseUnused(S, POE->getSemanticExpr(0), DiagID); |
| if (isa<ObjCSubscriptRefExpr>(Source)) |
| DiagID = diag::warn_unused_container_subscript_expr; |
| else if (isa<ObjCPropertyRefExpr>(Source)) |
| DiagID = diag::warn_unused_property_expr; |
| } else if (const CXXFunctionalCastExpr *FC |
| = dyn_cast<CXXFunctionalCastExpr>(E)) { |
| const Expr *E = FC->getSubExpr(); |
| if (const CXXBindTemporaryExpr *TE = dyn_cast<CXXBindTemporaryExpr>(E)) |
| E = TE->getSubExpr(); |
| if (isa<CXXTemporaryObjectExpr>(E)) |
| return; |
| if (const CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(E)) |
| if (const CXXRecordDecl *RD = CE->getType()->getAsCXXRecordDecl()) |
| if (!RD->getAttr<WarnUnusedAttr>()) |
| return; |
| } |
| |
| if (NoDiscardOnly) |
| return; |
| |
| // Diagnose "(void*) blah" as a typo for "(void) blah". |
| if (const CStyleCastExpr *CE = dyn_cast<CStyleCastExpr>(E)) { |
| TypeSourceInfo *TI = CE->getTypeInfoAsWritten(); |
| QualType T = TI->getType(); |
| |
| // We really do want to use the non-canonical type here. |
| if (T == S.Context.VoidPtrTy) { |
| PointerTypeLoc TL = TI->getTypeLoc().castAs<PointerTypeLoc>(); |
| |
| S.Diag(Loc, diag::warn_unused_voidptr) |
| << FixItHint::CreateRemoval(TL.getStarLoc()); |
| return; |
| } |
| } |
| |
| // Tell the user to assign it into a variable to force a volatile load if this |
| // isn't an array. |
| if (E->isGLValue() && E->getType().isVolatileQualified() && |
| !E->getType()->isArrayType()) { |
| S.Diag(Loc, diag::warn_unused_volatile) << R1 << R2; |
| return; |
| } |
| |
| // Do not diagnose use of a comma operator in a SFINAE context because the |
| // type of the left operand could be used for SFINAE, so technically it is |
| // *used*. |
| if (DiagID == diag::warn_unused_comma_left_operand && S.isSFINAEContext()) |
| return; |
| |
| S.DiagIfReachable(Loc, llvm::ArrayRef<const Stmt *>(E), |
| S.PDiag(*DiagID) << R1 << R2); |
| } |
| } // namespace |
| |
| void Sema::DiagnoseDiscardedExprMarkedNodiscard(const Expr *E) { |
| DiagnoseUnused(*this, E, std::nullopt); |
| } |
| |
| void Sema::DiagnoseUnusedExprResult(const Stmt *S, unsigned DiagID) { |
| if (const LabelStmt *Label = dyn_cast_if_present<LabelStmt>(S)) |
| S = Label->getSubStmt(); |
| |
| const Expr *E = dyn_cast_if_present<Expr>(S); |
| if (!E) |
| return; |
| |
| DiagnoseUnused(*this, E, DiagID); |
| } |
| |
| void Sema::ActOnStartOfCompoundStmt(bool IsStmtExpr) { |
| PushCompoundScope(IsStmtExpr); |
| } |
| |
| void Sema::ActOnAfterCompoundStatementLeadingPragmas() { |
| if (getCurFPFeatures().isFPConstrained()) { |
| FunctionScopeInfo *FSI = getCurFunction(); |
| assert(FSI); |
| FSI->setUsesFPIntrin(); |
| } |
| } |
| |
| void Sema::ActOnFinishOfCompoundStmt() { |
| PopCompoundScope(); |
| } |
| |
| sema::CompoundScopeInfo &Sema::getCurCompoundScope() const { |
| return getCurFunction()->CompoundScopes.back(); |
| } |
| |
| StmtResult Sema::ActOnCompoundStmt(SourceLocation L, SourceLocation R, |
| ArrayRef<Stmt *> Elts, bool isStmtExpr) { |
| const unsigned NumElts = Elts.size(); |
| |
| // If we're in C mode, check that we don't have any decls after stmts. If |
| // so, emit an extension diagnostic in C89 and potentially a warning in later |
| // versions. |
| const unsigned MixedDeclsCodeID = getLangOpts().C99 |
| ? diag::warn_mixed_decls_code |
| : diag::ext_mixed_decls_code; |
| if (!getLangOpts().CPlusPlus && !Diags.isIgnored(MixedDeclsCodeID, L)) { |
| // Note that __extension__ can be around a decl. |
| unsigned i = 0; |
| // Skip over all declarations. |
| for (; i != NumElts && isa<DeclStmt>(Elts[i]); ++i) |
| /*empty*/; |
| |
| // We found the end of the list or a statement. Scan for another declstmt. |
| for (; i != NumElts && !isa<DeclStmt>(Elts[i]); ++i) |
| /*empty*/; |
| |
| if (i != NumElts) { |
| Decl *D = *cast<DeclStmt>(Elts[i])->decl_begin(); |
| Diag(D->getLocation(), MixedDeclsCodeID); |
| } |
| } |
| |
| // Check for suspicious empty body (null statement) in `for' and `while' |
| // statements. Don't do anything for template instantiations, this just adds |
| // noise. |
| if (NumElts != 0 && !CurrentInstantiationScope && |
| getCurCompoundScope().HasEmptyLoopBodies) { |
| for (unsigned i = 0; i != NumElts - 1; ++i) |
| DiagnoseEmptyLoopBody(Elts[i], Elts[i + 1]); |
| } |
| |
| // Calculate difference between FP options in this compound statement and in |
| // the enclosing one. If this is a function body, take the difference against |
| // default options. In this case the difference will indicate options that are |
| // changed upon entry to the statement. |
| FPOptions FPO = (getCurFunction()->CompoundScopes.size() == 1) |
| ? FPOptions(getLangOpts()) |
| : getCurCompoundScope().InitialFPFeatures; |
| FPOptionsOverride FPDiff = getCurFPFeatures().getChangesFrom(FPO); |
| |
| return CompoundStmt::Create(Context, Elts, FPDiff, L, R); |
| } |
| |
| ExprResult |
| Sema::ActOnCaseExpr(SourceLocation CaseLoc, ExprResult Val) { |
| if (!Val.get()) |
| return Val; |
| |
| if (DiagnoseUnexpandedParameterPack(Val.get())) |
| return ExprError(); |
| |
| // If we're not inside a switch, let the 'case' statement handling diagnose |
| // this. Just clean up after the expression as best we can. |
| if (getCurFunction()->SwitchStack.empty()) |
| return ActOnFinishFullExpr(Val.get(), Val.get()->getExprLoc(), false, |
| getLangOpts().CPlusPlus11); |
| |
| Expr *CondExpr = |
| getCurFunction()->SwitchStack.back().getPointer()->getCond(); |
| if (!CondExpr) |
| return ExprError(); |
| QualType CondType = CondExpr->getType(); |
| |
| auto CheckAndFinish = [&](Expr *E) { |
| if (CondType->isDependentType() || E->isTypeDependent()) |
| return ExprResult(E); |
| |
| if (getLangOpts().CPlusPlus11) { |
| // C++11 [stmt.switch]p2: the constant-expression shall be a converted |
| // constant expression of the promoted type of the switch condition. |
| llvm::APSInt TempVal; |
| return CheckConvertedConstantExpression(E, CondType, TempVal, |
| CCEK_CaseValue); |
| } |
| |
| ExprResult ER = E; |
| if (!E->isValueDependent()) |
| ER = VerifyIntegerConstantExpression(E, AllowFold); |
| if (!ER.isInvalid()) |
| ER = DefaultLvalueConversion(ER.get()); |
| if (!ER.isInvalid()) |
| ER = ImpCastExprToType(ER.get(), CondType, CK_IntegralCast); |
| if (!ER.isInvalid()) |
| ER = ActOnFinishFullExpr(ER.get(), ER.get()->getExprLoc(), false); |
| return ER; |
| }; |
| |
| ExprResult Converted = CorrectDelayedTyposInExpr( |
| Val, /*InitDecl=*/nullptr, /*RecoverUncorrectedTypos=*/false, |
| CheckAndFinish); |
| if (Converted.get() == Val.get()) |
| Converted = CheckAndFinish(Val.get()); |
| return Converted; |
| } |
| |
| StmtResult |
| Sema::ActOnCaseStmt(SourceLocation CaseLoc, ExprResult LHSVal, |
| SourceLocation DotDotDotLoc, ExprResult RHSVal, |
| SourceLocation ColonLoc) { |
| assert((LHSVal.isInvalid() || LHSVal.get()) && "missing LHS value"); |
| assert((DotDotDotLoc.isInvalid() ? RHSVal.isUnset() |
| : RHSVal.isInvalid() || RHSVal.get()) && |
| "missing RHS value"); |
| |
| if (getCurFunction()->SwitchStack.empty()) { |
| Diag(CaseLoc, diag::err_case_not_in_switch); |
| return StmtError(); |
| } |
| |
| if (LHSVal.isInvalid() || RHSVal.isInvalid()) { |
| getCurFunction()->SwitchStack.back().setInt(true); |
| return StmtError(); |
| } |
| |
| if (LangOpts.OpenACC && |
| getCurScope()->isInOpenACCComputeConstructScope(Scope::SwitchScope)) { |
| Diag(CaseLoc, diag::err_acc_branch_in_out_compute_construct) |
| << /*branch*/ 0 << /*into*/ 1; |
| return StmtError(); |
| } |
| |
| auto *CS = CaseStmt::Create(Context, LHSVal.get(), RHSVal.get(), |
| CaseLoc, DotDotDotLoc, ColonLoc); |
| getCurFunction()->SwitchStack.back().getPointer()->addSwitchCase(CS); |
| return CS; |
| } |
| |
| void Sema::ActOnCaseStmtBody(Stmt *S, Stmt *SubStmt) { |
| cast<CaseStmt>(S)->setSubStmt(SubStmt); |
| } |
| |
| StmtResult |
| Sema::ActOnDefaultStmt(SourceLocation DefaultLoc, SourceLocation ColonLoc, |
| Stmt *SubStmt, Scope *CurScope) { |
| if (getCurFunction()->SwitchStack.empty()) { |
| Diag(DefaultLoc, diag::err_default_not_in_switch); |
| return SubStmt; |
| } |
| |
| if (LangOpts.OpenACC && |
| getCurScope()->isInOpenACCComputeConstructScope(Scope::SwitchScope)) { |
| Diag(DefaultLoc, diag::err_acc_branch_in_out_compute_construct) |
| << /*branch*/ 0 << /*into*/ 1; |
| return StmtError(); |
| } |
| |
| DefaultStmt *DS = new (Context) DefaultStmt(DefaultLoc, ColonLoc, SubStmt); |
| getCurFunction()->SwitchStack.back().getPointer()->addSwitchCase(DS); |
| return DS; |
| } |
| |
| StmtResult |
| Sema::ActOnLabelStmt(SourceLocation IdentLoc, LabelDecl *TheDecl, |
| SourceLocation ColonLoc, Stmt *SubStmt) { |
| // If the label was multiply defined, reject it now. |
| if (TheDecl->getStmt()) { |
| Diag(IdentLoc, diag::err_redefinition_of_label) << TheDecl->getDeclName(); |
| Diag(TheDecl->getLocation(), diag::note_previous_definition); |
| return SubStmt; |
| } |
| |
| ReservedIdentifierStatus Status = TheDecl->isReserved(getLangOpts()); |
| if (isReservedInAllContexts(Status) && |
| !Context.getSourceManager().isInSystemHeader(IdentLoc)) |
| Diag(IdentLoc, diag::warn_reserved_extern_symbol) |
| << TheDecl << static_cast<int>(Status); |
| |
| // If this label is in a compute construct scope, we need to make sure we |
| // check gotos in/out. |
| if (getCurScope()->isInOpenACCComputeConstructScope()) |
| setFunctionHasBranchProtectedScope(); |
| |
| // OpenACC3.3 2.14.4: |
| // The update directive is executable. It must not appear in place of the |
| // statement following an 'if', 'while', 'do', 'switch', or 'label' in C or |
| // C++. |
| if (isa<OpenACCUpdateConstruct>(SubStmt)) { |
| Diag(SubStmt->getBeginLoc(), diag::err_acc_update_as_body) << /*Label*/ 4; |
| SubStmt = new (Context) NullStmt(SubStmt->getBeginLoc()); |
| } |
| |
| // Otherwise, things are good. Fill in the declaration and return it. |
| LabelStmt *LS = new (Context) LabelStmt(IdentLoc, TheDecl, SubStmt); |
| TheDecl->setStmt(LS); |
| if (!TheDecl->isGnuLocal()) { |
| TheDecl->setLocStart(IdentLoc); |
| if (!TheDecl->isMSAsmLabel()) { |
| // Don't update the location of MS ASM labels. These will result in |
| // a diagnostic, and changing the location here will mess that up. |
| TheDecl->setLocation(IdentLoc); |
| } |
| } |
| return LS; |
| } |
| |
| StmtResult Sema::BuildAttributedStmt(SourceLocation AttrsLoc, |
| ArrayRef<const Attr *> Attrs, |
| Stmt *SubStmt) { |
| // FIXME: this code should move when a planned refactoring around statement |
| // attributes lands. |
| for (const auto *A : Attrs) { |
| if (A->getKind() == attr::MustTail) { |
| if (!checkAndRewriteMustTailAttr(SubStmt, *A)) { |
| return SubStmt; |
| } |
| setFunctionHasMustTail(); |
| } |
| } |
| |
| return AttributedStmt::Create(Context, AttrsLoc, Attrs, SubStmt); |
| } |
| |
| StmtResult Sema::ActOnAttributedStmt(const ParsedAttributes &Attrs, |
| Stmt *SubStmt) { |
| SmallVector<const Attr *, 1> SemanticAttrs; |
| ProcessStmtAttributes(SubStmt, Attrs, SemanticAttrs); |
| if (!SemanticAttrs.empty()) |
| return BuildAttributedStmt(Attrs.Range.getBegin(), SemanticAttrs, SubStmt); |
| // If none of the attributes applied, that's fine, we can recover by |
| // returning the substatement directly instead of making an AttributedStmt |
| // with no attributes on it. |
| return SubStmt; |
| } |
| |
| bool Sema::checkAndRewriteMustTailAttr(Stmt *St, const Attr &MTA) { |
| ReturnStmt *R = cast<ReturnStmt>(St); |
| Expr *E = R->getRetValue(); |
| |
| if (CurContext->isDependentContext() || (E && E->isInstantiationDependent())) |
| // We have to suspend our check until template instantiation time. |
| return true; |
| |
| if (!checkMustTailAttr(St, MTA)) |
| return false; |
| |
| // FIXME: Replace Expr::IgnoreImplicitAsWritten() with this function. |
| // Currently it does not skip implicit constructors in an initialization |
| // context. |
| auto IgnoreImplicitAsWritten = [](Expr *E) -> Expr * { |
| return IgnoreExprNodes(E, IgnoreImplicitAsWrittenSingleStep, |
| IgnoreElidableImplicitConstructorSingleStep); |
| }; |
| |
| // Now that we have verified that 'musttail' is valid here, rewrite the |
| // return value to remove all implicit nodes, but retain parentheses. |
| R->setRetValue(IgnoreImplicitAsWritten(E)); |
| return true; |
| } |
| |
| bool Sema::checkMustTailAttr(const Stmt *St, const Attr &MTA) { |
| assert(!CurContext->isDependentContext() && |
| "musttail cannot be checked from a dependent context"); |
| |
| // FIXME: Add Expr::IgnoreParenImplicitAsWritten() with this definition. |
| auto IgnoreParenImplicitAsWritten = [](const Expr *E) -> const Expr * { |
| return IgnoreExprNodes(const_cast<Expr *>(E), IgnoreParensSingleStep, |
| IgnoreImplicitAsWrittenSingleStep, |
| IgnoreElidableImplicitConstructorSingleStep); |
| }; |
| |
| const Expr *E = cast<ReturnStmt>(St)->getRetValue(); |
| const auto *CE = dyn_cast_or_null<CallExpr>(IgnoreParenImplicitAsWritten(E)); |
| |
| if (!CE) { |
| Diag(St->getBeginLoc(), diag::err_musttail_needs_call) << &MTA; |
| return false; |
| } |
| |
| if (const auto *EWC = dyn_cast<ExprWithCleanups>(E)) { |
| if (EWC->cleanupsHaveSideEffects()) { |
| Diag(St->getBeginLoc(), diag::err_musttail_needs_trivial_args) << &MTA; |
| return false; |
| } |
| } |
| |
| // We need to determine the full function type (including "this" type, if any) |
| // for both caller and callee. |
| struct FuncType { |
| enum { |
| ft_non_member, |
| ft_static_member, |
| ft_non_static_member, |
| ft_pointer_to_member, |
| } MemberType = ft_non_member; |
| |
| QualType This; |
| const FunctionProtoType *Func; |
| const CXXMethodDecl *Method = nullptr; |
| } CallerType, CalleeType; |
| |
| auto GetMethodType = [this, St, MTA](const CXXMethodDecl *CMD, FuncType &Type, |
| bool IsCallee) -> bool { |
| if (isa<CXXConstructorDecl, CXXDestructorDecl>(CMD)) { |
| Diag(St->getBeginLoc(), diag::err_musttail_structors_forbidden) |
| << IsCallee << isa<CXXDestructorDecl>(CMD); |
| if (IsCallee) |
| Diag(CMD->getBeginLoc(), diag::note_musttail_structors_forbidden) |
| << isa<CXXDestructorDecl>(CMD); |
| Diag(MTA.getLocation(), diag::note_tail_call_required) << &MTA; |
| return false; |
| } |
| if (CMD->isStatic()) |
| Type.MemberType = FuncType::ft_static_member; |
| else { |
| Type.This = CMD->getFunctionObjectParameterType(); |
| Type.MemberType = FuncType::ft_non_static_member; |
| } |
| Type.Func = CMD->getType()->castAs<FunctionProtoType>(); |
| return true; |
| }; |
| |
| const auto *CallerDecl = dyn_cast<FunctionDecl>(CurContext); |
| |
| // Find caller function signature. |
| if (!CallerDecl) { |
| int ContextType; |
| if (isa<BlockDecl>(CurContext)) |
| ContextType = 0; |
| else if (isa<ObjCMethodDecl>(CurContext)) |
| ContextType = 1; |
| else |
| ContextType = 2; |
| Diag(St->getBeginLoc(), diag::err_musttail_forbidden_from_this_context) |
| << &MTA << ContextType; |
| return false; |
| } else if (const auto *CMD = dyn_cast<CXXMethodDecl>(CurContext)) { |
| // Caller is a class/struct method. |
| if (!GetMethodType(CMD, CallerType, false)) |
| return false; |
| } else { |
| // Caller is a non-method function. |
| CallerType.Func = CallerDecl->getType()->getAs<FunctionProtoType>(); |
| } |
| |
| const Expr *CalleeExpr = CE->getCallee()->IgnoreParens(); |
| const auto *CalleeBinOp = dyn_cast<BinaryOperator>(CalleeExpr); |
| SourceLocation CalleeLoc = CE->getCalleeDecl() |
| ? CE->getCalleeDecl()->getBeginLoc() |
| : St->getBeginLoc(); |
| |
| // Find callee function signature. |
| if (const CXXMethodDecl *CMD = |
| dyn_cast_or_null<CXXMethodDecl>(CE->getCalleeDecl())) { |
| // Call is: obj.method(), obj->method(), functor(), etc. |
| if (!GetMethodType(CMD, CalleeType, true)) |
| return false; |
| } else if (CalleeBinOp && CalleeBinOp->isPtrMemOp()) { |
| // Call is: obj->*method_ptr or obj.*method_ptr |
| const auto *MPT = |
| CalleeBinOp->getRHS()->getType()->castAs<MemberPointerType>(); |
| CalleeType.This = QualType(MPT->getClass(), 0); |
| CalleeType.Func = MPT->getPointeeType()->castAs<FunctionProtoType>(); |
| CalleeType.MemberType = FuncType::ft_pointer_to_member; |
| } else if (isa<CXXPseudoDestructorExpr>(CalleeExpr)) { |
| Diag(St->getBeginLoc(), diag::err_musttail_structors_forbidden) |
| << /* IsCallee = */ 1 << /* IsDestructor = */ 1; |
| Diag(MTA.getLocation(), diag::note_tail_call_required) << &MTA; |
| return false; |
| } else { |
| // Non-method function. |
| CalleeType.Func = |
| CalleeExpr->getType()->getPointeeType()->getAs<FunctionProtoType>(); |
| } |
| |
| // Both caller and callee must have a prototype (no K&R declarations). |
| if (!CalleeType.Func || !CallerType.Func) { |
| Diag(St->getBeginLoc(), diag::err_musttail_needs_prototype) << &MTA; |
| if (!CalleeType.Func && CE->getDirectCallee()) { |
| Diag(CE->getDirectCallee()->getBeginLoc(), |
| diag::note_musttail_fix_non_prototype); |
| } |
| if (!CallerType.Func) |
| Diag(CallerDecl->getBeginLoc(), diag::note_musttail_fix_non_prototype); |
| return false; |
| } |
| |
| // Caller and callee must have matching calling conventions. |
| // |
| // Some calling conventions are physically capable of supporting tail calls |
| // even if the function types don't perfectly match. LLVM is currently too |
| // strict to allow this, but if LLVM added support for this in the future, we |
| // could exit early here and skip the remaining checks if the functions are |
| // using such a calling convention. |
| if (CallerType.Func->getCallConv() != CalleeType.Func->getCallConv()) { |
| if (const auto *ND = dyn_cast_or_null<NamedDecl>(CE->getCalleeDecl())) |
| Diag(St->getBeginLoc(), diag::err_musttail_callconv_mismatch) |
| << true << ND->getDeclName(); |
| else |
| Diag(St->getBeginLoc(), diag::err_musttail_callconv_mismatch) << false; |
| Diag(CalleeLoc, diag::note_musttail_callconv_mismatch) |
| << FunctionType::getNameForCallConv(CallerType.Func->getCallConv()) |
| << FunctionType::getNameForCallConv(CalleeType.Func->getCallConv()); |
| Diag(MTA.getLocation(), diag::note_tail_call_required) << &MTA; |
| return false; |
| } |
| |
| if (CalleeType.Func->isVariadic() || CallerType.Func->isVariadic()) { |
| Diag(St->getBeginLoc(), diag::err_musttail_no_variadic) << &MTA; |
| return false; |
| } |
| |
| const auto *CalleeDecl = CE->getCalleeDecl(); |
| if (CalleeDecl && CalleeDecl->hasAttr<CXX11NoReturnAttr>()) { |
| Diag(St->getBeginLoc(), diag::err_musttail_no_return) << &MTA; |
| return false; |
| } |
| |
| // Caller and callee must match in whether they have a "this" parameter. |
| if (CallerType.This.isNull() != CalleeType.This.isNull()) { |
| if (const auto *ND = dyn_cast_or_null<NamedDecl>(CE->getCalleeDecl())) { |
| Diag(St->getBeginLoc(), diag::err_musttail_member_mismatch) |
| << CallerType.MemberType << CalleeType.MemberType << true |
| << ND->getDeclName(); |
| Diag(CalleeLoc, diag::note_musttail_callee_defined_here) |
| << ND->getDeclName(); |
| } else |
| Diag(St->getBeginLoc(), diag::err_musttail_member_mismatch) |
| << CallerType.MemberType << CalleeType.MemberType << false; |
| Diag(MTA.getLocation(), diag::note_tail_call_required) << &MTA; |
| return false; |
| } |
| |
| auto CheckTypesMatch = [this](FuncType CallerType, FuncType CalleeType, |
| PartialDiagnostic &PD) -> bool { |
| enum { |
| ft_different_class, |
| ft_parameter_arity, |
| ft_parameter_mismatch, |
| ft_return_type, |
| }; |
| |
| auto DoTypesMatch = [this, &PD](QualType A, QualType B, |
| unsigned Select) -> bool { |
| if (!Context.hasSimilarType(A, B)) { |
| PD << Select << A.getUnqualifiedType() << B.getUnqualifiedType(); |
| return false; |
| } |
| return true; |
| }; |
| |
| if (!CallerType.This.isNull() && |
| !DoTypesMatch(CallerType.This, CalleeType.This, ft_different_class)) |
| return false; |
| |
| if (!DoTypesMatch(CallerType.Func->getReturnType(), |
| CalleeType.Func->getReturnType(), ft_return_type)) |
| return false; |
| |
| if (CallerType.Func->getNumParams() != CalleeType.Func->getNumParams()) { |
| PD << ft_parameter_arity << CallerType.Func->getNumParams() |
| << CalleeType.Func->getNumParams(); |
| return false; |
| } |
| |
| ArrayRef<QualType> CalleeParams = CalleeType.Func->getParamTypes(); |
| ArrayRef<QualType> CallerParams = CallerType.Func->getParamTypes(); |
| size_t N = CallerType.Func->getNumParams(); |
| for (size_t I = 0; I < N; I++) { |
| if (!DoTypesMatch(CalleeParams[I], CallerParams[I], |
| ft_parameter_mismatch)) { |
| PD << static_cast<int>(I) + 1; |
| return false; |
| } |
| } |
| |
| return true; |
| }; |
| |
| PartialDiagnostic PD = PDiag(diag::note_musttail_mismatch); |
| if (!CheckTypesMatch(CallerType, CalleeType, PD)) { |
| if (const auto *ND = dyn_cast_or_null<NamedDecl>(CE->getCalleeDecl())) |
| Diag(St->getBeginLoc(), diag::err_musttail_mismatch) |
| << true << ND->getDeclName(); |
| else |
| Diag(St->getBeginLoc(), diag::err_musttail_mismatch) << false; |
| Diag(CalleeLoc, PD); |
| Diag(MTA.getLocation(), diag::note_tail_call_required) << &MTA; |
| return false; |
| } |
| |
| // The lifetimes of locals and incoming function parameters must end before |
| // the call, because we can't have a stack frame to store them, so diagnose |
| // any pointers or references to them passed into the musttail call. |
| for (auto ArgExpr : CE->arguments()) { |
| InitializedEntity Entity = InitializedEntity::InitializeParameter( |
| Context, ArgExpr->getType(), false); |
| checkExprLifetimeMustTailArg(*this, Entity, const_cast<Expr *>(ArgExpr)); |
| } |
| |
| return true; |
| } |
| |
| namespace { |
| class CommaVisitor : public EvaluatedExprVisitor<CommaVisitor> { |
| typedef EvaluatedExprVisitor<CommaVisitor> Inherited; |
| Sema &SemaRef; |
| public: |
| CommaVisitor(Sema &SemaRef) : Inherited(SemaRef.Context), SemaRef(SemaRef) {} |
| void VisitBinaryOperator(BinaryOperator *E) { |
| if (E->getOpcode() == BO_Comma) |
| SemaRef.DiagnoseCommaOperator(E->getLHS(), E->getExprLoc()); |
| EvaluatedExprVisitor<CommaVisitor>::VisitBinaryOperator(E); |
| } |
| }; |
| } |
| |
| StmtResult Sema::ActOnIfStmt(SourceLocation IfLoc, |
| IfStatementKind StatementKind, |
| SourceLocation LParenLoc, Stmt *InitStmt, |
| ConditionResult Cond, SourceLocation RParenLoc, |
| Stmt *thenStmt, SourceLocation ElseLoc, |
| Stmt *elseStmt) { |
| if (Cond.isInvalid()) |
| return StmtError(); |
| |
| bool ConstevalOrNegatedConsteval = |
| StatementKind == IfStatementKind::ConstevalNonNegated || |
| StatementKind == IfStatementKind::ConstevalNegated; |
| |
| Expr *CondExpr = Cond.get().second; |
| assert((CondExpr || ConstevalOrNegatedConsteval) && |
| "If statement: missing condition"); |
| // Only call the CommaVisitor when not C89 due to differences in scope flags. |
| if (CondExpr && (getLangOpts().C99 || getLangOpts().CPlusPlus) && |
| !Diags.isIgnored(diag::warn_comma_operator, CondExpr->getExprLoc())) |
| CommaVisitor(*this).Visit(CondExpr); |
| |
| if (!ConstevalOrNegatedConsteval && !elseStmt) |
| DiagnoseEmptyStmtBody(RParenLoc, thenStmt, diag::warn_empty_if_body); |
| |
| if (ConstevalOrNegatedConsteval || |
| StatementKind == IfStatementKind::Constexpr) { |
| auto DiagnoseLikelihood = [&](const Stmt *S) { |
| if (const Attr *A = Stmt::getLikelihoodAttr(S)) { |
| Diags.Report(A->getLocation(), |
| diag::warn_attribute_has_no_effect_on_compile_time_if) |
| << A << ConstevalOrNegatedConsteval << A->getRange(); |
| Diags.Report(IfLoc, |
| diag::note_attribute_has_no_effect_on_compile_time_if_here) |
| << ConstevalOrNegatedConsteval |
| << SourceRange(IfLoc, (ConstevalOrNegatedConsteval |
| ? thenStmt->getBeginLoc() |
| : LParenLoc) |
| .getLocWithOffset(-1)); |
| } |
| }; |
| DiagnoseLikelihood(thenStmt); |
| DiagnoseLikelihood(elseStmt); |
| } else { |
| std::tuple<bool, const Attr *, const Attr *> LHC = |
| Stmt::determineLikelihoodConflict(thenStmt, elseStmt); |
| if (std::get<0>(LHC)) { |
| const Attr *ThenAttr = std::get<1>(LHC); |
| const Attr *ElseAttr = std::get<2>(LHC); |
| Diags.Report(ThenAttr->getLocation(), |
| diag::warn_attributes_likelihood_ifstmt_conflict) |
| << ThenAttr << ThenAttr->getRange(); |
| Diags.Report(ElseAttr->getLocation(), diag::note_conflicting_attribute) |
| << ElseAttr << ElseAttr->getRange(); |
| } |
| } |
| |
| if (ConstevalOrNegatedConsteval) { |
| bool Immediate = ExprEvalContexts.back().Context == |
| ExpressionEvaluationContext::ImmediateFunctionContext; |
| if (CurContext->isFunctionOrMethod()) { |
| const auto *FD = |
| dyn_cast<FunctionDecl>(Decl::castFromDeclContext(CurContext)); |
| if (FD && FD->isImmediateFunction()) |
| Immediate = true; |
| } |
| if (isUnevaluatedContext() || Immediate) |
| Diags.Report(IfLoc, diag::warn_consteval_if_always_true) << Immediate; |
| } |
| |
| // OpenACC3.3 2.14.4: |
| // The update directive is executable. It must not appear in place of the |
| // statement following an 'if', 'while', 'do', 'switch', or 'label' in C or |
| // C++. |
| if (isa<OpenACCUpdateConstruct>(thenStmt)) { |
| Diag(thenStmt->getBeginLoc(), diag::err_acc_update_as_body) << /*if*/ 0; |
| thenStmt = new (Context) NullStmt(thenStmt->getBeginLoc()); |
| } |
| |
| return BuildIfStmt(IfLoc, StatementKind, LParenLoc, InitStmt, Cond, RParenLoc, |
| thenStmt, ElseLoc, elseStmt); |
| } |
| |
| StmtResult Sema::BuildIfStmt(SourceLocation IfLoc, |
| IfStatementKind StatementKind, |
| SourceLocation LParenLoc, Stmt *InitStmt, |
| ConditionResult Cond, SourceLocation RParenLoc, |
| Stmt *thenStmt, SourceLocation ElseLoc, |
| Stmt *elseStmt) { |
| if (Cond.isInvalid()) |
| return StmtError(); |
| |
| if (StatementKind != IfStatementKind::Ordinary || |
| isa<ObjCAvailabilityCheckExpr>(Cond.get().second)) |
| setFunctionHasBranchProtectedScope(); |
| |
| return IfStmt::Create(Context, IfLoc, StatementKind, InitStmt, |
| Cond.get().first, Cond.get().second, LParenLoc, |
| RParenLoc, thenStmt, ElseLoc, elseStmt); |
| } |
| |
| namespace { |
| struct CaseCompareFunctor { |
| bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS, |
| const llvm::APSInt &RHS) { |
| return LHS.first < RHS; |
| } |
| bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS, |
| const std::pair<llvm::APSInt, CaseStmt*> &RHS) { |
| return LHS.first < RHS.first; |
| } |
| bool operator()(const llvm::APSInt &LHS, |
| const std::pair<llvm::APSInt, CaseStmt*> &RHS) { |
| return LHS < RHS.first; |
| } |
| }; |
| } |
| |
| /// CmpCaseVals - Comparison predicate for sorting case values. |
| /// |
| static bool CmpCaseVals(const std::pair<llvm::APSInt, CaseStmt*>& lhs, |
| const std::pair<llvm::APSInt, CaseStmt*>& rhs) { |
| if (lhs.first < rhs.first) |
| return true; |
| |
| if (lhs.first == rhs.first && |
| lhs.second->getCaseLoc() < rhs.second->getCaseLoc()) |
| return true; |
| return false; |
| } |
| |
| /// CmpEnumVals - Comparison predicate for sorting enumeration values. |
| /// |
| static bool CmpEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs, |
| const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs) |
| { |
| return lhs.first < rhs.first; |
| } |
| |
| /// EqEnumVals - Comparison preficate for uniqing enumeration values. |
| /// |
| static bool EqEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs, |
| const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs) |
| { |
| return lhs.first == rhs.first; |
| } |
| |
| /// GetTypeBeforeIntegralPromotion - Returns the pre-promotion type of |
| /// potentially integral-promoted expression @p expr. |
| static QualType GetTypeBeforeIntegralPromotion(const Expr *&E) { |
| if (const auto *FE = dyn_cast<FullExpr>(E)) |
| E = FE->getSubExpr(); |
| while (const auto *ImpCast = dyn_cast<ImplicitCastExpr>(E)) { |
| if (ImpCast->getCastKind() != CK_IntegralCast) break; |
| E = ImpCast->getSubExpr(); |
| } |
| return E->getType(); |
| } |
| |
| ExprResult Sema::CheckSwitchCondition(SourceLocation SwitchLoc, Expr *Cond) { |
| class SwitchConvertDiagnoser : public ICEConvertDiagnoser { |
| Expr *Cond; |
| |
| public: |
| SwitchConvertDiagnoser(Expr *Cond) |
| : ICEConvertDiagnoser(/*AllowScopedEnumerations*/true, false, true), |
| Cond(Cond) {} |
| |
| SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc, |
| QualType T) override { |
| return S.Diag(Loc, diag::err_typecheck_statement_requires_integer) << T; |
| } |
| |
| SemaDiagnosticBuilder diagnoseIncomplete( |
| Sema &S, SourceLocation Loc, QualType T) override { |
| return S.Diag(Loc, diag::err_switch_incomplete_class_type) |
| << T << Cond->getSourceRange(); |
| } |
| |
| SemaDiagnosticBuilder diagnoseExplicitConv( |
| Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override { |
| return S.Diag(Loc, diag::err_switch_explicit_conversion) << T << ConvTy; |
| } |
| |
| SemaDiagnosticBuilder noteExplicitConv( |
| Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override { |
| return S.Diag(Conv->getLocation(), diag::note_switch_conversion) |
| << ConvTy->isEnumeralType() << ConvTy; |
| } |
| |
| SemaDiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc, |
| QualType T) override { |
| return S.Diag(Loc, diag::err_switch_multiple_conversions) << T; |
| } |
| |
| SemaDiagnosticBuilder noteAmbiguous( |
| Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override { |
| return S.Diag(Conv->getLocation(), diag::note_switch_conversion) |
| << ConvTy->isEnumeralType() << ConvTy; |
| } |
| |
| SemaDiagnosticBuilder diagnoseConversion( |
| Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override { |
| llvm_unreachable("conversion functions are permitted"); |
| } |
| } SwitchDiagnoser(Cond); |
| |
| ExprResult CondResult = |
| PerformContextualImplicitConversion(SwitchLoc, Cond, SwitchDiagnoser); |
| if (CondResult.isInvalid()) |
| return ExprError(); |
| |
| // FIXME: PerformContextualImplicitConversion doesn't always tell us if it |
| // failed and produced a diagnostic. |
| Cond = CondResult.get(); |
| if (!Cond->isTypeDependent() && |
| !Cond->getType()->isIntegralOrEnumerationType()) |
| return ExprError(); |
| |
| // C99 6.8.4.2p5 - Integer promotions are performed on the controlling expr. |
| return UsualUnaryConversions(Cond); |
| } |
| |
| StmtResult Sema::ActOnStartOfSwitchStmt(SourceLocation SwitchLoc, |
| SourceLocation LParenLoc, |
| Stmt *InitStmt, ConditionResult Cond, |
| SourceLocation RParenLoc) { |
| Expr *CondExpr = Cond.get().second; |
| assert((Cond.isInvalid() || CondExpr) && "switch with no condition"); |
| |
| if (CondExpr && !CondExpr->isTypeDependent()) { |
| // We have already converted the expression to an integral or enumeration |
| // type, when we parsed the switch condition. There are cases where we don't |
| // have an appropriate type, e.g. a typo-expr Cond was corrected to an |
| // inappropriate-type expr, we just return an error. |
| if (!CondExpr->getType()->isIntegralOrEnumerationType()) |
| return StmtError(); |
| if (CondExpr->isKnownToHaveBooleanValue()) { |
| // switch(bool_expr) {...} is often a programmer error, e.g. |
| // switch(n && mask) { ... } // Doh - should be "n & mask". |
| // One can always use an if statement instead of switch(bool_expr). |
| Diag(SwitchLoc, diag::warn_bool_switch_condition) |
| << CondExpr->getSourceRange(); |
| } |
| } |
| |
| setFunctionHasBranchIntoScope(); |
| |
| auto *SS = SwitchStmt::Create(Context, InitStmt, Cond.get().first, CondExpr, |
| LParenLoc, RParenLoc); |
| getCurFunction()->SwitchStack.push_back( |
| FunctionScopeInfo::SwitchInfo(SS, false)); |
| return SS; |
| } |
| |
| static void AdjustAPSInt(llvm::APSInt &Val, unsigned BitWidth, bool IsSigned) { |
| Val = Val.extOrTrunc(BitWidth); |
| Val.setIsSigned(IsSigned); |
| } |
| |
| /// Check the specified case value is in range for the given unpromoted switch |
| /// type. |
| static void checkCaseValue(Sema &S, SourceLocation Loc, const llvm::APSInt &Val, |
| unsigned UnpromotedWidth, bool UnpromotedSign) { |
| // In C++11 onwards, this is checked by the language rules. |
| if (S.getLangOpts().CPlusPlus11) |
| return; |
| |
| // If the case value was signed and negative and the switch expression is |
| // unsigned, don't bother to warn: this is implementation-defined behavior. |
| // FIXME: Introduce a second, default-ignored warning for this case? |
| if (UnpromotedWidth < Val.getBitWidth()) { |
| llvm::APSInt ConvVal(Val); |
| AdjustAPSInt(ConvVal, UnpromotedWidth, UnpromotedSign); |
| AdjustAPSInt(ConvVal, Val.getBitWidth(), Val.isSigned()); |
| // FIXME: Use different diagnostics for overflow in conversion to promoted |
| // type versus "switch expression cannot have this value". Use proper |
| // IntRange checking rather than just looking at the unpromoted type here. |
| if (ConvVal != Val) |
| S.Diag(Loc, diag::warn_case_value_overflow) << toString(Val, 10) |
| << toString(ConvVal, 10); |
| } |
| } |
| |
| typedef SmallVector<std::pair<llvm::APSInt, EnumConstantDecl*>, 64> EnumValsTy; |
| |
| /// Returns true if we should emit a diagnostic about this case expression not |
| /// being a part of the enum used in the switch controlling expression. |
| static bool ShouldDiagnoseSwitchCaseNotInEnum(const Sema &S, |
| const EnumDecl *ED, |
| const Expr *CaseExpr, |
| EnumValsTy::iterator &EI, |
| EnumValsTy::iterator &EIEnd, |
| const llvm::APSInt &Val) { |
| if (!ED->isClosed()) |
| return false; |
| |
| if (const DeclRefExpr *DRE = |
| dyn_cast<DeclRefExpr>(CaseExpr->IgnoreParenImpCasts())) { |
| if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) { |
| QualType VarType = VD->getType(); |
| QualType EnumType = S.Context.getTypeDeclType(ED); |
| if (VD->hasGlobalStorage() && VarType.isConstQualified() && |
| S.Context.hasSameUnqualifiedType(EnumType, VarType)) |
| return false; |
| } |
| } |
| |
| if (ED->hasAttr<FlagEnumAttr>()) |
| return !S.IsValueInFlagEnum(ED, Val, false); |
| |
| while (EI != EIEnd && EI->first < Val) |
| EI++; |
| |
| if (EI != EIEnd && EI->first == Val) |
| return false; |
| |
| return true; |
| } |
| |
| static void checkEnumTypesInSwitchStmt(Sema &S, const Expr *Cond, |
| const Expr *Case) { |
| QualType CondType = Cond->getType(); |
| QualType CaseType = Case->getType(); |
| |
| const EnumType *CondEnumType = CondType->getAs<EnumType>(); |
| const EnumType *CaseEnumType = CaseType->getAs<EnumType>(); |
| if (!CondEnumType || !CaseEnumType) |
| return; |
| |
| // Ignore anonymous enums. |
| if (!CondEnumType->getDecl()->getIdentifier() && |
| !CondEnumType->getDecl()->getTypedefNameForAnonDecl()) |
| return; |
| if (!CaseEnumType->getDecl()->getIdentifier() && |
| !CaseEnumType->getDecl()->getTypedefNameForAnonDecl()) |
| return; |
| |
| if (S.Context.hasSameUnqualifiedType(CondType, CaseType)) |
| return; |
| |
| S.Diag(Case->getExprLoc(), diag::warn_comparison_of_mixed_enum_types_switch) |
| << CondType << CaseType << Cond->getSourceRange() |
| << Case->getSourceRange(); |
| } |
| |
| StmtResult |
| Sema::ActOnFinishSwitchStmt(SourceLocation SwitchLoc, Stmt *Switch, |
| Stmt *BodyStmt) { |
| SwitchStmt *SS = cast<SwitchStmt>(Switch); |
| bool CaseListIsIncomplete = getCurFunction()->SwitchStack.back().getInt(); |
| assert(SS == getCurFunction()->SwitchStack.back().getPointer() && |
| "switch stack missing push/pop!"); |
| |
| getCurFunction()->SwitchStack.pop_back(); |
| |
| if (!BodyStmt) return StmtError(); |
| |
| // OpenACC3.3 2.14.4: |
| // The update directive is executable. It must not appear in place of the |
| // statement following an 'if', 'while', 'do', 'switch', or 'label' in C or |
| // C++. |
| if (isa<OpenACCUpdateConstruct>(BodyStmt)) { |
| Diag(BodyStmt->getBeginLoc(), diag::err_acc_update_as_body) << /*switch*/ 3; |
| BodyStmt = new (Context) NullStmt(BodyStmt->getBeginLoc()); |
| } |
| |
| SS->setBody(BodyStmt, SwitchLoc); |
| |
| Expr *CondExpr = SS->getCond(); |
| if (!CondExpr) return StmtError(); |
| |
| QualType CondType = CondExpr->getType(); |
| |
| // C++ 6.4.2.p2: |
| // Integral promotions are performed (on the switch condition). |
| // |
| // A case value unrepresentable by the original switch condition |
| // type (before the promotion) doesn't make sense, even when it can |
| // be represented by the promoted type. Therefore we need to find |
| // the pre-promotion type of the switch condition. |
| const Expr *CondExprBeforePromotion = CondExpr; |
| QualType CondTypeBeforePromotion = |
| GetTypeBeforeIntegralPromotion(CondExprBeforePromotion); |
| |
| // Get the bitwidth of the switched-on value after promotions. We must |
| // convert the integer case values to this width before comparison. |
| bool HasDependentValue |
| = CondExpr->isTypeDependent() || CondExpr->isValueDependent(); |
| unsigned CondWidth = HasDependentValue ? 0 : Context.getIntWidth(CondType); |
| bool CondIsSigned = CondType->isSignedIntegerOrEnumerationType(); |
| |
| // Get the width and signedness that the condition might actually have, for |
| // warning purposes. |
| // FIXME: Grab an IntRange for the condition rather than using the unpromoted |
| // type. |
| unsigned CondWidthBeforePromotion |
| = HasDependentValue ? 0 : Context.getIntWidth(CondTypeBeforePromotion); |
| bool CondIsSignedBeforePromotion |
| = CondTypeBeforePromotion->isSignedIntegerOrEnumerationType(); |
| |
| // Accumulate all of the case values in a vector so that we can sort them |
| // and detect duplicates. This vector contains the APInt for the case after |
| // it has been converted to the condition type. |
| typedef SmallVector<std::pair<llvm::APSInt, CaseStmt*>, 64> CaseValsTy; |
| CaseValsTy CaseVals; |
| |
| // Keep track of any GNU case ranges we see. The APSInt is the low value. |
| typedef std::vector<std::pair<llvm::APSInt, CaseStmt*> > CaseRangesTy; |
| CaseRangesTy CaseRanges; |
| |
| DefaultStmt *TheDefaultStmt = nullptr; |
| |
| bool CaseListIsErroneous = false; |
| |
| // FIXME: We'd better diagnose missing or duplicate default labels even |
| // in the dependent case. Because default labels themselves are never |
| // dependent. |
| for (SwitchCase *SC = SS->getSwitchCaseList(); SC && !HasDependentValue; |
| SC = SC->getNextSwitchCase()) { |
| |
| if (DefaultStmt *DS = dyn_cast<DefaultStmt>(SC)) { |
| if (TheDefaultStmt) { |
| Diag(DS->getDefaultLoc(), diag::err_multiple_default_labels_defined); |
| Diag(TheDefaultStmt->getDefaultLoc(), diag::note_duplicate_case_prev); |
| |
| // FIXME: Remove the default statement from the switch block so that |
| // we'll return a valid AST. This requires recursing down the AST and |
| // finding it, not something we are set up to do right now. For now, |
| // just lop the entire switch stmt out of the AST. |
| CaseListIsErroneous = true; |
| } |
| TheDefaultStmt = DS; |
| |
| } else { |
| CaseStmt *CS = cast<CaseStmt>(SC); |
| |
| Expr *Lo = CS->getLHS(); |
| |
| if (Lo->isValueDependent()) { |
| HasDependentValue = true; |
| break; |
| } |
| |
| // We already verified that the expression has a constant value; |
| // get that value (prior to conversions). |
| const Expr *LoBeforePromotion = Lo; |
| GetTypeBeforeIntegralPromotion(LoBeforePromotion); |
| llvm::APSInt LoVal = LoBeforePromotion->EvaluateKnownConstInt(Context); |
| |
| // Check the unconverted value is within the range of possible values of |
| // the switch expression. |
| checkCaseValue(*this, Lo->getBeginLoc(), LoVal, CondWidthBeforePromotion, |
| CondIsSignedBeforePromotion); |
| |
| // FIXME: This duplicates the check performed for warn_not_in_enum below. |
| checkEnumTypesInSwitchStmt(*this, CondExprBeforePromotion, |
| LoBeforePromotion); |
| |
| // Convert the value to the same width/sign as the condition. |
| AdjustAPSInt(LoVal, CondWidth, CondIsSigned); |
| |
| // If this is a case range, remember it in CaseRanges, otherwise CaseVals. |
| if (CS->getRHS()) { |
| if (CS->getRHS()->isValueDependent()) { |
| HasDependentValue = true; |
| break; |
| } |
| CaseRanges.push_back(std::make_pair(LoVal, CS)); |
| } else |
| CaseVals.push_back(std::make_pair(LoVal, CS)); |
| } |
| } |
| |
| if (!HasDependentValue) { |
| // If we don't have a default statement, check whether the |
| // condition is constant. |
| llvm::APSInt ConstantCondValue; |
| bool HasConstantCond = false; |
| if (!TheDefaultStmt) { |
| Expr::EvalResult Result; |
| HasConstantCond = CondExpr->EvaluateAsInt(Result, Context, |
| Expr::SE_AllowSideEffects); |
| if (Result.Val.isInt()) |
| ConstantCondValue = Result.Val.getInt(); |
| assert(!HasConstantCond || |
| (ConstantCondValue.getBitWidth() == CondWidth && |
| ConstantCondValue.isSigned() == CondIsSigned)); |
| Diag(SwitchLoc, diag::warn_switch_default); |
| } |
| bool ShouldCheckConstantCond = HasConstantCond; |
| |
| // Sort all the scalar case values so we can easily detect duplicates. |
| llvm::stable_sort(CaseVals, CmpCaseVals); |
| |
| if (!CaseVals.empty()) { |
| for (unsigned i = 0, e = CaseVals.size(); i != e; ++i) { |
| if (ShouldCheckConstantCond && |
| CaseVals[i].first == ConstantCondValue) |
| ShouldCheckConstantCond = false; |
| |
| if (i != 0 && CaseVals[i].first == CaseVals[i-1].first) { |
| // If we have a duplicate, report it. |
| // First, determine if either case value has a name |
| StringRef PrevString, CurrString; |
| Expr *PrevCase = CaseVals[i-1].second->getLHS()->IgnoreParenCasts(); |
| Expr *CurrCase = CaseVals[i].second->getLHS()->IgnoreParenCasts(); |
| if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(PrevCase)) { |
| PrevString = DeclRef->getDecl()->getName(); |
| } |
| if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(CurrCase)) { |
| CurrString = DeclRef->getDecl()->getName(); |
| } |
| SmallString<16> CaseValStr; |
| CaseVals[i-1].first.toString(CaseValStr); |
| |
| if (PrevString == CurrString) |
| Diag(CaseVals[i].second->getLHS()->getBeginLoc(), |
| diag::err_duplicate_case) |
| << (PrevString.empty() ? CaseValStr.str() : PrevString); |
| else |
| Diag(CaseVals[i].second->getLHS()->getBeginLoc(), |
| diag::err_duplicate_case_differing_expr) |
| << (PrevString.empty() ? CaseValStr.str() : PrevString) |
| << (CurrString.empty() ? CaseValStr.str() : CurrString) |
| << CaseValStr; |
| |
| Diag(CaseVals[i - 1].second->getLHS()->getBeginLoc(), |
| diag::note_duplicate_case_prev); |
| // FIXME: We really want to remove the bogus case stmt from the |
| // substmt, but we have no way to do this right now. |
| CaseListIsErroneous = true; |
| } |
| } |
| } |
| |
| // Detect duplicate case ranges, which usually don't exist at all in |
| // the first place. |
| if (!CaseRanges.empty()) { |
| // Sort all the case ranges by their low value so we can easily detect |
| // overlaps between ranges. |
| llvm::stable_sort(CaseRanges); |
| |
| // Scan the ranges, computing the high values and removing empty ranges. |
| std::vector<llvm::APSInt> HiVals; |
| for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) { |
| llvm::APSInt &LoVal = CaseRanges[i].first; |
| CaseStmt *CR = CaseRanges[i].second; |
| Expr *Hi = CR->getRHS(); |
| |
| const Expr *HiBeforePromotion = Hi; |
| GetTypeBeforeIntegralPromotion(HiBeforePromotion); |
| llvm::APSInt HiVal = HiBeforePromotion->EvaluateKnownConstInt(Context); |
| |
| // Check the unconverted value is within the range of possible values of |
| // the switch expression. |
| checkCaseValue(*this, Hi->getBeginLoc(), HiVal, |
| CondWidthBeforePromotion, CondIsSignedBeforePromotion); |
| |
| // Convert the value to the same width/sign as the condition. |
| AdjustAPSInt(HiVal, CondWidth, CondIsSigned); |
| |
| // If the low value is bigger than the high value, the case is empty. |
| if (LoVal > HiVal) { |
| Diag(CR->getLHS()->getBeginLoc(), diag::warn_case_empty_range) |
| << SourceRange(CR->getLHS()->getBeginLoc(), Hi->getEndLoc()); |
| CaseRanges.erase(CaseRanges.begin()+i); |
| --i; |
| --e; |
| continue; |
| } |
| |
| if (ShouldCheckConstantCond && |
| LoVal <= ConstantCondValue && |
| ConstantCondValue <= HiVal) |
| ShouldCheckConstantCond = false; |
| |
| HiVals.push_back(HiVal); |
| } |
| |
| // Rescan the ranges, looking for overlap with singleton values and other |
| // ranges. Since the range list is sorted, we only need to compare case |
| // ranges with their neighbors. |
| for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) { |
| llvm::APSInt &CRLo = CaseRanges[i].first; |
| llvm::APSInt &CRHi = HiVals[i]; |
| CaseStmt *CR = CaseRanges[i].second; |
| |
| // Check to see whether the case range overlaps with any |
| // singleton cases. |
| CaseStmt *OverlapStmt = nullptr; |
| llvm::APSInt OverlapVal(32); |
| |
| // Find the smallest value >= the lower bound. If I is in the |
| // case range, then we have overlap. |
| CaseValsTy::iterator I = |
| llvm::lower_bound(CaseVals, CRLo, CaseCompareFunctor()); |
| if (I != CaseVals.end() && I->first < CRHi) { |
| OverlapVal = I->first; // Found overlap with scalar. |
| OverlapStmt = I->second; |
| } |
| |
| // Find the smallest value bigger than the upper bound. |
| I = std::upper_bound(I, CaseVals.end(), CRHi, CaseCompareFunctor()); |
| if (I != CaseVals.begin() && (I-1)->first >= CRLo) { |
| OverlapVal = (I-1)->first; // Found overlap with scalar. |
| OverlapStmt = (I-1)->second; |
| } |
| |
| // Check to see if this case stmt overlaps with the subsequent |
| // case range. |
| if (i && CRLo <= HiVals[i-1]) { |
| OverlapVal = HiVals[i-1]; // Found overlap with range. |
| OverlapStmt = CaseRanges[i-1].second; |
| } |
| |
| if (OverlapStmt) { |
| // If we have a duplicate, report it. |
| Diag(CR->getLHS()->getBeginLoc(), diag::err_duplicate_case) |
| << toString(OverlapVal, 10); |
| Diag(OverlapStmt->getLHS()->getBeginLoc(), |
| diag::note_duplicate_case_prev); |
| // FIXME: We really want to remove the bogus case stmt from the |
| // substmt, but we have no way to do this right now. |
| CaseListIsErroneous = true; |
| } |
| } |
| } |
| |
| // Complain if we have a constant condition and we didn't find a match. |
| if (!CaseListIsErroneous && !CaseListIsIncomplete && |
| ShouldCheckConstantCond) { |
| // TODO: it would be nice if we printed enums as enums, chars as |
| // chars, etc. |
| Diag(CondExpr->getExprLoc(), diag::warn_missing_case_for_condition) |
| << toString(ConstantCondValue, 10) |
| << CondExpr->getSourceRange(); |
| } |
| |
| // Check to see if switch is over an Enum and handles all of its |
| // values. We only issue a warning if there is not 'default:', but |
| // we still do the analysis to preserve this information in the AST |
| // (which can be used by flow-based analyes). |
| // |
| const EnumType *ET = CondTypeBeforePromotion->getAs<EnumType>(); |
| |
| // If switch has default case, then ignore it. |
| if (!CaseListIsErroneous && !CaseListIsIncomplete && !HasConstantCond && |
| ET && ET->getDecl()->isCompleteDefinition() && |
| !ET->getDecl()->enumerators().empty()) { |
| const EnumDecl *ED = ET->getDecl(); |
| EnumValsTy EnumVals; |
| |
| // Gather all enum values, set their type and sort them, |
| // allowing easier comparison with CaseVals. |
| for (auto *EDI : ED->enumerators()) { |
| llvm::APSInt Val = EDI->getInitVal(); |
| AdjustAPSInt(Val, CondWidth, CondIsSigned); |
| EnumVals.push_back(std::make_pair(Val, EDI)); |
| } |
| llvm::stable_sort(EnumVals, CmpEnumVals); |
| auto EI = EnumVals.begin(), EIEnd = |
| std::unique(EnumVals.begin(), EnumVals.end(), EqEnumVals); |
| |
| // See which case values aren't in enum. |
| for (CaseValsTy::const_iterator CI = CaseVals.begin(); |
| CI != CaseVals.end(); CI++) { |
| Expr *CaseExpr = CI->second->getLHS(); |
| if (ShouldDiagnoseSwitchCaseNotInEnum(*this, ED, CaseExpr, EI, EIEnd, |
| CI->first)) |
| Diag(CaseExpr->getExprLoc(), diag::warn_not_in_enum) |
| << CondTypeBeforePromotion; |
| } |
| |
| // See which of case ranges aren't in enum |
| EI = EnumVals.begin(); |
| for (CaseRangesTy::const_iterator RI = CaseRanges.begin(); |
| RI != CaseRanges.end(); RI++) { |
| Expr *CaseExpr = RI->second->getLHS(); |
| if (ShouldDiagnoseSwitchCaseNotInEnum(*this, ED, CaseExpr, EI, EIEnd, |
| RI->first)) |
| Diag(CaseExpr->getExprLoc(), diag::warn_not_in_enum) |
| << CondTypeBeforePromotion; |
| |
| llvm::APSInt Hi = |
| RI->second->getRHS()->EvaluateKnownConstInt(Context); |
| AdjustAPSInt(Hi, CondWidth, CondIsSigned); |
| |
| CaseExpr = RI->second->getRHS(); |
| if (ShouldDiagnoseSwitchCaseNotInEnum(*this, ED, CaseExpr, EI, EIEnd, |
| Hi)) |
| Diag(CaseExpr->getExprLoc(), diag::warn_not_in_enum) |
| << CondTypeBeforePromotion; |
| } |
| |
| // Check which enum vals aren't in switch |
| auto CI = CaseVals.begin(); |
| auto RI = CaseRanges.begin(); |
| bool hasCasesNotInSwitch = false; |
| |
| SmallVector<DeclarationName,8> UnhandledNames; |
| |
| for (EI = EnumVals.begin(); EI != EIEnd; EI++) { |
| // Don't warn about omitted unavailable EnumConstantDecls. |
| switch (EI->second->getAvailability()) { |
| case AR_Deprecated: |
| // Omitting a deprecated constant is ok; it should never materialize. |
| case AR_Unavailable: |
| continue; |
| |
| case AR_NotYetIntroduced: |
| // Partially available enum constants should be present. Note that we |
| // suppress -Wunguarded-availability diagnostics for such uses. |
| case AR_Available: |
| break; |
| } |
| |
| if (EI->second->hasAttr<UnusedAttr>()) |
| continue; |
| |
| // Drop unneeded case values |
| while (CI != CaseVals.end() && CI->first < EI->first) |
| CI++; |
| |
| if (CI != CaseVals.end() && CI->first == EI->first) |
| continue; |
| |
| // Drop unneeded case ranges |
| for (; RI != CaseRanges.end(); RI++) { |
| llvm::APSInt Hi = |
| RI->second->getRHS()->EvaluateKnownConstInt(Context); |
| AdjustAPSInt(Hi, CondWidth, CondIsSigned); |
| if (EI->first <= Hi) |
| break; |
| } |
| |
| if (RI == CaseRanges.end() || EI->first < RI->first) { |
| hasCasesNotInSwitch = true; |
| UnhandledNames.push_back(EI->second->getDeclName()); |
| } |
| } |
| |
| if (TheDefaultStmt && UnhandledNames.empty() && ED->isClosedNonFlag()) |
| Diag(TheDefaultStmt->getDefaultLoc(), diag::warn_unreachable_default); |
| |
| // Produce a nice diagnostic if multiple values aren't handled. |
| if (!UnhandledNames.empty()) { |
| auto DB = Diag(CondExpr->getExprLoc(), TheDefaultStmt |
| ? diag::warn_def_missing_case |
| : diag::warn_missing_case) |
| << CondExpr->getSourceRange() << (int)UnhandledNames.size(); |
| |
| for (size_t I = 0, E = std::min(UnhandledNames.size(), (size_t)3); |
| I != E; ++I) |
| DB << UnhandledNames[I]; |
| } |
| |
| if (!hasCasesNotInSwitch) |
| SS->setAllEnumCasesCovered(); |
| } |
| } |
| |
| if (BodyStmt) |
| DiagnoseEmptyStmtBody(CondExpr->getEndLoc(), BodyStmt, |
| diag::warn_empty_switch_body); |
| |
| // FIXME: If the case list was broken is some way, we don't have a good system |
| // to patch it up. Instead, just return the whole substmt as broken. |
| if (CaseListIsErroneous) |
| return StmtError(); |
| |
| return SS; |
| } |
| |
| void |
| Sema::DiagnoseAssignmentEnum(QualType DstType, QualType SrcType, |
| Expr *SrcExpr) { |
| if (Diags.isIgnored(diag::warn_not_in_enum_assignment, SrcExpr->getExprLoc())) |
| return; |
| |
| if (const EnumType *ET = DstType->getAs<EnumType>()) |
| if (!Context.hasSameUnqualifiedType(SrcType, DstType) && |
| SrcType->isIntegerType()) { |
| if (!SrcExpr->isTypeDependent() && !SrcExpr->isValueDependent() && |
| SrcExpr->isIntegerConstantExpr(Context)) { |
| // Get the bitwidth of the enum value before promotions. |
| unsigned DstWidth = Context.getIntWidth(DstType); |
| bool DstIsSigned = DstType->isSignedIntegerOrEnumerationType(); |
| |
| llvm::APSInt RhsVal = SrcExpr->EvaluateKnownConstInt(Context); |
| AdjustAPSInt(RhsVal, DstWidth, DstIsSigned); |
| const EnumDecl *ED = ET->getDecl(); |
| |
| if (!ED->isClosed()) |
| return; |
| |
| if (ED->hasAttr<FlagEnumAttr>()) { |
| if (!IsValueInFlagEnum(ED, RhsVal, true)) |
| Diag(SrcExpr->getExprLoc(), diag::warn_not_in_enum_assignment) |
| << DstType.getUnqualifiedType(); |
| } else { |
| typedef SmallVector<std::pair<llvm::APSInt, EnumConstantDecl *>, 64> |
| EnumValsTy; |
| EnumValsTy EnumVals; |
| |
| // Gather all enum values, set their type and sort them, |
| // allowing easier comparison with rhs constant. |
| for (auto *EDI : ED->enumerators()) { |
| llvm::APSInt Val = EDI->getInitVal(); |
| AdjustAPSInt(Val, DstWidth, DstIsSigned); |
| EnumVals.push_back(std::make_pair(Val, EDI)); |
| } |
| if (EnumVals.empty()) |
| return; |
| llvm::stable_sort(EnumVals, CmpEnumVals); |
| EnumValsTy::iterator EIend = |
| std::unique(EnumVals.begin(), EnumVals.end(), EqEnumVals); |
| |
| // See which values aren't in the enum. |
| EnumValsTy::const_iterator EI = EnumVals.begin(); |
| while (EI != EIend && EI->first < RhsVal) |
| EI++; |
| if (EI == EIend || EI->first != RhsVal) { |
| Diag(SrcExpr->getExprLoc(), diag::warn_not_in_enum_assignment) |
| << DstType.getUnqualifiedType(); |
| } |
| } |
| } |
| } |
| } |
| |
| StmtResult Sema::ActOnWhileStmt(SourceLocation WhileLoc, |
| SourceLocation LParenLoc, ConditionResult Cond, |
| SourceLocation RParenLoc, Stmt *Body) { |
| if (Cond.isInvalid()) |
| return StmtError(); |
| |
| auto CondVal = Cond.get(); |
| CheckBreakContinueBinding(CondVal.second); |
| |
| if (CondVal.second && |
| !Diags.isIgnored(diag::warn_comma_operator, CondVal.second->getExprLoc())) |
| CommaVisitor(*this).Visit(CondVal.second); |
| |
| // OpenACC3.3 2.14.4: |
| // The update directive is executable. It must not appear in place of the |
| // statement following an 'if', 'while', 'do', 'switch', or 'label' in C or |
| // C++. |
| if (isa<OpenACCUpdateConstruct>(Body)) { |
| Diag(Body->getBeginLoc(), diag::err_acc_update_as_body) << /*while*/ 1; |
| Body = new (Context) NullStmt(Body->getBeginLoc()); |
| } |
| |
| if (isa<NullStmt>(Body)) |
| getCurCompoundScope().setHasEmptyLoopBodies(); |
| |
| return WhileStmt::Create(Context, CondVal.first, CondVal.second, Body, |
| WhileLoc, LParenLoc, RParenLoc); |
| } |
| |
| StmtResult |
| Sema::ActOnDoStmt(SourceLocation DoLoc, Stmt *Body, |
| SourceLocation WhileLoc, SourceLocation CondLParen, |
| Expr *Cond, SourceLocation CondRParen) { |
| assert(Cond && "ActOnDoStmt(): missing expression"); |
| |
| CheckBreakContinueBinding(Cond); |
| ExprResult CondResult = CheckBooleanCondition(DoLoc, Cond); |
| if (CondResult.isInvalid()) |
| return StmtError(); |
| Cond = CondResult.get(); |
| |
| CondResult = ActOnFinishFullExpr(Cond, DoLoc, /*DiscardedValue*/ false); |
| if (CondResult.isInvalid()) |
| return StmtError(); |
| Cond = CondResult.get(); |
| |
| // Only call the CommaVisitor for C89 due to differences in scope flags. |
| if (Cond && !getLangOpts().C99 && !getLangOpts().CPlusPlus && |
| !Diags.isIgnored(diag::warn_comma_operator, Cond->getExprLoc())) |
| CommaVisitor(*this).Visit(Cond); |
| |
| // OpenACC3.3 2.14.4: |
| // The update directive is executable. It must not appear in place of the |
| // statement following an 'if', 'while', 'do', 'switch', or 'label' in C or |
| // C++. |
| if (isa<OpenACCUpdateConstruct>(Body)) { |
| Diag(Body->getBeginLoc(), diag::err_acc_update_as_body) << /*do*/ 2; |
| Body = new (Context) NullStmt(Body->getBeginLoc()); |
| } |
| |
| return new (Context) DoStmt(Body, Cond, DoLoc, WhileLoc, CondRParen); |
| } |
| |
| namespace { |
| // Use SetVector since the diagnostic cares about the ordering of the Decl's. |
| using DeclSetVector = llvm::SmallSetVector<VarDecl *, 8>; |
| |
| // This visitor will traverse a conditional statement and store all |
| // the evaluated decls into a vector. Simple is set to true if none |
| // of the excluded constructs are used. |
| class DeclExtractor : public EvaluatedExprVisitor<DeclExtractor> { |
| DeclSetVector &Decls; |
| SmallVectorImpl<SourceRange> &Ranges; |
| bool Simple; |
| public: |
| typedef EvaluatedExprVisitor<DeclExtractor> Inherited; |
| |
| DeclExtractor(Sema &S, DeclSetVector &Decls, |
| SmallVectorImpl<SourceRange> &Ranges) : |
| Inherited(S.Context), |
| Decls(Decls), |
| Ranges(Ranges), |
| Simple(true) {} |
| |
| bool isSimple() { return Simple; } |
| |
| // Replaces the method in EvaluatedExprVisitor. |
| void VisitMemberExpr(MemberExpr* E) { |
| Simple = false; |
| } |
| |
| // Any Stmt not explicitly listed will cause the condition to be marked |
| // complex. |
| void VisitStmt(Stmt *S) { Simple = false; } |
| |
| void VisitBinaryOperator(BinaryOperator *E) { |
| Visit(E->getLHS()); |
| Visit(E->getRHS()); |
| } |
| |
| void VisitCastExpr(CastExpr *E) { |
| Visit(E->getSubExpr()); |
| } |
| |
| void VisitUnaryOperator(UnaryOperator *E) { |
| // Skip checking conditionals with derefernces. |
| if (E->getOpcode() == UO_Deref) |
| Simple = false; |
| else |
| Visit(E->getSubExpr()); |
| } |
| |
| void VisitConditionalOperator(ConditionalOperator *E) { |
| Visit(E->getCond()); |
| Visit(E->getTrueExpr()); |
| Visit(E->getFalseExpr()); |
| } |
| |
| void VisitParenExpr(ParenExpr *E) { |
| Visit(E->getSubExpr()); |
| } |
| |
| void VisitBinaryConditionalOperator(BinaryConditionalOperator *E) { |
| Visit(E->getOpaqueValue()->getSourceExpr()); |
| Visit(E->getFalseExpr()); |
| } |
| |
| void VisitIntegerLiteral(IntegerLiteral *E) { } |
| void VisitFloatingLiteral(FloatingLiteral *E) { } |
| void VisitCXXBoolLiteralExpr(CXXBoolLiteralExpr *E) { } |
| void VisitCharacterLiteral(CharacterLiteral *E) { } |
| void VisitGNUNullExpr(GNUNullExpr *E) { } |
| void VisitImaginaryLiteral(ImaginaryLiteral *E) { } |
| |
| void VisitDeclRefExpr(DeclRefExpr *E) { |
| VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()); |
| if (!VD) { |
| // Don't allow unhandled Decl types. |
| Simple = false; |
| return; |
| } |
| |
| Ranges.push_back(E->getSourceRange()); |
| |
| Decls.insert(VD); |
| } |
| |
| }; // end class DeclExtractor |
| |
| // DeclMatcher checks to see if the decls are used in a non-evaluated |
| // context. |
| class DeclMatcher : public EvaluatedExprVisitor<DeclMatcher> { |
| DeclSetVector &Decls; |
| bool FoundDecl; |
| |
| public: |
| typedef EvaluatedExprVisitor<DeclMatcher> Inherited; |
| |
| DeclMatcher(Sema &S, DeclSetVector &Decls, Stmt *Statement) : |
| Inherited(S.Context), Decls(Decls), FoundDecl(false) { |
| if (!Statement) return; |
| |
| Visit(Statement); |
| } |
| |
| void VisitReturnStmt(ReturnStmt *S) { |
| FoundDecl = true; |
| } |
| |
| void VisitBreakStmt(BreakStmt *S) { |
| FoundDecl = true; |
| } |
| |
| void VisitGotoStmt(GotoStmt *S) { |
| FoundDecl = true; |
| } |
| |
| void VisitCastExpr(CastExpr *E) { |
| if (E->getCastKind() == CK_LValueToRValue) |
| CheckLValueToRValueCast(E->getSubExpr()); |
| else |
| Visit(E->getSubExpr()); |
| } |
| |
| void CheckLValueToRValueCast(Expr *E) { |
| E = E->IgnoreParenImpCasts(); |
| |
| if (isa<DeclRefExpr>(E)) { |
| return; |
| } |
| |
| if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) { |
| Visit(CO->getCond()); |
| CheckLValueToRValueCast(CO->getTrueExpr()); |
| CheckLValueToRValueCast(CO->getFalseExpr()); |
| return; |
| } |
| |
| if (BinaryConditionalOperator *BCO = |
| dyn_cast<BinaryConditionalOperator>(E)) { |
| CheckLValueToRValueCast(BCO->getOpaqueValue()->getSourceExpr()); |
| CheckLValueToRValueCast(BCO->getFalseExpr()); |
| return; |
| } |
| |
| Visit(E); |
| } |
| |
| void VisitDeclRefExpr(DeclRefExpr *E) { |
| if (VarDecl *VD = dyn_cast<VarDecl>(E->getDecl())) |
| if (Decls.count(VD)) |
| FoundDecl = true; |
| } |
| |
| void VisitPseudoObjectExpr(PseudoObjectExpr *POE) { |
| // Only need to visit the semantics for POE. |
| // SyntaticForm doesn't really use the Decal. |
| for (auto *S : POE->semantics()) { |
| if (auto *OVE = dyn_cast<OpaqueValueExpr>(S)) |
| // Look past the OVE into the expression it binds. |
| Visit(OVE->getSourceExpr()); |
| else |
| Visit(S); |
| } |
| } |
| |
| bool FoundDeclInUse() { return FoundDecl; } |
| |
| }; // end class DeclMatcher |
| |
| void CheckForLoopConditionalStatement(Sema &S, Expr *Second, |
| Expr *Third, Stmt *Body) { |
| // Condition is empty |
| if (!Second) return; |
| |
| if (S.Diags.isIgnored(diag::warn_variables_not_in_loop_body, |
| Second->getBeginLoc())) |
| return; |
| |
| PartialDiagnostic PDiag = S.PDiag(diag::warn_variables_not_in_loop_body); |
| DeclSetVector Decls; |
| SmallVector<SourceRange, 10> Ranges; |
| DeclExtractor DE(S, Decls, Ranges); |
| DE.Visit(Second); |
| |
| // Don't analyze complex conditionals. |
| if (!DE.isSimple()) return; |
| |
| // No decls found. |
| if (Decls.size() == 0) return; |
| |
| // Don't warn on volatile, static, or global variables. |
| for (auto *VD : Decls) |
| if (VD->getType().isVolatileQualified() || VD->hasGlobalStorage()) |
| return; |
| |
| if (DeclMatcher(S, Decls, Second).FoundDeclInUse() || |
| DeclMatcher(S, Decls, Third).FoundDeclInUse() || |
| DeclMatcher(S, Decls, Body).FoundDeclInUse()) |
| return; |
| |
| // Load decl names into diagnostic. |
| if (Decls.size() > 4) { |
| PDiag << 0; |
| } else { |
| PDiag << (unsigned)Decls.size(); |
| for (auto *VD : Decls) |
| PDiag << VD->getDeclName(); |
| } |
| |
| for (auto Range : Ranges) |
| PDiag << Range; |
| |
| S.Diag(Ranges.begin()->getBegin(), PDiag); |
| } |
| |
| // If Statement is an incemement or decrement, return true and sets the |
| // variables Increment and DRE. |
| bool ProcessIterationStmt(Sema &S, Stmt* Statement, bool &Increment, |
| DeclRefExpr *&DRE) { |
| if (auto Cleanups = dyn_cast<ExprWithCleanups>(Statement)) |
| if (!Cleanups->cleanupsHaveSideEffects()) |
| Statement = Cleanups->getSubExpr(); |
| |
| if (UnaryOperator *UO = dyn_cast<UnaryOperator>(Statement)) { |
| switch (UO->getOpcode()) { |
| default: return false; |
| case UO_PostInc: |
| case UO_PreInc: |
| Increment = true; |
| break; |
| case UO_PostDec: |
| case UO_PreDec: |
| Increment = false; |
| break; |
| } |
| DRE = dyn_cast<DeclRefExpr>(UO->getSubExpr()); |
| return DRE; |
| } |
| |
| if (CXXOperatorCallExpr *Call = dyn_cast<CXXOperatorCallExpr>(Statement)) { |
| FunctionDecl *FD = Call->getDirectCallee(); |
| if (!FD || !FD->isOverloadedOperator()) return false; |
| switch (FD->getOverloadedOperator()) { |
| default: return false; |
| case OO_PlusPlus: |
| Increment = true; |
| break; |
| case OO_MinusMinus: |
| Increment = false; |
| break; |
| } |
| DRE = dyn_cast<DeclRefExpr>(Call->getArg(0)); |
| return DRE; |
| } |
| |
| return false; |
| } |
| |
| // A visitor to determine if a continue or break statement is a |
| // subexpression. |
| class BreakContinueFinder : public ConstEvaluatedExprVisitor<BreakContinueFinder> { |
| SourceLocation BreakLoc; |
| SourceLocation ContinueLoc; |
| bool InSwitch = false; |
| |
| public: |
| BreakContinueFinder(Sema &S, const Stmt* Body) : |
| Inherited(S.Context) { |
| Visit(Body); |
| } |
| |
| typedef ConstEvaluatedExprVisitor<BreakContinueFinder> Inherited; |
| |
| void VisitContinueStmt(const ContinueStmt* E) { |
| ContinueLoc = E->getContinueLoc(); |
| } |
| |
| void VisitBreakStmt(const BreakStmt* E) { |
| if (!InSwitch) |
| BreakLoc = E->getBreakLoc(); |
| } |
| |
| void VisitSwitchStmt(const SwitchStmt* S) { |
| if (const Stmt *Init = S->getInit()) |
| Visit(Init); |
| if (const Stmt *CondVar = S->getConditionVariableDeclStmt()) |
| Visit(CondVar); |
| if (const Stmt *Cond = S->getCond()) |
| Visit(Cond); |
| |
| // Don't return break statements from the body of a switch. |
| InSwitch = true; |
| if (const Stmt *Body = S->getBody()) |
| Visit(Body); |
| InSwitch = false; |
| } |
| |
| void VisitForStmt(const ForStmt *S) { |
| // Only visit the init statement of a for loop; the body |
| // has a different break/continue scope. |
| if (const Stmt *Init = S->getInit()) |
| Visit(Init); |
| } |
| |
| void VisitWhileStmt(const WhileStmt *) { |
| // Do nothing; the children of a while loop have a different |
| // break/continue scope. |
| } |
| |
| void VisitDoStmt(const DoStmt *) { |
| // Do nothing; the children of a while loop have a different |
| // break/continue scope. |
| } |
| |
| void VisitCXXForRangeStmt(const CXXForRangeStmt *S) { |
| // Only visit the initialization of a for loop; the body |
| // has a different break/continue scope. |
| if (const Stmt *Init = S->getInit()) |
| Visit(Init); |
| if (const Stmt *Range = S->getRangeStmt()) |
| Visit(Range); |
| if (const Stmt *Begin = S->getBeginStmt()) |
| Visit(Begin); |
| if (const Stmt *End = S->getEndStmt()) |
| Visit(End); |
| } |
| |
| void VisitObjCForCollectionStmt(const ObjCForCollectionStmt *S) { |
| // Only visit the initialization of a for loop; the body |
| // has a different break/continue scope. |
| if (const Stmt *Element = S->getElement()) |
| Visit(Element); |
| if (const Stmt *Collection = S->getCollection()) |
| Visit(Collection); |
| } |
| |
| bool ContinueFound() { return ContinueLoc.isValid(); } |
| bool BreakFound() { return BreakLoc.isValid(); } |
| SourceLocation GetContinueLoc() { return ContinueLoc; } |
| SourceLocation GetBreakLoc() { return BreakLoc; } |
| |
| }; // end class BreakContinueFinder |
| |
| // Emit a warning when a loop increment/decrement appears twice per loop |
| // iteration. The conditions which trigger this warning are: |
| // 1) The last statement in the loop body and the third expression in the |
| // for loop are both increment or both decrement of the same variable |
| // 2) No continue statements in the loop body. |
| void CheckForRedundantIteration(Sema &S, Expr *Third, Stmt *Body) { |
| // Return when there is nothing to check. |
| if (!Body || !Third) return; |
| |
| if (S.Diags.isIgnored(diag::warn_redundant_loop_iteration, |
| Third->getBeginLoc())) |
| return; |
| |
| // Get the last statement from the loop body. |
| CompoundStmt *CS = dyn_cast<CompoundStmt>(Body); |
| if (!CS || CS->body_empty()) return; |
| Stmt *LastStmt = CS->body_back(); |
| if (!LastStmt) return; |
| |
| bool LoopIncrement, LastIncrement; |
| DeclRefExpr *LoopDRE, *LastDRE; |
| |
| if (!ProcessIterationStmt(S, Third, LoopIncrement, LoopDRE)) return; |
| if (!ProcessIterationStmt(S, LastStmt, LastIncrement, LastDRE)) return; |
| |
| // Check that the two statements are both increments or both decrements |
| // on the same variable. |
| if (LoopIncrement != LastIncrement || |
| LoopDRE->getDecl() != LastDRE->getDecl()) return; |
| |
| if (BreakContinueFinder(S, Body).ContinueFound()) return; |
| |
| S.Diag(LastDRE->getLocation(), diag::warn_redundant_loop_iteration) |
| << LastDRE->getDecl() << LastIncrement; |
| S.Diag(LoopDRE->getLocation(), diag::note_loop_iteration_here) |
| << LoopIncrement; |
| } |
| |
| } // end namespace |
| |
| |
| void Sema::CheckBreakContinueBinding(Expr *E) { |
| if (!E || getLangOpts().CPlusPlus) |
| return; |
| BreakContinueFinder BCFinder(*this, E); |
| Scope *BreakParent = CurScope->getBreakParent(); |
| if (BCFinder.BreakFound() && BreakParent) { |
| if (BreakParent->getFlags() & Scope::SwitchScope) { |
| Diag(BCFinder.GetBreakLoc(), diag::warn_break_binds_to_switch); |
| } else { |
| Diag(BCFinder.GetBreakLoc(), diag::warn_loop_ctrl_binds_to_inner) |
| << "break"; |
| } |
| } else if (BCFinder.ContinueFound() && CurScope->getContinueParent()) { |
| Diag(BCFinder.GetContinueLoc(), diag::warn_loop_ctrl_binds_to_inner) |
| << "continue"; |
| } |
| } |
| |
| StmtResult Sema::ActOnForStmt(SourceLocation ForLoc, SourceLocation LParenLoc, |
| Stmt *First, ConditionResult Second, |
| FullExprArg third, SourceLocation RParenLoc, |
| Stmt *Body) { |
| if (Second.isInvalid()) |
| return StmtError(); |
| |
| if (!getLangOpts().CPlusPlus) { |
| if (DeclStmt *DS = dyn_cast_or_null<DeclStmt>(First)) { |
| // C99 6.8.5p3: The declaration part of a 'for' statement shall only |
| // declare identifiers for objects having storage class 'auto' or |
| // 'register'. |
| const Decl *NonVarSeen = nullptr; |
| bool VarDeclSeen = false; |
| for (auto *DI : DS->decls()) { |
| if (VarDecl *VD = dyn_cast<VarDecl>(DI)) { |
| VarDeclSeen = true; |
| if (VD->isLocalVarDecl() && !VD->hasLocalStorage()) { |
| Diag(DI->getLocation(), diag::err_non_local_variable_decl_in_for); |
| DI->setInvalidDecl(); |
| } |
| } else if (!NonVarSeen) { |
| // Keep track of the first non-variable declaration we saw so that |
| // we can diagnose if we don't see any variable declarations. This |
| // covers a case like declaring a typedef, function, or structure |
| // type rather than a variable. |
| NonVarSeen = DI; |
| } |
| } |
| // Diagnose if we saw a non-variable declaration but no variable |
| // declarations. |
| if (NonVarSeen && !VarDeclSeen) |
| Diag(NonVarSeen->getLocation(), diag::err_non_variable_decl_in_for); |
| } |
| } |
| |
| CheckBreakContinueBinding(Second.get().second); |
| CheckBreakContinueBinding(third.get()); |
| |
| if (!Second.get().first) |
| CheckForLoopConditionalStatement(*this, Second.get().second, third.get(), |
| Body); |
| CheckForRedundantIteration(*this, third.get(), Body); |
| |
| if (Second.get().second && |
| !Diags.isIgnored(diag::warn_comma_operator, |
| Second.get().second->getExprLoc())) |
| CommaVisitor(*this).Visit(Second.get().second); |
| |
| Expr *Third = third.release().getAs<Expr>(); |
| if (isa<NullStmt>(Body)) |
| getCurCompoundScope().setHasEmptyLoopBodies(); |
| |
| return new (Context) |
| ForStmt(Context, First, Second.get().second, Second.get().first, Third, |
| Body, ForLoc, LParenLoc, RParenLoc); |
| } |
| |
| StmtResult Sema::ActOnForEachLValueExpr(Expr *E) { |
| // Reduce placeholder expressions here. Note that this rejects the |
| // use of pseudo-object l-values in this position. |
| ExprResult result = CheckPlaceholderExpr(E); |
| if (result.isInvalid()) return StmtError(); |
| E = result.get(); |
| |
| ExprResult FullExpr = ActOnFinishFullExpr(E, /*DiscardedValue*/ false); |
| if (FullExpr.isInvalid()) |
| return StmtError(); |
| return StmtResult(static_cast<Stmt*>(FullExpr.get())); |
| } |
| |
| /// Finish building a variable declaration for a for-range statement. |
| /// \return true if an error occurs. |
| static bool FinishForRangeVarDecl(Sema &SemaRef, VarDecl *Decl, Expr *Init, |
| SourceLocation Loc, int DiagID) { |
| if (Decl->getType()->isUndeducedType()) { |
| ExprResult Res = SemaRef.CorrectDelayedTyposInExpr(Init); |
| if (!Res.isUsable()) { |
| Decl->setInvalidDecl(); |
| return true; |
| } |
| Init = Res.get(); |
| } |
| |
| // Deduce the type for the iterator variable now rather than leaving it to |
| // AddInitializerToDecl, so we can produce a more suitable diagnostic. |
| QualType InitType; |
| if (!isa<InitListExpr>(Init) && Init->getType()->isVoidType()) { |
| SemaRef.Diag(Loc, DiagID) << Init->getType(); |
| } else { |
| TemplateDeductionInfo Info(Init->getExprLoc()); |
| TemplateDeductionResult Result = SemaRef.DeduceAutoType( |
| Decl->getTypeSourceInfo()->getTypeLoc(), Init, InitType, Info); |
| if (Result != TemplateDeductionResult::Success && |
| Result != TemplateDeductionResult::AlreadyDiagnosed) |
| SemaRef.Diag(Loc, DiagID) << Init->getType(); |
| } |
| |
| if (InitType.isNull()) { |
| Decl->setInvalidDecl(); |
| return true; |
| } |
| Decl->setType(InitType); |
| |
| // In ARC, infer lifetime. |
| // FIXME: ARC may want to turn this into 'const __unsafe_unretained' if |
| // we're doing the equivalent of fast iteration. |
| if (SemaRef.getLangOpts().ObjCAutoRefCount && |
| SemaRef.ObjC().inferObjCARCLifetime(Decl)) |
| Decl->setInvalidDecl(); |
| |
| SemaRef.AddInitializerToDecl(Decl, Init, /*DirectInit=*/false); |
| SemaRef.FinalizeDeclaration(Decl); |
| SemaRef.CurContext->addHiddenDecl(Decl); |
| return false; |
| } |
| |
| namespace { |
| // An enum to represent whether something is dealing with a call to begin() |
| // or a call to end() in a range-based for loop. |
| enum BeginEndFunction { |
| BEF_begin, |
| BEF_end |
| }; |
| |
| /// Produce a note indicating which begin/end function was implicitly called |
| /// by a C++11 for-range statement. This is often not obvious from the code, |
| /// nor from the diagnostics produced when analysing the implicit expressions |
| /// required in a for-range statement. |
| void NoteForRangeBeginEndFunction(Sema &SemaRef, Expr *E, |
| BeginEndFunction BEF) { |
| CallExpr *CE = dyn_cast<CallExpr>(E); |
| if (!CE) |
| return; |
| FunctionDecl *D = dyn_cast<FunctionDecl>(CE->getCalleeDecl()); |
| if (!D) |
| return; |
| SourceLocation Loc = D->getLocation(); |
| |
| std::string Description; |
| bool IsTemplate = false; |
| if (FunctionTemplateDecl *FunTmpl = D->getPrimaryTemplate()) { |
| Description = SemaRef.getTemplateArgumentBindingsText( |
| FunTmpl->getTemplateParameters(), *D->getTemplateSpecializationArgs()); |
| IsTemplate = true; |
| } |
| |
| SemaRef.Diag(Loc, diag::note_for_range_begin_end) |
| << BEF << IsTemplate << Description << E->getType(); |
| } |
| |
| /// Build a variable declaration for a for-range statement. |
| VarDecl *BuildForRangeVarDecl(Sema &SemaRef, SourceLocation Loc, |
| QualType Type, StringRef Name) { |
| DeclContext *DC = SemaRef.CurContext; |
| IdentifierInfo *II = &SemaRef.PP.getIdentifierTable().get(Name); |
| TypeSourceInfo *TInfo = SemaRef.Context.getTrivialTypeSourceInfo(Type, Loc); |
| VarDecl *Decl = VarDecl::Create(SemaRef.Context, DC, Loc, Loc, II, Type, |
| TInfo, SC_None); |
| Decl->setImplicit(); |
| return Decl; |
| } |
| |
| } |
| |
| static bool ObjCEnumerationCollection(Expr *Collection) { |
| return !Collection->isTypeDependent() |
| && Collection->getType()->getAs<ObjCObjectPointerType>() != nullptr; |
| } |
| |
| StmtResult Sema::ActOnCXXForRangeStmt( |
| Scope *S, SourceLocation ForLoc, SourceLocation CoawaitLoc, Stmt *InitStmt, |
| Stmt *First, SourceLocation ColonLoc, Expr *Range, SourceLocation RParenLoc, |
| BuildForRangeKind Kind, |
| ArrayRef<MaterializeTemporaryExpr *> LifetimeExtendTemps) { |
| // FIXME: recover in order to allow the body to be parsed. |
| if (!First) |
| return StmtError(); |
| |
| if (Range && ObjCEnumerationCollection(Range)) { |
| // FIXME: Support init-statements in Objective-C++20 ranged for statement. |
| if (InitStmt) |
| return Diag(InitStmt->getBeginLoc(), diag::err_objc_for_range_init_stmt) |
| << InitStmt->getSourceRange(); |
| return ObjC().ActOnObjCForCollectionStmt(ForLoc, First, Range, RParenLoc); |
| } |
| |
| DeclStmt *DS = dyn_cast<DeclStmt>(First); |
| assert(DS && "first part of for range not a decl stmt"); |
| |
| if (!DS->isSingleDecl()) { |
| Diag(DS->getBeginLoc(), diag::err_type_defined_in_for_range); |
| return StmtError(); |
| } |
| |
| // This function is responsible for attaching an initializer to LoopVar. We |
| // must call ActOnInitializerError if we fail to do so. |
| Decl *LoopVar = DS->getSingleDecl(); |
| if (LoopVar->isInvalidDecl() || !Range || |
| DiagnoseUnexpandedParameterPack(Range, UPPC_Expression)) { |
| ActOnInitializerError(LoopVar); |
| return StmtError(); |
| } |
| |
| // Build the coroutine state immediately and not later during template |
| // instantiation |
| if (!CoawaitLoc.isInvalid()) { |
| if (!ActOnCoroutineBodyStart(S, CoawaitLoc, "co_await")) { |
| ActOnInitializerError(LoopVar); |
| return StmtError(); |
| } |
| } |
| |
| // Build auto && __range = range-init |
| // Divide by 2, since the variables are in the inner scope (loop body). |
| const auto DepthStr = std::to_string(S->getDepth() / 2); |
| SourceLocation RangeLoc = Range->getBeginLoc(); |
| VarDecl *RangeVar = BuildForRangeVarDecl(*this, RangeLoc, |
| Context.getAutoRRefDeductType(), |
| std::string("__range") + DepthStr); |
| if (FinishForRangeVarDecl(*this, RangeVar, Range, RangeLoc, |
| diag::err_for_range_deduction_failure)) { |
| ActOnInitializerError(LoopVar); |
| return StmtError(); |
| } |
| |
| // Claim the type doesn't contain auto: we've already done the checking. |
| DeclGroupPtrTy RangeGroup = |
| BuildDeclaratorGroup(MutableArrayRef<Decl *>((Decl **)&RangeVar, 1)); |
| StmtResult RangeDecl = ActOnDeclStmt(RangeGroup, RangeLoc, RangeLoc); |
| if (RangeDecl.isInvalid()) { |
| ActOnInitializerError(LoopVar); |
| return StmtError(); |
| } |
| |
| StmtResult R = BuildCXXForRangeStmt( |
| ForLoc, CoawaitLoc, InitStmt, ColonLoc, RangeDecl.get(), |
| /*BeginStmt=*/nullptr, /*EndStmt=*/nullptr, |
| /*Cond=*/nullptr, /*Inc=*/nullptr, DS, RParenLoc, Kind, |
| LifetimeExtendTemps); |
| if (R.isInvalid()) { |
| ActOnInitializerError(LoopVar); |
| return StmtError(); |
| } |
| |
| return R; |
| } |
| |
| /// Create the initialization, compare, and increment steps for |
| /// the range-based for loop expression. |
| /// This function does not handle array-based for loops, |
| /// which are created in Sema::BuildCXXForRangeStmt. |
| /// |
| /// \returns a ForRangeStatus indicating success or what kind of error occurred. |
| /// BeginExpr and EndExpr are set and FRS_Success is returned on success; |
| /// CandidateSet and BEF are set and some non-success value is returned on |
| /// failure. |
| static Sema::ForRangeStatus |
| BuildNonArrayForRange(Sema &SemaRef, Expr *BeginRange, Expr *EndRange, |
| QualType RangeType, VarDecl *BeginVar, VarDecl *EndVar, |
| SourceLocation ColonLoc, SourceLocation CoawaitLoc, |
| OverloadCandidateSet *CandidateSet, ExprResult *BeginExpr, |
| ExprResult *EndExpr, BeginEndFunction *BEF) { |
| DeclarationNameInfo BeginNameInfo( |
| &SemaRef.PP.getIdentifierTable().get("begin"), ColonLoc); |
| DeclarationNameInfo EndNameInfo(&SemaRef.PP.getIdentifierTable().get("end"), |
| ColonLoc); |
| |
| LookupResult BeginMemberLookup(SemaRef, BeginNameInfo, |
| Sema::LookupMemberName); |
| LookupResult EndMemberLookup(SemaRef, EndNameInfo, Sema::LookupMemberName); |
| |
| auto BuildBegin = [&] { |
| *BEF = BEF_begin; |
| Sema::ForRangeStatus RangeStatus = |
| SemaRef.BuildForRangeBeginEndCall(ColonLoc, ColonLoc, BeginNameInfo, |
| BeginMemberLookup, CandidateSet, |
| BeginRange, BeginExpr); |
| |
| if (RangeStatus != Sema::FRS_Success) { |
| if (RangeStatus == Sema::FRS_DiagnosticIssued) |
| SemaRef.Diag(BeginRange->getBeginLoc(), diag::note_in_for_range) |
| << ColonLoc << BEF_begin << BeginRange->getType(); |
| return RangeStatus; |
| } |
| if (!CoawaitLoc.isInvalid()) { |
| // FIXME: getCurScope() should not be used during template instantiation. |
| // We should pick up the set of unqualified lookup results for operator |
| // co_await during the initial parse. |
| *BeginExpr = SemaRef.ActOnCoawaitExpr(SemaRef.getCurScope(), ColonLoc, |
| BeginExpr->get()); |
| if (BeginExpr->isInvalid()) |
| return Sema::FRS_DiagnosticIssued; |
| } |
| if (FinishForRangeVarDecl(SemaRef, BeginVar, BeginExpr->get(), ColonLoc, |
| diag::err_for_range_iter_deduction_failure)) { |
| NoteForRangeBeginEndFunction(SemaRef, BeginExpr->get(), *BEF); |
| return Sema::FRS_DiagnosticIssued; |
| } |
| return Sema::FRS_Success; |
| }; |
| |
| auto BuildEnd = [&] { |
| *BEF = BEF_end; |
| Sema::ForRangeStatus RangeStatus = |
| SemaRef.BuildForRangeBeginEndCall(ColonLoc, ColonLoc, EndNameInfo, |
| EndMemberLookup, CandidateSet, |
| EndRange, EndExpr); |
| if (RangeStatus != Sema::FRS_Success) { |
| if (RangeStatus == Sema::FRS_DiagnosticIssued) |
| SemaRef.Diag(EndRange->getBeginLoc(), diag::note_in_for_range) |
| << ColonLoc << BEF_end << EndRange->getType(); |
| return RangeStatus; |
| } |
| if (FinishForRangeVarDecl(SemaRef, EndVar, EndExpr->get(), ColonLoc, |
| diag::err_for_range_iter_deduction_failure)) { |
| NoteForRangeBeginEndFunction(SemaRef, EndExpr->get(), *BEF); |
| return Sema::FRS_DiagnosticIssued; |
| } |
| return Sema::FRS_Success; |
| }; |
| |
| if (CXXRecordDecl *D = RangeType->getAsCXXRecordDecl()) { |
| // - if _RangeT is a class type, the unqualified-ids begin and end are |
| // looked up in the scope of class _RangeT as if by class member access |
| // lookup (3.4.5), and if either (or both) finds at least one |
| // declaration, begin-expr and end-expr are __range.begin() and |
| // __range.end(), respectively; |
| SemaRef.LookupQualifiedName(BeginMemberLookup, D); |
| if (BeginMemberLookup.isAmbiguous()) |
| return Sema::FRS_DiagnosticIssued; |
| |
| SemaRef.LookupQualifiedName(EndMemberLookup, D); |
| if (EndMemberLookup.isAmbiguous()) |
| return Sema::FRS_DiagnosticIssued; |
| |
| if (BeginMemberLookup.empty() != EndMemberLookup.empty()) { |
| // Look up the non-member form of the member we didn't find, first. |
| // This way we prefer a "no viable 'end'" diagnostic over a "i found |
| // a 'begin' but ignored it because there was no member 'end'" |
| // diagnostic. |
| auto BuildNonmember = [&]( |
| BeginEndFunction BEFFound, LookupResult &Found, |
| llvm::function_ref<Sema::ForRangeStatus()> BuildFound, |
| llvm::function_ref<Sema::ForRangeStatus()> BuildNotFound) { |
| LookupResult OldFound = std::move(Found); |
| Found.clear(); |
| |
| if (Sema::ForRangeStatus Result = BuildNotFound()) |
| return Result; |
| |
| switch (BuildFound()) { |
| case Sema::FRS_Success: |
| return Sema::FRS_Success; |
| |
| case Sema::FRS_NoViableFunction: |
| CandidateSet->NoteCandidates( |
| PartialDiagnosticAt(BeginRange->getBeginLoc(), |
| SemaRef.PDiag(diag::err_for_range_invalid) |
| << BeginRange->getType() << BEFFound), |
| SemaRef, OCD_AllCandidates, BeginRange); |
| [[fallthrough]]; |
| |
| case Sema::FRS_DiagnosticIssued: |
| for (NamedDecl *D : OldFound) { |
| SemaRef.Diag(D->getLocation(), |
| diag::note_for_range_member_begin_end_ignored) |
| << BeginRange->getType() << BEFFound; |
| } |
| return Sema::FRS_DiagnosticIssued; |
| } |
| llvm_unreachable("unexpected ForRangeStatus"); |
| }; |
| if (BeginMemberLookup.empty()) |
| return BuildNonmember(BEF_end, EndMemberLookup, BuildEnd, BuildBegin); |
| return BuildNonmember(BEF_begin, BeginMemberLookup, BuildBegin, BuildEnd); |
| } |
| } else { |
| // - otherwise, begin-expr and end-expr are begin(__range) and |
| // end(__range), respectively, where begin and end are looked up with |
| // argument-dependent lookup (3.4.2). For the purposes of this name |
| // lookup, namespace std is an associated namespace. |
| } |
| |
| if (Sema::ForRangeStatus Result = BuildBegin()) |
| return Result; |
| return BuildEnd(); |
| } |
| |
| /// Speculatively attempt to dereference an invalid range expression. |
| /// If the attempt fails, this function will return a valid, null StmtResult |
| /// and emit no diagnostics. |
| static StmtResult RebuildForRangeWithDereference(Sema &SemaRef, Scope *S, |
| SourceLocation ForLoc, |
| SourceLocation CoawaitLoc, |
| Stmt *InitStmt, |
| Stmt *LoopVarDecl, |
| SourceLocation ColonLoc, |
| Expr *Range, |
| SourceLocation RangeLoc, |
| SourceLocation RParenLoc) { |
| // Determine whether we can rebuild the for-range statement with a |
| // dereferenced range expression. |
| ExprResult AdjustedRange; |
| { |
| Sema::SFINAETrap Trap(SemaRef); |
| |
| AdjustedRange = SemaRef.BuildUnaryOp(S, RangeLoc, UO_Deref, Range); |
| if (AdjustedRange.isInvalid()) |
| return StmtResult(); |
| |
| StmtResult SR = SemaRef.ActOnCXXForRangeStmt( |
| S, ForLoc, CoawaitLoc, InitStmt, LoopVarDecl, ColonLoc, |
| AdjustedRange.get(), RParenLoc, Sema::BFRK_Check); |
| if (SR.isInvalid()) |
| return StmtResult(); |
| } |
| |
| // The attempt to dereference worked well enough that it could produce a valid |
| // loop. Produce a fixit, and rebuild the loop with diagnostics enabled, in |
| // case there are any other (non-fatal) problems with it. |
| SemaRef.Diag(RangeLoc, diag::err_for_range_dereference) |
| << Range->getType() << FixItHint::CreateInsertion(RangeLoc, "*"); |
| return SemaRef.ActOnCXXForRangeStmt( |
| S, ForLoc, CoawaitLoc, InitStmt, LoopVarDecl, ColonLoc, |
| AdjustedRange.get(), RParenLoc, Sema::BFRK_Rebuild); |
| } |
| |
| StmtResult Sema::BuildCXXForRangeStmt( |
| SourceLocation ForLoc, SourceLocation CoawaitLoc, Stmt *InitStmt, |
| SourceLocation ColonLoc, Stmt *RangeDecl, Stmt *Begin, Stmt *End, |
| Expr *Cond, Expr *Inc, Stmt *LoopVarDecl, SourceLocation RParenLoc, |
| BuildForRangeKind Kind, |
| ArrayRef<MaterializeTemporaryExpr *> LifetimeExtendTemps) { |
| // FIXME: This should not be used during template instantiation. We should |
| // pick up the set of unqualified lookup results for the != and + operators |
| // in the initial parse. |
| // |
| // Testcase (accepts-invalid): |
| // template<typename T> void f() { for (auto x : T()) {} } |
| // namespace N { struct X { X begin(); X end(); int operator*(); }; } |
| // bool operator!=(N::X, N::X); void operator++(N::X); |
| // void g() { f<N::X>(); } |
| Scope *S = getCurScope(); |
| |
| DeclStmt *RangeDS = cast<DeclStmt>(RangeDecl); |
| VarDecl *RangeVar = cast<VarDecl>(RangeDS->getSingleDecl()); |
| QualType RangeVarType = RangeVar->getType(); |
| |
| DeclStmt *LoopVarDS = cast<DeclStmt>(LoopVarDecl); |
| VarDecl *LoopVar = cast<VarDecl>(LoopVarDS->getSingleDecl()); |
| |
| StmtResult BeginDeclStmt = Begin; |
| StmtResult EndDeclStmt = End; |
| ExprResult NotEqExpr = Cond, IncrExpr = Inc; |
| |
| if (RangeVarType->isDependentType()) { |
| // The range is implicitly used as a placeholder when it is dependent. |
| RangeVar->markUsed(Context); |
| |
| // Deduce any 'auto's in the loop variable as 'DependentTy'. We'll fill |
| // them in properly when we instantiate the loop. |
| if (!LoopVar->isInvalidDecl() && Kind != BFRK_Check) { |
| if (auto *DD = dyn_cast<DecompositionDecl>(LoopVar)) |
| for (auto *Binding : DD->bindings()) { |
| if (!Binding->isParameterPack()) |
| Binding->setType(Context.DependentTy); |
| } |
| LoopVar->setType(SubstAutoTypeDependent(LoopVar->getType())); |
| } |
| } else if (!BeginDeclStmt.get()) { |
| SourceLocation RangeLoc = RangeVar->getLocation(); |
| |
| const QualType RangeVarNonRefType = RangeVarType.getNonReferenceType(); |
| |
| ExprResult BeginRangeRef = BuildDeclRefExpr(RangeVar, RangeVarNonRefType, |
| VK_LValue, ColonLoc); |
| if (BeginRangeRef.isInvalid()) |
| return StmtError(); |
| |
| ExprResult EndRangeRef = BuildDeclRefExpr(RangeVar, RangeVarNonRefType, |
| VK_LValue, ColonLoc); |
| if (EndRangeRef.isInvalid()) |
| return StmtError(); |
| |
| QualType AutoType = Context.getAutoDeductType(); |
| Expr *Range = RangeVar->getInit(); |
| if (!Range) |
| return StmtError(); |
| QualType RangeType = Range->getType(); |
| |
| if (RequireCompleteType(RangeLoc, RangeType, |
| diag::err_for_range_incomplete_type)) |
| return StmtError(); |
| |
| // P2718R0 - Lifetime extension in range-based for loops. |
| if (getLangOpts().CPlusPlus23 && !LifetimeExtendTemps.empty()) { |
| InitializedEntity Entity = |
| InitializedEntity::InitializeVariable(RangeVar); |
| for (auto *MTE : LifetimeExtendTemps) |
| MTE->setExtendingDecl(RangeVar, Entity.allocateManglingNumber()); |
| } |
| |
| // Build auto __begin = begin-expr, __end = end-expr. |
| // Divide by 2, since the variables are in the inner scope (loop body). |
| const auto DepthStr = std::to_string(S->getDepth() / 2); |
| VarDecl *BeginVar = BuildForRangeVarDecl(*this, ColonLoc, AutoType, |
| std::string("__begin") + DepthStr); |
| VarDecl *EndVar = BuildForRangeVarDecl(*this, ColonLoc, AutoType, |
| std::string("__end") + DepthStr); |
| |
| // Build begin-expr and end-expr and attach to __begin and __end variables. |
| ExprResult BeginExpr, EndExpr; |
| if (const ArrayType *UnqAT = RangeType->getAsArrayTypeUnsafe()) { |
| // - if _RangeT is an array type, begin-expr and end-expr are __range and |
| // __range + __bound, respectively, where __bound is the array bound. If |
| // _RangeT is an array of unknown size or an array of incomplete type, |
| // the program is ill-formed; |
| |
| // begin-expr is __range. |
| BeginExpr = BeginRangeRef; |
| if (!CoawaitLoc.isInvalid()) { |
| BeginExpr = ActOnCoawaitExpr(S, ColonLoc, BeginExpr.get()); |
| if (BeginExpr.isInvalid()) |
| return StmtError(); |
| } |
| if (FinishForRangeVarDecl(*this, BeginVar, BeginRangeRef.get(), ColonLoc, |
| diag::err_for_range_iter_deduction_failure)) { |
| NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin); |
| return StmtError(); |
| } |
| |
| // Find the array bound. |
| ExprResult BoundExpr; |
| if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(UnqAT)) |
| BoundExpr = IntegerLiteral::Create( |
| Context, CAT->getSize(), Context.getPointerDiffType(), RangeLoc); |
| else if (const VariableArrayType *VAT = |
| dyn_cast<VariableArrayType>(UnqAT)) { |
| // For a variably modified type we can't just use the expression within |
| // the array bounds, since we don't want that to be re-evaluated here. |
| // Rather, we need to determine what it was when the array was first |
| // created - so we resort to using sizeof(vla)/sizeof(element). |
| // For e.g. |
| // void f(int b) { |
| // int vla[b]; |
| // b = -1; <-- This should not affect the num of iterations below |
| // for (int &c : vla) { .. } |
| // } |
| |
| // FIXME: This results in codegen generating IR that recalculates the |
| // run-time number of elements (as opposed to just using the IR Value |
| // that corresponds to the run-time value of each bound that was |
| // generated when the array was created.) If this proves too embarrassing |
| // even for unoptimized IR, consider passing a magic-value/cookie to |
| // codegen that then knows to simply use that initial llvm::Value (that |
| // corresponds to the bound at time of array creation) within |
| // getelementptr. But be prepared to pay the price of increasing a |
| // customized form of coupling between the two components - which could |
| // be hard to maintain as the codebase evolves. |
| |
| ExprResult SizeOfVLAExprR = ActOnUnaryExprOrTypeTraitExpr( |
| EndVar->getLocation(), UETT_SizeOf, |
| /*IsType=*/true, |
| CreateParsedType(VAT->desugar(), Context.getTrivialTypeSourceInfo( |
| VAT->desugar(), RangeLoc)) |
| .getAsOpaquePtr(), |
| EndVar->getSourceRange()); |
| if (SizeOfVLAExprR.isInvalid()) |
| return StmtError(); |
| |
| ExprResult SizeOfEachElementExprR = ActOnUnaryExprOrTypeTraitExpr( |
| EndVar->getLocation(), UETT_SizeOf, |
| /*IsType=*/true, |
| CreateParsedType(VAT->desugar(), |
| Context.getTrivialTypeSourceInfo( |
| VAT->getElementType(), RangeLoc)) |
| .getAsOpaquePtr(), |
| EndVar->getSourceRange()); |
| if (SizeOfEachElementExprR.isInvalid()) |
| return StmtError(); |
| |
| BoundExpr = |
| ActOnBinOp(S, EndVar->getLocation(), tok::slash, |
| SizeOfVLAExprR.get(), SizeOfEachElementExprR.get()); |
| if (BoundExpr.isInvalid()) |
| return StmtError(); |
| |
| } else { |
| // Can't be a DependentSizedArrayType or an IncompleteArrayType since |
| // UnqAT is not incomplete and Range is not type-dependent. |
| llvm_unreachable("Unexpected array type in for-range"); |
| } |
| |
| // end-expr is __range + __bound. |
| EndExpr = ActOnBinOp(S, ColonLoc, tok::plus, EndRangeRef.get(), |
| BoundExpr.get()); |
| if (EndExpr.isInvalid()) |
| return StmtError(); |
| if (FinishForRangeVarDecl(*this, EndVar, EndExpr.get(), ColonLoc, |
| diag::err_for_range_iter_deduction_failure)) { |
| NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end); |
| return StmtError(); |
| } |
| } else { |
| OverloadCandidateSet CandidateSet(RangeLoc, |
| OverloadCandidateSet::CSK_Normal); |
| BeginEndFunction BEFFailure; |
| ForRangeStatus RangeStatus = BuildNonArrayForRange( |
| *this, BeginRangeRef.get(), EndRangeRef.get(), RangeType, BeginVar, |
| EndVar, ColonLoc, CoawaitLoc, &CandidateSet, &BeginExpr, &EndExpr, |
| &BEFFailure); |
| |
| if (Kind == BFRK_Build && RangeStatus == FRS_NoViableFunction && |
| BEFFailure == BEF_begin) { |
| // If the range is being built from an array parameter, emit a |
| // a diagnostic that it is being treated as a pointer. |
| if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Range)) { |
| if (ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl())) { |
| QualType ArrayTy = PVD->getOriginalType(); |
| QualType PointerTy = PVD->getType(); |
| if (PointerTy->isPointerType() && ArrayTy->isArrayType()) { |
| Diag(Range->getBeginLoc(), diag::err_range_on_array_parameter) |
| << RangeLoc << PVD << ArrayTy << PointerTy; |
| Diag(PVD->getLocation(), diag::note_declared_at); |
| return StmtError(); |
| } |
| } |
| } |
| |
| // If building the range failed, try dereferencing the range expression |
| // unless a diagnostic was issued or the end function is problematic. |
| StmtResult SR = RebuildForRangeWithDereference(*this, S, ForLoc, |
| CoawaitLoc, InitStmt, |
| LoopVarDecl, ColonLoc, |
| Range, RangeLoc, |
| RParenLoc); |
| if (SR.isInvalid() || SR.isUsable()) |
| return SR; |
| } |
| |
| // Otherwise, emit diagnostics if we haven't already. |
| if (RangeStatus == FRS_NoViableFunction) { |
| Expr *Range = BEFFailure ? EndRangeRef.get() : BeginRangeRef.get(); |
| CandidateSet.NoteCandidates( |
| PartialDiagnosticAt(Range->getBeginLoc(), |
| PDiag(diag::err_for_range_invalid) |
| << RangeLoc << Range->getType() |
| << BEFFailure), |
| *this, OCD_AllCandidates, Range); |
| } |
| // Return an error if no fix was discovered. |
| if (RangeStatus != FRS_Success) |
| return StmtError(); |
| } |
| |
| assert(!BeginExpr.isInvalid() && !EndExpr.isInvalid() && |
| "invalid range expression in for loop"); |
| |
| // C++11 [dcl.spec.auto]p7: BeginType and EndType must be the same. |
| // C++1z removes this restriction. |
| QualType BeginType = BeginVar->getType(), EndType = EndVar->getType(); |
| if (!Context.hasSameType(BeginType, EndType)) { |
| Diag(RangeLoc, getLangOpts().CPlusPlus17 |
| ? diag::warn_for_range_begin_end_types_differ |
| : diag::ext_for_range_begin_end_types_differ) |
| << BeginType << EndType; |
| NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin); |
| NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end); |
| } |
| |
| BeginDeclStmt = |
| ActOnDeclStmt(ConvertDeclToDeclGroup(BeginVar), ColonLoc, ColonLoc); |
| EndDeclStmt = |
| ActOnDeclStmt(ConvertDeclToDeclGroup(EndVar), ColonLoc, ColonLoc); |
| |
| const QualType BeginRefNonRefType = BeginType.getNonReferenceType(); |
| ExprResult BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType, |
| VK_LValue, ColonLoc); |
| if (BeginRef.isInvalid()) |
| return StmtError(); |
| |
| ExprResult EndRef = BuildDeclRefExpr(EndVar, EndType.getNonReferenceType(), |
| VK_LValue, ColonLoc); |
| if (EndRef.isInvalid()) |
| return StmtError(); |
| |
| // Build and check __begin != __end expression. |
| NotEqExpr = ActOnBinOp(S, ColonLoc, tok::exclaimequal, |
| BeginRef.get(), EndRef.get()); |
| if (!NotEqExpr.isInvalid()) |
| NotEqExpr = CheckBooleanCondition(ColonLoc, NotEqExpr.get()); |
| if (!NotEqExpr.isInvalid()) |
| NotEqExpr = |
| ActOnFinishFullExpr(NotEqExpr.get(), /*DiscardedValue*/ false); |
| if (NotEqExpr.isInvalid()) { |
| Diag(RangeLoc, diag::note_for_range_invalid_iterator) |
| << RangeLoc << 0 << BeginRangeRef.get()->getType(); |
| NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin); |
| if (!Context.hasSameType(BeginType, EndType)) |
| NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end); |
| return StmtError(); |
| } |
| |
| // Build and check ++__begin expression. |
| BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType, |
| VK_LValue, ColonLoc); |
| if (BeginRef.isInvalid()) |
| return StmtError(); |
| |
| IncrExpr = ActOnUnaryOp(S, ColonLoc, tok::plusplus, BeginRef.get()); |
| if (!IncrExpr.isInvalid() && CoawaitLoc.isValid()) |
| // FIXME: getCurScope() should not be used during template instantiation. |
| // We should pick up the set of unqualified lookup results for operator |
| // co_await during the initial parse. |
| IncrExpr = ActOnCoawaitExpr(S, CoawaitLoc, IncrExpr.get()); |
| if (!IncrExpr.isInvalid()) |
| IncrExpr = ActOnFinishFullExpr(IncrExpr.get(), /*DiscardedValue*/ false); |
| if (IncrExpr.isInvalid()) { |
| Diag(RangeLoc, diag::note_for_range_invalid_iterator) |
| << RangeLoc << 2 << BeginRangeRef.get()->getType() ; |
| NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin); |
| return StmtError(); |
| } |
| |
| // Build and check *__begin expression. |
| BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType, |
| VK_LValue, ColonLoc); |
| if (BeginRef.isInvalid()) |
| return StmtError(); |
| |
| ExprResult DerefExpr = ActOnUnaryOp(S, ColonLoc, tok::star, BeginRef.get()); |
| if (DerefExpr.isInvalid()) { |
| Diag(RangeLoc, diag::note_for_range_invalid_iterator) |
| << RangeLoc << 1 << BeginRangeRef.get()->getType(); |
| NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin); |
| return StmtError(); |
| } |
| |
| // Attach *__begin as initializer for VD. Don't touch it if we're just |
| // trying to determine whether this would be a valid range. |
| if (!LoopVar->isInvalidDecl() && Kind != BFRK_Check) { |
| AddInitializerToDecl(LoopVar, DerefExpr.get(), /*DirectInit=*/false); |
| if (LoopVar->isInvalidDecl() || |
| (LoopVar->getInit() && LoopVar->getInit()->containsErrors())) |
| NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin); |
| } |
| } |
| |
| // Don't bother to actually allocate the result if we're just trying to |
| // determine whether it would be valid. |
| if (Kind == BFRK_Check) |
| return StmtResult(); |
| |
| // In OpenMP loop region loop control variable must be private. Perform |
| // analysis of first part (if any). |
| if (getLangOpts().OpenMP >= 50 && BeginDeclStmt.isUsable()) |
| OpenMP().ActOnOpenMPLoopInitialization(ForLoc, BeginDeclStmt.get()); |
| |
| return new (Context) CXXForRangeStmt( |
| InitStmt, RangeDS, cast_or_null<DeclStmt>(BeginDeclStmt.get()), |
| cast_or_null<DeclStmt>(EndDeclStmt.get()), NotEqExpr.get(), |
| IncrExpr.get(), LoopVarDS, /*Body=*/nullptr, ForLoc, CoawaitLoc, |
| ColonLoc, RParenLoc); |
| } |
| |
| // Warn when the loop variable is a const reference that creates a copy. |
| // Suggest using the non-reference type for copies. If a copy can be prevented |
| // suggest the const reference type that would do so. |
| // For instance, given "for (const &Foo : Range)", suggest |
| // "for (const Foo : Range)" to denote a copy is made for the loop. If |
| // possible, also suggest "for (const &Bar : Range)" if this type prevents |
| // the copy altogether. |
| static void DiagnoseForRangeReferenceVariableCopies(Sema &SemaRef, |
| const VarDecl *VD, |
| QualType RangeInitType) { |
| const Expr *InitExpr = VD->getInit(); |
| if (!InitExpr) |
| return; |
| |
| QualType VariableType = VD->getType(); |
| |
| if (auto Cleanups = dyn_cast<ExprWithCleanups>(InitExpr)) |
| if (!Cleanups->cleanupsHaveSideEffects()) |
| InitExpr = Cleanups->getSubExpr(); |
| |
| const MaterializeTemporaryExpr *MTE = |
| dyn_cast<MaterializeTemporaryExpr>(InitExpr); |
| |
| // No copy made. |
| if (!MTE) |
| return; |
| |
| const Expr *E = MTE->getSubExpr()->IgnoreImpCasts(); |
| |
| // Searching for either UnaryOperator for dereference of a pointer or |
| // CXXOperatorCallExpr for handling iterators. |
| while (!isa<CXXOperatorCallExpr>(E) && !isa<UnaryOperator>(E)) { |
| if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(E)) { |
| E = CCE->getArg(0); |
| } else if (const CXXMemberCallExpr *Call = dyn_cast<CXXMemberCallExpr>(E)) { |
| const MemberExpr *ME = cast<MemberExpr>(Call->getCallee()); |
| E = ME->getBase(); |
| } else { |
| const MaterializeTemporaryExpr *MTE = cast<MaterializeTemporaryExpr>(E); |
| E = MTE->getSubExpr(); |
| } |
| E = E->IgnoreImpCasts(); |
| } |
| |
| QualType ReferenceReturnType; |
| if (isa<UnaryOperator>(E)) { |
| ReferenceReturnType = SemaRef.Context.getLValueReferenceType(E->getType()); |
| } else { |
| const CXXOperatorCallExpr *Call = cast<CXXOperatorCallExpr>(E); |
| const FunctionDecl *FD = Call->getDirectCallee(); |
| QualType ReturnType = FD->getReturnType(); |
| if (ReturnType->isReferenceType()) |
| ReferenceReturnType = ReturnType; |
| } |
| |
| if (!ReferenceReturnType.isNull()) { |
| // Loop variable creates a temporary. Suggest either to go with |
| // non-reference loop variable to indicate a copy is made, or |
| // the correct type to bind a const reference. |
| SemaRef.Diag(VD->getLocation(), |
| diag::warn_for_range_const_ref_binds_temp_built_from_ref) |
| << VD << VariableType << ReferenceReturnType; |
| QualType NonReferenceType = VariableType.getNonReferenceType(); |
| NonReferenceType.removeLocalConst(); |
| QualType NewReferenceType = |
| SemaRef.Context.getLValueReferenceType(E->getType().withConst()); |
| SemaRef.Diag(VD->getBeginLoc(), diag::note_use_type_or_non_reference) |
| << NonReferenceType << NewReferenceType << VD->getSourceRange() |
| << FixItHint::CreateRemoval(VD->getTypeSpecEndLoc()); |
| } else if (!VariableType->isRValueReferenceType()) { |
| // The range always returns a copy, so a temporary is always created. |
| // Suggest removing the reference from the loop variable. |
| // If the type is a rvalue reference do not warn since that changes the |
| // semantic of the code. |
| SemaRef.Diag(VD->getLocation(), diag::warn_for_range_ref_binds_ret_temp) |
| << VD << RangeInitType; |
| QualType NonReferenceType = VariableType.getNonReferenceType(); |
| NonReferenceType.removeLocalConst(); |
| SemaRef.Diag(VD->getBeginLoc(), diag::note_use_non_reference_type) |
| << NonReferenceType << VD->getSourceRange() |
| << FixItHint::CreateRemoval(VD->getTypeSpecEndLoc()); |
| } |
| } |
| |
| /// Determines whether the @p VariableType's declaration is a record with the |
| /// clang::trivial_abi attribute. |
| static bool hasTrivialABIAttr(QualType VariableType) { |
| if (CXXRecordDecl *RD = VariableType->getAsCXXRecordDecl()) |
| return RD->hasAttr<TrivialABIAttr>(); |
| |
| return false; |
| } |
| |
| // Warns when the loop variable can be changed to a reference type to |
| // prevent a copy. For instance, if given "for (const Foo x : Range)" suggest |
| // "for (const Foo &x : Range)" if this form does not make a copy. |
| static void DiagnoseForRangeConstVariableCopies(Sema &SemaRef, |
| const VarDecl *VD) { |
| const Expr *InitExpr = VD->getInit(); |
| if (!InitExpr) |
| return; |
| |
| QualType VariableType = VD->getType(); |
| |
| if (const CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(InitExpr)) { |
| if (!CE->getConstructor()->isCopyConstructor()) |
| return; |
| } else if (const CastExpr *CE = dyn_cast<CastExpr>(InitExpr)) { |
| if (CE->getCastKind() != CK_LValueToRValue) |
| return; |
| } else { |
| return; |
| } |
| |
| // Small trivially copyable types are cheap to copy. Do not emit the |
| // diagnostic for these instances. 64 bytes is a common size of a cache line. |
| // (The function `getTypeSize` returns the size in bits.) |
| ASTContext &Ctx = SemaRef.Context; |
| if (Ctx.getTypeSize(VariableType) <= 64 * 8 && |
| (VariableType.isTriviallyCopyConstructibleType(Ctx) || |
| hasTrivialABIAttr(VariableType))) |
| return; |
| |
| // Suggest changing from a const variable to a const reference variable |
| // if doing so will prevent a copy. |
| SemaRef.Diag(VD->getLocation(), diag::warn_for_range_copy) |
| << VD << VariableType; |
| SemaRef.Diag(VD->getBeginLoc(), diag::note_use_reference_type) |
| << SemaRef.Context.getLValueReferenceType(VariableType) |
| << VD->getSourceRange() |
| << FixItHint::CreateInsertion(VD->getLocation(), "&"); |
| } |
| |
| /// DiagnoseForRangeVariableCopies - Diagnose three cases and fixes for them. |
| /// 1) for (const foo &x : foos) where foos only returns a copy. Suggest |
| /// using "const foo x" to show that a copy is made |
| /// 2) for (const bar &x : foos) where bar is a temporary initialized by bar. |
| /// Suggest either "const bar x" to keep the copying or "const foo& x" to |
| /// prevent the copy. |
| /// 3) for (const foo x : foos) where x is constructed from a reference foo. |
| /// Suggest "const foo &x" to prevent the copy. |
| static void DiagnoseForRangeVariableCopies(Sema &SemaRef, |
| const CXXForRangeStmt *ForStmt) { |
| if (SemaRef.inTemplateInstantiation()) |
| return; |
| |
| if (SemaRef.Diags.isIgnored( |
| diag::warn_for_range_const_ref_binds_temp_built_from_ref, |
| ForStmt->getBeginLoc()) && |
| SemaRef.Diags.isIgnored(diag::warn_for_range_ref_binds_ret_temp, |
| ForStmt->getBeginLoc()) && |
| SemaRef.Diags.isIgnored(diag::warn_for_range_copy, |
| ForStmt->getBeginLoc())) { |
| return; |
| } |
| |
| const VarDecl *VD = ForStmt->getLoopVariable(); |
| if (!VD) |
| return; |
| |
| QualType VariableType = VD->getType(); |
| |
| if (VariableType->isIncompleteType()) |
| return; |
| |
| const Expr *InitExpr = VD->getInit(); |
| if (!InitExpr) |
| return; |
| |
| if (InitExpr->getExprLoc().isMacroID()) |
| return; |
| |
| if (VariableType->isReferenceType()) { |
| DiagnoseForRangeReferenceVariableCopies(SemaRef, VD, |
| ForStmt->getRangeInit()->getType()); |
| } else if (VariableType.isConstQualified()) { |
| DiagnoseForRangeConstVariableCopies(SemaRef, VD); |
| } |
| } |
| |
| StmtResult Sema::FinishCXXForRangeStmt(Stmt *S, Stmt *B) { |
| if (!S || !B) |
| return StmtError(); |
| |
| if (isa<ObjCForCollectionStmt>(S)) |
| return ObjC().FinishObjCForCollectionStmt(S, B); |
| |
| CXXForRangeStmt *ForStmt = cast<CXXForRangeStmt>(S); |
| ForStmt->setBody(B); |
| |
| DiagnoseEmptyStmtBody(ForStmt->getRParenLoc(), B, |
| diag::warn_empty_range_based_for_body); |
| |
| DiagnoseForRangeVariableCopies(*this, ForStmt); |
| |
| return S; |
| } |
| |
| StmtResult Sema::ActOnGotoStmt(SourceLocation GotoLoc, |
| SourceLocation LabelLoc, |
| LabelDecl *TheDecl) { |
| setFunctionHasBranchIntoScope(); |
| |
| // If this goto is in a compute construct scope, we need to make sure we check |
| // gotos in/out. |
| if (getCurScope()->isInOpenACCComputeConstructScope()) |
| setFunctionHasBranchProtectedScope(); |
| |
| TheDecl->markUsed(Context); |
| return new (Context) GotoStmt(TheDecl, GotoLoc, LabelLoc); |
| } |
| |
| StmtResult |
| Sema::ActOnIndirectGotoStmt(SourceLocation GotoLoc, SourceLocation StarLoc, |
| Expr *E) { |
| // Convert operand to void* |
| if (!E->isTypeDependent()) { |
| QualType ETy = E->getType(); |
| QualType DestTy = Context.getPointerType(Context.VoidTy.withConst()); |
| ExprResult ExprRes = E; |
| AssignConvertType ConvTy = |
| CheckSingleAssignmentConstraints(DestTy, ExprRes); |
| if (ExprRes.isInvalid()) |
| return StmtError(); |
| E = ExprRes.get(); |
| if (DiagnoseAssignmentResult(ConvTy, StarLoc, DestTy, ETy, E, |
| AssignmentAction::Passing)) |
| return StmtError(); |
| } |
| |
| ExprResult ExprRes = ActOnFinishFullExpr(E, /*DiscardedValue*/ false); |
| if (ExprRes.isInvalid()) |
| return StmtError(); |
| E = ExprRes.get(); |
| |
| setFunctionHasIndirectGoto(); |
| |
| // If this goto is in a compute construct scope, we need to make sure we |
| // check gotos in/out. |
| if (getCurScope()->isInOpenACCComputeConstructScope()) |
| setFunctionHasBranchProtectedScope(); |
| |
| return new (Context) IndirectGotoStmt(GotoLoc, StarLoc, E); |
| } |
| |
| static void CheckJumpOutOfSEHFinally(Sema &S, SourceLocation Loc, |
| const Scope &DestScope) { |
| if (!S.CurrentSEHFinally.empty() && |
| DestScope.Contains(*S.CurrentSEHFinally.back())) { |
| S.Diag(Loc, diag::warn_jump_out_of_seh_finally); |
| } |
| } |
| |
| StmtResult |
| Sema::ActOnContinueStmt(SourceLocation ContinueLoc, Scope *CurScope) { |
| Scope *S = CurScope->getContinueParent(); |
| if (!S) { |
| // C99 6.8.6.2p1: A break shall appear only in or as a loop body. |
| return StmtError(Diag(ContinueLoc, diag::err_continue_not_in_loop)); |
| } |
| if (S->isConditionVarScope()) { |
| // We cannot 'continue;' from within a statement expression in the |
| // initializer of a condition variable because we would jump past the |
| // initialization of that variable. |
| return StmtError(Diag(ContinueLoc, diag::err_continue_from_cond_var_init)); |
| } |
| |
| // A 'continue' that would normally have execution continue on a block outside |
| // of a compute construct counts as 'branching out of' the compute construct, |
| // so diagnose here. |
| if (S->isOpenACCComputeConstructScope()) |
| return StmtError( |
| Diag(ContinueLoc, diag::err_acc_branch_in_out_compute_construct) |
| << /*branch*/ 0 << /*out of */ 0); |
| |
| CheckJumpOutOfSEHFinally(*this, ContinueLoc, *S); |
| |
| return new (Context) ContinueStmt(ContinueLoc); |
| } |
| |
| StmtResult |
| Sema::ActOnBreakStmt(SourceLocation BreakLoc, Scope *CurScope) { |
| Scope *S = CurScope->getBreakParent(); |
| if (!S) { |
| // C99 6.8.6.3p1: A break shall appear only in or as a switch/loop body. |
| return StmtError(Diag(BreakLoc, diag::err_break_not_in_loop_or_switch)); |
| } |
| if (S->isOpenMPLoopScope()) |
| return StmtError(Diag(BreakLoc, diag::err_omp_loop_cannot_use_stmt) |
| << "break"); |
| |
| // OpenACC doesn't allow 'break'ing from a compute construct, so diagnose if |
| // we are trying to do so. This can come in 2 flavors: 1-the break'able thing |
| // (besides the compute construct) 'contains' the compute construct, at which |
| // point the 'break' scope will be the compute construct. Else it could be a |
| // loop of some sort that has a direct parent of the compute construct. |
| // However, a 'break' in a 'switch' marked as a compute construct doesn't |
| // count as 'branch out of' the compute construct. |
| if (S->isOpenACCComputeConstructScope() || |
| (S->isLoopScope() && S->getParent() && |
| S->getParent()->isOpenACCComputeConstructScope())) |
| return StmtError( |
| Diag(BreakLoc, diag::err_acc_branch_in_out_compute_construct) |
| << /*branch*/ 0 << /*out of */ 0); |
| |
| CheckJumpOutOfSEHFinally(*this, BreakLoc, *S); |
| |
| return new (Context) BreakStmt(BreakLoc); |
| } |
| |
| Sema::NamedReturnInfo Sema::getNamedReturnInfo(Expr *&E, |
| SimplerImplicitMoveMode Mode) { |
| if (!E) |
| return NamedReturnInfo(); |
| // - in a return statement in a function [where] ... |
| // ... the expression is the name of a non-volatile automatic object ... |
| const auto *DR = dyn_cast<DeclRefExpr>(E->IgnoreParens()); |
| if (!DR || DR->refersToEnclosingVariableOrCapture()) |
| return NamedReturnInfo(); |
| const auto *VD = dyn_cast<VarDecl>(DR->getDecl()); |
| if (!VD) |
| return NamedReturnInfo(); |
| if (VD->getInit() && VD->getInit()->containsErrors()) |
| return NamedReturnInfo(); |
| NamedReturnInfo Res = getNamedReturnInfo(VD); |
| if (Res.Candidate && !E->isXValue() && |
| (Mode == SimplerImplicitMoveMode::ForceOn || |
| (Mode != SimplerImplicitMoveMode::ForceOff && |
| getLangOpts().CPlusPlus23))) { |
| E = ImplicitCastExpr::Create(Context, VD->getType().getNonReferenceType(), |
| CK_NoOp, E, nullptr, VK_XValue, |
| FPOptionsOverride()); |
| } |
| return Res; |
| } |
| |
| Sema::NamedReturnInfo Sema::getNamedReturnInfo(const VarDecl *VD) { |
| NamedReturnInfo Info{VD, NamedReturnInfo::MoveEligibleAndCopyElidable}; |
| |
| // C++20 [class.copy.elision]p3: |
| // - in a return statement in a function with ... |
| // (other than a function ... parameter) |
| if (VD->getKind() == Decl::ParmVar) |
| Info.S = NamedReturnInfo::MoveEligible; |
| else if (VD->getKind() != Decl::Var) |
| return NamedReturnInfo(); |
| |
| // (other than ... a catch-clause parameter) |
| if (VD->isExceptionVariable()) |
| Info.S = NamedReturnInfo::MoveEligible; |
| |
| // ...automatic... |
| if (!VD->hasLocalStorage()) |
| return NamedReturnInfo(); |
| |
| // We don't want to implicitly move out of a __block variable during a return |
| // because we cannot assume the variable will no longer be used. |
| if (VD->hasAttr<BlocksAttr>()) |
| return NamedReturnInfo(); |
| |
| QualType VDType = VD->getType(); |
| if (VDType->isObjectType()) { |
| // C++17 [class.copy.elision]p3: |
| // ...non-volatile automatic object... |
| if (VDType.isVolatileQualified()) |
| return NamedReturnInfo(); |
| } else if (VDType->isRValueReferenceType()) { |
| // C++20 [class.copy.elision]p3: |
| // ...either a non-volatile object or an rvalue reference to a non-volatile |
| // object type... |
| QualType VDReferencedType = VDType.getNonReferenceType(); |
| if (VDReferencedType.isVolatileQualified() || |
| !VDReferencedType->isObjectType()) |
| return NamedReturnInfo(); |
| Info.S = NamedReturnInfo::MoveEligible; |
| } else { |
| return NamedReturnInfo(); |
| } |
| |
| // Variables with higher required alignment than their type's ABI |
| // alignment cannot use NRVO. |
| if (!VD->hasDependentAlignment() && !VDType->isIncompleteType() && |
| Context.getDeclAlign(VD) > Context.getTypeAlignInChars(VDType)) |
| Info.S = NamedReturnInfo::MoveEligible; |
| |
| return Info; |
| } |
| |
| const VarDecl *Sema::getCopyElisionCandidate(NamedReturnInfo &Info, |
| QualType ReturnType) { |
| if (!Info.Candidate) |
| return nullptr; |
| |
| auto invalidNRVO = [&] { |
| Info = NamedReturnInfo(); |
| return nullptr; |
| }; |
| |
| // If we got a non-deduced auto ReturnType, we are in a dependent context and |
| // there is no point in allowing copy elision since we won't have it deduced |
| // by the point the VardDecl is instantiated, which is the last chance we have |
| // of deciding if the candidate is really copy elidable. |
| if ((ReturnType->getTypeClass() == Type::TypeClass::Auto && |
| ReturnType->isCanonicalUnqualified()) || |
| ReturnType->isSpecificBuiltinType(BuiltinType::Dependent)) |
| return invalidNRVO(); |
| |
| if (!ReturnType->isDependentType()) { |
| // - in a return statement in a function with ... |
| // ... a class return type ... |
| if (!ReturnType->isRecordType()) |
| return invalidNRVO(); |
| |
| QualType VDType = Info.Candidate->getType(); |
| // ... the same cv-unqualified type as the function return type ... |
| // When considering moving this expression out, allow dissimilar types. |
| if (!VDType->isDependentType() && |
| !Context.hasSameUnqualifiedType(ReturnType, VDType)) |
| Info.S = NamedReturnInfo::MoveEligible; |
| } |
| return Info.isCopyElidable() ? Info.Candidate : nullptr; |
| } |
| |
| /// Verify that the initialization sequence that was picked for the |
| /// first overload resolution is permissible under C++98. |
| /// |
| /// Reject (possibly converting) constructors not taking an rvalue reference, |
| /// or user conversion operators which are not ref-qualified. |
| static bool |
| VerifyInitializationSequenceCXX98(const Sema &S, |
| const InitializationSequence &Seq) { |
| const auto *Step = llvm::find_if(Seq.steps(), [](const auto &Step) { |
| return Step.Kind == InitializationSequence::SK_ConstructorInitialization || |
| Step.Kind == InitializationSequence::SK_UserConversion; |
| }); |
| if (Step != Seq.step_end()) { |
| const auto *FD = Step->Function.Function; |
| if (isa<CXXConstructorDecl>(FD) |
| ? !FD->getParamDecl(0)->getType()->isRValueReferenceType() |
| : cast<CXXMethodDecl>(FD)->getRefQualifier() == RQ_None) |
| return false; |
| } |
| return true; |
| } |
| |
| ExprResult Sema::PerformMoveOrCopyInitialization( |
| const InitializedEntity &Entity, const NamedReturnInfo &NRInfo, Expr *Value, |
| bool SupressSimplerImplicitMoves) { |
| if (getLangOpts().CPlusPlus && |
| (!getLangOpts().CPlusPlus23 || SupressSimplerImplicitMoves) && |
| NRInfo.isMoveEligible()) { |
| ImplicitCastExpr AsRvalue(ImplicitCastExpr::OnStack, Value->getType(), |
| CK_NoOp, Value, VK_XValue, FPOptionsOverride()); |
| Expr *InitExpr = &AsRvalue; |
| auto Kind = InitializationKind::CreateCopy(Value->getBeginLoc(), |
| Value->getBeginLoc()); |
| InitializationSequence Seq(*this, Entity, Kind, InitExpr); |
| auto Res = Seq.getFailedOverloadResult(); |
| if ((Res == OR_Success || Res == OR_Deleted) && |
| (getLangOpts().CPlusPlus11 || |
| VerifyInitializationSequenceCXX98(*this, Seq))) { |
| // Promote "AsRvalue" to the heap, since we now need this |
| // expression node to persist. |
| Value = |
| ImplicitCastExpr::Create(Context, Value->getType(), CK_NoOp, Value, |
| nullptr, VK_XValue, FPOptionsOverride()); |
| // Complete type-checking the initialization of the return type |
| // using the constructor we found. |
| return Seq.Perform(*this, Entity, Kind, Value); |
| } |
| } |
| // Either we didn't meet the criteria for treating an lvalue as an rvalue, |
| // above, or overload resolution failed. Either way, we need to try |
| // (again) now with the return value expression as written. |
| return PerformCopyInitialization(Entity, SourceLocation(), Value); |
| } |
| |
| /// Determine whether the declared return type of the specified function |
| /// contains 'auto'. |
| static bool hasDeducedReturnType(FunctionDecl *FD) { |
| const FunctionProtoType *FPT = |
| FD->getTypeSourceInfo()->getType()->castAs<FunctionProtoType>(); |
| return FPT->getReturnType()->isUndeducedType(); |
| } |
| |
| StmtResult Sema::ActOnCapScopeReturnStmt(SourceLocation ReturnLoc, |
| Expr *RetValExp, |
| NamedReturnInfo &NRInfo, |
| bool SupressSimplerImplicitMoves) { |
| // If this is the first return we've seen, infer the return type. |
| // [expr.prim.lambda]p4 in C++11; block literals follow the same rules. |
| CapturingScopeInfo *CurCap = cast<CapturingScopeInfo>(getCurFunction()); |
| QualType FnRetType = CurCap->ReturnType; |
| LambdaScopeInfo *CurLambda = dyn_cast<LambdaScopeInfo>(CurCap); |
| if (CurLambda && CurLambda->CallOperator->getType().isNull()) |
| return StmtError(); |
| bool HasDeducedReturnType = |
| CurLambda && hasDeducedReturnType(CurLambda->CallOperator); |
| |
| if (ExprEvalContexts.back().isDiscardedStatementContext() && |
| (HasDeducedReturnType || CurCap->HasImplicitReturnType)) { |
| if (RetValExp) { |
| ExprResult ER = |
| ActOnFinishFullExpr(RetValExp, ReturnLoc, /*DiscardedValue*/ false); |
| if (ER.isInvalid()) |
| return StmtError(); |
| RetValExp = ER.get(); |
| } |
| return ReturnStmt::Create(Context, ReturnLoc, RetValExp, |
| /* NRVOCandidate=*/nullptr); |
| } |
| |
| if (HasDeducedReturnType) { |
| FunctionDecl *FD = CurLambda->CallOperator; |
| // If we've already decided this lambda is invalid, e.g. because |
| // we saw a `return` whose expression had an error, don't keep |
| // trying to deduce its return type. |
| if (FD->isInvalidDecl()) |
| return StmtError(); |
| // In C++1y, the return type may involve 'auto'. |
| // FIXME: Blocks might have a return type of 'auto' explicitly specified. |
| if (CurCap->ReturnType.isNull()) |
| CurCap->ReturnType = FD->getReturnType(); |
| |
| AutoType *AT = CurCap->ReturnType->getContainedAutoType(); |
| assert(AT && "lost auto type from lambda return type"); |
| if (DeduceFunctionTypeFromReturnExpr(FD, ReturnLoc, RetValExp, AT)) { |
| FD->setInvalidDecl(); |
| // FIXME: preserve the ill-formed return expression. |
| return StmtError(); |
| } |
| CurCap->ReturnType = FnRetType = FD->getReturnType(); |
| } else if (CurCap->HasImplicitReturnType) { |
| // For blocks/lambdas with implicit return types, we check each return |
| // statement individually, and deduce the common return type when the block |
| // or lambda is completed. |
| // FIXME: Fold this into the 'auto' codepath above. |
| if (RetValExp && !isa<InitListExpr>(RetValExp)) { |
| ExprResult Result = DefaultFunctionArrayLvalueConversion(RetValExp); |
| if (Result.isInvalid()) |
| return StmtError(); |
| RetValExp = Result.get(); |
| |
| // DR1048: even prior to C++14, we should use the 'auto' deduction rules |
| // when deducing a return type for a lambda-expression (or by extension |
| // for a block). These rules differ from the stated C++11 rules only in |
| // that they remove top-level cv-qualifiers. |
| if (!CurContext->isDependentContext()) |
| FnRetType = RetValExp->getType().getUnqualifiedType(); |
| else |
| FnRetType = CurCap->ReturnType = Context.DependentTy; |
| } else { |
| if (RetValExp) { |
| // C++11 [expr.lambda.prim]p4 bans inferring the result from an |
| // initializer list, because it is not an expression (even |
| // though we represent it as one). We still deduce 'void'. |
| Diag(ReturnLoc, diag::err_lambda_return_init_list) |
| << RetValExp->getSourceRange(); |
| } |
| |
| FnRetType = Context.VoidTy; |
| } |
| |
| // Although we'll properly infer the type of the block once it's completed, |
| // make sure we provide a return type now for better error recovery. |
| if (CurCap->ReturnType.isNull()) |
| CurCap->ReturnType = FnRetType; |
| } |
| const VarDecl *NRVOCandidate = getCopyElisionCandidate(NRInfo, FnRetType); |
| |
| if (auto *CurBlock = dyn_cast<BlockScopeInfo>(CurCap)) { |
| if (CurBlock->FunctionType->castAs<FunctionType>()->getNoReturnAttr()) { |
| Diag(ReturnLoc, diag::err_noreturn_block_has_return_expr); |
| return StmtError(); |
| } |
| } else if (auto *CurRegion = dyn_cast<CapturedRegionScopeInfo>(CurCap)) { |
| Diag(ReturnLoc, diag::err_return_in_captured_stmt) << CurRegion->getRegionName(); |
| return StmtError(); |
| } else { |
| assert(CurLambda && "unknown kind of captured scope"); |
| if (CurLambda->CallOperator->getType() |
| ->castAs<FunctionType>() |
| ->getNoReturnAttr()) { |
| Diag(ReturnLoc, diag::err_noreturn_lambda_has_return_expr); |
| return StmtError(); |
| } |
| } |
| |
| // Otherwise, verify that this result type matches the previous one. We are |
| // pickier with blocks than for normal functions because we don't have GCC |
| // compatibility to worry about here. |
| if (FnRetType->isDependentType()) { |
| // Delay processing for now. TODO: there are lots of dependent |
| // types we can conclusively prove aren't void. |
| } else if (FnRetType->isVoidType()) { |
| if (RetValExp && !isa<InitListExpr>(RetValExp) && |
| !(getLangOpts().CPlusPlus && |
| (RetValExp->isTypeDependent() || |
| RetValExp->getType()->isVoidType()))) { |
| if (!getLangOpts().CPlusPlus && |
| RetValExp->getType()->isVoidType()) |
| Diag(ReturnLoc, diag::ext_return_has_void_expr) << "literal" << 2; |
| else { |
| Diag(ReturnLoc, diag::err_return_block_has_expr); |
| RetValExp = nullptr; |
| } |
| } |
| } else if (!RetValExp) { |
| return StmtError(Diag(ReturnLoc, diag::err_block_return_missing_expr)); |
| } else if (!RetValExp->isTypeDependent()) { |
| // we have a non-void block with an expression, continue checking |
| |
| // C99 6.8.6.4p3(136): The return statement is not an assignment. The |
| // overlap restriction of subclause 6.5.16.1 does not apply to the case of |
| // function return. |
| |
| // In C++ the return statement is handled via a copy initialization. |
| // the C version of which boils down to CheckSingleAssignmentConstraints. |
| InitializedEntity Entity = |
| InitializedEntity::InitializeResult(ReturnLoc, FnRetType); |
| ExprResult Res = PerformMoveOrCopyInitialization( |
| Entity, NRInfo, RetValExp, SupressSimplerImplicitMoves); |
| if (Res.isInvalid()) { |
| // FIXME: Cleanup temporaries here, anyway? |
| return StmtError(); |
| } |
| RetValExp = Res.get(); |
| CheckReturnValExpr(RetValExp, FnRetType, ReturnLoc); |
| } |
| |
| if (RetValExp) { |
| ExprResult ER = |
| ActOnFinishFullExpr(RetValExp, ReturnLoc, /*DiscardedValue*/ false); |
| if (ER.isInvalid()) |
| return StmtError(); |
| RetValExp = ER.get(); |
| } |
| auto *Result = |
| ReturnStmt::Create(Context, ReturnLoc, RetValExp, NRVOCandidate); |
| |
| // If we need to check for the named return value optimization, |
| // or if we need to infer the return type, |
| // save the return statement in our scope for later processing. |
| if (CurCap->HasImplicitReturnType || NRVOCandidate) |
| FunctionScopes.back()->Returns.push_back(Result); |
| |
| if (FunctionScopes.back()->FirstReturnLoc.isInvalid()) |
| FunctionScopes.back()->FirstReturnLoc = ReturnLoc; |
| |
| if (auto *CurBlock = dyn_cast<BlockScopeInfo>(CurCap); |
| CurBlock && CurCap->HasImplicitReturnType && RetValExp && |
| RetValExp->containsErrors()) |
| CurBlock->TheDecl->setInvalidDecl(); |
| |
| return Result; |
| } |
| |
| namespace { |
| /// Marks all typedefs in all local classes in a type referenced. |
| /// |
| /// In a function like |
| /// auto f() { |
| /// struct S { typedef int a; }; |
| /// return S(); |
| /// } |
| /// |
| /// the local type escapes and could be referenced in some TUs but not in |
| /// others. Pretend that all local typedefs are always referenced, to not warn |
| /// on this. This isn't necessary if f has internal linkage, or the typedef |
| /// is private. |
| class LocalTypedefNameReferencer : public DynamicRecursiveASTVisitor { |
| public: |
| LocalTypedefNameReferencer(Sema &S) : S(S) {} |
| bool VisitRecordType(RecordType *RT) override; |
| |
| private: |
| Sema &S; |
| }; |
| bool LocalTypedefNameReferencer::VisitRecordType(RecordType *RT) { |
| auto *R = dyn_cast<CXXRecordDecl>(RT->getDecl()); |
| if (!R || !R->isLocalClass() || !R->isLocalClass()->isExternallyVisible() || |
| R->isDependentType()) |
| return true; |
| for (auto *TmpD : R->decls()) |
| if (auto *T = dyn_cast<TypedefNameDecl>(TmpD)) |
| if (T->getAccess() != AS_private || R->hasFriends()) |
| S.MarkAnyDeclReferenced(T->getLocation(), T, /*OdrUse=*/false); |
| return true; |
| } |
| } |
| |
| TypeLoc Sema::getReturnTypeLoc(FunctionDecl *FD) const { |
| return FD->getTypeSourceInfo() |
| ->getTypeLoc() |
| .getAsAdjusted<FunctionProtoTypeLoc>() |
| .getReturnLoc(); |
| } |
| |
| bool Sema::DeduceFunctionTypeFromReturnExpr(FunctionDecl *FD, |
| SourceLocation ReturnLoc, |
| Expr *RetExpr, const AutoType *AT) { |
| // If this is the conversion function for a lambda, we choose to deduce its |
| // type from the corresponding call operator, not from the synthesized return |
| // statement within it. See Sema::DeduceReturnType. |
| if (isLambdaConversionOperator(FD)) |
| return false; |
| |
| if (isa_and_nonnull<InitListExpr>(RetExpr)) { |
| // If the deduction is for a return statement and the initializer is |
| // a braced-init-list, the program is ill-formed. |
| Diag(RetExpr->getExprLoc(), |
| getCurLambda() ? diag::err_lambda_return_init_list |
| : diag::err_auto_fn_return_init_list) |
| << RetExpr->getSourceRange(); |
| return true; |
| } |
| |
| if (FD->isDependentContext()) { |
| // C++1y [dcl.spec.auto]p12: |
| // Return type deduction [...] occurs when the definition is |
| // instantiated even if the function body contains a return |
| // statement with a non-type-dependent operand. |
| assert(AT->isDeduced() && "should have deduced to dependent type"); |
| return false; |
| } |
| |
| TypeLoc OrigResultType = getReturnTypeLoc(FD); |
| // In the case of a return with no operand, the initializer is considered |
| // to be void(). |
| CXXScalarValueInitExpr VoidVal(Context.VoidTy, nullptr, SourceLocation()); |
| if (!RetExpr) { |
| // For a function with a deduced result type to return with omitted |
| // expression, the result type as written must be 'auto' or |
| // 'decltype(auto)', possibly cv-qualified or constrained, but not |
| // ref-qualified. |
| if (!OrigResultType.getType()->getAs<AutoType>()) { |
| Diag(ReturnLoc, diag::err_auto_fn_return_void_but_not_auto) |
| << OrigResultType.getType(); |
| return true; |
| } |
| RetExpr = &VoidVal; |
| } |
| |
| QualType Deduced = AT->getDeducedType(); |
| { |
| // Otherwise, [...] deduce a value for U using the rules of template |
| // argument deduction. |
| auto RetExprLoc = RetExpr->getExprLoc(); |
| TemplateDeductionInfo Info(RetExprLoc); |
| SourceLocation TemplateSpecLoc; |
| if (RetExpr->getType() == Context.OverloadTy) { |
| auto FindResult = OverloadExpr::find(RetExpr); |
| if (FindResult.Expression) |
| TemplateSpecLoc = FindResult.Expression->getNameLoc(); |
| } |
| TemplateSpecCandidateSet FailedTSC(TemplateSpecLoc); |
| TemplateDeductionResult Res = DeduceAutoType( |
| OrigResultType, RetExpr, Deduced, Info, /*DependentDeduction=*/false, |
| /*IgnoreConstraints=*/false, &FailedTSC); |
| if (Res != TemplateDeductionResult::Success && FD->isInvalidDecl()) |
| return true; |
| switch (Res) { |
| case TemplateDeductionResult::Success: |
| break; |
| case TemplateDeductionResult::AlreadyDiagnosed: |
| return true; |
| case TemplateDeductionResult::Inconsistent: { |
| // If a function with a declared return type that contains a placeholder |
| // type has multiple return statements, the return type is deduced for |
| // each return statement. [...] if the type deduced is not the same in |
| // each deduction, the program is ill-formed. |
| const LambdaScopeInfo *LambdaSI = getCurLambda(); |
| if (LambdaSI && LambdaSI->HasImplicitReturnType) |
| Diag(ReturnLoc, diag::err_typecheck_missing_return_type_incompatible) |
| << Info.SecondArg << Info.FirstArg << true /*IsLambda*/; |
| else |
| Diag(ReturnLoc, diag::err_auto_fn_different_deductions) |
| << (AT->isDecltypeAuto() ? 1 : 0) << Info.SecondArg |
| << Info.FirstArg; |
| return true; |
| } |
| default: |
| Diag(RetExpr->getExprLoc(), diag::err_auto_fn_deduction_failure) |
| << OrigResultType.getType() << RetExpr->getType(); |
| FailedTSC.NoteCandidates(*this, RetExprLoc); |
| return true; |
| } |
| } |
| |
| // If a local type is part of the returned type, mark its fields as |
| // referenced. |
| LocalTypedefNameReferencer(*this).TraverseType(RetExpr->getType()); |
| |
| // CUDA: Kernel function must have 'void' return type. |
| if (getLangOpts().CUDA && FD->hasAttr<CUDAGlobalAttr>() && |
| !Deduced->isVoidType()) { |
| Diag(FD->getLocation(), diag::err_kern_type_not_void_return) |
| << FD->getType() << FD->getSourceRange(); |
| return true; |
| } |
| |
| if (!FD->isInvalidDecl() && AT->getDeducedType() != Deduced) |
| // Update all declarations of the function to have the deduced return type. |
| Context.adjustDeducedFunctionResultType(FD, Deduced); |
| |
| return false; |
| } |
| |
| StmtResult |
| Sema::ActOnReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp, |
| Scope *CurScope) { |
| // Correct typos, in case the containing function returns 'auto' and |
| // RetValExp should determine the deduced type. |
| ExprResult RetVal = CorrectDelayedTyposInExpr( |
| RetValExp, nullptr, /*RecoverUncorrectedTypos=*/true); |
| if (RetVal.isInvalid()) |
| return StmtError(); |
| |
| if (getCurScope()->isInOpenACCComputeConstructScope()) |
| return StmtError( |
| Diag(ReturnLoc, diag::err_acc_branch_in_out_compute_construct) |
| << /*return*/ 1 << /*out of */ 0); |
| |
| // using plain return in a coroutine is not allowed. |
| FunctionScopeInfo *FSI = getCurFunction(); |
| if (FSI->FirstReturnLoc.isInvalid() && FSI->isCoroutine()) { |
| assert(FSI->FirstCoroutineStmtLoc.isValid() && |
| "first coroutine location not set"); |
| Diag(ReturnLoc, diag::err_return_in_coroutine); |
| Diag(FSI->FirstCoroutineStmtLoc, diag::note_declared_coroutine_here) |
| << FSI->getFirstCoroutineStmtKeyword(); |
| } |
| |
| CheckInvalidBuiltinCountedByRef(RetVal.get(), ReturnArgKind); |
| |
| StmtResult R = |
| BuildReturnStmt(ReturnLoc, RetVal.get(), /*AllowRecovery=*/true); |
| if (R.isInvalid() || ExprEvalContexts.back().isDiscardedStatementContext()) |
| return R; |
| |
| VarDecl *VD = |
| const_cast<VarDecl *>(cast<ReturnStmt>(R.get())->getNRVOCandidate()); |
| |
| CurScope->updateNRVOCandidate(VD); |
| |
| CheckJumpOutOfSEHFinally(*this, ReturnLoc, *CurScope->getFnParent()); |
| |
| return R; |
| } |
| |
| static bool CheckSimplerImplicitMovesMSVCWorkaround(const Sema &S, |
| const Expr *E) { |
| if (!E || !S.getLangOpts().CPlusPlus23 || !S.getLangOpts().MSVCCompat) |
| return false; |
| const Decl *D = E->getReferencedDeclOfCallee(); |
| if (!D || !S.SourceMgr.isInSystemHeader(D->getLocation())) |
| return false; |
| for (const DeclContext *DC = D->getDeclContext(); DC; DC = DC->getParent()) { |
| if (DC->isStdNamespace()) |
| return true; |
| } |
| return false; |
| } |
| |
| StmtResult Sema::BuildReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp, |
| bool AllowRecovery) { |
| // Check for unexpanded parameter packs. |
| if (RetValExp && DiagnoseUnexpandedParameterPack(RetValExp)) |
| return StmtError(); |
| |
| // HACK: We suppress simpler implicit move here in msvc compatibility mode |
| // just as a temporary work around, as the MSVC STL has issues with |
| // this change. |
| bool SupressSimplerImplicitMoves = |
| CheckSimplerImplicitMovesMSVCWorkaround(*this, RetValExp); |
| NamedReturnInfo NRInfo = getNamedReturnInfo( |
| RetValExp, SupressSimplerImplicitMoves ? SimplerImplicitMoveMode::ForceOff |
| : SimplerImplicitMoveMode::Normal); |
| |
| if (isa<CapturingScopeInfo>(getCurFunction())) |
| return ActOnCapScopeReturnStmt(ReturnLoc, RetValExp, NRInfo, |
| SupressSimplerImplicitMoves); |
| |
| QualType FnRetType; |
| QualType RelatedRetType; |
| const AttrVec *Attrs = nullptr; |
| bool isObjCMethod = false; |
| |
| if (const FunctionDecl *FD = getCurFunctionDecl()) { |
| FnRetType = FD->getReturnType(); |
| if (FD->hasAttrs()) |
| Attrs = &FD->getAttrs(); |
| if (FD->isNoReturn()) |
| Diag(ReturnLoc, diag::warn_noreturn_function_has_return_expr) << FD; |
| if (FD->isMain() && RetValExp) |
| if (isa<CXXBoolLiteralExpr>(RetValExp)) |
| Diag(ReturnLoc, diag::warn_main_returns_bool_literal) |
| << RetValExp->getSourceRange(); |
| if (FD->hasAttr<CmseNSEntryAttr>() && RetValExp) { |
| if (const auto *RT = dyn_cast<RecordType>(FnRetType.getCanonicalType())) { |
| if (RT->getDecl()->isOrContainsUnion()) |
| Diag(RetValExp->getBeginLoc(), diag::warn_cmse_nonsecure_union) << 1; |
| } |
| } |
| } else if (ObjCMethodDecl *MD = getCurMethodDecl()) { |
| FnRetType = MD->getReturnType(); |
| isObjCMethod = true; |
| if (MD->hasAttrs()) |
| Attrs = &MD->getAttrs(); |
| if (MD->hasRelatedResultType() && MD->getClassInterface()) { |
| // In the implementation of a method with a related return type, the |
| // type used to type-check the validity of return statements within the |
| // method body is a pointer to the type of the class being implemented. |
| RelatedRetType = Context.getObjCInterfaceType(MD->getClassInterface()); |
| RelatedRetType = Context.getObjCObjectPointerType(RelatedRetType); |
| } |
| } else // If we don't have a function/method context, bail. |
| return StmtError(); |
| |
| if (RetValExp) { |
| const auto *ATy = dyn_cast<ArrayType>(RetValExp->getType()); |
| if (ATy && ATy->getElementType().isWebAssemblyReferenceType()) { |
| Diag(ReturnLoc, diag::err_wasm_table_art) << 1; |
| return StmtError(); |
| } |
| } |
| |
| // C++1z: discarded return statements are not considered when deducing a |
| // return type. |
| if (ExprEvalContexts.back().isDiscardedStatementContext() && |
| FnRetType->getContainedAutoType()) { |
| if (RetValExp) { |
| ExprResult ER = |
| ActOnFinishFullExpr(RetValExp, ReturnLoc, /*DiscardedValue*/ false); |
| if (ER.isInvalid()) |
| return StmtError(); |
| RetValExp = ER.get(); |
| } |
| return ReturnStmt::Create(Context, ReturnLoc, RetValExp, |
| /* NRVOCandidate=*/nullptr); |
| } |
| |
| // FIXME: Add a flag to the ScopeInfo to indicate whether we're performing |
| // deduction. |
| if (getLangOpts().CPlusPlus14) { |
| if (AutoType *AT = FnRetType->getContainedAutoType()) { |
| FunctionDecl *FD = cast<FunctionDecl>(CurContext); |
| // If we've already decided this function is invalid, e.g. because |
| // we saw a `return` whose expression had an error, don't keep |
| // trying to deduce its return type. |
| // (Some return values may be needlessly wrapped in RecoveryExpr). |
| if (FD->isInvalidDecl() || |
| DeduceFunctionTypeFromReturnExpr(FD, ReturnLoc, RetValExp, AT)) { |
| FD->setInvalidDecl(); |
| if (!AllowRecovery) |
| return StmtError(); |
| // The deduction failure is diagnosed and marked, try to recover. |
| if (RetValExp) { |
| // Wrap return value with a recovery expression of the previous type. |
| // If no deduction yet, use DependentTy. |
| auto Recovery = CreateRecoveryExpr( |
| RetValExp->getBeginLoc(), RetValExp->getEndLoc(), RetValExp, |
| AT->isDeduced() ? FnRetType : QualType()); |
| if (Recovery.isInvalid()) |
| return StmtError(); |
| RetValExp = Recovery.get(); |
| } else { |
| // Nothing to do: a ReturnStmt with no value is fine recovery. |
| } |
| } else { |
| FnRetType = FD->getReturnType(); |
| } |
| } |
| } |
| const VarDecl *NRVOCandidate = getCopyElisionCandidate(NRInfo, FnRetType); |
| |
| bool HasDependentReturnType = FnRetType->isDependentType(); |
| |
| ReturnStmt *Result = nullptr; |
| if (FnRetType->isVoidType()) { |
| if (RetValExp) { |
| if (auto *ILE = dyn_cast<InitListExpr>(RetValExp)) { |
| // We simply never allow init lists as the return value of void |
| // functions. This is compatible because this was never allowed before, |
| // so there's no legacy code to deal with. |
| NamedDecl *CurDecl = getCurFunctionOrMethodDecl(); |
| int FunctionKind = 0; |
| if (isa<ObjCMethodDecl>(CurDecl)) |
| FunctionKind = 1; |
| else if (isa<CXXConstructorDecl>(CurDecl)) |
| FunctionKind = 2; |
| else if (isa<CXXDestructorDecl>(CurDecl)) |
| FunctionKind = 3; |
| |
| Diag(ReturnLoc, diag::err_return_init_list) |
| << CurDecl << FunctionKind << RetValExp->getSourceRange(); |
| |
| // Preserve the initializers in the AST. |
| RetValExp = AllowRecovery |
| ? CreateRecoveryExpr(ILE->getLBraceLoc(), |
| ILE->getRBraceLoc(), ILE->inits()) |
| .get() |
| : nullptr; |
| } else if (!RetValExp->isTypeDependent()) { |
| // C99 6.8.6.4p1 (ext_ since GCC warns) |
| unsigned D = diag::ext_return_has_expr; |
| if (RetValExp->getType()->isVoidType()) { |
| NamedDecl *CurDecl = getCurFunctionOrMethodDecl(); |
| if (isa<CXXConstructorDecl>(CurDecl) || |
| isa<CXXDestructorDecl>(CurDecl)) |
| D = diag::err_ctor_dtor_returns_void; |
| else |
| D = diag::ext_return_has_void_expr; |
| } |
| else { |
| ExprResult Result = RetValExp; |
| Result = IgnoredValueConversions(Result.get()); |
| if (Result.isInvalid()) |
| return StmtError(); |
| RetValExp = Result.get(); |
| RetValExp = ImpCastExprToType(RetValExp, |
| Context.VoidTy, CK_ToVoid).get(); |
| } |
| // return of void in constructor/destructor is illegal in C++. |
| if (D == diag::err_ctor_dtor_returns_void) { |
| NamedDecl *CurDecl = getCurFunctionOrMethodDecl(); |
| Diag(ReturnLoc, D) << CurDecl << isa<CXXDestructorDecl>(CurDecl) |
| << RetValExp->getSourceRange(); |
| } |
| // return (some void expression); is legal in C++. |
| else if (D != diag::ext_return_has_void_expr || |
| !getLangOpts().CPlusPlus) { |
| NamedDecl *CurDecl = getCurFunctionOrMethodDecl(); |
| |
| int FunctionKind = 0; |
| if (isa<ObjCMethodDecl>(CurDecl)) |
| FunctionKind = 1; |
| else if (isa<CXXConstructorDecl>(CurDecl)) |
| FunctionKind = 2; |
| else if (isa<CXXDestructorDecl>(CurDecl)) |
| FunctionKind = 3; |
| |
| Diag(ReturnLoc, D) |
| << CurDecl << FunctionKind << RetValExp->getSourceRange(); |
| } |
| } |
| |
| if (RetValExp) { |
| ExprResult ER = |
| ActOnFinishFullExpr(RetValExp, ReturnLoc, /*DiscardedValue*/ false); |
| if (ER.isInvalid()) |
| return StmtError(); |
| RetValExp = ER.get(); |
| } |
| } |
| |
| Result = ReturnStmt::Create(Context, ReturnLoc, RetValExp, |
| /* NRVOCandidate=*/nullptr); |
| } else if (!RetValExp && !HasDependentReturnType) { |
| FunctionDecl *FD = getCurFunctionDecl(); |
| |
| if ((FD && FD->isInvalidDecl()) || FnRetType->containsErrors()) { |
| // The intended return type might have been "void", so don't warn. |
| } else if (getLangOpts().CPlusPlus11 && FD && FD->isConstexpr()) { |
| // C++11 [stmt.return]p2 |
| Diag(ReturnLoc, diag::err_constexpr_return_missing_expr) |
| << FD << FD->isConsteval(); |
| FD->setInvalidDecl(); |
| } else { |
| // C99 6.8.6.4p1 (ext_ since GCC warns) |
| // C90 6.6.6.4p4 |
| unsigned DiagID = getLangOpts().C99 ? diag::ext_return_missing_expr |
| : diag::warn_return_missing_expr; |
| // Note that at this point one of getCurFunctionDecl() or |
| // getCurMethodDecl() must be non-null (see above). |
| assert((getCurFunctionDecl() || getCurMethodDecl()) && |
| "Not in a FunctionDecl or ObjCMethodDecl?"); |
| bool IsMethod = FD == nullptr; |
| const NamedDecl *ND = |
| IsMethod ? cast<NamedDecl>(getCurMethodDecl()) : cast<NamedDecl>(FD); |
| Diag(ReturnLoc, DiagID) << ND << IsMethod; |
| } |
| |
| Result = ReturnStmt::Create(Context, ReturnLoc, /* RetExpr=*/nullptr, |
| /* NRVOCandidate=*/nullptr); |
| } else { |
| assert(RetValExp || HasDependentReturnType); |
| QualType RetType = RelatedRetType.isNull() ? FnRetType : RelatedRetType; |
| |
| // C99 6.8.6.4p3(136): The return statement is not an assignment. The |
| // overlap restriction of subclause 6.5.16.1 does not apply to the case of |
| // function return. |
| |
| // In C++ the return statement is handled via a copy initialization, |
| // the C version of which boils down to CheckSingleAssignmentConstraints. |
| if (!HasDependentReturnType && !RetValExp->isTypeDependent()) { |
| // we have a non-void function with an expression, continue checking |
| InitializedEntity Entity = |
| InitializedEntity::InitializeResult(ReturnLoc, RetType); |
| ExprResult Res = PerformMoveOrCopyInitialization( |
| Entity, NRInfo, RetValExp, SupressSimplerImplicitMoves); |
| if (Res.isInvalid() && AllowRecovery) |
| Res = CreateRecoveryExpr(RetValExp->getBeginLoc(), |
| RetValExp->getEndLoc(), RetValExp, RetType); |
| if (Res.isInvalid()) { |
| // FIXME: Clean up temporaries here anyway? |
| return StmtError(); |
| } |
| RetValExp = Res.getAs<Expr>(); |
| |
| // If we have a related result type, we need to implicitly |
| // convert back to the formal result type. We can't pretend to |
| // initialize the result again --- we might end double-retaining |
| // --- so instead we initialize a notional temporary. |
| if (!RelatedRetType.isNull()) { |
| Entity = InitializedEntity::InitializeRelatedResult(getCurMethodDecl(), |
| FnRetType); |
| Res = PerformCopyInitialization(Entity, ReturnLoc, RetValExp); |
| if (Res.isInvalid()) { |
| // FIXME: Clean up temporaries here anyway? |
| return StmtError(); |
| } |
| RetValExp = Res.getAs<Expr>(); |
| } |
| |
| CheckReturnValExpr(RetValExp, FnRetType, ReturnLoc, isObjCMethod, Attrs, |
| getCurFunctionDecl()); |
| } |
| |
| if (RetValExp) { |
| ExprResult ER = |
| ActOnFinishFullExpr(RetValExp, ReturnLoc, /*DiscardedValue*/ false); |
| if (ER.isInvalid()) |
| return StmtError(); |
| RetValExp = ER.get(); |
| } |
| Result = ReturnStmt::Create(Context, ReturnLoc, RetValExp, NRVOCandidate); |
| } |
| |
| // If we need to check for the named return value optimization, save the |
| // return statement in our scope for later processing. |
| if (Result->getNRVOCandidate()) |
| FunctionScopes.back()->Returns.push_back(Result); |
| |
| if (FunctionScopes.back()->FirstReturnLoc.isInvalid()) |
| FunctionScopes.back()->FirstReturnLoc = ReturnLoc; |
| |
| return Result; |
| } |
| |
| StmtResult |
| Sema::ActOnCXXCatchBlock(SourceLocation CatchLoc, Decl *ExDecl, |
| Stmt *HandlerBlock) { |
| // There's nothing to test that ActOnExceptionDecl didn't already test. |
| return new (Context) |
| CXXCatchStmt(CatchLoc, cast_or_null<VarDecl>(ExDecl), HandlerBlock); |
| } |
| |
| namespace { |
| class CatchHandlerType { |
| QualType QT; |
| LLVM_PREFERRED_TYPE(bool) |
| unsigned IsPointer : 1; |
| |
| // This is a special constructor to be used only with DenseMapInfo's |
| // getEmptyKey() and getTombstoneKey() functions. |
| friend struct llvm::DenseMapInfo<CatchHandlerType>; |
| enum Unique { ForDenseMap }; |
| CatchHandlerType(QualType QT, Unique) : QT(QT), IsPointer(false) {} |
| |
| public: |
| /// Used when creating a CatchHandlerType from a handler type; will determine |
| /// whether the type is a pointer or reference and will strip off the top |
| /// level pointer and cv-qualifiers. |
| CatchHandlerType(QualType Q) : QT(Q), IsPointer(false) { |
| if (QT->isPointerType()) |
| IsPointer = true; |
| |
| QT = QT.getUnqualifiedType(); |
| if (IsPointer || QT->isReferenceType()) |
| QT = QT->getPointeeType(); |
| } |
| |
| /// Used when creating a CatchHandlerType from a base class type; pretends the |
| /// type passed in had the pointer qualifier, does not need to get an |
| /// unqualified type. |
| CatchHandlerType(QualType QT, bool IsPointer) |
| : QT(QT), IsPointer(IsPointer) {} |
| |
| QualType underlying() const { return QT; } |
| bool isPointer() const { return IsPointer; } |
| |
| friend bool operator==(const CatchHandlerType &LHS, |
| const CatchHandlerType &RHS) { |
| // If the pointer qualification does not match, we can return early. |
| if (LHS.IsPointer != RHS.IsPointer) |
| return false; |
| // Otherwise, check the underlying type without cv-qualifiers. |
| return LHS.QT == RHS.QT; |
| } |
| }; |
| } // namespace |
| |
| namespace llvm { |
| template <> struct DenseMapInfo<CatchHandlerType> { |
| static CatchHandlerType getEmptyKey() { |
| return CatchHandlerType(DenseMapInfo<QualType>::getEmptyKey(), |
| CatchHandlerType::ForDenseMap); |
| } |
| |
| static CatchHandlerType getTombstoneKey() { |
| return CatchHandlerType(DenseMapInfo<QualType>::getTombstoneKey(), |
| CatchHandlerType::ForDenseMap); |
| } |
| |
| static unsigned getHashValue(const CatchHandlerType &Base) { |
| return DenseMapInfo<QualType>::getHashValue(Base.underlying()); |
| } |
| |
| static bool isEqual(const CatchHandlerType &LHS, |
| const CatchHandlerType &RHS) { |
| return LHS == RHS; |
| } |
| }; |
| } |
| |
| namespace { |
| class CatchTypePublicBases { |
| const llvm::DenseMap<QualType, CXXCatchStmt *> &TypesToCheck; |
| |
| CXXCatchStmt *FoundHandler; |
| QualType FoundHandlerType; |
| QualType TestAgainstType; |
| |
| public: |
| CatchTypePublicBases(const llvm::DenseMap<QualType, CXXCatchStmt *> &T, |
| QualType QT) |
| : TypesToCheck(T), FoundHandler(nullptr), TestAgainstType(QT) {} |
| |
| CXXCatchStmt *getFoundHandler() const { return FoundHandler; } |
| QualType getFoundHandlerType() const { return FoundHandlerType; } |
| |
| bool operator()(const CXXBaseSpecifier *S, CXXBasePath &) { |
| if (S->getAccessSpecifier() == AccessSpecifier::AS_public) { |
| QualType Check = S->getType().getCanonicalType(); |
| const auto &M = TypesToCheck; |
| auto I = M.find(Check); |
| if (I != M.end()) { |
| // We're pretty sure we found what we need to find. However, we still |
| // need to make sure that we properly compare for pointers and |
| // references, to handle cases like: |
| // |
| // } catch (Base *b) { |
| // } catch (Derived &d) { |
| // } |
| // |
| // where there is a qualification mismatch that disqualifies this |
| // handler as a potential problem. |
| if (I->second->getCaughtType()->isPointerType() == |
| TestAgainstType->isPointerType()) { |
| FoundHandler = I->second; |
| FoundHandlerType = Check; |
| return true; |
| } |
| } |
| } |
| return false; |
| } |
| }; |
| } |
| |
| StmtResult Sema::ActOnCXXTryBlock(SourceLocation TryLoc, Stmt *TryBlock, |
| ArrayRef<Stmt *> Handlers) { |
| const llvm::Triple &T = Context.getTargetInfo().getTriple(); |
| const bool IsOpenMPGPUTarget = |
| getLangOpts().OpenMPIsTargetDevice && (T.isNVPTX() || T.isAMDGCN()); |
| // Don't report an error if 'try' is used in system headers or in an OpenMP |
| // target region compiled for a GPU architecture. |
| if (!IsOpenMPGPUTarget && !getLangOpts().CXXExceptions && |
| !getSourceManager().isInSystemHeader(TryLoc) && !getLangOpts().CUDA) { |
| // Delay error emission for the OpenMP device code. |
| targetDiag(TryLoc, diag::err_exceptions_disabled) << "try"; |
| } |
| |
| // In OpenMP target regions, we assume that catch is never reached on GPU |
| // targets. |
| if (IsOpenMPGPUTarget) |
| targetDiag(TryLoc, diag::warn_try_not_valid_on_target) << T.str(); |
| |
| // Exceptions aren't allowed in CUDA device code. |
| if (getLangOpts().CUDA) |
| CUDA().DiagIfDeviceCode(TryLoc, diag::err_cuda_device_exceptions) |
| << "try" << llvm::to_underlying(CUDA().CurrentTarget()); |
| |
| if (getCurScope() && getCurScope()->isOpenMPSimdDirectiveScope()) |
| Diag(TryLoc, diag::err_omp_simd_region_cannot_use_stmt) << "try"; |
| |
| sema::FunctionScopeInfo *FSI = getCurFunction(); |
| |
| // C++ try is incompatible with SEH __try. |
| if (!getLangOpts().Borland && FSI->FirstSEHTryLoc.isValid()) { |
| Diag(TryLoc, diag::err_mixing_cxx_try_seh_try) << 0; |
| Diag(FSI->FirstSEHTryLoc, diag::note_conflicting_try_here) << "'__try'"; |
| } |
| |
| const unsigned NumHandlers = Handlers.size(); |
| assert(!Handlers.empty() && |
| "The parser shouldn't call this if there are no handlers."); |
| |
| llvm::DenseMap<QualType, CXXCatchStmt *> HandledBaseTypes; |
| llvm::DenseMap<CatchHandlerType, CXXCatchStmt *> HandledTypes; |
| for (unsigned i = 0; i < NumHandlers; ++i) { |
| CXXCatchStmt *H = cast<CXXCatchStmt>(Handlers[i]); |
| |
| // Diagnose when the handler is a catch-all handler, but it isn't the last |
| // handler for the try block. [except.handle]p5. Also, skip exception |
| // declarations that are invalid, since we can't usefully report on them. |
| if (!H->getExceptionDecl()) { |
| if (i < NumHandlers - 1) |
| return StmtError(Diag(H->getBeginLoc(), diag::err_early_catch_all)); |
| continue; |
| } else if (H->getExceptionDecl()->isInvalidDecl()) |
| continue; |
| |
| // Walk the type hierarchy to diagnose when this type has already been |
| // handled (duplication), or cannot be handled (derivation inversion). We |
| // ignore top-level cv-qualifiers, per [except.handle]p3 |
| CatchHandlerType HandlerCHT = H->getCaughtType().getCanonicalType(); |
| |
| // We can ignore whether the type is a reference or a pointer; we need the |
| // underlying declaration type in order to get at the underlying record |
| // decl, if there is one. |
| QualType Underlying = HandlerCHT.underlying(); |
| if (auto *RD = Underlying->getAsCXXRecordDecl()) { |
| if (!RD->hasDefinition()) |
| continue; |
| // Check that none of the public, unambiguous base classes are in the |
| // map ([except.handle]p1). Give the base classes the same pointer |
| // qualification as the original type we are basing off of. This allows |
| // comparison against the handler type using the same top-level pointer |
| // as the original type. |
| CXXBasePaths Paths; |
| Paths.setOrigin(RD); |
| CatchTypePublicBases CTPB(HandledBaseTypes, |
| H->getCaughtType().getCanonicalType()); |
| if (RD->lookupInBases(CTPB, Paths)) { |
| const CXXCatchStmt *Problem = CTPB.getFoundHandler(); |
| if (!Paths.isAmbiguous( |
| CanQualType::CreateUnsafe(CTPB.getFoundHandlerType()))) { |
| Diag(H->getExceptionDecl()->getTypeSpecStartLoc(), |
| diag::warn_exception_caught_by_earlier_handler) |
| << H->getCaughtType(); |
| Diag(Problem->getExceptionDecl()->getTypeSpecStartLoc(), |
| diag::note_previous_exception_handler) |
| << Problem->getCaughtType(); |
| } |
| } |
| // Strip the qualifiers here because we're going to be comparing this |
| // type to the base type specifiers of a class, which are ignored in a |
| // base specifier per [class.derived.general]p2. |
| HandledBaseTypes[Underlying.getUnqualifiedType()] = H; |
| } |
| |
| // Add the type the list of ones we have handled; diagnose if we've already |
| // handled it. |
| auto R = HandledTypes.insert( |
| std::make_pair(H->getCaughtType().getCanonicalType(), H)); |
| if (!R.second) { |
| const CXXCatchStmt *Problem = R.first->second; |
| Diag(H->getExceptionDecl()->getTypeSpecStartLoc(), |
| diag::warn_exception_caught_by_earlier_handler) |
| << H->getCaughtType(); |
| Diag(Problem->getExceptionDecl()->getTypeSpecStartLoc(), |
| diag::note_previous_exception_handler) |
| << Problem->getCaughtType(); |
| } |
| } |
| |
| FSI->setHasCXXTry(TryLoc); |
| |
| return CXXTryStmt::Create(Context, TryLoc, cast<CompoundStmt>(TryBlock), |
| Handlers); |
| } |
| |
| StmtResult Sema::ActOnSEHTryBlock(bool IsCXXTry, SourceLocation TryLoc, |
| Stmt *TryBlock, Stmt *Handler) { |
| assert(TryBlock && Handler); |
| |
| sema::FunctionScopeInfo *FSI = getCurFunction(); |
| |
| // SEH __try is incompatible with C++ try. Borland appears to support this, |
| // however. |
| if (!getLangOpts().Borland) { |
| if (FSI->FirstCXXOrObjCTryLoc.isValid()) { |
| Diag(TryLoc, diag::err_mixing_cxx_try_seh_try) << FSI->FirstTryType; |
| Diag(FSI->FirstCXXOrObjCTryLoc, diag::note_conflicting_try_here) |
| << (FSI->FirstTryType == sema::FunctionScopeInfo::TryLocIsCXX |
| ? "'try'" |
| : "'@try'"); |
| } |
| } |
| |
| FSI->setHasSEHTry(TryLoc); |
| |
| // Reject __try in Obj-C methods, blocks, and captured decls, since we don't |
| // track if they use SEH. |
| DeclContext *DC = CurContext; |
| while (DC && !DC->isFunctionOrMethod()) |
| DC = DC->getParent(); |
| FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(DC); |
| if (FD) |
| FD->setUsesSEHTry(true); |
| else |
| Diag(TryLoc, diag::err_seh_try_outside_functions); |
| |
| // Reject __try on unsupported targets. |
| if (!Context.getTargetInfo().isSEHTrySupported()) |
| Diag(TryLoc, diag::err_seh_try_unsupported); |
| |
| return SEHTryStmt::Create(Context, IsCXXTry, TryLoc, TryBlock, Handler); |
| } |
| |
| StmtResult Sema::ActOnSEHExceptBlock(SourceLocation Loc, Expr *FilterExpr, |
| Stmt *Block) { |
| assert(FilterExpr && Block); |
| QualType FTy = FilterExpr->getType(); |
| if (!FTy->isIntegerType() && !FTy->isDependentType()) { |
| return StmtError( |
| Diag(FilterExpr->getExprLoc(), diag::err_filter_expression_integral) |
| << FTy); |
| } |
| return SEHExceptStmt::Create(Context, Loc, FilterExpr, Block); |
| } |
| |
| void Sema::ActOnStartSEHFinallyBlock() { |
| CurrentSEHFinally.push_back(CurScope); |
| } |
| |
| void Sema::ActOnAbortSEHFinallyBlock() { |
| CurrentSEHFinally.pop_back(); |
| } |
| |
| StmtResult Sema::ActOnFinishSEHFinallyBlock(SourceLocation Loc, Stmt *Block) { |
| assert(Block); |
| CurrentSEHFinally.pop_back(); |
| return SEHFinallyStmt::Create(Context, Loc, Block); |
| } |
| |
| StmtResult |
| Sema::ActOnSEHLeaveStmt(SourceLocation Loc, Scope *CurScope) { |
| Scope *SEHTryParent = CurScope; |
| while (SEHTryParent && !SEHTryParent->isSEHTryScope()) |
| SEHTryParent = SEHTryParent->getParent(); |
| if (!SEHTryParent) |
| return StmtError(Diag(Loc, diag::err_ms___leave_not_in___try)); |
| CheckJumpOutOfSEHFinally(*this, Loc, *SEHTryParent); |
| |
| return new (Context) SEHLeaveStmt(Loc); |
| } |
| |
| StmtResult Sema::BuildMSDependentExistsStmt(SourceLocation KeywordLoc, |
| bool IsIfExists, |
| NestedNameSpecifierLoc QualifierLoc, |
| DeclarationNameInfo NameInfo, |
| Stmt *Nested) |
| { |
| return new (Context) MSDependentExistsStmt(KeywordLoc, IsIfExists, |
| QualifierLoc, NameInfo, |
| cast<CompoundStmt>(Nested)); |
| } |
| |
| |
| StmtResult Sema::ActOnMSDependentExistsStmt(SourceLocation KeywordLoc, |
| bool IsIfExists, |
| CXXScopeSpec &SS, |
| UnqualifiedId &Name, |
| Stmt *Nested) { |
| return BuildMSDependentExistsStmt(KeywordLoc, IsIfExists, |
| SS.getWithLocInContext(Context), |
| GetNameFromUnqualifiedId(Name), |
| Nested); |
| } |
| |
| RecordDecl* |
| Sema::CreateCapturedStmtRecordDecl(CapturedDecl *&CD, SourceLocation Loc, |
| unsigned NumParams) { |
| DeclContext *DC = CurContext; |
| while (!(DC->isFunctionOrMethod() || DC->isRecord() || DC->isFileContext())) |
| DC = DC->getParent(); |
| |
| RecordDecl *RD = nullptr; |
| if (getLangOpts().CPlusPlus) |
| RD = CXXRecordDecl::Create(Context, TagTypeKind::Struct, DC, Loc, Loc, |
| /*Id=*/nullptr); |
| else |
| RD = RecordDecl::Create(Context, TagTypeKind::Struct, DC, Loc, Loc, |
| /*Id=*/nullptr); |
| |
| RD->setCapturedRecord(); |
| DC->addDecl(RD); |
| RD->setImplicit(); |
| RD->startDefinition(); |
| |
| assert(NumParams > 0 && "CapturedStmt requires context parameter"); |
| CD = CapturedDecl::Create(Context, CurContext, NumParams); |
| DC->addDecl(CD); |
| return RD; |
| } |
| |
| static bool |
| buildCapturedStmtCaptureList(Sema &S, CapturedRegionScopeInfo *RSI, |
| SmallVectorImpl<CapturedStmt::Capture> &Captures, |
| SmallVectorImpl<Expr *> &CaptureInits) { |
| for (const sema::Capture &Cap : RSI->Captures) { |
| if (Cap.isInvalid()) |
| continue; |
| |
| // Form the initializer for the capture. |
| ExprResult Init = S.BuildCaptureInit(Cap, Cap.getLocation(), |
| RSI->CapRegionKind == CR_OpenMP); |
| |
| // FIXME: Bail out now if the capture is not used and the initializer has |
| // no side-effects. |
| |
| // Create a field for this capture. |
| FieldDecl *Field = S.BuildCaptureField(RSI->TheRecordDecl, Cap); |
| |
| // Add the capture to our list of captures. |
| if (Cap.isThisCapture()) { |
| Captures.push_back(CapturedStmt::Capture(Cap.getLocation(), |
| CapturedStmt::VCK_This)); |
| } else if (Cap.isVLATypeCapture()) { |
| Captures.push_back( |
| CapturedStmt::Capture(Cap.getLocation(), CapturedStmt::VCK_VLAType)); |
| } else { |
| assert(Cap.isVariableCapture() && "unknown kind of capture"); |
| |
| if (S.getLangOpts().OpenMP && RSI->CapRegionKind == CR_OpenMP) |
| S.OpenMP().setOpenMPCaptureKind(Field, Cap.getVariable(), |
| RSI->OpenMPLevel); |
| |
| Captures.push_back(CapturedStmt::Capture( |
| Cap.getLocation(), |
| Cap.isReferenceCapture() ? CapturedStmt::VCK_ByRef |
| : CapturedStmt::VCK_ByCopy, |
| cast<VarDecl>(Cap.getVariable()))); |
| } |
| CaptureInits.push_back(Init.get()); |
| } |
| return false; |
| } |
| |
| static std::optional<int> |
| isOpenMPCapturedRegionInArmSMEFunction(Sema const &S, CapturedRegionKind Kind) { |
| if (!S.getLangOpts().OpenMP || Kind != CR_OpenMP) |
| return {}; |
| if (const FunctionDecl *FD = S.getCurFunctionDecl(/*AllowLambda=*/true)) { |
| if (IsArmStreamingFunction(FD, /*IncludeLocallyStreaming=*/true)) |
| return /* in streaming functions */ 0; |
| if (hasArmZAState(FD)) |
| return /* in functions with ZA state */ 1; |
| if (hasArmZT0State(FD)) |
| return /* in fuctions with ZT0 state */ 2; |
| } |
| return {}; |
| } |
| |
| void Sema::ActOnCapturedRegionStart(SourceLocation Loc, Scope *CurScope, |
| CapturedRegionKind Kind, |
| unsigned NumParams) { |
| if (auto ErrorIndex = isOpenMPCapturedRegionInArmSMEFunction(*this, Kind)) |
| Diag(Loc, diag::err_sme_openmp_captured_region) << *ErrorIndex; |
| |
| CapturedDecl *CD = nullptr; |
| RecordDecl *RD = CreateCapturedStmtRecordDecl(CD, Loc, NumParams); |
| |
| // Build the context parameter |
| DeclContext *DC = CapturedDecl::castToDeclContext(CD); |
| IdentifierInfo *ParamName = &Context.Idents.get("__context"); |
| QualType ParamType = Context.getPointerType(Context.getTagDeclType(RD)); |
| auto *Param = |
| ImplicitParamDecl::Create(Context, DC, Loc, ParamName, ParamType, |
| ImplicitParamKind::CapturedContext); |
| DC->addDecl(Param); |
| |
| CD->setContextParam(0, Param); |
| |
| // Enter the capturing scope for this captured region. |
| PushCapturedRegionScope(CurScope, CD, RD, Kind); |
| |
| if (CurScope) |
| PushDeclContext(CurScope, CD); |
| else |
| CurContext = CD; |
| |
| PushExpressionEvaluationContext( |
| ExpressionEvaluationContext::PotentiallyEvaluated); |
| ExprEvalContexts.back().InImmediateEscalatingFunctionContext = false; |
| } |
| |
| void Sema::ActOnCapturedRegionStart(SourceLocation Loc, Scope *CurScope, |
| CapturedRegionKind Kind, |
| ArrayRef<CapturedParamNameType> Params, |
| unsigned OpenMPCaptureLevel) { |
| if (auto ErrorIndex = isOpenMPCapturedRegionInArmSMEFunction(*this, Kind)) |
| Diag(Loc, diag::err_sme_openmp_captured_region) << *ErrorIndex; |
| |
| CapturedDecl *CD = nullptr; |
| RecordDecl *RD = CreateCapturedStmtRecordDecl(CD, Loc, Params.size()); |
| |
| // Build the context parameter |
| DeclContext *DC = CapturedDecl::castToDeclContext(CD); |
| bool ContextIsFound = false; |
| unsigned ParamNum = 0; |
| for (ArrayRef<CapturedParamNameType>::iterator I = Params.begin(), |
| E = Params.end(); |
| I != E; ++I, ++ParamNum) { |
| if (I->second.isNull()) { |
| assert(!ContextIsFound && |
| "null type has been found already for '__context' parameter"); |
| IdentifierInfo *ParamName = &Context.Idents.get("__context"); |
| QualType ParamType = Context.getPointerType(Context.getTagDeclType(RD)) |
| .withConst() |
| .withRestrict(); |
| auto *Param = |
| ImplicitParamDecl::Create(Context, DC, Loc, ParamName, ParamType, |
| ImplicitParamKind::CapturedContext); |
| DC->addDecl(Param); |
| CD->setContextParam(ParamNum, Param); |
| ContextIsFound = true; |
| } else { |
| IdentifierInfo *ParamName = &Context.Idents.get(I->first); |
| auto *Param = |
| ImplicitParamDecl::Create(Context, DC, Loc, ParamName, I->second, |
| ImplicitParamKind::CapturedContext); |
| DC->addDecl(Param); |
| CD->setParam(ParamNum, Param); |
| } |
| } |
| assert(ContextIsFound && "no null type for '__context' parameter"); |
| if (!ContextIsFound) { |
| // Add __context implicitly if it is not specified. |
| IdentifierInfo *ParamName = &Context.Idents.get("__context"); |
| QualType ParamType = Context.getPointerType(Context.getTagDeclType(RD)); |
| auto *Param = |
| ImplicitParamDecl::Create(Context, DC, Loc, ParamName, ParamType, |
| ImplicitParamKind::CapturedContext); |
| DC->addDecl(Param); |
| CD->setContextParam(ParamNum, Param); |
| } |
| // Enter the capturing scope for this captured region. |
| PushCapturedRegionScope(CurScope, CD, RD, Kind, OpenMPCaptureLevel); |
| |
| if (CurScope) |
| PushDeclContext(CurScope, CD); |
| else |
| CurContext = CD; |
| |
| PushExpressionEvaluationContext( |
| ExpressionEvaluationContext::PotentiallyEvaluated); |
| } |
| |
| void Sema::ActOnCapturedRegionError() { |
| DiscardCleanupsInEvaluationContext(); |
| PopExpressionEvaluationContext(); |
| PopDeclContext(); |
| PoppedFunctionScopePtr ScopeRAII = PopFunctionScopeInfo(); |
| CapturedRegionScopeInfo *RSI = cast<CapturedRegionScopeInfo>(ScopeRAII.get()); |
| |
| RecordDecl *Record = RSI->TheRecordDecl; |
| Record->setInvalidDecl(); |
| |
| SmallVector<Decl*, 4> Fields(Record->fields()); |
| ActOnFields(/*Scope=*/nullptr, Record->getLocation(), Record, Fields, |
| SourceLocation(), SourceLocation(), ParsedAttributesView()); |
| } |
| |
| StmtResult Sema::ActOnCapturedRegionEnd(Stmt *S) { |
| // Leave the captured scope before we start creating captures in the |
| // enclosing scope. |
| DiscardCleanupsInEvaluationContext(); |
| PopExpressionEvaluationContext(); |
| PopDeclContext(); |
| PoppedFunctionScopePtr ScopeRAII = PopFunctionScopeInfo(); |
| CapturedRegionScopeInfo *RSI = cast<CapturedRegionScopeInfo>(ScopeRAII.get()); |
| |
| SmallVector<CapturedStmt::Capture, 4> Captures; |
| SmallVector<Expr *, 4> CaptureInits; |
| if (buildCapturedStmtCaptureList(*this, RSI, Captures, CaptureInits)) |
| return StmtError(); |
| |
| CapturedDecl *CD = RSI->TheCapturedDecl; |
| RecordDecl *RD = RSI->TheRecordDecl; |
| |
| CapturedStmt *Res = CapturedStmt::Create( |
| getASTContext(), S, static_cast<CapturedRegionKind>(RSI->CapRegionKind), |
| Captures, CaptureInits, CD, RD); |
| |
| CD->setBody(Res->getCapturedStmt()); |
| RD->completeDefinition(); |
| |
| return Res; |
| } |