| //===- SemaTemplateDeduction.cpp - Template Argument Deduction ------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements C++ template argument deduction. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "TreeTransform.h" |
| #include "TypeLocBuilder.h" |
| #include "clang/AST/ASTContext.h" |
| #include "clang/AST/ASTLambda.h" |
| #include "clang/AST/Decl.h" |
| #include "clang/AST/DeclAccessPair.h" |
| #include "clang/AST/DeclBase.h" |
| #include "clang/AST/DeclCXX.h" |
| #include "clang/AST/DeclTemplate.h" |
| #include "clang/AST/DeclarationName.h" |
| #include "clang/AST/DynamicRecursiveASTVisitor.h" |
| #include "clang/AST/Expr.h" |
| #include "clang/AST/ExprCXX.h" |
| #include "clang/AST/NestedNameSpecifier.h" |
| #include "clang/AST/TemplateBase.h" |
| #include "clang/AST/TemplateName.h" |
| #include "clang/AST/Type.h" |
| #include "clang/AST/TypeLoc.h" |
| #include "clang/AST/TypeOrdering.h" |
| #include "clang/AST/UnresolvedSet.h" |
| #include "clang/Basic/AddressSpaces.h" |
| #include "clang/Basic/ExceptionSpecificationType.h" |
| #include "clang/Basic/LLVM.h" |
| #include "clang/Basic/LangOptions.h" |
| #include "clang/Basic/PartialDiagnostic.h" |
| #include "clang/Basic/SourceLocation.h" |
| #include "clang/Basic/Specifiers.h" |
| #include "clang/Sema/EnterExpressionEvaluationContext.h" |
| #include "clang/Sema/Ownership.h" |
| #include "clang/Sema/Sema.h" |
| #include "clang/Sema/Template.h" |
| #include "clang/Sema/TemplateDeduction.h" |
| #include "llvm/ADT/APInt.h" |
| #include "llvm/ADT/APSInt.h" |
| #include "llvm/ADT/ArrayRef.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/FoldingSet.h" |
| #include "llvm/ADT/SmallBitVector.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/Compiler.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/SaveAndRestore.h" |
| #include <algorithm> |
| #include <cassert> |
| #include <optional> |
| #include <tuple> |
| #include <type_traits> |
| #include <utility> |
| |
| namespace clang { |
| |
| /// Various flags that control template argument deduction. |
| /// |
| /// These flags can be bitwise-OR'd together. |
| enum TemplateDeductionFlags { |
| /// No template argument deduction flags, which indicates the |
| /// strictest results for template argument deduction (as used for, e.g., |
| /// matching class template partial specializations). |
| TDF_None = 0, |
| |
| /// Within template argument deduction from a function call, we are |
| /// matching with a parameter type for which the original parameter was |
| /// a reference. |
| TDF_ParamWithReferenceType = 0x1, |
| |
| /// Within template argument deduction from a function call, we |
| /// are matching in a case where we ignore cv-qualifiers. |
| TDF_IgnoreQualifiers = 0x02, |
| |
| /// Within template argument deduction from a function call, |
| /// we are matching in a case where we can perform template argument |
| /// deduction from a template-id of a derived class of the argument type. |
| TDF_DerivedClass = 0x04, |
| |
| /// Allow non-dependent types to differ, e.g., when performing |
| /// template argument deduction from a function call where conversions |
| /// may apply. |
| TDF_SkipNonDependent = 0x08, |
| |
| /// Whether we are performing template argument deduction for |
| /// parameters and arguments in a top-level template argument |
| TDF_TopLevelParameterTypeList = 0x10, |
| |
| /// Within template argument deduction from overload resolution per |
| /// C++ [over.over] allow matching function types that are compatible in |
| /// terms of noreturn and default calling convention adjustments, or |
| /// similarly matching a declared template specialization against a |
| /// possible template, per C++ [temp.deduct.decl]. In either case, permit |
| /// deduction where the parameter is a function type that can be converted |
| /// to the argument type. |
| TDF_AllowCompatibleFunctionType = 0x20, |
| |
| /// Within template argument deduction for a conversion function, we are |
| /// matching with an argument type for which the original argument was |
| /// a reference. |
| TDF_ArgWithReferenceType = 0x40, |
| }; |
| } |
| |
| using namespace clang; |
| using namespace sema; |
| |
| /// Compare two APSInts, extending and switching the sign as |
| /// necessary to compare their values regardless of underlying type. |
| static bool hasSameExtendedValue(llvm::APSInt X, llvm::APSInt Y) { |
| if (Y.getBitWidth() > X.getBitWidth()) |
| X = X.extend(Y.getBitWidth()); |
| else if (Y.getBitWidth() < X.getBitWidth()) |
| Y = Y.extend(X.getBitWidth()); |
| |
| // If there is a signedness mismatch, correct it. |
| if (X.isSigned() != Y.isSigned()) { |
| // If the signed value is negative, then the values cannot be the same. |
| if ((Y.isSigned() && Y.isNegative()) || (X.isSigned() && X.isNegative())) |
| return false; |
| |
| Y.setIsSigned(true); |
| X.setIsSigned(true); |
| } |
| |
| return X == Y; |
| } |
| |
| /// The kind of PartialOrdering we're performing template argument deduction |
| /// for (C++11 [temp.deduct.partial]). |
| enum class PartialOrderingKind { None, NonCall, Call }; |
| |
| static TemplateDeductionResult DeduceTemplateArgumentsByTypeMatch( |
| Sema &S, TemplateParameterList *TemplateParams, QualType Param, |
| QualType Arg, TemplateDeductionInfo &Info, |
| SmallVectorImpl<DeducedTemplateArgument> &Deduced, unsigned TDF, |
| PartialOrderingKind POK, bool DeducedFromArrayBound, |
| bool *HasDeducedAnyParam); |
| |
| /// What directions packs are allowed to match non-packs. |
| enum class PackFold { ParameterToArgument, ArgumentToParameter, Both }; |
| |
| static TemplateDeductionResult |
| DeduceTemplateArguments(Sema &S, TemplateParameterList *TemplateParams, |
| ArrayRef<TemplateArgument> Ps, |
| ArrayRef<TemplateArgument> As, |
| TemplateDeductionInfo &Info, |
| SmallVectorImpl<DeducedTemplateArgument> &Deduced, |
| bool NumberOfArgumentsMustMatch, bool PartialOrdering, |
| PackFold PackFold, bool *HasDeducedAnyParam); |
| |
| static void MarkUsedTemplateParameters(ASTContext &Ctx, |
| const TemplateArgument &TemplateArg, |
| bool OnlyDeduced, unsigned Depth, |
| llvm::SmallBitVector &Used); |
| |
| static void MarkUsedTemplateParameters(ASTContext &Ctx, QualType T, |
| bool OnlyDeduced, unsigned Level, |
| llvm::SmallBitVector &Deduced); |
| |
| /// If the given expression is of a form that permits the deduction |
| /// of a non-type template parameter, return the declaration of that |
| /// non-type template parameter. |
| static const NonTypeTemplateParmDecl * |
| getDeducedParameterFromExpr(const Expr *E, unsigned Depth) { |
| // If we are within an alias template, the expression may have undergone |
| // any number of parameter substitutions already. |
| while (true) { |
| if (const auto *IC = dyn_cast<ImplicitCastExpr>(E)) |
| E = IC->getSubExpr(); |
| else if (const auto *CE = dyn_cast<ConstantExpr>(E)) |
| E = CE->getSubExpr(); |
| else if (const auto *Subst = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) |
| E = Subst->getReplacement(); |
| else if (const auto *CCE = dyn_cast<CXXConstructExpr>(E)) { |
| // Look through implicit copy construction from an lvalue of the same type. |
| if (CCE->getParenOrBraceRange().isValid()) |
| break; |
| // Note, there could be default arguments. |
| assert(CCE->getNumArgs() >= 1 && "implicit construct expr should have 1 arg"); |
| E = CCE->getArg(0); |
| } else |
| break; |
| } |
| |
| if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) |
| if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl())) |
| if (NTTP->getDepth() == Depth) |
| return NTTP; |
| |
| return nullptr; |
| } |
| |
| static const NonTypeTemplateParmDecl * |
| getDeducedParameterFromExpr(TemplateDeductionInfo &Info, Expr *E) { |
| return getDeducedParameterFromExpr(E, Info.getDeducedDepth()); |
| } |
| |
| /// Determine whether two declaration pointers refer to the same |
| /// declaration. |
| static bool isSameDeclaration(Decl *X, Decl *Y) { |
| if (NamedDecl *NX = dyn_cast<NamedDecl>(X)) |
| X = NX->getUnderlyingDecl(); |
| if (NamedDecl *NY = dyn_cast<NamedDecl>(Y)) |
| Y = NY->getUnderlyingDecl(); |
| |
| return X->getCanonicalDecl() == Y->getCanonicalDecl(); |
| } |
| |
| /// Verify that the given, deduced template arguments are compatible. |
| /// |
| /// \returns The deduced template argument, or a NULL template argument if |
| /// the deduced template arguments were incompatible. |
| static DeducedTemplateArgument |
| checkDeducedTemplateArguments(ASTContext &Context, |
| const DeducedTemplateArgument &X, |
| const DeducedTemplateArgument &Y, |
| bool AggregateCandidateDeduction = false) { |
| // We have no deduction for one or both of the arguments; they're compatible. |
| if (X.isNull()) |
| return Y; |
| if (Y.isNull()) |
| return X; |
| |
| // If we have two non-type template argument values deduced for the same |
| // parameter, they must both match the type of the parameter, and thus must |
| // match each other's type. As we're only keeping one of them, we must check |
| // for that now. The exception is that if either was deduced from an array |
| // bound, the type is permitted to differ. |
| if (!X.wasDeducedFromArrayBound() && !Y.wasDeducedFromArrayBound()) { |
| QualType XType = X.getNonTypeTemplateArgumentType(); |
| if (!XType.isNull()) { |
| QualType YType = Y.getNonTypeTemplateArgumentType(); |
| if (YType.isNull() || !Context.hasSameType(XType, YType)) |
| return DeducedTemplateArgument(); |
| } |
| } |
| |
| switch (X.getKind()) { |
| case TemplateArgument::Null: |
| llvm_unreachable("Non-deduced template arguments handled above"); |
| |
| case TemplateArgument::Type: { |
| // If two template type arguments have the same type, they're compatible. |
| QualType TX = X.getAsType(), TY = Y.getAsType(); |
| if (Y.getKind() == TemplateArgument::Type && Context.hasSameType(TX, TY)) |
| return DeducedTemplateArgument(Context.getCommonSugaredType(TX, TY), |
| X.wasDeducedFromArrayBound() || |
| Y.wasDeducedFromArrayBound()); |
| |
| // If one of the two arguments was deduced from an array bound, the other |
| // supersedes it. |
| if (X.wasDeducedFromArrayBound() != Y.wasDeducedFromArrayBound()) |
| return X.wasDeducedFromArrayBound() ? Y : X; |
| |
| // The arguments are not compatible. |
| return DeducedTemplateArgument(); |
| } |
| |
| case TemplateArgument::Integral: |
| // If we deduced a constant in one case and either a dependent expression or |
| // declaration in another case, keep the integral constant. |
| // If both are integral constants with the same value, keep that value. |
| if (Y.getKind() == TemplateArgument::Expression || |
| Y.getKind() == TemplateArgument::Declaration || |
| (Y.getKind() == TemplateArgument::Integral && |
| hasSameExtendedValue(X.getAsIntegral(), Y.getAsIntegral()))) |
| return X.wasDeducedFromArrayBound() ? Y : X; |
| |
| // All other combinations are incompatible. |
| return DeducedTemplateArgument(); |
| |
| case TemplateArgument::StructuralValue: |
| // If we deduced a value and a dependent expression, keep the value. |
| if (Y.getKind() == TemplateArgument::Expression || |
| (Y.getKind() == TemplateArgument::StructuralValue && |
| X.structurallyEquals(Y))) |
| return X; |
| |
| // All other combinations are incompatible. |
| return DeducedTemplateArgument(); |
| |
| case TemplateArgument::Template: |
| if (Y.getKind() == TemplateArgument::Template && |
| Context.hasSameTemplateName(X.getAsTemplate(), Y.getAsTemplate())) |
| return X; |
| |
| // All other combinations are incompatible. |
| return DeducedTemplateArgument(); |
| |
| case TemplateArgument::TemplateExpansion: |
| if (Y.getKind() == TemplateArgument::TemplateExpansion && |
| Context.hasSameTemplateName(X.getAsTemplateOrTemplatePattern(), |
| Y.getAsTemplateOrTemplatePattern())) |
| return X; |
| |
| // All other combinations are incompatible. |
| return DeducedTemplateArgument(); |
| |
| case TemplateArgument::Expression: { |
| if (Y.getKind() != TemplateArgument::Expression) |
| return checkDeducedTemplateArguments(Context, Y, X); |
| |
| // Compare the expressions for equality |
| llvm::FoldingSetNodeID ID1, ID2; |
| X.getAsExpr()->Profile(ID1, Context, true); |
| Y.getAsExpr()->Profile(ID2, Context, true); |
| if (ID1 == ID2) |
| return X.wasDeducedFromArrayBound() ? Y : X; |
| |
| // Differing dependent expressions are incompatible. |
| return DeducedTemplateArgument(); |
| } |
| |
| case TemplateArgument::Declaration: |
| assert(!X.wasDeducedFromArrayBound()); |
| |
| // If we deduced a declaration and a dependent expression, keep the |
| // declaration. |
| if (Y.getKind() == TemplateArgument::Expression) |
| return X; |
| |
| // If we deduced a declaration and an integral constant, keep the |
| // integral constant and whichever type did not come from an array |
| // bound. |
| if (Y.getKind() == TemplateArgument::Integral) { |
| if (Y.wasDeducedFromArrayBound()) |
| return TemplateArgument(Context, Y.getAsIntegral(), |
| X.getParamTypeForDecl()); |
| return Y; |
| } |
| |
| // If we deduced two declarations, make sure that they refer to the |
| // same declaration. |
| if (Y.getKind() == TemplateArgument::Declaration && |
| isSameDeclaration(X.getAsDecl(), Y.getAsDecl())) |
| return X; |
| |
| // All other combinations are incompatible. |
| return DeducedTemplateArgument(); |
| |
| case TemplateArgument::NullPtr: |
| // If we deduced a null pointer and a dependent expression, keep the |
| // null pointer. |
| if (Y.getKind() == TemplateArgument::Expression) |
| return TemplateArgument(Context.getCommonSugaredType( |
| X.getNullPtrType(), Y.getAsExpr()->getType()), |
| true); |
| |
| // If we deduced a null pointer and an integral constant, keep the |
| // integral constant. |
| if (Y.getKind() == TemplateArgument::Integral) |
| return Y; |
| |
| // If we deduced two null pointers, they are the same. |
| if (Y.getKind() == TemplateArgument::NullPtr) |
| return TemplateArgument( |
| Context.getCommonSugaredType(X.getNullPtrType(), Y.getNullPtrType()), |
| true); |
| |
| // All other combinations are incompatible. |
| return DeducedTemplateArgument(); |
| |
| case TemplateArgument::Pack: { |
| if (Y.getKind() != TemplateArgument::Pack || |
| (!AggregateCandidateDeduction && X.pack_size() != Y.pack_size())) |
| return DeducedTemplateArgument(); |
| |
| llvm::SmallVector<TemplateArgument, 8> NewPack; |
| for (TemplateArgument::pack_iterator |
| XA = X.pack_begin(), |
| XAEnd = X.pack_end(), YA = Y.pack_begin(), YAEnd = Y.pack_end(); |
| XA != XAEnd; ++XA) { |
| if (YA != YAEnd) { |
| TemplateArgument Merged = checkDeducedTemplateArguments( |
| Context, DeducedTemplateArgument(*XA, X.wasDeducedFromArrayBound()), |
| DeducedTemplateArgument(*YA, Y.wasDeducedFromArrayBound())); |
| if (Merged.isNull() && !(XA->isNull() && YA->isNull())) |
| return DeducedTemplateArgument(); |
| NewPack.push_back(Merged); |
| ++YA; |
| } else { |
| NewPack.push_back(*XA); |
| } |
| } |
| |
| return DeducedTemplateArgument( |
| TemplateArgument::CreatePackCopy(Context, NewPack), |
| X.wasDeducedFromArrayBound() && Y.wasDeducedFromArrayBound()); |
| } |
| } |
| |
| llvm_unreachable("Invalid TemplateArgument Kind!"); |
| } |
| |
| /// Deduce the value of the given non-type template parameter |
| /// as the given deduced template argument. All non-type template parameter |
| /// deduction is funneled through here. |
| static TemplateDeductionResult |
| DeduceNonTypeTemplateArgument(Sema &S, TemplateParameterList *TemplateParams, |
| const NonTypeTemplateParmDecl *NTTP, |
| const DeducedTemplateArgument &NewDeduced, |
| QualType ValueType, TemplateDeductionInfo &Info, |
| bool PartialOrdering, |
| SmallVectorImpl<DeducedTemplateArgument> &Deduced, |
| bool *HasDeducedAnyParam) { |
| assert(NTTP->getDepth() == Info.getDeducedDepth() && |
| "deducing non-type template argument with wrong depth"); |
| |
| DeducedTemplateArgument Result = checkDeducedTemplateArguments( |
| S.Context, Deduced[NTTP->getIndex()], NewDeduced); |
| if (Result.isNull()) { |
| Info.Param = const_cast<NonTypeTemplateParmDecl*>(NTTP); |
| Info.FirstArg = Deduced[NTTP->getIndex()]; |
| Info.SecondArg = NewDeduced; |
| return TemplateDeductionResult::Inconsistent; |
| } |
| |
| Deduced[NTTP->getIndex()] = Result; |
| if (!S.getLangOpts().CPlusPlus17) |
| return TemplateDeductionResult::Success; |
| |
| if (NTTP->isExpandedParameterPack()) |
| // FIXME: We may still need to deduce parts of the type here! But we |
| // don't have any way to find which slice of the type to use, and the |
| // type stored on the NTTP itself is nonsense. Perhaps the type of an |
| // expanded NTTP should be a pack expansion type? |
| return TemplateDeductionResult::Success; |
| |
| // Get the type of the parameter for deduction. If it's a (dependent) array |
| // or function type, we will not have decayed it yet, so do that now. |
| QualType ParamType = S.Context.getAdjustedParameterType(NTTP->getType()); |
| if (auto *Expansion = dyn_cast<PackExpansionType>(ParamType)) |
| ParamType = Expansion->getPattern(); |
| |
| // FIXME: It's not clear how deduction of a parameter of reference |
| // type from an argument (of non-reference type) should be performed. |
| // For now, we just make the argument have same reference type as the |
| // parameter. |
| if (ParamType->isReferenceType() && !ValueType->isReferenceType()) { |
| if (ParamType->isRValueReferenceType()) |
| ValueType = S.Context.getRValueReferenceType(ValueType); |
| else |
| ValueType = S.Context.getLValueReferenceType(ValueType); |
| } |
| |
| return DeduceTemplateArgumentsByTypeMatch( |
| S, TemplateParams, ParamType, ValueType, Info, Deduced, |
| TDF_SkipNonDependent | TDF_IgnoreQualifiers, |
| PartialOrdering ? PartialOrderingKind::NonCall |
| : PartialOrderingKind::None, |
| /*ArrayBound=*/NewDeduced.wasDeducedFromArrayBound(), HasDeducedAnyParam); |
| } |
| |
| /// Deduce the value of the given non-type template parameter |
| /// from the given integral constant. |
| static TemplateDeductionResult DeduceNonTypeTemplateArgument( |
| Sema &S, TemplateParameterList *TemplateParams, |
| const NonTypeTemplateParmDecl *NTTP, const llvm::APSInt &Value, |
| QualType ValueType, bool DeducedFromArrayBound, TemplateDeductionInfo &Info, |
| bool PartialOrdering, SmallVectorImpl<DeducedTemplateArgument> &Deduced, |
| bool *HasDeducedAnyParam) { |
| return DeduceNonTypeTemplateArgument( |
| S, TemplateParams, NTTP, |
| DeducedTemplateArgument(S.Context, Value, ValueType, |
| DeducedFromArrayBound), |
| ValueType, Info, PartialOrdering, Deduced, HasDeducedAnyParam); |
| } |
| |
| /// Deduce the value of the given non-type template parameter |
| /// from the given null pointer template argument type. |
| static TemplateDeductionResult |
| DeduceNullPtrTemplateArgument(Sema &S, TemplateParameterList *TemplateParams, |
| const NonTypeTemplateParmDecl *NTTP, |
| QualType NullPtrType, TemplateDeductionInfo &Info, |
| bool PartialOrdering, |
| SmallVectorImpl<DeducedTemplateArgument> &Deduced, |
| bool *HasDeducedAnyParam) { |
| Expr *Value = S.ImpCastExprToType( |
| new (S.Context) CXXNullPtrLiteralExpr(S.Context.NullPtrTy, |
| NTTP->getLocation()), |
| NullPtrType, |
| NullPtrType->isMemberPointerType() ? CK_NullToMemberPointer |
| : CK_NullToPointer) |
| .get(); |
| return DeduceNonTypeTemplateArgument( |
| S, TemplateParams, NTTP, DeducedTemplateArgument(Value), Value->getType(), |
| Info, PartialOrdering, Deduced, HasDeducedAnyParam); |
| } |
| |
| /// Deduce the value of the given non-type template parameter |
| /// from the given type- or value-dependent expression. |
| /// |
| /// \returns true if deduction succeeded, false otherwise. |
| static TemplateDeductionResult |
| DeduceNonTypeTemplateArgument(Sema &S, TemplateParameterList *TemplateParams, |
| const NonTypeTemplateParmDecl *NTTP, Expr *Value, |
| TemplateDeductionInfo &Info, bool PartialOrdering, |
| SmallVectorImpl<DeducedTemplateArgument> &Deduced, |
| bool *HasDeducedAnyParam) { |
| return DeduceNonTypeTemplateArgument( |
| S, TemplateParams, NTTP, DeducedTemplateArgument(Value), Value->getType(), |
| Info, PartialOrdering, Deduced, HasDeducedAnyParam); |
| } |
| |
| /// Deduce the value of the given non-type template parameter |
| /// from the given declaration. |
| /// |
| /// \returns true if deduction succeeded, false otherwise. |
| static TemplateDeductionResult |
| DeduceNonTypeTemplateArgument(Sema &S, TemplateParameterList *TemplateParams, |
| const NonTypeTemplateParmDecl *NTTP, ValueDecl *D, |
| QualType T, TemplateDeductionInfo &Info, |
| bool PartialOrdering, |
| SmallVectorImpl<DeducedTemplateArgument> &Deduced, |
| bool *HasDeducedAnyParam) { |
| TemplateArgument New(D, T); |
| return DeduceNonTypeTemplateArgument( |
| S, TemplateParams, NTTP, DeducedTemplateArgument(New), T, Info, |
| PartialOrdering, Deduced, HasDeducedAnyParam); |
| } |
| |
| static TemplateDeductionResult DeduceTemplateArguments( |
| Sema &S, TemplateParameterList *TemplateParams, TemplateName Param, |
| TemplateName Arg, TemplateDeductionInfo &Info, |
| ArrayRef<TemplateArgument> DefaultArguments, bool PartialOrdering, |
| SmallVectorImpl<DeducedTemplateArgument> &Deduced, |
| bool *HasDeducedAnyParam) { |
| TemplateDecl *ParamDecl = Param.getAsTemplateDecl(); |
| if (!ParamDecl) { |
| // The parameter type is dependent and is not a template template parameter, |
| // so there is nothing that we can deduce. |
| return TemplateDeductionResult::Success; |
| } |
| |
| if (auto *TempParam = dyn_cast<TemplateTemplateParmDecl>(ParamDecl)) { |
| // If we're not deducing at this depth, there's nothing to deduce. |
| if (TempParam->getDepth() != Info.getDeducedDepth()) |
| return TemplateDeductionResult::Success; |
| |
| ArrayRef<NamedDecl *> Params = |
| ParamDecl->getTemplateParameters()->asArray(); |
| unsigned StartPos = 0; |
| for (unsigned I = 0, E = std::min(Params.size(), DefaultArguments.size()); |
| I < E; ++I) { |
| if (Params[I]->isParameterPack()) { |
| StartPos = DefaultArguments.size(); |
| break; |
| } |
| StartPos = I + 1; |
| } |
| |
| // Provisional resolution for CWG2398: If Arg names a template |
| // specialization, then we deduce a synthesized template name |
| // based on A, but using the TS's extra arguments, relative to P, as |
| // defaults. |
| DeducedTemplateArgument NewDeduced = |
| PartialOrdering |
| ? TemplateArgument(S.Context.getDeducedTemplateName( |
| Arg, {StartPos, DefaultArguments.drop_front(StartPos)})) |
| : Arg; |
| |
| DeducedTemplateArgument Result = checkDeducedTemplateArguments( |
| S.Context, Deduced[TempParam->getIndex()], NewDeduced); |
| if (Result.isNull()) { |
| Info.Param = TempParam; |
| Info.FirstArg = Deduced[TempParam->getIndex()]; |
| Info.SecondArg = NewDeduced; |
| return TemplateDeductionResult::Inconsistent; |
| } |
| |
| Deduced[TempParam->getIndex()] = Result; |
| if (HasDeducedAnyParam) |
| *HasDeducedAnyParam = true; |
| return TemplateDeductionResult::Success; |
| } |
| |
| // Verify that the two template names are equivalent. |
| if (S.Context.hasSameTemplateName( |
| Param, Arg, /*IgnoreDeduced=*/DefaultArguments.size() != 0)) |
| return TemplateDeductionResult::Success; |
| |
| // Mismatch of non-dependent template parameter to argument. |
| Info.FirstArg = TemplateArgument(Param); |
| Info.SecondArg = TemplateArgument(Arg); |
| return TemplateDeductionResult::NonDeducedMismatch; |
| } |
| |
| /// Deduce the template arguments by comparing the template parameter |
| /// type (which is a template-id) with the template argument type. |
| /// |
| /// \param S the Sema |
| /// |
| /// \param TemplateParams the template parameters that we are deducing |
| /// |
| /// \param P the parameter type |
| /// |
| /// \param A the argument type |
| /// |
| /// \param Info information about the template argument deduction itself |
| /// |
| /// \param Deduced the deduced template arguments |
| /// |
| /// \returns the result of template argument deduction so far. Note that a |
| /// "success" result means that template argument deduction has not yet failed, |
| /// but it may still fail, later, for other reasons. |
| |
| static const TemplateSpecializationType *getLastTemplateSpecType(QualType QT) { |
| for (const Type *T = QT.getTypePtr(); /**/; /**/) { |
| const TemplateSpecializationType *TST = |
| T->getAs<TemplateSpecializationType>(); |
| assert(TST && "Expected a TemplateSpecializationType"); |
| if (!TST->isSugared()) |
| return TST; |
| T = TST->desugar().getTypePtr(); |
| } |
| } |
| |
| static TemplateDeductionResult |
| DeduceTemplateSpecArguments(Sema &S, TemplateParameterList *TemplateParams, |
| const QualType P, QualType A, |
| TemplateDeductionInfo &Info, bool PartialOrdering, |
| SmallVectorImpl<DeducedTemplateArgument> &Deduced, |
| bool *HasDeducedAnyParam) { |
| QualType UP = P; |
| if (const auto *IP = P->getAs<InjectedClassNameType>()) |
| UP = IP->getInjectedSpecializationType(); |
| |
| assert(isa<TemplateSpecializationType>(UP.getCanonicalType())); |
| const TemplateSpecializationType *TP = ::getLastTemplateSpecType(UP); |
| TemplateName TNP = TP->getTemplateName(); |
| |
| // If the parameter is an alias template, there is nothing to deduce. |
| if (const auto *TD = TNP.getAsTemplateDecl(); TD && TD->isTypeAlias()) |
| return TemplateDeductionResult::Success; |
| |
| // FIXME: To preserve sugar, the TST needs to carry sugared resolved |
| // arguments. |
| ArrayRef<TemplateArgument> PResolved = |
| TP->getCanonicalTypeInternal() |
| ->castAs<TemplateSpecializationType>() |
| ->template_arguments(); |
| |
| QualType UA = A; |
| std::optional<NestedNameSpecifier *> NNS; |
| // Treat an injected-class-name as its underlying template-id. |
| if (const auto *Elaborated = A->getAs<ElaboratedType>()) { |
| NNS = Elaborated->getQualifier(); |
| } else if (const auto *Injected = A->getAs<InjectedClassNameType>()) { |
| UA = Injected->getInjectedSpecializationType(); |
| NNS = nullptr; |
| } |
| |
| // Check whether the template argument is a dependent template-id. |
| if (isa<TemplateSpecializationType>(UA.getCanonicalType())) { |
| const TemplateSpecializationType *SA = ::getLastTemplateSpecType(UA); |
| TemplateName TNA = SA->getTemplateName(); |
| |
| // If the argument is an alias template, there is nothing to deduce. |
| if (const auto *TD = TNA.getAsTemplateDecl(); TD && TD->isTypeAlias()) |
| return TemplateDeductionResult::Success; |
| |
| // FIXME: To preserve sugar, the TST needs to carry sugared resolved |
| // arguments. |
| ArrayRef<TemplateArgument> AResolved = |
| SA->getCanonicalTypeInternal() |
| ->castAs<TemplateSpecializationType>() |
| ->template_arguments(); |
| |
| // Perform template argument deduction for the template name. |
| if (auto Result = DeduceTemplateArguments(S, TemplateParams, TNP, TNA, Info, |
| /*DefaultArguments=*/AResolved, |
| PartialOrdering, Deduced, |
| HasDeducedAnyParam); |
| Result != TemplateDeductionResult::Success) |
| return Result; |
| |
| // Perform template argument deduction on each template |
| // argument. Ignore any missing/extra arguments, since they could be |
| // filled in by default arguments. |
| return DeduceTemplateArguments( |
| S, TemplateParams, PResolved, AResolved, Info, Deduced, |
| /*NumberOfArgumentsMustMatch=*/false, PartialOrdering, |
| PackFold::ParameterToArgument, HasDeducedAnyParam); |
| } |
| |
| // If the argument type is a class template specialization, we |
| // perform template argument deduction using its template |
| // arguments. |
| const auto *RA = UA->getAs<RecordType>(); |
| const auto *SA = |
| RA ? dyn_cast<ClassTemplateSpecializationDecl>(RA->getDecl()) : nullptr; |
| if (!SA) { |
| Info.FirstArg = TemplateArgument(P); |
| Info.SecondArg = TemplateArgument(A); |
| return TemplateDeductionResult::NonDeducedMismatch; |
| } |
| |
| TemplateName TNA = TemplateName(SA->getSpecializedTemplate()); |
| if (NNS) |
| TNA = S.Context.getQualifiedTemplateName( |
| *NNS, false, TemplateName(SA->getSpecializedTemplate())); |
| |
| // Perform template argument deduction for the template name. |
| if (auto Result = DeduceTemplateArguments( |
| S, TemplateParams, TNP, TNA, Info, |
| /*DefaultArguments=*/SA->getTemplateArgs().asArray(), PartialOrdering, |
| Deduced, HasDeducedAnyParam); |
| Result != TemplateDeductionResult::Success) |
| return Result; |
| |
| // Perform template argument deduction for the template arguments. |
| return DeduceTemplateArguments(S, TemplateParams, PResolved, |
| SA->getTemplateArgs().asArray(), Info, Deduced, |
| /*NumberOfArgumentsMustMatch=*/true, |
| PartialOrdering, PackFold::ParameterToArgument, |
| HasDeducedAnyParam); |
| } |
| |
| static bool IsPossiblyOpaquelyQualifiedTypeInternal(const Type *T) { |
| assert(T->isCanonicalUnqualified()); |
| |
| switch (T->getTypeClass()) { |
| case Type::TypeOfExpr: |
| case Type::TypeOf: |
| case Type::DependentName: |
| case Type::Decltype: |
| case Type::PackIndexing: |
| case Type::UnresolvedUsing: |
| case Type::TemplateTypeParm: |
| case Type::Auto: |
| return true; |
| |
| case Type::ConstantArray: |
| case Type::IncompleteArray: |
| case Type::VariableArray: |
| case Type::DependentSizedArray: |
| return IsPossiblyOpaquelyQualifiedTypeInternal( |
| cast<ArrayType>(T)->getElementType().getTypePtr()); |
| |
| default: |
| return false; |
| } |
| } |
| |
| /// Determines whether the given type is an opaque type that |
| /// might be more qualified when instantiated. |
| static bool IsPossiblyOpaquelyQualifiedType(QualType T) { |
| return IsPossiblyOpaquelyQualifiedTypeInternal( |
| T->getCanonicalTypeInternal().getTypePtr()); |
| } |
| |
| /// Helper function to build a TemplateParameter when we don't |
| /// know its type statically. |
| static TemplateParameter makeTemplateParameter(Decl *D) { |
| if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(D)) |
| return TemplateParameter(TTP); |
| if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(D)) |
| return TemplateParameter(NTTP); |
| |
| return TemplateParameter(cast<TemplateTemplateParmDecl>(D)); |
| } |
| |
| /// A pack that we're currently deducing. |
| struct clang::DeducedPack { |
| // The index of the pack. |
| unsigned Index; |
| |
| // The old value of the pack before we started deducing it. |
| DeducedTemplateArgument Saved; |
| |
| // A deferred value of this pack from an inner deduction, that couldn't be |
| // deduced because this deduction hadn't happened yet. |
| DeducedTemplateArgument DeferredDeduction; |
| |
| // The new value of the pack. |
| SmallVector<DeducedTemplateArgument, 4> New; |
| |
| // The outer deduction for this pack, if any. |
| DeducedPack *Outer = nullptr; |
| |
| DeducedPack(unsigned Index) : Index(Index) {} |
| }; |
| |
| namespace { |
| |
| /// A scope in which we're performing pack deduction. |
| class PackDeductionScope { |
| public: |
| /// Prepare to deduce the packs named within Pattern. |
| /// \param FinishingDeduction Don't attempt to deduce the pack. Useful when |
| /// just checking a previous deduction of the pack. |
| PackDeductionScope(Sema &S, TemplateParameterList *TemplateParams, |
| SmallVectorImpl<DeducedTemplateArgument> &Deduced, |
| TemplateDeductionInfo &Info, TemplateArgument Pattern, |
| bool DeducePackIfNotAlreadyDeduced = false, |
| bool FinishingDeduction = false) |
| : S(S), TemplateParams(TemplateParams), Deduced(Deduced), Info(Info), |
| DeducePackIfNotAlreadyDeduced(DeducePackIfNotAlreadyDeduced), |
| FinishingDeduction(FinishingDeduction) { |
| unsigned NumNamedPacks = addPacks(Pattern); |
| finishConstruction(NumNamedPacks); |
| } |
| |
| /// Prepare to directly deduce arguments of the parameter with index \p Index. |
| PackDeductionScope(Sema &S, TemplateParameterList *TemplateParams, |
| SmallVectorImpl<DeducedTemplateArgument> &Deduced, |
| TemplateDeductionInfo &Info, unsigned Index) |
| : S(S), TemplateParams(TemplateParams), Deduced(Deduced), Info(Info) { |
| addPack(Index); |
| finishConstruction(1); |
| } |
| |
| private: |
| void addPack(unsigned Index) { |
| // Save the deduced template argument for the parameter pack expanded |
| // by this pack expansion, then clear out the deduction. |
| DeducedFromEarlierParameter = !Deduced[Index].isNull(); |
| DeducedPack Pack(Index); |
| if (!FinishingDeduction) { |
| Pack.Saved = Deduced[Index]; |
| Deduced[Index] = TemplateArgument(); |
| } |
| |
| // FIXME: What if we encounter multiple packs with different numbers of |
| // pre-expanded expansions? (This should already have been diagnosed |
| // during substitution.) |
| if (std::optional<unsigned> ExpandedPackExpansions = |
| getExpandedPackSize(TemplateParams->getParam(Index))) |
| FixedNumExpansions = ExpandedPackExpansions; |
| |
| Packs.push_back(Pack); |
| } |
| |
| unsigned addPacks(TemplateArgument Pattern) { |
| // Compute the set of template parameter indices that correspond to |
| // parameter packs expanded by the pack expansion. |
| llvm::SmallBitVector SawIndices(TemplateParams->size()); |
| llvm::SmallVector<TemplateArgument, 4> ExtraDeductions; |
| |
| auto AddPack = [&](unsigned Index) { |
| if (SawIndices[Index]) |
| return; |
| SawIndices[Index] = true; |
| addPack(Index); |
| |
| // Deducing a parameter pack that is a pack expansion also constrains the |
| // packs appearing in that parameter to have the same deduced arity. Also, |
| // in C++17 onwards, deducing a non-type template parameter deduces its |
| // type, so we need to collect the pending deduced values for those packs. |
| if (auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>( |
| TemplateParams->getParam(Index))) { |
| if (!NTTP->isExpandedParameterPack()) |
| // FIXME: CWG2982 suggests a type-constraint forms a non-deduced |
| // context, however it is not yet resolved. |
| if (auto *Expansion = dyn_cast<PackExpansionType>( |
| S.Context.getUnconstrainedType(NTTP->getType()))) |
| ExtraDeductions.push_back(Expansion->getPattern()); |
| } |
| // FIXME: Also collect the unexpanded packs in any type and template |
| // parameter packs that are pack expansions. |
| }; |
| |
| auto Collect = [&](TemplateArgument Pattern) { |
| SmallVector<UnexpandedParameterPack, 2> Unexpanded; |
| S.collectUnexpandedParameterPacks(Pattern, Unexpanded); |
| for (unsigned I = 0, N = Unexpanded.size(); I != N; ++I) { |
| unsigned Depth, Index; |
| std::tie(Depth, Index) = getDepthAndIndex(Unexpanded[I]); |
| if (Depth == Info.getDeducedDepth()) |
| AddPack(Index); |
| } |
| }; |
| |
| // Look for unexpanded packs in the pattern. |
| Collect(Pattern); |
| assert(!Packs.empty() && "Pack expansion without unexpanded packs?"); |
| |
| unsigned NumNamedPacks = Packs.size(); |
| |
| // Also look for unexpanded packs that are indirectly deduced by deducing |
| // the sizes of the packs in this pattern. |
| while (!ExtraDeductions.empty()) |
| Collect(ExtraDeductions.pop_back_val()); |
| |
| return NumNamedPacks; |
| } |
| |
| void finishConstruction(unsigned NumNamedPacks) { |
| // Dig out the partially-substituted pack, if there is one. |
| const TemplateArgument *PartialPackArgs = nullptr; |
| unsigned NumPartialPackArgs = 0; |
| std::pair<unsigned, unsigned> PartialPackDepthIndex(-1u, -1u); |
| if (auto *Scope = S.CurrentInstantiationScope) |
| if (auto *Partial = Scope->getPartiallySubstitutedPack( |
| &PartialPackArgs, &NumPartialPackArgs)) |
| PartialPackDepthIndex = getDepthAndIndex(Partial); |
| |
| // This pack expansion will have been partially or fully expanded if |
| // it only names explicitly-specified parameter packs (including the |
| // partially-substituted one, if any). |
| bool IsExpanded = true; |
| for (unsigned I = 0; I != NumNamedPacks; ++I) { |
| if (Packs[I].Index >= Info.getNumExplicitArgs()) { |
| IsExpanded = false; |
| IsPartiallyExpanded = false; |
| break; |
| } |
| if (PartialPackDepthIndex == |
| std::make_pair(Info.getDeducedDepth(), Packs[I].Index)) { |
| IsPartiallyExpanded = true; |
| } |
| } |
| |
| // Skip over the pack elements that were expanded into separate arguments. |
| // If we partially expanded, this is the number of partial arguments. |
| // FIXME: `&& FixedNumExpansions` is a workaround for UB described in |
| // https://github.com/llvm/llvm-project/issues/100095 |
| if (IsPartiallyExpanded) |
| PackElements += NumPartialPackArgs; |
| else if (IsExpanded && FixedNumExpansions) |
| PackElements += *FixedNumExpansions; |
| |
| for (auto &Pack : Packs) { |
| if (Info.PendingDeducedPacks.size() > Pack.Index) |
| Pack.Outer = Info.PendingDeducedPacks[Pack.Index]; |
| else |
| Info.PendingDeducedPacks.resize(Pack.Index + 1); |
| Info.PendingDeducedPacks[Pack.Index] = &Pack; |
| |
| if (PartialPackDepthIndex == |
| std::make_pair(Info.getDeducedDepth(), Pack.Index)) { |
| Pack.New.append(PartialPackArgs, PartialPackArgs + NumPartialPackArgs); |
| // We pre-populate the deduced value of the partially-substituted |
| // pack with the specified value. This is not entirely correct: the |
| // value is supposed to have been substituted, not deduced, but the |
| // cases where this is observable require an exact type match anyway. |
| // |
| // FIXME: If we could represent a "depth i, index j, pack elem k" |
| // parameter, we could substitute the partially-substituted pack |
| // everywhere and avoid this. |
| if (!FinishingDeduction && !IsPartiallyExpanded) |
| Deduced[Pack.Index] = Pack.New[PackElements]; |
| } |
| } |
| } |
| |
| public: |
| ~PackDeductionScope() { |
| for (auto &Pack : Packs) |
| Info.PendingDeducedPacks[Pack.Index] = Pack.Outer; |
| } |
| |
| // Return the size of the saved packs if all of them has the same size. |
| std::optional<unsigned> getSavedPackSizeIfAllEqual() const { |
| unsigned PackSize = Packs[0].Saved.pack_size(); |
| |
| if (std::all_of(Packs.begin() + 1, Packs.end(), [&PackSize](const auto &P) { |
| return P.Saved.pack_size() == PackSize; |
| })) |
| return PackSize; |
| return {}; |
| } |
| |
| /// Determine whether this pack has already been deduced from a previous |
| /// argument. |
| bool isDeducedFromEarlierParameter() const { |
| return DeducedFromEarlierParameter; |
| } |
| |
| /// Determine whether this pack has already been partially expanded into a |
| /// sequence of (prior) function parameters / template arguments. |
| bool isPartiallyExpanded() { return IsPartiallyExpanded; } |
| |
| /// Determine whether this pack expansion scope has a known, fixed arity. |
| /// This happens if it involves a pack from an outer template that has |
| /// (notionally) already been expanded. |
| bool hasFixedArity() { return FixedNumExpansions.has_value(); } |
| |
| /// Determine whether the next element of the argument is still part of this |
| /// pack. This is the case unless the pack is already expanded to a fixed |
| /// length. |
| bool hasNextElement() { |
| return !FixedNumExpansions || *FixedNumExpansions > PackElements; |
| } |
| |
| /// Move to deducing the next element in each pack that is being deduced. |
| void nextPackElement() { |
| // Capture the deduced template arguments for each parameter pack expanded |
| // by this pack expansion, add them to the list of arguments we've deduced |
| // for that pack, then clear out the deduced argument. |
| if (!FinishingDeduction) { |
| for (auto &Pack : Packs) { |
| DeducedTemplateArgument &DeducedArg = Deduced[Pack.Index]; |
| if (!Pack.New.empty() || !DeducedArg.isNull()) { |
| while (Pack.New.size() < PackElements) |
| Pack.New.push_back(DeducedTemplateArgument()); |
| if (Pack.New.size() == PackElements) |
| Pack.New.push_back(DeducedArg); |
| else |
| Pack.New[PackElements] = DeducedArg; |
| DeducedArg = Pack.New.size() > PackElements + 1 |
| ? Pack.New[PackElements + 1] |
| : DeducedTemplateArgument(); |
| } |
| } |
| } |
| ++PackElements; |
| } |
| |
| /// Finish template argument deduction for a set of argument packs, |
| /// producing the argument packs and checking for consistency with prior |
| /// deductions. |
| TemplateDeductionResult finish() { |
| if (FinishingDeduction) |
| return TemplateDeductionResult::Success; |
| // Build argument packs for each of the parameter packs expanded by this |
| // pack expansion. |
| for (auto &Pack : Packs) { |
| // Put back the old value for this pack. |
| if (!FinishingDeduction) |
| Deduced[Pack.Index] = Pack.Saved; |
| |
| // Always make sure the size of this pack is correct, even if we didn't |
| // deduce any values for it. |
| // |
| // FIXME: This isn't required by the normative wording, but substitution |
| // and post-substitution checking will always fail if the arity of any |
| // pack is not equal to the number of elements we processed. (Either that |
| // or something else has gone *very* wrong.) We're permitted to skip any |
| // hard errors from those follow-on steps by the intent (but not the |
| // wording) of C++ [temp.inst]p8: |
| // |
| // If the function selected by overload resolution can be determined |
| // without instantiating a class template definition, it is unspecified |
| // whether that instantiation actually takes place |
| Pack.New.resize(PackElements); |
| |
| // Build or find a new value for this pack. |
| DeducedTemplateArgument NewPack; |
| if (Pack.New.empty()) { |
| // If we deduced an empty argument pack, create it now. |
| NewPack = DeducedTemplateArgument(TemplateArgument::getEmptyPack()); |
| } else { |
| TemplateArgument *ArgumentPack = |
| new (S.Context) TemplateArgument[Pack.New.size()]; |
| std::copy(Pack.New.begin(), Pack.New.end(), ArgumentPack); |
| NewPack = DeducedTemplateArgument( |
| TemplateArgument(llvm::ArrayRef(ArgumentPack, Pack.New.size())), |
| // FIXME: This is wrong, it's possible that some pack elements are |
| // deduced from an array bound and others are not: |
| // template<typename ...T, T ...V> void g(const T (&...p)[V]); |
| // g({1, 2, 3}, {{}, {}}); |
| // ... should deduce T = {int, size_t (from array bound)}. |
| Pack.New[0].wasDeducedFromArrayBound()); |
| } |
| |
| // Pick where we're going to put the merged pack. |
| DeducedTemplateArgument *Loc; |
| if (Pack.Outer) { |
| if (Pack.Outer->DeferredDeduction.isNull()) { |
| // Defer checking this pack until we have a complete pack to compare |
| // it against. |
| Pack.Outer->DeferredDeduction = NewPack; |
| continue; |
| } |
| Loc = &Pack.Outer->DeferredDeduction; |
| } else { |
| Loc = &Deduced[Pack.Index]; |
| } |
| |
| // Check the new pack matches any previous value. |
| DeducedTemplateArgument OldPack = *Loc; |
| DeducedTemplateArgument Result = checkDeducedTemplateArguments( |
| S.Context, OldPack, NewPack, DeducePackIfNotAlreadyDeduced); |
| |
| Info.AggregateDeductionCandidateHasMismatchedArity = |
| OldPack.getKind() == TemplateArgument::Pack && |
| NewPack.getKind() == TemplateArgument::Pack && |
| OldPack.pack_size() != NewPack.pack_size() && !Result.isNull(); |
| |
| // If we deferred a deduction of this pack, check that one now too. |
| if (!Result.isNull() && !Pack.DeferredDeduction.isNull()) { |
| OldPack = Result; |
| NewPack = Pack.DeferredDeduction; |
| Result = checkDeducedTemplateArguments(S.Context, OldPack, NewPack); |
| } |
| |
| NamedDecl *Param = TemplateParams->getParam(Pack.Index); |
| if (Result.isNull()) { |
| Info.Param = makeTemplateParameter(Param); |
| Info.FirstArg = OldPack; |
| Info.SecondArg = NewPack; |
| return TemplateDeductionResult::Inconsistent; |
| } |
| |
| // If we have a pre-expanded pack and we didn't deduce enough elements |
| // for it, fail deduction. |
| if (std::optional<unsigned> Expansions = getExpandedPackSize(Param)) { |
| if (*Expansions != PackElements) { |
| Info.Param = makeTemplateParameter(Param); |
| Info.FirstArg = Result; |
| return TemplateDeductionResult::IncompletePack; |
| } |
| } |
| |
| *Loc = Result; |
| } |
| |
| return TemplateDeductionResult::Success; |
| } |
| |
| private: |
| Sema &S; |
| TemplateParameterList *TemplateParams; |
| SmallVectorImpl<DeducedTemplateArgument> &Deduced; |
| TemplateDeductionInfo &Info; |
| unsigned PackElements = 0; |
| bool IsPartiallyExpanded = false; |
| bool DeducePackIfNotAlreadyDeduced = false; |
| bool DeducedFromEarlierParameter = false; |
| bool FinishingDeduction = false; |
| /// The number of expansions, if we have a fully-expanded pack in this scope. |
| std::optional<unsigned> FixedNumExpansions; |
| |
| SmallVector<DeducedPack, 2> Packs; |
| }; |
| |
| } // namespace |
| |
| template <class T> |
| static TemplateDeductionResult DeduceForEachType( |
| Sema &S, TemplateParameterList *TemplateParams, ArrayRef<QualType> Params, |
| ArrayRef<QualType> Args, TemplateDeductionInfo &Info, |
| SmallVectorImpl<DeducedTemplateArgument> &Deduced, PartialOrderingKind POK, |
| bool FinishingDeduction, T &&DeductFunc) { |
| // C++0x [temp.deduct.type]p10: |
| // Similarly, if P has a form that contains (T), then each parameter type |
| // Pi of the respective parameter-type- list of P is compared with the |
| // corresponding parameter type Ai of the corresponding parameter-type-list |
| // of A. [...] |
| unsigned ArgIdx = 0, ParamIdx = 0; |
| for (; ParamIdx != Params.size(); ++ParamIdx) { |
| // Check argument types. |
| const PackExpansionType *Expansion |
| = dyn_cast<PackExpansionType>(Params[ParamIdx]); |
| if (!Expansion) { |
| // Simple case: compare the parameter and argument types at this point. |
| |
| // Make sure we have an argument. |
| if (ArgIdx >= Args.size()) |
| return TemplateDeductionResult::MiscellaneousDeductionFailure; |
| |
| if (isa<PackExpansionType>(Args[ArgIdx])) { |
| // C++0x [temp.deduct.type]p22: |
| // If the original function parameter associated with A is a function |
| // parameter pack and the function parameter associated with P is not |
| // a function parameter pack, then template argument deduction fails. |
| return TemplateDeductionResult::MiscellaneousDeductionFailure; |
| } |
| |
| if (TemplateDeductionResult Result = |
| DeductFunc(S, TemplateParams, ParamIdx, ArgIdx, |
| Params[ParamIdx].getUnqualifiedType(), |
| Args[ArgIdx].getUnqualifiedType(), Info, Deduced, POK); |
| Result != TemplateDeductionResult::Success) |
| return Result; |
| |
| ++ArgIdx; |
| continue; |
| } |
| |
| // C++0x [temp.deduct.type]p10: |
| // If the parameter-declaration corresponding to Pi is a function |
| // parameter pack, then the type of its declarator- id is compared with |
| // each remaining parameter type in the parameter-type-list of A. Each |
| // comparison deduces template arguments for subsequent positions in the |
| // template parameter packs expanded by the function parameter pack. |
| |
| QualType Pattern = Expansion->getPattern(); |
| PackDeductionScope PackScope(S, TemplateParams, Deduced, Info, Pattern, |
| /*DeducePackIfNotAlreadyDeduced=*/false, |
| FinishingDeduction); |
| |
| // A pack scope with fixed arity is not really a pack any more, so is not |
| // a non-deduced context. |
| if (ParamIdx + 1 == Params.size() || PackScope.hasFixedArity()) { |
| for (; ArgIdx < Args.size() && PackScope.hasNextElement(); ++ArgIdx) { |
| // Deduce template arguments from the pattern. |
| if (TemplateDeductionResult Result = DeductFunc( |
| S, TemplateParams, ParamIdx, ArgIdx, |
| Pattern.getUnqualifiedType(), Args[ArgIdx].getUnqualifiedType(), |
| Info, Deduced, POK); |
| Result != TemplateDeductionResult::Success) |
| return Result; |
| PackScope.nextPackElement(); |
| } |
| } else { |
| // C++0x [temp.deduct.type]p5: |
| // The non-deduced contexts are: |
| // - A function parameter pack that does not occur at the end of the |
| // parameter-declaration-clause. |
| // |
| // FIXME: There is no wording to say what we should do in this case. We |
| // choose to resolve this by applying the same rule that is applied for a |
| // function call: that is, deduce all contained packs to their |
| // explicitly-specified values (or to <> if there is no such value). |
| // |
| // This is seemingly-arbitrarily different from the case of a template-id |
| // with a non-trailing pack-expansion in its arguments, which renders the |
| // entire template-argument-list a non-deduced context. |
| |
| // If the parameter type contains an explicitly-specified pack that we |
| // could not expand, skip the number of parameters notionally created |
| // by the expansion. |
| std::optional<unsigned> NumExpansions = Expansion->getNumExpansions(); |
| if (NumExpansions && !PackScope.isPartiallyExpanded()) { |
| for (unsigned I = 0; I != *NumExpansions && ArgIdx < Args.size(); |
| ++I, ++ArgIdx) |
| PackScope.nextPackElement(); |
| } |
| } |
| |
| // Build argument packs for each of the parameter packs expanded by this |
| // pack expansion. |
| if (auto Result = PackScope.finish(); |
| Result != TemplateDeductionResult::Success) |
| return Result; |
| } |
| |
| // DR692, DR1395 |
| // C++0x [temp.deduct.type]p10: |
| // If the parameter-declaration corresponding to P_i ... |
| // During partial ordering, if Ai was originally a function parameter pack: |
| // - if P does not contain a function parameter type corresponding to Ai then |
| // Ai is ignored; |
| if (POK == PartialOrderingKind::Call && ArgIdx + 1 == Args.size() && |
| isa<PackExpansionType>(Args[ArgIdx])) |
| return TemplateDeductionResult::Success; |
| |
| // Make sure we don't have any extra arguments. |
| if (ArgIdx < Args.size()) |
| return TemplateDeductionResult::MiscellaneousDeductionFailure; |
| |
| return TemplateDeductionResult::Success; |
| } |
| |
| /// Deduce the template arguments by comparing the list of parameter |
| /// types to the list of argument types, as in the parameter-type-lists of |
| /// function types (C++ [temp.deduct.type]p10). |
| /// |
| /// \param S The semantic analysis object within which we are deducing |
| /// |
| /// \param TemplateParams The template parameters that we are deducing |
| /// |
| /// \param Params The list of parameter types |
| /// |
| /// \param Args The list of argument types |
| /// |
| /// \param Info information about the template argument deduction itself |
| /// |
| /// \param Deduced the deduced template arguments |
| /// |
| /// \param TDF bitwise OR of the TemplateDeductionFlags bits that describe |
| /// how template argument deduction is performed. |
| /// |
| /// \param PartialOrdering If true, we are performing template argument |
| /// deduction for during partial ordering for a call |
| /// (C++0x [temp.deduct.partial]). |
| /// |
| /// \param HasDeducedAnyParam If set, the object pointed at will indicate |
| /// whether any template parameter was deduced. |
| /// |
| /// \param HasDeducedParam If set, the bit vector will be used to represent |
| /// which template parameters were deduced, in order. |
| /// |
| /// \returns the result of template argument deduction so far. Note that a |
| /// "success" result means that template argument deduction has not yet failed, |
| /// but it may still fail, later, for other reasons. |
| static TemplateDeductionResult DeduceTemplateArguments( |
| Sema &S, TemplateParameterList *TemplateParams, ArrayRef<QualType> Params, |
| ArrayRef<QualType> Args, TemplateDeductionInfo &Info, |
| SmallVectorImpl<DeducedTemplateArgument> &Deduced, unsigned TDF, |
| PartialOrderingKind POK, bool *HasDeducedAnyParam, |
| llvm::SmallBitVector *HasDeducedParam) { |
| return ::DeduceForEachType( |
| S, TemplateParams, Params, Args, Info, Deduced, POK, |
| /*FinishingDeduction=*/false, |
| [&](Sema &S, TemplateParameterList *TemplateParams, int ParamIdx, |
| int ArgIdx, QualType P, QualType A, TemplateDeductionInfo &Info, |
| SmallVectorImpl<DeducedTemplateArgument> &Deduced, |
| PartialOrderingKind POK) { |
| bool HasDeducedAnyParamCopy = false; |
| TemplateDeductionResult TDR = DeduceTemplateArgumentsByTypeMatch( |
| S, TemplateParams, P, A, Info, Deduced, TDF, POK, |
| /*DeducedFromArrayBound=*/false, &HasDeducedAnyParamCopy); |
| if (HasDeducedAnyParam && HasDeducedAnyParamCopy) |
| *HasDeducedAnyParam = true; |
| if (HasDeducedParam && HasDeducedAnyParamCopy) |
| (*HasDeducedParam)[ParamIdx] = true; |
| return TDR; |
| }); |
| } |
| |
| /// Determine whether the parameter has qualifiers that the argument |
| /// lacks. Put another way, determine whether there is no way to add |
| /// a deduced set of qualifiers to the ParamType that would result in |
| /// its qualifiers matching those of the ArgType. |
| static bool hasInconsistentOrSupersetQualifiersOf(QualType ParamType, |
| QualType ArgType) { |
| Qualifiers ParamQs = ParamType.getQualifiers(); |
| Qualifiers ArgQs = ArgType.getQualifiers(); |
| |
| if (ParamQs == ArgQs) |
| return false; |
| |
| // Mismatched (but not missing) Objective-C GC attributes. |
| if (ParamQs.getObjCGCAttr() != ArgQs.getObjCGCAttr() && |
| ParamQs.hasObjCGCAttr()) |
| return true; |
| |
| // Mismatched (but not missing) address spaces. |
| if (ParamQs.getAddressSpace() != ArgQs.getAddressSpace() && |
| ParamQs.hasAddressSpace()) |
| return true; |
| |
| // Mismatched (but not missing) Objective-C lifetime qualifiers. |
| if (ParamQs.getObjCLifetime() != ArgQs.getObjCLifetime() && |
| ParamQs.hasObjCLifetime()) |
| return true; |
| |
| // CVR qualifiers inconsistent or a superset. |
| return (ParamQs.getCVRQualifiers() & ~ArgQs.getCVRQualifiers()) != 0; |
| } |
| |
| bool Sema::isSameOrCompatibleFunctionType(QualType P, QualType A) { |
| const FunctionType *PF = P->getAs<FunctionType>(), |
| *AF = A->getAs<FunctionType>(); |
| |
| // Just compare if not functions. |
| if (!PF || !AF) |
| return Context.hasSameType(P, A); |
| |
| // Noreturn and noexcept adjustment. |
| if (QualType AdjustedParam; IsFunctionConversion(P, A, AdjustedParam)) |
| P = AdjustedParam; |
| |
| // FIXME: Compatible calling conventions. |
| return Context.hasSameFunctionTypeIgnoringExceptionSpec(P, A); |
| } |
| |
| /// Get the index of the first template parameter that was originally from the |
| /// innermost template-parameter-list. This is 0 except when we concatenate |
| /// the template parameter lists of a class template and a constructor template |
| /// when forming an implicit deduction guide. |
| static unsigned getFirstInnerIndex(FunctionTemplateDecl *FTD) { |
| auto *Guide = dyn_cast<CXXDeductionGuideDecl>(FTD->getTemplatedDecl()); |
| if (!Guide || !Guide->isImplicit()) |
| return 0; |
| return Guide->getDeducedTemplate()->getTemplateParameters()->size(); |
| } |
| |
| /// Determine whether a type denotes a forwarding reference. |
| static bool isForwardingReference(QualType Param, unsigned FirstInnerIndex) { |
| // C++1z [temp.deduct.call]p3: |
| // A forwarding reference is an rvalue reference to a cv-unqualified |
| // template parameter that does not represent a template parameter of a |
| // class template. |
| if (auto *ParamRef = Param->getAs<RValueReferenceType>()) { |
| if (ParamRef->getPointeeType().getQualifiers()) |
| return false; |
| auto *TypeParm = ParamRef->getPointeeType()->getAs<TemplateTypeParmType>(); |
| return TypeParm && TypeParm->getIndex() >= FirstInnerIndex; |
| } |
| return false; |
| } |
| |
| /// Attempt to deduce the template arguments by checking the base types |
| /// according to (C++20 [temp.deduct.call] p4b3. |
| /// |
| /// \param S the semantic analysis object within which we are deducing. |
| /// |
| /// \param RD the top level record object we are deducing against. |
| /// |
| /// \param TemplateParams the template parameters that we are deducing. |
| /// |
| /// \param P the template specialization parameter type. |
| /// |
| /// \param Info information about the template argument deduction itself. |
| /// |
| /// \param Deduced the deduced template arguments. |
| /// |
| /// \returns the result of template argument deduction with the bases. "invalid" |
| /// means no matches, "success" found a single item, and the |
| /// "MiscellaneousDeductionFailure" result happens when the match is ambiguous. |
| static TemplateDeductionResult |
| DeduceTemplateBases(Sema &S, const CXXRecordDecl *RD, |
| TemplateParameterList *TemplateParams, QualType P, |
| TemplateDeductionInfo &Info, bool PartialOrdering, |
| SmallVectorImpl<DeducedTemplateArgument> &Deduced, |
| bool *HasDeducedAnyParam) { |
| // C++14 [temp.deduct.call] p4b3: |
| // If P is a class and P has the form simple-template-id, then the |
| // transformed A can be a derived class of the deduced A. Likewise if |
| // P is a pointer to a class of the form simple-template-id, the |
| // transformed A can be a pointer to a derived class pointed to by the |
| // deduced A. However, if there is a class C that is a (direct or |
| // indirect) base class of D and derived (directly or indirectly) from a |
| // class B and that would be a valid deduced A, the deduced A cannot be |
| // B or pointer to B, respectively. |
| // |
| // These alternatives are considered only if type deduction would |
| // otherwise fail. If they yield more than one possible deduced A, the |
| // type deduction fails. |
| |
| // Use a breadth-first search through the bases to collect the set of |
| // successful matches. Visited contains the set of nodes we have already |
| // visited, while ToVisit is our stack of records that we still need to |
| // visit. Matches contains a list of matches that have yet to be |
| // disqualified. |
| llvm::SmallPtrSet<const CXXRecordDecl *, 8> Visited; |
| SmallVector<QualType, 8> ToVisit; |
| // We iterate over this later, so we have to use MapVector to ensure |
| // determinism. |
| struct MatchValue { |
| SmallVector<DeducedTemplateArgument, 8> Deduced; |
| bool HasDeducedAnyParam; |
| }; |
| llvm::MapVector<const CXXRecordDecl *, MatchValue> Matches; |
| |
| auto AddBases = [&Visited, &ToVisit](const CXXRecordDecl *RD) { |
| for (const auto &Base : RD->bases()) { |
| QualType T = Base.getType(); |
| assert(T->isRecordType() && "Base class that isn't a record?"); |
| if (Visited.insert(T->getAsCXXRecordDecl()).second) |
| ToVisit.push_back(T); |
| } |
| }; |
| |
| // Set up the loop by adding all the bases. |
| AddBases(RD); |
| |
| // Search each path of bases until we either run into a successful match |
| // (where all bases of it are invalid), or we run out of bases. |
| while (!ToVisit.empty()) { |
| QualType NextT = ToVisit.pop_back_val(); |
| |
| SmallVector<DeducedTemplateArgument, 8> DeducedCopy(Deduced.begin(), |
| Deduced.end()); |
| TemplateDeductionInfo BaseInfo(TemplateDeductionInfo::ForBase, Info); |
| bool HasDeducedAnyParamCopy = false; |
| TemplateDeductionResult BaseResult = DeduceTemplateSpecArguments( |
| S, TemplateParams, P, NextT, BaseInfo, PartialOrdering, DeducedCopy, |
| &HasDeducedAnyParamCopy); |
| |
| // If this was a successful deduction, add it to the list of matches, |
| // otherwise we need to continue searching its bases. |
| const CXXRecordDecl *RD = NextT->getAsCXXRecordDecl(); |
| if (BaseResult == TemplateDeductionResult::Success) |
| Matches.insert({RD, {DeducedCopy, HasDeducedAnyParamCopy}}); |
| else |
| AddBases(RD); |
| } |
| |
| // At this point, 'Matches' contains a list of seemingly valid bases, however |
| // in the event that we have more than 1 match, it is possible that the base |
| // of one of the matches might be disqualified for being a base of another |
| // valid match. We can count on cyclical instantiations being invalid to |
| // simplify the disqualifications. That is, if A & B are both matches, and B |
| // inherits from A (disqualifying A), we know that A cannot inherit from B. |
| if (Matches.size() > 1) { |
| Visited.clear(); |
| for (const auto &Match : Matches) |
| AddBases(Match.first); |
| |
| // We can give up once we have a single item (or have run out of things to |
| // search) since cyclical inheritance isn't valid. |
| while (Matches.size() > 1 && !ToVisit.empty()) { |
| const CXXRecordDecl *RD = ToVisit.pop_back_val()->getAsCXXRecordDecl(); |
| Matches.erase(RD); |
| |
| // Always add all bases, since the inheritance tree can contain |
| // disqualifications for multiple matches. |
| AddBases(RD); |
| } |
| } |
| |
| if (Matches.empty()) |
| return TemplateDeductionResult::Invalid; |
| if (Matches.size() > 1) |
| return TemplateDeductionResult::MiscellaneousDeductionFailure; |
| |
| std::swap(Matches.front().second.Deduced, Deduced); |
| if (bool HasDeducedAnyParamCopy = Matches.front().second.HasDeducedAnyParam; |
| HasDeducedAnyParamCopy && HasDeducedAnyParam) |
| *HasDeducedAnyParam = HasDeducedAnyParamCopy; |
| return TemplateDeductionResult::Success; |
| } |
| |
| /// When propagating a partial ordering kind into a NonCall context, |
| /// this is used to downgrade a 'Call' into a 'NonCall', so that |
| /// the kind still reflects whether we are in a partial ordering context. |
| static PartialOrderingKind |
| degradeCallPartialOrderingKind(PartialOrderingKind POK) { |
| return std::min(POK, PartialOrderingKind::NonCall); |
| } |
| |
| /// Deduce the template arguments by comparing the parameter type and |
| /// the argument type (C++ [temp.deduct.type]). |
| /// |
| /// \param S the semantic analysis object within which we are deducing |
| /// |
| /// \param TemplateParams the template parameters that we are deducing |
| /// |
| /// \param P the parameter type |
| /// |
| /// \param A the argument type |
| /// |
| /// \param Info information about the template argument deduction itself |
| /// |
| /// \param Deduced the deduced template arguments |
| /// |
| /// \param TDF bitwise OR of the TemplateDeductionFlags bits that describe |
| /// how template argument deduction is performed. |
| /// |
| /// \param PartialOrdering Whether we're performing template argument deduction |
| /// in the context of partial ordering (C++0x [temp.deduct.partial]). |
| /// |
| /// \returns the result of template argument deduction so far. Note that a |
| /// "success" result means that template argument deduction has not yet failed, |
| /// but it may still fail, later, for other reasons. |
| static TemplateDeductionResult DeduceTemplateArgumentsByTypeMatch( |
| Sema &S, TemplateParameterList *TemplateParams, QualType P, QualType A, |
| TemplateDeductionInfo &Info, |
| SmallVectorImpl<DeducedTemplateArgument> &Deduced, unsigned TDF, |
| PartialOrderingKind POK, bool DeducedFromArrayBound, |
| bool *HasDeducedAnyParam) { |
| |
| // If the argument type is a pack expansion, look at its pattern. |
| // This isn't explicitly called out |
| if (const auto *AExp = dyn_cast<PackExpansionType>(A)) |
| A = AExp->getPattern(); |
| assert(!isa<PackExpansionType>(A.getCanonicalType())); |
| |
| if (POK == PartialOrderingKind::Call) { |
| // C++11 [temp.deduct.partial]p5: |
| // Before the partial ordering is done, certain transformations are |
| // performed on the types used for partial ordering: |
| // - If P is a reference type, P is replaced by the type referred to. |
| const ReferenceType *PRef = P->getAs<ReferenceType>(); |
| if (PRef) |
| P = PRef->getPointeeType(); |
| |
| // - If A is a reference type, A is replaced by the type referred to. |
| const ReferenceType *ARef = A->getAs<ReferenceType>(); |
| if (ARef) |
| A = A->getPointeeType(); |
| |
| if (PRef && ARef && S.Context.hasSameUnqualifiedType(P, A)) { |
| // C++11 [temp.deduct.partial]p9: |
| // If, for a given type, deduction succeeds in both directions (i.e., |
| // the types are identical after the transformations above) and both |
| // P and A were reference types [...]: |
| // - if [one type] was an lvalue reference and [the other type] was |
| // not, [the other type] is not considered to be at least as |
| // specialized as [the first type] |
| // - if [one type] is more cv-qualified than [the other type], |
| // [the other type] is not considered to be at least as specialized |
| // as [the first type] |
| // Objective-C ARC adds: |
| // - [one type] has non-trivial lifetime, [the other type] has |
| // __unsafe_unretained lifetime, and the types are otherwise |
| // identical |
| // |
| // A is "considered to be at least as specialized" as P iff deduction |
| // succeeds, so we model this as a deduction failure. Note that |
| // [the first type] is P and [the other type] is A here; the standard |
| // gets this backwards. |
| Qualifiers PQuals = P.getQualifiers(), AQuals = A.getQualifiers(); |
| if ((PRef->isLValueReferenceType() && !ARef->isLValueReferenceType()) || |
| PQuals.isStrictSupersetOf(AQuals) || |
| (PQuals.hasNonTrivialObjCLifetime() && |
| AQuals.getObjCLifetime() == Qualifiers::OCL_ExplicitNone && |
| PQuals.withoutObjCLifetime() == AQuals.withoutObjCLifetime())) { |
| Info.FirstArg = TemplateArgument(P); |
| Info.SecondArg = TemplateArgument(A); |
| return TemplateDeductionResult::NonDeducedMismatch; |
| } |
| } |
| Qualifiers DiscardedQuals; |
| // C++11 [temp.deduct.partial]p7: |
| // Remove any top-level cv-qualifiers: |
| // - If P is a cv-qualified type, P is replaced by the cv-unqualified |
| // version of P. |
| P = S.Context.getUnqualifiedArrayType(P, DiscardedQuals); |
| // - If A is a cv-qualified type, A is replaced by the cv-unqualified |
| // version of A. |
| A = S.Context.getUnqualifiedArrayType(A, DiscardedQuals); |
| } else { |
| // C++0x [temp.deduct.call]p4 bullet 1: |
| // - If the original P is a reference type, the deduced A (i.e., the type |
| // referred to by the reference) can be more cv-qualified than the |
| // transformed A. |
| if (TDF & TDF_ParamWithReferenceType) { |
| Qualifiers Quals; |
| QualType UnqualP = S.Context.getUnqualifiedArrayType(P, Quals); |
| Quals.setCVRQualifiers(Quals.getCVRQualifiers() & A.getCVRQualifiers()); |
| P = S.Context.getQualifiedType(UnqualP, Quals); |
| } |
| |
| if ((TDF & TDF_TopLevelParameterTypeList) && !P->isFunctionType()) { |
| // C++0x [temp.deduct.type]p10: |
| // If P and A are function types that originated from deduction when |
| // taking the address of a function template (14.8.2.2) or when deducing |
| // template arguments from a function declaration (14.8.2.6) and Pi and |
| // Ai are parameters of the top-level parameter-type-list of P and A, |
| // respectively, Pi is adjusted if it is a forwarding reference and Ai |
| // is an lvalue reference, in |
| // which case the type of Pi is changed to be the template parameter |
| // type (i.e., T&& is changed to simply T). [ Note: As a result, when |
| // Pi is T&& and Ai is X&, the adjusted Pi will be T, causing T to be |
| // deduced as X&. - end note ] |
| TDF &= ~TDF_TopLevelParameterTypeList; |
| if (isForwardingReference(P, /*FirstInnerIndex=*/0) && |
| A->isLValueReferenceType()) |
| P = P->getPointeeType(); |
| } |
| } |
| |
| // C++ [temp.deduct.type]p9: |
| // A template type argument T, a template template argument TT or a |
| // template non-type argument i can be deduced if P and A have one of |
| // the following forms: |
| // |
| // T |
| // cv-list T |
| if (const auto *TTP = P->getAs<TemplateTypeParmType>()) { |
| // Just skip any attempts to deduce from a placeholder type or a parameter |
| // at a different depth. |
| if (A->isPlaceholderType() || Info.getDeducedDepth() != TTP->getDepth()) |
| return TemplateDeductionResult::Success; |
| |
| unsigned Index = TTP->getIndex(); |
| |
| // If the argument type is an array type, move the qualifiers up to the |
| // top level, so they can be matched with the qualifiers on the parameter. |
| if (A->isArrayType()) { |
| Qualifiers Quals; |
| A = S.Context.getUnqualifiedArrayType(A, Quals); |
| if (Quals) |
| A = S.Context.getQualifiedType(A, Quals); |
| } |
| |
| // The argument type can not be less qualified than the parameter |
| // type. |
| if (!(TDF & TDF_IgnoreQualifiers) && |
| hasInconsistentOrSupersetQualifiersOf(P, A)) { |
| Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index)); |
| Info.FirstArg = TemplateArgument(P); |
| Info.SecondArg = TemplateArgument(A); |
| return TemplateDeductionResult::Underqualified; |
| } |
| |
| // Do not match a function type with a cv-qualified type. |
| // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#1584 |
| if (A->isFunctionType() && P.hasQualifiers()) |
| return TemplateDeductionResult::NonDeducedMismatch; |
| |
| assert(TTP->getDepth() == Info.getDeducedDepth() && |
| "saw template type parameter with wrong depth"); |
| assert(A->getCanonicalTypeInternal() != S.Context.OverloadTy && |
| "Unresolved overloaded function"); |
| QualType DeducedType = A; |
| |
| // Remove any qualifiers on the parameter from the deduced type. |
| // We checked the qualifiers for consistency above. |
| Qualifiers DeducedQs = DeducedType.getQualifiers(); |
| Qualifiers ParamQs = P.getQualifiers(); |
| DeducedQs.removeCVRQualifiers(ParamQs.getCVRQualifiers()); |
| if (ParamQs.hasObjCGCAttr()) |
| DeducedQs.removeObjCGCAttr(); |
| if (ParamQs.hasAddressSpace()) |
| DeducedQs.removeAddressSpace(); |
| if (ParamQs.hasObjCLifetime()) |
| DeducedQs.removeObjCLifetime(); |
| |
| // Objective-C ARC: |
| // If template deduction would produce a lifetime qualifier on a type |
| // that is not a lifetime type, template argument deduction fails. |
| if (ParamQs.hasObjCLifetime() && !DeducedType->isObjCLifetimeType() && |
| !DeducedType->isDependentType()) { |
| Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index)); |
| Info.FirstArg = TemplateArgument(P); |
| Info.SecondArg = TemplateArgument(A); |
| return TemplateDeductionResult::Underqualified; |
| } |
| |
| // Objective-C ARC: |
| // If template deduction would produce an argument type with lifetime type |
| // but no lifetime qualifier, the __strong lifetime qualifier is inferred. |
| if (S.getLangOpts().ObjCAutoRefCount && DeducedType->isObjCLifetimeType() && |
| !DeducedQs.hasObjCLifetime()) |
| DeducedQs.setObjCLifetime(Qualifiers::OCL_Strong); |
| |
| DeducedType = |
| S.Context.getQualifiedType(DeducedType.getUnqualifiedType(), DeducedQs); |
| |
| DeducedTemplateArgument NewDeduced(DeducedType, DeducedFromArrayBound); |
| DeducedTemplateArgument Result = |
| checkDeducedTemplateArguments(S.Context, Deduced[Index], NewDeduced); |
| if (Result.isNull()) { |
| // We can also get inconsistencies when matching NTTP type. |
| switch (NamedDecl *Param = TemplateParams->getParam(Index); |
| Param->getKind()) { |
| case Decl::TemplateTypeParm: |
| Info.Param = cast<TemplateTypeParmDecl>(Param); |
| break; |
| case Decl::NonTypeTemplateParm: |
| Info.Param = cast<NonTypeTemplateParmDecl>(Param); |
| break; |
| case Decl::TemplateTemplateParm: |
| Info.Param = cast<TemplateTemplateParmDecl>(Param); |
| break; |
| default: |
| llvm_unreachable("unexpected kind"); |
| } |
| Info.FirstArg = Deduced[Index]; |
| Info.SecondArg = NewDeduced; |
| return TemplateDeductionResult::Inconsistent; |
| } |
| |
| Deduced[Index] = Result; |
| if (HasDeducedAnyParam) |
| *HasDeducedAnyParam = true; |
| return TemplateDeductionResult::Success; |
| } |
| |
| // Set up the template argument deduction information for a failure. |
| Info.FirstArg = TemplateArgument(P); |
| Info.SecondArg = TemplateArgument(A); |
| |
| // If the parameter is an already-substituted template parameter |
| // pack, do nothing: we don't know which of its arguments to look |
| // at, so we have to wait until all of the parameter packs in this |
| // expansion have arguments. |
| if (P->getAs<SubstTemplateTypeParmPackType>()) |
| return TemplateDeductionResult::Success; |
| |
| // Check the cv-qualifiers on the parameter and argument types. |
| if (!(TDF & TDF_IgnoreQualifiers)) { |
| if (TDF & TDF_ParamWithReferenceType) { |
| if (hasInconsistentOrSupersetQualifiersOf(P, A)) |
| return TemplateDeductionResult::NonDeducedMismatch; |
| } else if (TDF & TDF_ArgWithReferenceType) { |
| // C++ [temp.deduct.conv]p4: |
| // If the original A is a reference type, A can be more cv-qualified |
| // than the deduced A |
| if (!A.getQualifiers().compatiblyIncludes(P.getQualifiers(), |
| S.getASTContext())) |
| return TemplateDeductionResult::NonDeducedMismatch; |
| |
| // Strip out all extra qualifiers from the argument to figure out the |
| // type we're converting to, prior to the qualification conversion. |
| Qualifiers Quals; |
| A = S.Context.getUnqualifiedArrayType(A, Quals); |
| A = S.Context.getQualifiedType(A, P.getQualifiers()); |
| } else if (!IsPossiblyOpaquelyQualifiedType(P)) { |
| if (P.getCVRQualifiers() != A.getCVRQualifiers()) |
| return TemplateDeductionResult::NonDeducedMismatch; |
| } |
| } |
| |
| // If the parameter type is not dependent, there is nothing to deduce. |
| if (!P->isDependentType()) { |
| if (TDF & TDF_SkipNonDependent) |
| return TemplateDeductionResult::Success; |
| if ((TDF & TDF_IgnoreQualifiers) ? S.Context.hasSameUnqualifiedType(P, A) |
| : S.Context.hasSameType(P, A)) |
| return TemplateDeductionResult::Success; |
| if (TDF & TDF_AllowCompatibleFunctionType && |
| S.isSameOrCompatibleFunctionType(P, A)) |
| return TemplateDeductionResult::Success; |
| if (!(TDF & TDF_IgnoreQualifiers)) |
| return TemplateDeductionResult::NonDeducedMismatch; |
| // Otherwise, when ignoring qualifiers, the types not having the same |
| // unqualified type does not mean they do not match, so in this case we |
| // must keep going and analyze with a non-dependent parameter type. |
| } |
| |
| switch (P.getCanonicalType()->getTypeClass()) { |
| // Non-canonical types cannot appear here. |
| #define NON_CANONICAL_TYPE(Class, Base) \ |
| case Type::Class: llvm_unreachable("deducing non-canonical type: " #Class); |
| #define TYPE(Class, Base) |
| #include "clang/AST/TypeNodes.inc" |
| |
| case Type::TemplateTypeParm: |
| case Type::SubstTemplateTypeParmPack: |
| llvm_unreachable("Type nodes handled above"); |
| |
| case Type::Auto: |
| // C++23 [temp.deduct.funcaddr]/3: |
| // A placeholder type in the return type of a function template is a |
| // non-deduced context. |
| // There's no corresponding wording for [temp.deduct.decl], but we treat |
| // it the same to match other compilers. |
| if (P->isDependentType()) |
| return TemplateDeductionResult::Success; |
| [[fallthrough]]; |
| case Type::Builtin: |
| case Type::VariableArray: |
| case Type::Vector: |
| case Type::FunctionNoProto: |
| case Type::Record: |
| case Type::Enum: |
| case Type::ObjCObject: |
| case Type::ObjCInterface: |
| case Type::ObjCObjectPointer: |
| case Type::BitInt: |
| return (TDF & TDF_SkipNonDependent) || |
| ((TDF & TDF_IgnoreQualifiers) |
| ? S.Context.hasSameUnqualifiedType(P, A) |
| : S.Context.hasSameType(P, A)) |
| ? TemplateDeductionResult::Success |
| : TemplateDeductionResult::NonDeducedMismatch; |
| |
| // _Complex T [placeholder extension] |
| case Type::Complex: { |
| const auto *CP = P->castAs<ComplexType>(), *CA = A->getAs<ComplexType>(); |
| if (!CA) |
| return TemplateDeductionResult::NonDeducedMismatch; |
| return DeduceTemplateArgumentsByTypeMatch( |
| S, TemplateParams, CP->getElementType(), CA->getElementType(), Info, |
| Deduced, TDF, degradeCallPartialOrderingKind(POK), |
| /*DeducedFromArrayBound=*/false, HasDeducedAnyParam); |
| } |
| |
| // _Atomic T [extension] |
| case Type::Atomic: { |
| const auto *PA = P->castAs<AtomicType>(), *AA = A->getAs<AtomicType>(); |
| if (!AA) |
| return TemplateDeductionResult::NonDeducedMismatch; |
| return DeduceTemplateArgumentsByTypeMatch( |
| S, TemplateParams, PA->getValueType(), AA->getValueType(), Info, |
| Deduced, TDF, degradeCallPartialOrderingKind(POK), |
| /*DeducedFromArrayBound=*/false, HasDeducedAnyParam); |
| } |
| |
| // T * |
| case Type::Pointer: { |
| QualType PointeeType; |
| if (const auto *PA = A->getAs<PointerType>()) { |
| PointeeType = PA->getPointeeType(); |
| } else if (const auto *PA = A->getAs<ObjCObjectPointerType>()) { |
| PointeeType = PA->getPointeeType(); |
| } else { |
| return TemplateDeductionResult::NonDeducedMismatch; |
| } |
| return DeduceTemplateArgumentsByTypeMatch( |
| S, TemplateParams, P->castAs<PointerType>()->getPointeeType(), |
| PointeeType, Info, Deduced, |
| TDF & (TDF_IgnoreQualifiers | TDF_DerivedClass), |
| degradeCallPartialOrderingKind(POK), |
| /*DeducedFromArrayBound=*/false, HasDeducedAnyParam); |
| } |
| |
| // T & |
| case Type::LValueReference: { |
| const auto *RP = P->castAs<LValueReferenceType>(), |
| *RA = A->getAs<LValueReferenceType>(); |
| if (!RA) |
| return TemplateDeductionResult::NonDeducedMismatch; |
| |
| return DeduceTemplateArgumentsByTypeMatch( |
| S, TemplateParams, RP->getPointeeType(), RA->getPointeeType(), Info, |
| Deduced, 0, degradeCallPartialOrderingKind(POK), |
| /*DeducedFromArrayBound=*/false, HasDeducedAnyParam); |
| } |
| |
| // T && [C++0x] |
| case Type::RValueReference: { |
| const auto *RP = P->castAs<RValueReferenceType>(), |
| *RA = A->getAs<RValueReferenceType>(); |
| if (!RA) |
| return TemplateDeductionResult::NonDeducedMismatch; |
| |
| return DeduceTemplateArgumentsByTypeMatch( |
| S, TemplateParams, RP->getPointeeType(), RA->getPointeeType(), Info, |
| Deduced, 0, degradeCallPartialOrderingKind(POK), |
| /*DeducedFromArrayBound=*/false, HasDeducedAnyParam); |
| } |
| |
| // T [] (implied, but not stated explicitly) |
| case Type::IncompleteArray: { |
| const auto *IAA = S.Context.getAsIncompleteArrayType(A); |
| if (!IAA) |
| return TemplateDeductionResult::NonDeducedMismatch; |
| |
| const auto *IAP = S.Context.getAsIncompleteArrayType(P); |
| assert(IAP && "Template parameter not of incomplete array type"); |
| |
| return DeduceTemplateArgumentsByTypeMatch( |
| S, TemplateParams, IAP->getElementType(), IAA->getElementType(), Info, |
| Deduced, TDF & TDF_IgnoreQualifiers, |
| degradeCallPartialOrderingKind(POK), |
| /*DeducedFromArrayBound=*/false, HasDeducedAnyParam); |
| } |
| |
| // T [integer-constant] |
| case Type::ConstantArray: { |
| const auto *CAA = S.Context.getAsConstantArrayType(A), |
| *CAP = S.Context.getAsConstantArrayType(P); |
| assert(CAP); |
| if (!CAA || CAA->getSize() != CAP->getSize()) |
| return TemplateDeductionResult::NonDeducedMismatch; |
| |
| return DeduceTemplateArgumentsByTypeMatch( |
| S, TemplateParams, CAP->getElementType(), CAA->getElementType(), Info, |
| Deduced, TDF & TDF_IgnoreQualifiers, |
| degradeCallPartialOrderingKind(POK), |
| /*DeducedFromArrayBound=*/false, HasDeducedAnyParam); |
| } |
| |
| // type [i] |
| case Type::DependentSizedArray: { |
| const auto *AA = S.Context.getAsArrayType(A); |
| if (!AA) |
| return TemplateDeductionResult::NonDeducedMismatch; |
| |
| // Check the element type of the arrays |
| const auto *DAP = S.Context.getAsDependentSizedArrayType(P); |
| assert(DAP); |
| if (auto Result = DeduceTemplateArgumentsByTypeMatch( |
| S, TemplateParams, DAP->getElementType(), AA->getElementType(), |
| Info, Deduced, TDF & TDF_IgnoreQualifiers, |
| degradeCallPartialOrderingKind(POK), |
| /*DeducedFromArrayBound=*/false, HasDeducedAnyParam); |
| Result != TemplateDeductionResult::Success) |
| return Result; |
| |
| // Determine the array bound is something we can deduce. |
| const NonTypeTemplateParmDecl *NTTP = |
| getDeducedParameterFromExpr(Info, DAP->getSizeExpr()); |
| if (!NTTP) |
| return TemplateDeductionResult::Success; |
| |
| // We can perform template argument deduction for the given non-type |
| // template parameter. |
| assert(NTTP->getDepth() == Info.getDeducedDepth() && |
| "saw non-type template parameter with wrong depth"); |
| if (const auto *CAA = dyn_cast<ConstantArrayType>(AA)) { |
| llvm::APSInt Size(CAA->getSize()); |
| return DeduceNonTypeTemplateArgument( |
| S, TemplateParams, NTTP, Size, S.Context.getSizeType(), |
| /*ArrayBound=*/true, Info, POK != PartialOrderingKind::None, |
| Deduced, HasDeducedAnyParam); |
| } |
| if (const auto *DAA = dyn_cast<DependentSizedArrayType>(AA)) |
| if (DAA->getSizeExpr()) |
| return DeduceNonTypeTemplateArgument( |
| S, TemplateParams, NTTP, DAA->getSizeExpr(), Info, |
| POK != PartialOrderingKind::None, Deduced, HasDeducedAnyParam); |
| |
| // Incomplete type does not match a dependently-sized array type |
| return TemplateDeductionResult::NonDeducedMismatch; |
| } |
| |
| // type(*)(T) |
| // T(*)() |
| // T(*)(T) |
| case Type::FunctionProto: { |
| const auto *FPP = P->castAs<FunctionProtoType>(), |
| *FPA = A->getAs<FunctionProtoType>(); |
| if (!FPA) |
| return TemplateDeductionResult::NonDeducedMismatch; |
| |
| if (FPP->getMethodQuals() != FPA->getMethodQuals() || |
| FPP->getRefQualifier() != FPA->getRefQualifier() || |
| FPP->isVariadic() != FPA->isVariadic()) |
| return TemplateDeductionResult::NonDeducedMismatch; |
| |
| // Check return types. |
| if (auto Result = DeduceTemplateArgumentsByTypeMatch( |
| S, TemplateParams, FPP->getReturnType(), FPA->getReturnType(), |
| Info, Deduced, 0, degradeCallPartialOrderingKind(POK), |
| /*DeducedFromArrayBound=*/false, HasDeducedAnyParam); |
| Result != TemplateDeductionResult::Success) |
| return Result; |
| |
| // Check parameter types. |
| if (auto Result = DeduceTemplateArguments( |
| S, TemplateParams, FPP->param_types(), FPA->param_types(), Info, |
| Deduced, TDF & TDF_TopLevelParameterTypeList, POK, |
| HasDeducedAnyParam, |
| /*HasDeducedParam=*/nullptr); |
| Result != TemplateDeductionResult::Success) |
| return Result; |
| |
| if (TDF & TDF_AllowCompatibleFunctionType) |
| return TemplateDeductionResult::Success; |
| |
| // FIXME: Per core-2016/10/1019 (no corresponding core issue yet), permit |
| // deducing through the noexcept-specifier if it's part of the canonical |
| // type. libstdc++ relies on this. |
| Expr *NoexceptExpr = FPP->getNoexceptExpr(); |
| if (const NonTypeTemplateParmDecl *NTTP = |
| NoexceptExpr ? getDeducedParameterFromExpr(Info, NoexceptExpr) |
| : nullptr) { |
| assert(NTTP->getDepth() == Info.getDeducedDepth() && |
| "saw non-type template parameter with wrong depth"); |
| |
| llvm::APSInt Noexcept(1); |
| switch (FPA->canThrow()) { |
| case CT_Cannot: |
| Noexcept = 1; |
| [[fallthrough]]; |
| |
| case CT_Can: |
| // We give E in noexcept(E) the "deduced from array bound" treatment. |
| // FIXME: Should we? |
| return DeduceNonTypeTemplateArgument( |
| S, TemplateParams, NTTP, Noexcept, S.Context.BoolTy, |
| /*DeducedFromArrayBound=*/true, Info, |
| POK != PartialOrderingKind::None, Deduced, HasDeducedAnyParam); |
| |
| case CT_Dependent: |
| if (Expr *ArgNoexceptExpr = FPA->getNoexceptExpr()) |
| return DeduceNonTypeTemplateArgument( |
| S, TemplateParams, NTTP, ArgNoexceptExpr, Info, |
| POK != PartialOrderingKind::None, Deduced, HasDeducedAnyParam); |
| // Can't deduce anything from throw(T...). |
| break; |
| } |
| } |
| // FIXME: Detect non-deduced exception specification mismatches? |
| // |
| // Careful about [temp.deduct.call] and [temp.deduct.conv], which allow |
| // top-level differences in noexcept-specifications. |
| |
| return TemplateDeductionResult::Success; |
| } |
| |
| case Type::InjectedClassName: |
| // Treat a template's injected-class-name as if the template |
| // specialization type had been used. |
| |
| // template-name<T> (where template-name refers to a class template) |
| // template-name<i> |
| // TT<T> |
| // TT<i> |
| // TT<> |
| case Type::TemplateSpecialization: { |
| // When Arg cannot be a derived class, we can just try to deduce template |
| // arguments from the template-id. |
| if (!(TDF & TDF_DerivedClass) || !A->isRecordType()) |
| return DeduceTemplateSpecArguments(S, TemplateParams, P, A, Info, |
| POK != PartialOrderingKind::None, |
| Deduced, HasDeducedAnyParam); |
| |
| SmallVector<DeducedTemplateArgument, 8> DeducedOrig(Deduced.begin(), |
| Deduced.end()); |
| |
| auto Result = DeduceTemplateSpecArguments( |
| S, TemplateParams, P, A, Info, POK != PartialOrderingKind::None, |
| Deduced, HasDeducedAnyParam); |
| if (Result == TemplateDeductionResult::Success) |
| return Result; |
| |
| // We cannot inspect base classes as part of deduction when the type |
| // is incomplete, so either instantiate any templates necessary to |
| // complete the type, or skip over it if it cannot be completed. |
| if (!S.isCompleteType(Info.getLocation(), A)) |
| return Result; |
| |
| const CXXRecordDecl *RD = A->getAsCXXRecordDecl(); |
| if (RD->isInvalidDecl()) |
| return Result; |
| |
| // Reset the incorrectly deduced argument from above. |
| Deduced = DeducedOrig; |
| |
| // Check bases according to C++14 [temp.deduct.call] p4b3: |
| auto BaseResult = DeduceTemplateBases(S, RD, TemplateParams, P, Info, |
| POK != PartialOrderingKind::None, |
| Deduced, HasDeducedAnyParam); |
| return BaseResult != TemplateDeductionResult::Invalid ? BaseResult |
| : Result; |
| } |
| |
| // T type::* |
| // T T::* |
| // T (type::*)() |
| // type (T::*)() |
| // type (type::*)(T) |
| // type (T::*)(T) |
| // T (type::*)(T) |
| // T (T::*)() |
| // T (T::*)(T) |
| case Type::MemberPointer: { |
| const auto *MPP = P->castAs<MemberPointerType>(), |
| *MPA = A->getAs<MemberPointerType>(); |
| if (!MPA) |
| return TemplateDeductionResult::NonDeducedMismatch; |
| |
| QualType PPT = MPP->getPointeeType(); |
| if (PPT->isFunctionType()) |
| S.adjustMemberFunctionCC(PPT, /*HasThisPointer=*/false, |
| /*IsCtorOrDtor=*/false, Info.getLocation()); |
| QualType APT = MPA->getPointeeType(); |
| if (APT->isFunctionType()) |
| S.adjustMemberFunctionCC(APT, /*HasThisPointer=*/false, |
| /*IsCtorOrDtor=*/false, Info.getLocation()); |
| |
| unsigned SubTDF = TDF & TDF_IgnoreQualifiers; |
| if (auto Result = DeduceTemplateArgumentsByTypeMatch( |
| S, TemplateParams, PPT, APT, Info, Deduced, SubTDF, |
| degradeCallPartialOrderingKind(POK), |
| /*DeducedFromArrayBound=*/false, HasDeducedAnyParam); |
| Result != TemplateDeductionResult::Success) |
| return Result; |
| return DeduceTemplateArgumentsByTypeMatch( |
| S, TemplateParams, QualType(MPP->getClass(), 0), |
| QualType(MPA->getClass(), 0), Info, Deduced, SubTDF, |
| degradeCallPartialOrderingKind(POK), |
| /*DeducedFromArrayBound=*/false, HasDeducedAnyParam); |
| } |
| |
| // (clang extension) |
| // |
| // type(^)(T) |
| // T(^)() |
| // T(^)(T) |
| case Type::BlockPointer: { |
| const auto *BPP = P->castAs<BlockPointerType>(), |
| *BPA = A->getAs<BlockPointerType>(); |
| if (!BPA) |
| return TemplateDeductionResult::NonDeducedMismatch; |
| return DeduceTemplateArgumentsByTypeMatch( |
| S, TemplateParams, BPP->getPointeeType(), BPA->getPointeeType(), Info, |
| Deduced, 0, degradeCallPartialOrderingKind(POK), |
| /*DeducedFromArrayBound=*/false, HasDeducedAnyParam); |
| } |
| |
| // (clang extension) |
| // |
| // T __attribute__(((ext_vector_type(<integral constant>)))) |
| case Type::ExtVector: { |
| const auto *VP = P->castAs<ExtVectorType>(); |
| QualType ElementType; |
| if (const auto *VA = A->getAs<ExtVectorType>()) { |
| // Make sure that the vectors have the same number of elements. |
| if (VP->getNumElements() != VA->getNumElements()) |
| return TemplateDeductionResult::NonDeducedMismatch; |
| ElementType = VA->getElementType(); |
| } else if (const auto *VA = A->getAs<DependentSizedExtVectorType>()) { |
| // We can't check the number of elements, since the argument has a |
| // dependent number of elements. This can only occur during partial |
| // ordering. |
| ElementType = VA->getElementType(); |
| } else { |
| return TemplateDeductionResult::NonDeducedMismatch; |
| } |
| // Perform deduction on the element types. |
| return DeduceTemplateArgumentsByTypeMatch( |
| S, TemplateParams, VP->getElementType(), ElementType, Info, Deduced, |
| TDF, degradeCallPartialOrderingKind(POK), |
| /*DeducedFromArrayBound=*/false, HasDeducedAnyParam); |
| } |
| |
| case Type::DependentVector: { |
| const auto *VP = P->castAs<DependentVectorType>(); |
| |
| if (const auto *VA = A->getAs<VectorType>()) { |
| // Perform deduction on the element types. |
| if (auto Result = DeduceTemplateArgumentsByTypeMatch( |
| S, TemplateParams, VP->getElementType(), VA->getElementType(), |
| Info, Deduced, TDF, degradeCallPartialOrderingKind(POK), |
| /*DeducedFromArrayBound=*/false, HasDeducedAnyParam); |
| Result != TemplateDeductionResult::Success) |
| return Result; |
| |
| // Perform deduction on the vector size, if we can. |
| const NonTypeTemplateParmDecl *NTTP = |
| getDeducedParameterFromExpr(Info, VP->getSizeExpr()); |
| if (!NTTP) |
| return TemplateDeductionResult::Success; |
| |
| llvm::APSInt ArgSize(S.Context.getTypeSize(S.Context.IntTy), false); |
| ArgSize = VA->getNumElements(); |
| // Note that we use the "array bound" rules here; just like in that |
| // case, we don't have any particular type for the vector size, but |
| // we can provide one if necessary. |
| return DeduceNonTypeTemplateArgument( |
| S, TemplateParams, NTTP, ArgSize, S.Context.UnsignedIntTy, true, |
| Info, POK != PartialOrderingKind::None, Deduced, |
| HasDeducedAnyParam); |
| } |
| |
| if (const auto *VA = A->getAs<DependentVectorType>()) { |
| // Perform deduction on the element types. |
| if (auto Result = DeduceTemplateArgumentsByTypeMatch( |
| S, TemplateParams, VP->getElementType(), VA->getElementType(), |
| Info, Deduced, TDF, degradeCallPartialOrderingKind(POK), |
| /*DeducedFromArrayBound=*/false, HasDeducedAnyParam); |
| Result != TemplateDeductionResult::Success) |
| return Result; |
| |
| // Perform deduction on the vector size, if we can. |
| const NonTypeTemplateParmDecl *NTTP = |
| getDeducedParameterFromExpr(Info, VP->getSizeExpr()); |
| if (!NTTP) |
| return TemplateDeductionResult::Success; |
| |
| return DeduceNonTypeTemplateArgument( |
| S, TemplateParams, NTTP, VA->getSizeExpr(), Info, |
| POK != PartialOrderingKind::None, Deduced, HasDeducedAnyParam); |
| } |
| |
| return TemplateDeductionResult::NonDeducedMismatch; |
| } |
| |
| // (clang extension) |
| // |
| // T __attribute__(((ext_vector_type(N)))) |
| case Type::DependentSizedExtVector: { |
| const auto *VP = P->castAs<DependentSizedExtVectorType>(); |
| |
| if (const auto *VA = A->getAs<ExtVectorType>()) { |
| // Perform deduction on the element types. |
| if (auto Result = DeduceTemplateArgumentsByTypeMatch( |
| S, TemplateParams, VP->getElementType(), VA->getElementType(), |
| Info, Deduced, TDF, degradeCallPartialOrderingKind(POK), |
| /*DeducedFromArrayBound=*/false, HasDeducedAnyParam); |
| Result != TemplateDeductionResult::Success) |
| return Result; |
| |
| // Perform deduction on the vector size, if we can. |
| const NonTypeTemplateParmDecl *NTTP = |
| getDeducedParameterFromExpr(Info, VP->getSizeExpr()); |
| if (!NTTP) |
| return TemplateDeductionResult::Success; |
| |
| llvm::APSInt ArgSize(S.Context.getTypeSize(S.Context.IntTy), false); |
| ArgSize = VA->getNumElements(); |
| // Note that we use the "array bound" rules here; just like in that |
| // case, we don't have any particular type for the vector size, but |
| // we can provide one if necessary. |
| return DeduceNonTypeTemplateArgument( |
| S, TemplateParams, NTTP, ArgSize, S.Context.IntTy, true, Info, |
| POK != PartialOrderingKind::None, Deduced, HasDeducedAnyParam); |
| } |
| |
| if (const auto *VA = A->getAs<DependentSizedExtVectorType>()) { |
| // Perform deduction on the element types. |
| if (auto Result = DeduceTemplateArgumentsByTypeMatch( |
| S, TemplateParams, VP->getElementType(), VA->getElementType(), |
| Info, Deduced, TDF, degradeCallPartialOrderingKind(POK), |
| /*DeducedFromArrayBound=*/false, HasDeducedAnyParam); |
| Result != TemplateDeductionResult::Success) |
| return Result; |
| |
| // Perform deduction on the vector size, if we can. |
| const NonTypeTemplateParmDecl *NTTP = |
| getDeducedParameterFromExpr(Info, VP->getSizeExpr()); |
| if (!NTTP) |
| return TemplateDeductionResult::Success; |
| |
| return DeduceNonTypeTemplateArgument( |
| S, TemplateParams, NTTP, VA->getSizeExpr(), Info, |
| POK != PartialOrderingKind::None, Deduced, HasDeducedAnyParam); |
| } |
| |
| return TemplateDeductionResult::NonDeducedMismatch; |
| } |
| |
| // (clang extension) |
| // |
| // T __attribute__((matrix_type(<integral constant>, |
| // <integral constant>))) |
| case Type::ConstantMatrix: { |
| const auto *MP = P->castAs<ConstantMatrixType>(), |
| *MA = A->getAs<ConstantMatrixType>(); |
| if (!MA) |
| return TemplateDeductionResult::NonDeducedMismatch; |
| |
| // Check that the dimensions are the same |
| if (MP->getNumRows() != MA->getNumRows() || |
| MP->getNumColumns() != MA->getNumColumns()) { |
| return TemplateDeductionResult::NonDeducedMismatch; |
| } |
| // Perform deduction on element types. |
| return DeduceTemplateArgumentsByTypeMatch( |
| S, TemplateParams, MP->getElementType(), MA->getElementType(), Info, |
| Deduced, TDF, degradeCallPartialOrderingKind(POK), |
| /*DeducedFromArrayBound=*/false, HasDeducedAnyParam); |
| } |
| |
| case Type::DependentSizedMatrix: { |
| const auto *MP = P->castAs<DependentSizedMatrixType>(); |
| const auto *MA = A->getAs<MatrixType>(); |
| if (!MA) |
| return TemplateDeductionResult::NonDeducedMismatch; |
| |
| // Check the element type of the matrixes. |
| if (auto Result = DeduceTemplateArgumentsByTypeMatch( |
| S, TemplateParams, MP->getElementType(), MA->getElementType(), |
| Info, Deduced, TDF, degradeCallPartialOrderingKind(POK), |
| /*DeducedFromArrayBound=*/false, HasDeducedAnyParam); |
| Result != TemplateDeductionResult::Success) |
| return Result; |
| |
| // Try to deduce a matrix dimension. |
| auto DeduceMatrixArg = |
| [&S, &Info, &Deduced, &TemplateParams, &HasDeducedAnyParam, POK]( |
| Expr *ParamExpr, const MatrixType *A, |
| unsigned (ConstantMatrixType::*GetArgDimension)() const, |
| Expr *(DependentSizedMatrixType::*GetArgDimensionExpr)() const) { |
| const auto *ACM = dyn_cast<ConstantMatrixType>(A); |
| const auto *ADM = dyn_cast<DependentSizedMatrixType>(A); |
| if (!ParamExpr->isValueDependent()) { |
| std::optional<llvm::APSInt> ParamConst = |
| ParamExpr->getIntegerConstantExpr(S.Context); |
| if (!ParamConst) |
| return TemplateDeductionResult::NonDeducedMismatch; |
| |
| if (ACM) { |
| if ((ACM->*GetArgDimension)() == *ParamConst) |
| return TemplateDeductionResult::Success; |
| return TemplateDeductionResult::NonDeducedMismatch; |
| } |
| |
| Expr *ArgExpr = (ADM->*GetArgDimensionExpr)(); |
| if (std::optional<llvm::APSInt> ArgConst = |
| ArgExpr->getIntegerConstantExpr(S.Context)) |
| if (*ArgConst == *ParamConst) |
| return TemplateDeductionResult::Success; |
| return TemplateDeductionResult::NonDeducedMismatch; |
| } |
| |
| const NonTypeTemplateParmDecl *NTTP = |
| getDeducedParameterFromExpr(Info, ParamExpr); |
| if (!NTTP) |
| return TemplateDeductionResult::Success; |
| |
| if (ACM) { |
| llvm::APSInt ArgConst( |
| S.Context.getTypeSize(S.Context.getSizeType())); |
| ArgConst = (ACM->*GetArgDimension)(); |
| return DeduceNonTypeTemplateArgument( |
| S, TemplateParams, NTTP, ArgConst, S.Context.getSizeType(), |
| /*ArrayBound=*/true, Info, POK != PartialOrderingKind::None, |
| Deduced, HasDeducedAnyParam); |
| } |
| |
| return DeduceNonTypeTemplateArgument( |
| S, TemplateParams, NTTP, (ADM->*GetArgDimensionExpr)(), Info, |
| POK != PartialOrderingKind::None, Deduced, HasDeducedAnyParam); |
| }; |
| |
| if (auto Result = DeduceMatrixArg(MP->getRowExpr(), MA, |
| &ConstantMatrixType::getNumRows, |
| &DependentSizedMatrixType::getRowExpr); |
| Result != TemplateDeductionResult::Success) |
| return Result; |
| |
| return DeduceMatrixArg(MP->getColumnExpr(), MA, |
| &ConstantMatrixType::getNumColumns, |
| &DependentSizedMatrixType::getColumnExpr); |
| } |
| |
| // (clang extension) |
| // |
| // T __attribute__(((address_space(N)))) |
| case Type::DependentAddressSpace: { |
| const auto *ASP = P->castAs<DependentAddressSpaceType>(); |
| |
| if (const auto *ASA = A->getAs<DependentAddressSpaceType>()) { |
| // Perform deduction on the pointer type. |
| if (auto Result = DeduceTemplateArgumentsByTypeMatch( |
| S, TemplateParams, ASP->getPointeeType(), ASA->getPointeeType(), |
| Info, Deduced, TDF, degradeCallPartialOrderingKind(POK), |
| /*DeducedFromArrayBound=*/false, HasDeducedAnyParam); |
| Result != TemplateDeductionResult::Success) |
| return Result; |
| |
| // Perform deduction on the address space, if we can. |
| const NonTypeTemplateParmDecl *NTTP = |
| getDeducedParameterFromExpr(Info, ASP->getAddrSpaceExpr()); |
| if (!NTTP) |
| return TemplateDeductionResult::Success; |
| |
| return DeduceNonTypeTemplateArgument( |
| S, TemplateParams, NTTP, ASA->getAddrSpaceExpr(), Info, |
| POK != PartialOrderingKind::None, Deduced, HasDeducedAnyParam); |
| } |
| |
| if (isTargetAddressSpace(A.getAddressSpace())) { |
| llvm::APSInt ArgAddressSpace(S.Context.getTypeSize(S.Context.IntTy), |
| false); |
| ArgAddressSpace = toTargetAddressSpace(A.getAddressSpace()); |
| |
| // Perform deduction on the pointer types. |
| if (auto Result = DeduceTemplateArgumentsByTypeMatch( |
| S, TemplateParams, ASP->getPointeeType(), |
| S.Context.removeAddrSpaceQualType(A), Info, Deduced, TDF, |
| degradeCallPartialOrderingKind(POK), |
| /*DeducedFromArrayBound=*/false, HasDeducedAnyParam); |
| Result != TemplateDeductionResult::Success) |
| return Result; |
| |
| // Perform deduction on the address space, if we can. |
| const NonTypeTemplateParmDecl *NTTP = |
| getDeducedParameterFromExpr(Info, ASP->getAddrSpaceExpr()); |
| if (!NTTP) |
| return TemplateDeductionResult::Success; |
| |
| return DeduceNonTypeTemplateArgument( |
| S, TemplateParams, NTTP, ArgAddressSpace, S.Context.IntTy, true, |
| Info, POK != PartialOrderingKind::None, Deduced, |
| HasDeducedAnyParam); |
| } |
| |
| return TemplateDeductionResult::NonDeducedMismatch; |
| } |
| case Type::DependentBitInt: { |
| const auto *IP = P->castAs<DependentBitIntType>(); |
| |
| if (const auto *IA = A->getAs<BitIntType>()) { |
| if (IP->isUnsigned() != IA->isUnsigned()) |
| return TemplateDeductionResult::NonDeducedMismatch; |
| |
| const NonTypeTemplateParmDecl *NTTP = |
| getDeducedParameterFromExpr(Info, IP->getNumBitsExpr()); |
| if (!NTTP) |
| return TemplateDeductionResult::Success; |
| |
| llvm::APSInt ArgSize(S.Context.getTypeSize(S.Context.IntTy), false); |
| ArgSize = IA->getNumBits(); |
| |
| return DeduceNonTypeTemplateArgument( |
| S, TemplateParams, NTTP, ArgSize, S.Context.IntTy, true, Info, |
| POK != PartialOrderingKind::None, Deduced, HasDeducedAnyParam); |
| } |
| |
| if (const auto *IA = A->getAs<DependentBitIntType>()) { |
| if (IP->isUnsigned() != IA->isUnsigned()) |
| return TemplateDeductionResult::NonDeducedMismatch; |
| return TemplateDeductionResult::Success; |
| } |
| |
| return TemplateDeductionResult::NonDeducedMismatch; |
| } |
| |
| case Type::TypeOfExpr: |
| case Type::TypeOf: |
| case Type::DependentName: |
| case Type::UnresolvedUsing: |
| case Type::Decltype: |
| case Type::UnaryTransform: |
| case Type::DeducedTemplateSpecialization: |
| case Type::DependentTemplateSpecialization: |
| case Type::PackExpansion: |
| case Type::Pipe: |
| case Type::ArrayParameter: |
| case Type::HLSLAttributedResource: |
| // No template argument deduction for these types |
| return TemplateDeductionResult::Success; |
| |
| case Type::PackIndexing: { |
| const PackIndexingType *PIT = P->getAs<PackIndexingType>(); |
| if (PIT->hasSelectedType()) { |
| return DeduceTemplateArgumentsByTypeMatch( |
| S, TemplateParams, PIT->getSelectedType(), A, Info, Deduced, TDF, |
| degradeCallPartialOrderingKind(POK), |
| /*DeducedFromArrayBound=*/false, HasDeducedAnyParam); |
| } |
| return TemplateDeductionResult::IncompletePack; |
| } |
| } |
| |
| llvm_unreachable("Invalid Type Class!"); |
| } |
| |
| static TemplateDeductionResult |
| DeduceTemplateArguments(Sema &S, TemplateParameterList *TemplateParams, |
| const TemplateArgument &P, TemplateArgument A, |
| TemplateDeductionInfo &Info, bool PartialOrdering, |
| SmallVectorImpl<DeducedTemplateArgument> &Deduced, |
| bool *HasDeducedAnyParam) { |
| // If the template argument is a pack expansion, perform template argument |
| // deduction against the pattern of that expansion. This only occurs during |
| // partial ordering. |
| if (A.isPackExpansion()) |
| A = A.getPackExpansionPattern(); |
| |
| switch (P.getKind()) { |
| case TemplateArgument::Null: |
| llvm_unreachable("Null template argument in parameter list"); |
| |
| case TemplateArgument::Type: |
| if (A.getKind() == TemplateArgument::Type) |
| return DeduceTemplateArgumentsByTypeMatch( |
| S, TemplateParams, P.getAsType(), A.getAsType(), Info, Deduced, 0, |
| PartialOrdering ? PartialOrderingKind::NonCall |
| : PartialOrderingKind::None, |
| /*DeducedFromArrayBound=*/false, HasDeducedAnyParam); |
| Info.FirstArg = P; |
| Info.SecondArg = A; |
| return TemplateDeductionResult::NonDeducedMismatch; |
| |
| case TemplateArgument::Template: |
| // PartialOrdering does not matter here, since template specializations are |
| // not being deduced. |
| if (A.getKind() == TemplateArgument::Template) |
| return DeduceTemplateArguments( |
| S, TemplateParams, P.getAsTemplate(), A.getAsTemplate(), Info, |
| /*DefaultArguments=*/{}, /*PartialOrdering=*/false, Deduced, |
| HasDeducedAnyParam); |
| Info.FirstArg = P; |
| Info.SecondArg = A; |
| return TemplateDeductionResult::NonDeducedMismatch; |
| |
| case TemplateArgument::TemplateExpansion: |
| llvm_unreachable("caller should handle pack expansions"); |
| |
| case TemplateArgument::Declaration: |
| if (A.getKind() == TemplateArgument::Declaration && |
| isSameDeclaration(P.getAsDecl(), A.getAsDecl())) |
| return TemplateDeductionResult::Success; |
| |
| Info.FirstArg = P; |
| Info.SecondArg = A; |
| return TemplateDeductionResult::NonDeducedMismatch; |
| |
| case TemplateArgument::NullPtr: |
| // 'nullptr' has only one possible value, so it always matches. |
| if (A.getKind() == TemplateArgument::NullPtr) |
| return TemplateDeductionResult::Success; |
| Info.FirstArg = P; |
| Info.SecondArg = A; |
| return TemplateDeductionResult::NonDeducedMismatch; |
| |
| case TemplateArgument::Integral: |
| if (A.getKind() == TemplateArgument::Integral) { |
| if (hasSameExtendedValue(P.getAsIntegral(), A.getAsIntegral())) |
| return TemplateDeductionResult::Success; |
| } |
| Info.FirstArg = P; |
| Info.SecondArg = A; |
| return TemplateDeductionResult::NonDeducedMismatch; |
| |
| case TemplateArgument::StructuralValue: |
| // FIXME: structural equality will also compare types, |
| // but they should match iff they have the same value. |
| if (A.getKind() == TemplateArgument::StructuralValue && |
| A.structurallyEquals(P)) |
| return TemplateDeductionResult::Success; |
| |
| Info.FirstArg = P; |
| Info.SecondArg = A; |
| return TemplateDeductionResult::NonDeducedMismatch; |
| |
| case TemplateArgument::Expression: |
| if (const NonTypeTemplateParmDecl *NTTP = |
| getDeducedParameterFromExpr(Info, P.getAsExpr())) { |
| switch (A.getKind()) { |
| case TemplateArgument::Expression: { |
| const Expr *E = A.getAsExpr(); |
| // When checking NTTP, if either the parameter or the argument is |
| // dependent, as there would be otherwise nothing to deduce, we force |
| // the argument to the parameter type using this dependent implicit |
| // cast, in order to maintain invariants. Now we can deduce the |
| // resulting type from the original type, and deduce the original type |
| // against the parameter we are checking. |
| if (const auto *ICE = dyn_cast<ImplicitCastExpr>(E); |
| ICE && ICE->getCastKind() == clang::CK_Dependent) { |
| E = ICE->getSubExpr(); |
| if (auto Result = DeduceTemplateArgumentsByTypeMatch( |
| S, TemplateParams, ICE->getType(), E->getType(), Info, |
| Deduced, TDF_SkipNonDependent, |
| PartialOrdering ? PartialOrderingKind::NonCall |
| : PartialOrderingKind::None, |
| /*DeducedFromArrayBound=*/false, HasDeducedAnyParam); |
| Result != TemplateDeductionResult::Success) |
| return Result; |
| } |
| return DeduceNonTypeTemplateArgument( |
| S, TemplateParams, NTTP, DeducedTemplateArgument(A), E->getType(), |
| Info, PartialOrdering, Deduced, HasDeducedAnyParam); |
| } |
| case TemplateArgument::Integral: |
| case TemplateArgument::StructuralValue: |
| return DeduceNonTypeTemplateArgument( |
| S, TemplateParams, NTTP, DeducedTemplateArgument(A), |
| A.getNonTypeTemplateArgumentType(), Info, PartialOrdering, Deduced, |
| HasDeducedAnyParam); |
| |
| case TemplateArgument::NullPtr: |
| return DeduceNullPtrTemplateArgument( |
| S, TemplateParams, NTTP, A.getNullPtrType(), Info, PartialOrdering, |
| Deduced, HasDeducedAnyParam); |
| |
| case TemplateArgument::Declaration: |
| return DeduceNonTypeTemplateArgument( |
| S, TemplateParams, NTTP, A.getAsDecl(), A.getParamTypeForDecl(), |
| Info, PartialOrdering, Deduced, HasDeducedAnyParam); |
| |
| case TemplateArgument::Null: |
| case TemplateArgument::Type: |
| case TemplateArgument::Template: |
| case TemplateArgument::TemplateExpansion: |
| case TemplateArgument::Pack: |
| Info.FirstArg = P; |
| Info.SecondArg = A; |
| return TemplateDeductionResult::NonDeducedMismatch; |
| } |
| llvm_unreachable("Unknown template argument kind"); |
| } |
| |
| // Can't deduce anything, but that's okay. |
| return TemplateDeductionResult::Success; |
| case TemplateArgument::Pack: |
| llvm_unreachable("Argument packs should be expanded by the caller!"); |
| } |
| |
| llvm_unreachable("Invalid TemplateArgument Kind!"); |
| } |
| |
| /// Determine whether there is a template argument to be used for |
| /// deduction. |
| /// |
| /// This routine "expands" argument packs in-place, overriding its input |
| /// parameters so that \c Args[ArgIdx] will be the available template argument. |
| /// |
| /// \returns true if there is another template argument (which will be at |
| /// \c Args[ArgIdx]), false otherwise. |
| static bool hasTemplateArgumentForDeduction(ArrayRef<TemplateArgument> &Args, |
| unsigned &ArgIdx) { |
| if (ArgIdx == Args.size()) |
| return false; |
| |
| const TemplateArgument &Arg = Args[ArgIdx]; |
| if (Arg.getKind() != TemplateArgument::Pack) |
| return true; |
| |
| assert(ArgIdx == Args.size() - 1 && "Pack not at the end of argument list?"); |
| Args = Arg.pack_elements(); |
| ArgIdx = 0; |
| return ArgIdx < Args.size(); |
| } |
| |
| /// Determine whether the given set of template arguments has a pack |
| /// expansion that is not the last template argument. |
| static bool hasPackExpansionBeforeEnd(ArrayRef<TemplateArgument> Args) { |
| bool FoundPackExpansion = false; |
| for (const auto &A : Args) { |
| if (FoundPackExpansion) |
| return true; |
| |
| if (A.getKind() == TemplateArgument::Pack) |
| return hasPackExpansionBeforeEnd(A.pack_elements()); |
| |
| // FIXME: If this is a fixed-arity pack expansion from an outer level of |
| // templates, it should not be treated as a pack expansion. |
| if (A.isPackExpansion()) |
| FoundPackExpansion = true; |
| } |
| |
| return false; |
| } |
| |
| static TemplateDeductionResult |
| DeduceTemplateArguments(Sema &S, TemplateParameterList *TemplateParams, |
| ArrayRef<TemplateArgument> Ps, |
| ArrayRef<TemplateArgument> As, |
| TemplateDeductionInfo &Info, |
| SmallVectorImpl<DeducedTemplateArgument> &Deduced, |
| bool NumberOfArgumentsMustMatch, bool PartialOrdering, |
| PackFold PackFold, bool *HasDeducedAnyParam) { |
| bool FoldPackParameter = PackFold == PackFold::ParameterToArgument || |
| PackFold == PackFold::Both, |
| FoldPackArgument = PackFold == PackFold::ArgumentToParameter || |
| PackFold == PackFold::Both; |
| |
| // C++0x [temp.deduct.type]p9: |
| // If the template argument list of P contains a pack expansion that is not |
| // the last template argument, the entire template argument list is a |
| // non-deduced context. |
| if (FoldPackParameter && hasPackExpansionBeforeEnd(Ps)) |
| return TemplateDeductionResult::Success; |
| |
| // C++0x [temp.deduct.type]p9: |
| // If P has a form that contains <T> or <i>, then each argument Pi of the |
| // respective template argument list P is compared with the corresponding |
| // argument Ai of the corresponding template argument list of A. |
| for (unsigned ArgIdx = 0, ParamIdx = 0; /**/; /**/) { |
| if (!hasTemplateArgumentForDeduction(Ps, ParamIdx)) |
| return !FoldPackParameter && hasTemplateArgumentForDeduction(As, ArgIdx) |
| ? TemplateDeductionResult::MiscellaneousDeductionFailure |
| : TemplateDeductionResult::Success; |
| |
| if (!Ps[ParamIdx].isPackExpansion()) { |
| // The simple case: deduce template arguments by matching Pi and Ai. |
| |
| // Check whether we have enough arguments. |
| if (!hasTemplateArgumentForDeduction(As, ArgIdx)) |
| return !FoldPackArgument && NumberOfArgumentsMustMatch |
| ? TemplateDeductionResult::MiscellaneousDeductionFailure |
| : TemplateDeductionResult::Success; |
| |
| if (As[ArgIdx].isPackExpansion()) { |
| // C++1z [temp.deduct.type]p9: |
| // During partial ordering, if Ai was originally a pack expansion |
| // [and] Pi is not a pack expansion, template argument deduction |
| // fails. |
| if (!FoldPackArgument) |
| return TemplateDeductionResult::MiscellaneousDeductionFailure; |
| |
| TemplateArgument Pattern = As[ArgIdx].getPackExpansionPattern(); |
| for (;;) { |
| // Deduce template parameters from the pattern. |
| if (auto Result = DeduceTemplateArguments( |
| S, TemplateParams, Ps[ParamIdx], Pattern, Info, |
| PartialOrdering, Deduced, HasDeducedAnyParam); |
| Result != TemplateDeductionResult::Success) |
| return Result; |
| |
| ++ParamIdx; |
| if (!hasTemplateArgumentForDeduction(Ps, ParamIdx)) |
| return TemplateDeductionResult::Success; |
| if (Ps[ParamIdx].isPackExpansion()) |
| break; |
| } |
| } else { |
| // Perform deduction for this Pi/Ai pair. |
| if (auto Result = DeduceTemplateArguments( |
| S, TemplateParams, Ps[ParamIdx], As[ArgIdx], Info, |
| PartialOrdering, Deduced, HasDeducedAnyParam); |
| Result != TemplateDeductionResult::Success) |
| return Result; |
| |
| ++ArgIdx; |
| ++ParamIdx; |
| continue; |
| } |
| } |
| |
| // The parameter is a pack expansion. |
| |
| // C++0x [temp.deduct.type]p9: |
| // If Pi is a pack expansion, then the pattern of Pi is compared with |
| // each remaining argument in the template argument list of A. Each |
| // comparison deduces template arguments for subsequent positions in the |
| // template parameter packs expanded by Pi. |
| TemplateArgument Pattern = Ps[ParamIdx].getPackExpansionPattern(); |
| |
| // Prepare to deduce the packs within the pattern. |
| PackDeductionScope PackScope(S, TemplateParams, Deduced, Info, Pattern); |
| |
| // Keep track of the deduced template arguments for each parameter pack |
| // expanded by this pack expansion (the outer index) and for each |
| // template argument (the inner SmallVectors). |
| for (; hasTemplateArgumentForDeduction(As, ArgIdx) && |
| PackScope.hasNextElement(); |
| ++ArgIdx) { |
| if (!As[ArgIdx].isPackExpansion()) { |
| if (!FoldPackParameter) |
| return TemplateDeductionResult::MiscellaneousDeductionFailure; |
| if (FoldPackArgument) |
| Info.setMatchedPackOnParmToNonPackOnArg(); |
| } |
| // Deduce template arguments from the pattern. |
| if (auto Result = DeduceTemplateArguments( |
| S, TemplateParams, Pattern, As[ArgIdx], Info, PartialOrdering, |
| Deduced, HasDeducedAnyParam); |
| Result != TemplateDeductionResult::Success) |
| return Result; |
| |
| PackScope.nextPackElement(); |
| } |
| |
| // Build argument packs for each of the parameter packs expanded by this |
| // pack expansion. |
| return PackScope.finish(); |
| } |
| } |
| |
| TemplateDeductionResult Sema::DeduceTemplateArguments( |
| TemplateParameterList *TemplateParams, ArrayRef<TemplateArgument> Ps, |
| ArrayRef<TemplateArgument> As, sema::TemplateDeductionInfo &Info, |
| SmallVectorImpl<DeducedTemplateArgument> &Deduced, |
| bool NumberOfArgumentsMustMatch) { |
| return ::DeduceTemplateArguments( |
| *this, TemplateParams, Ps, As, Info, Deduced, NumberOfArgumentsMustMatch, |
| /*PartialOrdering=*/false, PackFold::ParameterToArgument, |
| /*HasDeducedAnyParam=*/nullptr); |
| } |
| |
| /// Determine whether two template arguments are the same. |
| static bool isSameTemplateArg(ASTContext &Context, |
| TemplateArgument X, |
| const TemplateArgument &Y, |
| bool PartialOrdering, |
| bool PackExpansionMatchesPack = false) { |
| // If we're checking deduced arguments (X) against original arguments (Y), |
| // we will have flattened packs to non-expansions in X. |
| if (PackExpansionMatchesPack && X.isPackExpansion() && !Y.isPackExpansion()) |
| X = X.getPackExpansionPattern(); |
| |
| if (X.getKind() != Y.getKind()) |
| return false; |
| |
| switch (X.getKind()) { |
| case TemplateArgument::Null: |
| llvm_unreachable("Comparing NULL template argument"); |
| |
| case TemplateArgument::Type: |
| return Context.getCanonicalType(X.getAsType()) == |
| Context.getCanonicalType(Y.getAsType()); |
| |
| case TemplateArgument::Declaration: |
| return isSameDeclaration(X.getAsDecl(), Y.getAsDecl()); |
| |
| case TemplateArgument::NullPtr: |
| return Context.hasSameType(X.getNullPtrType(), Y.getNullPtrType()); |
| |
| case TemplateArgument::Template: |
| case TemplateArgument::TemplateExpansion: |
| return Context.getCanonicalTemplateName( |
| X.getAsTemplateOrTemplatePattern()).getAsVoidPointer() == |
| Context.getCanonicalTemplateName( |
| Y.getAsTemplateOrTemplatePattern()).getAsVoidPointer(); |
| |
| case TemplateArgument::Integral: |
| return hasSameExtendedValue(X.getAsIntegral(), Y.getAsIntegral()); |
| |
| case TemplateArgument::StructuralValue: |
| return X.structurallyEquals(Y); |
| |
| case TemplateArgument::Expression: { |
| llvm::FoldingSetNodeID XID, YID; |
| X.getAsExpr()->Profile(XID, Context, true); |
| Y.getAsExpr()->Profile(YID, Context, true); |
| return XID == YID; |
| } |
| |
| case TemplateArgument::Pack: { |
| unsigned PackIterationSize = X.pack_size(); |
| if (X.pack_size() != Y.pack_size()) { |
| if (!PartialOrdering) |
| return false; |
| |
| // C++0x [temp.deduct.type]p9: |
| // During partial ordering, if Ai was originally a pack expansion: |
| // - if P does not contain a template argument corresponding to Ai |
| // then Ai is ignored; |
| bool XHasMoreArg = X.pack_size() > Y.pack_size(); |
| if (!(XHasMoreArg && X.pack_elements().back().isPackExpansion()) && |
| !(!XHasMoreArg && Y.pack_elements().back().isPackExpansion())) |
| return false; |
| |
| if (XHasMoreArg) |
| PackIterationSize = Y.pack_size(); |
| } |
| |
| ArrayRef<TemplateArgument> XP = X.pack_elements(); |
| ArrayRef<TemplateArgument> YP = Y.pack_elements(); |
| for (unsigned i = 0; i < PackIterationSize; ++i) |
| if (!isSameTemplateArg(Context, XP[i], YP[i], PartialOrdering, |
| PackExpansionMatchesPack)) |
| return false; |
| return true; |
| } |
| } |
| |
| llvm_unreachable("Invalid TemplateArgument Kind!"); |
| } |
| |
| TemplateArgumentLoc |
| Sema::getTrivialTemplateArgumentLoc(const TemplateArgument &Arg, |
| QualType NTTPType, SourceLocation Loc, |
| NamedDecl *TemplateParam) { |
| switch (Arg.getKind()) { |
| case TemplateArgument::Null: |
| llvm_unreachable("Can't get a NULL template argument here"); |
| |
| case TemplateArgument::Type: |
| return TemplateArgumentLoc( |
| Arg, Context.getTrivialTypeSourceInfo(Arg.getAsType(), Loc)); |
| |
| case TemplateArgument::Declaration: { |
| if (NTTPType.isNull()) |
| NTTPType = Arg.getParamTypeForDecl(); |
| Expr *E = BuildExpressionFromDeclTemplateArgument(Arg, NTTPType, Loc, |
| TemplateParam) |
| .getAs<Expr>(); |
| return TemplateArgumentLoc(TemplateArgument(E), E); |
| } |
| |
| case TemplateArgument::NullPtr: { |
| if (NTTPType.isNull()) |
| NTTPType = Arg.getNullPtrType(); |
| Expr *E = BuildExpressionFromDeclTemplateArgument(Arg, NTTPType, Loc) |
| .getAs<Expr>(); |
| return TemplateArgumentLoc(TemplateArgument(NTTPType, /*isNullPtr*/true), |
| E); |
| } |
| |
| case TemplateArgument::Integral: |
| case TemplateArgument::StructuralValue: { |
| Expr *E = BuildExpressionFromNonTypeTemplateArgument(Arg, Loc).get(); |
| return TemplateArgumentLoc(TemplateArgument(E), E); |
| } |
| |
| case TemplateArgument::Template: |
| case TemplateArgument::TemplateExpansion: { |
| NestedNameSpecifierLocBuilder Builder; |
| TemplateName Template = Arg.getAsTemplateOrTemplatePattern(); |
| if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) |
| Builder.MakeTrivial(Context, DTN->getQualifier(), Loc); |
| else if (QualifiedTemplateName *QTN = |
| Template.getAsQualifiedTemplateName()) |
| Builder.MakeTrivial(Context, QTN->getQualifier(), Loc); |
| |
| if (Arg.getKind() == TemplateArgument::Template) |
| return TemplateArgumentLoc(Context, Arg, |
| Builder.getWithLocInContext(Context), Loc); |
| |
| return TemplateArgumentLoc( |
| Context, Arg, Builder.getWithLocInContext(Context), Loc, Loc); |
| } |
| |
| case TemplateArgument::Expression: |
| return TemplateArgumentLoc(Arg, Arg.getAsExpr()); |
| |
| case TemplateArgument::Pack: |
| return TemplateArgumentLoc(Arg, TemplateArgumentLocInfo()); |
| } |
| |
| llvm_unreachable("Invalid TemplateArgument Kind!"); |
| } |
| |
| TemplateArgumentLoc |
| Sema::getIdentityTemplateArgumentLoc(NamedDecl *TemplateParm, |
| SourceLocation Location) { |
| return getTrivialTemplateArgumentLoc( |
| Context.getInjectedTemplateArg(TemplateParm), QualType(), Location); |
| } |
| |
| /// Convert the given deduced template argument and add it to the set of |
| /// fully-converted template arguments. |
| static bool |
| ConvertDeducedTemplateArgument(Sema &S, NamedDecl *Param, |
| DeducedTemplateArgument Arg, NamedDecl *Template, |
| TemplateDeductionInfo &Info, bool IsDeduced, |
| Sema::CheckTemplateArgumentInfo &CTAI) { |
| auto ConvertArg = [&](DeducedTemplateArgument Arg, |
| unsigned ArgumentPackIndex) { |
| // Convert the deduced template argument into a template |
| // argument that we can check, almost as if the user had written |
| // the template argument explicitly. |
| TemplateArgumentLoc ArgLoc = S.getTrivialTemplateArgumentLoc( |
| Arg, QualType(), Info.getLocation(), Param); |
| |
| SaveAndRestore _1(CTAI.MatchingTTP, false); |
| SaveAndRestore _2(CTAI.MatchedPackOnParmToNonPackOnArg, false); |
| // Check the template argument, converting it as necessary. |
| auto Res = S.CheckTemplateArgument( |
| Param, ArgLoc, Template, Template->getLocation(), |
| Template->getSourceRange().getEnd(), ArgumentPackIndex, CTAI, |
| IsDeduced |
| ? (Arg.wasDeducedFromArrayBound() ? Sema::CTAK_DeducedFromArrayBound |
| : Sema::CTAK_Deduced) |
| : Sema::CTAK_Specified); |
| if (CTAI.MatchedPackOnParmToNonPackOnArg) |
| Info.setMatchedPackOnParmToNonPackOnArg(); |
| return Res; |
| }; |
| |
| if (Arg.getKind() == TemplateArgument::Pack) { |
| // This is a template argument pack, so check each of its arguments against |
| // the template parameter. |
| SmallVector<TemplateArgument, 2> SugaredPackedArgsBuilder, |
| CanonicalPackedArgsBuilder; |
| for (const auto &P : Arg.pack_elements()) { |
| // When converting the deduced template argument, append it to the |
| // general output list. We need to do this so that the template argument |
| // checking logic has all of the prior template arguments available. |
| DeducedTemplateArgument InnerArg(P); |
| InnerArg.setDeducedFromArrayBound(Arg.wasDeducedFromArrayBound()); |
| assert(InnerArg.getKind() != TemplateArgument::Pack && |
| "deduced nested pack"); |
| if (P.isNull()) { |
| // We deduced arguments for some elements of this pack, but not for |
| // all of them. This happens if we get a conditionally-non-deduced |
| // context in a pack expansion (such as an overload set in one of the |
| // arguments). |
| S.Diag(Param->getLocation(), |
| diag::err_template_arg_deduced_incomplete_pack) |
| << Arg << Param; |
| return true; |
| } |
| if (ConvertArg(InnerArg, SugaredPackedArgsBuilder.size())) |
| return true; |
| |
| // Move the converted template argument into our argument pack. |
| SugaredPackedArgsBuilder.push_back(CTAI.SugaredConverted.pop_back_val()); |
| CanonicalPackedArgsBuilder.push_back( |
| CTAI.CanonicalConverted.pop_back_val()); |
| } |
| |
| // If the pack is empty, we still need to substitute into the parameter |
| // itself, in case that substitution fails. |
| if (SugaredPackedArgsBuilder.empty()) { |
| LocalInstantiationScope Scope(S); |
| MultiLevelTemplateArgumentList Args(Template, CTAI.SugaredConverted, |
| /*Final=*/true); |
| |
| if (auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Param)) { |
| Sema::InstantiatingTemplate Inst(S, Template->getLocation(), Template, |
| NTTP, CTAI.SugaredConverted, |
| Template->getSourceRange()); |
| if (Inst.isInvalid() || |
| S.SubstType(NTTP->getType(), Args, NTTP->getLocation(), |
| NTTP->getDeclName()).isNull()) |
| return true; |
| } else if (auto *TTP = dyn_cast<TemplateTemplateParmDecl>(Param)) { |
| Sema::InstantiatingTemplate Inst(S, Template->getLocation(), Template, |
| TTP, CTAI.SugaredConverted, |
| Template->getSourceRange()); |
| if (Inst.isInvalid() || !S.SubstDecl(TTP, S.CurContext, Args)) |
| return true; |
| } |
| // For type parameters, no substitution is ever required. |
| } |
| |
| // Create the resulting argument pack. |
| CTAI.SugaredConverted.push_back( |
| TemplateArgument::CreatePackCopy(S.Context, SugaredPackedArgsBuilder)); |
| CTAI.CanonicalConverted.push_back(TemplateArgument::CreatePackCopy( |
| S.Context, CanonicalPackedArgsBuilder)); |
| return false; |
| } |
| |
| return ConvertArg(Arg, 0); |
| } |
| |
| // FIXME: This should not be a template, but |
| // ClassTemplatePartialSpecializationDecl sadly does not derive from |
| // TemplateDecl. |
| /// \param IsIncomplete When used, we only consider template parameters that |
| /// were deduced, disregarding any default arguments. After the function |
| /// finishes, the object pointed at will contain a value indicating if the |
| /// conversion was actually incomplete. |
| template <typename TemplateDeclT> |
| static TemplateDeductionResult ConvertDeducedTemplateArguments( |
| Sema &S, TemplateDeclT *Template, bool IsDeduced, |
| SmallVectorImpl<DeducedTemplateArgument> &Deduced, |
| TemplateDeductionInfo &Info, Sema::CheckTemplateArgumentInfo &CTAI, |
| LocalInstantiationScope *CurrentInstantiationScope, |
| unsigned NumAlreadyConverted, bool *IsIncomplete) { |
| TemplateParameterList *TemplateParams = Template->getTemplateParameters(); |
| |
| for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { |
| NamedDecl *Param = TemplateParams->getParam(I); |
| |
| // C++0x [temp.arg.explicit]p3: |
| // A trailing template parameter pack (14.5.3) not otherwise deduced will |
| // be deduced to an empty sequence of template arguments. |
| // FIXME: Where did the word "trailing" come from? |
| if (Deduced[I].isNull() && Param->isTemplateParameterPack()) { |
| if (auto Result = |
| PackDeductionScope(S, TemplateParams, Deduced, Info, I).finish(); |
| Result != TemplateDeductionResult::Success) |
| return Result; |
| } |
| |
| if (!Deduced[I].isNull()) { |
| if (I < NumAlreadyConverted) { |
| // We may have had explicitly-specified template arguments for a |
| // template parameter pack (that may or may not have been extended |
| // via additional deduced arguments). |
| if (Param->isParameterPack() && CurrentInstantiationScope && |
| CurrentInstantiationScope->getPartiallySubstitutedPack() == Param) { |
| // Forget the partially-substituted pack; its substitution is now |
| // complete. |
| CurrentInstantiationScope->ResetPartiallySubstitutedPack(); |
| // We still need to check the argument in case it was extended by |
| // deduction. |
| } else { |
| // We have already fully type-checked and converted this |
| // argument, because it was explicitly-specified. Just record the |
| // presence of this argument. |
| CTAI.SugaredConverted.push_back(Deduced[I]); |
| CTAI.CanonicalConverted.push_back( |
| S.Context.getCanonicalTemplateArgument(Deduced[I])); |
| continue; |
| } |
| } |
| |
| // We may have deduced this argument, so it still needs to be |
| // checked and converted. |
| if (ConvertDeducedTemplateArgument(S, Param, Deduced[I], Template, Info, |
| IsDeduced, CTAI)) { |
| Info.Param = makeTemplateParameter(Param); |
| // FIXME: These template arguments are temporary. Free them! |
| Info.reset( |
| TemplateArgumentList::CreateCopy(S.Context, CTAI.SugaredConverted), |
| TemplateArgumentList::CreateCopy(S.Context, |
| CTAI.CanonicalConverted)); |
| return TemplateDeductionResult::SubstitutionFailure; |
| } |
| |
| continue; |
| } |
| |
| // [C++26][temp.deduct.partial]p12 - When partial ordering, it's ok for |
| // template parameters to remain not deduced. As a provisional fix for a |
| // core issue that does not exist yet, which may be related to CWG2160, only |
| // consider template parameters that were deduced, disregarding any default |
| // arguments. |
| if (IsIncomplete) { |
| *IsIncomplete = true; |
| CTAI.SugaredConverted.push_back({}); |
| CTAI.CanonicalConverted.push_back({}); |
| continue; |
| } |
| |
| // Substitute into the default template argument, if available. |
| bool HasDefaultArg = false; |
| TemplateDecl *TD = dyn_cast<TemplateDecl>(Template); |
| if (!TD) { |
| assert(isa<ClassTemplatePartialSpecializationDecl>(Template) || |
| isa<VarTemplatePartialSpecializationDecl>(Template)); |
| return TemplateDeductionResult::Incomplete; |
| } |
| |
| TemplateArgumentLoc DefArg; |
| { |
| Qualifiers ThisTypeQuals; |
| CXXRecordDecl *ThisContext = nullptr; |
| if (auto *Rec = dyn_cast<CXXRecordDecl>(TD->getDeclContext())) |
| if (Rec->isLambda()) |
| if (auto *Method = dyn_cast<CXXMethodDecl>(Rec->getDeclContext())) { |
| ThisContext = Method->getParent(); |
| ThisTypeQuals = Method->getMethodQualifiers(); |
| } |
| |
| Sema::CXXThisScopeRAII ThisScope(S, ThisContext, ThisTypeQuals, |
| S.getLangOpts().CPlusPlus17); |
| |
| DefArg = S.SubstDefaultTemplateArgumentIfAvailable( |
| TD, TD->getLocation(), TD->getSourceRange().getEnd(), Param, |
| CTAI.SugaredConverted, CTAI.CanonicalConverted, HasDefaultArg); |
| } |
| |
| // If there was no default argument, deduction is incomplete. |
| if (DefArg.getArgument().isNull()) { |
| Info.Param = makeTemplateParameter( |
| const_cast<NamedDecl *>(TemplateParams->getParam(I))); |
| Info.reset( |
| TemplateArgumentList::CreateCopy(S.Context, CTAI.SugaredConverted), |
| TemplateArgumentList::CreateCopy(S.Context, CTAI.CanonicalConverted)); |
| |
| return HasDefaultArg ? TemplateDeductionResult::SubstitutionFailure |
| : TemplateDeductionResult::Incomplete; |
| } |
| |
| SaveAndRestore _1(CTAI.PartialOrdering, false); |
| SaveAndRestore _2(CTAI.MatchingTTP, false); |
| SaveAndRestore _3(CTAI.MatchedPackOnParmToNonPackOnArg, false); |
| // Check whether we can actually use the default argument. |
| if (S.CheckTemplateArgument( |
| Param, DefArg, TD, TD->getLocation(), TD->getSourceRange().getEnd(), |
| /*ArgumentPackIndex=*/0, CTAI, Sema::CTAK_Specified)) { |
| Info.Param = makeTemplateParameter( |
| const_cast<NamedDecl *>(TemplateParams->getParam(I))); |
| // FIXME: These template arguments are temporary. Free them! |
| Info.reset( |
| TemplateArgumentList::CreateCopy(S.Context, CTAI.SugaredConverted), |
| TemplateArgumentList::CreateCopy(S.Context, CTAI.CanonicalConverted)); |
| return TemplateDeductionResult::SubstitutionFailure; |
| } |
| |
| // If we get here, we successfully used the default template argument. |
| } |
| |
| return TemplateDeductionResult::Success; |
| } |
| |
| static DeclContext *getAsDeclContextOrEnclosing(Decl *D) { |
| if (auto *DC = dyn_cast<DeclContext>(D)) |
| return DC; |
| return D->getDeclContext(); |
| } |
| |
| template<typename T> struct IsPartialSpecialization { |
| static constexpr bool value = false; |
| }; |
| template<> |
| struct IsPartialSpecialization<ClassTemplatePartialSpecializationDecl> { |
| static constexpr bool value = true; |
| }; |
| template<> |
| struct IsPartialSpecialization<VarTemplatePartialSpecializationDecl> { |
| static constexpr bool value = true; |
| }; |
| template <typename TemplateDeclT> |
| static bool DeducedArgsNeedReplacement(TemplateDeclT *Template) { |
| return false; |
| } |
| template <> |
| bool DeducedArgsNeedReplacement<VarTemplatePartialSpecializationDecl>( |
| VarTemplatePartialSpecializationDecl *Spec) { |
| return !Spec->isClassScopeExplicitSpecialization(); |
| } |
| template <> |
| bool DeducedArgsNeedReplacement<ClassTemplatePartialSpecializationDecl>( |
| ClassTemplatePartialSpecializationDecl *Spec) { |
| return !Spec->isClassScopeExplicitSpecialization(); |
| } |
| |
| template <typename TemplateDeclT> |
| static TemplateDeductionResult |
| CheckDeducedArgumentConstraints(Sema &S, TemplateDeclT *Template, |
| ArrayRef<TemplateArgument> SugaredDeducedArgs, |
| ArrayRef<TemplateArgument> CanonicalDeducedArgs, |
| TemplateDeductionInfo &Info) { |
| llvm::SmallVector<const Expr *, 3> AssociatedConstraints; |
| Template->getAssociatedConstraints(AssociatedConstraints); |
| |
| std::optional<ArrayRef<TemplateArgument>> Innermost; |
| // If we don't need to replace the deduced template arguments, |
| // we can add them immediately as the inner-most argument list. |
| if (!DeducedArgsNeedReplacement(Template)) |
| Innermost = CanonicalDeducedArgs; |
| |
| MultiLevelTemplateArgumentList MLTAL = S.getTemplateInstantiationArgs( |
| Template, Template->getDeclContext(), /*Final=*/false, Innermost, |
| /*RelativeToPrimary=*/true, /*Pattern=*/ |
| nullptr, /*ForConstraintInstantiation=*/true); |
| |
| // getTemplateInstantiationArgs picks up the non-deduced version of the |
| // template args when this is a variable template partial specialization and |
| // not class-scope explicit specialization, so replace with Deduced Args |
| // instead of adding to inner-most. |
| if (!Innermost) |
| MLTAL.replaceInnermostTemplateArguments(Template, CanonicalDeducedArgs); |
| |
| if (S.CheckConstraintSatisfaction(Template, AssociatedConstraints, MLTAL, |
| Info.getLocation(), |
| Info.AssociatedConstraintsSatisfaction) || |
| !Info.AssociatedConstraintsSatisfaction.IsSatisfied) { |
| Info.reset( |
| TemplateArgumentList::CreateCopy(S.Context, SugaredDeducedArgs), |
| TemplateArgumentList::CreateCopy(S.Context, CanonicalDeducedArgs)); |
| return TemplateDeductionResult::ConstraintsNotSatisfied; |
| } |
| return TemplateDeductionResult::Success; |
| } |
| |
| /// Complete template argument deduction for a partial specialization. |
| template <typename T> |
| static std::enable_if_t<IsPartialSpecialization<T>::value, |
| TemplateDeductionResult> |
| FinishTemplateArgumentDeduction( |
| Sema &S, T *Partial, bool IsPartialOrdering, |
| ArrayRef<TemplateArgument> TemplateArgs, |
| SmallVectorImpl<DeducedTemplateArgument> &Deduced, |
| TemplateDeductionInfo &Info) { |
| // Unevaluated SFINAE context. |
| EnterExpressionEvaluationContext Unevaluated( |
| S, Sema::ExpressionEvaluationContext::Unevaluated); |
| Sema::SFINAETrap Trap(S); |
| |
| Sema::ContextRAII SavedContext(S, getAsDeclContextOrEnclosing(Partial)); |
| |
| // C++ [temp.deduct.type]p2: |
| // [...] or if any template argument remains neither deduced nor |
| // explicitly specified, template argument deduction fails. |
| Sema::CheckTemplateArgumentInfo CTAI(IsPartialOrdering); |
| if (auto Result = ConvertDeducedTemplateArguments( |
| S, Partial, IsPartialOrdering, Deduced, Info, CTAI, |
| /*CurrentInstantiationScope=*/nullptr, /*NumAlreadyConverted=*/0, |
| /*IsIncomplete=*/nullptr); |
| Result != TemplateDeductionResult::Success) |
| return Result; |
| |
| // Form the template argument list from the deduced template arguments. |
| TemplateArgumentList *SugaredDeducedArgumentList = |
| TemplateArgumentList::CreateCopy(S.Context, CTAI.SugaredConverted); |
| TemplateArgumentList *CanonicalDeducedArgumentList = |
| TemplateArgumentList::CreateCopy(S.Context, CTAI.CanonicalConverted); |
| |
| Info.reset(SugaredDeducedArgumentList, CanonicalDeducedArgumentList); |
| |
| // Substitute the deduced template arguments into the template |
| // arguments of the class template partial specialization, and |
| // verify that the instantiated template arguments are both valid |
| // and are equivalent to the template arguments originally provided |
| // to the class template. |
| LocalInstantiationScope InstScope(S); |
| auto *Template = Partial->getSpecializedTemplate(); |
| const ASTTemplateArgumentListInfo *PartialTemplArgInfo = |
| Partial->getTemplateArgsAsWritten(); |
| |
| TemplateArgumentListInfo InstArgs(PartialTemplArgInfo->LAngleLoc, |
| PartialTemplArgInfo->RAngleLoc); |
| |
| if (S.SubstTemplateArguments( |
| PartialTemplArgInfo->arguments(), |
| MultiLevelTemplateArgumentList(Partial, CTAI.SugaredConverted, |
| /*Final=*/true), |
| InstArgs)) { |
| unsigned ArgIdx = InstArgs.size(), ParamIdx = ArgIdx; |
| if (ParamIdx >= Partial->getTemplateParameters()->size()) |
| ParamIdx = Partial->getTemplateParameters()->size() - 1; |
| |
| Decl *Param = const_cast<NamedDecl *>( |
| Partial->getTemplateParameters()->getParam(ParamIdx)); |
| Info.Param = makeTemplateParameter(Param); |
| Info.FirstArg = (*PartialTemplArgInfo)[ArgIdx].getArgument(); |
| return TemplateDeductionResult::SubstitutionFailure; |
| } |
| |
| bool ConstraintsNotSatisfied; |
| Sema::CheckTemplateArgumentInfo InstCTAI; |
| if (S.CheckTemplateArgumentList(Template, Partial->getLocation(), InstArgs, |
| /*DefaultArgs=*/{}, false, InstCTAI, |
| /*UpdateArgsWithConversions=*/true, |
| &ConstraintsNotSatisfied)) |
| return ConstraintsNotSatisfied |
| ? TemplateDeductionResult::ConstraintsNotSatisfied |
| : TemplateDeductionResult::SubstitutionFailure; |
| if (InstCTAI.MatchedPackOnParmToNonPackOnArg) |
| Info.setMatchedPackOnParmToNonPackOnArg(); |
| |
| TemplateParameterList *TemplateParams = Template->getTemplateParameters(); |
| for (unsigned I = 0, E = TemplateParams->size(); I != E; ++I) { |
| TemplateArgument InstArg = InstCTAI.SugaredConverted.data()[I]; |
| if (!isSameTemplateArg(S.Context, TemplateArgs[I], InstArg, |
| IsPartialOrdering)) { |
| Info.Param = makeTemplateParameter(TemplateParams->getParam(I)); |
| Info.FirstArg = TemplateArgs[I]; |
| Info.SecondArg = InstArg; |
| return TemplateDeductionResult::NonDeducedMismatch; |
| } |
| } |
| |
| if (Trap.hasErrorOccurred()) |
| return TemplateDeductionResult::SubstitutionFailure; |
| |
| if (!IsPartialOrdering) { |
| if (auto Result = CheckDeducedArgumentConstraints( |
| S, Partial, CTAI.SugaredConverted, CTAI.CanonicalConverted, Info); |
| Result != TemplateDeductionResult::Success) |
| return Result; |
| } |
| |
| return TemplateDeductionResult::Success; |
| } |
| |
| /// Complete template argument deduction for a class or variable template, |
| /// when partial ordering against a partial specialization. |
| // FIXME: Factor out duplication with partial specialization version above. |
| static TemplateDeductionResult FinishTemplateArgumentDeduction( |
| Sema &S, TemplateDecl *Template, bool PartialOrdering, |
| ArrayRef<TemplateArgument> TemplateArgs, |
| SmallVectorImpl<DeducedTemplateArgument> &Deduced, |
| TemplateDeductionInfo &Info) { |
| // Unevaluated SFINAE context. |
| EnterExpressionEvaluationContext Unevaluated( |
| S, Sema::ExpressionEvaluationContext::Unevaluated); |
| |
| Sema::ContextRAII SavedContext(S, getAsDeclContextOrEnclosing(Template)); |
| |
| // C++ [temp.deduct.type]p2: |
| // [...] or if any template argument remains neither deduced nor |
| // explicitly specified, template argument deduction fails. |
| Sema::CheckTemplateArgumentInfo CTAI(PartialOrdering); |
| if (auto Result = ConvertDeducedTemplateArguments( |
| S, Template, /*IsDeduced=*/PartialOrdering, Deduced, Info, CTAI, |
| /*CurrentInstantiationScope=*/nullptr, |
| /*NumAlreadyConverted=*/0U, /*IsIncomplete=*/nullptr); |
| Result != TemplateDeductionResult::Success) |
| return Result; |
| |
| // Check that we produced the correct argument list. |
| SmallVector<ArrayRef<TemplateArgument>, 4> PsStack{TemplateArgs}, |
| AsStack{CTAI.CanonicalConverted}; |
| for (;;) { |
| auto take = [](SmallVectorImpl<ArrayRef<TemplateArgument>> &Stack) |
| -> std::tuple<ArrayRef<TemplateArgument> &, TemplateArgument> { |
| while (!Stack.empty()) { |
| auto &Xs = Stack.back(); |
| if (Xs.empty()) { |
| Stack.pop_back(); |
| continue; |
| } |
| auto &X = Xs.front(); |
| if (X.getKind() == TemplateArgument::Pack) { |
| Stack.emplace_back(X.getPackAsArray()); |
| Xs = Xs.drop_front(); |
| continue; |
| } |
| assert(!X.isNull()); |
| return {Xs, X}; |
| } |
| static constexpr ArrayRef<TemplateArgument> None; |
| return {const_cast<ArrayRef<TemplateArgument> &>(None), |
| TemplateArgument()}; |
| }; |
| auto [Ps, P] = take(PsStack); |
| auto [As, A] = take(AsStack); |
| if (P.isNull() && A.isNull()) |
| break; |
| TemplateArgument PP = P.isPackExpansion() ? P.getPackExpansionPattern() : P, |
| PA = A.isPackExpansion() ? A.getPackExpansionPattern() : A; |
| if (!isSameTemplateArg(S.Context, PP, PA, /*PartialOrdering=*/false)) { |
| if (!P.isPackExpansion() && !A.isPackExpansion()) { |
| Info.Param = |
| makeTemplateParameter(Template->getTemplateParameters()->getParam( |
| (PsStack.empty() ? TemplateArgs.end() |
| : PsStack.front().begin()) - |
| TemplateArgs.begin())); |
| Info.FirstArg = P; |
| Info.SecondArg = A; |
| return TemplateDeductionResult::NonDeducedMismatch; |
| } |
| if (P.isPackExpansion()) { |
| Ps = Ps.drop_front(); |
| continue; |
| } |
| if (A.isPackExpansion()) { |
| As = As.drop_front(); |
| continue; |
| } |
| } |
| Ps = Ps.drop_front(P.isPackExpansion() ? 0 : 1); |
| As = As.drop_front(A.isPackExpansion() && !P.isPackExpansion() ? 0 : 1); |
| } |
| assert(PsStack.empty()); |
| assert(AsStack.empty()); |
| |
| if (!PartialOrdering) { |
| if (auto Result = CheckDeducedArgumentConstraints( |
| S, Template, CTAI.SugaredConverted, CTAI.CanonicalConverted, Info); |
| Result != TemplateDeductionResult::Success) |
| return Result; |
| } |
| |
| return TemplateDeductionResult::Success; |
| } |
| |
| /// Complete template argument deduction for DeduceTemplateArgumentsFromType. |
| /// FIXME: this is mostly duplicated with the above two versions. Deduplicate |
| /// the three implementations. |
| static TemplateDeductionResult FinishTemplateArgumentDeduction( |
| Sema &S, TemplateDecl *TD, |
| SmallVectorImpl<DeducedTemplateArgument> &Deduced, |
| TemplateDeductionInfo &Info) { |
| // Unevaluated SFINAE context. |
| EnterExpressionEvaluationContext Unevaluated( |
| S, Sema::ExpressionEvaluationContext::Unevaluated); |
| |
| Sema::ContextRAII SavedContext(S, getAsDeclContextOrEnclosing(TD)); |
| |
| // C++ [temp.deduct.type]p2: |
| // [...] or if any template argument remains neither deduced nor |
| // explicitly specified, template argument deduction fails. |
| Sema::CheckTemplateArgumentInfo CTAI; |
| if (auto Result = ConvertDeducedTemplateArguments( |
| S, TD, /*IsDeduced=*/false, Deduced, Info, CTAI, |
| /*CurrentInstantiationScope=*/nullptr, /*NumAlreadyConverted=*/0, |
| /*IsIncomplete=*/nullptr); |
| Result != TemplateDeductionResult::Success) |
| return Result; |
| |
| return ::CheckDeducedArgumentConstraints(S, TD, CTAI.SugaredConverted, |
| CTAI.CanonicalConverted, Info); |
| } |
| |
| /// Perform template argument deduction to determine whether the given template |
| /// arguments match the given class or variable template partial specialization |
| /// per C++ [temp.class.spec.match]. |
| template <typename T> |
| static std::enable_if_t<IsPartialSpecialization<T>::value, |
| TemplateDeductionResult> |
| DeduceTemplateArguments(Sema &S, T *Partial, |
| ArrayRef<TemplateArgument> TemplateArgs, |
| TemplateDeductionInfo &Info) { |
| if (Partial->isInvalidDecl()) |
| return TemplateDeductionResult::Invalid; |
| |
| // C++ [temp.class.spec.match]p2: |
| // A partial specialization matches a given actual template |
| // argument list if the template arguments of the partial |
| // specialization can be deduced from the actual template argument |
| // list (14.8.2). |
| |
| // Unevaluated SFINAE context. |
| EnterExpressionEvaluationContext Unevaluated( |
| S, Sema::ExpressionEvaluationContext::Unevaluated); |
| Sema::SFINAETrap Trap(S); |
| |
| // This deduction has no relation to any outer instantiation we might be |
| // performing. |
| LocalInstantiationScope InstantiationScope(S); |
| |
| SmallVector<DeducedTemplateArgument, 4> Deduced; |
| Deduced.resize(Partial->getTemplateParameters()->size()); |
| if (TemplateDeductionResult Result = ::DeduceTemplateArguments( |
| S, Partial->getTemplateParameters(), |
| Partial->getTemplateArgs().asArray(), TemplateArgs, Info, Deduced, |
| /*NumberOfArgumentsMustMatch=*/false, /*PartialOrdering=*/false, |
| PackFold::ParameterToArgument, |
| /*HasDeducedAnyParam=*/nullptr); |
| Result != TemplateDeductionResult::Success) |
| return Result; |
| |
| SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end()); |
| Sema::InstantiatingTemplate Inst(S, Info.getLocation(), Partial, DeducedArgs, |
| Info); |
| if (Inst.isInvalid()) |
| return TemplateDeductionResult::InstantiationDepth; |
| |
| TemplateDeductionResult Result; |
| S.runWithSufficientStackSpace(Info.getLocation(), [&] { |
| Result = ::FinishTemplateArgumentDeduction(S, Partial, |
| /*IsPartialOrdering=*/false, |
| TemplateArgs, Deduced, Info); |
| }); |
| |
| if (Result != TemplateDeductionResult::Success) |
| return Result; |
| |
| if (Trap.hasErrorOccurred()) |
| return TemplateDeductionResult::SubstitutionFailure; |
| |
| return TemplateDeductionResult::Success; |
| } |
| |
| TemplateDeductionResult |
| Sema::DeduceTemplateArguments(ClassTemplatePartialSpecializationDecl *Partial, |
| ArrayRef<TemplateArgument> TemplateArgs, |
| TemplateDeductionInfo &Info) { |
| return ::DeduceTemplateArguments(*this, Partial, TemplateArgs, Info); |
| } |
| TemplateDeductionResult |
| Sema::DeduceTemplateArguments(VarTemplatePartialSpecializationDecl *Partial, |
| ArrayRef<TemplateArgument> TemplateArgs, |
| TemplateDeductionInfo &Info) { |
| return ::DeduceTemplateArguments(*this, Partial, TemplateArgs, Info); |
| } |
| |
| TemplateDeductionResult |
| Sema::DeduceTemplateArgumentsFromType(TemplateDecl *TD, QualType FromType, |
| sema::TemplateDeductionInfo &Info) { |
| if (TD->isInvalidDecl()) |
| return TemplateDeductionResult::Invalid; |
| |
| QualType PType; |
| if (const auto *CTD = dyn_cast<ClassTemplateDecl>(TD)) { |
| // Use the InjectedClassNameType. |
| PType = Context.getTypeDeclType(CTD->getTemplatedDecl()); |
| } else if (const auto *AliasTemplate = dyn_cast<TypeAliasTemplateDecl>(TD)) { |
| PType = AliasTemplate->getTemplatedDecl()->getUnderlyingType(); |
| } else { |
| assert(false && "Expected a class or alias template"); |
| } |
| |
| // Unevaluated SFINAE context. |
| EnterExpressionEvaluationContext Unevaluated( |
| *this, Sema::ExpressionEvaluationContext::Unevaluated); |
| SFINAETrap Trap(*this); |
| |
| // This deduction has no relation to any outer instantiation we might be |
| // performing. |
| LocalInstantiationScope InstantiationScope(*this); |
| |
| SmallVector<DeducedTemplateArgument> Deduced( |
| TD->getTemplateParameters()->size()); |
| SmallVector<TemplateArgument> PArgs = {TemplateArgument(PType)}; |
| SmallVector<TemplateArgument> AArgs = {TemplateArgument(FromType)}; |
| if (auto DeducedResult = DeduceTemplateArguments( |
| TD->getTemplateParameters(), PArgs, AArgs, Info, Deduced, false); |
| DeducedResult != TemplateDeductionResult::Success) { |
| return DeducedResult; |
| } |
| |
| SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end()); |
| InstantiatingTemplate Inst(*this, Info.getLocation(), TD, DeducedArgs, Info); |
| if (Inst.isInvalid()) |
| return TemplateDeductionResult::InstantiationDepth; |
| |
| TemplateDeductionResult Result; |
| runWithSufficientStackSpace(Info.getLocation(), [&] { |
| Result = ::FinishTemplateArgumentDeduction(*this, TD, Deduced, Info); |
| }); |
| |
| if (Result != TemplateDeductionResult::Success) |
| return Result; |
| |
| if (Trap.hasErrorOccurred()) |
| return TemplateDeductionResult::SubstitutionFailure; |
| |
| return TemplateDeductionResult::Success; |
| } |
| |
| /// Determine whether the given type T is a simple-template-id type. |
| static bool isSimpleTemplateIdType(QualType T) { |
| if (const TemplateSpecializationType *Spec |
| = T->getAs<TemplateSpecializationType>()) |
| return Spec->getTemplateName().getAsTemplateDecl() != nullptr; |
| |
| // C++17 [temp.local]p2: |
| // the injected-class-name [...] is equivalent to the template-name followed |
| // by the template-arguments of the class template specialization or partial |
| // specialization enclosed in <> |
| // ... which means it's equivalent to a simple-template-id. |
| // |
| // This only arises during class template argument deduction for a copy |
| // deduction candidate, where it permits slicing. |
| if (T->getAs<InjectedClassNameType>()) |
| return true; |
| |
| return false; |
| } |
| |
| TemplateDeductionResult Sema::SubstituteExplicitTemplateArguments( |
| FunctionTemplateDecl *FunctionTemplate, |
| TemplateArgumentListInfo &ExplicitTemplateArgs, |
| SmallVectorImpl<DeducedTemplateArgument> &Deduced, |
| SmallVectorImpl<QualType> &ParamTypes, QualType *FunctionType, |
| TemplateDeductionInfo &Info) { |
| FunctionDecl *Function = FunctionTemplate->getTemplatedDecl(); |
| TemplateParameterList *TemplateParams |
| = FunctionTemplate->getTemplateParameters(); |
| |
| if (ExplicitTemplateArgs.size() == 0) { |
| // No arguments to substitute; just copy over the parameter types and |
| // fill in the function type. |
| for (auto *P : Function->parameters()) |
| ParamTypes.push_back(P->getType()); |
| |
| if (FunctionType) |
| *FunctionType = Function->getType(); |
| return TemplateDeductionResult::Success; |
| } |
| |
| // Unevaluated SFINAE context. |
| EnterExpressionEvaluationContext Unevaluated( |
| *this, Sema::ExpressionEvaluationContext::Unevaluated); |
| SFINAETrap Trap(*this); |
| |
| // C++ [temp.arg.explicit]p3: |
| // Template arguments that are present shall be specified in the |
| // declaration order of their corresponding template-parameters. The |
| // template argument list shall not specify more template-arguments than |
| // there are corresponding template-parameters. |
| |
| // Enter a new template instantiation context where we check the |
| // explicitly-specified template arguments against this function template, |
| // and then substitute them into the function parameter types. |
| SmallVector<TemplateArgument, 4> DeducedArgs; |
| InstantiatingTemplate Inst( |
| *this, Info.getLocation(), FunctionTemplate, DeducedArgs, |
| CodeSynthesisContext::ExplicitTemplateArgumentSubstitution, Info); |
| if (Inst.isInvalid()) |
| return TemplateDeductionResult::InstantiationDepth; |
| |
| CheckTemplateArgumentInfo CTAI; |
| if (CheckTemplateArgumentList(FunctionTemplate, SourceLocation(), |
| ExplicitTemplateArgs, /*DefaultArgs=*/{}, |
| /*PartialTemplateArgs=*/true, CTAI, |
| /*UpdateArgsWithConversions=*/false) || |
| Trap.hasErrorOccurred()) { |
| unsigned Index = CTAI.SugaredConverted.size(); |
| if (Index >= TemplateParams->size()) |
| return TemplateDeductionResult::SubstitutionFailure; |
| Info.Param = makeTemplateParameter(TemplateParams->getParam(Index)); |
| return TemplateDeductionResult::InvalidExplicitArguments; |
| } |
| |
| // Form the template argument list from the explicitly-specified |
| // template arguments. |
| TemplateArgumentList *SugaredExplicitArgumentList = |
| TemplateArgumentList::CreateCopy(Context, CTAI.SugaredConverted); |
| TemplateArgumentList *CanonicalExplicitArgumentList = |
| TemplateArgumentList::CreateCopy(Context, CTAI.CanonicalConverted); |
| Info.setExplicitArgs(SugaredExplicitArgumentList, |
| CanonicalExplicitArgumentList); |
| |
| // Template argument deduction and the final substitution should be |
| // done in the context of the templated declaration. Explicit |
| // argument substitution, on the other hand, needs to happen in the |
| // calling context. |
| ContextRAII SavedContext(*this, FunctionTemplate->getTemplatedDecl()); |
| |
| // If we deduced template arguments for a template parameter pack, |
| // note that the template argument pack is partially substituted and record |
| // the explicit template arguments. They'll be used as part of deduction |
| // for this template parameter pack. |
| unsigned PartiallySubstitutedPackIndex = -1u; |
| if (!CTAI.SugaredConverted.empty()) { |
| const TemplateArgument &Arg = CTAI.SugaredConverted.back(); |
| if (Arg.getKind() == TemplateArgument::Pack) { |
| auto *Param = TemplateParams->getParam(CTAI.SugaredConverted.size() - 1); |
| // If this is a fully-saturated fixed-size pack, it should be |
| // fully-substituted, not partially-substituted. |
| std::optional<unsigned> Expansions = getExpandedPackSize(Param); |
| if (!Expansions || Arg.pack_size() < *Expansions) { |
| PartiallySubstitutedPackIndex = CTAI.SugaredConverted.size() - 1; |
| CurrentInstantiationScope->SetPartiallySubstitutedPack( |
| Param, Arg.pack_begin(), Arg.pack_size()); |
| } |
| } |
| } |
| |
| const FunctionProtoType *Proto |
| = Function->getType()->getAs<FunctionProtoType>(); |
| assert(Proto && "Function template does not have a prototype?"); |
| |
| // Isolate our substituted parameters from our caller. |
| LocalInstantiationScope InstScope(*this, /*MergeWithOuterScope*/true); |
| |
| ExtParameterInfoBuilder ExtParamInfos; |
| |
| MultiLevelTemplateArgumentList MLTAL(FunctionTemplate, |
| SugaredExplicitArgumentList->asArray(), |
| /*Final=*/true); |
| |
| // Instantiate the types of each of the function parameters given the |
| // explicitly-specified template arguments. If the function has a trailing |
| // return type, substitute it after the arguments to ensure we substitute |
| // in lexical order. |
| if (Proto->hasTrailingReturn()) { |
| if (SubstParmTypes(Function->getLocation(), Function->parameters(), |
| Proto->getExtParameterInfosOrNull(), MLTAL, ParamTypes, |
| /*params=*/nullptr, ExtParamInfos)) |
| return TemplateDeductionResult::SubstitutionFailure; |
| } |
| |
| // Instantiate the return type. |
| QualType ResultType; |
| { |
| // C++11 [expr.prim.general]p3: |
| // If a declaration declares a member function or member function |
| // template of a class X, the expression this is a prvalue of type |
| // "pointer to cv-qualifier-seq X" between the optional cv-qualifer-seq |
| // and the end of the function-definition, member-declarator, or |
| // declarator. |
| Qualifiers ThisTypeQuals; |
| CXXRecordDecl *ThisContext = nullptr; |
| if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) { |
| ThisContext = Method->getParent(); |
| ThisTypeQuals = Method->getMethodQualifiers(); |
| } |
| |
| CXXThisScopeRAII ThisScope(*this, ThisContext, ThisTypeQuals, |
| getLangOpts().CPlusPlus11); |
| |
| ResultType = |
| SubstType(Proto->getReturnType(), MLTAL, |
| Function->getTypeSpecStartLoc(), Function->getDeclName()); |
| if (ResultType.isNull() || Trap.hasErrorOccurred()) |
| return TemplateDeductionResult::SubstitutionFailure; |
| // CUDA: Kernel function must have 'void' return type. |
| if (getLangOpts().CUDA) |
| if (Function->hasAttr<CUDAGlobalAttr>() && !ResultType->isVoidType()) { |
| Diag(Function->getLocation(), diag::err_kern_type_not_void_return) |
| << Function->getType() << Function->getSourceRange(); |
| return TemplateDeductionResult::SubstitutionFailure; |
| } |
| } |
| |
| // Instantiate the types of each of the function parameters given the |
| // explicitly-specified template arguments if we didn't do so earlier. |
| if (!Proto->hasTrailingReturn() && |
| SubstParmTypes(Function->getLocation(), Function->parameters(), |
| Proto->getExtParameterInfosOrNull(), MLTAL, ParamTypes, |
| /*params*/ nullptr, ExtParamInfos)) |
| return TemplateDeductionResult::SubstitutionFailure; |
| |
| if (FunctionType) { |
| auto EPI = Proto->getExtProtoInfo(); |
| EPI.ExtParameterInfos = ExtParamInfos.getPointerOrNull(ParamTypes.size()); |
| *FunctionType = BuildFunctionType(ResultType, ParamTypes, |
| Function->getLocation(), |
| Function->getDeclName(), |
| EPI); |
| if (FunctionType->isNull() || Trap.hasErrorOccurred()) |
| return TemplateDeductionResult::SubstitutionFailure; |
| } |
| |
| // C++ [temp.arg.explicit]p2: |
| // Trailing template arguments that can be deduced (14.8.2) may be |
| // omitted from the list of explicit template-arguments. If all of the |
| // template arguments can be deduced, they may all be omitted; in this |
| // case, the empty template argument list <> itself may also be omitted. |
| // |
| // Take all of the explicitly-specified arguments and put them into |
| // the set of deduced template arguments. The partially-substituted |
| // parameter pack, however, will be set to NULL since the deduction |
| // mechanism handles the partially-substituted argument pack directly. |
| Deduced.reserve(TemplateParams->size()); |
| for (unsigned I = 0, N = SugaredExplicitArgumentList->size(); I != N; ++I) { |
| const TemplateArgument &Arg = SugaredExplicitArgumentList->get(I); |
| if (I == PartiallySubstitutedPackIndex) |
| Deduced.push_back(DeducedTemplateArgument()); |
| else |
| Deduced.push_back(Arg); |
| } |
| |
| return TemplateDeductionResult::Success; |
| } |
| |
| /// Check whether the deduced argument type for a call to a function |
| /// template matches the actual argument type per C++ [temp.deduct.call]p4. |
| static TemplateDeductionResult |
| CheckOriginalCallArgDeduction(Sema &S, TemplateDeductionInfo &Info, |
| Sema::OriginalCallArg OriginalArg, |
| QualType DeducedA) { |
| ASTContext &Context = S.Context; |
| |
| auto Failed = [&]() -> TemplateDeductionResult { |
| Info.FirstArg = TemplateArgument(DeducedA); |
| Info.SecondArg = TemplateArgument(OriginalArg.OriginalArgType); |
| Info.CallArgIndex = OriginalArg.ArgIdx; |
| return OriginalArg.DecomposedParam |
| ? TemplateDeductionResult::DeducedMismatchNested |
| : TemplateDeductionResult::DeducedMismatch; |
| }; |
| |
| QualType A = OriginalArg.OriginalArgType; |
| QualType OriginalParamType = OriginalArg.OriginalParamType; |
| |
| // Check for type equality (top-level cv-qualifiers are ignored). |
| if (Context.hasSameUnqualifiedType(A, DeducedA)) |
| return TemplateDeductionResult::Success; |
| |
| // Strip off references on the argument types; they aren't needed for |
| // the following checks. |
| if (const ReferenceType *DeducedARef = DeducedA->getAs<ReferenceType>()) |
| DeducedA = DeducedARef->getPointeeType(); |
| if (const ReferenceType *ARef = A->getAs<ReferenceType>()) |
| A = ARef->getPointeeType(); |
| |
| // C++ [temp.deduct.call]p4: |
| // [...] However, there are three cases that allow a difference: |
| // - If the original P is a reference type, the deduced A (i.e., the |
| // type referred to by the reference) can be more cv-qualified than |
| // the transformed A. |
| if (const ReferenceType *OriginalParamRef |
| = OriginalParamType->getAs<ReferenceType>()) { |
| // We don't want to keep the reference around any more. |
| OriginalParamType = OriginalParamRef->getPointeeType(); |
| |
| // FIXME: Resolve core issue (no number yet): if the original P is a |
| // reference type and the transformed A is function type "noexcept F", |
| // the deduced A can be F. |
| QualType Tmp; |
| if (A->isFunctionType() && S.IsFunctionConversion(A, DeducedA, Tmp)) |
| return TemplateDeductionResult::Success; |
| |
| Qualifiers AQuals = A.getQualifiers(); |
| Qualifiers DeducedAQuals = DeducedA.getQualifiers(); |
| |
| // Under Objective-C++ ARC, the deduced type may have implicitly |
| // been given strong or (when dealing with a const reference) |
| // unsafe_unretained lifetime. If so, update the original |
| // qualifiers to include this lifetime. |
| if (S.getLangOpts().ObjCAutoRefCount && |
| ((DeducedAQuals.getObjCLifetime() == Qualifiers::OCL_Strong && |
| AQuals.getObjCLifetime() == Qualifiers::OCL_None) || |
| (DeducedAQuals.hasConst() && |
| DeducedAQuals.getObjCLifetime() == Qualifiers::OCL_ExplicitNone))) { |
| AQuals.setObjCLifetime(DeducedAQuals.getObjCLifetime()); |
| } |
| |
| if (AQuals == DeducedAQuals) { |
| // Qualifiers match; there's nothing to do. |
| } else if (!DeducedAQuals.compatiblyIncludes(AQuals, S.getASTContext())) { |
| return Failed(); |
| } else { |
| // Qualifiers are compatible, so have the argument type adopt the |
| // deduced argument type's qualifiers as if we had performed the |
| // qualification conversion. |
| A = Context.getQualifiedType(A.getUnqualifiedType(), DeducedAQuals); |
| } |
| } |
| |
| // - The transformed A can be another pointer or pointer to member |
| // type that can be converted to the deduced A via a function pointer |
| // conversion and/or a qualification conversion. |
| // |
| // Also allow conversions which merely strip __attribute__((noreturn)) from |
| // function types (recursively). |
| bool ObjCLifetimeConversion = false; |
| QualType ResultTy; |
| if ((A->isAnyPointerType() || A->isMemberPointerType()) && |
| (S.IsQualificationConversion(A, DeducedA, false, |
| ObjCLifetimeConversion) || |
| S.IsFunctionConversion(A, DeducedA, ResultTy))) |
| return TemplateDeductionResult::Success; |
| |
| // - If P is a class and P has the form simple-template-id, then the |
| // transformed A can be a derived class of the deduced A. [...] |
| // [...] Likewise, if P is a pointer to a class of the form |
| // simple-template-id, the transformed A can be a pointer to a |
| // derived class pointed to by the deduced A. |
| if (const PointerType *OriginalParamPtr |
| = OriginalParamType->getAs<PointerType>()) { |
| if (const PointerType *DeducedAPtr = DeducedA->getAs<PointerType>()) { |
| if (const PointerType *APtr = A->getAs<PointerType>()) { |
| if (A->getPointeeType()->isRecordType()) { |
| OriginalParamType = OriginalParamPtr->getPointeeType(); |
| DeducedA = DeducedAPtr->getPointeeType(); |
| A = APtr->getPointeeType(); |
| } |
| } |
| } |
| } |
| |
| if (Context.hasSameUnqualifiedType(A, DeducedA)) |
| return TemplateDeductionResult::Success; |
| |
| if (A->isRecordType() && isSimpleTemplateIdType(OriginalParamType) && |
| S.IsDerivedFrom(Info.getLocation(), A, DeducedA)) |
| return TemplateDeductionResult::Success; |
| |
| return Failed(); |
| } |
| |
| /// Find the pack index for a particular parameter index in an instantiation of |
| /// a function template with specific arguments. |
| /// |
| /// \return The pack index for whichever pack produced this parameter, or -1 |
| /// if this was not produced by a parameter. Intended to be used as the |
| /// ArgumentPackSubstitutionIndex for further substitutions. |
| // FIXME: We should track this in OriginalCallArgs so we don't need to |
| // reconstruct it here. |
| static unsigned getPackIndexForParam(Sema &S, |
| FunctionTemplateDecl *FunctionTemplate, |
| const MultiLevelTemplateArgumentList &Args, |
| unsigned ParamIdx) { |
| unsigned Idx = 0; |
| for (auto *PD : FunctionTemplate->getTemplatedDecl()->parameters()) { |
| if (PD->isParameterPack()) { |
| unsigned NumExpansions = |
| S.getNumArgumentsInExpansion(PD->getType(), Args).value_or(1); |
| if (Idx + NumExpansions > ParamIdx) |
| return ParamIdx - Idx; |
| Idx += NumExpansions; |
| } else { |
| if (Idx == ParamIdx) |
| return -1; // Not a pack expansion |
| ++Idx; |
| } |
| } |
| |
| llvm_unreachable("parameter index would not be produced from template"); |
| } |
| |
| // if `Specialization` is a `CXXConstructorDecl` or `CXXConversionDecl`, |
| // we'll try to instantiate and update its explicit specifier after constraint |
| // checking. |
| static TemplateDeductionResult instantiateExplicitSpecifierDeferred( |
| Sema &S, FunctionDecl *Specialization, |
| const MultiLevelTemplateArgumentList &SubstArgs, |
| TemplateDeductionInfo &Info, FunctionTemplateDecl *FunctionTemplate, |
| ArrayRef<TemplateArgument> DeducedArgs) { |
| auto GetExplicitSpecifier = [](FunctionDecl *D) { |
| return isa<CXXConstructorDecl>(D) |
| ? cast<CXXConstructorDecl>(D)->getExplicitSpecifier() |
| : cast<CXXConversionDecl>(D)->getExplicitSpecifier(); |
| }; |
| auto SetExplicitSpecifier = [](FunctionDecl *D, ExplicitSpecifier ES) { |
| isa<CXXConstructorDecl>(D) |
| ? cast<CXXConstructorDecl>(D)->setExplicitSpecifier(ES) |
| : cast<CXXConversionDecl>(D)->setExplicitSpecifier(ES); |
| }; |
| |
| ExplicitSpecifier ES = GetExplicitSpecifier(Specialization); |
| Expr *ExplicitExpr = ES.getExpr(); |
| if (!ExplicitExpr) |
| return TemplateDeductionResult::Success; |
| if (!ExplicitExpr->isValueDependent()) |
| return TemplateDeductionResult::Success; |
| |
| Sema::InstantiatingTemplate Inst( |
| S, Info.getLocation(), FunctionTemplate, DeducedArgs, |
| Sema::CodeSynthesisContext::DeducedTemplateArgumentSubstitution, Info); |
| if (Inst.isInvalid()) |
| return TemplateDeductionResult::InstantiationDepth; |
| Sema::SFINAETrap Trap(S); |
| const ExplicitSpecifier InstantiatedES = |
| S.instantiateExplicitSpecifier(SubstArgs, ES); |
| if (InstantiatedES.isInvalid() || Trap.hasErrorOccurred()) { |
| Specialization->setInvalidDecl(true); |
| return TemplateDeductionResult::SubstitutionFailure; |
| } |
| SetExplicitSpecifier(Specialization, InstantiatedES); |
| return TemplateDeductionResult::Success; |
| } |
| |
| TemplateDeductionResult Sema::FinishTemplateArgumentDeduction( |
| FunctionTemplateDecl *FunctionTemplate, |
| SmallVectorImpl<DeducedTemplateArgument> &Deduced, |
| unsigned NumExplicitlySpecified, FunctionDecl *&Specialization, |
| TemplateDeductionInfo &Info, |
| SmallVectorImpl<OriginalCallArg> const *OriginalCallArgs, |
| bool PartialOverloading, bool PartialOrdering, |
| llvm::function_ref<bool()> CheckNonDependent) { |
| // Unevaluated SFINAE context. |
| EnterExpressionEvaluationContext Unevaluated( |
| *this, Sema::ExpressionEvaluationContext::Unevaluated); |
| SFINAETrap Trap(*this); |
| |
| // Enter a new template instantiation context while we instantiate the |
| // actual function declaration. |
| SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end()); |
| InstantiatingTemplate Inst( |
| *this, Info.getLocation(), FunctionTemplate, DeducedArgs, |
| CodeSynthesisContext::DeducedTemplateArgumentSubstitution, Info); |
| if (Inst.isInvalid()) |
| return TemplateDeductionResult::InstantiationDepth; |
| |
| ContextRAII SavedContext(*this, FunctionTemplate->getTemplatedDecl()); |
| |
| // C++ [temp.deduct.type]p2: |
| // [...] or if any template argument remains neither deduced nor |
| // explicitly specified, template argument deduction fails. |
| bool IsIncomplete = false; |
| CheckTemplateArgumentInfo CTAI(PartialOrdering); |
| if (auto Result = ConvertDeducedTemplateArguments( |
| *this, FunctionTemplate, /*IsDeduced=*/true, Deduced, Info, CTAI, |
| CurrentInstantiationScope, NumExplicitlySpecified, |
| PartialOverloading ? &IsIncomplete : nullptr); |
| Result != TemplateDeductionResult::Success) |
| return Result; |
| |
| // C++ [temp.deduct.call]p10: [DR1391] |
| // If deduction succeeds for all parameters that contain |
| // template-parameters that participate in template argument deduction, |
| // and all template arguments are explicitly specified, deduced, or |
| // obtained from default template arguments, remaining parameters are then |
| // compared with the corresponding arguments. For each remaining parameter |
| // P with a type that was non-dependent before substitution of any |
| // explicitly-specified template arguments, if the corresponding argument |
| // A cannot be implicitly converted to P, deduction fails. |
| if (CheckNonDependent()) |
| return TemplateDeductionResult::NonDependentConversionFailure; |
| |
| // Form the template argument list from the deduced template arguments. |
| TemplateArgumentList *SugaredDeducedArgumentList = |
| TemplateArgumentList::CreateCopy(Context, CTAI.SugaredConverted); |
| TemplateArgumentList *CanonicalDeducedArgumentList = |
| TemplateArgumentList::CreateCopy(Context, CTAI.CanonicalConverted); |
| Info.reset(SugaredDeducedArgumentList, CanonicalDeducedArgumentList); |
| |
| // Substitute the deduced template arguments into the function template |
| // declaration to produce the function template specialization. |
| DeclContext *Owner = FunctionTemplate->getDeclContext(); |
| if (FunctionTemplate->getFriendObjectKind()) |
| Owner = FunctionTemplate->getLexicalDeclContext(); |
| FunctionDecl *FD = FunctionTemplate->getTemplatedDecl(); |
| // additional check for inline friend, |
| // ``` |
| // template <class F1> int foo(F1 X); |
| // template <int A1> struct A { |
| // template <class F1> friend int foo(F1 X) { return A1; } |
| // }; |
| // template struct A<1>; |
| // int a = foo(1.0); |
| // ``` |
| const FunctionDecl *FDFriend; |
| if (FD->getFriendObjectKind() == Decl::FriendObjectKind::FOK_None && |
| FD->isDefined(FDFriend, /*CheckForPendingFriendDefinition*/ true) && |
| FDFriend->getFriendObjectKind() != Decl::FriendObjectKind::FOK_None) { |
| FD = const_cast<FunctionDecl *>(FDFriend); |
| Owner = FD->getLexicalDeclContext(); |
| } |
| MultiLevelTemplateArgumentList SubstArgs( |
| FunctionTemplate, CanonicalDeducedArgumentList->asArray(), |
| /*Final=*/false); |
| Specialization = cast_or_null<FunctionDecl>( |
| SubstDecl(FD, Owner, SubstArgs)); |
| if (!Specialization || Specialization->isInvalidDecl()) |
| return TemplateDeductionResult::SubstitutionFailure; |
| |
| assert(isSameDeclaration(Specialization->getPrimaryTemplate(), |
| FunctionTemplate)); |
| |
| // If the template argument list is owned by the function template |
| // specialization, release it. |
| if (Specialization->getTemplateSpecializationArgs() == |
| CanonicalDeducedArgumentList && |
| !Trap.hasErrorOccurred()) |
| Info.takeCanonical(); |
| |
| // There may have been an error that did not prevent us from constructing a |
| // declaration. Mark the declaration invalid and return with a substitution |
| // failure. |
| if (Trap.hasErrorOccurred()) { |
| Specialization->setInvalidDecl(true); |
| return TemplateDeductionResult::SubstitutionFailure; |
| } |
| |
| // C++2a [temp.deduct]p5 |
| // [...] When all template arguments have been deduced [...] all uses of |
| // template parameters [...] are replaced with the corresponding deduced |
| // or default argument values. |
| // [...] If the function template has associated constraints |
| // ([temp.constr.decl]), those constraints are checked for satisfaction |
| // ([temp.constr.constr]). If the constraints are not satisfied, type |
| // deduction fails. |
| if (!IsIncomplete) { |
| if (CheckInstantiatedFunctionTemplateConstraints( |
| Info.getLocation(), Specialization, CTAI.CanonicalConverted, |
| Info.AssociatedConstraintsSatisfaction)) |
| return TemplateDeductionResult::MiscellaneousDeductionFailure; |
| |
| if (!Info.AssociatedConstraintsSatisfaction.IsSatisfied) { |
| Info.reset(Info.takeSugared(), TemplateArgumentList::CreateCopy( |
| Context, CTAI.CanonicalConverted)); |
| return TemplateDeductionResult::ConstraintsNotSatisfied; |
| } |
| } |
| |
| // We skipped the instantiation of the explicit-specifier during the |
| // substitution of `FD` before. So, we try to instantiate it back if |
| // `Specialization` is either a constructor or a conversion function. |
| if (isa<CXXConstructorDecl, CXXConversionDecl>(Specialization)) { |
| if (TemplateDeductionResult::Success != |
| instantiateExplicitSpecifierDeferred(*this, Specialization, SubstArgs, |
| Info, FunctionTemplate, |
| DeducedArgs)) { |
| return TemplateDeductionResult::SubstitutionFailure; |
| } |
| } |
| |
| if (OriginalCallArgs) { |
| // C++ [temp.deduct.call]p4: |
| // In general, the deduction process attempts to find template argument |
| // values that will make the deduced A identical to A (after the type A |
| // is transformed as described above). [...] |
| llvm::SmallDenseMap<std::pair<unsigned, QualType>, QualType> DeducedATypes; |
| for (unsigned I = 0, N = OriginalCallArgs->size(); I != N; ++I) { |
| OriginalCallArg OriginalArg = (*OriginalCallArgs)[I]; |
| |
| auto ParamIdx = OriginalArg.ArgIdx; |
| unsigned ExplicitOffset = |
| Specialization->hasCXXExplicitFunctionObjectParameter() ? 1 : 0; |
| if (ParamIdx >= Specialization->getNumParams() - ExplicitOffset) |
| // FIXME: This presumably means a pack ended up smaller than we |
| // expected while deducing. Should this not result in deduction |
| // failure? Can it even happen? |
| continue; |
| |
| QualType DeducedA; |
| if (!OriginalArg.DecomposedParam) { |
| // P is one of the function parameters, just look up its substituted |
| // type. |
| DeducedA = |
| Specialization->getParamDecl(ParamIdx + ExplicitOffset)->getType(); |
| } else { |
| // P is a decomposed element of a parameter corresponding to a |
| // braced-init-list argument. Substitute back into P to find the |
| // deduced A. |
| QualType &CacheEntry = |
| DeducedATypes[{ParamIdx, OriginalArg.OriginalParamType}]; |
| if (CacheEntry.isNull()) { |
| ArgumentPackSubstitutionIndexRAII PackIndex( |
| *this, getPackIndexForParam(*this, FunctionTemplate, SubstArgs, |
| ParamIdx)); |
| CacheEntry = |
| SubstType(OriginalArg.OriginalParamType, SubstArgs, |
| Specialization->getTypeSpecStartLoc(), |
| Specialization->getDeclName()); |
| } |
| DeducedA = CacheEntry; |
| } |
| |
| if (auto TDK = |
| CheckOriginalCallArgDeduction(*this, Info, OriginalArg, DeducedA); |
| TDK != TemplateDeductionResult::Success) |
| return TDK; |
| } |
| } |
| |
| // If we suppressed any diagnostics while performing template argument |
| // deduction, and if we haven't already instantiated this declaration, |
| // keep track of these diagnostics. They'll be emitted if this specialization |
| // is actually used. |
| if (Info.diag_begin() != Info.diag_end()) { |
| auto [Pos, Inserted] = |
| SuppressedDiagnostics.try_emplace(Specialization->getCanonicalDecl()); |
| if (Inserted) |
| Pos->second.append(Info.diag_begin(), Info.diag_end()); |
| } |
| |
| return TemplateDeductionResult::Success; |
| } |
| |
| /// Gets the type of a function for template-argument-deducton |
| /// purposes when it's considered as part of an overload set. |
| static QualType GetTypeOfFunction(Sema &S, const OverloadExpr::FindResult &R, |
| FunctionDecl *Fn) { |
| // We may need to deduce the return type of the function now. |
| if (S.getLangOpts().CPlusPlus14 && Fn->getReturnType()->isUndeducedType() && |
| S.DeduceReturnType(Fn, R.Expression->getExprLoc(), /*Diagnose*/ false)) |
| return {}; |
| |
| if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) |
| if (Method->isImplicitObjectMemberFunction()) { |
| // An instance method that's referenced in a form that doesn't |
| // look like a member pointer is just invalid. |
| if (!R.HasFormOfMemberPointer) |
| return {}; |
| |
| return S.Context.getMemberPointerType(Fn->getType(), |
| S.Context.getTypeDeclType(Method->getParent()).getTypePtr()); |
| } |
| |
| if (!R.IsAddressOfOperand) return Fn->getType(); |
| return S.Context.getPointerType(Fn->getType()); |
| } |
| |
| /// Apply the deduction rules for overload sets. |
| /// |
| /// \return the null type if this argument should be treated as an |
| /// undeduced context |
| static QualType |
| ResolveOverloadForDeduction(Sema &S, TemplateParameterList *TemplateParams, |
| Expr *Arg, QualType ParamType, |
| bool ParamWasReference, |
| TemplateSpecCandidateSet *FailedTSC = nullptr) { |
| |
| OverloadExpr::FindResult R = OverloadExpr::find(Arg); |
| |
| OverloadExpr *Ovl = R.Expression; |
| |
| // C++0x [temp.deduct.call]p4 |
| unsigned TDF = 0; |
| if (ParamWasReference) |
| TDF |= TDF_ParamWithReferenceType; |
| if (R.IsAddressOfOperand) |
| TDF |= TDF_IgnoreQualifiers; |
| |
| // C++0x [temp.deduct.call]p6: |
| // When P is a function type, pointer to function type, or pointer |
| // to member function type: |
| |
| if (!ParamType->isFunctionType() && |
| !ParamType->isFunctionPointerType() && |
| !ParamType->isMemberFunctionPointerType()) { |
| if (Ovl->hasExplicitTemplateArgs()) { |
| // But we can still look for an explicit specialization. |
| if (FunctionDecl *ExplicitSpec = |
| S.ResolveSingleFunctionTemplateSpecialization( |
| Ovl, /*Complain=*/false, |
| /*FoundDeclAccessPair=*/nullptr, FailedTSC)) |
| return GetTypeOfFunction(S, R, ExplicitSpec); |
| } |
| |
| DeclAccessPair DAP; |
| if (FunctionDecl *Viable = |
| S.resolveAddressOfSingleOverloadCandidate(Arg, DAP)) |
| return GetTypeOfFunction(S, R, Viable); |
| |
| return {}; |
| } |
| |
| // Gather the explicit template arguments, if any. |
| TemplateArgumentListInfo ExplicitTemplateArgs; |
| if (Ovl->hasExplicitTemplateArgs()) |
| Ovl->copyTemplateArgumentsInto(ExplicitTemplateArgs); |
| QualType Match; |
| for (UnresolvedSetIterator I = Ovl->decls_begin(), |
| E = Ovl->decls_end(); I != E; ++I) { |
| NamedDecl *D = (*I)->getUnderlyingDecl(); |
| |
| if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D)) { |
| // - If the argument is an overload set containing one or more |
| // function templates, the parameter is treated as a |
| // non-deduced context. |
| if (!Ovl->hasExplicitTemplateArgs()) |
| return {}; |
| |
| // Otherwise, see if we can resolve a function type |
| FunctionDecl *Specialization = nullptr; |
| TemplateDeductionInfo Info(Ovl->getNameLoc()); |
| if (S.DeduceTemplateArguments(FunTmpl, &ExplicitTemplateArgs, |
| Specialization, |
| Info) != TemplateDeductionResult::Success) |
| continue; |
| |
| D = Specialization; |
| } |
| |
| FunctionDecl *Fn = cast<FunctionDecl>(D); |
| QualType ArgType = GetTypeOfFunction(S, R, Fn); |
| if (ArgType.isNull()) continue; |
| |
| // Function-to-pointer conversion. |
| if (!ParamWasReference && ParamType->isPointerType() && |
| ArgType->isFunctionType()) |
| ArgType = S.Context.getPointerType(ArgType); |
| |
| // - If the argument is an overload set (not containing function |
| // templates), trial argument deduction is attempted using each |
| // of the members of the set. If deduction succeeds for only one |
| // of the overload set members, that member is used as the |
| // argument value for the deduction. If deduction succeeds for |
| // more than one member of the overload set the parameter is |
| // treated as a non-deduced context. |
| |
| // We do all of this in a fresh context per C++0x [temp.deduct.type]p2: |
| // Type deduction is done independently for each P/A pair, and |
| // the deduced template argument values are then combined. |
| // So we do not reject deductions which were made elsewhere. |
| SmallVector<DeducedTemplateArgument, 8> |
| Deduced(TemplateParams->size()); |
| TemplateDeductionInfo Info(Ovl->getNameLoc()); |
| TemplateDeductionResult Result = DeduceTemplateArgumentsByTypeMatch( |
| S, TemplateParams, ParamType, ArgType, Info, Deduced, TDF, |
| PartialOrderingKind::None, /*DeducedFromArrayBound=*/false, |
| /*HasDeducedAnyParam=*/nullptr); |
| if (Result != TemplateDeductionResult::Success) |
| continue; |
| if (!Match.isNull()) |
| return {}; |
| Match = ArgType; |
| } |
| |
| return Match; |
| } |
| |
| /// Perform the adjustments to the parameter and argument types |
| /// described in C++ [temp.deduct.call]. |
| /// |
| /// \returns true if the caller should not attempt to perform any template |
| /// argument deduction based on this P/A pair because the argument is an |
| /// overloaded function set that could not be resolved. |
| static bool AdjustFunctionParmAndArgTypesForDeduction( |
| Sema &S, TemplateParameterList *TemplateParams, unsigned FirstInnerIndex, |
| QualType &ParamType, QualType &ArgType, |
| Expr::Classification ArgClassification, Expr *Arg, unsigned &TDF, |
| TemplateSpecCandidateSet *FailedTSC = nullptr) { |
| // C++0x [temp.deduct.call]p3: |
| // If P is a cv-qualified type, the top level cv-qualifiers of P's type |
| // are ignored for type deduction. |
| if (ParamType.hasQualifiers()) |
| ParamType = ParamType.getUnqualifiedType(); |
| |
| // [...] If P is a reference type, the type referred to by P is |
| // used for type deduction. |
| const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>(); |
| if (ParamRefType) |
| ParamType = ParamRefType->getPointeeType(); |
| |
| // Overload sets usually make this parameter an undeduced context, |
| // but there are sometimes special circumstances. Typically |
| // involving a template-id-expr. |
| if (ArgType == S.Context.OverloadTy) { |
| assert(Arg && "expected a non-null arg expression"); |
| ArgType = ResolveOverloadForDeduction(S, TemplateParams, Arg, ParamType, |
| ParamRefType != nullptr, FailedTSC); |
| if (ArgType.isNull()) |
| return true; |
| } |
| |
| if (ParamRefType) { |
| // If the argument has incomplete array type, try to complete its type. |
| if (ArgType->isIncompleteArrayType()) { |
| assert(Arg && "expected a non-null arg expression"); |
| ArgType = S.getCompletedType(Arg); |
| } |
| |
| // C++1z [temp.deduct.call]p3: |
| // If P is a forwarding reference and the argument is an lvalue, the type |
| // "lvalue reference to A" is used in place of A for type deduction. |
| if (isForwardingReference(QualType(ParamRefType, 0), FirstInnerIndex) && |
| ArgClassification.isLValue()) { |
| if (S.getLangOpts().OpenCL && !ArgType.hasAddressSpace()) |
| ArgType = S.Context.getAddrSpaceQualType( |
| ArgType, S.Context.getDefaultOpenCLPointeeAddrSpace()); |
| ArgType = S.Context.getLValueReferenceType(ArgType); |
| } |
| } else { |
| // C++ [temp.deduct.call]p2: |
| // If P is not a reference type: |
| // - If A is an array type, the pointer type produced by the |
| // array-to-pointer standard conversion (4.2) is used in place of |
| // A for type deduction; otherwise, |
| // - If A is a function type, the pointer type produced by the |
| // function-to-pointer standard conversion (4.3) is used in place |
| // of A for type deduction; otherwise, |
| if (ArgType->canDecayToPointerType()) |
| ArgType = S.Context.getDecayedType(ArgType); |
| else { |
| // - If A is a cv-qualified type, the top level cv-qualifiers of A's |
| // type are ignored for type deduction. |
| ArgType = ArgType.getUnqualifiedType(); |
| } |
| } |
| |
| // C++0x [temp.deduct.call]p4: |
| // In general, the deduction process attempts to find template argument |
| // values that will make the deduced A identical to A (after the type A |
| // is transformed as described above). [...] |
| TDF = TDF_SkipNonDependent; |
| |
| // - If the original P is a reference type, the deduced A (i.e., the |
| // type referred to by the reference) can be more cv-qualified than |
| // the transformed A. |
| if (ParamRefType) |
| TDF |= TDF_ParamWithReferenceType; |
| // - The transformed A can be another pointer or pointer to member |
| // type that can be converted to the deduced A via a qualification |
| // conversion (4.4). |
| if (ArgType->isPointerType() || ArgType->isMemberPointerType() || |
| ArgType->isObjCObjectPointerType()) |
| TDF |= TDF_IgnoreQualifiers; |
| // - If P is a class and P has the form simple-template-id, then the |
| // transformed A can be a derived class of the deduced A. Likewise, |
| // if P is a pointer to a class of the form simple-template-id, the |
| // transformed A can be a pointer to a derived class pointed to by |
| // the deduced A. |
| if (isSimpleTemplateIdType(ParamType) || |
| (isa<PointerType>(ParamType) && |
| isSimpleTemplateIdType( |
| ParamType->castAs<PointerType>()->getPointeeType()))) |
| TDF |= TDF_DerivedClass; |
| |
| return false; |
| } |
| |
| static bool |
| hasDeducibleTemplateParameters(Sema &S, FunctionTemplateDecl *FunctionTemplate, |
| QualType T); |
| |
| static TemplateDeductionResult DeduceTemplateArgumentsFromCallArgument( |
| Sema &S, TemplateParameterList *TemplateParams, unsigned FirstInnerIndex, |
| QualType ParamType, QualType ArgType, |
| Expr::Classification ArgClassification, Expr *Arg, |
| TemplateDeductionInfo &Info, |
| SmallVectorImpl<DeducedTemplateArgument> &Deduced, |
| SmallVectorImpl<Sema::OriginalCallArg> &OriginalCallArgs, |
| bool DecomposedParam, unsigned ArgIdx, unsigned TDF, |
| TemplateSpecCandidateSet *FailedTSC = nullptr); |
| |
| /// Attempt template argument deduction from an initializer list |
| /// deemed to be an argument in a function call. |
| static TemplateDeductionResult DeduceFromInitializerList( |
| Sema &S, TemplateParameterList *TemplateParams, QualType AdjustedParamType, |
| InitListExpr *ILE, TemplateDeductionInfo &Info, |
| SmallVectorImpl<DeducedTemplateArgument> &Deduced, |
| SmallVectorImpl<Sema::OriginalCallArg> &OriginalCallArgs, unsigned ArgIdx, |
| unsigned TDF) { |
| // C++ [temp.deduct.call]p1: (CWG 1591) |
| // If removing references and cv-qualifiers from P gives |
| // std::initializer_list<P0> or P0[N] for some P0 and N and the argument is |
| // a non-empty initializer list, then deduction is performed instead for |
| // each element of the initializer list, taking P0 as a function template |
| // parameter type and the initializer element as its argument |
| // |
| // We've already removed references and cv-qualifiers here. |
| if (!ILE->getNumInits()) |
| return TemplateDeductionResult::Success; |
| |
| QualType ElTy; |
| auto *ArrTy = S.Context.getAsArrayType(AdjustedParamType); |
| if (ArrTy) |
| ElTy = ArrTy->getElementType(); |
| else if (!S.isStdInitializerList(AdjustedParamType, &ElTy)) { |
| // Otherwise, an initializer list argument causes the parameter to be |
| // considered a non-deduced context |
| return TemplateDeductionResult::Success; |
| } |
| |
| // Resolving a core issue: a braced-init-list containing any designators is |
| // a non-deduced context. |
| for (Expr *E : ILE->inits()) |
| if (isa<DesignatedInitExpr>(E)) |
| return TemplateDeductionResult::Success; |
| |
| // Deduction only needs to be done for dependent types. |
| if (ElTy->isDependentType()) { |
| for (Expr *E : ILE->inits()) { |
| if (auto Result = DeduceTemplateArgumentsFromCallArgument( |
| S, TemplateParams, 0, ElTy, E->getType(), |
| E->Classify(S.getASTContext()), E, Info, Deduced, |
| OriginalCallArgs, true, ArgIdx, TDF); |
| Result != TemplateDeductionResult::Success) |
| return Result; |
| } |
| } |
| |
| // in the P0[N] case, if N is a non-type template parameter, N is deduced |
| // from the length of the initializer list. |
| if (auto *DependentArrTy = dyn_cast_or_null<DependentSizedArrayType>(ArrTy)) { |
| // Determine the array bound is something we can deduce. |
| if (const NonTypeTemplateParmDecl *NTTP = |
| getDeducedParameterFromExpr(Info, DependentArrTy->getSizeExpr())) { |
| // We can perform template argument deduction for the given non-type |
| // template parameter. |
| // C++ [temp.deduct.type]p13: |
| // The type of N in the type T[N] is std::size_t. |
| QualType T = S.Context.getSizeType(); |
| llvm::APInt Size(S.Context.getIntWidth(T), ILE->getNumInits()); |
| if (auto Result = DeduceNonTypeTemplateArgument( |
| S, TemplateParams, NTTP, llvm::APSInt(Size), T, |
| /*ArrayBound=*/true, Info, /*PartialOrdering=*/false, Deduced, |
| /*HasDeducedAnyParam=*/nullptr); |
| Result != TemplateDeductionResult::Success) |
| return Result; |
| } |
| } |
| |
| return TemplateDeductionResult::Success; |
| } |
| |
| /// Perform template argument deduction per [temp.deduct.call] for a |
| /// single parameter / argument pair. |
| static TemplateDeductionResult DeduceTemplateArgumentsFromCallArgument( |
| Sema &S, TemplateParameterList *TemplateParams, unsigned FirstInnerIndex, |
| QualType ParamType, QualType ArgType, |
| Expr::Classification ArgClassification, Expr *Arg, |
| TemplateDeductionInfo &Info, |
| SmallVectorImpl<DeducedTemplateArgument> &Deduced, |
| SmallVectorImpl<Sema::OriginalCallArg> &OriginalCallArgs, |
| bool DecomposedParam, unsigned ArgIdx, unsigned TDF, |
| TemplateSpecCandidateSet *FailedTSC) { |
| |
| QualType OrigParamType = ParamType; |
| |
| // If P is a reference type [...] |
| // If P is a cv-qualified type [...] |
| if (AdjustFunctionParmAndArgTypesForDeduction( |
| S, TemplateParams, FirstInnerIndex, ParamType, ArgType, |
| ArgClassification, Arg, TDF, FailedTSC)) |
| return TemplateDeductionResult::Success; |
| |
| // If [...] the argument is a non-empty initializer list [...] |
| if (InitListExpr *ILE = dyn_cast_if_present<InitListExpr>(Arg)) |
| return DeduceFromInitializerList(S, TemplateParams, ParamType, ILE, Info, |
| Deduced, OriginalCallArgs, ArgIdx, TDF); |
| |
| // [...] the deduction process attempts to find template argument values |
| // that will make the deduced A identical to A |
| // |
| // Keep track of the argument type and corresponding parameter index, |
| // so we can check for compatibility between the deduced A and A. |
| if (Arg) |
| OriginalCallArgs.push_back( |
| Sema::OriginalCallArg(OrigParamType, DecomposedParam, ArgIdx, ArgType)); |
| return DeduceTemplateArgumentsByTypeMatch( |
| S, TemplateParams, ParamType, ArgType, Info, Deduced, TDF, |
| PartialOrderingKind::None, /*DeducedFromArrayBound=*/false, |
| /*HasDeducedAnyParam=*/nullptr); |
| } |
| |
| TemplateDeductionResult Sema::DeduceTemplateArguments( |
| FunctionTemplateDecl *FunctionTemplate, |
| TemplateArgumentListInfo *ExplicitTemplateArgs, ArrayRef<Expr *> Args, |
| FunctionDecl *&Specialization, TemplateDeductionInfo &Info, |
| bool PartialOverloading, bool AggregateDeductionCandidate, |
| bool PartialOrdering, QualType ObjectType, |
| Expr::Classification ObjectClassification, |
| llvm::function_ref<bool(ArrayRef<QualType>)> CheckNonDependent) { |
| if (FunctionTemplate->isInvalidDecl()) |
| return TemplateDeductionResult::Invalid; |
| |
| FunctionDecl *Function = FunctionTemplate->getTemplatedDecl(); |
| unsigned NumParams = Function->getNumParams(); |
| bool HasExplicitObject = false; |
| int ExplicitObjectOffset = 0; |
| if (Function->hasCXXExplicitFunctionObjectParameter()) { |
| HasExplicitObject = true; |
| ExplicitObjectOffset = 1; |
| } |
| |
| unsigned FirstInnerIndex = getFirstInnerIndex(FunctionTemplate); |
| |
| // C++ [temp.deduct.call]p1: |
| // Template argument deduction is done by comparing each function template |
| // parameter type (call it P) with the type of the corresponding argument |
| // of the call (call it A) as described below. |
| if (Args.size() < Function->getMinRequiredExplicitArguments() && |
| !PartialOverloading) |
| return TemplateDeductionResult::TooFewArguments; |
| else if (TooManyArguments(NumParams, Args.size() + ExplicitObjectOffset, |
| PartialOverloading)) { |
| const auto *Proto = Function->getType()->castAs<FunctionProtoType>(); |
| if (Proto->isTemplateVariadic()) |
| /* Do nothing */; |
| else if (!Proto->isVariadic()) |
| return TemplateDeductionResult::TooManyArguments; |
| } |
| |
| // The types of the parameters from which we will perform template argument |
| // deduction. |
| LocalInstantiationScope InstScope(*this); |
| TemplateParameterList *TemplateParams |
| = FunctionTemplate->getTemplateParameters(); |
| SmallVector<DeducedTemplateArgument, 4> Deduced; |
| SmallVector<QualType, 8> ParamTypes; |
| unsigned NumExplicitlySpecified = 0; |
| if (ExplicitTemplateArgs) { |
| TemplateDeductionResult Result; |
| runWithSufficientStackSpace(Info.getLocation(), [&] { |
| Result = SubstituteExplicitTemplateArguments( |
| FunctionTemplate, *ExplicitTemplateArgs, Deduced, ParamTypes, nullptr, |
| Info); |
| }); |
| if (Result != TemplateDeductionResult::Success) |
| return Result; |
| |
| NumExplicitlySpecified = Deduced.size(); |
| } else { |
| // Just fill in the parameter types from the function declaration. |
| for (unsigned I = 0; I != NumParams; ++I) |
| ParamTypes.push_back(Function->getParamDecl(I)->getType()); |
| } |
| |
| SmallVector<OriginalCallArg, 8> OriginalCallArgs; |
| |
| // Deduce an argument of type ParamType from an expression with index ArgIdx. |
| auto DeduceCallArgument = [&](QualType ParamType, unsigned ArgIdx, |
| bool ExplicitObjectArgument) { |
| // C++ [demp.deduct.call]p1: (DR1391) |
| // Template argument deduction is done by comparing each function template |
| // parameter that contains template-parameters that participate in |
| // template argument deduction ... |
| if (!hasDeducibleTemplateParameters(*this, FunctionTemplate, ParamType)) |
| return TemplateDeductionResult::Success; |
| |
| if (ExplicitObjectArgument) { |
| // ... with the type of the corresponding argument |
| return DeduceTemplateArgumentsFromCallArgument( |
| *this, TemplateParams, FirstInnerIndex, ParamType, ObjectType, |
| ObjectClassification, |
| /*Arg=*/nullptr, Info, Deduced, OriginalCallArgs, |
| /*Decomposed*/ false, ArgIdx, /*TDF*/ 0); |
| } |
| |
| // ... with the type of the corresponding argument |
| return DeduceTemplateArgumentsFromCallArgument( |
| *this, TemplateParams, FirstInnerIndex, ParamType, |
| Args[ArgIdx]->getType(), Args[ArgIdx]->Classify(getASTContext()), |
| Args[ArgIdx], Info, Deduced, OriginalCallArgs, /*Decomposed*/ false, |
| ArgIdx, /*TDF*/ 0); |
| }; |
| |
| // Deduce template arguments from the function parameters. |
| Deduced.resize(TemplateParams->size()); |
| SmallVector<QualType, 8> ParamTypesForArgChecking; |
| for (unsigned ParamIdx = 0, NumParamTypes = ParamTypes.size(), ArgIdx = 0; |
| ParamIdx != NumParamTypes; ++ParamIdx) { |
| QualType ParamType = ParamTypes[ParamIdx]; |
| |
| const PackExpansionType *ParamExpansion = |
| dyn_cast<PackExpansionType>(ParamType); |
| if (!ParamExpansion) { |
| // Simple case: matching a function parameter to a function argument. |
| if (ArgIdx >= Args.size() && !(HasExplicitObject && ParamIdx == 0)) |
| break; |
| |
| ParamTypesForArgChecking.push_back(ParamType); |
| |
| if (ParamIdx == 0 && HasExplicitObject) { |
| if (ObjectType.isNull()) |
| return TemplateDeductionResult::InvalidExplicitArguments; |
| |
| if (auto Result = DeduceCallArgument(ParamType, 0, |
| /*ExplicitObjectArgument=*/true); |
| Result != TemplateDeductionResult::Success) |
| return Result; |
| continue; |
| } |
| |
| if (auto Result = DeduceCallArgument(ParamType, ArgIdx++, |
| /*ExplicitObjectArgument=*/false); |
| Result != TemplateDeductionResult::Success) |
| return Result; |
| |
| continue; |
| } |
| |
| bool IsTrailingPack = ParamIdx + 1 == NumParamTypes; |
| |
| QualType ParamPattern = ParamExpansion->getPattern(); |
| PackDeductionScope PackScope(*this, TemplateParams, Deduced, Info, |
| ParamPattern, |
| AggregateDeductionCandidate && IsTrailingPack); |
| |
| // C++0x [temp.deduct.call]p1: |
| // For a function parameter pack that occurs at the end of the |
| // parameter-declaration-list, the type A of each remaining argument of |
| // the call is compared with the type P of the declarator-id of the |
| // function parameter pack. Each comparison deduces template arguments |
| // for subsequent positions in the template parameter packs expanded by |
| // the function parameter pack. When a function parameter pack appears |
| // in a non-deduced context [not at the end of the list], the type of |
| // that parameter pack is never deduced. |
| // |
| // FIXME: The above rule allows the size of the parameter pack to change |
| // after we skip it (in the non-deduced case). That makes no sense, so |
| // we instead notionally deduce the pack against N arguments, where N is |
| // the length of the explicitly-specified pack if it's expanded by the |
| // parameter pack and 0 otherwise, and we treat each deduction as a |
| // non-deduced context. |
| if (IsTrailingPack || PackScope.hasFixedArity()) { |
| for (; ArgIdx < Args.size() && PackScope.hasNextElement(); |
| PackScope.nextPackElement(), ++ArgIdx) { |
| ParamTypesForArgChecking.push_back(ParamPattern); |
| if (auto Result = DeduceCallArgument(ParamPattern, ArgIdx, |
| /*ExplicitObjectArgument=*/false); |
| Result != TemplateDeductionResult::Success) |
| return Result; |
| } |
| } else { |
| // If the parameter type contains an explicitly-specified pack that we |
| // could not expand, skip the number of parameters notionally created |
| // by the expansion. |
| std::optional<unsigned> NumExpansions = |
| ParamExpansion->getNumExpansions(); |
| if (NumExpansions && !PackScope.isPartiallyExpanded()) { |
| for (unsigned I = 0; I != *NumExpansions && ArgIdx < Args.size(); |
| ++I, ++ArgIdx) { |
| ParamTypesForArgChecking.push_back(ParamPattern); |
| // FIXME: Should we add OriginalCallArgs for these? What if the |
| // corresponding argument is a list? |
| PackScope.nextPackElement(); |
| } |
| } else if (!IsTrailingPack && !PackScope.isPartiallyExpanded() && |
| PackScope.isDeducedFromEarlierParameter()) { |
| // [temp.deduct.general#3] |
| // When all template arguments have been deduced |
| // or obtained from default template arguments, all uses of template |
| // parameters in the template parameter list of the template are |
| // replaced with the corresponding deduced or default argument values |
| // |
| // If we have a trailing parameter pack, that has been deduced |
| // previously we substitute the pack here in a similar fashion as |
| // above with the trailing parameter packs. The main difference here is |
| // that, in this case we are not processing all of the remaining |
| // arguments. We are only process as many arguments as we have in |
| // the already deduced parameter. |
| std::optional<unsigned> ArgPosAfterSubstitution = |
| PackScope.getSavedPackSizeIfAllEqual(); |
| if (!ArgPosAfterSubstitution) |
| continue; |
| |
| unsigned PackArgEnd = ArgIdx + *ArgPosAfterSubstitution; |
| for (; ArgIdx < PackArgEnd && ArgIdx < Args.size(); ArgIdx++) { |
| ParamTypesForArgChecking.push_back(ParamPattern); |
| if (auto Result = |
| DeduceCallArgument(ParamPattern, ArgIdx, |
| /*ExplicitObjectArgument=*/false); |
| Result != TemplateDeductionResult::Success) |
| return Result; |
| |
| PackScope.nextPackElement(); |
| } |
| } |
| } |
| |
| // Build argument packs for each of the parameter packs expanded by this |
| // pack expansion. |
| if (auto Result = PackScope.finish(); |
| Result != TemplateDeductionResult::Success) |
| return Result; |
| } |
| |
| // Capture the context in which the function call is made. This is the context |
| // that is needed when the accessibility of template arguments is checked. |
| DeclContext *CallingCtx = CurContext; |
| |
| TemplateDeductionResult Result; |
| runWithSufficientStackSpace(Info.getLocation(), [&] { |
| Result = FinishTemplateArgumentDeduction( |
| FunctionTemplate, Deduced, NumExplicitlySpecified, Specialization, Info, |
| &OriginalCallArgs, PartialOverloading, PartialOrdering, |
| [&, CallingCtx]() { |
| ContextRAII SavedContext(*this, CallingCtx); |
| return CheckNonDependent(ParamTypesForArgChecking); |
| }); |
| }); |
| return Result; |
| } |
| |
| QualType Sema::adjustCCAndNoReturn(QualType ArgFunctionType, |
| QualType FunctionType, |
| bool AdjustExceptionSpec) { |
| if (ArgFunctionType.isNull()) |
| return ArgFunctionType; |
| |
| const auto *FunctionTypeP = FunctionType->castAs<FunctionProtoType>(); |
| const auto *ArgFunctionTypeP = ArgFunctionType->castAs<FunctionProtoType>(); |
| FunctionProtoType::ExtProtoInfo EPI = ArgFunctionTypeP->getExtProtoInfo(); |
| bool Rebuild = false; |
| |
| CallingConv CC = FunctionTypeP->getCallConv(); |
| if (EPI.ExtInfo.getCC() != CC) { |
| EPI.ExtInfo = EPI.ExtInfo.withCallingConv(CC); |
| Rebuild = true; |
| } |
| |
| bool NoReturn = FunctionTypeP->getNoReturnAttr(); |
| if (EPI.ExtInfo.getNoReturn() != NoReturn) { |
| EPI.ExtInfo = EPI.ExtInfo.withNoReturn(NoReturn); |
| Rebuild = true; |
| } |
| |
| if (AdjustExceptionSpec && (FunctionTypeP->hasExceptionSpec() || |
| ArgFunctionTypeP->hasExceptionSpec())) { |
| EPI.ExceptionSpec = FunctionTypeP->getExtProtoInfo().ExceptionSpec; |
| Rebuild = true; |
| } |
| |
| if (!Rebuild) |
| return ArgFunctionType; |
| |
| return Context.getFunctionType(ArgFunctionTypeP->getReturnType(), |
| ArgFunctionTypeP->getParamTypes(), EPI); |
| } |
| |
| TemplateDeductionResult Sema::DeduceTemplateArguments( |
| FunctionTemplateDecl *FunctionTemplate, |
| TemplateArgumentListInfo *ExplicitTemplateArgs, QualType ArgFunctionType, |
| FunctionDecl *&Specialization, TemplateDeductionInfo &Info, |
| bool IsAddressOfFunction) { |
| if (FunctionTemplate->isInvalidDecl()) |
| return TemplateDeductionResult::Invalid; |
| |
| FunctionDecl *Function = FunctionTemplate->getTemplatedDecl(); |
| TemplateParameterList *TemplateParams |
| = FunctionTemplate->getTemplateParameters(); |
| QualType FunctionType = Function->getType(); |
| |
| // Substitute any explicit template arguments. |
| LocalInstantiationScope InstScope(*this); |
| SmallVector<DeducedTemplateArgument, 4> Deduced; |
| unsigned NumExplicitlySpecified = 0; |
| SmallVector<QualType, 4> ParamTypes; |
| if (ExplicitTemplateArgs) { |
| TemplateDeductionResult Result; |
| runWithSufficientStackSpace(Info.getLocation(), [&] { |
| Result = SubstituteExplicitTemplateArguments( |
| FunctionTemplate, *ExplicitTemplateArgs, Deduced, ParamTypes, |
| &FunctionType, Info); |
| }); |
| if (Result != TemplateDeductionResult::Success) |
| return Result; |
| |
| NumExplicitlySpecified = Deduced.size(); |
| } |
| |
| // When taking the address of a function, we require convertibility of |
| // the resulting function type. Otherwise, we allow arbitrary mismatches |
| // of calling convention and noreturn. |
| if (!IsAddressOfFunction) |
| ArgFunctionType = adjustCCAndNoReturn(ArgFunctionType, FunctionType, |
| /*AdjustExceptionSpec*/false); |
| |
| // Unevaluated SFINAE context. |
| EnterExpressionEvaluationContext Unevaluated( |
| *this, Sema::ExpressionEvaluationContext::Unevaluated); |
| SFINAETrap Trap(*this); |
| |
| Deduced.resize(TemplateParams->size()); |
| |
| // If the function has a deduced return type, substitute it for a dependent |
| // type so that we treat it as a non-deduced context in what follows. |
| bool HasDeducedReturnType = false; |
| if (getLangOpts().CPlusPlus14 && |
| Function->getReturnType()->getContainedAutoType()) { |
| FunctionType = SubstAutoTypeDependent(FunctionType); |
| HasDeducedReturnType = true; |
| } |
| |
| if (!ArgFunctionType.isNull() && !FunctionType.isNull()) { |
| unsigned TDF = |
| TDF_TopLevelParameterTypeList | TDF_AllowCompatibleFunctionType; |
| // Deduce template arguments from the function type. |
| if (TemplateDeductionResult Result = DeduceTemplateArgumentsByTypeMatch( |
| *this, TemplateParams, FunctionType, ArgFunctionType, Info, Deduced, |
| TDF, PartialOrderingKind::None, /*DeducedFromArrayBound=*/false, |
| /*HasDeducedAnyParam=*/nullptr); |
| Result != TemplateDeductionResult::Success) |
| return Result; |
| } |
| |
| TemplateDeductionResult Result; |
| runWithSufficientStackSpace(Info.getLocation(), [&] { |
| Result = FinishTemplateArgumentDeduction( |
| FunctionTemplate, Deduced, NumExplicitlySpecified, Specialization, Info, |
| /*OriginalCallArgs=*/nullptr, /*PartialOverloading=*/false, |
| /*PartialOrdering=*/true); |
| }); |
| if (Result != TemplateDeductionResult::Success) |
| return Result; |
| |
| // If the function has a deduced return type, deduce it now, so we can check |
| // that the deduced function type matches the requested type. |
| if (HasDeducedReturnType && IsAddressOfFunction && |
| Specialization->getReturnType()->isUndeducedType() && |
| DeduceReturnType(Specialization, Info.getLocation(), false)) |
| return TemplateDeductionResult::MiscellaneousDeductionFailure; |
| |
| // [C++26][expr.const]/p17 |
| // An expression or conversion is immediate-escalating if it is not initially |
| // in an immediate function context and it is [...] |
| // a potentially-evaluated id-expression that denotes an immediate function. |
| if (IsAddressOfFunction && getLangOpts().CPlusPlus20 && |
| Specialization->isImmediateEscalating() && |
| parentEvaluationContext().isPotentiallyEvaluated() && |
| CheckIfFunctionSpecializationIsImmediate(Specialization, |
| Info.getLocation())) |
| return TemplateDeductionResult::MiscellaneousDeductionFailure; |
| |
| // Adjust the exception specification of the argument to match the |
| // substituted and resolved type we just formed. (Calling convention and |
| // noreturn can't be dependent, so we don't actually need this for them |
| // right now.) |
| QualType SpecializationType = Specialization->getType(); |
| if (!IsAddressOfFunction) { |
| ArgFunctionType = adjustCCAndNoReturn(ArgFunctionType, SpecializationType, |
| /*AdjustExceptionSpec*/true); |
| |
| // Revert placeholder types in the return type back to undeduced types so |
| // that the comparison below compares the declared return types. |
| if (HasDeducedReturnType) { |
| SpecializationType = SubstAutoType(SpecializationType, QualType()); |
| ArgFunctionType = SubstAutoType(ArgFunctionType, QualType()); |
| } |
| } |
| |
| // If the requested function type does not match the actual type of the |
| // specialization with respect to arguments of compatible pointer to function |
| // types, template argument deduction fails. |
| if (!ArgFunctionType.isNull()) { |
| if (IsAddressOfFunction ? !isSameOrCompatibleFunctionType( |
| SpecializationType, ArgFunctionType) |
| : !Context.hasSameFunctionTypeIgnoringExceptionSpec( |
| SpecializationType, ArgFunctionType)) { |
| Info.FirstArg = TemplateArgument(SpecializationType); |
| Info.SecondArg = TemplateArgument(ArgFunctionType); |
| return TemplateDeductionResult::NonDeducedMismatch; |
| } |
| } |
| |
| return TemplateDeductionResult::Success; |
| } |
| |
| TemplateDeductionResult Sema::DeduceTemplateArguments( |
| FunctionTemplateDecl *ConversionTemplate, QualType ObjectType, |
| Expr::Classification ObjectClassification, QualType A, |
| CXXConversionDecl *&Specialization, TemplateDeductionInfo &Info) { |
| if (ConversionTemplate->isInvalidDecl()) |
| return TemplateDeductionResult::Invalid; |
| |
| CXXConversionDecl *ConversionGeneric |
| = cast<CXXConversionDecl>(ConversionTemplate->getTemplatedDecl()); |
| |
| QualType P = ConversionGeneric->getConversionType(); |
| bool IsReferenceP = P->isReferenceType(); |
| bool IsReferenceA = A->isReferenceType(); |
| |
| // C++0x [temp.deduct.conv]p2: |
| // If P is a reference type, the type referred to by P is used for |
| // type deduction. |
| if (const ReferenceType *PRef = P->getAs<ReferenceType>()) |
| P = PRef->getPointeeType(); |
| |
| // C++0x [temp.deduct.conv]p4: |
| // [...] If A is a reference type, the type referred to by A is used |
| // for type deduction. |
| if (const ReferenceType *ARef = A->getAs<ReferenceType>()) { |
| A = ARef->getPointeeType(); |
| // We work around a defect in the standard here: cv-qualifiers are also |
| // removed from P and A in this case, unless P was a reference type. This |
| // seems to mostly match what other compilers are doing. |
| if (!IsReferenceP) { |
| A = A.getUnqualifiedType(); |
| P = P.getUnqualifiedType(); |
| } |
| |
| // C++ [temp.deduct.conv]p3: |
| // |
| // If A is not a reference type: |
| } else { |
| assert(!A->isReferenceType() && "Reference types were handled above"); |
| |
| // - If P is an array type, the pointer type produced by the |
| // array-to-pointer standard conversion (4.2) is used in place |
| // of P for type deduction; otherwise, |
| if (P->isArrayType()) |
| P = Context.getArrayDecayedType(P); |
| // - If P is a function type, the pointer type produced by the |
| // function-to-pointer standard conversion (4.3) is used in |
| // place of P for type deduction; otherwise, |
| else if (P->isFunctionType()) |
| P = Context.getPointerType(P); |
| // - If P is a cv-qualified type, the top level cv-qualifiers of |
| // P's type are ignored for type deduction. |
| else |
| P = P.getUnqualifiedType(); |
| |
| // C++0x [temp.deduct.conv]p4: |
| // If A is a cv-qualified type, the top level cv-qualifiers of A's |
| // type are ignored for type deduction. If A is a reference type, the type |
| // referred to by A is used for type deduction. |
| A = A.getUnqualifiedType(); |
| } |
| |
| // Unevaluated SFINAE context. |
| EnterExpressionEvaluationContext Unevaluated( |
| *this, Sema::ExpressionEvaluationContext::Unevaluated); |
| SFINAETrap Trap(*this); |
| |
| // C++ [temp.deduct.conv]p1: |
| // Template argument deduction is done by comparing the return |
| // type of the template conversion function (call it P) with the |
| // type that is required as the result of the conversion (call it |
| // A) as described in 14.8.2.4. |
| TemplateParameterList *TemplateParams |
| = ConversionTemplate->getTemplateParameters(); |
| SmallVector<DeducedTemplateArgument, 4> Deduced; |
| Deduced.resize(TemplateParams->size()); |
| |
| // C++0x [temp.deduct.conv]p4: |
| // In general, the deduction process attempts to find template |
| // argument values that will make the deduced A identical to |
| // A. However, there are two cases that allow a difference: |
| unsigned TDF = 0; |
| // - If the original A is a reference type, A can be more |
| // cv-qualified than the deduced A (i.e., the type referred to |
| // by the reference) |
| if (IsReferenceA) |
| TDF |= TDF_ArgWithReferenceType; |
| // - The deduced A can be another pointer or pointer to member |
| // type that can be converted to A via a qualification |
| // conversion. |
| // |
| // (C++0x [temp.deduct.conv]p6 clarifies that this only happens when |
| // both P and A are pointers or member pointers. In this case, we |
| // just ignore cv-qualifiers completely). |
| if ((P->isPointerType() && A->isPointerType()) || |
| (P->isMemberPointerType() && A->isMemberPointerType())) |
| TDF |= TDF_IgnoreQualifiers; |
| |
| SmallVector<Sema::OriginalCallArg, 1> OriginalCallArgs; |
| if (ConversionGeneric->isExplicitObjectMemberFunction()) { |
| QualType ParamType = ConversionGeneric->getParamDecl(0)->getType(); |
| if (TemplateDeductionResult Result = |
| DeduceTemplateArgumentsFromCallArgument( |
| *this, TemplateParams, getFirstInnerIndex(ConversionTemplate), |
| ParamType, ObjectType, ObjectClassification, |
| /*Arg=*/nullptr, Info, Deduced, OriginalCallArgs, |
| /*Decomposed*/ false, 0, /*TDF*/ 0); |
| Result != TemplateDeductionResult::Success) |
| return Result; |
| } |
| |
| if (TemplateDeductionResult Result = DeduceTemplateArgumentsByTypeMatch( |
| *this, TemplateParams, P, A, Info, Deduced, TDF, |
| PartialOrderingKind::None, /*DeducedFromArrayBound=*/false, |
| /*HasDeducedAnyParam=*/nullptr); |
| Result != TemplateDeductionResult::Success) |
| return Result; |
| |
| // Create an Instantiation Scope for finalizing the operator. |
| LocalInstantiationScope InstScope(*this); |
| // Finish template argument deduction. |
| FunctionDecl *ConversionSpecialized = nullptr; |
| TemplateDeductionResult Result; |
| runWithSufficientStackSpace(Info.getLocation(), [&] { |
| Result = FinishTemplateArgumentDeduction( |
| ConversionTemplate, Deduced, 0, ConversionSpecialized, Info, |
| &OriginalCallArgs, /*PartialOverloading=*/false, |
| /*PartialOrdering=*/false); |
| }); |
| Specialization = cast_or_null<CXXConversionDecl>(ConversionSpecialized); |
| return Result; |
| } |
| |
| TemplateDeductionResult |
| Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate, |
| TemplateArgumentListInfo *ExplicitTemplateArgs, |
| FunctionDecl *&Specialization, |
| TemplateDeductionInfo &Info, |
| bool IsAddressOfFunction) { |
| return DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs, |
| QualType(), Specialization, Info, |
| IsAddressOfFunction); |
| } |
| |
| namespace { |
| struct DependentAuto { bool IsPack; }; |
| |
| /// Substitute the 'auto' specifier or deduced template specialization type |
| /// specifier within a type for a given replacement type. |
| class SubstituteDeducedTypeTransform : |
| public TreeTransform<SubstituteDeducedTypeTransform> { |
| QualType Replacement; |
| bool ReplacementIsPack; |
| bool UseTypeSugar; |
| using inherited = TreeTransform<SubstituteDeducedTypeTransform>; |
| |
| public: |
| SubstituteDeducedTypeTransform(Sema &SemaRef, DependentAuto DA) |
| : TreeTransform<SubstituteDeducedTypeTransform>(SemaRef), |
| ReplacementIsPack(DA.IsPack), UseTypeSugar(true) {} |
| |
| SubstituteDeducedTypeTransform(Sema &SemaRef, QualType Replacement, |
| bool UseTypeSugar = true) |
| : TreeTransform<SubstituteDeducedTypeTransform>(SemaRef), |
| Replacement(Replacement), ReplacementIsPack(false), |
| UseTypeSugar(UseTypeSugar) {} |
| |
| QualType TransformDesugared(TypeLocBuilder &TLB, DeducedTypeLoc TL) { |
| assert(isa<TemplateTypeParmType>(Replacement) && |
| "unexpected unsugared replacement kind"); |
| QualType Result = Replacement; |
| TemplateTypeParmTypeLoc NewTL = TLB.push<TemplateTypeParmTypeLoc>(Result); |
| NewTL.setNameLoc(TL.getNameLoc()); |
| return Result; |
| } |
| |
| QualType TransformAutoType(TypeLocBuilder &TLB, AutoTypeLoc TL) { |
| // If we're building the type pattern to deduce against, don't wrap the |
| // substituted type in an AutoType. Certain template deduction rules |
| // apply only when a template type parameter appears directly (and not if |
| // the parameter is found through desugaring). For instance: |
| // auto &&lref = lvalue; |
| // must transform into "rvalue reference to T" not "rvalue reference to |
| // auto type deduced as T" in order for [temp.deduct.call]p3 to apply. |
| // |
| // FIXME: Is this still necessary? |
| if (!UseTypeSugar) |
| return TransformDesugared(TLB, TL); |
| |
| QualType Result = SemaRef.Context.getAutoType( |
| Replacement, TL.getTypePtr()->getKeyword(), Replacement.isNull(), |
| ReplacementIsPack, TL.getTypePtr()->getTypeConstraintConcept(), |
| TL.getTypePtr()->getTypeConstraintArguments()); |
| auto NewTL = TLB.push<AutoTypeLoc>(Result); |
| NewTL.copy(TL); |
| return Result; |
| } |
| |
| QualType TransformDeducedTemplateSpecializationType( |
| TypeLocBuilder &TLB, DeducedTemplateSpecializationTypeLoc TL) { |
| if (!UseTypeSugar) |
| return TransformDesugared(TLB, TL); |
| |
| QualType Result = SemaRef.Context.getDeducedTemplateSpecializationType( |
| TL.getTypePtr()->getTemplateName(), |
| Replacement, Replacement.isNull()); |
| auto NewTL = TLB.push<DeducedTemplateSpecializationTypeLoc>(Result); |
| NewTL.setNameLoc(TL.getNameLoc()); |
| return Result; |
| } |
| |
| ExprResult TransformLambdaExpr(LambdaExpr *E) { |
| // Lambdas never need to be transformed. |
| return E; |
| } |
| bool TransformExceptionSpec(SourceLocation Loc, |
| FunctionProtoType::ExceptionSpecInfo &ESI, |
| SmallVectorImpl<QualType> &Exceptions, |
| bool &Changed) { |
| if (ESI.Type == EST_Uninstantiated) { |
| ESI.instantiate(); |
| Changed = true; |
| } |
| return inherited::TransformExceptionSpec(Loc, ESI, Exceptions, Changed); |
| } |
| |
| QualType Apply(TypeLoc TL) { |
| // Create some scratch storage for the transformed type locations. |
| // FIXME: We're just going to throw this information away. Don't build it. |
| TypeLocBuilder TLB; |
| TLB.reserve(TL.getFullDataSize()); |
| return TransformType(TLB, TL); |
| } |
| }; |
| |
| } // namespace |
| |
| static bool CheckDeducedPlaceholderConstraints(Sema &S, const AutoType &Type, |
| AutoTypeLoc TypeLoc, |
| QualType Deduced) { |
| ConstraintSatisfaction Satisfaction; |
| ConceptDecl *Concept = Type.getTypeConstraintConcept(); |
| TemplateArgumentListInfo TemplateArgs(TypeLoc.getLAngleLoc(), |
| TypeLoc.getRAngleLoc()); |
| TemplateArgs.addArgument( |
| TemplateArgumentLoc(TemplateArgument(Deduced), |
| S.Context.getTrivialTypeSourceInfo( |
| Deduced, TypeLoc.getNameLoc()))); |
| for (unsigned I = 0, C = TypeLoc.getNumArgs(); I != C; ++I) |
| TemplateArgs.addArgument(TypeLoc.getArgLoc(I)); |
| |
| Sema::CheckTemplateArgumentInfo CTAI; |
| if (S.CheckTemplateArgumentList(Concept, SourceLocation(), TemplateArgs, |
| /*DefaultArgs=*/{}, |
| /*PartialTemplateArgs=*/false, CTAI)) |
| return true; |
| MultiLevelTemplateArgumentList MLTAL(Concept, CTAI.CanonicalConverted, |
| /*Final=*/false); |
| // Build up an EvaluationContext with an ImplicitConceptSpecializationDecl so |
| // that the template arguments of the constraint can be preserved. For |
| // example: |
| // |
| // template <class T> |
| // concept C = []<D U = void>() { return true; }(); |
| // |
| // We need the argument for T while evaluating type constraint D in |
| // building the CallExpr to the lambda. |
| EnterExpressionEvaluationContext EECtx( |
| S, Sema::ExpressionEvaluationContext::Unevaluated, |
| ImplicitConceptSpecializationDecl::Create( |
| S.getASTContext(), Concept->getDeclContext(), Concept->getLocation(), |
| CTAI.CanonicalConverted)); |
| if (S.CheckConstraintSatisfaction(Concept, {Concept->getConstraintExpr()}, |
| MLTAL, TypeLoc.getLocalSourceRange(), |
| Satisfaction)) |
| return true; |
| if (!Satisfaction.IsSatisfied) { |
| std::string Buf; |
| llvm::raw_string_ostream OS(Buf); |
| OS << "'" << Concept->getName(); |
| if (TypeLoc.hasExplicitTemplateArgs()) { |
| printTemplateArgumentList( |
| OS, Type.getTypeConstraintArguments(), S.getPrintingPolicy(), |
| Type.getTypeConstraintConcept()->getTemplateParameters()); |
| } |
| OS << "'"; |
| S.Diag(TypeLoc.getConceptNameLoc(), |
| diag::err_placeholder_constraints_not_satisfied) |
| << Deduced << Buf << TypeLoc.getLocalSourceRange(); |
| S.DiagnoseUnsatisfiedConstraint(Satisfaction); |
| return true; |
| } |
| return false; |
| } |
| |
| TemplateDeductionResult |
| Sema::DeduceAutoType(TypeLoc Type, Expr *Init, QualType &Result, |
| TemplateDeductionInfo &Info, bool DependentDeduction, |
| bool IgnoreConstraints, |
| TemplateSpecCandidateSet *FailedTSC) { |
| assert(DependentDeduction || Info.getDeducedDepth() == 0); |
| if (Init->containsErrors()) |
| return TemplateDeductionResult::AlreadyDiagnosed; |
| |
| const AutoType *AT = Type.getType()->getContainedAutoType(); |
| assert(AT); |
| |
| if (Init->getType()->isNonOverloadPlaceholderType() || AT->isDecltypeAuto()) { |
| ExprResult NonPlaceholder = CheckPlaceholderExpr(Init); |
| if (NonPlaceholder.isInvalid()) |
| return TemplateDeductionResult::AlreadyDiagnosed; |
| Init = NonPlaceholder.get(); |
| } |
| |
| DependentAuto DependentResult = { |
| /*.IsPack = */ (bool)Type.getAs<PackExpansionTypeLoc>()}; |
| |
| if (!DependentDeduction && |
| (Type.getType()->isDependentType() || Init->isTypeDependent() || |
| Init->containsUnexpandedParameterPack())) { |
| Result = SubstituteDeducedTypeTransform(*this, DependentResult).Apply(Type); |
| assert(!Result.isNull() && "substituting DependentTy can't fail"); |
| return TemplateDeductionResult::Success; |
| } |
| |
| // Make sure that we treat 'char[]' equaly as 'char*' in C23 mode. |
| auto *String = dyn_cast<StringLiteral>(Init); |
| if (getLangOpts().C23 && String && Type.getType()->isArrayType()) { |
| Diag(Type.getBeginLoc(), diag::ext_c23_auto_non_plain_identifier); |
| TypeLoc TL = TypeLoc(Init->getType(), Type.getOpaqueData()); |
| Result = SubstituteDeducedTypeTransform(*this, DependentResult).Apply(TL); |
| assert(!Result.isNull() && "substituting DependentTy can't fail"); |
| return TemplateDeductionResult::Success; |
| } |
| |
| // Emit a warning if 'auto*' is used in pedantic and in C23 mode. |
| if (getLangOpts().C23 && Type.getType()->isPointerType()) { |
| Diag(Type.getBeginLoc(), diag::ext_c23_auto_non_plain_identifier); |
| } |
| |
| auto *InitList = dyn_cast<InitListExpr>(Init); |
| if (!getLangOpts().CPlusPlus && InitList) { |
| Diag(Init->getBeginLoc(), diag::err_auto_init_list_from_c) |
| << (int)AT->getKeyword() << getLangOpts().C23; |
| return TemplateDeductionResult::AlreadyDiagnosed; |
| } |
| |
| // Deduce type of TemplParam in Func(Init) |
| SmallVector<DeducedTemplateArgument, 1> Deduced; |
| Deduced.resize(1); |
| |
| // If deduction failed, don't diagnose if the initializer is dependent; it |
| // might acquire a matching type in the instantiation. |
| auto DeductionFailed = [&](TemplateDeductionResult TDK) { |
| if (Init->isTypeDependent()) { |
| Result = |
| SubstituteDeducedTypeTransform(*this, DependentResult).Apply(Type); |
| assert(!Result.isNull() && "substituting DependentTy can't fail"); |
| return TemplateDeductionResult::Success; |
| } |
| return TDK; |
| }; |
| |
| SmallVector<OriginalCallArg, 4> OriginalCallArgs; |
| |
| QualType DeducedType; |
| // If this is a 'decltype(auto)' specifier, do the decltype dance. |
| if (AT->isDecltypeAuto()) { |
| if (InitList) { |
| Diag(Init->getBeginLoc(), diag::err_decltype_auto_initializer_list); |
| return TemplateDeductionResult::AlreadyDiagnosed; |
| } |
| |
| DeducedType = getDecltypeForExpr(Init); |
| assert(!DeducedType.isNull()); |
| } else { |
| LocalInstantiationScope InstScope(*this); |
| |
| // Build template<class TemplParam> void Func(FuncParam); |
| SourceLocation Loc = Init->getExprLoc(); |
| TemplateTypeParmDecl *TemplParam = TemplateTypeParmDecl::Create( |
| Context, nullptr, SourceLocation(), Loc, Info.getDeducedDepth(), 0, |
| nullptr, false, false, false); |
| QualType TemplArg = QualType(TemplParam->getTypeForDecl(), 0); |
| NamedDecl *TemplParamPtr = TemplParam; |
| FixedSizeTemplateParameterListStorage<1, false> TemplateParamsSt( |
| Context, Loc, Loc, TemplParamPtr, Loc, nullptr); |
| |
| if (InitList) { |
| // Notionally, we substitute std::initializer_list<T> for 'auto' and |
| // deduce against that. Such deduction only succeeds if removing |
| // cv-qualifiers and references results in std::initializer_list<T>. |
| if (!Type.getType().getNonReferenceType()->getAs<AutoType>()) |
| return TemplateDeductionResult::Invalid; |
| |
| SourceRange DeducedFromInitRange; |
| for (Expr *Init : InitList->inits()) { |
| // Resolving a core issue: a braced-init-list containing any designators |
| // is a non-deduced context. |
| if (isa<DesignatedInitExpr>(Init)) |
| return TemplateDeductionResult::Invalid; |
| if (auto TDK = DeduceTemplateArgumentsFromCallArgument( |
| *this, TemplateParamsSt.get(), 0, TemplArg, Init->getType(), |
| Init->Classify(getASTContext()), Init, Info, Deduced, |
| OriginalCallArgs, |
| /*Decomposed=*/true, |
| /*ArgIdx=*/0, /*TDF=*/0); |
| TDK != TemplateDeductionResult::Success) { |
| if (TDK == TemplateDeductionResult::Inconsistent) { |
| Diag(Info.getLocation(), diag::err_auto_inconsistent_deduction) |
| << Info.FirstArg << Info.SecondArg << DeducedFromInitRange |
| << Init->getSourceRange(); |
| return DeductionFailed(TemplateDeductionResult::AlreadyDiagnosed); |
| } |
| return DeductionFailed(TDK); |
| } |
| |
| if (DeducedFromInitRange.isInvalid() && |
| Deduced[0].getKind() != TemplateArgument::Null) |
| DeducedFromInitRange = Init->getSourceRange(); |
| } |
| } else { |
| if (!getLangOpts().CPlusPlus && Init->refersToBitField()) { |
| Diag(Loc, diag::err_auto_bitfield); |
| return TemplateDeductionResult::AlreadyDiagnosed; |
| } |
| QualType FuncParam = |
| SubstituteDeducedTypeTransform(*this, TemplArg).Apply(Type); |
| assert(!FuncParam.isNull() && |
| "substituting template parameter for 'auto' failed"); |
| if (auto TDK = DeduceTemplateArgumentsFromCallArgument( |
| *this, TemplateParamsSt.get(), 0, FuncParam, Init->getType(), |
| Init->Classify(getASTContext()), Init, Info, Deduced, |
| OriginalCallArgs, |
| /*Decomposed=*/false, /*ArgIdx=*/0, /*TDF=*/0, FailedTSC); |
| TDK != TemplateDeductionResult::Success) |
| return DeductionFailed(TDK); |
| } |
| |
| // Could be null if somehow 'auto' appears in a non-deduced context. |
| if (Deduced[0].getKind() != TemplateArgument::Type) |
| return DeductionFailed(TemplateDeductionResult::Incomplete); |
| DeducedType = Deduced[0].getAsType(); |
| |
| if (InitList) { |
| DeducedType = BuildStdInitializerList(DeducedType, Loc); |
| if (DeducedType.isNull()) |
| return TemplateDeductionResult::AlreadyDiagnosed; |
| } |
| } |
| |
| if (!Result.isNull()) { |
| if (!Context.hasSameType(DeducedType, Result)) { |
| Info.FirstArg = Result; |
| Info.SecondArg = DeducedType; |
| return DeductionFailed(TemplateDeductionResult::Inconsistent); |
| } |
| DeducedType = Context.getCommonSugaredType(Result, DeducedType); |
| } |
| |
| if (AT->isConstrained() && !IgnoreConstraints && |
| CheckDeducedPlaceholderConstraints( |
| *this, *AT, Type.getContainedAutoTypeLoc(), DeducedType)) |
| return TemplateDeductionResult::AlreadyDiagnosed; |
| |
| Result = SubstituteDeducedTypeTransform(*this, DeducedType).Apply(Type); |
| if (Result.isNull()) |
| return TemplateDeductionResult::AlreadyDiagnosed; |
| |
| // Check that the deduced argument type is compatible with the original |
| // argument type per C++ [temp.deduct.call]p4. |
| QualType DeducedA = InitList ? Deduced[0].getAsType() : Result; |
| for (const OriginalCallArg &OriginalArg : OriginalCallArgs) { |
| assert((bool)InitList == OriginalArg.DecomposedParam && |
| "decomposed non-init-list in auto deduction?"); |
| if (auto TDK = |
| CheckOriginalCallArgDeduction(*this, Info, OriginalArg, DeducedA); |
| TDK != TemplateDeductionResult::Success) { |
| Result = QualType(); |
| return DeductionFailed(TDK); |
| } |
| } |
| |
| return TemplateDeductionResult::Success; |
| } |
| |
| QualType Sema::SubstAutoType(QualType TypeWithAuto, |
| QualType TypeToReplaceAuto) { |
| assert(TypeToReplaceAuto != Context.DependentTy); |
| return SubstituteDeducedTypeTransform(*this, TypeToReplaceAuto) |
| .TransformType(TypeWithAuto); |
| } |
| |
| TypeSourceInfo *Sema::SubstAutoTypeSourceInfo(TypeSourceInfo *TypeWithAuto, |
| QualType TypeToReplaceAuto) { |
| assert(TypeToReplaceAuto != Context.DependentTy); |
| return SubstituteDeducedTypeTransform(*this, TypeToReplaceAuto) |
| .TransformType(TypeWithAuto); |
| } |
| |
| QualType Sema::SubstAutoTypeDependent(QualType TypeWithAuto) { |
| return SubstituteDeducedTypeTransform(*this, DependentAuto{false}) |
| .TransformType(TypeWithAuto); |
| } |
| |
| TypeSourceInfo * |
| Sema::SubstAutoTypeSourceInfoDependent(TypeSourceInfo *TypeWithAuto) { |
| return SubstituteDeducedTypeTransform(*this, DependentAuto{false}) |
| .TransformType(TypeWithAuto); |
| } |
| |
| QualType Sema::ReplaceAutoType(QualType TypeWithAuto, |
| QualType TypeToReplaceAuto) { |
| return SubstituteDeducedTypeTransform(*this, TypeToReplaceAuto, |
| /*UseTypeSugar*/ false) |
| .TransformType(TypeWithAuto); |
| } |
| |
| TypeSourceInfo *Sema::ReplaceAutoTypeSourceInfo(TypeSourceInfo *TypeWithAuto, |
| QualType TypeToReplaceAuto) { |
| return SubstituteDeducedTypeTransform(*this, TypeToReplaceAuto, |
| /*UseTypeSugar*/ false) |
| .TransformType(TypeWithAuto); |
| } |
| |
| void Sema::DiagnoseAutoDeductionFailure(const VarDecl *VDecl, |
| const Expr *Init) { |
| if (isa<InitListExpr>(Init)) |
| Diag(VDecl->getLocation(), |
| VDecl->isInitCapture() |
| ? diag::err_init_capture_deduction_failure_from_init_list |
| : diag::err_auto_var_deduction_failure_from_init_list) |
| << VDecl->getDeclName() << VDecl->getType() << Init->getSourceRange(); |
| else |
| Diag(VDecl->getLocation(), |
| VDecl->isInitCapture() ? diag::err_init_capture_deduction_failure |
| : diag::err_auto_var_deduction_failure) |
| << VDecl->getDeclName() << VDecl->getType() << Init->getType() |
| << Init->getSourceRange(); |
| } |
| |
| bool Sema::DeduceReturnType(FunctionDecl *FD, SourceLocation Loc, |
| bool Diagnose) { |
| assert(FD->getReturnType()->isUndeducedType()); |
| |
| // For a lambda's conversion operator, deduce any 'auto' or 'decltype(auto)' |
| // within the return type from the call operator's type. |
| if (isLambdaConversionOperator(FD)) { |
| CXXRecordDecl *Lambda = cast<CXXMethodDecl>(FD)->getParent(); |
| FunctionDecl *CallOp = Lambda->getLambdaCallOperator(); |
| |
| // For a generic lambda, instantiate the call operator if needed. |
| if (auto *Args = FD->getTemplateSpecializationArgs()) { |
| CallOp = InstantiateFunctionDeclaration( |
| CallOp->getDescribedFunctionTemplate(), Args, Loc); |
| if (!CallOp || CallOp->isInvalidDecl()) |
| return true; |
| |
| // We might need to deduce the return type by instantiating the definition |
| // of the operator() function. |
| if (CallOp->getReturnType()->isUndeducedType()) { |
| runWithSufficientStackSpace(Loc, [&] { |
| InstantiateFunctionDefinition(Loc, CallOp); |
| }); |
| } |
| } |
| |
| if (CallOp->isInvalidDecl()) |
| return true; |
| assert(!CallOp->getReturnType()->isUndeducedType() && |
| "failed to deduce lambda return type"); |
| |
| // Build the new return type from scratch. |
| CallingConv RetTyCC = FD->getReturnType() |
| ->getPointeeType() |
| ->castAs<FunctionType>() |
| ->getCallConv(); |
| QualType RetType = getLambdaConversionFunctionResultType( |
| CallOp->getType()->castAs<FunctionProtoType>(), RetTyCC); |
| if (FD->getReturnType()->getAs<PointerType>()) |
| RetType = Context.getPointerType(RetType); |
| else { |
| assert(FD->getReturnType()->getAs<BlockPointerType>()); |
| RetType = Context.getBlockPointerType(RetType); |
| } |
| Context.adjustDeducedFunctionResultType(FD, RetType); |
| return false; |
| } |
| |
| if (FD->getTemplateInstantiationPattern()) { |
| runWithSufficientStackSpace(Loc, [&] { |
| InstantiateFunctionDefinition(Loc, FD); |
| }); |
| } |
| |
| bool StillUndeduced = FD->getReturnType()->isUndeducedType(); |
| if (StillUndeduced && Diagnose && !FD->isInvalidDecl()) { |
| Diag(Loc, diag::err_auto_fn_used_before_defined) << FD; |
| Diag(FD->getLocation(), diag::note_callee_decl) << FD; |
| } |
| |
| return StillUndeduced; |
| } |
| |
| bool Sema::CheckIfFunctionSpecializationIsImmediate(FunctionDecl *FD, |
| SourceLocation Loc) { |
| assert(FD->isImmediateEscalating()); |
| |
| if (isLambdaConversionOperator(FD)) { |
| CXXRecordDecl *Lambda = cast<CXXMethodDecl>(FD)->getParent(); |
| FunctionDecl *CallOp = Lambda->getLambdaCallOperator(); |
| |
| // For a generic lambda, instantiate the call operator if needed. |
| if (auto *Args = FD->getTemplateSpecializationArgs()) { |
| CallOp = InstantiateFunctionDeclaration( |
| CallOp->getDescribedFunctionTemplate(), Args, Loc); |
| if (!CallOp || CallOp->isInvalidDecl()) |
| return true; |
| runWithSufficientStackSpace( |
| Loc, [&] { InstantiateFunctionDefinition(Loc, CallOp); }); |
| } |
| return CallOp->isInvalidDecl(); |
| } |
| |
| if (FD->getTemplateInstantiationPattern()) { |
| runWithSufficientStackSpace( |
| Loc, [&] { InstantiateFunctionDefinition(Loc, FD); }); |
| } |
| return false; |
| } |
| |
| static QualType GetImplicitObjectParameterType(ASTContext &Context, |
| const CXXMethodDecl *Method, |
| QualType RawType, |
| bool IsOtherRvr) { |
| // C++20 [temp.func.order]p3.1, p3.2: |
| // - The type X(M) is "rvalue reference to cv A" if the optional |
| // ref-qualifier of M is && or if M has no ref-qualifier and the |
| // positionally-corresponding parameter of the other transformed template |
| // has rvalue reference type; if this determination depends recursively |
| // upon whether X(M) is an rvalue reference type, it is not considered to |
| // have rvalue reference type. |
| // |
| // - Otherwise, X(M) is "lvalue reference to cv A". |
| assert(Method && !Method->isExplicitObjectMemberFunction() && |
| "expected a member function with no explicit object parameter"); |
| |
| RawType = Context.getQualifiedType(RawType, Method->getMethodQualifiers()); |
| if (Method->getRefQualifier() == RQ_RValue || |
| (IsOtherRvr && Method->getRefQualifier() == RQ_None)) |
| return Context.getRValueReferenceType(RawType); |
| return Context.getLValueReferenceType(RawType); |
| } |
| |
| static TemplateDeductionResult CheckDeductionConsistency( |
| Sema &S, FunctionTemplateDecl *FTD, int ArgIdx, QualType P, QualType A, |
| ArrayRef<TemplateArgument> DeducedArgs, bool CheckConsistency) { |
| MultiLevelTemplateArgumentList MLTAL(FTD, DeducedArgs, |
| /*Final=*/true); |
| Sema::ArgumentPackSubstitutionIndexRAII PackIndex( |
| S, ArgIdx != -1 ? ::getPackIndexForParam(S, FTD, MLTAL, ArgIdx) : -1); |
| bool IsIncompleteSubstitution = false; |
| // FIXME: A substitution can be incomplete on a non-structural part of the |
| // type. Use the canonical type for now, until the TemplateInstantiator can |
| // deal with that. |
| QualType InstP = S.SubstType(P.getCanonicalType(), MLTAL, FTD->getLocation(), |
| FTD->getDeclName(), &IsIncompleteSubstitution); |
| if (InstP.isNull() && !IsIncompleteSubstitution) |
| return TemplateDeductionResult::SubstitutionFailure; |
| if (!CheckConsistency) |
| return TemplateDeductionResult::Success; |
| if (IsIncompleteSubstitution) |
| return TemplateDeductionResult::Incomplete; |
| |
| // [temp.deduct.call]/4 - Check we produced a consistent deduction. |
| // This handles just the cases that can appear when partial ordering. |
| if (auto *PA = dyn_cast<PackExpansionType>(A); |
| PA && !isa<PackExpansionType>(InstP)) |
| A = PA->getPattern(); |
| if (!S.Context.hasSameType( |
| S.Context.getUnqualifiedArrayType(InstP.getNonReferenceType()), |
| S.Context.getUnqualifiedArrayType(A.getNonReferenceType()))) |
| return TemplateDeductionResult::NonDeducedMismatch; |
| return TemplateDeductionResult::Success; |
| } |
| |
| template <class T> |
| static TemplateDeductionResult FinishTemplateArgumentDeduction( |
| Sema &S, FunctionTemplateDecl *FTD, |
| SmallVectorImpl<DeducedTemplateArgument> &Deduced, |
| TemplateDeductionInfo &Info, T &&CheckDeductionConsistency) { |
| EnterExpressionEvaluationContext Unevaluated( |
| S, Sema::ExpressionEvaluationContext::Unevaluated); |
| Sema::SFINAETrap Trap(S); |
| |
| Sema::ContextRAII SavedContext(S, getAsDeclContextOrEnclosing(FTD)); |
| |
| // C++26 [temp.deduct.type]p2: |
| // [...] or if any template argument remains neither deduced nor |
| // explicitly specified, template argument deduction fails. |
| bool IsIncomplete = false; |
| Sema::CheckTemplateArgumentInfo CTAI(/*PartialOrdering=*/true); |
| if (auto Result = ConvertDeducedTemplateArguments( |
| S, FTD, /*IsDeduced=*/true, Deduced, Info, CTAI, |
| /*CurrentInstantiationScope=*/nullptr, |
| /*NumAlreadyConverted=*/0, &IsIncomplete); |
| Result != TemplateDeductionResult::Success) |
| return Result; |
| |
| // Form the template argument list from the deduced template arguments. |
| TemplateArgumentList *SugaredDeducedArgumentList = |
| TemplateArgumentList::CreateCopy(S.Context, CTAI.SugaredConverted); |
| TemplateArgumentList *CanonicalDeducedArgumentList = |
| TemplateArgumentList::CreateCopy(S.Context, CTAI.CanonicalConverted); |
| |
| Info.reset(SugaredDeducedArgumentList, CanonicalDeducedArgumentList); |
| |
| // Substitute the deduced template arguments into the argument |
| // and verify that the instantiated argument is both valid |
| // and equivalent to the parameter. |
| LocalInstantiationScope InstScope(S); |
| |
| if (auto TDR = CheckDeductionConsistency(S, FTD, CTAI.SugaredConverted); |
| TDR != TemplateDeductionResult::Success) |
| return TDR; |
| |
| return Trap.hasErrorOccurred() ? TemplateDeductionResult::SubstitutionFailure |
| : TemplateDeductionResult::Success; |
| } |
| |
| /// Determine whether the function template \p FT1 is at least as |
| /// specialized as \p FT2. |
| static bool isAtLeastAsSpecializedAs( |
| Sema &S, SourceLocation Loc, FunctionTemplateDecl *FT1, |
| FunctionTemplateDecl *FT2, TemplatePartialOrderingContext TPOC, |
| ArrayRef<QualType> Args1, ArrayRef<QualType> Args2, bool Args1Offset) { |
| FunctionDecl *FD1 = FT1->getTemplatedDecl(); |
| FunctionDecl *FD2 = FT2->getTemplatedDecl(); |
| const FunctionProtoType *Proto1 = FD1->getType()->getAs<FunctionProtoType>(); |
| const FunctionProtoType *Proto2 = FD2->getType()->getAs<FunctionProtoType>(); |
| assert(Proto1 && Proto2 && "Function templates must have prototypes"); |
| |
| // C++26 [temp.deduct.partial]p3: |
| // The types used to determine the ordering depend on the context in which |
| // the partial ordering is done: |
| // - In the context of a function call, the types used are those function |
| // parameter types for which the function call has arguments. |
| // - In the context of a call to a conversion operator, the return types |
| // of the conversion function templates are used. |
| // - In other contexts (14.6.6.2) the function template's function type |
| // is used. |
| |
| if (TPOC == TPOC_Other) { |
| // We wouldn't be partial ordering these candidates if these didn't match. |
| assert(Proto1->getMethodQuals() == Proto2->getMethodQuals() && |
| Proto1->getRefQualifier() == Proto2->getRefQualifier() && |
| Proto1->isVariadic() == Proto2->isVariadic() && |
| "shouldn't partial order functions with different qualifiers in a " |
| "context where the function type is used"); |
| |
| assert(Args1.empty() && Args2.empty() && |
| "Only call context should have arguments"); |
| Args1 = Proto1->getParamTypes(); |
| Args2 = Proto2->getParamTypes(); |
| } |
| |
| TemplateParameterList *TemplateParams = FT2->getTemplateParameters(); |
| SmallVector<DeducedTemplateArgument, 4> Deduced(TemplateParams->size()); |
| TemplateDeductionInfo Info(Loc); |
| |
| bool HasDeducedAnyParamFromReturnType = false; |
| if (TPOC != TPOC_Call) { |
| if (DeduceTemplateArgumentsByTypeMatch( |
| S, TemplateParams, Proto2->getReturnType(), Proto1->getReturnType(), |
| Info, Deduced, TDF_None, PartialOrderingKind::Call, |
| /*DeducedFromArrayBound=*/false, |
| &HasDeducedAnyParamFromReturnType) != |
| TemplateDeductionResult::Success) |
| return false; |
| } |
| |
| llvm::SmallBitVector HasDeducedParam; |
| if (TPOC != TPOC_Conversion) { |
| HasDeducedParam.resize(Args2.size()); |
| if (DeduceTemplateArguments(S, TemplateParams, Args2, Args1, Info, Deduced, |
| TDF_None, PartialOrderingKind::Call, |
| /*HasDeducedAnyParam=*/nullptr, |
| &HasDeducedParam) != |
| TemplateDeductionResult::Success) |
| return false; |
| } |
| |
| SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end()); |
| Sema::InstantiatingTemplate Inst( |
| S, Info.getLocation(), FT2, DeducedArgs, |
| Sema::CodeSynthesisContext::DeducedTemplateArgumentSubstitution, Info); |
| if (Inst.isInvalid()) |
| return false; |
| |
| bool AtLeastAsSpecialized; |
| S.runWithSufficientStackSpace(Info.getLocation(), [&] { |
| AtLeastAsSpecialized = |
| ::FinishTemplateArgumentDeduction( |
| S, FT2, Deduced, Info, |
| [&](Sema &S, FunctionTemplateDecl *FTD, |
| ArrayRef<TemplateArgument> DeducedArgs) { |
| // As a provisional fix for a core issue that does not |
| // exist yet, which may be related to CWG2160, only check the |
| // consistency of parameters and return types which participated |
| // in deduction. We will still try to substitute them though. |
| if (TPOC != TPOC_Call) { |
| if (auto TDR = ::CheckDeductionConsistency( |
| S, FTD, /*ArgIdx=*/-1, Proto2->getReturnType(), |
| Proto1->getReturnType(), DeducedArgs, |
| /*CheckConsistency=*/HasDeducedAnyParamFromReturnType); |
| TDR != TemplateDeductionResult::Success) |
| return TDR; |
| } |
| |
| if (TPOC == TPOC_Conversion) |
| return TemplateDeductionResult::Success; |
| |
| return ::DeduceForEachType( |
| S, TemplateParams, Args2, Args1, Info, Deduced, |
| PartialOrderingKind::Call, /*FinishingDeduction=*/true, |
| [&](Sema &S, TemplateParameterList *, int ParamIdx, |
| int ArgIdx, QualType P, QualType A, |
| TemplateDeductionInfo &Info, |
| SmallVectorImpl<DeducedTemplateArgument> &Deduced, |
| PartialOrderingKind) { |
| if (ArgIdx != -1) |
| ArgIdx -= Args1Offset; |
| return ::CheckDeductionConsistency( |
| S, FTD, ArgIdx, P, A, DeducedArgs, |
| /*CheckConsistency=*/HasDeducedParam[ParamIdx]); |
| }); |
| }) == TemplateDeductionResult::Success; |
| }); |
| if (!AtLeastAsSpecialized) |
| return false; |
| |
| // C++0x [temp.deduct.partial]p11: |
| // In most cases, all template parameters must have values in order for |
| // deduction to succeed, but for partial ordering purposes a template |
| // parameter may remain without a value provided it is not used in the |
| // types being used for partial ordering. [ Note: a template parameter used |
| // in a non-deduced context is considered used. -end note] |
| unsigned ArgIdx = 0, NumArgs = Deduced.size(); |
| for (; ArgIdx != NumArgs; ++ArgIdx) |
| if (Deduced[ArgIdx].isNull()) |
| break; |
| |
| if (ArgIdx == NumArgs) { |
| // All template arguments were deduced. FT1 is at least as specialized |
| // as FT2. |
| return true; |
| } |
| |
| // Figure out which template parameters were used. |
| llvm::SmallBitVector UsedParameters(TemplateParams->size()); |
| switch (TPOC) { |
| case TPOC_Call: |
| for (unsigned I = 0, N = Args2.size(); I != N; ++I) |
| ::MarkUsedTemplateParameters(S.Context, Args2[I], /*OnlyDeduced=*/false, |
| TemplateParams->getDepth(), UsedParameters); |
| break; |
| |
| case TPOC_Conversion: |
| ::MarkUsedTemplateParameters(S.Context, Proto2->getReturnType(), |
| /*OnlyDeduced=*/false, |
| TemplateParams->getDepth(), UsedParameters); |
| break; |
| |
| case TPOC_Other: |
| // We do not deduce template arguments from the exception specification |
| // when determining the primary template of a function template |
| // specialization or when taking the address of a function template. |
| // Therefore, we do not mark template parameters in the exception |
| // specification as used during partial ordering to prevent the following |
| // from being ambiguous: |
| // |
| // template<typename T, typename U> |
| // void f(U) noexcept(noexcept(T())); // #1 |
| // |
| // template<typename T> |
| // void f(T*) noexcept; // #2 |
| // |
| // template<> |
| // void f<int>(int*) noexcept; // explicit specialization of #2 |
| // |
| // Although there is no corresponding wording in the standard, this seems |
| // to be the intended behavior given the definition of |
| // 'deduction substitution loci' in [temp.deduct]. |
| ::MarkUsedTemplateParameters( |
| S.Context, |
| S.Context.getFunctionTypeWithExceptionSpec(FD2->getType(), EST_None), |
| /*OnlyDeduced=*/false, TemplateParams->getDepth(), UsedParameters); |
| break; |
| } |
| |
| for (; ArgIdx != NumArgs; ++ArgIdx) |
| // If this argument had no value deduced but was used in one of the types |
| // used for partial ordering, then deduction fails. |
| if (Deduced[ArgIdx].isNull() && UsedParameters[ArgIdx]) |
| return false; |
| |
| return true; |
| } |
| |
| FunctionTemplateDecl *Sema::getMoreSpecializedTemplate( |
| FunctionTemplateDecl *FT1, FunctionTemplateDecl *FT2, SourceLocation Loc, |
| TemplatePartialOrderingContext TPOC, unsigned NumCallArguments1, |
| QualType RawObj1Ty, QualType RawObj2Ty, bool Reversed) { |
| SmallVector<QualType> Args1; |
| SmallVector<QualType> Args2; |
| const FunctionDecl *FD1 = FT1->getTemplatedDecl(); |
| const FunctionDecl *FD2 = FT2->getTemplatedDecl(); |
| bool ShouldConvert1 = false; |
| bool ShouldConvert2 = false; |
| bool Args1Offset = false; |
| bool Args2Offset = false; |
| QualType Obj1Ty; |
| QualType Obj2Ty; |
| if (TPOC == TPOC_Call) { |
| const FunctionProtoType *Proto1 = |
| FD1->getType()->castAs<FunctionProtoType>(); |
| const FunctionProtoType *Proto2 = |
| FD2->getType()->castAs<FunctionProtoType>(); |
| |
| // - In the context of a function call, the function parameter types are |
| // used. |
| const CXXMethodDecl *Method1 = dyn_cast<CXXMethodDecl>(FD1); |
| const CXXMethodDecl *Method2 = dyn_cast<CXXMethodDecl>(FD2); |
| // C++20 [temp.func.order]p3 |
| // [...] Each function template M that is a member function is |
| // considered to have a new first parameter of type |
| // X(M), described below, inserted in its function parameter list. |
| // |
| // Note that we interpret "that is a member function" as |
| // "that is a member function with no expicit object argument". |
| // Otherwise the ordering rules for methods with expicit objet arguments |
| // against anything else make no sense. |
| |
| bool NonStaticMethod1 = Method1 && !Method1->isStatic(), |
| NonStaticMethod2 = Method2 && !Method2->isStatic(); |
| |
| auto Params1Begin = Proto1->param_type_begin(), |
| Params2Begin = Proto2->param_type_begin(); |
| |
| size_t NumComparedArguments = NumCallArguments1; |
| |
| if (auto OO = FD1->getOverloadedOperator(); |
| (NonStaticMethod1 && NonStaticMethod2) || |
| (OO != OO_None && OO != OO_Call && OO != OO_Subscript)) { |
| ShouldConvert1 = |
| NonStaticMethod1 && !Method1->hasCXXExplicitFunctionObjectParameter(); |
| ShouldConvert2 = |
| NonStaticMethod2 && !Method2->hasCXXExplicitFunctionObjectParameter(); |
| NumComparedArguments += 1; |
| |
| if (ShouldConvert1) { |
| bool IsRValRef2 = |
| ShouldConvert2 |
| ? Method2->getRefQualifier() == RQ_RValue |
| : Proto2->param_type_begin()[0]->isRValueReferenceType(); |
| // Compare 'this' from Method1 against first parameter from Method2. |
| Obj1Ty = GetImplicitObjectParameterType(this->Context, Method1, |
| RawObj1Ty, IsRValRef2); |
| Args1.push_back(Obj1Ty); |
| Args1Offset = true; |
| } |
| if (ShouldConvert2) { |
| bool IsRValRef1 = |
| ShouldConvert1 |
| ? Method1->getRefQualifier() == RQ_RValue |
| : Proto1->param_type_begin()[0]->isRValueReferenceType(); |
| // Compare 'this' from Method2 against first parameter from Method1. |
| Obj2Ty = GetImplicitObjectParameterType(this->Context, Method2, |
| RawObj2Ty, IsRValRef1); |
| Args2.push_back(Obj2Ty); |
| Args2Offset = true; |
| } |
| } else { |
| if (NonStaticMethod1 && Method1->hasCXXExplicitFunctionObjectParameter()) |
| Params1Begin += 1; |
| if (NonStaticMethod2 && Method2->hasCXXExplicitFunctionObjectParameter()) |
| Params2Begin += 1; |
| } |
| Args1.insert(Args1.end(), Params1Begin, Proto1->param_type_end()); |
| Args2.insert(Args2.end(), Params2Begin, Proto2->param_type_end()); |
| |
| // C++ [temp.func.order]p5: |
| // The presence of unused ellipsis and default arguments has no effect on |
| // the partial ordering of function templates. |
| Args1.resize(std::min(Args1.size(), NumComparedArguments)); |
| Args2.resize(std::min(Args2.size(), NumComparedArguments)); |
| |
| if (Reversed) |
| std::reverse(Args2.begin(), Args2.end()); |
| } else { |
| assert(!Reversed && "Only call context could have reversed arguments"); |
| } |
| bool Better1 = isAtLeastAsSpecializedAs(*this, Loc, FT1, FT2, TPOC, Args1, |
| Args2, Args2Offset); |
| bool Better2 = isAtLeastAsSpecializedAs(*this, Loc, FT2, FT1, TPOC, Args2, |
| Args1, Args1Offset); |
| // C++ [temp.deduct.partial]p10: |
| // F is more specialized than G if F is at least as specialized as G and G |
| // is not at least as specialized as F. |
| if (Better1 != Better2) // We have a clear winner |
| return Better1 ? FT1 : FT2; |
| |
| if (!Better1 && !Better2) // Neither is better than the other |
| return nullptr; |
| |
| // C++ [temp.deduct.partial]p11: |
| // ... and if G has a trailing function parameter pack for which F does not |
| // have a corresponding parameter, and if F does not have a trailing |
| // function parameter pack, then F is more specialized than G. |
| |
| SmallVector<QualType> Param1; |
| Param1.reserve(FD1->param_size() + ShouldConvert1); |
| if (ShouldConvert1) |
| Param1.push_back(Obj1Ty); |
| for (const auto &P : FD1->parameters()) |
| Param1.push_back(P->getType()); |
| |
| SmallVector<QualType> Param2; |
| Param2.reserve(FD2->param_size() + ShouldConvert2); |
| if (ShouldConvert2) |
| Param2.push_back(Obj2Ty); |
| for (const auto &P : FD2->parameters()) |
| Param2.push_back(P->getType()); |
| |
| unsigned NumParams1 = Param1.size(); |
| unsigned NumParams2 = Param2.size(); |
| |
| bool Variadic1 = |
| FD1->param_size() && FD1->parameters().back()->isParameterPack(); |
| bool Variadic2 = |
| FD2->param_size() && FD2->parameters().back()->isParameterPack(); |
| if (Variadic1 != Variadic2) { |
| if (Variadic1 && NumParams1 > NumParams2) |
| return FT2; |
| if (Variadic2 && NumParams2 > NumParams1) |
| return FT1; |
| } |
| |
| // This a speculative fix for CWG1432 (Similar to the fix for CWG1395) that |
| // there is no wording or even resolution for this issue. |
| for (int i = 0, e = std::min(NumParams1, NumParams2); i < e; ++i) { |
| QualType T1 = Param1[i].getCanonicalType(); |
| QualType T2 = Param2[i].getCanonicalType(); |
| auto *TST1 = dyn_cast<TemplateSpecializationType>(T1); |
| auto *TST2 = dyn_cast<TemplateSpecializationType>(T2); |
| if (!TST1 || !TST2) |
| continue; |
| const TemplateArgument &TA1 = TST1->template_arguments().back(); |
| if (TA1.getKind() == TemplateArgument::Pack) { |
| assert(TST1->template_arguments().size() == |
| TST2->template_arguments().size()); |
| const TemplateArgument &TA2 = TST2->template_arguments().back(); |
| assert(TA2.getKind() == TemplateArgument::Pack); |
| unsigned PackSize1 = TA1.pack_size(); |
| unsigned PackSize2 = TA2.pack_size(); |
| bool IsPackExpansion1 = |
| PackSize1 && TA1.pack_elements().back().isPackExpansion(); |
| bool IsPackExpansion2 = |
| PackSize2 && TA2.pack_elements().back().isPackExpansion(); |
| if (PackSize1 != PackSize2 && IsPackExpansion1 != IsPackExpansion2) { |
| if (PackSize1 > PackSize2 && IsPackExpansion1) |
| return FT2; |
| if (PackSize1 < PackSize2 && IsPackExpansion2) |
| return FT1; |
| } |
| } |
| } |
| |
| if (!Context.getLangOpts().CPlusPlus20) |
| return nullptr; |
| |
| // Match GCC on not implementing [temp.func.order]p6.2.1. |
| |
| // C++20 [temp.func.order]p6: |
| // If deduction against the other template succeeds for both transformed |
| // templates, constraints can be considered as follows: |
| |
| // C++20 [temp.func.order]p6.1: |
| // If their template-parameter-lists (possibly including template-parameters |
| // invented for an abbreviated function template ([dcl.fct])) or function |
| // parameter lists differ in length, neither template is more specialized |
| // than the other. |
| TemplateParameterList *TPL1 = FT1->getTemplateParameters(); |
| TemplateParameterList *TPL2 = FT2->getTemplateParameters(); |
| if (TPL1->size() != TPL2->size() || NumParams1 != NumParams2) |
| return nullptr; |
| |
| // C++20 [temp.func.order]p6.2.2: |
| // Otherwise, if the corresponding template-parameters of the |
| // template-parameter-lists are not equivalent ([temp.over.link]) or if the |
| // function parameters that positionally correspond between the two |
| // templates are not of the same type, neither template is more specialized |
| // than the other. |
| if (!TemplateParameterListsAreEqual(TPL1, TPL2, false, |
| Sema::TPL_TemplateParamsEquivalent)) |
| return nullptr; |
| |
| // [dcl.fct]p5: |
| // Any top-level cv-qualifiers modifying a parameter type are deleted when |
| // forming the function type. |
| for (unsigned i = 0; i < NumParams1; ++i) |
| if (!Context.hasSameUnqualifiedType(Param1[i], Param2[i])) |
| return nullptr; |
| |
| // C++20 [temp.func.order]p6.3: |
| // Otherwise, if the context in which the partial ordering is done is |
| // that of a call to a conversion function and the return types of the |
| // templates are not the same, then neither template is more specialized |
| // than the other. |
| if (TPOC == TPOC_Conversion && |
| !Context.hasSameType(FD1->getReturnType(), FD2->getReturnType())) |
| return nullptr; |
| |
| llvm::SmallVector<const Expr *, 3> AC1, AC2; |
| FT1->getAssociatedConstraints(AC1); |
| FT2->getAssociatedConstraints(AC2); |
| bool AtLeastAsConstrained1, AtLeastAsConstrained2; |
| if (IsAtLeastAsConstrained(FT1, AC1, FT2, AC2, AtLeastAsConstrained1)) |
| return nullptr; |
| if (IsAtLeastAsConstrained(FT2, AC2, FT1, AC1, AtLeastAsConstrained2)) |
| return nullptr; |
| if (AtLeastAsConstrained1 == AtLeastAsConstrained2) |
| return nullptr; |
| return AtLeastAsConstrained1 ? FT1 : FT2; |
| } |
| |
| UnresolvedSetIterator Sema::getMostSpecialized( |
| UnresolvedSetIterator SpecBegin, UnresolvedSetIterator SpecEnd, |
| TemplateSpecCandidateSet &FailedCandidates, |
| SourceLocation Loc, const PartialDiagnostic &NoneDiag, |
| const PartialDiagnostic &AmbigDiag, const PartialDiagnostic &CandidateDiag, |
| bool Complain, QualType TargetType) { |
| if (SpecBegin == SpecEnd) { |
| if (Complain) { |
| Diag(Loc, NoneDiag); |
| FailedCandidates.NoteCandidates(*this, Loc); |
| } |
| return SpecEnd; |
| } |
| |
| if (SpecBegin + 1 == SpecEnd) |
| return SpecBegin; |
| |
| // Find the function template that is better than all of the templates it |
| // has been compared to. |
| UnresolvedSetIterator Best = SpecBegin; |
| FunctionTemplateDecl *BestTemplate |
| = cast<FunctionDecl>(*Best)->getPrimaryTemplate(); |
| assert(BestTemplate && "Not a function template specialization?"); |
| for (UnresolvedSetIterator I = SpecBegin + 1; I != SpecEnd; ++I) { |
| FunctionTemplateDecl *Challenger |
| = cast<FunctionDecl>(*I)->getPrimaryTemplate(); |
| assert(Challenger && "Not a function template specialization?"); |
| if (declaresSameEntity(getMoreSpecializedTemplate(BestTemplate, Challenger, |
| Loc, TPOC_Other, 0), |
| Challenger)) { |
| Best = I; |
| BestTemplate = Challenger; |
| } |
| } |
| |
| // Make sure that the "best" function template is more specialized than all |
| // of the others. |
| bool Ambiguous = false; |
| for (UnresolvedSetIterator I = SpecBegin; I != SpecEnd; ++I) { |
| FunctionTemplateDecl *Challenger |
| = cast<FunctionDecl>(*I)->getPrimaryTemplate(); |
| if (I != Best && |
| !declaresSameEntity(getMoreSpecializedTemplate(BestTemplate, Challenger, |
| Loc, TPOC_Other, 0), |
| BestTemplate)) { |
| Ambiguous = true; |
| break; |
| } |
| } |
| |
| if (!Ambiguous) { |
| // We found an answer. Return it. |
| return Best; |
| } |
| |
| // Diagnose the ambiguity. |
| if (Complain) { |
| Diag(Loc, AmbigDiag); |
| |
| // FIXME: Can we order the candidates in some sane way? |
| for (UnresolvedSetIterator I = SpecBegin; I != SpecEnd; ++I) { |
| PartialDiagnostic PD = CandidateDiag; |
| const auto *FD = cast<FunctionDecl>(*I); |
| PD << FD << getTemplateArgumentBindingsText( |
| FD->getPrimaryTemplate()->getTemplateParameters(), |
| *FD->getTemplateSpecializationArgs()); |
| if (!TargetType.isNull()) |
| HandleFunctionTypeMismatch(PD, FD->getType(), TargetType); |
| Diag((*I)->getLocation(), PD); |
| } |
| } |
| |
| return SpecEnd; |
| } |
| |
| FunctionDecl *Sema::getMoreConstrainedFunction(FunctionDecl *FD1, |
| FunctionDecl *FD2) { |
| assert(!FD1->getDescribedTemplate() && !FD2->getDescribedTemplate() && |
| "not for function templates"); |
| assert(!FD1->isFunctionTemplateSpecialization() || |
| isa<CXXConversionDecl>(FD1)); |
| assert(!FD2->isFunctionTemplateSpecialization() || |
| isa<CXXConversionDecl>(FD2)); |
| |
| FunctionDecl *F1 = FD1; |
| if (FunctionDecl *P = FD1->getTemplateInstantiationPattern(false)) |
| F1 = P; |
| |
| FunctionDecl *F2 = FD2; |
| if (FunctionDecl *P = FD2->getTemplateInstantiationPattern(false)) |
| F2 = P; |
| |
| llvm::SmallVector<const Expr *, 1> AC1, AC2; |
| F1->getAssociatedConstraints(AC1); |
| F2->getAssociatedConstraints(AC2); |
| bool AtLeastAsConstrained1, AtLeastAsConstrained2; |
| if (IsAtLeastAsConstrained(F1, AC1, F2, AC2, AtLeastAsConstrained1)) |
| return nullptr; |
| if (IsAtLeastAsConstrained(F2, AC2, F1, AC1, AtLeastAsConstrained2)) |
| return nullptr; |
| if (AtLeastAsConstrained1 == AtLeastAsConstrained2) |
| return nullptr; |
| return AtLeastAsConstrained1 ? FD1 : FD2; |
| } |
| |
| /// Determine whether one partial specialization, P1, is at least as |
| /// specialized than another, P2. |
| /// |
| /// \tparam TemplateLikeDecl The kind of P2, which must be a |
| /// TemplateDecl or {Class,Var}TemplatePartialSpecializationDecl. |
| /// \param T1 The injected-class-name of P1 (faked for a variable template). |
| /// \param T2 The injected-class-name of P2 (faked for a variable template). |
| template<typename TemplateLikeDecl> |
| static bool isAtLeastAsSpecializedAs(Sema &S, QualType T1, QualType T2, |
| TemplateLikeDecl *P2, |
| TemplateDeductionInfo &Info) { |
| // C++ [temp.class.order]p1: |
| // For two class template partial specializations, the first is at least as |
| // specialized as the second if, given the following rewrite to two |
| // function templates, the first function template is at least as |
| // specialized as the second according to the ordering rules for function |
| // templates (14.6.6.2): |
| // - the first function template has the same template parameters as the |
| // first partial specialization and has a single function parameter |
| // whose type is a class template specialization with the template |
| // arguments of the first partial specialization, and |
| // - the second function template has the same template parameters as the |
| // second partial specialization and has a single function parameter |
| // whose type is a class template specialization with the template |
| // arguments of the second partial specialization. |
| // |
| // Rather than synthesize function templates, we merely perform the |
| // equivalent partial ordering by performing deduction directly on |
| // the template arguments of the class template partial |
| // specializations. This computation is slightly simpler than the |
| // general problem of function template partial ordering, because |
| // class template partial specializations are more constrained. We |
| // know that every template parameter is deducible from the class |
| // template partial specialization's template arguments, for |
| // example. |
| SmallVector<DeducedTemplateArgument, 4> Deduced; |
| |
| // Determine whether P1 is at least as specialized as P2. |
| Deduced.resize(P2->getTemplateParameters()->size()); |
| if (DeduceTemplateArgumentsByTypeMatch( |
| S, P2->getTemplateParameters(), T2, T1, Info, Deduced, TDF_None, |
| PartialOrderingKind::Call, /*DeducedFromArrayBound=*/false, |
| /*HasDeducedAnyParam=*/nullptr) != TemplateDeductionResult::Success) |
| return false; |
| |
| SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), |
| Deduced.end()); |
| Sema::InstantiatingTemplate Inst(S, Info.getLocation(), P2, DeducedArgs, |
| Info); |
| if (Inst.isInvalid()) |
| return false; |
| |
| const auto *TST1 = cast<TemplateSpecializationType>(T1); |
| |
| Sema::SFINAETrap Trap(S); |
| |
| TemplateDeductionResult Result; |
| S.runWithSufficientStackSpace(Info.getLocation(), [&] { |
| Result = ::FinishTemplateArgumentDeduction( |
| S, P2, /*IsPartialOrdering=*/true, TST1->template_arguments(), Deduced, |
| Info); |
| }); |
| |
| if (Result != TemplateDeductionResult::Success) |
| return false; |
| |
| if (Trap.hasErrorOccurred()) |
| return false; |
| |
| return true; |
| } |
| |
| namespace { |
| // A dummy class to return nullptr instead of P2 when performing "more |
| // specialized than primary" check. |
| struct GetP2 { |
| template <typename T1, typename T2, |
| std::enable_if_t<std::is_same_v<T1, T2>, bool> = true> |
| T2 *operator()(T1 *, T2 *P2) { |
| return P2; |
| } |
| template <typename T1, typename T2, |
| std::enable_if_t<!std::is_same_v<T1, T2>, bool> = true> |
| T1 *operator()(T1 *, T2 *) { |
| return nullptr; |
| } |
| }; |
| |
| // The assumption is that two template argument lists have the same size. |
| struct TemplateArgumentListAreEqual { |
| ASTContext &Ctx; |
| TemplateArgumentListAreEqual(ASTContext &Ctx) : Ctx(Ctx) {} |
| |
| template <typename T1, typename T2, |
| std::enable_if_t<std::is_same_v<T1, T2>, bool> = true> |
| bool operator()(T1 *PS1, T2 *PS2) { |
| ArrayRef<TemplateArgument> Args1 = PS1->getTemplateArgs().asArray(), |
| Args2 = PS2->getTemplateArgs().asArray(); |
| |
| for (unsigned I = 0, E = Args1.size(); I < E; ++I) { |
| // We use profile, instead of structural comparison of the arguments, |
| // because canonicalization can't do the right thing for dependent |
| // expressions. |
| llvm::FoldingSetNodeID IDA, IDB; |
| Args1[I].Profile(IDA, Ctx); |
| Args2[I].Profile(IDB, Ctx); |
| if (IDA != IDB) |
| return false; |
| } |
| return true; |
| } |
| |
| template <typename T1, typename T2, |
| std::enable_if_t<!std::is_same_v<T1, T2>, bool> = true> |
| bool operator()(T1 *Spec, T2 *Primary) { |
| ArrayRef<TemplateArgument> Args1 = Spec->getTemplateArgs().asArray(), |
| Args2 = Primary->getInjectedTemplateArgs(Ctx); |
| |
| for (unsigned I = 0, E = Args1.size(); I < E; ++I) { |
| // We use profile, instead of structural comparison of the arguments, |
| // because canonicalization can't do the right thing for dependent |
| // expressions. |
| llvm::FoldingSetNodeID IDA, IDB; |
| Args1[I].Profile(IDA, Ctx); |
| // Unlike the specialization arguments, the injected arguments are not |
| // always canonical. |
| Ctx.getCanonicalTemplateArgument(Args2[I]).Profile(IDB, Ctx); |
| if (IDA != IDB) |
| return false; |
| } |
| return true; |
| } |
| }; |
| } // namespace |
| |
| /// Returns the more specialized template specialization between T1/P1 and |
| /// T2/P2. |
| /// - If IsMoreSpecialThanPrimaryCheck is true, T1/P1 is the partial |
| /// specialization and T2/P2 is the primary template. |
| /// - otherwise, both T1/P1 and T2/P2 are the partial specialization. |
| /// |
| /// \param T1 the type of the first template partial specialization |
| /// |
| /// \param T2 if IsMoreSpecialThanPrimaryCheck is true, the type of the second |
| /// template partial specialization; otherwise, the type of the |
| /// primary template. |
| /// |
| /// \param P1 the first template partial specialization |
| /// |
| /// \param P2 if IsMoreSpecialThanPrimaryCheck is true, the second template |
| /// partial specialization; otherwise, the primary template. |
| /// |
| /// \returns - If IsMoreSpecialThanPrimaryCheck is true, returns P1 if P1 is |
| /// more specialized, returns nullptr if P1 is not more specialized. |
| /// - otherwise, returns the more specialized template partial |
| /// specialization. If neither partial specialization is more |
| /// specialized, returns NULL. |
| template <typename TemplateLikeDecl, typename PrimaryDel> |
| static TemplateLikeDecl * |
| getMoreSpecialized(Sema &S, QualType T1, QualType T2, TemplateLikeDecl *P1, |
| PrimaryDel *P2, TemplateDeductionInfo &Info) { |
| constexpr bool IsMoreSpecialThanPrimaryCheck = |
| !std::is_same_v<TemplateLikeDecl, PrimaryDel>; |
| |
| bool Better1 = isAtLeastAsSpecializedAs(S, T1, T2, P2, Info); |
| if (IsMoreSpecialThanPrimaryCheck && !Better1) |
| return nullptr; |
| |
| bool Better2 = isAtLeastAsSpecializedAs(S, T2, T1, P1, Info); |
| if (IsMoreSpecialThanPrimaryCheck && !Better2) |
| return P1; |
| |
| // C++ [temp.deduct.partial]p10: |
| // F is more specialized than G if F is at least as specialized as G and G |
| // is not at least as specialized as F. |
| if (Better1 != Better2) // We have a clear winner |
| return Better1 ? P1 : GetP2()(P1, P2); |
| |
| if (!Better1 && !Better2) |
| return nullptr; |
| |
| // This a speculative fix for CWG1432 (Similar to the fix for CWG1395) that |
| // there is no wording or even resolution for this issue. |
| auto *TST1 = cast<TemplateSpecializationType>(T1); |
| auto *TST2 = cast<TemplateSpecializationType>(T2); |
| const TemplateArgument &TA1 = TST1->template_arguments().back(); |
| if (TA1.getKind() == TemplateArgument::Pack) { |
| assert(TST1->template_arguments().size() == |
| TST2->template_arguments().size()); |
| const TemplateArgument &TA2 = TST2->template_arguments().back(); |
| assert(TA2.getKind() == TemplateArgument::Pack); |
| unsigned PackSize1 = TA1.pack_size(); |
| unsigned PackSize2 = TA2.pack_size(); |
| bool IsPackExpansion1 = |
| PackSize1 && TA1.pack_elements().back().isPackExpansion(); |
| bool IsPackExpansion2 = |
| PackSize2 && TA2.pack_elements().back().isPackExpansion(); |
| if (PackSize1 != PackSize2 && IsPackExpansion1 != IsPackExpansion2) { |
| if (PackSize1 > PackSize2 && IsPackExpansion1) |
| return GetP2()(P1, P2); |
| if (PackSize1 < PackSize2 && IsPackExpansion2) |
| return P1; |
| } |
| } |
| |
| if (!S.Context.getLangOpts().CPlusPlus20) |
| return nullptr; |
| |
| // Match GCC on not implementing [temp.func.order]p6.2.1. |
| |
| // C++20 [temp.func.order]p6: |
| // If deduction against the other template succeeds for both transformed |
| // templates, constraints can be considered as follows: |
| |
| TemplateParameterList *TPL1 = P1->getTemplateParameters(); |
| TemplateParameterList *TPL2 = P2->getTemplateParameters(); |
| if (TPL1->size() != TPL2->size()) |
| return nullptr; |
| |
| // C++20 [temp.func.order]p6.2.2: |
| // Otherwise, if the corresponding template-parameters of the |
| // template-parameter-lists are not equivalent ([temp.over.link]) or if the |
| // function parameters that positionally correspond between the two |
| // templates are not of the same type, neither template is more specialized |
| // than the other. |
| if (!S.TemplateParameterListsAreEqual(TPL1, TPL2, false, |
| Sema::TPL_TemplateParamsEquivalent)) |
| return nullptr; |
| |
| if (!TemplateArgumentListAreEqual(S.getASTContext())(P1, P2)) |
| return nullptr; |
| |
| llvm::SmallVector<const Expr *, 3> AC1, AC2; |
| P1->getAssociatedConstraints(AC1); |
| P2->getAssociatedConstraints(AC2); |
| bool AtLeastAsConstrained1, AtLeastAsConstrained2; |
| if (S.IsAtLeastAsConstrained(P1, AC1, P2, AC2, AtLeastAsConstrained1) || |
| (IsMoreSpecialThanPrimaryCheck && !AtLeastAsConstrained1)) |
| return nullptr; |
| if (S.IsAtLeastAsConstrained(P2, AC2, P1, AC1, AtLeastAsConstrained2)) |
| return nullptr; |
| if (AtLeastAsConstrained1 == AtLeastAsConstrained2) |
| return nullptr; |
| return AtLeastAsConstrained1 ? P1 : GetP2()(P1, P2); |
| } |
| |
| ClassTemplatePartialSpecializationDecl * |
| Sema::getMoreSpecializedPartialSpecialization( |
| ClassTemplatePartialSpecializationDecl *PS1, |
| ClassTemplatePartialSpecializationDecl *PS2, |
| SourceLocation Loc) { |
| QualType PT1 = PS1->getInjectedSpecializationType(); |
| QualType PT2 = PS2->getInjectedSpecializationType(); |
| |
| TemplateDeductionInfo Info(Loc); |
| return getMoreSpecialized(*this, PT1, PT2, PS1, PS2, Info); |
| } |
| |
| bool Sema::isMoreSpecializedThanPrimary( |
| ClassTemplatePartialSpecializationDecl *Spec, TemplateDeductionInfo &Info) { |
| ClassTemplateDecl *Primary = Spec->getSpecializedTemplate(); |
| QualType PrimaryT = Primary->getInjectedClassNameSpecialization(); |
| QualType PartialT = Spec->getInjectedSpecializationType(); |
| |
| ClassTemplatePartialSpecializationDecl *MaybeSpec = |
| getMoreSpecialized(*this, PartialT, PrimaryT, Spec, Primary, Info); |
| if (MaybeSpec) |
| Info.clearSFINAEDiagnostic(); |
| return MaybeSpec; |
| } |
| |
| VarTemplatePartialSpecializationDecl * |
| Sema::getMoreSpecializedPartialSpecialization( |
| VarTemplatePartialSpecializationDecl *PS1, |
| VarTemplatePartialSpecializationDecl *PS2, SourceLocation Loc) { |
| // Pretend the variable template specializations are class template |
| // specializations and form a fake injected class name type for comparison. |
| assert(PS1->getSpecializedTemplate() == PS2->getSpecializedTemplate() && |
| "the partial specializations being compared should specialize" |
| " the same template."); |
| TemplateName Name(PS1->getSpecializedTemplate()); |
| QualType PT1 = Context.getTemplateSpecializationType( |
| Name, PS1->getTemplateArgs().asArray()); |
| QualType PT2 = Context.getTemplateSpecializationType( |
| Name, PS2->getTemplateArgs().asArray()); |
| |
| TemplateDeductionInfo Info(Loc); |
| return getMoreSpecialized(*this, PT1, PT2, PS1, PS2, Info); |
| } |
| |
| bool Sema::isMoreSpecializedThanPrimary( |
| VarTemplatePartialSpecializationDecl *Spec, TemplateDeductionInfo &Info) { |
| VarTemplateDecl *Primary = Spec->getSpecializedTemplate(); |
| TemplateName Name(Primary); |
| QualType PrimaryT = Context.getTemplateSpecializationType( |
| Name, Primary->getInjectedTemplateArgs(Context)); |
| QualType PartialT = Context.getTemplateSpecializationType( |
| Name, Spec->getTemplateArgs().asArray()); |
| |
| VarTemplatePartialSpecializationDecl *MaybeSpec = |
| getMoreSpecialized(*this, PartialT, PrimaryT, Spec, Primary, Info); |
| if (MaybeSpec) |
| Info.clearSFINAEDiagnostic(); |
| return MaybeSpec; |
| } |
| |
| bool Sema::isTemplateTemplateParameterAtLeastAsSpecializedAs( |
| TemplateParameterList *P, TemplateDecl *PArg, TemplateDecl *AArg, |
| const DefaultArguments &DefaultArgs, SourceLocation ArgLoc, |
| bool PartialOrdering, bool *MatchedPackOnParmToNonPackOnArg) { |
| // C++1z [temp.arg.template]p4: (DR 150) |
| // A template template-parameter P is at least as specialized as a |
| // template template-argument A if, given the following rewrite to two |
| // function templates... |
| |
| // Rather than synthesize function templates, we merely perform the |
| // equivalent partial ordering by performing deduction directly on |
| // the template parameter lists of the template template parameters. |
| // |
| TemplateParameterList *A = AArg->getTemplateParameters(); |
| |
| Sema::InstantiatingTemplate Inst( |
| *this, ArgLoc, Sema::InstantiatingTemplate::PartialOrderingTTP(), PArg, |
| SourceRange(P->getTemplateLoc(), P->getRAngleLoc())); |
| if (Inst.isInvalid()) |
| return false; |
| |
| // Given an invented class template X with the template parameter list of |
| // A (including default arguments): |
| // - Each function template has a single function parameter whose type is |
| // a specialization of X with template arguments corresponding to the |
| // template parameters from the respective function template |
| SmallVector<TemplateArgument, 8> AArgs(A->getInjectedTemplateArgs(Context)); |
| |
| // Check P's arguments against A's parameter list. This will fill in default |
| // template arguments as needed. AArgs are already correct by construction. |
| // We can't just use CheckTemplateIdType because that will expand alias |
| // templates. |
| SmallVector<TemplateArgument, 4> PArgs(P->getInjectedTemplateArgs(Context)); |
| { |
| TemplateArgumentListInfo PArgList(P->getLAngleLoc(), |
| P->getRAngleLoc()); |
| for (unsigned I = 0, N = P->size(); I != N; ++I) { |
| // Unwrap packs that getInjectedTemplateArgs wrapped around pack |
| // expansions, to form an "as written" argument list. |
| TemplateArgument Arg = PArgs[I]; |
| if (Arg.getKind() == TemplateArgument::Pack) { |
| assert(Arg.pack_size() == 1 && Arg.pack_begin()->isPackExpansion()); |
| Arg = *Arg.pack_begin(); |
| } |
| PArgList.addArgument(getTrivialTemplateArgumentLoc( |
| Arg, QualType(), P->getParam(I)->getLocation())); |
| } |
| PArgs.clear(); |
| |
| // C++1z [temp.arg.template]p3: |
| // If the rewrite produces an invalid type, then P is not at least as |
| // specialized as A. |
| CheckTemplateArgumentInfo CTAI( |
| /*PartialOrdering=*/false, /*MatchingTTP=*/true); |
| CTAI.SugaredConverted = std::move(PArgs); |
| if (CheckTemplateArgumentList(AArg, ArgLoc, PArgList, DefaultArgs, |
| /*PartialTemplateArgs=*/false, CTAI, |
| /*UpdateArgsWithConversions=*/true, |
| /*ConstraintsNotSatisfied=*/nullptr)) |
| return false; |
| PArgs = std::move(CTAI.SugaredConverted); |
| if (MatchedPackOnParmToNonPackOnArg) |
| *MatchedPackOnParmToNonPackOnArg |= CTAI.MatchedPackOnParmToNonPackOnArg; |
| } |
| |
| // Determine whether P1 is at least as specialized as P2. |
| TemplateDeductionInfo Info(ArgLoc, A->getDepth()); |
| SmallVector<DeducedTemplateArgument, 4> Deduced; |
| Deduced.resize(A->size()); |
| |
| // ... the function template corresponding to P is at least as specialized |
| // as the function template corresponding to A according to the partial |
| // ordering rules for function templates. |
| |
| // Provisional resolution for CWG2398: Regarding temp.arg.template]p4, when |
| // applying the partial ordering rules for function templates on |
| // the rewritten template template parameters: |
| // - In a deduced context, the matching of packs versus fixed-size needs to |
| // be inverted between Ps and As. On non-deduced context, matching needs to |
| // happen both ways, according to [temp.arg.template]p3, but this is |
| // currently implemented as a special case elsewhere. |
| switch (::DeduceTemplateArguments( |
| *this, A, AArgs, PArgs, Info, Deduced, |
| /*NumberOfArgumentsMustMatch=*/false, /*PartialOrdering=*/true, |
| PartialOrdering ? PackFold::ArgumentToParameter : PackFold::Both, |
| /*HasDeducedAnyParam=*/nullptr)) { |
| case clang::TemplateDeductionResult::Success: |
| if (MatchedPackOnParmToNonPackOnArg && |
| Info.hasMatchedPackOnParmToNonPackOnArg()) |
| *MatchedPackOnParmToNonPackOnArg = true; |
| break; |
| |
| case TemplateDeductionResult::MiscellaneousDeductionFailure: |
| Diag(AArg->getLocation(), diag::err_template_param_list_different_arity) |
| << (A->size() > P->size()) << /*isTemplateTemplateParameter=*/true |
| << SourceRange(A->getTemplateLoc(), P->getRAngleLoc()); |
| return false; |
| case TemplateDeductionResult::NonDeducedMismatch: |
| Diag(AArg->getLocation(), diag::err_non_deduced_mismatch) |
| << Info.FirstArg << Info.SecondArg; |
| return false; |
| case TemplateDeductionResult::Inconsistent: |
| Diag(getAsNamedDecl(Info.Param)->getLocation(), |
| diag::err_inconsistent_deduction) |
| << Info.FirstArg << Info.SecondArg; |
| return false; |
| case TemplateDeductionResult::AlreadyDiagnosed: |
| return false; |
| |
| // None of these should happen for a plain deduction. |
| case TemplateDeductionResult::Invalid: |
| case TemplateDeductionResult::InstantiationDepth: |
| case TemplateDeductionResult::Incomplete: |
| case TemplateDeductionResult::IncompletePack: |
| case TemplateDeductionResult::Underqualified: |
| case TemplateDeductionResult::SubstitutionFailure: |
| case TemplateDeductionResult::DeducedMismatch: |
| case TemplateDeductionResult::DeducedMismatchNested: |
| case TemplateDeductionResult::TooManyArguments: |
| case TemplateDeductionResult::TooFewArguments: |
| case TemplateDeductionResult::InvalidExplicitArguments: |
| case TemplateDeductionResult::NonDependentConversionFailure: |
| case TemplateDeductionResult::ConstraintsNotSatisfied: |
| case TemplateDeductionResult::CUDATargetMismatch: |
| llvm_unreachable("Unexpected Result"); |
| } |
| |
| SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end()); |
| |
| TemplateDeductionResult TDK; |
| runWithSufficientStackSpace(Info.getLocation(), [&] { |
| TDK = ::FinishTemplateArgumentDeduction( |
| *this, AArg, /*IsPartialOrdering=*/true, PArgs, Deduced, Info); |
| }); |
| switch (TDK) { |
| case TemplateDeductionResult::Success: |
| return true; |
| |
| // It doesn't seem possible to get a non-deduced mismatch when partial |
| // ordering TTPs. |
| case TemplateDeductionResult::NonDeducedMismatch: |
| llvm_unreachable("Unexpected NonDeducedMismatch"); |
| |
| // Substitution failures should have already been diagnosed. |
| case TemplateDeductionResult::AlreadyDiagnosed: |
| case TemplateDeductionResult::SubstitutionFailure: |
| case TemplateDeductionResult::InstantiationDepth: |
| return false; |
| |
| // None of these should happen when just converting deduced arguments. |
| case TemplateDeductionResult::Invalid: |
| case TemplateDeductionResult::Incomplete: |
| case TemplateDeductionResult::IncompletePack: |
| case TemplateDeductionResult::Inconsistent: |
| case TemplateDeductionResult::Underqualified: |
| case TemplateDeductionResult::DeducedMismatch: |
| case TemplateDeductionResult::DeducedMismatchNested: |
| case TemplateDeductionResult::TooManyArguments: |
| case TemplateDeductionResult::TooFewArguments: |
| case TemplateDeductionResult::InvalidExplicitArguments: |
| case TemplateDeductionResult::NonDependentConversionFailure: |
| case TemplateDeductionResult::ConstraintsNotSatisfied: |
| case TemplateDeductionResult::MiscellaneousDeductionFailure: |
| case TemplateDeductionResult::CUDATargetMismatch: |
| llvm_unreachable("Unexpected Result"); |
| } |
| llvm_unreachable("Unexpected TDK"); |
| } |
| |
| namespace { |
| struct MarkUsedTemplateParameterVisitor : DynamicRecursiveASTVisitor { |
| llvm::SmallBitVector &Used; |
| unsigned Depth; |
| |
| MarkUsedTemplateParameterVisitor(llvm::SmallBitVector &Used, |
| unsigned Depth) |
| : Used(Used), Depth(Depth) { } |
| |
| bool VisitTemplateTypeParmType(TemplateTypeParmType *T) override { |
| if (T->getDepth() == Depth) |
| Used[T->getIndex()] = true; |
| return true; |
| } |
| |
| bool TraverseTemplateName(TemplateName Template) override { |
| if (auto *TTP = llvm::dyn_cast_or_null<TemplateTemplateParmDecl>( |
| Template.getAsTemplateDecl())) |
| if (TTP->getDepth() == Depth) |
| Used[TTP->getIndex()] = true; |
| DynamicRecursiveASTVisitor::TraverseTemplateName(Template); |
| return true; |
| } |
| |
| bool VisitDeclRefExpr(DeclRefExpr *E) override { |
| if (auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(E->getDecl())) |
| if (NTTP->getDepth() == Depth) |
| Used[NTTP->getIndex()] = true; |
| return true; |
| } |
| }; |
| } |
| |
| /// Mark the template parameters that are used by the given |
| /// expression. |
| static void |
| MarkUsedTemplateParameters(ASTContext &Ctx, |
| const Expr *E, |
| bool OnlyDeduced, |
| unsigned Depth, |
| llvm::SmallBitVector &Used) { |
| if (!OnlyDeduced) { |
| MarkUsedTemplateParameterVisitor(Used, Depth) |
| .TraverseStmt(const_cast<Expr *>(E)); |
| return; |
| } |
| |
| // We can deduce from a pack expansion. |
| if (const PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(E)) |
| E = Expansion->getPattern(); |
| |
| const NonTypeTemplateParmDecl *NTTP = getDeducedParameterFromExpr(E, Depth); |
| if (!NTTP) |
| return; |
| |
| if (NTTP->getDepth() == Depth) |
| Used[NTTP->getIndex()] = true; |
| |
| // In C++17 mode, additional arguments may be deduced from the type of a |
| // non-type argument. |
| if (Ctx.getLangOpts().CPlusPlus17) |
| MarkUsedTemplateParameters(Ctx, NTTP->getType(), OnlyDeduced, Depth, Used); |
| } |
| |
| /// Mark the template parameters that are used by the given |
| /// nested name specifier. |
| static void |
| MarkUsedTemplateParameters(ASTContext &Ctx, |
| NestedNameSpecifier *NNS, |
| bool OnlyDeduced, |
| unsigned Depth, |
| llvm::SmallBitVector &Used) { |
| if (!NNS) |
| return; |
| |
| MarkUsedTemplateParameters(Ctx, NNS->getPrefix(), OnlyDeduced, Depth, |
| Used); |
| MarkUsedTemplateParameters(Ctx, QualType(NNS->getAsType(), 0), |
| OnlyDeduced, Depth, Used); |
| } |
| |
| /// Mark the template parameters that are used by the given |
| /// template name. |
| static void |
| MarkUsedTemplateParameters(ASTContext &Ctx, |
| TemplateName Name, |
| bool OnlyDeduced, |
| unsigned Depth, |
| llvm::SmallBitVector &Used) { |
| if (TemplateDecl *Template = Name.getAsTemplateDecl()) { |
| if (TemplateTemplateParmDecl *TTP |
| = dyn_cast<TemplateTemplateParmDecl>(Template)) { |
| if (TTP->getDepth() == Depth) |
| Used[TTP->getIndex()] = true; |
| } |
| return; |
| } |
| |
| if (QualifiedTemplateName *QTN = Name.getAsQualifiedTemplateName()) |
| MarkUsedTemplateParameters(Ctx, QTN->getQualifier(), OnlyDeduced, |
| Depth, Used); |
| if (DependentTemplateName *DTN = Name.getAsDependentTemplateName()) |
| MarkUsedTemplateParameters(Ctx, DTN->getQualifier(), OnlyDeduced, |
| Depth, Used); |
| } |
| |
| /// Mark the template parameters that are used by the given |
| /// type. |
| static void |
| MarkUsedTemplateParameters(ASTContext &Ctx, QualType T, |
| bool OnlyDeduced, |
| unsigned Depth, |
| llvm::SmallBitVector &Used) { |
| if (T.isNull()) |
| return; |
| |
| // Non-dependent types have nothing deducible |
| if (!T->isDependentType()) |
| return; |
| |
| T = Ctx.getCanonicalType(T); |
| switch (T->getTypeClass()) { |
| case Type::Pointer: |
| MarkUsedTemplateParameters(Ctx, |
| cast<PointerType>(T)->getPointeeType(), |
| OnlyDeduced, |
| Depth, |
| Used); |
| break; |
| |
| case Type::BlockPointer: |
| MarkUsedTemplateParameters(Ctx, |
| cast<BlockPointerType>(T)->getPointeeType(), |
| OnlyDeduced, |
| Depth, |
| Used); |
| break; |
| |
| case Type::LValueReference: |
| case Type::RValueReference: |
| MarkUsedTemplateParameters(Ctx, |
| cast<ReferenceType>(T)->getPointeeType(), |
| OnlyDeduced, |
| Depth, |
| Used); |
| break; |
| |
| case Type::MemberPointer: { |
| const MemberPointerType *MemPtr = cast<MemberPointerType>(T.getTypePtr()); |
| MarkUsedTemplateParameters(Ctx, MemPtr->getPointeeType(), OnlyDeduced, |
| Depth, Used); |
| MarkUsedTemplateParameters(Ctx, QualType(MemPtr->getClass(), 0), |
| OnlyDeduced, Depth, Used); |
| break; |
| } |
| |
| case Type::DependentSizedArray: |
| MarkUsedTemplateParameters(Ctx, |
| cast<DependentSizedArrayType>(T)->getSizeExpr(), |
| OnlyDeduced, Depth, Used); |
| // Fall through to check the element type |
| [[fallthrough]]; |
| |
| case Type::ConstantArray: |
| case Type::IncompleteArray: |
| case Type::ArrayParameter: |
| MarkUsedTemplateParameters(Ctx, |
| cast<ArrayType>(T)->getElementType(), |
| OnlyDeduced, Depth, Used); |
| break; |
| case Type::Vector: |
| case Type::ExtVector: |
| MarkUsedTemplateParameters(Ctx, |
| cast<VectorType>(T)->getElementType(), |
| OnlyDeduced, Depth, Used); |
| break; |
| |
| case Type::DependentVector: { |
| const auto *VecType = cast<DependentVectorType>(T); |
| MarkUsedTemplateParameters(Ctx, VecType->getElementType(), OnlyDeduced, |
| Depth, Used); |
| MarkUsedTemplateParameters(Ctx, VecType->getSizeExpr(), OnlyDeduced, Depth, |
| Used); |
| break; |
| } |
| case Type::DependentSizedExtVector: { |
| const DependentSizedExtVectorType *VecType |
| = cast<DependentSizedExtVectorType>(T); |
| MarkUsedTemplateParameters(Ctx, VecType->getElementType(), OnlyDeduced, |
| Depth, Used); |
| MarkUsedTemplateParameters(Ctx, VecType->getSizeExpr(), OnlyDeduced, |
| Depth, Used); |
| break; |
| } |
| |
| case Type::DependentAddressSpace: { |
| const DependentAddressSpaceType *DependentASType = |
| cast<DependentAddressSpaceType>(T); |
| MarkUsedTemplateParameters(Ctx, DependentASType->getPointeeType(), |
| OnlyDeduced, Depth, Used); |
| MarkUsedTemplateParameters(Ctx, |
| DependentASType->getAddrSpaceExpr(), |
| OnlyDeduced, Depth, Used); |
| break; |
| } |
| |
| case Type::ConstantMatrix: { |
| const ConstantMatrixType *MatType = cast<ConstantMatrixType>(T); |
| MarkUsedTemplateParameters(Ctx, MatType->getElementType(), OnlyDeduced, |
| Depth, Used); |
| break; |
| } |
| |
| case Type::DependentSizedMatrix: { |
| const DependentSizedMatrixType *MatType = cast<DependentSizedMatrixType>(T); |
| MarkUsedTemplateParameters(Ctx, MatType->getElementType(), OnlyDeduced, |
| Depth, Used); |
| MarkUsedTemplateParameters(Ctx, MatType->getRowExpr(), OnlyDeduced, Depth, |
| Used); |
| MarkUsedTemplateParameters(Ctx, MatType->getColumnExpr(), OnlyDeduced, |
| Depth, Used); |
| break; |
| } |
| |
| case Type::FunctionProto: { |
| const FunctionProtoType *Proto = cast<FunctionProtoType>(T); |
| MarkUsedTemplateParameters(Ctx, Proto->getReturnType(), OnlyDeduced, Depth, |
| Used); |
| for (unsigned I = 0, N = Proto->getNumParams(); I != N; ++I) { |
| // C++17 [temp.deduct.type]p5: |
| // The non-deduced contexts are: [...] |
| // -- A function parameter pack that does not occur at the end of the |
| // parameter-declaration-list. |
| if (!OnlyDeduced || I + 1 == N || |
| !Proto->getParamType(I)->getAs<PackExpansionType>()) { |
| MarkUsedTemplateParameters(Ctx, Proto->getParamType(I), OnlyDeduced, |
| Depth, Used); |
| } else { |
| // FIXME: C++17 [temp.deduct.call]p1: |
| // When a function parameter pack appears in a non-deduced context, |
| // the type of that pack is never deduced. |
| // |
| // We should also track a set of "never deduced" parameters, and |
| // subtract that from the list of deduced parameters after marking. |
| } |
| } |
| if (auto *E = Proto->getNoexceptExpr()) |
| MarkUsedTemplateParameters(Ctx, E, OnlyDeduced, Depth, Used); |
| break; |
| } |
| |
| case Type::TemplateTypeParm: { |
| const TemplateTypeParmType *TTP = cast<TemplateTypeParmType>(T); |
| if (TTP->getDepth() == Depth) |
| Used[TTP->getIndex()] = true; |
| break; |
| } |
| |
| case Type::SubstTemplateTypeParmPack: { |
| const SubstTemplateTypeParmPackType *Subst |
| = cast<SubstTemplateTypeParmPackType>(T); |
| if (Subst->getReplacedParameter()->getDepth() == Depth) |
| Used[Subst->getIndex()] = true; |
| MarkUsedTemplateParameters(Ctx, Subst->getArgumentPack(), |
| OnlyDeduced, Depth, Used); |
| break; |
| } |
| |
| case Type::InjectedClassName: |
| T = cast<InjectedClassNameType>(T)->getInjectedSpecializationType(); |
| [[fallthrough]]; |
| |
| case Type::TemplateSpecialization: { |
| const TemplateSpecializationType *Spec |
| = cast<TemplateSpecializationType>(T); |
| MarkUsedTemplateParameters(Ctx, Spec->getTemplateName(), OnlyDeduced, |
| Depth, Used); |
| |
| // C++0x [temp.deduct.type]p9: |
| // If the template argument list of P contains a pack expansion that is |
| // not the last template argument, the entire template argument list is a |
| // non-deduced context. |
| if (OnlyDeduced && |
| hasPackExpansionBeforeEnd(Spec->template_arguments())) |
| break; |
| |
| for (const auto &Arg : Spec->template_arguments()) |
| MarkUsedTemplateParameters(Ctx, Arg, OnlyDeduced, Depth, Used); |
| break; |
| } |
| |
| case Type::Complex: |
| if (!OnlyDeduced) |
| MarkUsedTemplateParameters(Ctx, |
| cast<ComplexType>(T)->getElementType(), |
| OnlyDeduced, Depth, Used); |
| break; |
| |
| case Type::Atomic: |
| if (!OnlyDeduced) |
| MarkUsedTemplateParameters(Ctx, |
| cast<AtomicType>(T)->getValueType(), |
| OnlyDeduced, Depth, Used); |
| break; |
| |
| case Type::DependentName: |
| if (!OnlyDeduced) |
| MarkUsedTemplateParameters(Ctx, |
| cast<DependentNameType>(T)->getQualifier(), |
| OnlyDeduced, Depth, Used); |
| break; |
| |
| case Type::DependentTemplateSpecialization: { |
| // C++14 [temp.deduct.type]p5: |
| // The non-deduced contexts are: |
| // -- The nested-name-specifier of a type that was specified using a |
| // qualified-id |
| // |
| // C++14 [temp.deduct.type]p6: |
| // When a type name is specified in a way that includes a non-deduced |
| // context, all of the types that comprise that type name are also |
| // non-deduced. |
| if (OnlyDeduced) |
| break; |
| |
| const DependentTemplateSpecializationType *Spec |
| = cast<DependentTemplateSpecializationType>(T); |
| |
| MarkUsedTemplateParameters(Ctx, Spec->getQualifier(), |
| OnlyDeduced, Depth, Used); |
| |
| for (const auto &Arg : Spec->template_arguments()) |
| MarkUsedTemplateParameters(Ctx, Arg, OnlyDeduced, Depth, Used); |
| break; |
| } |
| |
| case Type::TypeOf: |
| if (!OnlyDeduced) |
| MarkUsedTemplateParameters(Ctx, cast<TypeOfType>(T)->getUnmodifiedType(), |
| OnlyDeduced, Depth, Used); |
| break; |
| |
| case Type::TypeOfExpr: |
| if (!OnlyDeduced) |
| MarkUsedTemplateParameters(Ctx, |
| cast<TypeOfExprType>(T)->getUnderlyingExpr(), |
| OnlyDeduced, Depth, Used); |
| break; |
| |
| case Type::Decltype: |
| if (!OnlyDeduced) |
| MarkUsedTemplateParameters(Ctx, |
| cast<DecltypeType>(T)->getUnderlyingExpr(), |
| OnlyDeduced, Depth, Used); |
| break; |
| |
| case Type::PackIndexing: |
| if (!OnlyDeduced) { |
| MarkUsedTemplateParameters(Ctx, cast<PackIndexingType>(T)->getPattern(), |
| OnlyDeduced, Depth, Used); |
| MarkUsedTemplateParameters(Ctx, cast<PackIndexingType>(T)->getIndexExpr(), |
| OnlyDeduced, Depth, Used); |
| } |
| break; |
| |
| case Type::UnaryTransform: |
| if (!OnlyDeduced) |
| MarkUsedTemplateParameters(Ctx, |
| cast<UnaryTransformType>(T)->getUnderlyingType(), |
| OnlyDeduced, Depth, Used); |
| break; |
| |
| case Type::PackExpansion: |
| MarkUsedTemplateParameters(Ctx, |
| cast<PackExpansionType>(T)->getPattern(), |
| OnlyDeduced, Depth, Used); |
| break; |
| |
| case Type::Auto: |
| case Type::DeducedTemplateSpecialization: |
| MarkUsedTemplateParameters(Ctx, |
| cast<DeducedType>(T)->getDeducedType(), |
| OnlyDeduced, Depth, Used); |
| break; |
| case Type::DependentBitInt: |
| MarkUsedTemplateParameters(Ctx, |
| cast<DependentBitIntType>(T)->getNumBitsExpr(), |
| OnlyDeduced, Depth, Used); |
| break; |
| |
| case Type::HLSLAttributedResource: |
| MarkUsedTemplateParameters( |
| Ctx, cast<HLSLAttributedResourceType>(T)->getWrappedType(), OnlyDeduced, |
| Depth, Used); |
| if (cast<HLSLAttributedResourceType>(T)->hasContainedType()) |
| MarkUsedTemplateParameters( |
| Ctx, cast<HLSLAttributedResourceType>(T)->getContainedType(), |
| OnlyDeduced, Depth, Used); |
| break; |
| |
| // None of these types have any template parameters in them. |
| case Type::Builtin: |
| case Type::VariableArray: |
| case Type::FunctionNoProto: |
| case Type::Record: |
| case Type::Enum: |
| case Type::ObjCInterface: |
| case Type::ObjCObject: |
| case Type::ObjCObjectPointer: |
| case Type::UnresolvedUsing: |
| case Type::Pipe: |
| case Type::BitInt: |
| #define TYPE(Class, Base) |
| #define ABSTRACT_TYPE(Class, Base) |
| #define DEPENDENT_TYPE(Class, Base) |
| #define NON_CANONICAL_TYPE(Class, Base) case Type::Class: |
| #include "clang/AST/TypeNodes.inc" |
| break; |
| } |
| } |
| |
| /// Mark the template parameters that are used by this |
| /// template argument. |
| static void |
| MarkUsedTemplateParameters(ASTContext &Ctx, |
| const TemplateArgument &TemplateArg, |
| bool OnlyDeduced, |
| unsigned Depth, |
| llvm::SmallBitVector &Used) { |
| switch (TemplateArg.getKind()) { |
| case TemplateArgument::Null: |
| case TemplateArgument::Integral: |
| case TemplateArgument::Declaration: |
| case TemplateArgument::NullPtr: |
| case TemplateArgument::StructuralValue: |
| break; |
| |
| case TemplateArgument::Type: |
| MarkUsedTemplateParameters(Ctx, TemplateArg.getAsType(), OnlyDeduced, |
| Depth, Used); |
| break; |
| |
| case TemplateArgument::Template: |
| case TemplateArgument::TemplateExpansion: |
| MarkUsedTemplateParameters(Ctx, |
| TemplateArg.getAsTemplateOrTemplatePattern(), |
| OnlyDeduced, Depth, Used); |
| break; |
| |
| case TemplateArgument::Expression: |
| MarkUsedTemplateParameters(Ctx, TemplateArg.getAsExpr(), OnlyDeduced, |
| Depth, Used); |
| break; |
| |
| case TemplateArgument::Pack: |
| for (const auto &P : TemplateArg.pack_elements()) |
| MarkUsedTemplateParameters(Ctx, P, OnlyDeduced, Depth, Used); |
| break; |
| } |
| } |
| |
| void |
| Sema::MarkUsedTemplateParameters(const Expr *E, bool OnlyDeduced, |
| unsigned Depth, |
| llvm::SmallBitVector &Used) { |
| ::MarkUsedTemplateParameters(Context, E, OnlyDeduced, Depth, Used); |
| } |
| |
| void |
| Sema::MarkUsedTemplateParameters(const TemplateArgumentList &TemplateArgs, |
| bool OnlyDeduced, unsigned Depth, |
| llvm::SmallBitVector &Used) { |
| // C++0x [temp.deduct.type]p9: |
| // If the template argument list of P contains a pack expansion that is not |
| // the last template argument, the entire template argument list is a |
| // non-deduced context. |
| if (OnlyDeduced && |
| hasPackExpansionBeforeEnd(TemplateArgs.asArray())) |
| return; |
| |
| for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) |
| ::MarkUsedTemplateParameters(Context, TemplateArgs[I], OnlyDeduced, |
| Depth, Used); |
| } |
| |
| void Sema::MarkDeducedTemplateParameters( |
| ASTContext &Ctx, const FunctionTemplateDecl *FunctionTemplate, |
| llvm::SmallBitVector &Deduced) { |
| TemplateParameterList *TemplateParams |
| = FunctionTemplate->getTemplateParameters(); |
| Deduced.clear(); |
| Deduced.resize(TemplateParams->size()); |
| |
| FunctionDecl *Function = FunctionTemplate->getTemplatedDecl(); |
| for (unsigned I = 0, N = Function->getNumParams(); I != N; ++I) |
| ::MarkUsedTemplateParameters(Ctx, Function->getParamDecl(I)->getType(), |
| true, TemplateParams->getDepth(), Deduced); |
| } |
| |
| bool hasDeducibleTemplateParameters(Sema &S, |
| FunctionTemplateDecl *FunctionTemplate, |
| QualType T) { |
| if (!T->isDependentType()) |
| return false; |
| |
| TemplateParameterList *TemplateParams |
| = FunctionTemplate->getTemplateParameters(); |
| llvm::SmallBitVector Deduced(TemplateParams->size()); |
| ::MarkUsedTemplateParameters(S.Context, T, true, TemplateParams->getDepth(), |
| Deduced); |
| |
| return Deduced.any(); |
| } |