| //===------- TreeTransform.h - Semantic Tree Transformation -----*- C++ -*-===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements a semantic tree transformation that takes a given |
| // AST and rebuilds it, possibly transforming some nodes in the process. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #ifndef LLVM_CLANG_LIB_SEMA_TREETRANSFORM_H |
| #define LLVM_CLANG_LIB_SEMA_TREETRANSFORM_H |
| |
| #include "CoroutineStmtBuilder.h" |
| #include "TypeLocBuilder.h" |
| #include "clang/AST/Decl.h" |
| #include "clang/AST/DeclObjC.h" |
| #include "clang/AST/DeclTemplate.h" |
| #include "clang/AST/Expr.h" |
| #include "clang/AST/ExprCXX.h" |
| #include "clang/AST/ExprConcepts.h" |
| #include "clang/AST/ExprObjC.h" |
| #include "clang/AST/ExprOpenMP.h" |
| #include "clang/AST/OpenMPClause.h" |
| #include "clang/AST/Stmt.h" |
| #include "clang/AST/StmtCXX.h" |
| #include "clang/AST/StmtObjC.h" |
| #include "clang/AST/StmtOpenACC.h" |
| #include "clang/AST/StmtOpenMP.h" |
| #include "clang/AST/StmtSYCL.h" |
| #include "clang/Basic/DiagnosticParse.h" |
| #include "clang/Basic/OpenMPKinds.h" |
| #include "clang/Sema/Designator.h" |
| #include "clang/Sema/EnterExpressionEvaluationContext.h" |
| #include "clang/Sema/Lookup.h" |
| #include "clang/Sema/Ownership.h" |
| #include "clang/Sema/ParsedTemplate.h" |
| #include "clang/Sema/ScopeInfo.h" |
| #include "clang/Sema/SemaDiagnostic.h" |
| #include "clang/Sema/SemaInternal.h" |
| #include "clang/Sema/SemaObjC.h" |
| #include "clang/Sema/SemaOpenACC.h" |
| #include "clang/Sema/SemaOpenMP.h" |
| #include "clang/Sema/SemaPseudoObject.h" |
| #include "clang/Sema/SemaSYCL.h" |
| #include "llvm/ADT/ArrayRef.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include <algorithm> |
| #include <optional> |
| |
| using namespace llvm::omp; |
| |
| namespace clang { |
| using namespace sema; |
| |
| /// A semantic tree transformation that allows one to transform one |
| /// abstract syntax tree into another. |
| /// |
| /// A new tree transformation is defined by creating a new subclass \c X of |
| /// \c TreeTransform<X> and then overriding certain operations to provide |
| /// behavior specific to that transformation. For example, template |
| /// instantiation is implemented as a tree transformation where the |
| /// transformation of TemplateTypeParmType nodes involves substituting the |
| /// template arguments for their corresponding template parameters; a similar |
| /// transformation is performed for non-type template parameters and |
| /// template template parameters. |
| /// |
| /// This tree-transformation template uses static polymorphism to allow |
| /// subclasses to customize any of its operations. Thus, a subclass can |
| /// override any of the transformation or rebuild operators by providing an |
| /// operation with the same signature as the default implementation. The |
| /// overriding function should not be virtual. |
| /// |
| /// Semantic tree transformations are split into two stages, either of which |
| /// can be replaced by a subclass. The "transform" step transforms an AST node |
| /// or the parts of an AST node using the various transformation functions, |
| /// then passes the pieces on to the "rebuild" step, which constructs a new AST |
| /// node of the appropriate kind from the pieces. The default transformation |
| /// routines recursively transform the operands to composite AST nodes (e.g., |
| /// the pointee type of a PointerType node) and, if any of those operand nodes |
| /// were changed by the transformation, invokes the rebuild operation to create |
| /// a new AST node. |
| /// |
| /// Subclasses can customize the transformation at various levels. The |
| /// most coarse-grained transformations involve replacing TransformType(), |
| /// TransformExpr(), TransformDecl(), TransformNestedNameSpecifierLoc(), |
| /// TransformTemplateName(), or TransformTemplateArgument() with entirely |
| /// new implementations. |
| /// |
| /// For more fine-grained transformations, subclasses can replace any of the |
| /// \c TransformXXX functions (where XXX is the name of an AST node, e.g., |
| /// PointerType, StmtExpr) to alter the transformation. As mentioned previously, |
| /// replacing TransformTemplateTypeParmType() allows template instantiation |
| /// to substitute template arguments for their corresponding template |
| /// parameters. Additionally, subclasses can override the \c RebuildXXX |
| /// functions to control how AST nodes are rebuilt when their operands change. |
| /// By default, \c TreeTransform will invoke semantic analysis to rebuild |
| /// AST nodes. However, certain other tree transformations (e.g, cloning) may |
| /// be able to use more efficient rebuild steps. |
| /// |
| /// There are a handful of other functions that can be overridden, allowing one |
| /// to avoid traversing nodes that don't need any transformation |
| /// (\c AlreadyTransformed()), force rebuilding AST nodes even when their |
| /// operands have not changed (\c AlwaysRebuild()), and customize the |
| /// default locations and entity names used for type-checking |
| /// (\c getBaseLocation(), \c getBaseEntity()). |
| template<typename Derived> |
| class TreeTransform { |
| /// Private RAII object that helps us forget and then re-remember |
| /// the template argument corresponding to a partially-substituted parameter |
| /// pack. |
| class ForgetPartiallySubstitutedPackRAII { |
| Derived &Self; |
| TemplateArgument Old; |
| // Set the pack expansion index to -1 to avoid pack substitution and |
| // indicate that parameter packs should be instantiated as themselves. |
| Sema::ArgumentPackSubstitutionIndexRAII ResetPackSubstIndex; |
| |
| public: |
| ForgetPartiallySubstitutedPackRAII(Derived &Self) |
| : Self(Self), ResetPackSubstIndex(Self.getSema(), -1) { |
| Old = Self.ForgetPartiallySubstitutedPack(); |
| } |
| |
| ~ForgetPartiallySubstitutedPackRAII() { |
| Self.RememberPartiallySubstitutedPack(Old); |
| } |
| }; |
| |
| protected: |
| Sema &SemaRef; |
| |
| /// The set of local declarations that have been transformed, for |
| /// cases where we are forced to build new declarations within the transformer |
| /// rather than in the subclass (e.g., lambda closure types). |
| llvm::DenseMap<Decl *, Decl *> TransformedLocalDecls; |
| |
| public: |
| /// Initializes a new tree transformer. |
| TreeTransform(Sema &SemaRef) : SemaRef(SemaRef) { } |
| |
| /// Retrieves a reference to the derived class. |
| Derived &getDerived() { return static_cast<Derived&>(*this); } |
| |
| /// Retrieves a reference to the derived class. |
| const Derived &getDerived() const { |
| return static_cast<const Derived&>(*this); |
| } |
| |
| static inline ExprResult Owned(Expr *E) { return E; } |
| static inline StmtResult Owned(Stmt *S) { return S; } |
| |
| /// Retrieves a reference to the semantic analysis object used for |
| /// this tree transform. |
| Sema &getSema() const { return SemaRef; } |
| |
| /// Whether the transformation should always rebuild AST nodes, even |
| /// if none of the children have changed. |
| /// |
| /// Subclasses may override this function to specify when the transformation |
| /// should rebuild all AST nodes. |
| /// |
| /// We must always rebuild all AST nodes when performing variadic template |
| /// pack expansion, in order to avoid violating the AST invariant that each |
| /// statement node appears at most once in its containing declaration. |
| bool AlwaysRebuild() { return SemaRef.ArgumentPackSubstitutionIndex != -1; } |
| |
| /// Whether the transformation is forming an expression or statement that |
| /// replaces the original. In this case, we'll reuse mangling numbers from |
| /// existing lambdas. |
| bool ReplacingOriginal() { return false; } |
| |
| /// Wether CXXConstructExpr can be skipped when they are implicit. |
| /// They will be reconstructed when used if needed. |
| /// This is useful when the user that cause rebuilding of the |
| /// CXXConstructExpr is outside of the expression at which the TreeTransform |
| /// started. |
| bool AllowSkippingCXXConstructExpr() { return true; } |
| |
| /// Returns the location of the entity being transformed, if that |
| /// information was not available elsewhere in the AST. |
| /// |
| /// By default, returns no source-location information. Subclasses can |
| /// provide an alternative implementation that provides better location |
| /// information. |
| SourceLocation getBaseLocation() { return SourceLocation(); } |
| |
| /// Returns the name of the entity being transformed, if that |
| /// information was not available elsewhere in the AST. |
| /// |
| /// By default, returns an empty name. Subclasses can provide an alternative |
| /// implementation with a more precise name. |
| DeclarationName getBaseEntity() { return DeclarationName(); } |
| |
| /// Sets the "base" location and entity when that |
| /// information is known based on another transformation. |
| /// |
| /// By default, the source location and entity are ignored. Subclasses can |
| /// override this function to provide a customized implementation. |
| void setBase(SourceLocation Loc, DeclarationName Entity) { } |
| |
| /// RAII object that temporarily sets the base location and entity |
| /// used for reporting diagnostics in types. |
| class TemporaryBase { |
| TreeTransform &Self; |
| SourceLocation OldLocation; |
| DeclarationName OldEntity; |
| |
| public: |
| TemporaryBase(TreeTransform &Self, SourceLocation Location, |
| DeclarationName Entity) : Self(Self) { |
| OldLocation = Self.getDerived().getBaseLocation(); |
| OldEntity = Self.getDerived().getBaseEntity(); |
| |
| if (Location.isValid()) |
| Self.getDerived().setBase(Location, Entity); |
| } |
| |
| ~TemporaryBase() { |
| Self.getDerived().setBase(OldLocation, OldEntity); |
| } |
| }; |
| |
| /// Determine whether the given type \p T has already been |
| /// transformed. |
| /// |
| /// Subclasses can provide an alternative implementation of this routine |
| /// to short-circuit evaluation when it is known that a given type will |
| /// not change. For example, template instantiation need not traverse |
| /// non-dependent types. |
| bool AlreadyTransformed(QualType T) { |
| return T.isNull(); |
| } |
| |
| /// Transform a template parameter depth level. |
| /// |
| /// During a transformation that transforms template parameters, this maps |
| /// an old template parameter depth to a new depth. |
| unsigned TransformTemplateDepth(unsigned Depth) { |
| return Depth; |
| } |
| |
| /// Determine whether the given call argument should be dropped, e.g., |
| /// because it is a default argument. |
| /// |
| /// Subclasses can provide an alternative implementation of this routine to |
| /// determine which kinds of call arguments get dropped. By default, |
| /// CXXDefaultArgument nodes are dropped (prior to transformation). |
| bool DropCallArgument(Expr *E) { |
| return E->isDefaultArgument(); |
| } |
| |
| /// Determine whether we should expand a pack expansion with the |
| /// given set of parameter packs into separate arguments by repeatedly |
| /// transforming the pattern. |
| /// |
| /// By default, the transformer never tries to expand pack expansions. |
| /// Subclasses can override this routine to provide different behavior. |
| /// |
| /// \param EllipsisLoc The location of the ellipsis that identifies the |
| /// pack expansion. |
| /// |
| /// \param PatternRange The source range that covers the entire pattern of |
| /// the pack expansion. |
| /// |
| /// \param Unexpanded The set of unexpanded parameter packs within the |
| /// pattern. |
| /// |
| /// \param ShouldExpand Will be set to \c true if the transformer should |
| /// expand the corresponding pack expansions into separate arguments. When |
| /// set, \c NumExpansions must also be set. |
| /// |
| /// \param RetainExpansion Whether the caller should add an unexpanded |
| /// pack expansion after all of the expanded arguments. This is used |
| /// when extending explicitly-specified template argument packs per |
| /// C++0x [temp.arg.explicit]p9. |
| /// |
| /// \param NumExpansions The number of separate arguments that will be in |
| /// the expanded form of the corresponding pack expansion. This is both an |
| /// input and an output parameter, which can be set by the caller if the |
| /// number of expansions is known a priori (e.g., due to a prior substitution) |
| /// and will be set by the callee when the number of expansions is known. |
| /// The callee must set this value when \c ShouldExpand is \c true; it may |
| /// set this value in other cases. |
| /// |
| /// \returns true if an error occurred (e.g., because the parameter packs |
| /// are to be instantiated with arguments of different lengths), false |
| /// otherwise. If false, \c ShouldExpand (and possibly \c NumExpansions) |
| /// must be set. |
| bool TryExpandParameterPacks(SourceLocation EllipsisLoc, |
| SourceRange PatternRange, |
| ArrayRef<UnexpandedParameterPack> Unexpanded, |
| bool &ShouldExpand, bool &RetainExpansion, |
| std::optional<unsigned> &NumExpansions) { |
| ShouldExpand = false; |
| return false; |
| } |
| |
| /// "Forget" about the partially-substituted pack template argument, |
| /// when performing an instantiation that must preserve the parameter pack |
| /// use. |
| /// |
| /// This routine is meant to be overridden by the template instantiator. |
| TemplateArgument ForgetPartiallySubstitutedPack() { |
| return TemplateArgument(); |
| } |
| |
| /// "Remember" the partially-substituted pack template argument |
| /// after performing an instantiation that must preserve the parameter pack |
| /// use. |
| /// |
| /// This routine is meant to be overridden by the template instantiator. |
| void RememberPartiallySubstitutedPack(TemplateArgument Arg) { } |
| |
| /// Note to the derived class when a function parameter pack is |
| /// being expanded. |
| void ExpandingFunctionParameterPack(ParmVarDecl *Pack) { } |
| |
| /// Transforms the given type into another type. |
| /// |
| /// By default, this routine transforms a type by creating a |
| /// TypeSourceInfo for it and delegating to the appropriate |
| /// function. This is expensive, but we don't mind, because |
| /// this method is deprecated anyway; all users should be |
| /// switched to storing TypeSourceInfos. |
| /// |
| /// \returns the transformed type. |
| QualType TransformType(QualType T); |
| |
| /// Transforms the given type-with-location into a new |
| /// type-with-location. |
| /// |
| /// By default, this routine transforms a type by delegating to the |
| /// appropriate TransformXXXType to build a new type. Subclasses |
| /// may override this function (to take over all type |
| /// transformations) or some set of the TransformXXXType functions |
| /// to alter the transformation. |
| TypeSourceInfo *TransformType(TypeSourceInfo *DI); |
| |
| /// Transform the given type-with-location into a new |
| /// type, collecting location information in the given builder |
| /// as necessary. |
| /// |
| QualType TransformType(TypeLocBuilder &TLB, TypeLoc TL); |
| |
| /// Transform a type that is permitted to produce a |
| /// DeducedTemplateSpecializationType. |
| /// |
| /// This is used in the (relatively rare) contexts where it is acceptable |
| /// for transformation to produce a class template type with deduced |
| /// template arguments. |
| /// @{ |
| QualType TransformTypeWithDeducedTST(QualType T); |
| TypeSourceInfo *TransformTypeWithDeducedTST(TypeSourceInfo *DI); |
| /// @} |
| |
| /// The reason why the value of a statement is not discarded, if any. |
| enum StmtDiscardKind { |
| SDK_Discarded, |
| SDK_NotDiscarded, |
| SDK_StmtExprResult, |
| }; |
| |
| /// Transform the given statement. |
| /// |
| /// By default, this routine transforms a statement by delegating to the |
| /// appropriate TransformXXXStmt function to transform a specific kind of |
| /// statement or the TransformExpr() function to transform an expression. |
| /// Subclasses may override this function to transform statements using some |
| /// other mechanism. |
| /// |
| /// \returns the transformed statement. |
| StmtResult TransformStmt(Stmt *S, StmtDiscardKind SDK = SDK_Discarded); |
| |
| /// Transform the given statement. |
| /// |
| /// By default, this routine transforms a statement by delegating to the |
| /// appropriate TransformOMPXXXClause function to transform a specific kind |
| /// of clause. Subclasses may override this function to transform statements |
| /// using some other mechanism. |
| /// |
| /// \returns the transformed OpenMP clause. |
| OMPClause *TransformOMPClause(OMPClause *S); |
| |
| /// Transform the given attribute. |
| /// |
| /// By default, this routine transforms a statement by delegating to the |
| /// appropriate TransformXXXAttr function to transform a specific kind |
| /// of attribute. Subclasses may override this function to transform |
| /// attributed statements/types using some other mechanism. |
| /// |
| /// \returns the transformed attribute |
| const Attr *TransformAttr(const Attr *S); |
| |
| // Transform the given statement attribute. |
| // |
| // Delegates to the appropriate TransformXXXAttr function to transform a |
| // specific kind of statement attribute. Unlike the non-statement taking |
| // version of this, this implements all attributes, not just pragmas. |
| const Attr *TransformStmtAttr(const Stmt *OrigS, const Stmt *InstS, |
| const Attr *A); |
| |
| // Transform the specified attribute. |
| // |
| // Subclasses should override the transformation of attributes with a pragma |
| // spelling to transform expressions stored within the attribute. |
| // |
| // \returns the transformed attribute. |
| #define ATTR(X) \ |
| const X##Attr *Transform##X##Attr(const X##Attr *R) { return R; } |
| #include "clang/Basic/AttrList.inc" |
| |
| // Transform the specified attribute. |
| // |
| // Subclasses should override the transformation of attributes to do |
| // transformation and checking of statement attributes. By default, this |
| // delegates to the non-statement taking version. |
| // |
| // \returns the transformed attribute. |
| #define ATTR(X) \ |
| const X##Attr *TransformStmt##X##Attr(const Stmt *, const Stmt *, \ |
| const X##Attr *A) { \ |
| return getDerived().Transform##X##Attr(A); \ |
| } |
| #include "clang/Basic/AttrList.inc" |
| |
| /// Transform the given expression. |
| /// |
| /// By default, this routine transforms an expression by delegating to the |
| /// appropriate TransformXXXExpr function to build a new expression. |
| /// Subclasses may override this function to transform expressions using some |
| /// other mechanism. |
| /// |
| /// \returns the transformed expression. |
| ExprResult TransformExpr(Expr *E); |
| |
| /// Transform the given initializer. |
| /// |
| /// By default, this routine transforms an initializer by stripping off the |
| /// semantic nodes added by initialization, then passing the result to |
| /// TransformExpr or TransformExprs. |
| /// |
| /// \returns the transformed initializer. |
| ExprResult TransformInitializer(Expr *Init, bool NotCopyInit); |
| |
| /// Transform the given list of expressions. |
| /// |
| /// This routine transforms a list of expressions by invoking |
| /// \c TransformExpr() for each subexpression. However, it also provides |
| /// support for variadic templates by expanding any pack expansions (if the |
| /// derived class permits such expansion) along the way. When pack expansions |
| /// are present, the number of outputs may not equal the number of inputs. |
| /// |
| /// \param Inputs The set of expressions to be transformed. |
| /// |
| /// \param NumInputs The number of expressions in \c Inputs. |
| /// |
| /// \param IsCall If \c true, then this transform is being performed on |
| /// function-call arguments, and any arguments that should be dropped, will |
| /// be. |
| /// |
| /// \param Outputs The transformed input expressions will be added to this |
| /// vector. |
| /// |
| /// \param ArgChanged If non-NULL, will be set \c true if any argument changed |
| /// due to transformation. |
| /// |
| /// \returns true if an error occurred, false otherwise. |
| bool TransformExprs(Expr *const *Inputs, unsigned NumInputs, bool IsCall, |
| SmallVectorImpl<Expr *> &Outputs, |
| bool *ArgChanged = nullptr); |
| |
| /// Transform the given declaration, which is referenced from a type |
| /// or expression. |
| /// |
| /// By default, acts as the identity function on declarations, unless the |
| /// transformer has had to transform the declaration itself. Subclasses |
| /// may override this function to provide alternate behavior. |
| Decl *TransformDecl(SourceLocation Loc, Decl *D) { |
| llvm::DenseMap<Decl *, Decl *>::iterator Known |
| = TransformedLocalDecls.find(D); |
| if (Known != TransformedLocalDecls.end()) |
| return Known->second; |
| |
| return D; |
| } |
| |
| /// Transform the specified condition. |
| /// |
| /// By default, this transforms the variable and expression and rebuilds |
| /// the condition. |
| Sema::ConditionResult TransformCondition(SourceLocation Loc, VarDecl *Var, |
| Expr *Expr, |
| Sema::ConditionKind Kind); |
| |
| /// Transform the attributes associated with the given declaration and |
| /// place them on the new declaration. |
| /// |
| /// By default, this operation does nothing. Subclasses may override this |
| /// behavior to transform attributes. |
| void transformAttrs(Decl *Old, Decl *New) { } |
| |
| /// Note that a local declaration has been transformed by this |
| /// transformer. |
| /// |
| /// Local declarations are typically transformed via a call to |
| /// TransformDefinition. However, in some cases (e.g., lambda expressions), |
| /// the transformer itself has to transform the declarations. This routine |
| /// can be overridden by a subclass that keeps track of such mappings. |
| void transformedLocalDecl(Decl *Old, ArrayRef<Decl *> New) { |
| assert(New.size() == 1 && |
| "must override transformedLocalDecl if performing pack expansion"); |
| TransformedLocalDecls[Old] = New.front(); |
| } |
| |
| /// Transform the definition of the given declaration. |
| /// |
| /// By default, invokes TransformDecl() to transform the declaration. |
| /// Subclasses may override this function to provide alternate behavior. |
| Decl *TransformDefinition(SourceLocation Loc, Decl *D) { |
| return getDerived().TransformDecl(Loc, D); |
| } |
| |
| /// Transform the given declaration, which was the first part of a |
| /// nested-name-specifier in a member access expression. |
| /// |
| /// This specific declaration transformation only applies to the first |
| /// identifier in a nested-name-specifier of a member access expression, e.g., |
| /// the \c T in \c x->T::member |
| /// |
| /// By default, invokes TransformDecl() to transform the declaration. |
| /// Subclasses may override this function to provide alternate behavior. |
| NamedDecl *TransformFirstQualifierInScope(NamedDecl *D, SourceLocation Loc) { |
| return cast_or_null<NamedDecl>(getDerived().TransformDecl(Loc, D)); |
| } |
| |
| /// Transform the set of declarations in an OverloadExpr. |
| bool TransformOverloadExprDecls(OverloadExpr *Old, bool RequiresADL, |
| LookupResult &R); |
| |
| /// Transform the given nested-name-specifier with source-location |
| /// information. |
| /// |
| /// By default, transforms all of the types and declarations within the |
| /// nested-name-specifier. Subclasses may override this function to provide |
| /// alternate behavior. |
| NestedNameSpecifierLoc |
| TransformNestedNameSpecifierLoc(NestedNameSpecifierLoc NNS, |
| QualType ObjectType = QualType(), |
| NamedDecl *FirstQualifierInScope = nullptr); |
| |
| /// Transform the given declaration name. |
| /// |
| /// By default, transforms the types of conversion function, constructor, |
| /// and destructor names and then (if needed) rebuilds the declaration name. |
| /// Identifiers and selectors are returned unmodified. Subclasses may |
| /// override this function to provide alternate behavior. |
| DeclarationNameInfo |
| TransformDeclarationNameInfo(const DeclarationNameInfo &NameInfo); |
| |
| bool TransformRequiresExprRequirements( |
| ArrayRef<concepts::Requirement *> Reqs, |
| llvm::SmallVectorImpl<concepts::Requirement *> &Transformed); |
| concepts::TypeRequirement * |
| TransformTypeRequirement(concepts::TypeRequirement *Req); |
| concepts::ExprRequirement * |
| TransformExprRequirement(concepts::ExprRequirement *Req); |
| concepts::NestedRequirement * |
| TransformNestedRequirement(concepts::NestedRequirement *Req); |
| |
| /// Transform the given template name. |
| /// |
| /// \param SS The nested-name-specifier that qualifies the template |
| /// name. This nested-name-specifier must already have been transformed. |
| /// |
| /// \param Name The template name to transform. |
| /// |
| /// \param NameLoc The source location of the template name. |
| /// |
| /// \param ObjectType If we're translating a template name within a member |
| /// access expression, this is the type of the object whose member template |
| /// is being referenced. |
| /// |
| /// \param FirstQualifierInScope If the first part of a nested-name-specifier |
| /// also refers to a name within the current (lexical) scope, this is the |
| /// declaration it refers to. |
| /// |
| /// By default, transforms the template name by transforming the declarations |
| /// and nested-name-specifiers that occur within the template name. |
| /// Subclasses may override this function to provide alternate behavior. |
| TemplateName |
| TransformTemplateName(CXXScopeSpec &SS, TemplateName Name, |
| SourceLocation NameLoc, |
| QualType ObjectType = QualType(), |
| NamedDecl *FirstQualifierInScope = nullptr, |
| bool AllowInjectedClassName = false); |
| |
| /// Transform the given template argument. |
| /// |
| /// By default, this operation transforms the type, expression, or |
| /// declaration stored within the template argument and constructs a |
| /// new template argument from the transformed result. Subclasses may |
| /// override this function to provide alternate behavior. |
| /// |
| /// Returns true if there was an error. |
| bool TransformTemplateArgument(const TemplateArgumentLoc &Input, |
| TemplateArgumentLoc &Output, |
| bool Uneval = false); |
| |
| /// Transform the given set of template arguments. |
| /// |
| /// By default, this operation transforms all of the template arguments |
| /// in the input set using \c TransformTemplateArgument(), and appends |
| /// the transformed arguments to the output list. |
| /// |
| /// Note that this overload of \c TransformTemplateArguments() is merely |
| /// a convenience function. Subclasses that wish to override this behavior |
| /// should override the iterator-based member template version. |
| /// |
| /// \param Inputs The set of template arguments to be transformed. |
| /// |
| /// \param NumInputs The number of template arguments in \p Inputs. |
| /// |
| /// \param Outputs The set of transformed template arguments output by this |
| /// routine. |
| /// |
| /// Returns true if an error occurred. |
| bool TransformTemplateArguments(const TemplateArgumentLoc *Inputs, |
| unsigned NumInputs, |
| TemplateArgumentListInfo &Outputs, |
| bool Uneval = false) { |
| return TransformTemplateArguments(Inputs, Inputs + NumInputs, Outputs, |
| Uneval); |
| } |
| |
| /// Transform the given set of template arguments. |
| /// |
| /// By default, this operation transforms all of the template arguments |
| /// in the input set using \c TransformTemplateArgument(), and appends |
| /// the transformed arguments to the output list. |
| /// |
| /// \param First An iterator to the first template argument. |
| /// |
| /// \param Last An iterator one step past the last template argument. |
| /// |
| /// \param Outputs The set of transformed template arguments output by this |
| /// routine. |
| /// |
| /// Returns true if an error occurred. |
| template<typename InputIterator> |
| bool TransformTemplateArguments(InputIterator First, |
| InputIterator Last, |
| TemplateArgumentListInfo &Outputs, |
| bool Uneval = false); |
| |
| /// Fakes up a TemplateArgumentLoc for a given TemplateArgument. |
| void InventTemplateArgumentLoc(const TemplateArgument &Arg, |
| TemplateArgumentLoc &ArgLoc); |
| |
| /// Fakes up a TypeSourceInfo for a type. |
| TypeSourceInfo *InventTypeSourceInfo(QualType T) { |
| return SemaRef.Context.getTrivialTypeSourceInfo(T, |
| getDerived().getBaseLocation()); |
| } |
| |
| #define ABSTRACT_TYPELOC(CLASS, PARENT) |
| #define TYPELOC(CLASS, PARENT) \ |
| QualType Transform##CLASS##Type(TypeLocBuilder &TLB, CLASS##TypeLoc T); |
| #include "clang/AST/TypeLocNodes.def" |
| |
| QualType TransformTemplateTypeParmType(TypeLocBuilder &TLB, |
| TemplateTypeParmTypeLoc TL, |
| bool SuppressObjCLifetime); |
| QualType |
| TransformSubstTemplateTypeParmPackType(TypeLocBuilder &TLB, |
| SubstTemplateTypeParmPackTypeLoc TL, |
| bool SuppressObjCLifetime); |
| |
| template<typename Fn> |
| QualType TransformFunctionProtoType(TypeLocBuilder &TLB, |
| FunctionProtoTypeLoc TL, |
| CXXRecordDecl *ThisContext, |
| Qualifiers ThisTypeQuals, |
| Fn TransformExceptionSpec); |
| |
| bool TransformExceptionSpec(SourceLocation Loc, |
| FunctionProtoType::ExceptionSpecInfo &ESI, |
| SmallVectorImpl<QualType> &Exceptions, |
| bool &Changed); |
| |
| StmtResult TransformSEHHandler(Stmt *Handler); |
| |
| QualType |
| TransformTemplateSpecializationType(TypeLocBuilder &TLB, |
| TemplateSpecializationTypeLoc TL, |
| TemplateName Template); |
| |
| QualType |
| TransformDependentTemplateSpecializationType(TypeLocBuilder &TLB, |
| DependentTemplateSpecializationTypeLoc TL, |
| TemplateName Template, |
| CXXScopeSpec &SS); |
| |
| QualType TransformDependentTemplateSpecializationType( |
| TypeLocBuilder &TLB, DependentTemplateSpecializationTypeLoc TL, |
| NestedNameSpecifierLoc QualifierLoc); |
| |
| /// Transforms the parameters of a function type into the |
| /// given vectors. |
| /// |
| /// The result vectors should be kept in sync; null entries in the |
| /// variables vector are acceptable. |
| /// |
| /// LastParamTransformed, if non-null, will be set to the index of the last |
| /// parameter on which transfromation was started. In the event of an error, |
| /// this will contain the parameter which failed to instantiate. |
| /// |
| /// Return true on error. |
| bool TransformFunctionTypeParams( |
| SourceLocation Loc, ArrayRef<ParmVarDecl *> Params, |
| const QualType *ParamTypes, |
| const FunctionProtoType::ExtParameterInfo *ParamInfos, |
| SmallVectorImpl<QualType> &PTypes, SmallVectorImpl<ParmVarDecl *> *PVars, |
| Sema::ExtParameterInfoBuilder &PInfos, unsigned *LastParamTransformed); |
| |
| bool TransformFunctionTypeParams( |
| SourceLocation Loc, ArrayRef<ParmVarDecl *> Params, |
| const QualType *ParamTypes, |
| const FunctionProtoType::ExtParameterInfo *ParamInfos, |
| SmallVectorImpl<QualType> &PTypes, SmallVectorImpl<ParmVarDecl *> *PVars, |
| Sema::ExtParameterInfoBuilder &PInfos) { |
| return getDerived().TransformFunctionTypeParams( |
| Loc, Params, ParamTypes, ParamInfos, PTypes, PVars, PInfos, nullptr); |
| } |
| |
| /// Transforms the parameters of a requires expresison into the given vectors. |
| /// |
| /// The result vectors should be kept in sync; null entries in the |
| /// variables vector are acceptable. |
| /// |
| /// Returns an unset ExprResult on success. Returns an ExprResult the 'not |
| /// satisfied' RequiresExpr if subsitution failed, OR an ExprError, both of |
| /// which are cases where transformation shouldn't continue. |
| ExprResult TransformRequiresTypeParams( |
| SourceLocation KWLoc, SourceLocation RBraceLoc, const RequiresExpr *RE, |
| RequiresExprBodyDecl *Body, ArrayRef<ParmVarDecl *> Params, |
| SmallVectorImpl<QualType> &PTypes, |
| SmallVectorImpl<ParmVarDecl *> &TransParams, |
| Sema::ExtParameterInfoBuilder &PInfos) { |
| if (getDerived().TransformFunctionTypeParams( |
| KWLoc, Params, /*ParamTypes=*/nullptr, |
| /*ParamInfos=*/nullptr, PTypes, &TransParams, PInfos)) |
| return ExprError(); |
| |
| return ExprResult{}; |
| } |
| |
| /// Transforms a single function-type parameter. Return null |
| /// on error. |
| /// |
| /// \param indexAdjustment - A number to add to the parameter's |
| /// scope index; can be negative |
| ParmVarDecl *TransformFunctionTypeParam(ParmVarDecl *OldParm, |
| int indexAdjustment, |
| std::optional<unsigned> NumExpansions, |
| bool ExpectParameterPack); |
| |
| /// Transform the body of a lambda-expression. |
| StmtResult TransformLambdaBody(LambdaExpr *E, Stmt *Body); |
| /// Alternative implementation of TransformLambdaBody that skips transforming |
| /// the body. |
| StmtResult SkipLambdaBody(LambdaExpr *E, Stmt *Body); |
| |
| CXXRecordDecl::LambdaDependencyKind |
| ComputeLambdaDependency(LambdaScopeInfo *LSI) { |
| return static_cast<CXXRecordDecl::LambdaDependencyKind>( |
| LSI->Lambda->getLambdaDependencyKind()); |
| } |
| |
| QualType TransformReferenceType(TypeLocBuilder &TLB, ReferenceTypeLoc TL); |
| |
| StmtResult TransformCompoundStmt(CompoundStmt *S, bool IsStmtExpr); |
| ExprResult TransformCXXNamedCastExpr(CXXNamedCastExpr *E); |
| |
| TemplateParameterList *TransformTemplateParameterList( |
| TemplateParameterList *TPL) { |
| return TPL; |
| } |
| |
| ExprResult TransformAddressOfOperand(Expr *E); |
| |
| ExprResult TransformDependentScopeDeclRefExpr(DependentScopeDeclRefExpr *E, |
| bool IsAddressOfOperand, |
| TypeSourceInfo **RecoveryTSI); |
| |
| ExprResult TransformParenDependentScopeDeclRefExpr( |
| ParenExpr *PE, DependentScopeDeclRefExpr *DRE, bool IsAddressOfOperand, |
| TypeSourceInfo **RecoveryTSI); |
| |
| ExprResult TransformUnresolvedLookupExpr(UnresolvedLookupExpr *E, |
| bool IsAddressOfOperand); |
| |
| StmtResult TransformOMPExecutableDirective(OMPExecutableDirective *S); |
| |
| StmtResult TransformOMPInformationalDirective(OMPExecutableDirective *S); |
| |
| // FIXME: We use LLVM_ATTRIBUTE_NOINLINE because inlining causes a ridiculous |
| // amount of stack usage with clang. |
| #define STMT(Node, Parent) \ |
| LLVM_ATTRIBUTE_NOINLINE \ |
| StmtResult Transform##Node(Node *S); |
| #define VALUESTMT(Node, Parent) \ |
| LLVM_ATTRIBUTE_NOINLINE \ |
| StmtResult Transform##Node(Node *S, StmtDiscardKind SDK); |
| #define EXPR(Node, Parent) \ |
| LLVM_ATTRIBUTE_NOINLINE \ |
| ExprResult Transform##Node(Node *E); |
| #define ABSTRACT_STMT(Stmt) |
| #include "clang/AST/StmtNodes.inc" |
| |
| #define GEN_CLANG_CLAUSE_CLASS |
| #define CLAUSE_CLASS(Enum, Str, Class) \ |
| LLVM_ATTRIBUTE_NOINLINE \ |
| OMPClause *Transform##Class(Class *S); |
| #include "llvm/Frontend/OpenMP/OMP.inc" |
| |
| /// Build a new qualified type given its unqualified type and type location. |
| /// |
| /// By default, this routine adds type qualifiers only to types that can |
| /// have qualifiers, and silently suppresses those qualifiers that are not |
| /// permitted. Subclasses may override this routine to provide different |
| /// behavior. |
| QualType RebuildQualifiedType(QualType T, QualifiedTypeLoc TL); |
| |
| /// Build a new pointer type given its pointee type. |
| /// |
| /// By default, performs semantic analysis when building the pointer type. |
| /// Subclasses may override this routine to provide different behavior. |
| QualType RebuildPointerType(QualType PointeeType, SourceLocation Sigil); |
| |
| /// Build a new block pointer type given its pointee type. |
| /// |
| /// By default, performs semantic analysis when building the block pointer |
| /// type. Subclasses may override this routine to provide different behavior. |
| QualType RebuildBlockPointerType(QualType PointeeType, SourceLocation Sigil); |
| |
| /// Build a new reference type given the type it references. |
| /// |
| /// By default, performs semantic analysis when building the |
| /// reference type. Subclasses may override this routine to provide |
| /// different behavior. |
| /// |
| /// \param LValue whether the type was written with an lvalue sigil |
| /// or an rvalue sigil. |
| QualType RebuildReferenceType(QualType ReferentType, |
| bool LValue, |
| SourceLocation Sigil); |
| |
| /// Build a new member pointer type given the pointee type and the |
| /// class type it refers into. |
| /// |
| /// By default, performs semantic analysis when building the member pointer |
| /// type. Subclasses may override this routine to provide different behavior. |
| QualType RebuildMemberPointerType(QualType PointeeType, QualType ClassType, |
| SourceLocation Sigil); |
| |
| QualType RebuildObjCTypeParamType(const ObjCTypeParamDecl *Decl, |
| SourceLocation ProtocolLAngleLoc, |
| ArrayRef<ObjCProtocolDecl *> Protocols, |
| ArrayRef<SourceLocation> ProtocolLocs, |
| SourceLocation ProtocolRAngleLoc); |
| |
| /// Build an Objective-C object type. |
| /// |
| /// By default, performs semantic analysis when building the object type. |
| /// Subclasses may override this routine to provide different behavior. |
| QualType RebuildObjCObjectType(QualType BaseType, |
| SourceLocation Loc, |
| SourceLocation TypeArgsLAngleLoc, |
| ArrayRef<TypeSourceInfo *> TypeArgs, |
| SourceLocation TypeArgsRAngleLoc, |
| SourceLocation ProtocolLAngleLoc, |
| ArrayRef<ObjCProtocolDecl *> Protocols, |
| ArrayRef<SourceLocation> ProtocolLocs, |
| SourceLocation ProtocolRAngleLoc); |
| |
| /// Build a new Objective-C object pointer type given the pointee type. |
| /// |
| /// By default, directly builds the pointer type, with no additional semantic |
| /// analysis. |
| QualType RebuildObjCObjectPointerType(QualType PointeeType, |
| SourceLocation Star); |
| |
| /// Build a new array type given the element type, size |
| /// modifier, size of the array (if known), size expression, and index type |
| /// qualifiers. |
| /// |
| /// By default, performs semantic analysis when building the array type. |
| /// Subclasses may override this routine to provide different behavior. |
| /// Also by default, all of the other Rebuild*Array |
| QualType RebuildArrayType(QualType ElementType, ArraySizeModifier SizeMod, |
| const llvm::APInt *Size, Expr *SizeExpr, |
| unsigned IndexTypeQuals, SourceRange BracketsRange); |
| |
| /// Build a new constant array type given the element type, size |
| /// modifier, (known) size of the array, and index type qualifiers. |
| /// |
| /// By default, performs semantic analysis when building the array type. |
| /// Subclasses may override this routine to provide different behavior. |
| QualType RebuildConstantArrayType(QualType ElementType, |
| ArraySizeModifier SizeMod, |
| const llvm::APInt &Size, Expr *SizeExpr, |
| unsigned IndexTypeQuals, |
| SourceRange BracketsRange); |
| |
| /// Build a new incomplete array type given the element type, size |
| /// modifier, and index type qualifiers. |
| /// |
| /// By default, performs semantic analysis when building the array type. |
| /// Subclasses may override this routine to provide different behavior. |
| QualType RebuildIncompleteArrayType(QualType ElementType, |
| ArraySizeModifier SizeMod, |
| unsigned IndexTypeQuals, |
| SourceRange BracketsRange); |
| |
| /// Build a new variable-length array type given the element type, |
| /// size modifier, size expression, and index type qualifiers. |
| /// |
| /// By default, performs semantic analysis when building the array type. |
| /// Subclasses may override this routine to provide different behavior. |
| QualType RebuildVariableArrayType(QualType ElementType, |
| ArraySizeModifier SizeMod, Expr *SizeExpr, |
| unsigned IndexTypeQuals, |
| SourceRange BracketsRange); |
| |
| /// Build a new dependent-sized array type given the element type, |
| /// size modifier, size expression, and index type qualifiers. |
| /// |
| /// By default, performs semantic analysis when building the array type. |
| /// Subclasses may override this routine to provide different behavior. |
| QualType RebuildDependentSizedArrayType(QualType ElementType, |
| ArraySizeModifier SizeMod, |
| Expr *SizeExpr, |
| unsigned IndexTypeQuals, |
| SourceRange BracketsRange); |
| |
| /// Build a new vector type given the element type and |
| /// number of elements. |
| /// |
| /// By default, performs semantic analysis when building the vector type. |
| /// Subclasses may override this routine to provide different behavior. |
| QualType RebuildVectorType(QualType ElementType, unsigned NumElements, |
| VectorKind VecKind); |
| |
| /// Build a new potentially dependently-sized extended vector type |
| /// given the element type and number of elements. |
| /// |
| /// By default, performs semantic analysis when building the vector type. |
| /// Subclasses may override this routine to provide different behavior. |
| QualType RebuildDependentVectorType(QualType ElementType, Expr *SizeExpr, |
| SourceLocation AttributeLoc, VectorKind); |
| |
| /// Build a new extended vector type given the element type and |
| /// number of elements. |
| /// |
| /// By default, performs semantic analysis when building the vector type. |
| /// Subclasses may override this routine to provide different behavior. |
| QualType RebuildExtVectorType(QualType ElementType, unsigned NumElements, |
| SourceLocation AttributeLoc); |
| |
| /// Build a new potentially dependently-sized extended vector type |
| /// given the element type and number of elements. |
| /// |
| /// By default, performs semantic analysis when building the vector type. |
| /// Subclasses may override this routine to provide different behavior. |
| QualType RebuildDependentSizedExtVectorType(QualType ElementType, |
| Expr *SizeExpr, |
| SourceLocation AttributeLoc); |
| |
| /// Build a new matrix type given the element type and dimensions. |
| QualType RebuildConstantMatrixType(QualType ElementType, unsigned NumRows, |
| unsigned NumColumns); |
| |
| /// Build a new matrix type given the type and dependently-defined |
| /// dimensions. |
| QualType RebuildDependentSizedMatrixType(QualType ElementType, Expr *RowExpr, |
| Expr *ColumnExpr, |
| SourceLocation AttributeLoc); |
| |
| /// Build a new DependentAddressSpaceType or return the pointee |
| /// type variable with the correct address space (retrieved from |
| /// AddrSpaceExpr) applied to it. The former will be returned in cases |
| /// where the address space remains dependent. |
| /// |
| /// By default, performs semantic analysis when building the type with address |
| /// space applied. Subclasses may override this routine to provide different |
| /// behavior. |
| QualType RebuildDependentAddressSpaceType(QualType PointeeType, |
| Expr *AddrSpaceExpr, |
| SourceLocation AttributeLoc); |
| |
| /// Build a new function type. |
| /// |
| /// By default, performs semantic analysis when building the function type. |
| /// Subclasses may override this routine to provide different behavior. |
| QualType RebuildFunctionProtoType(QualType T, |
| MutableArrayRef<QualType> ParamTypes, |
| const FunctionProtoType::ExtProtoInfo &EPI); |
| |
| /// Build a new unprototyped function type. |
| QualType RebuildFunctionNoProtoType(QualType ResultType); |
| |
| /// Rebuild an unresolved typename type, given the decl that |
| /// the UnresolvedUsingTypenameDecl was transformed to. |
| QualType RebuildUnresolvedUsingType(SourceLocation NameLoc, Decl *D); |
| |
| /// Build a new type found via an alias. |
| QualType RebuildUsingType(UsingShadowDecl *Found, QualType Underlying) { |
| return SemaRef.Context.getUsingType(Found, Underlying); |
| } |
| |
| /// Build a new typedef type. |
| QualType RebuildTypedefType(TypedefNameDecl *Typedef) { |
| return SemaRef.Context.getTypeDeclType(Typedef); |
| } |
| |
| /// Build a new MacroDefined type. |
| QualType RebuildMacroQualifiedType(QualType T, |
| const IdentifierInfo *MacroII) { |
| return SemaRef.Context.getMacroQualifiedType(T, MacroII); |
| } |
| |
| /// Build a new class/struct/union type. |
| QualType RebuildRecordType(RecordDecl *Record) { |
| return SemaRef.Context.getTypeDeclType(Record); |
| } |
| |
| /// Build a new Enum type. |
| QualType RebuildEnumType(EnumDecl *Enum) { |
| return SemaRef.Context.getTypeDeclType(Enum); |
| } |
| |
| /// Build a new typeof(expr) type. |
| /// |
| /// By default, performs semantic analysis when building the typeof type. |
| /// Subclasses may override this routine to provide different behavior. |
| QualType RebuildTypeOfExprType(Expr *Underlying, SourceLocation Loc, |
| TypeOfKind Kind); |
| |
| /// Build a new typeof(type) type. |
| /// |
| /// By default, builds a new TypeOfType with the given underlying type. |
| QualType RebuildTypeOfType(QualType Underlying, TypeOfKind Kind); |
| |
| /// Build a new unary transform type. |
| QualType RebuildUnaryTransformType(QualType BaseType, |
| UnaryTransformType::UTTKind UKind, |
| SourceLocation Loc); |
| |
| /// Build a new C++11 decltype type. |
| /// |
| /// By default, performs semantic analysis when building the decltype type. |
| /// Subclasses may override this routine to provide different behavior. |
| QualType RebuildDecltypeType(Expr *Underlying, SourceLocation Loc); |
| |
| QualType RebuildPackIndexingType(QualType Pattern, Expr *IndexExpr, |
| SourceLocation Loc, |
| SourceLocation EllipsisLoc, |
| bool FullySubstituted, |
| ArrayRef<QualType> Expansions = {}); |
| |
| /// Build a new C++11 auto type. |
| /// |
| /// By default, builds a new AutoType with the given deduced type. |
| QualType RebuildAutoType(QualType Deduced, AutoTypeKeyword Keyword, |
| ConceptDecl *TypeConstraintConcept, |
| ArrayRef<TemplateArgument> TypeConstraintArgs) { |
| // Note, IsDependent is always false here: we implicitly convert an 'auto' |
| // which has been deduced to a dependent type into an undeduced 'auto', so |
| // that we'll retry deduction after the transformation. |
| return SemaRef.Context.getAutoType(Deduced, Keyword, |
| /*IsDependent*/ false, /*IsPack=*/false, |
| TypeConstraintConcept, |
| TypeConstraintArgs); |
| } |
| |
| /// By default, builds a new DeducedTemplateSpecializationType with the given |
| /// deduced type. |
| QualType RebuildDeducedTemplateSpecializationType(TemplateName Template, |
| QualType Deduced) { |
| return SemaRef.Context.getDeducedTemplateSpecializationType( |
| Template, Deduced, /*IsDependent*/ false); |
| } |
| |
| /// Build a new template specialization type. |
| /// |
| /// By default, performs semantic analysis when building the template |
| /// specialization type. Subclasses may override this routine to provide |
| /// different behavior. |
| QualType RebuildTemplateSpecializationType(TemplateName Template, |
| SourceLocation TemplateLoc, |
| TemplateArgumentListInfo &Args); |
| |
| /// Build a new parenthesized type. |
| /// |
| /// By default, builds a new ParenType type from the inner type. |
| /// Subclasses may override this routine to provide different behavior. |
| QualType RebuildParenType(QualType InnerType) { |
| return SemaRef.BuildParenType(InnerType); |
| } |
| |
| /// Build a new qualified name type. |
| /// |
| /// By default, builds a new ElaboratedType type from the keyword, |
| /// the nested-name-specifier and the named type. |
| /// Subclasses may override this routine to provide different behavior. |
| QualType RebuildElaboratedType(SourceLocation KeywordLoc, |
| ElaboratedTypeKeyword Keyword, |
| NestedNameSpecifierLoc QualifierLoc, |
| QualType Named) { |
| return SemaRef.Context.getElaboratedType(Keyword, |
| QualifierLoc.getNestedNameSpecifier(), |
| Named); |
| } |
| |
| /// Build a new typename type that refers to a template-id. |
| /// |
| /// By default, builds a new DependentNameType type from the |
| /// nested-name-specifier and the given type. Subclasses may override |
| /// this routine to provide different behavior. |
| QualType RebuildDependentTemplateSpecializationType( |
| ElaboratedTypeKeyword Keyword, |
| NestedNameSpecifierLoc QualifierLoc, |
| SourceLocation TemplateKWLoc, |
| const IdentifierInfo *Name, |
| SourceLocation NameLoc, |
| TemplateArgumentListInfo &Args, |
| bool AllowInjectedClassName) { |
| // Rebuild the template name. |
| // TODO: avoid TemplateName abstraction |
| CXXScopeSpec SS; |
| SS.Adopt(QualifierLoc); |
| TemplateName InstName = getDerived().RebuildTemplateName( |
| SS, TemplateKWLoc, *Name, NameLoc, QualType(), nullptr, |
| AllowInjectedClassName); |
| |
| if (InstName.isNull()) |
| return QualType(); |
| |
| // If it's still dependent, make a dependent specialization. |
| if (InstName.getAsDependentTemplateName()) |
| return SemaRef.Context.getDependentTemplateSpecializationType( |
| Keyword, QualifierLoc.getNestedNameSpecifier(), Name, |
| Args.arguments()); |
| |
| // Otherwise, make an elaborated type wrapping a non-dependent |
| // specialization. |
| QualType T = |
| getDerived().RebuildTemplateSpecializationType(InstName, NameLoc, Args); |
| if (T.isNull()) |
| return QualType(); |
| return SemaRef.Context.getElaboratedType( |
| Keyword, QualifierLoc.getNestedNameSpecifier(), T); |
| } |
| |
| /// Build a new typename type that refers to an identifier. |
| /// |
| /// By default, performs semantic analysis when building the typename type |
| /// (or elaborated type). Subclasses may override this routine to provide |
| /// different behavior. |
| QualType RebuildDependentNameType(ElaboratedTypeKeyword Keyword, |
| SourceLocation KeywordLoc, |
| NestedNameSpecifierLoc QualifierLoc, |
| const IdentifierInfo *Id, |
| SourceLocation IdLoc, |
| bool DeducedTSTContext) { |
| CXXScopeSpec SS; |
| SS.Adopt(QualifierLoc); |
| |
| if (QualifierLoc.getNestedNameSpecifier()->isDependent()) { |
| // If the name is still dependent, just build a new dependent name type. |
| if (!SemaRef.computeDeclContext(SS)) |
| return SemaRef.Context.getDependentNameType(Keyword, |
| QualifierLoc.getNestedNameSpecifier(), |
| Id); |
| } |
| |
| if (Keyword == ElaboratedTypeKeyword::None || |
| Keyword == ElaboratedTypeKeyword::Typename) { |
| return SemaRef.CheckTypenameType(Keyword, KeywordLoc, QualifierLoc, |
| *Id, IdLoc, DeducedTSTContext); |
| } |
| |
| TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForKeyword(Keyword); |
| |
| // We had a dependent elaborated-type-specifier that has been transformed |
| // into a non-dependent elaborated-type-specifier. Find the tag we're |
| // referring to. |
| LookupResult Result(SemaRef, Id, IdLoc, Sema::LookupTagName); |
| DeclContext *DC = SemaRef.computeDeclContext(SS, false); |
| if (!DC) |
| return QualType(); |
| |
| if (SemaRef.RequireCompleteDeclContext(SS, DC)) |
| return QualType(); |
| |
| TagDecl *Tag = nullptr; |
| SemaRef.LookupQualifiedName(Result, DC); |
| switch (Result.getResultKind()) { |
| case LookupResult::NotFound: |
| case LookupResult::NotFoundInCurrentInstantiation: |
| break; |
| |
| case LookupResult::Found: |
| Tag = Result.getAsSingle<TagDecl>(); |
| break; |
| |
| case LookupResult::FoundOverloaded: |
| case LookupResult::FoundUnresolvedValue: |
| llvm_unreachable("Tag lookup cannot find non-tags"); |
| |
| case LookupResult::Ambiguous: |
| // Let the LookupResult structure handle ambiguities. |
| return QualType(); |
| } |
| |
| if (!Tag) { |
| // Check where the name exists but isn't a tag type and use that to emit |
| // better diagnostics. |
| LookupResult Result(SemaRef, Id, IdLoc, Sema::LookupTagName); |
| SemaRef.LookupQualifiedName(Result, DC); |
| switch (Result.getResultKind()) { |
| case LookupResult::Found: |
| case LookupResult::FoundOverloaded: |
| case LookupResult::FoundUnresolvedValue: { |
| NamedDecl *SomeDecl = Result.getRepresentativeDecl(); |
| Sema::NonTagKind NTK = SemaRef.getNonTagTypeDeclKind(SomeDecl, Kind); |
| SemaRef.Diag(IdLoc, diag::err_tag_reference_non_tag) |
| << SomeDecl << NTK << llvm::to_underlying(Kind); |
| SemaRef.Diag(SomeDecl->getLocation(), diag::note_declared_at); |
| break; |
| } |
| default: |
| SemaRef.Diag(IdLoc, diag::err_not_tag_in_scope) |
| << llvm::to_underlying(Kind) << Id << DC |
| << QualifierLoc.getSourceRange(); |
| break; |
| } |
| return QualType(); |
| } |
| |
| if (!SemaRef.isAcceptableTagRedeclaration(Tag, Kind, /*isDefinition*/false, |
| IdLoc, Id)) { |
| SemaRef.Diag(KeywordLoc, diag::err_use_with_wrong_tag) << Id; |
| SemaRef.Diag(Tag->getLocation(), diag::note_previous_use); |
| return QualType(); |
| } |
| |
| // Build the elaborated-type-specifier type. |
| QualType T = SemaRef.Context.getTypeDeclType(Tag); |
| return SemaRef.Context.getElaboratedType(Keyword, |
| QualifierLoc.getNestedNameSpecifier(), |
| T); |
| } |
| |
| /// Build a new pack expansion type. |
| /// |
| /// By default, builds a new PackExpansionType type from the given pattern. |
| /// Subclasses may override this routine to provide different behavior. |
| QualType RebuildPackExpansionType(QualType Pattern, SourceRange PatternRange, |
| SourceLocation EllipsisLoc, |
| std::optional<unsigned> NumExpansions) { |
| return getSema().CheckPackExpansion(Pattern, PatternRange, EllipsisLoc, |
| NumExpansions); |
| } |
| |
| /// Build a new atomic type given its value type. |
| /// |
| /// By default, performs semantic analysis when building the atomic type. |
| /// Subclasses may override this routine to provide different behavior. |
| QualType RebuildAtomicType(QualType ValueType, SourceLocation KWLoc); |
| |
| /// Build a new pipe type given its value type. |
| QualType RebuildPipeType(QualType ValueType, SourceLocation KWLoc, |
| bool isReadPipe); |
| |
| /// Build a bit-precise int given its value type. |
| QualType RebuildBitIntType(bool IsUnsigned, unsigned NumBits, |
| SourceLocation Loc); |
| |
| /// Build a dependent bit-precise int given its value type. |
| QualType RebuildDependentBitIntType(bool IsUnsigned, Expr *NumBitsExpr, |
| SourceLocation Loc); |
| |
| /// Build a new template name given a nested name specifier, a flag |
| /// indicating whether the "template" keyword was provided, and the template |
| /// that the template name refers to. |
| /// |
| /// By default, builds the new template name directly. Subclasses may override |
| /// this routine to provide different behavior. |
| TemplateName RebuildTemplateName(CXXScopeSpec &SS, |
| bool TemplateKW, |
| TemplateDecl *Template); |
| |
| /// Build a new template name given a nested name specifier and the |
| /// name that is referred to as a template. |
| /// |
| /// By default, performs semantic analysis to determine whether the name can |
| /// be resolved to a specific template, then builds the appropriate kind of |
| /// template name. Subclasses may override this routine to provide different |
| /// behavior. |
| TemplateName RebuildTemplateName(CXXScopeSpec &SS, |
| SourceLocation TemplateKWLoc, |
| const IdentifierInfo &Name, |
| SourceLocation NameLoc, QualType ObjectType, |
| NamedDecl *FirstQualifierInScope, |
| bool AllowInjectedClassName); |
| |
| /// Build a new template name given a nested name specifier and the |
| /// overloaded operator name that is referred to as a template. |
| /// |
| /// By default, performs semantic analysis to determine whether the name can |
| /// be resolved to a specific template, then builds the appropriate kind of |
| /// template name. Subclasses may override this routine to provide different |
| /// behavior. |
| TemplateName RebuildTemplateName(CXXScopeSpec &SS, |
| SourceLocation TemplateKWLoc, |
| OverloadedOperatorKind Operator, |
| SourceLocation NameLoc, QualType ObjectType, |
| bool AllowInjectedClassName); |
| |
| /// Build a new template name given a template template parameter pack |
| /// and the |
| /// |
| /// By default, performs semantic analysis to determine whether the name can |
| /// be resolved to a specific template, then builds the appropriate kind of |
| /// template name. Subclasses may override this routine to provide different |
| /// behavior. |
| TemplateName RebuildTemplateName(const TemplateArgument &ArgPack, |
| Decl *AssociatedDecl, unsigned Index, |
| bool Final) { |
| return getSema().Context.getSubstTemplateTemplateParmPack( |
| ArgPack, AssociatedDecl, Index, Final); |
| } |
| |
| /// Build a new compound statement. |
| /// |
| /// By default, performs semantic analysis to build the new statement. |
| /// Subclasses may override this routine to provide different behavior. |
| StmtResult RebuildCompoundStmt(SourceLocation LBraceLoc, |
| MultiStmtArg Statements, |
| SourceLocation RBraceLoc, |
| bool IsStmtExpr) { |
| return getSema().ActOnCompoundStmt(LBraceLoc, RBraceLoc, Statements, |
| IsStmtExpr); |
| } |
| |
| /// Build a new case statement. |
| /// |
| /// By default, performs semantic analysis to build the new statement. |
| /// Subclasses may override this routine to provide different behavior. |
| StmtResult RebuildCaseStmt(SourceLocation CaseLoc, |
| Expr *LHS, |
| SourceLocation EllipsisLoc, |
| Expr *RHS, |
| SourceLocation ColonLoc) { |
| return getSema().ActOnCaseStmt(CaseLoc, LHS, EllipsisLoc, RHS, |
| ColonLoc); |
| } |
| |
| /// Attach the body to a new case statement. |
| /// |
| /// By default, performs semantic analysis to build the new statement. |
| /// Subclasses may override this routine to provide different behavior. |
| StmtResult RebuildCaseStmtBody(Stmt *S, Stmt *Body) { |
| getSema().ActOnCaseStmtBody(S, Body); |
| return S; |
| } |
| |
| /// Build a new default statement. |
| /// |
| /// By default, performs semantic analysis to build the new statement. |
| /// Subclasses may override this routine to provide different behavior. |
| StmtResult RebuildDefaultStmt(SourceLocation DefaultLoc, |
| SourceLocation ColonLoc, |
| Stmt *SubStmt) { |
| return getSema().ActOnDefaultStmt(DefaultLoc, ColonLoc, SubStmt, |
| /*CurScope=*/nullptr); |
| } |
| |
| /// Build a new label statement. |
| /// |
| /// By default, performs semantic analysis to build the new statement. |
| /// Subclasses may override this routine to provide different behavior. |
| StmtResult RebuildLabelStmt(SourceLocation IdentLoc, LabelDecl *L, |
| SourceLocation ColonLoc, Stmt *SubStmt) { |
| return SemaRef.ActOnLabelStmt(IdentLoc, L, ColonLoc, SubStmt); |
| } |
| |
| /// Build a new attributed statement. |
| /// |
| /// By default, performs semantic analysis to build the new statement. |
| /// Subclasses may override this routine to provide different behavior. |
| StmtResult RebuildAttributedStmt(SourceLocation AttrLoc, |
| ArrayRef<const Attr *> Attrs, |
| Stmt *SubStmt) { |
| if (SemaRef.CheckRebuiltStmtAttributes(Attrs)) |
| return StmtError(); |
| return SemaRef.BuildAttributedStmt(AttrLoc, Attrs, SubStmt); |
| } |
| |
| /// Build a new "if" statement. |
| /// |
| /// By default, performs semantic analysis to build the new statement. |
| /// Subclasses may override this routine to provide different behavior. |
| StmtResult RebuildIfStmt(SourceLocation IfLoc, IfStatementKind Kind, |
| SourceLocation LParenLoc, Sema::ConditionResult Cond, |
| SourceLocation RParenLoc, Stmt *Init, Stmt *Then, |
| SourceLocation ElseLoc, Stmt *Else) { |
| return getSema().ActOnIfStmt(IfLoc, Kind, LParenLoc, Init, Cond, RParenLoc, |
| Then, ElseLoc, Else); |
| } |
| |
| /// Start building a new switch statement. |
| /// |
| /// By default, performs semantic analysis to build the new statement. |
| /// Subclasses may override this routine to provide different behavior. |
| StmtResult RebuildSwitchStmtStart(SourceLocation SwitchLoc, |
| SourceLocation LParenLoc, Stmt *Init, |
| Sema::ConditionResult Cond, |
| SourceLocation RParenLoc) { |
| return getSema().ActOnStartOfSwitchStmt(SwitchLoc, LParenLoc, Init, Cond, |
| RParenLoc); |
| } |
| |
| /// Attach the body to the switch statement. |
| /// |
| /// By default, performs semantic analysis to build the new statement. |
| /// Subclasses may override this routine to provide different behavior. |
| StmtResult RebuildSwitchStmtBody(SourceLocation SwitchLoc, |
| Stmt *Switch, Stmt *Body) { |
| return getSema().ActOnFinishSwitchStmt(SwitchLoc, Switch, Body); |
| } |
| |
| /// Build a new while statement. |
| /// |
| /// By default, performs semantic analysis to build the new statement. |
| /// Subclasses may override this routine to provide different behavior. |
| StmtResult RebuildWhileStmt(SourceLocation WhileLoc, SourceLocation LParenLoc, |
| Sema::ConditionResult Cond, |
| SourceLocation RParenLoc, Stmt *Body) { |
| return getSema().ActOnWhileStmt(WhileLoc, LParenLoc, Cond, RParenLoc, Body); |
| } |
| |
| /// Build a new do-while statement. |
| /// |
| /// By default, performs semantic analysis to build the new statement. |
| /// Subclasses may override this routine to provide different behavior. |
| StmtResult RebuildDoStmt(SourceLocation DoLoc, Stmt *Body, |
| SourceLocation WhileLoc, SourceLocation LParenLoc, |
| Expr *Cond, SourceLocation RParenLoc) { |
| return getSema().ActOnDoStmt(DoLoc, Body, WhileLoc, LParenLoc, |
| Cond, RParenLoc); |
| } |
| |
| /// Build a new for statement. |
| /// |
| /// By default, performs semantic analysis to build the new statement. |
| /// Subclasses may override this routine to provide different behavior. |
| StmtResult RebuildForStmt(SourceLocation ForLoc, SourceLocation LParenLoc, |
| Stmt *Init, Sema::ConditionResult Cond, |
| Sema::FullExprArg Inc, SourceLocation RParenLoc, |
| Stmt *Body) { |
| return getSema().ActOnForStmt(ForLoc, LParenLoc, Init, Cond, |
| Inc, RParenLoc, Body); |
| } |
| |
| /// Build a new goto statement. |
| /// |
| /// By default, performs semantic analysis to build the new statement. |
| /// Subclasses may override this routine to provide different behavior. |
| StmtResult RebuildGotoStmt(SourceLocation GotoLoc, SourceLocation LabelLoc, |
| LabelDecl *Label) { |
| return getSema().ActOnGotoStmt(GotoLoc, LabelLoc, Label); |
| } |
| |
| /// Build a new indirect goto statement. |
| /// |
| /// By default, performs semantic analysis to build the new statement. |
| /// Subclasses may override this routine to provide different behavior. |
| StmtResult RebuildIndirectGotoStmt(SourceLocation GotoLoc, |
| SourceLocation StarLoc, |
| Expr *Target) { |
| return getSema().ActOnIndirectGotoStmt(GotoLoc, StarLoc, Target); |
| } |
| |
| /// Build a new return statement. |
| /// |
| /// By default, performs semantic analysis to build the new statement. |
| /// Subclasses may override this routine to provide different behavior. |
| StmtResult RebuildReturnStmt(SourceLocation ReturnLoc, Expr *Result) { |
| return getSema().BuildReturnStmt(ReturnLoc, Result); |
| } |
| |
| /// Build a new declaration statement. |
| /// |
| /// By default, performs semantic analysis to build the new statement. |
| /// Subclasses may override this routine to provide different behavior. |
| StmtResult RebuildDeclStmt(MutableArrayRef<Decl *> Decls, |
| SourceLocation StartLoc, SourceLocation EndLoc) { |
| Sema::DeclGroupPtrTy DG = getSema().BuildDeclaratorGroup(Decls); |
| return getSema().ActOnDeclStmt(DG, StartLoc, EndLoc); |
| } |
| |
| /// Build a new inline asm statement. |
| /// |
| /// By default, performs semantic analysis to build the new statement. |
| /// Subclasses may override this routine to provide different behavior. |
| StmtResult RebuildGCCAsmStmt(SourceLocation AsmLoc, bool IsSimple, |
| bool IsVolatile, unsigned NumOutputs, |
| unsigned NumInputs, IdentifierInfo **Names, |
| MultiExprArg Constraints, MultiExprArg Exprs, |
| Expr *AsmString, MultiExprArg Clobbers, |
| unsigned NumLabels, |
| SourceLocation RParenLoc) { |
| return getSema().ActOnGCCAsmStmt(AsmLoc, IsSimple, IsVolatile, NumOutputs, |
| NumInputs, Names, Constraints, Exprs, |
| AsmString, Clobbers, NumLabels, RParenLoc); |
| } |
| |
| /// Build a new MS style inline asm statement. |
| /// |
| /// By default, performs semantic analysis to build the new statement. |
| /// Subclasses may override this routine to provide different behavior. |
| StmtResult RebuildMSAsmStmt(SourceLocation AsmLoc, SourceLocation LBraceLoc, |
| ArrayRef<Token> AsmToks, |
| StringRef AsmString, |
| unsigned NumOutputs, unsigned NumInputs, |
| ArrayRef<StringRef> Constraints, |
| ArrayRef<StringRef> Clobbers, |
| ArrayRef<Expr*> Exprs, |
| SourceLocation EndLoc) { |
| return getSema().ActOnMSAsmStmt(AsmLoc, LBraceLoc, AsmToks, AsmString, |
| NumOutputs, NumInputs, |
| Constraints, Clobbers, Exprs, EndLoc); |
| } |
| |
| /// Build a new co_return statement. |
| /// |
| /// By default, performs semantic analysis to build the new statement. |
| /// Subclasses may override this routine to provide different behavior. |
| StmtResult RebuildCoreturnStmt(SourceLocation CoreturnLoc, Expr *Result, |
| bool IsImplicit) { |
| return getSema().BuildCoreturnStmt(CoreturnLoc, Result, IsImplicit); |
| } |
| |
| /// Build a new co_await expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| ExprResult RebuildCoawaitExpr(SourceLocation CoawaitLoc, Expr *Operand, |
| UnresolvedLookupExpr *OpCoawaitLookup, |
| bool IsImplicit) { |
| // This function rebuilds a coawait-expr given its operator. |
| // For an explicit coawait-expr, the rebuild involves the full set |
| // of transformations performed by BuildUnresolvedCoawaitExpr(), |
| // including calling await_transform(). |
| // For an implicit coawait-expr, we need to rebuild the "operator |
| // coawait" but not await_transform(), so use BuildResolvedCoawaitExpr(). |
| // This mirrors how the implicit CoawaitExpr is originally created |
| // in Sema::ActOnCoroutineBodyStart(). |
| if (IsImplicit) { |
| ExprResult Suspend = getSema().BuildOperatorCoawaitCall( |
| CoawaitLoc, Operand, OpCoawaitLookup); |
| if (Suspend.isInvalid()) |
| return ExprError(); |
| return getSema().BuildResolvedCoawaitExpr(CoawaitLoc, Operand, |
| Suspend.get(), true); |
| } |
| |
| return getSema().BuildUnresolvedCoawaitExpr(CoawaitLoc, Operand, |
| OpCoawaitLookup); |
| } |
| |
| /// Build a new co_await expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| ExprResult RebuildDependentCoawaitExpr(SourceLocation CoawaitLoc, |
| Expr *Result, |
| UnresolvedLookupExpr *Lookup) { |
| return getSema().BuildUnresolvedCoawaitExpr(CoawaitLoc, Result, Lookup); |
| } |
| |
| /// Build a new co_yield expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| ExprResult RebuildCoyieldExpr(SourceLocation CoyieldLoc, Expr *Result) { |
| return getSema().BuildCoyieldExpr(CoyieldLoc, Result); |
| } |
| |
| StmtResult RebuildCoroutineBodyStmt(CoroutineBodyStmt::CtorArgs Args) { |
| return getSema().BuildCoroutineBodyStmt(Args); |
| } |
| |
| /// Build a new Objective-C \@try statement. |
| /// |
| /// By default, performs semantic analysis to build the new statement. |
| /// Subclasses may override this routine to provide different behavior. |
| StmtResult RebuildObjCAtTryStmt(SourceLocation AtLoc, |
| Stmt *TryBody, |
| MultiStmtArg CatchStmts, |
| Stmt *Finally) { |
| return getSema().ObjC().ActOnObjCAtTryStmt(AtLoc, TryBody, CatchStmts, |
| Finally); |
| } |
| |
| /// Rebuild an Objective-C exception declaration. |
| /// |
| /// By default, performs semantic analysis to build the new declaration. |
| /// Subclasses may override this routine to provide different behavior. |
| VarDecl *RebuildObjCExceptionDecl(VarDecl *ExceptionDecl, |
| TypeSourceInfo *TInfo, QualType T) { |
| return getSema().ObjC().BuildObjCExceptionDecl( |
| TInfo, T, ExceptionDecl->getInnerLocStart(), |
| ExceptionDecl->getLocation(), ExceptionDecl->getIdentifier()); |
| } |
| |
| /// Build a new Objective-C \@catch statement. |
| /// |
| /// By default, performs semantic analysis to build the new statement. |
| /// Subclasses may override this routine to provide different behavior. |
| StmtResult RebuildObjCAtCatchStmt(SourceLocation AtLoc, |
| SourceLocation RParenLoc, |
| VarDecl *Var, |
| Stmt *Body) { |
| return getSema().ObjC().ActOnObjCAtCatchStmt(AtLoc, RParenLoc, Var, Body); |
| } |
| |
| /// Build a new Objective-C \@finally statement. |
| /// |
| /// By default, performs semantic analysis to build the new statement. |
| /// Subclasses may override this routine to provide different behavior. |
| StmtResult RebuildObjCAtFinallyStmt(SourceLocation AtLoc, |
| Stmt *Body) { |
| return getSema().ObjC().ActOnObjCAtFinallyStmt(AtLoc, Body); |
| } |
| |
| /// Build a new Objective-C \@throw statement. |
| /// |
| /// By default, performs semantic analysis to build the new statement. |
| /// Subclasses may override this routine to provide different behavior. |
| StmtResult RebuildObjCAtThrowStmt(SourceLocation AtLoc, |
| Expr *Operand) { |
| return getSema().ObjC().BuildObjCAtThrowStmt(AtLoc, Operand); |
| } |
| |
| /// Build a new OpenMP Canonical loop. |
| /// |
| /// Ensures that the outermost loop in @p LoopStmt is wrapped by a |
| /// OMPCanonicalLoop. |
| StmtResult RebuildOMPCanonicalLoop(Stmt *LoopStmt) { |
| return getSema().OpenMP().ActOnOpenMPCanonicalLoop(LoopStmt); |
| } |
| |
| /// Build a new OpenMP executable directive. |
| /// |
| /// By default, performs semantic analysis to build the new statement. |
| /// Subclasses may override this routine to provide different behavior. |
| StmtResult RebuildOMPExecutableDirective(OpenMPDirectiveKind Kind, |
| DeclarationNameInfo DirName, |
| OpenMPDirectiveKind CancelRegion, |
| ArrayRef<OMPClause *> Clauses, |
| Stmt *AStmt, SourceLocation StartLoc, |
| SourceLocation EndLoc) { |
| |
| return getSema().OpenMP().ActOnOpenMPExecutableDirective( |
| Kind, DirName, CancelRegion, Clauses, AStmt, StartLoc, EndLoc); |
| } |
| |
| /// Build a new OpenMP informational directive. |
| StmtResult RebuildOMPInformationalDirective(OpenMPDirectiveKind Kind, |
| DeclarationNameInfo DirName, |
| ArrayRef<OMPClause *> Clauses, |
| Stmt *AStmt, |
| SourceLocation StartLoc, |
| SourceLocation EndLoc) { |
| |
| return getSema().OpenMP().ActOnOpenMPInformationalDirective( |
| Kind, DirName, Clauses, AStmt, StartLoc, EndLoc); |
| } |
| |
| /// Build a new OpenMP 'if' clause. |
| /// |
| /// By default, performs semantic analysis to build the new OpenMP clause. |
| /// Subclasses may override this routine to provide different behavior. |
| OMPClause *RebuildOMPIfClause(OpenMPDirectiveKind NameModifier, |
| Expr *Condition, SourceLocation StartLoc, |
| SourceLocation LParenLoc, |
| SourceLocation NameModifierLoc, |
| SourceLocation ColonLoc, |
| SourceLocation EndLoc) { |
| return getSema().OpenMP().ActOnOpenMPIfClause( |
| NameModifier, Condition, StartLoc, LParenLoc, NameModifierLoc, ColonLoc, |
| EndLoc); |
| } |
| |
| /// Build a new OpenMP 'final' clause. |
| /// |
| /// By default, performs semantic analysis to build the new OpenMP clause. |
| /// Subclasses may override this routine to provide different behavior. |
| OMPClause *RebuildOMPFinalClause(Expr *Condition, SourceLocation StartLoc, |
| SourceLocation LParenLoc, |
| SourceLocation EndLoc) { |
| return getSema().OpenMP().ActOnOpenMPFinalClause(Condition, StartLoc, |
| LParenLoc, EndLoc); |
| } |
| |
| /// Build a new OpenMP 'num_threads' clause. |
| /// |
| /// By default, performs semantic analysis to build the new OpenMP clause. |
| /// Subclasses may override this routine to provide different behavior. |
| OMPClause *RebuildOMPNumThreadsClause(Expr *NumThreads, |
| SourceLocation StartLoc, |
| SourceLocation LParenLoc, |
| SourceLocation EndLoc) { |
| return getSema().OpenMP().ActOnOpenMPNumThreadsClause(NumThreads, StartLoc, |
| LParenLoc, EndLoc); |
| } |
| |
| /// Build a new OpenMP 'safelen' clause. |
| /// |
| /// By default, performs semantic analysis to build the new OpenMP clause. |
| /// Subclasses may override this routine to provide different behavior. |
| OMPClause *RebuildOMPSafelenClause(Expr *Len, SourceLocation StartLoc, |
| SourceLocation LParenLoc, |
| SourceLocation EndLoc) { |
| return getSema().OpenMP().ActOnOpenMPSafelenClause(Len, StartLoc, LParenLoc, |
| EndLoc); |
| } |
| |
| /// Build a new OpenMP 'simdlen' clause. |
| /// |
| /// By default, performs semantic analysis to build the new OpenMP clause. |
| /// Subclasses may override this routine to provide different behavior. |
| OMPClause *RebuildOMPSimdlenClause(Expr *Len, SourceLocation StartLoc, |
| SourceLocation LParenLoc, |
| SourceLocation EndLoc) { |
| return getSema().OpenMP().ActOnOpenMPSimdlenClause(Len, StartLoc, LParenLoc, |
| EndLoc); |
| } |
| |
| OMPClause *RebuildOMPSizesClause(ArrayRef<Expr *> Sizes, |
| SourceLocation StartLoc, |
| SourceLocation LParenLoc, |
| SourceLocation EndLoc) { |
| return getSema().OpenMP().ActOnOpenMPSizesClause(Sizes, StartLoc, LParenLoc, |
| EndLoc); |
| } |
| |
| /// Build a new OpenMP 'permutation' clause. |
| OMPClause *RebuildOMPPermutationClause(ArrayRef<Expr *> PermExprs, |
| SourceLocation StartLoc, |
| SourceLocation LParenLoc, |
| SourceLocation EndLoc) { |
| return getSema().OpenMP().ActOnOpenMPPermutationClause(PermExprs, StartLoc, |
| LParenLoc, EndLoc); |
| } |
| |
| /// Build a new OpenMP 'full' clause. |
| OMPClause *RebuildOMPFullClause(SourceLocation StartLoc, |
| SourceLocation EndLoc) { |
| return getSema().OpenMP().ActOnOpenMPFullClause(StartLoc, EndLoc); |
| } |
| |
| /// Build a new OpenMP 'partial' clause. |
| OMPClause *RebuildOMPPartialClause(Expr *Factor, SourceLocation StartLoc, |
| SourceLocation LParenLoc, |
| SourceLocation EndLoc) { |
| return getSema().OpenMP().ActOnOpenMPPartialClause(Factor, StartLoc, |
| LParenLoc, EndLoc); |
| } |
| |
| /// Build a new OpenMP 'allocator' clause. |
| /// |
| /// By default, performs semantic analysis to build the new OpenMP clause. |
| /// Subclasses may override this routine to provide different behavior. |
| OMPClause *RebuildOMPAllocatorClause(Expr *A, SourceLocation StartLoc, |
| SourceLocation LParenLoc, |
| SourceLocation EndLoc) { |
| return getSema().OpenMP().ActOnOpenMPAllocatorClause(A, StartLoc, LParenLoc, |
| EndLoc); |
| } |
| |
| /// Build a new OpenMP 'collapse' clause. |
| /// |
| /// By default, performs semantic analysis to build the new OpenMP clause. |
| /// Subclasses may override this routine to provide different behavior. |
| OMPClause *RebuildOMPCollapseClause(Expr *Num, SourceLocation StartLoc, |
| SourceLocation LParenLoc, |
| SourceLocation EndLoc) { |
| return getSema().OpenMP().ActOnOpenMPCollapseClause(Num, StartLoc, |
| LParenLoc, EndLoc); |
| } |
| |
| /// Build a new OpenMP 'default' clause. |
| /// |
| /// By default, performs semantic analysis to build the new OpenMP clause. |
| /// Subclasses may override this routine to provide different behavior. |
| OMPClause *RebuildOMPDefaultClause(DefaultKind Kind, SourceLocation KindKwLoc, |
| SourceLocation StartLoc, |
| SourceLocation LParenLoc, |
| SourceLocation EndLoc) { |
| return getSema().OpenMP().ActOnOpenMPDefaultClause( |
| Kind, KindKwLoc, StartLoc, LParenLoc, EndLoc); |
| } |
| |
| /// Build a new OpenMP 'proc_bind' clause. |
| /// |
| /// By default, performs semantic analysis to build the new OpenMP clause. |
| /// Subclasses may override this routine to provide different behavior. |
| OMPClause *RebuildOMPProcBindClause(ProcBindKind Kind, |
| SourceLocation KindKwLoc, |
| SourceLocation StartLoc, |
| SourceLocation LParenLoc, |
| SourceLocation EndLoc) { |
| return getSema().OpenMP().ActOnOpenMPProcBindClause( |
| Kind, KindKwLoc, StartLoc, LParenLoc, EndLoc); |
| } |
| |
| /// Build a new OpenMP 'schedule' clause. |
| /// |
| /// By default, performs semantic analysis to build the new OpenMP clause. |
| /// Subclasses may override this routine to provide different behavior. |
| OMPClause *RebuildOMPScheduleClause( |
| OpenMPScheduleClauseModifier M1, OpenMPScheduleClauseModifier M2, |
| OpenMPScheduleClauseKind Kind, Expr *ChunkSize, SourceLocation StartLoc, |
| SourceLocation LParenLoc, SourceLocation M1Loc, SourceLocation M2Loc, |
| SourceLocation KindLoc, SourceLocation CommaLoc, SourceLocation EndLoc) { |
| return getSema().OpenMP().ActOnOpenMPScheduleClause( |
| M1, M2, Kind, ChunkSize, StartLoc, LParenLoc, M1Loc, M2Loc, KindLoc, |
| CommaLoc, EndLoc); |
| } |
| |
| /// Build a new OpenMP 'ordered' clause. |
| /// |
| /// By default, performs semantic analysis to build the new OpenMP clause. |
| /// Subclasses may override this routine to provide different behavior. |
| OMPClause *RebuildOMPOrderedClause(SourceLocation StartLoc, |
| SourceLocation EndLoc, |
| SourceLocation LParenLoc, Expr *Num) { |
| return getSema().OpenMP().ActOnOpenMPOrderedClause(StartLoc, EndLoc, |
| LParenLoc, Num); |
| } |
| |
| /// Build a new OpenMP 'private' clause. |
| /// |
| /// By default, performs semantic analysis to build the new OpenMP clause. |
| /// Subclasses may override this routine to provide different behavior. |
| OMPClause *RebuildOMPPrivateClause(ArrayRef<Expr *> VarList, |
| SourceLocation StartLoc, |
| SourceLocation LParenLoc, |
| SourceLocation EndLoc) { |
| return getSema().OpenMP().ActOnOpenMPPrivateClause(VarList, StartLoc, |
| LParenLoc, EndLoc); |
| } |
| |
| /// Build a new OpenMP 'firstprivate' clause. |
| /// |
| /// By default, performs semantic analysis to build the new OpenMP clause. |
| /// Subclasses may override this routine to provide different behavior. |
| OMPClause *RebuildOMPFirstprivateClause(ArrayRef<Expr *> VarList, |
| SourceLocation StartLoc, |
| SourceLocation LParenLoc, |
| SourceLocation EndLoc) { |
| return getSema().OpenMP().ActOnOpenMPFirstprivateClause(VarList, StartLoc, |
| LParenLoc, EndLoc); |
| } |
| |
| /// Build a new OpenMP 'lastprivate' clause. |
| /// |
| /// By default, performs semantic analysis to build the new OpenMP clause. |
| /// Subclasses may override this routine to provide different behavior. |
| OMPClause *RebuildOMPLastprivateClause(ArrayRef<Expr *> VarList, |
| OpenMPLastprivateModifier LPKind, |
| SourceLocation LPKindLoc, |
| SourceLocation ColonLoc, |
| SourceLocation StartLoc, |
| SourceLocation LParenLoc, |
| SourceLocation EndLoc) { |
| return getSema().OpenMP().ActOnOpenMPLastprivateClause( |
| VarList, LPKind, LPKindLoc, ColonLoc, StartLoc, LParenLoc, EndLoc); |
| } |
| |
| /// Build a new OpenMP 'shared' clause. |
| /// |
| /// By default, performs semantic analysis to build the new OpenMP clause. |
| /// Subclasses may override this routine to provide different behavior. |
| OMPClause *RebuildOMPSharedClause(ArrayRef<Expr *> VarList, |
| SourceLocation StartLoc, |
| SourceLocation LParenLoc, |
| SourceLocation EndLoc) { |
| return getSema().OpenMP().ActOnOpenMPSharedClause(VarList, StartLoc, |
| LParenLoc, EndLoc); |
| } |
| |
| /// Build a new OpenMP 'reduction' clause. |
| /// |
| /// By default, performs semantic analysis to build the new statement. |
| /// Subclasses may override this routine to provide different behavior. |
| OMPClause *RebuildOMPReductionClause( |
| ArrayRef<Expr *> VarList, OpenMPReductionClauseModifier Modifier, |
| SourceLocation StartLoc, SourceLocation LParenLoc, |
| SourceLocation ModifierLoc, SourceLocation ColonLoc, |
| SourceLocation EndLoc, CXXScopeSpec &ReductionIdScopeSpec, |
| const DeclarationNameInfo &ReductionId, |
| ArrayRef<Expr *> UnresolvedReductions) { |
| return getSema().OpenMP().ActOnOpenMPReductionClause( |
| VarList, Modifier, StartLoc, LParenLoc, ModifierLoc, ColonLoc, EndLoc, |
| ReductionIdScopeSpec, ReductionId, UnresolvedReductions); |
| } |
| |
| /// Build a new OpenMP 'task_reduction' clause. |
| /// |
| /// By default, performs semantic analysis to build the new statement. |
| /// Subclasses may override this routine to provide different behavior. |
| OMPClause *RebuildOMPTaskReductionClause( |
| ArrayRef<Expr *> VarList, SourceLocation StartLoc, |
| SourceLocation LParenLoc, SourceLocation ColonLoc, SourceLocation EndLoc, |
| CXXScopeSpec &ReductionIdScopeSpec, |
| const DeclarationNameInfo &ReductionId, |
| ArrayRef<Expr *> UnresolvedReductions) { |
| return getSema().OpenMP().ActOnOpenMPTaskReductionClause( |
| VarList, StartLoc, LParenLoc, ColonLoc, EndLoc, ReductionIdScopeSpec, |
| ReductionId, UnresolvedReductions); |
| } |
| |
| /// Build a new OpenMP 'in_reduction' clause. |
| /// |
| /// By default, performs semantic analysis to build the new statement. |
| /// Subclasses may override this routine to provide different behavior. |
| OMPClause * |
| RebuildOMPInReductionClause(ArrayRef<Expr *> VarList, SourceLocation StartLoc, |
| SourceLocation LParenLoc, SourceLocation ColonLoc, |
| SourceLocation EndLoc, |
| CXXScopeSpec &ReductionIdScopeSpec, |
| const DeclarationNameInfo &ReductionId, |
| ArrayRef<Expr *> UnresolvedReductions) { |
| return getSema().OpenMP().ActOnOpenMPInReductionClause( |
| VarList, StartLoc, LParenLoc, ColonLoc, EndLoc, ReductionIdScopeSpec, |
| ReductionId, UnresolvedReductions); |
| } |
| |
| /// Build a new OpenMP 'linear' clause. |
| /// |
| /// By default, performs semantic analysis to build the new OpenMP clause. |
| /// Subclasses may override this routine to provide different behavior. |
| OMPClause *RebuildOMPLinearClause( |
| ArrayRef<Expr *> VarList, Expr *Step, SourceLocation StartLoc, |
| SourceLocation LParenLoc, OpenMPLinearClauseKind Modifier, |
| SourceLocation ModifierLoc, SourceLocation ColonLoc, |
| SourceLocation StepModifierLoc, SourceLocation EndLoc) { |
| return getSema().OpenMP().ActOnOpenMPLinearClause( |
| VarList, Step, StartLoc, LParenLoc, Modifier, ModifierLoc, ColonLoc, |
| StepModifierLoc, EndLoc); |
| } |
| |
| /// Build a new OpenMP 'aligned' clause. |
| /// |
| /// By default, performs semantic analysis to build the new OpenMP clause. |
| /// Subclasses may override this routine to provide different behavior. |
| OMPClause *RebuildOMPAlignedClause(ArrayRef<Expr *> VarList, Expr *Alignment, |
| SourceLocation StartLoc, |
| SourceLocation LParenLoc, |
| SourceLocation ColonLoc, |
| SourceLocation EndLoc) { |
| return getSema().OpenMP().ActOnOpenMPAlignedClause( |
| VarList, Alignment, StartLoc, LParenLoc, ColonLoc, EndLoc); |
| } |
| |
| /// Build a new OpenMP 'copyin' clause. |
| /// |
| /// By default, performs semantic analysis to build the new OpenMP clause. |
| /// Subclasses may override this routine to provide different behavior. |
| OMPClause *RebuildOMPCopyinClause(ArrayRef<Expr *> VarList, |
| SourceLocation StartLoc, |
| SourceLocation LParenLoc, |
| SourceLocation EndLoc) { |
| return getSema().OpenMP().ActOnOpenMPCopyinClause(VarList, StartLoc, |
| LParenLoc, EndLoc); |
| } |
| |
| /// Build a new OpenMP 'copyprivate' clause. |
| /// |
| /// By default, performs semantic analysis to build the new OpenMP clause. |
| /// Subclasses may override this routine to provide different behavior. |
| OMPClause *RebuildOMPCopyprivateClause(ArrayRef<Expr *> VarList, |
| SourceLocation StartLoc, |
| SourceLocation LParenLoc, |
| SourceLocation EndLoc) { |
| return getSema().OpenMP().ActOnOpenMPCopyprivateClause(VarList, StartLoc, |
| LParenLoc, EndLoc); |
| } |
| |
| /// Build a new OpenMP 'flush' pseudo clause. |
| /// |
| /// By default, performs semantic analysis to build the new OpenMP clause. |
| /// Subclasses may override this routine to provide different behavior. |
| OMPClause *RebuildOMPFlushClause(ArrayRef<Expr *> VarList, |
| SourceLocation StartLoc, |
| SourceLocation LParenLoc, |
| SourceLocation EndLoc) { |
| return getSema().OpenMP().ActOnOpenMPFlushClause(VarList, StartLoc, |
| LParenLoc, EndLoc); |
| } |
| |
| /// Build a new OpenMP 'depobj' pseudo clause. |
| /// |
| /// By default, performs semantic analysis to build the new OpenMP clause. |
| /// Subclasses may override this routine to provide different behavior. |
| OMPClause *RebuildOMPDepobjClause(Expr *Depobj, SourceLocation StartLoc, |
| SourceLocation LParenLoc, |
| SourceLocation EndLoc) { |
| return getSema().OpenMP().ActOnOpenMPDepobjClause(Depobj, StartLoc, |
| LParenLoc, EndLoc); |
| } |
| |
| /// Build a new OpenMP 'depend' pseudo clause. |
| /// |
| /// By default, performs semantic analysis to build the new OpenMP clause. |
| /// Subclasses may override this routine to provide different behavior. |
| OMPClause *RebuildOMPDependClause(OMPDependClause::DependDataTy Data, |
| Expr *DepModifier, ArrayRef<Expr *> VarList, |
| SourceLocation StartLoc, |
| SourceLocation LParenLoc, |
| SourceLocation EndLoc) { |
| return getSema().OpenMP().ActOnOpenMPDependClause( |
| Data, DepModifier, VarList, StartLoc, LParenLoc, EndLoc); |
| } |
| |
| /// Build a new OpenMP 'device' clause. |
| /// |
| /// By default, performs semantic analysis to build the new statement. |
| /// Subclasses may override this routine to provide different behavior. |
| OMPClause *RebuildOMPDeviceClause(OpenMPDeviceClauseModifier Modifier, |
| Expr *Device, SourceLocation StartLoc, |
| SourceLocation LParenLoc, |
| SourceLocation ModifierLoc, |
| SourceLocation EndLoc) { |
| return getSema().OpenMP().ActOnOpenMPDeviceClause( |
| Modifier, Device, StartLoc, LParenLoc, ModifierLoc, EndLoc); |
| } |
| |
| /// Build a new OpenMP 'map' clause. |
| /// |
| /// By default, performs semantic analysis to build the new OpenMP clause. |
| /// Subclasses may override this routine to provide different behavior. |
| OMPClause *RebuildOMPMapClause( |
| Expr *IteratorModifier, ArrayRef<OpenMPMapModifierKind> MapTypeModifiers, |
| ArrayRef<SourceLocation> MapTypeModifiersLoc, |
| CXXScopeSpec MapperIdScopeSpec, DeclarationNameInfo MapperId, |
| OpenMPMapClauseKind MapType, bool IsMapTypeImplicit, |
| SourceLocation MapLoc, SourceLocation ColonLoc, ArrayRef<Expr *> VarList, |
| const OMPVarListLocTy &Locs, ArrayRef<Expr *> UnresolvedMappers) { |
| return getSema().OpenMP().ActOnOpenMPMapClause( |
| IteratorModifier, MapTypeModifiers, MapTypeModifiersLoc, |
| MapperIdScopeSpec, MapperId, MapType, IsMapTypeImplicit, MapLoc, |
| ColonLoc, VarList, Locs, |
| /*NoDiagnose=*/false, UnresolvedMappers); |
| } |
| |
| /// Build a new OpenMP 'allocate' clause. |
| /// |
| /// By default, performs semantic analysis to build the new OpenMP clause. |
| /// Subclasses may override this routine to provide different behavior. |
| OMPClause * |
| RebuildOMPAllocateClause(Expr *Allocate, Expr *Alignment, |
| OpenMPAllocateClauseModifier FirstModifier, |
| SourceLocation FirstModifierLoc, |
| OpenMPAllocateClauseModifier SecondModifier, |
| SourceLocation SecondModifierLoc, |
| ArrayRef<Expr *> VarList, SourceLocation StartLoc, |
| SourceLocation LParenLoc, SourceLocation ColonLoc, |
| SourceLocation EndLoc) { |
| return getSema().OpenMP().ActOnOpenMPAllocateClause( |
| Allocate, Alignment, FirstModifier, FirstModifierLoc, SecondModifier, |
| SecondModifierLoc, VarList, StartLoc, LParenLoc, ColonLoc, EndLoc); |
| } |
| |
| /// Build a new OpenMP 'num_teams' clause. |
| /// |
| /// By default, performs semantic analysis to build the new statement. |
| /// Subclasses may override this routine to provide different behavior. |
| OMPClause *RebuildOMPNumTeamsClause(ArrayRef<Expr *> VarList, |
| SourceLocation StartLoc, |
| SourceLocation LParenLoc, |
| SourceLocation EndLoc) { |
| return getSema().OpenMP().ActOnOpenMPNumTeamsClause(VarList, StartLoc, |
| LParenLoc, EndLoc); |
| } |
| |
| /// Build a new OpenMP 'thread_limit' clause. |
| /// |
| /// By default, performs semantic analysis to build the new statement. |
| /// Subclasses may override this routine to provide different behavior. |
| OMPClause *RebuildOMPThreadLimitClause(ArrayRef<Expr *> VarList, |
| SourceLocation StartLoc, |
| SourceLocation LParenLoc, |
| SourceLocation EndLoc) { |
| return getSema().OpenMP().ActOnOpenMPThreadLimitClause(VarList, StartLoc, |
| LParenLoc, EndLoc); |
| } |
| |
| /// Build a new OpenMP 'priority' clause. |
| /// |
| /// By default, performs semantic analysis to build the new statement. |
| /// Subclasses may override this routine to provide different behavior. |
| OMPClause *RebuildOMPPriorityClause(Expr *Priority, SourceLocation StartLoc, |
| SourceLocation LParenLoc, |
| SourceLocation EndLoc) { |
| return getSema().OpenMP().ActOnOpenMPPriorityClause(Priority, StartLoc, |
| LParenLoc, EndLoc); |
| } |
| |
| /// Build a new OpenMP 'grainsize' clause. |
| /// |
| /// By default, performs semantic analysis to build the new statement. |
| /// Subclasses may override this routine to provide different behavior. |
| OMPClause *RebuildOMPGrainsizeClause(OpenMPGrainsizeClauseModifier Modifier, |
| Expr *Device, SourceLocation StartLoc, |
| SourceLocation LParenLoc, |
| SourceLocation ModifierLoc, |
| SourceLocation EndLoc) { |
| return getSema().OpenMP().ActOnOpenMPGrainsizeClause( |
| Modifier, Device, StartLoc, LParenLoc, ModifierLoc, EndLoc); |
| } |
| |
| /// Build a new OpenMP 'num_tasks' clause. |
| /// |
| /// By default, performs semantic analysis to build the new statement. |
| /// Subclasses may override this routine to provide different behavior. |
| OMPClause *RebuildOMPNumTasksClause(OpenMPNumTasksClauseModifier Modifier, |
| Expr *NumTasks, SourceLocation StartLoc, |
| SourceLocation LParenLoc, |
| SourceLocation ModifierLoc, |
| SourceLocation EndLoc) { |
| return getSema().OpenMP().ActOnOpenMPNumTasksClause( |
| Modifier, NumTasks, StartLoc, LParenLoc, ModifierLoc, EndLoc); |
| } |
| |
| /// Build a new OpenMP 'hint' clause. |
| /// |
| /// By default, performs semantic analysis to build the new statement. |
| /// Subclasses may override this routine to provide different behavior. |
| OMPClause *RebuildOMPHintClause(Expr *Hint, SourceLocation StartLoc, |
| SourceLocation LParenLoc, |
| SourceLocation EndLoc) { |
| return getSema().OpenMP().ActOnOpenMPHintClause(Hint, StartLoc, LParenLoc, |
| EndLoc); |
| } |
| |
| /// Build a new OpenMP 'detach' clause. |
| /// |
| /// By default, performs semantic analysis to build the new statement. |
| /// Subclasses may override this routine to provide different behavior. |
| OMPClause *RebuildOMPDetachClause(Expr *Evt, SourceLocation StartLoc, |
| SourceLocation LParenLoc, |
| SourceLocation EndLoc) { |
| return getSema().OpenMP().ActOnOpenMPDetachClause(Evt, StartLoc, LParenLoc, |
| EndLoc); |
| } |
| |
| /// Build a new OpenMP 'dist_schedule' clause. |
| /// |
| /// By default, performs semantic analysis to build the new OpenMP clause. |
| /// Subclasses may override this routine to provide different behavior. |
| OMPClause * |
| RebuildOMPDistScheduleClause(OpenMPDistScheduleClauseKind Kind, |
| Expr *ChunkSize, SourceLocation StartLoc, |
| SourceLocation LParenLoc, SourceLocation KindLoc, |
| SourceLocation CommaLoc, SourceLocation EndLoc) { |
| return getSema().OpenMP().ActOnOpenMPDistScheduleClause( |
| Kind, ChunkSize, StartLoc, LParenLoc, KindLoc, CommaLoc, EndLoc); |
| } |
| |
| /// Build a new OpenMP 'to' clause. |
| /// |
| /// By default, performs semantic analysis to build the new statement. |
| /// Subclasses may override this routine to provide different behavior. |
| OMPClause * |
| RebuildOMPToClause(ArrayRef<OpenMPMotionModifierKind> MotionModifiers, |
| ArrayRef<SourceLocation> MotionModifiersLoc, |
| CXXScopeSpec &MapperIdScopeSpec, |
| DeclarationNameInfo &MapperId, SourceLocation ColonLoc, |
| ArrayRef<Expr *> VarList, const OMPVarListLocTy &Locs, |
| ArrayRef<Expr *> UnresolvedMappers) { |
| return getSema().OpenMP().ActOnOpenMPToClause( |
| MotionModifiers, MotionModifiersLoc, MapperIdScopeSpec, MapperId, |
| ColonLoc, VarList, Locs, UnresolvedMappers); |
| } |
| |
| /// Build a new OpenMP 'from' clause. |
| /// |
| /// By default, performs semantic analysis to build the new statement. |
| /// Subclasses may override this routine to provide different behavior. |
| OMPClause * |
| RebuildOMPFromClause(ArrayRef<OpenMPMotionModifierKind> MotionModifiers, |
| ArrayRef<SourceLocation> MotionModifiersLoc, |
| CXXScopeSpec &MapperIdScopeSpec, |
| DeclarationNameInfo &MapperId, SourceLocation ColonLoc, |
| ArrayRef<Expr *> VarList, const OMPVarListLocTy &Locs, |
| ArrayRef<Expr *> UnresolvedMappers) { |
| return getSema().OpenMP().ActOnOpenMPFromClause( |
| MotionModifiers, MotionModifiersLoc, MapperIdScopeSpec, MapperId, |
| ColonLoc, VarList, Locs, UnresolvedMappers); |
| } |
| |
| /// Build a new OpenMP 'use_device_ptr' clause. |
| /// |
| /// By default, performs semantic analysis to build the new OpenMP clause. |
| /// Subclasses may override this routine to provide different behavior. |
| OMPClause *RebuildOMPUseDevicePtrClause(ArrayRef<Expr *> VarList, |
| const OMPVarListLocTy &Locs) { |
| return getSema().OpenMP().ActOnOpenMPUseDevicePtrClause(VarList, Locs); |
| } |
| |
| /// Build a new OpenMP 'use_device_addr' clause. |
| /// |
| /// By default, performs semantic analysis to build the new OpenMP clause. |
| /// Subclasses may override this routine to provide different behavior. |
| OMPClause *RebuildOMPUseDeviceAddrClause(ArrayRef<Expr *> VarList, |
| const OMPVarListLocTy &Locs) { |
| return getSema().OpenMP().ActOnOpenMPUseDeviceAddrClause(VarList, Locs); |
| } |
| |
| /// Build a new OpenMP 'is_device_ptr' clause. |
| /// |
| /// By default, performs semantic analysis to build the new OpenMP clause. |
| /// Subclasses may override this routine to provide different behavior. |
| OMPClause *RebuildOMPIsDevicePtrClause(ArrayRef<Expr *> VarList, |
| const OMPVarListLocTy &Locs) { |
| return getSema().OpenMP().ActOnOpenMPIsDevicePtrClause(VarList, Locs); |
| } |
| |
| /// Build a new OpenMP 'has_device_addr' clause. |
| /// |
| /// By default, performs semantic analysis to build the new OpenMP clause. |
| /// Subclasses may override this routine to provide different behavior. |
| OMPClause *RebuildOMPHasDeviceAddrClause(ArrayRef<Expr *> VarList, |
| const OMPVarListLocTy &Locs) { |
| return getSema().OpenMP().ActOnOpenMPHasDeviceAddrClause(VarList, Locs); |
| } |
| |
| /// Build a new OpenMP 'defaultmap' clause. |
| /// |
| /// By default, performs semantic analysis to build the new OpenMP clause. |
| /// Subclasses may override this routine to provide different behavior. |
| OMPClause *RebuildOMPDefaultmapClause(OpenMPDefaultmapClauseModifier M, |
| OpenMPDefaultmapClauseKind Kind, |
| SourceLocation StartLoc, |
| SourceLocation LParenLoc, |
| SourceLocation MLoc, |
| SourceLocation KindLoc, |
| SourceLocation EndLoc) { |
| return getSema().OpenMP().ActOnOpenMPDefaultmapClause( |
| M, Kind, StartLoc, LParenLoc, MLoc, KindLoc, EndLoc); |
| } |
| |
| /// Build a new OpenMP 'nontemporal' clause. |
| /// |
| /// By default, performs semantic analysis to build the new OpenMP clause. |
| /// Subclasses may override this routine to provide different behavior. |
| OMPClause *RebuildOMPNontemporalClause(ArrayRef<Expr *> VarList, |
| SourceLocation StartLoc, |
| SourceLocation LParenLoc, |
| SourceLocation EndLoc) { |
| return getSema().OpenMP().ActOnOpenMPNontemporalClause(VarList, StartLoc, |
| LParenLoc, EndLoc); |
| } |
| |
| /// Build a new OpenMP 'inclusive' clause. |
| /// |
| /// By default, performs semantic analysis to build the new OpenMP clause. |
| /// Subclasses may override this routine to provide different behavior. |
| OMPClause *RebuildOMPInclusiveClause(ArrayRef<Expr *> VarList, |
| SourceLocation StartLoc, |
| SourceLocation LParenLoc, |
| SourceLocation EndLoc) { |
| return getSema().OpenMP().ActOnOpenMPInclusiveClause(VarList, StartLoc, |
| LParenLoc, EndLoc); |
| } |
| |
| /// Build a new OpenMP 'exclusive' clause. |
| /// |
| /// By default, performs semantic analysis to build the new OpenMP clause. |
| /// Subclasses may override this routine to provide different behavior. |
| OMPClause *RebuildOMPExclusiveClause(ArrayRef<Expr *> VarList, |
| SourceLocation StartLoc, |
| SourceLocation LParenLoc, |
| SourceLocation EndLoc) { |
| return getSema().OpenMP().ActOnOpenMPExclusiveClause(VarList, StartLoc, |
| LParenLoc, EndLoc); |
| } |
| |
| /// Build a new OpenMP 'uses_allocators' clause. |
| /// |
| /// By default, performs semantic analysis to build the new OpenMP clause. |
| /// Subclasses may override this routine to provide different behavior. |
| OMPClause *RebuildOMPUsesAllocatorsClause( |
| ArrayRef<SemaOpenMP::UsesAllocatorsData> Data, SourceLocation StartLoc, |
| SourceLocation LParenLoc, SourceLocation EndLoc) { |
| return getSema().OpenMP().ActOnOpenMPUsesAllocatorClause( |
| StartLoc, LParenLoc, EndLoc, Data); |
| } |
| |
| /// Build a new OpenMP 'affinity' clause. |
| /// |
| /// By default, performs semantic analysis to build the new OpenMP clause. |
| /// Subclasses may override this routine to provide different behavior. |
| OMPClause *RebuildOMPAffinityClause(SourceLocation StartLoc, |
| SourceLocation LParenLoc, |
| SourceLocation ColonLoc, |
| SourceLocation EndLoc, Expr *Modifier, |
| ArrayRef<Expr *> Locators) { |
| return getSema().OpenMP().ActOnOpenMPAffinityClause( |
| StartLoc, LParenLoc, ColonLoc, EndLoc, Modifier, Locators); |
| } |
| |
| /// Build a new OpenMP 'order' clause. |
| /// |
| /// By default, performs semantic analysis to build the new OpenMP clause. |
| /// Subclasses may override this routine to provide different behavior. |
| OMPClause *RebuildOMPOrderClause( |
| OpenMPOrderClauseKind Kind, SourceLocation KindKwLoc, |
| SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc, |
| OpenMPOrderClauseModifier Modifier, SourceLocation ModifierKwLoc) { |
| return getSema().OpenMP().ActOnOpenMPOrderClause( |
| Modifier, Kind, StartLoc, LParenLoc, ModifierKwLoc, KindKwLoc, EndLoc); |
| } |
| |
| /// Build a new OpenMP 'init' clause. |
| /// |
| /// By default, performs semantic analysis to build the new OpenMP clause. |
| /// Subclasses may override this routine to provide different behavior. |
| OMPClause *RebuildOMPInitClause(Expr *InteropVar, OMPInteropInfo &InteropInfo, |
| SourceLocation StartLoc, |
| SourceLocation LParenLoc, |
| SourceLocation VarLoc, |
| SourceLocation EndLoc) { |
| return getSema().OpenMP().ActOnOpenMPInitClause( |
| InteropVar, InteropInfo, StartLoc, LParenLoc, VarLoc, EndLoc); |
| } |
| |
| /// Build a new OpenMP 'use' clause. |
| /// |
| /// By default, performs semantic analysis to build the new OpenMP clause. |
| /// Subclasses may override this routine to provide different behavior. |
| OMPClause *RebuildOMPUseClause(Expr *InteropVar, SourceLocation StartLoc, |
| SourceLocation LParenLoc, |
| SourceLocation VarLoc, SourceLocation EndLoc) { |
| return getSema().OpenMP().ActOnOpenMPUseClause(InteropVar, StartLoc, |
| LParenLoc, VarLoc, EndLoc); |
| } |
| |
| /// Build a new OpenMP 'destroy' clause. |
| /// |
| /// By default, performs semantic analysis to build the new OpenMP clause. |
| /// Subclasses may override this routine to provide different behavior. |
| OMPClause *RebuildOMPDestroyClause(Expr *InteropVar, SourceLocation StartLoc, |
| SourceLocation LParenLoc, |
| SourceLocation VarLoc, |
| SourceLocation EndLoc) { |
| return getSema().OpenMP().ActOnOpenMPDestroyClause( |
| InteropVar, StartLoc, LParenLoc, VarLoc, EndLoc); |
| } |
| |
| /// Build a new OpenMP 'novariants' clause. |
| /// |
| /// By default, performs semantic analysis to build the new OpenMP clause. |
| /// Subclasses may override this routine to provide different behavior. |
| OMPClause *RebuildOMPNovariantsClause(Expr *Condition, |
| SourceLocation StartLoc, |
| SourceLocation LParenLoc, |
| SourceLocation EndLoc) { |
| return getSema().OpenMP().ActOnOpenMPNovariantsClause(Condition, StartLoc, |
| LParenLoc, EndLoc); |
| } |
| |
| /// Build a new OpenMP 'nocontext' clause. |
| /// |
| /// By default, performs semantic analysis to build the new OpenMP clause. |
| /// Subclasses may override this routine to provide different behavior. |
| OMPClause *RebuildOMPNocontextClause(Expr *Condition, SourceLocation StartLoc, |
| SourceLocation LParenLoc, |
| SourceLocation EndLoc) { |
| return getSema().OpenMP().ActOnOpenMPNocontextClause(Condition, StartLoc, |
| LParenLoc, EndLoc); |
| } |
| |
| /// Build a new OpenMP 'filter' clause. |
| /// |
| /// By default, performs semantic analysis to build the new OpenMP clause. |
| /// Subclasses may override this routine to provide different behavior. |
| OMPClause *RebuildOMPFilterClause(Expr *ThreadID, SourceLocation StartLoc, |
| SourceLocation LParenLoc, |
| SourceLocation EndLoc) { |
| return getSema().OpenMP().ActOnOpenMPFilterClause(ThreadID, StartLoc, |
| LParenLoc, EndLoc); |
| } |
| |
| /// Build a new OpenMP 'bind' clause. |
| /// |
| /// By default, performs semantic analysis to build the new OpenMP clause. |
| /// Subclasses may override this routine to provide different behavior. |
| OMPClause *RebuildOMPBindClause(OpenMPBindClauseKind Kind, |
| SourceLocation KindLoc, |
| SourceLocation StartLoc, |
| SourceLocation LParenLoc, |
| SourceLocation EndLoc) { |
| return getSema().OpenMP().ActOnOpenMPBindClause(Kind, KindLoc, StartLoc, |
| LParenLoc, EndLoc); |
| } |
| |
| /// Build a new OpenMP 'ompx_dyn_cgroup_mem' clause. |
| /// |
| /// By default, performs semantic analysis to build the new OpenMP clause. |
| /// Subclasses may override this routine to provide different behavior. |
| OMPClause *RebuildOMPXDynCGroupMemClause(Expr *Size, SourceLocation StartLoc, |
| SourceLocation LParenLoc, |
| SourceLocation EndLoc) { |
| return getSema().OpenMP().ActOnOpenMPXDynCGroupMemClause(Size, StartLoc, |
| LParenLoc, EndLoc); |
| } |
| |
| /// Build a new OpenMP 'ompx_attribute' clause. |
| /// |
| /// By default, performs semantic analysis to build the new OpenMP clause. |
| /// Subclasses may override this routine to provide different behavior. |
| OMPClause *RebuildOMPXAttributeClause(ArrayRef<const Attr *> Attrs, |
| SourceLocation StartLoc, |
| SourceLocation LParenLoc, |
| SourceLocation EndLoc) { |
| return getSema().OpenMP().ActOnOpenMPXAttributeClause(Attrs, StartLoc, |
| LParenLoc, EndLoc); |
| } |
| |
| /// Build a new OpenMP 'ompx_bare' clause. |
| /// |
| /// By default, performs semantic analysis to build the new OpenMP clause. |
| /// Subclasses may override this routine to provide different behavior. |
| OMPClause *RebuildOMPXBareClause(SourceLocation StartLoc, |
| SourceLocation EndLoc) { |
| return getSema().OpenMP().ActOnOpenMPXBareClause(StartLoc, EndLoc); |
| } |
| |
| /// Build a new OpenMP 'align' clause. |
| /// |
| /// By default, performs semantic analysis to build the new OpenMP clause. |
| /// Subclasses may override this routine to provide different behavior. |
| OMPClause *RebuildOMPAlignClause(Expr *A, SourceLocation StartLoc, |
| SourceLocation LParenLoc, |
| SourceLocation EndLoc) { |
| return getSema().OpenMP().ActOnOpenMPAlignClause(A, StartLoc, LParenLoc, |
| EndLoc); |
| } |
| |
| /// Build a new OpenMP 'at' clause. |
| /// |
| /// By default, performs semantic analysis to build the new OpenMP clause. |
| /// Subclasses may override this routine to provide different behavior. |
| OMPClause *RebuildOMPAtClause(OpenMPAtClauseKind Kind, SourceLocation KwLoc, |
| SourceLocation StartLoc, |
| SourceLocation LParenLoc, |
| SourceLocation EndLoc) { |
| return getSema().OpenMP().ActOnOpenMPAtClause(Kind, KwLoc, StartLoc, |
| LParenLoc, EndLoc); |
| } |
| |
| /// Build a new OpenMP 'severity' clause. |
| /// |
| /// By default, performs semantic analysis to build the new OpenMP clause. |
| /// Subclasses may override this routine to provide different behavior. |
| OMPClause *RebuildOMPSeverityClause(OpenMPSeverityClauseKind Kind, |
| SourceLocation KwLoc, |
| SourceLocation StartLoc, |
| SourceLocation LParenLoc, |
| SourceLocation EndLoc) { |
| return getSema().OpenMP().ActOnOpenMPSeverityClause(Kind, KwLoc, StartLoc, |
| LParenLoc, EndLoc); |
| } |
| |
| /// Build a new OpenMP 'message' clause. |
| /// |
| /// By default, performs semantic analysis to build the new OpenMP clause. |
| /// Subclasses may override this routine to provide different behavior. |
| OMPClause *RebuildOMPMessageClause(Expr *MS, SourceLocation StartLoc, |
| SourceLocation LParenLoc, |
| SourceLocation EndLoc) { |
| return getSema().OpenMP().ActOnOpenMPMessageClause(MS, StartLoc, LParenLoc, |
| EndLoc); |
| } |
| |
| /// Build a new OpenMP 'doacross' clause. |
| /// |
| /// By default, performs semantic analysis to build the new OpenMP clause. |
| /// Subclasses may override this routine to provide different behavior. |
| OMPClause * |
| RebuildOMPDoacrossClause(OpenMPDoacrossClauseModifier DepType, |
| SourceLocation DepLoc, SourceLocation ColonLoc, |
| ArrayRef<Expr *> VarList, SourceLocation StartLoc, |
| SourceLocation LParenLoc, SourceLocation EndLoc) { |
| return getSema().OpenMP().ActOnOpenMPDoacrossClause( |
| DepType, DepLoc, ColonLoc, VarList, StartLoc, LParenLoc, EndLoc); |
| } |
| |
| /// Build a new OpenMP 'holds' clause. |
| OMPClause *RebuildOMPHoldsClause(Expr *A, SourceLocation StartLoc, |
| SourceLocation LParenLoc, |
| SourceLocation EndLoc) { |
| return getSema().OpenMP().ActOnOpenMPHoldsClause(A, StartLoc, LParenLoc, |
| EndLoc); |
| } |
| |
| /// Rebuild the operand to an Objective-C \@synchronized statement. |
| /// |
| /// By default, performs semantic analysis to build the new statement. |
| /// Subclasses may override this routine to provide different behavior. |
| ExprResult RebuildObjCAtSynchronizedOperand(SourceLocation atLoc, |
| Expr *object) { |
| return getSema().ObjC().ActOnObjCAtSynchronizedOperand(atLoc, object); |
| } |
| |
| /// Build a new Objective-C \@synchronized statement. |
| /// |
| /// By default, performs semantic analysis to build the new statement. |
| /// Subclasses may override this routine to provide different behavior. |
| StmtResult RebuildObjCAtSynchronizedStmt(SourceLocation AtLoc, |
| Expr *Object, Stmt *Body) { |
| return getSema().ObjC().ActOnObjCAtSynchronizedStmt(AtLoc, Object, Body); |
| } |
| |
| /// Build a new Objective-C \@autoreleasepool statement. |
| /// |
| /// By default, performs semantic analysis to build the new statement. |
| /// Subclasses may override this routine to provide different behavior. |
| StmtResult RebuildObjCAutoreleasePoolStmt(SourceLocation AtLoc, |
| Stmt *Body) { |
| return getSema().ObjC().ActOnObjCAutoreleasePoolStmt(AtLoc, Body); |
| } |
| |
| /// Build a new Objective-C fast enumeration statement. |
| /// |
| /// By default, performs semantic analysis to build the new statement. |
| /// Subclasses may override this routine to provide different behavior. |
| StmtResult RebuildObjCForCollectionStmt(SourceLocation ForLoc, |
| Stmt *Element, |
| Expr *Collection, |
| SourceLocation RParenLoc, |
| Stmt *Body) { |
| StmtResult ForEachStmt = getSema().ObjC().ActOnObjCForCollectionStmt( |
| ForLoc, Element, Collection, RParenLoc); |
| if (ForEachStmt.isInvalid()) |
| return StmtError(); |
| |
| return getSema().ObjC().FinishObjCForCollectionStmt(ForEachStmt.get(), |
| Body); |
| } |
| |
| /// Build a new C++ exception declaration. |
| /// |
| /// By default, performs semantic analysis to build the new decaration. |
| /// Subclasses may override this routine to provide different behavior. |
| VarDecl *RebuildExceptionDecl(VarDecl *ExceptionDecl, |
| TypeSourceInfo *Declarator, |
| SourceLocation StartLoc, |
| SourceLocation IdLoc, |
| IdentifierInfo *Id) { |
| VarDecl *Var = getSema().BuildExceptionDeclaration(nullptr, Declarator, |
| StartLoc, IdLoc, Id); |
| if (Var) |
| getSema().CurContext->addDecl(Var); |
| return Var; |
| } |
| |
| /// Build a new C++ catch statement. |
| /// |
| /// By default, performs semantic analysis to build the new statement. |
| /// Subclasses may override this routine to provide different behavior. |
| StmtResult RebuildCXXCatchStmt(SourceLocation CatchLoc, |
| VarDecl *ExceptionDecl, |
| Stmt *Handler) { |
| return Owned(new (getSema().Context) CXXCatchStmt(CatchLoc, ExceptionDecl, |
| Handler)); |
| } |
| |
| /// Build a new C++ try statement. |
| /// |
| /// By default, performs semantic analysis to build the new statement. |
| /// Subclasses may override this routine to provide different behavior. |
| StmtResult RebuildCXXTryStmt(SourceLocation TryLoc, Stmt *TryBlock, |
| ArrayRef<Stmt *> Handlers) { |
| return getSema().ActOnCXXTryBlock(TryLoc, TryBlock, Handlers); |
| } |
| |
| /// Build a new C++0x range-based for statement. |
| /// |
| /// By default, performs semantic analysis to build the new statement. |
| /// Subclasses may override this routine to provide different behavior. |
| StmtResult RebuildCXXForRangeStmt( |
| SourceLocation ForLoc, SourceLocation CoawaitLoc, Stmt *Init, |
| SourceLocation ColonLoc, Stmt *Range, Stmt *Begin, Stmt *End, Expr *Cond, |
| Expr *Inc, Stmt *LoopVar, SourceLocation RParenLoc, |
| ArrayRef<MaterializeTemporaryExpr *> LifetimeExtendTemps) { |
| // If we've just learned that the range is actually an Objective-C |
| // collection, treat this as an Objective-C fast enumeration loop. |
| if (DeclStmt *RangeStmt = dyn_cast<DeclStmt>(Range)) { |
| if (RangeStmt->isSingleDecl()) { |
| if (VarDecl *RangeVar = dyn_cast<VarDecl>(RangeStmt->getSingleDecl())) { |
| if (RangeVar->isInvalidDecl()) |
| return StmtError(); |
| |
| Expr *RangeExpr = RangeVar->getInit(); |
| if (!RangeExpr->isTypeDependent() && |
| RangeExpr->getType()->isObjCObjectPointerType()) { |
| // FIXME: Support init-statements in Objective-C++20 ranged for |
| // statement. |
| if (Init) { |
| return SemaRef.Diag(Init->getBeginLoc(), |
| diag::err_objc_for_range_init_stmt) |
| << Init->getSourceRange(); |
| } |
| return getSema().ObjC().ActOnObjCForCollectionStmt( |
| ForLoc, LoopVar, RangeExpr, RParenLoc); |
| } |
| } |
| } |
| } |
| |
| return getSema().BuildCXXForRangeStmt( |
| ForLoc, CoawaitLoc, Init, ColonLoc, Range, Begin, End, Cond, Inc, |
| LoopVar, RParenLoc, Sema::BFRK_Rebuild, LifetimeExtendTemps); |
| } |
| |
| /// Build a new C++0x range-based for statement. |
| /// |
| /// By default, performs semantic analysis to build the new statement. |
| /// Subclasses may override this routine to provide different behavior. |
| StmtResult RebuildMSDependentExistsStmt(SourceLocation KeywordLoc, |
| bool IsIfExists, |
| NestedNameSpecifierLoc QualifierLoc, |
| DeclarationNameInfo NameInfo, |
| Stmt *Nested) { |
| return getSema().BuildMSDependentExistsStmt(KeywordLoc, IsIfExists, |
| QualifierLoc, NameInfo, Nested); |
| } |
| |
| /// Attach body to a C++0x range-based for statement. |
| /// |
| /// By default, performs semantic analysis to finish the new statement. |
| /// Subclasses may override this routine to provide different behavior. |
| StmtResult FinishCXXForRangeStmt(Stmt *ForRange, Stmt *Body) { |
| return getSema().FinishCXXForRangeStmt(ForRange, Body); |
| } |
| |
| StmtResult RebuildSEHTryStmt(bool IsCXXTry, SourceLocation TryLoc, |
| Stmt *TryBlock, Stmt *Handler) { |
| return getSema().ActOnSEHTryBlock(IsCXXTry, TryLoc, TryBlock, Handler); |
| } |
| |
| StmtResult RebuildSEHExceptStmt(SourceLocation Loc, Expr *FilterExpr, |
| Stmt *Block) { |
| return getSema().ActOnSEHExceptBlock(Loc, FilterExpr, Block); |
| } |
| |
| StmtResult RebuildSEHFinallyStmt(SourceLocation Loc, Stmt *Block) { |
| return SEHFinallyStmt::Create(getSema().getASTContext(), Loc, Block); |
| } |
| |
| ExprResult RebuildSYCLUniqueStableNameExpr(SourceLocation OpLoc, |
| SourceLocation LParen, |
| SourceLocation RParen, |
| TypeSourceInfo *TSI) { |
| return getSema().SYCL().BuildUniqueStableNameExpr(OpLoc, LParen, RParen, |
| TSI); |
| } |
| |
| /// Build a new predefined expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| ExprResult RebuildPredefinedExpr(SourceLocation Loc, PredefinedIdentKind IK) { |
| return getSema().BuildPredefinedExpr(Loc, IK); |
| } |
| |
| /// Build a new expression that references a declaration. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| ExprResult RebuildDeclarationNameExpr(const CXXScopeSpec &SS, |
| LookupResult &R, |
| bool RequiresADL) { |
| return getSema().BuildDeclarationNameExpr(SS, R, RequiresADL); |
| } |
| |
| |
| /// Build a new expression that references a declaration. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| ExprResult RebuildDeclRefExpr(NestedNameSpecifierLoc QualifierLoc, |
| ValueDecl *VD, |
| const DeclarationNameInfo &NameInfo, |
| NamedDecl *Found, |
| TemplateArgumentListInfo *TemplateArgs) { |
| CXXScopeSpec SS; |
| SS.Adopt(QualifierLoc); |
| return getSema().BuildDeclarationNameExpr(SS, NameInfo, VD, Found, |
| TemplateArgs); |
| } |
| |
| /// Build a new expression in parentheses. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| ExprResult RebuildParenExpr(Expr *SubExpr, SourceLocation LParen, |
| SourceLocation RParen) { |
| return getSema().ActOnParenExpr(LParen, RParen, SubExpr); |
| } |
| |
| /// Build a new pseudo-destructor expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| ExprResult RebuildCXXPseudoDestructorExpr(Expr *Base, |
| SourceLocation OperatorLoc, |
| bool isArrow, |
| CXXScopeSpec &SS, |
| TypeSourceInfo *ScopeType, |
| SourceLocation CCLoc, |
| SourceLocation TildeLoc, |
| PseudoDestructorTypeStorage Destroyed); |
| |
| /// Build a new unary operator expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| ExprResult RebuildUnaryOperator(SourceLocation OpLoc, |
| UnaryOperatorKind Opc, |
| Expr *SubExpr) { |
| return getSema().BuildUnaryOp(/*Scope=*/nullptr, OpLoc, Opc, SubExpr); |
| } |
| |
| /// Build a new builtin offsetof expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| ExprResult RebuildOffsetOfExpr(SourceLocation OperatorLoc, |
| TypeSourceInfo *Type, |
| ArrayRef<Sema::OffsetOfComponent> Components, |
| SourceLocation RParenLoc) { |
| return getSema().BuildBuiltinOffsetOf(OperatorLoc, Type, Components, |
| RParenLoc); |
| } |
| |
| /// Build a new sizeof, alignof or vec_step expression with a |
| /// type argument. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| ExprResult RebuildUnaryExprOrTypeTrait(TypeSourceInfo *TInfo, |
| SourceLocation OpLoc, |
| UnaryExprOrTypeTrait ExprKind, |
| SourceRange R) { |
| return getSema().CreateUnaryExprOrTypeTraitExpr(TInfo, OpLoc, ExprKind, R); |
| } |
| |
| /// Build a new sizeof, alignof or vec step expression with an |
| /// expression argument. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| ExprResult RebuildUnaryExprOrTypeTrait(Expr *SubExpr, SourceLocation OpLoc, |
| UnaryExprOrTypeTrait ExprKind, |
| SourceRange R) { |
| ExprResult Result |
| = getSema().CreateUnaryExprOrTypeTraitExpr(SubExpr, OpLoc, ExprKind); |
| if (Result.isInvalid()) |
| return ExprError(); |
| |
| return Result; |
| } |
| |
| /// Build a new array subscript expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| ExprResult RebuildArraySubscriptExpr(Expr *LHS, |
| SourceLocation LBracketLoc, |
| Expr *RHS, |
| SourceLocation RBracketLoc) { |
| return getSema().ActOnArraySubscriptExpr(/*Scope=*/nullptr, LHS, |
| LBracketLoc, RHS, |
| RBracketLoc); |
| } |
| |
| /// Build a new matrix subscript expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| ExprResult RebuildMatrixSubscriptExpr(Expr *Base, Expr *RowIdx, |
| Expr *ColumnIdx, |
| SourceLocation RBracketLoc) { |
| return getSema().CreateBuiltinMatrixSubscriptExpr(Base, RowIdx, ColumnIdx, |
| RBracketLoc); |
| } |
| |
| /// Build a new array section expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| ExprResult RebuildArraySectionExpr(bool IsOMPArraySection, Expr *Base, |
| SourceLocation LBracketLoc, |
| Expr *LowerBound, |
| SourceLocation ColonLocFirst, |
| SourceLocation ColonLocSecond, |
| Expr *Length, Expr *Stride, |
| SourceLocation RBracketLoc) { |
| if (IsOMPArraySection) |
| return getSema().OpenMP().ActOnOMPArraySectionExpr( |
| Base, LBracketLoc, LowerBound, ColonLocFirst, ColonLocSecond, Length, |
| Stride, RBracketLoc); |
| |
| assert(Stride == nullptr && !ColonLocSecond.isValid() && |
| "Stride/second colon not allowed for OpenACC"); |
| |
| return getSema().OpenACC().ActOnArraySectionExpr( |
| Base, LBracketLoc, LowerBound, ColonLocFirst, Length, RBracketLoc); |
| } |
| |
| /// Build a new array shaping expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| ExprResult RebuildOMPArrayShapingExpr(Expr *Base, SourceLocation LParenLoc, |
| SourceLocation RParenLoc, |
| ArrayRef<Expr *> Dims, |
| ArrayRef<SourceRange> BracketsRanges) { |
| return getSema().OpenMP().ActOnOMPArrayShapingExpr( |
| Base, LParenLoc, RParenLoc, Dims, BracketsRanges); |
| } |
| |
| /// Build a new iterator expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| ExprResult |
| RebuildOMPIteratorExpr(SourceLocation IteratorKwLoc, SourceLocation LLoc, |
| SourceLocation RLoc, |
| ArrayRef<SemaOpenMP::OMPIteratorData> Data) { |
| return getSema().OpenMP().ActOnOMPIteratorExpr( |
| /*Scope=*/nullptr, IteratorKwLoc, LLoc, RLoc, Data); |
| } |
| |
| /// Build a new call expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| ExprResult RebuildCallExpr(Expr *Callee, SourceLocation LParenLoc, |
| MultiExprArg Args, |
| SourceLocation RParenLoc, |
| Expr *ExecConfig = nullptr) { |
| return getSema().ActOnCallExpr( |
| /*Scope=*/nullptr, Callee, LParenLoc, Args, RParenLoc, ExecConfig); |
| } |
| |
| ExprResult RebuildCxxSubscriptExpr(Expr *Callee, SourceLocation LParenLoc, |
| MultiExprArg Args, |
| SourceLocation RParenLoc) { |
| return getSema().ActOnArraySubscriptExpr( |
| /*Scope=*/nullptr, Callee, LParenLoc, Args, RParenLoc); |
| } |
| |
| /// Build a new member access expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| ExprResult RebuildMemberExpr(Expr *Base, SourceLocation OpLoc, |
| bool isArrow, |
| NestedNameSpecifierLoc QualifierLoc, |
| SourceLocation TemplateKWLoc, |
| const DeclarationNameInfo &MemberNameInfo, |
| ValueDecl *Member, |
| NamedDecl *FoundDecl, |
| const TemplateArgumentListInfo *ExplicitTemplateArgs, |
| NamedDecl *FirstQualifierInScope) { |
| ExprResult BaseResult = getSema().PerformMemberExprBaseConversion(Base, |
| isArrow); |
| if (!Member->getDeclName()) { |
| // We have a reference to an unnamed field. This is always the |
| // base of an anonymous struct/union member access, i.e. the |
| // field is always of record type. |
| assert(Member->getType()->isRecordType() && |
| "unnamed member not of record type?"); |
| |
| BaseResult = |
| getSema().PerformObjectMemberConversion(BaseResult.get(), |
| QualifierLoc.getNestedNameSpecifier(), |
| FoundDecl, Member); |
| if (BaseResult.isInvalid()) |
| return ExprError(); |
| Base = BaseResult.get(); |
| |
| // `TranformMaterializeTemporaryExpr()` removes materialized temporaries |
| // from the AST, so we need to re-insert them if needed (since |
| // `BuildFieldRefereneExpr()` doesn't do this). |
| if (!isArrow && Base->isPRValue()) { |
| BaseResult = getSema().TemporaryMaterializationConversion(Base); |
| if (BaseResult.isInvalid()) |
| return ExprError(); |
| Base = BaseResult.get(); |
| } |
| |
| CXXScopeSpec EmptySS; |
| return getSema().BuildFieldReferenceExpr( |
| Base, isArrow, OpLoc, EmptySS, cast<FieldDecl>(Member), |
| DeclAccessPair::make(FoundDecl, FoundDecl->getAccess()), |
| MemberNameInfo); |
| } |
| |
| CXXScopeSpec SS; |
| SS.Adopt(QualifierLoc); |
| |
| Base = BaseResult.get(); |
| if (Base->containsErrors()) |
| return ExprError(); |
| |
| QualType BaseType = Base->getType(); |
| |
| if (isArrow && !BaseType->isPointerType()) |
| return ExprError(); |
| |
| // FIXME: this involves duplicating earlier analysis in a lot of |
| // cases; we should avoid this when possible. |
| LookupResult R(getSema(), MemberNameInfo, Sema::LookupMemberName); |
| R.addDecl(FoundDecl); |
| R.resolveKind(); |
| |
| if (getSema().isUnevaluatedContext() && Base->isImplicitCXXThis() && |
| isa<FieldDecl, IndirectFieldDecl, MSPropertyDecl>(Member)) { |
| if (auto *ThisClass = cast<CXXThisExpr>(Base) |
| ->getType() |
| ->getPointeeType() |
| ->getAsCXXRecordDecl()) { |
| auto *Class = cast<CXXRecordDecl>(Member->getDeclContext()); |
| // In unevaluated contexts, an expression supposed to be a member access |
| // might reference a member in an unrelated class. |
| if (!ThisClass->Equals(Class) && !ThisClass->isDerivedFrom(Class)) |
| return getSema().BuildDeclRefExpr(Member, Member->getType(), |
| VK_LValue, Member->getLocation()); |
| } |
| } |
| |
| return getSema().BuildMemberReferenceExpr(Base, BaseType, OpLoc, isArrow, |
| SS, TemplateKWLoc, |
| FirstQualifierInScope, |
| R, ExplicitTemplateArgs, |
| /*S*/nullptr); |
| } |
| |
| /// Build a new binary operator expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| ExprResult RebuildBinaryOperator(SourceLocation OpLoc, |
| BinaryOperatorKind Opc, |
| Expr *LHS, Expr *RHS) { |
| return getSema().BuildBinOp(/*Scope=*/nullptr, OpLoc, Opc, LHS, RHS); |
| } |
| |
| /// Build a new rewritten operator expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| ExprResult RebuildCXXRewrittenBinaryOperator( |
| SourceLocation OpLoc, BinaryOperatorKind Opcode, |
| const UnresolvedSetImpl &UnqualLookups, Expr *LHS, Expr *RHS) { |
| return getSema().CreateOverloadedBinOp(OpLoc, Opcode, UnqualLookups, LHS, |
| RHS, /*RequiresADL*/false); |
| } |
| |
| /// Build a new conditional operator expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| ExprResult RebuildConditionalOperator(Expr *Cond, |
| SourceLocation QuestionLoc, |
| Expr *LHS, |
| SourceLocation ColonLoc, |
| Expr *RHS) { |
| return getSema().ActOnConditionalOp(QuestionLoc, ColonLoc, Cond, |
| LHS, RHS); |
| } |
| |
| /// Build a new C-style cast expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| ExprResult RebuildCStyleCastExpr(SourceLocation LParenLoc, |
| TypeSourceInfo *TInfo, |
| SourceLocation RParenLoc, |
| Expr *SubExpr) { |
| return getSema().BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, |
| SubExpr); |
| } |
| |
| /// Build a new compound literal expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| ExprResult RebuildCompoundLiteralExpr(SourceLocation LParenLoc, |
| TypeSourceInfo *TInfo, |
| SourceLocation RParenLoc, |
| Expr *Init) { |
| return getSema().BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, |
| Init); |
| } |
| |
| /// Build a new extended vector element access expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| ExprResult RebuildExtVectorElementExpr(Expr *Base, SourceLocation OpLoc, |
| bool IsArrow, |
| SourceLocation AccessorLoc, |
| IdentifierInfo &Accessor) { |
| |
| CXXScopeSpec SS; |
| DeclarationNameInfo NameInfo(&Accessor, AccessorLoc); |
| return getSema().BuildMemberReferenceExpr( |
| Base, Base->getType(), OpLoc, IsArrow, SS, SourceLocation(), |
| /*FirstQualifierInScope*/ nullptr, NameInfo, |
| /* TemplateArgs */ nullptr, |
| /*S*/ nullptr); |
| } |
| |
| /// Build a new initializer list expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| ExprResult RebuildInitList(SourceLocation LBraceLoc, |
| MultiExprArg Inits, |
| SourceLocation RBraceLoc) { |
| return SemaRef.BuildInitList(LBraceLoc, Inits, RBraceLoc); |
| } |
| |
| /// Build a new designated initializer expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| ExprResult RebuildDesignatedInitExpr(Designation &Desig, |
| MultiExprArg ArrayExprs, |
| SourceLocation EqualOrColonLoc, |
| bool GNUSyntax, |
| Expr *Init) { |
| ExprResult Result |
| = SemaRef.ActOnDesignatedInitializer(Desig, EqualOrColonLoc, GNUSyntax, |
| Init); |
| if (Result.isInvalid()) |
| return ExprError(); |
| |
| return Result; |
| } |
| |
| /// Build a new value-initialized expression. |
| /// |
| /// By default, builds the implicit value initialization without performing |
| /// any semantic analysis. Subclasses may override this routine to provide |
| /// different behavior. |
| ExprResult RebuildImplicitValueInitExpr(QualType T) { |
| return new (SemaRef.Context) ImplicitValueInitExpr(T); |
| } |
| |
| /// Build a new \c va_arg expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| ExprResult RebuildVAArgExpr(SourceLocation BuiltinLoc, |
| Expr *SubExpr, TypeSourceInfo *TInfo, |
| SourceLocation RParenLoc) { |
| return getSema().BuildVAArgExpr(BuiltinLoc, |
| SubExpr, TInfo, |
| RParenLoc); |
| } |
| |
| /// Build a new expression list in parentheses. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| ExprResult RebuildParenListExpr(SourceLocation LParenLoc, |
| MultiExprArg SubExprs, |
| SourceLocation RParenLoc) { |
| return getSema().ActOnParenListExpr(LParenLoc, RParenLoc, SubExprs); |
| } |
| |
| /// Build a new address-of-label expression. |
| /// |
| /// By default, performs semantic analysis, using the name of the label |
| /// rather than attempting to map the label statement itself. |
| /// Subclasses may override this routine to provide different behavior. |
| ExprResult RebuildAddrLabelExpr(SourceLocation AmpAmpLoc, |
| SourceLocation LabelLoc, LabelDecl *Label) { |
| return getSema().ActOnAddrLabel(AmpAmpLoc, LabelLoc, Label); |
| } |
| |
| /// Build a new GNU statement expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| ExprResult RebuildStmtExpr(SourceLocation LParenLoc, Stmt *SubStmt, |
| SourceLocation RParenLoc, unsigned TemplateDepth) { |
| return getSema().BuildStmtExpr(LParenLoc, SubStmt, RParenLoc, |
| TemplateDepth); |
| } |
| |
| /// Build a new __builtin_choose_expr expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| ExprResult RebuildChooseExpr(SourceLocation BuiltinLoc, |
| Expr *Cond, Expr *LHS, Expr *RHS, |
| SourceLocation RParenLoc) { |
| return SemaRef.ActOnChooseExpr(BuiltinLoc, |
| Cond, LHS, RHS, |
| RParenLoc); |
| } |
| |
| /// Build a new generic selection expression with an expression predicate. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| ExprResult RebuildGenericSelectionExpr(SourceLocation KeyLoc, |
| SourceLocation DefaultLoc, |
| SourceLocation RParenLoc, |
| Expr *ControllingExpr, |
| ArrayRef<TypeSourceInfo *> Types, |
| ArrayRef<Expr *> Exprs) { |
| return getSema().CreateGenericSelectionExpr(KeyLoc, DefaultLoc, RParenLoc, |
| /*PredicateIsExpr=*/true, |
| ControllingExpr, Types, Exprs); |
| } |
| |
| /// Build a new generic selection expression with a type predicate. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| ExprResult RebuildGenericSelectionExpr(SourceLocation KeyLoc, |
| SourceLocation DefaultLoc, |
| SourceLocation RParenLoc, |
| TypeSourceInfo *ControllingType, |
| ArrayRef<TypeSourceInfo *> Types, |
| ArrayRef<Expr *> Exprs) { |
| return getSema().CreateGenericSelectionExpr(KeyLoc, DefaultLoc, RParenLoc, |
| /*PredicateIsExpr=*/false, |
| ControllingType, Types, Exprs); |
| } |
| |
| /// Build a new overloaded operator call expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// The semantic analysis provides the behavior of template instantiation, |
| /// copying with transformations that turn what looks like an overloaded |
| /// operator call into a use of a builtin operator, performing |
| /// argument-dependent lookup, etc. Subclasses may override this routine to |
| /// provide different behavior. |
| ExprResult RebuildCXXOperatorCallExpr(OverloadedOperatorKind Op, |
| SourceLocation OpLoc, |
| SourceLocation CalleeLoc, |
| bool RequiresADL, |
| const UnresolvedSetImpl &Functions, |
| Expr *First, Expr *Second); |
| |
| /// Build a new C++ "named" cast expression, such as static_cast or |
| /// reinterpret_cast. |
| /// |
| /// By default, this routine dispatches to one of the more-specific routines |
| /// for a particular named case, e.g., RebuildCXXStaticCastExpr(). |
| /// Subclasses may override this routine to provide different behavior. |
| ExprResult RebuildCXXNamedCastExpr(SourceLocation OpLoc, |
| Stmt::StmtClass Class, |
| SourceLocation LAngleLoc, |
| TypeSourceInfo *TInfo, |
| SourceLocation RAngleLoc, |
| SourceLocation LParenLoc, |
| Expr *SubExpr, |
| SourceLocation RParenLoc) { |
| switch (Class) { |
| case Stmt::CXXStaticCastExprClass: |
| return getDerived().RebuildCXXStaticCastExpr(OpLoc, LAngleLoc, TInfo, |
| RAngleLoc, LParenLoc, |
| SubExpr, RParenLoc); |
| |
| case Stmt::CXXDynamicCastExprClass: |
| return getDerived().RebuildCXXDynamicCastExpr(OpLoc, LAngleLoc, TInfo, |
| RAngleLoc, LParenLoc, |
| SubExpr, RParenLoc); |
| |
| case Stmt::CXXReinterpretCastExprClass: |
| return getDerived().RebuildCXXReinterpretCastExpr(OpLoc, LAngleLoc, TInfo, |
| RAngleLoc, LParenLoc, |
| SubExpr, |
| RParenLoc); |
| |
| case Stmt::CXXConstCastExprClass: |
| return getDerived().RebuildCXXConstCastExpr(OpLoc, LAngleLoc, TInfo, |
| RAngleLoc, LParenLoc, |
| SubExpr, RParenLoc); |
| |
| case Stmt::CXXAddrspaceCastExprClass: |
| return getDerived().RebuildCXXAddrspaceCastExpr( |
| OpLoc, LAngleLoc, TInfo, RAngleLoc, LParenLoc, SubExpr, RParenLoc); |
| |
| default: |
| llvm_unreachable("Invalid C++ named cast"); |
| } |
| } |
| |
| /// Build a new C++ static_cast expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| ExprResult RebuildCXXStaticCastExpr(SourceLocation OpLoc, |
| SourceLocation LAngleLoc, |
| TypeSourceInfo *TInfo, |
| SourceLocation RAngleLoc, |
| SourceLocation LParenLoc, |
| Expr *SubExpr, |
| SourceLocation RParenLoc) { |
| return getSema().BuildCXXNamedCast(OpLoc, tok::kw_static_cast, |
| TInfo, SubExpr, |
| SourceRange(LAngleLoc, RAngleLoc), |
| SourceRange(LParenLoc, RParenLoc)); |
| } |
| |
| /// Build a new C++ dynamic_cast expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| ExprResult RebuildCXXDynamicCastExpr(SourceLocation OpLoc, |
| SourceLocation LAngleLoc, |
| TypeSourceInfo *TInfo, |
| SourceLocation RAngleLoc, |
| SourceLocation LParenLoc, |
| Expr *SubExpr, |
| SourceLocation RParenLoc) { |
| return getSema().BuildCXXNamedCast(OpLoc, tok::kw_dynamic_cast, |
| TInfo, SubExpr, |
| SourceRange(LAngleLoc, RAngleLoc), |
| SourceRange(LParenLoc, RParenLoc)); |
| } |
| |
| /// Build a new C++ reinterpret_cast expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| ExprResult RebuildCXXReinterpretCastExpr(SourceLocation OpLoc, |
| SourceLocation LAngleLoc, |
| TypeSourceInfo *TInfo, |
| SourceLocation RAngleLoc, |
| SourceLocation LParenLoc, |
| Expr *SubExpr, |
| SourceLocation RParenLoc) { |
| return getSema().BuildCXXNamedCast(OpLoc, tok::kw_reinterpret_cast, |
| TInfo, SubExpr, |
| SourceRange(LAngleLoc, RAngleLoc), |
| SourceRange(LParenLoc, RParenLoc)); |
| } |
| |
| /// Build a new C++ const_cast expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| ExprResult RebuildCXXConstCastExpr(SourceLocation OpLoc, |
| SourceLocation LAngleLoc, |
| TypeSourceInfo *TInfo, |
| SourceLocation RAngleLoc, |
| SourceLocation LParenLoc, |
| Expr *SubExpr, |
| SourceLocation RParenLoc) { |
| return getSema().BuildCXXNamedCast(OpLoc, tok::kw_const_cast, |
| TInfo, SubExpr, |
| SourceRange(LAngleLoc, RAngleLoc), |
| SourceRange(LParenLoc, RParenLoc)); |
| } |
| |
| ExprResult |
| RebuildCXXAddrspaceCastExpr(SourceLocation OpLoc, SourceLocation LAngleLoc, |
| TypeSourceInfo *TInfo, SourceLocation RAngleLoc, |
| SourceLocation LParenLoc, Expr *SubExpr, |
| SourceLocation RParenLoc) { |
| return getSema().BuildCXXNamedCast( |
| OpLoc, tok::kw_addrspace_cast, TInfo, SubExpr, |
| SourceRange(LAngleLoc, RAngleLoc), SourceRange(LParenLoc, RParenLoc)); |
| } |
| |
| /// Build a new C++ functional-style cast expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| ExprResult RebuildCXXFunctionalCastExpr(TypeSourceInfo *TInfo, |
| SourceLocation LParenLoc, |
| Expr *Sub, |
| SourceLocation RParenLoc, |
| bool ListInitialization) { |
| // If Sub is a ParenListExpr, then Sub is the syntatic form of a |
| // CXXParenListInitExpr. Pass its expanded arguments so that the |
| // CXXParenListInitExpr can be rebuilt. |
| if (auto *PLE = dyn_cast<ParenListExpr>(Sub)) |
| return getSema().BuildCXXTypeConstructExpr( |
| TInfo, LParenLoc, MultiExprArg(PLE->getExprs(), PLE->getNumExprs()), |
| RParenLoc, ListInitialization); |
| return getSema().BuildCXXTypeConstructExpr(TInfo, LParenLoc, |
| MultiExprArg(&Sub, 1), RParenLoc, |
| ListInitialization); |
| } |
| |
| /// Build a new C++ __builtin_bit_cast expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| ExprResult RebuildBuiltinBitCastExpr(SourceLocation KWLoc, |
| TypeSourceInfo *TSI, Expr *Sub, |
| SourceLocation RParenLoc) { |
| return getSema().BuildBuiltinBitCastExpr(KWLoc, TSI, Sub, RParenLoc); |
| } |
| |
| /// Build a new C++ typeid(type) expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| ExprResult RebuildCXXTypeidExpr(QualType TypeInfoType, |
| SourceLocation TypeidLoc, |
| TypeSourceInfo *Operand, |
| SourceLocation RParenLoc) { |
| return getSema().BuildCXXTypeId(TypeInfoType, TypeidLoc, Operand, |
| RParenLoc); |
| } |
| |
| |
| /// Build a new C++ typeid(expr) expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| ExprResult RebuildCXXTypeidExpr(QualType TypeInfoType, |
| SourceLocation TypeidLoc, |
| Expr *Operand, |
| SourceLocation RParenLoc) { |
| return getSema().BuildCXXTypeId(TypeInfoType, TypeidLoc, Operand, |
| RParenLoc); |
| } |
| |
| /// Build a new C++ __uuidof(type) expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| ExprResult RebuildCXXUuidofExpr(QualType Type, SourceLocation TypeidLoc, |
| TypeSourceInfo *Operand, |
| SourceLocation RParenLoc) { |
| return getSema().BuildCXXUuidof(Type, TypeidLoc, Operand, RParenLoc); |
| } |
| |
| /// Build a new C++ __uuidof(expr) expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| ExprResult RebuildCXXUuidofExpr(QualType Type, SourceLocation TypeidLoc, |
| Expr *Operand, SourceLocation RParenLoc) { |
| return getSema().BuildCXXUuidof(Type, TypeidLoc, Operand, RParenLoc); |
| } |
| |
| /// Build a new C++ "this" expression. |
| /// |
| /// By default, performs semantic analysis to build a new "this" expression. |
| /// Subclasses may override this routine to provide different behavior. |
| ExprResult RebuildCXXThisExpr(SourceLocation ThisLoc, |
| QualType ThisType, |
| bool isImplicit) { |
| if (getSema().CheckCXXThisType(ThisLoc, ThisType)) |
| return ExprError(); |
| return getSema().BuildCXXThisExpr(ThisLoc, ThisType, isImplicit); |
| } |
| |
| /// Build a new C++ throw expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| ExprResult RebuildCXXThrowExpr(SourceLocation ThrowLoc, Expr *Sub, |
| bool IsThrownVariableInScope) { |
| return getSema().BuildCXXThrow(ThrowLoc, Sub, IsThrownVariableInScope); |
| } |
| |
| /// Build a new C++ default-argument expression. |
| /// |
| /// By default, builds a new default-argument expression, which does not |
| /// require any semantic analysis. Subclasses may override this routine to |
| /// provide different behavior. |
| ExprResult RebuildCXXDefaultArgExpr(SourceLocation Loc, ParmVarDecl *Param, |
| Expr *RewrittenExpr) { |
| return CXXDefaultArgExpr::Create(getSema().Context, Loc, Param, |
| RewrittenExpr, getSema().CurContext); |
| } |
| |
| /// Build a new C++11 default-initialization expression. |
| /// |
| /// By default, builds a new default field initialization expression, which |
| /// does not require any semantic analysis. Subclasses may override this |
| /// routine to provide different behavior. |
| ExprResult RebuildCXXDefaultInitExpr(SourceLocation Loc, |
| FieldDecl *Field) { |
| return getSema().BuildCXXDefaultInitExpr(Loc, Field); |
| } |
| |
| /// Build a new C++ zero-initialization expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| ExprResult RebuildCXXScalarValueInitExpr(TypeSourceInfo *TSInfo, |
| SourceLocation LParenLoc, |
| SourceLocation RParenLoc) { |
| return getSema().BuildCXXTypeConstructExpr(TSInfo, LParenLoc, {}, RParenLoc, |
| /*ListInitialization=*/false); |
| } |
| |
| /// Build a new C++ "new" expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| ExprResult RebuildCXXNewExpr(SourceLocation StartLoc, bool UseGlobal, |
| SourceLocation PlacementLParen, |
| MultiExprArg PlacementArgs, |
| SourceLocation PlacementRParen, |
| SourceRange TypeIdParens, QualType AllocatedType, |
| TypeSourceInfo *AllocatedTypeInfo, |
| std::optional<Expr *> ArraySize, |
| SourceRange DirectInitRange, Expr *Initializer) { |
| return getSema().BuildCXXNew(StartLoc, UseGlobal, |
| PlacementLParen, |
| PlacementArgs, |
| PlacementRParen, |
| TypeIdParens, |
| AllocatedType, |
| AllocatedTypeInfo, |
| ArraySize, |
| DirectInitRange, |
| Initializer); |
| } |
| |
| /// Build a new C++ "delete" expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| ExprResult RebuildCXXDeleteExpr(SourceLocation StartLoc, |
| bool IsGlobalDelete, |
| bool IsArrayForm, |
| Expr *Operand) { |
| return getSema().ActOnCXXDelete(StartLoc, IsGlobalDelete, IsArrayForm, |
| Operand); |
| } |
| |
| /// Build a new type trait expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| ExprResult RebuildTypeTrait(TypeTrait Trait, |
| SourceLocation StartLoc, |
| ArrayRef<TypeSourceInfo *> Args, |
| SourceLocation RParenLoc) { |
| return getSema().BuildTypeTrait(Trait, StartLoc, Args, RParenLoc); |
| } |
| |
| /// Build a new array type trait expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| ExprResult RebuildArrayTypeTrait(ArrayTypeTrait Trait, |
| SourceLocation StartLoc, |
| TypeSourceInfo *TSInfo, |
| Expr *DimExpr, |
| SourceLocation RParenLoc) { |
| return getSema().BuildArrayTypeTrait(Trait, StartLoc, TSInfo, DimExpr, RParenLoc); |
| } |
| |
| /// Build a new expression trait expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| ExprResult RebuildExpressionTrait(ExpressionTrait Trait, |
| SourceLocation StartLoc, |
| Expr *Queried, |
| SourceLocation RParenLoc) { |
| return getSema().BuildExpressionTrait(Trait, StartLoc, Queried, RParenLoc); |
| } |
| |
| /// Build a new (previously unresolved) declaration reference |
| /// expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| ExprResult RebuildDependentScopeDeclRefExpr( |
| NestedNameSpecifierLoc QualifierLoc, |
| SourceLocation TemplateKWLoc, |
| const DeclarationNameInfo &NameInfo, |
| const TemplateArgumentListInfo *TemplateArgs, |
| bool IsAddressOfOperand, |
| TypeSourceInfo **RecoveryTSI) { |
| CXXScopeSpec SS; |
| SS.Adopt(QualifierLoc); |
| |
| if (TemplateArgs || TemplateKWLoc.isValid()) |
| return getSema().BuildQualifiedTemplateIdExpr( |
| SS, TemplateKWLoc, NameInfo, TemplateArgs, IsAddressOfOperand); |
| |
| return getSema().BuildQualifiedDeclarationNameExpr( |
| SS, NameInfo, IsAddressOfOperand, RecoveryTSI); |
| } |
| |
| /// Build a new template-id expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| ExprResult RebuildTemplateIdExpr(const CXXScopeSpec &SS, |
| SourceLocation TemplateKWLoc, |
| LookupResult &R, |
| bool RequiresADL, |
| const TemplateArgumentListInfo *TemplateArgs) { |
| return getSema().BuildTemplateIdExpr(SS, TemplateKWLoc, R, RequiresADL, |
| TemplateArgs); |
| } |
| |
| /// Build a new object-construction expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| ExprResult RebuildCXXConstructExpr( |
| QualType T, SourceLocation Loc, CXXConstructorDecl *Constructor, |
| bool IsElidable, MultiExprArg Args, bool HadMultipleCandidates, |
| bool ListInitialization, bool StdInitListInitialization, |
| bool RequiresZeroInit, CXXConstructionKind ConstructKind, |
| SourceRange ParenRange) { |
| // Reconstruct the constructor we originally found, which might be |
| // different if this is a call to an inherited constructor. |
| CXXConstructorDecl *FoundCtor = Constructor; |
| if (Constructor->isInheritingConstructor()) |
| FoundCtor = Constructor->getInheritedConstructor().getConstructor(); |
| |
| SmallVector<Expr *, 8> ConvertedArgs; |
| if (getSema().CompleteConstructorCall(FoundCtor, T, Args, Loc, |
| ConvertedArgs)) |
| return ExprError(); |
| |
| return getSema().BuildCXXConstructExpr(Loc, T, Constructor, |
| IsElidable, |
| ConvertedArgs, |
| HadMultipleCandidates, |
| ListInitialization, |
| StdInitListInitialization, |
| RequiresZeroInit, ConstructKind, |
| ParenRange); |
| } |
| |
| /// Build a new implicit construction via inherited constructor |
| /// expression. |
| ExprResult RebuildCXXInheritedCtorInitExpr(QualType T, SourceLocation Loc, |
| CXXConstructorDecl *Constructor, |
| bool ConstructsVBase, |
| bool InheritedFromVBase) { |
| return new (getSema().Context) CXXInheritedCtorInitExpr( |
| Loc, T, Constructor, ConstructsVBase, InheritedFromVBase); |
| } |
| |
| /// Build a new object-construction expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| ExprResult RebuildCXXTemporaryObjectExpr(TypeSourceInfo *TSInfo, |
| SourceLocation LParenOrBraceLoc, |
| MultiExprArg Args, |
| SourceLocation RParenOrBraceLoc, |
| bool ListInitialization) { |
| return getSema().BuildCXXTypeConstructExpr( |
| TSInfo, LParenOrBraceLoc, Args, RParenOrBraceLoc, ListInitialization); |
| } |
| |
| /// Build a new object-construction expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| ExprResult RebuildCXXUnresolvedConstructExpr(TypeSourceInfo *TSInfo, |
| SourceLocation LParenLoc, |
| MultiExprArg Args, |
| SourceLocation RParenLoc, |
| bool ListInitialization) { |
| return getSema().BuildCXXTypeConstructExpr(TSInfo, LParenLoc, Args, |
| RParenLoc, ListInitialization); |
| } |
| |
| /// Build a new member reference expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| ExprResult RebuildCXXDependentScopeMemberExpr(Expr *BaseE, |
| QualType BaseType, |
| bool IsArrow, |
| SourceLocation OperatorLoc, |
| NestedNameSpecifierLoc QualifierLoc, |
| SourceLocation TemplateKWLoc, |
| NamedDecl *FirstQualifierInScope, |
| const DeclarationNameInfo &MemberNameInfo, |
| const TemplateArgumentListInfo *TemplateArgs) { |
| CXXScopeSpec SS; |
| SS.Adopt(QualifierLoc); |
| |
| return SemaRef.BuildMemberReferenceExpr(BaseE, BaseType, |
| OperatorLoc, IsArrow, |
| SS, TemplateKWLoc, |
| FirstQualifierInScope, |
| MemberNameInfo, |
| TemplateArgs, /*S*/nullptr); |
| } |
| |
| /// Build a new member reference expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| ExprResult RebuildUnresolvedMemberExpr(Expr *BaseE, QualType BaseType, |
| SourceLocation OperatorLoc, |
| bool IsArrow, |
| NestedNameSpecifierLoc QualifierLoc, |
| SourceLocation TemplateKWLoc, |
| NamedDecl *FirstQualifierInScope, |
| LookupResult &R, |
| const TemplateArgumentListInfo *TemplateArgs) { |
| CXXScopeSpec SS; |
| SS.Adopt(QualifierLoc); |
| |
| return SemaRef.BuildMemberReferenceExpr(BaseE, BaseType, |
| OperatorLoc, IsArrow, |
| SS, TemplateKWLoc, |
| FirstQualifierInScope, |
| R, TemplateArgs, /*S*/nullptr); |
| } |
| |
| /// Build a new noexcept expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| ExprResult RebuildCXXNoexceptExpr(SourceRange Range, Expr *Arg) { |
| return SemaRef.BuildCXXNoexceptExpr(Range.getBegin(), Arg, Range.getEnd()); |
| } |
| |
| /// Build a new expression to compute the length of a parameter pack. |
| ExprResult RebuildSizeOfPackExpr(SourceLocation OperatorLoc, NamedDecl *Pack, |
| SourceLocation PackLoc, |
| SourceLocation RParenLoc, |
| std::optional<unsigned> Length, |
| ArrayRef<TemplateArgument> PartialArgs) { |
| return SizeOfPackExpr::Create(SemaRef.Context, OperatorLoc, Pack, PackLoc, |
| RParenLoc, Length, PartialArgs); |
| } |
| |
| ExprResult RebuildPackIndexingExpr(SourceLocation EllipsisLoc, |
| SourceLocation RSquareLoc, |
| Expr *PackIdExpression, Expr *IndexExpr, |
| ArrayRef<Expr *> ExpandedExprs, |
| bool FullySubstituted = false) { |
| return getSema().BuildPackIndexingExpr(PackIdExpression, EllipsisLoc, |
| IndexExpr, RSquareLoc, ExpandedExprs, |
| FullySubstituted); |
| } |
| |
| ExprResult RebuildResolvedUnexpandedPackExpr(SourceLocation BeginLoc, |
| QualType T, |
| ArrayRef<Expr *> Exprs) { |
| return ResolvedUnexpandedPackExpr::Create(SemaRef.Context, BeginLoc, T, |
| Exprs); |
| } |
| |
| /// Build a new expression representing a call to a source location |
| /// builtin. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| ExprResult RebuildSourceLocExpr(SourceLocIdentKind Kind, QualType ResultTy, |
| SourceLocation BuiltinLoc, |
| SourceLocation RPLoc, |
| DeclContext *ParentContext) { |
| return getSema().BuildSourceLocExpr(Kind, ResultTy, BuiltinLoc, RPLoc, |
| ParentContext); |
| } |
| |
| /// Build a new Objective-C boxed expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| ExprResult RebuildConceptSpecializationExpr(NestedNameSpecifierLoc NNS, |
| SourceLocation TemplateKWLoc, DeclarationNameInfo ConceptNameInfo, |
| NamedDecl *FoundDecl, ConceptDecl *NamedConcept, |
| TemplateArgumentListInfo *TALI) { |
| CXXScopeSpec SS; |
| SS.Adopt(NNS); |
| ExprResult Result = getSema().CheckConceptTemplateId(SS, TemplateKWLoc, |
| ConceptNameInfo, |
| FoundDecl, |
| NamedConcept, TALI); |
| if (Result.isInvalid()) |
| return ExprError(); |
| return Result; |
| } |
| |
| /// \brief Build a new requires expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| ExprResult RebuildRequiresExpr(SourceLocation RequiresKWLoc, |
| RequiresExprBodyDecl *Body, |
| SourceLocation LParenLoc, |
| ArrayRef<ParmVarDecl *> LocalParameters, |
| SourceLocation RParenLoc, |
| ArrayRef<concepts::Requirement *> Requirements, |
| SourceLocation ClosingBraceLoc) { |
| return RequiresExpr::Create(SemaRef.Context, RequiresKWLoc, Body, LParenLoc, |
| LocalParameters, RParenLoc, Requirements, |
| ClosingBraceLoc); |
| } |
| |
| concepts::TypeRequirement * |
| RebuildTypeRequirement( |
| concepts::Requirement::SubstitutionDiagnostic *SubstDiag) { |
| return SemaRef.BuildTypeRequirement(SubstDiag); |
| } |
| |
| concepts::TypeRequirement *RebuildTypeRequirement(TypeSourceInfo *T) { |
| return SemaRef.BuildTypeRequirement(T); |
| } |
| |
| concepts::ExprRequirement * |
| RebuildExprRequirement( |
| concepts::Requirement::SubstitutionDiagnostic *SubstDiag, bool IsSimple, |
| SourceLocation NoexceptLoc, |
| concepts::ExprRequirement::ReturnTypeRequirement Ret) { |
| return SemaRef.BuildExprRequirement(SubstDiag, IsSimple, NoexceptLoc, |
| std::move(Ret)); |
| } |
| |
| concepts::ExprRequirement * |
| RebuildExprRequirement(Expr *E, bool IsSimple, SourceLocation NoexceptLoc, |
| concepts::ExprRequirement::ReturnTypeRequirement Ret) { |
| return SemaRef.BuildExprRequirement(E, IsSimple, NoexceptLoc, |
| std::move(Ret)); |
| } |
| |
| concepts::NestedRequirement * |
| RebuildNestedRequirement(StringRef InvalidConstraintEntity, |
| const ASTConstraintSatisfaction &Satisfaction) { |
| return SemaRef.BuildNestedRequirement(InvalidConstraintEntity, |
| Satisfaction); |
| } |
| |
| concepts::NestedRequirement *RebuildNestedRequirement(Expr *Constraint) { |
| return SemaRef.BuildNestedRequirement(Constraint); |
| } |
| |
| /// \brief Build a new Objective-C boxed expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| ExprResult RebuildObjCBoxedExpr(SourceRange SR, Expr *ValueExpr) { |
| return getSema().ObjC().BuildObjCBoxedExpr(SR, ValueExpr); |
| } |
| |
| /// Build a new Objective-C array literal. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| ExprResult RebuildObjCArrayLiteral(SourceRange Range, |
| Expr **Elements, unsigned NumElements) { |
| return getSema().ObjC().BuildObjCArrayLiteral( |
| Range, MultiExprArg(Elements, NumElements)); |
| } |
| |
| ExprResult RebuildObjCSubscriptRefExpr(SourceLocation RB, |
| Expr *Base, Expr *Key, |
| ObjCMethodDecl *getterMethod, |
| ObjCMethodDecl *setterMethod) { |
| return getSema().ObjC().BuildObjCSubscriptExpression( |
| RB, Base, Key, getterMethod, setterMethod); |
| } |
| |
| /// Build a new Objective-C dictionary literal. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| ExprResult RebuildObjCDictionaryLiteral(SourceRange Range, |
| MutableArrayRef<ObjCDictionaryElement> Elements) { |
| return getSema().ObjC().BuildObjCDictionaryLiteral(Range, Elements); |
| } |
| |
| /// Build a new Objective-C \@encode expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| ExprResult RebuildObjCEncodeExpr(SourceLocation AtLoc, |
| TypeSourceInfo *EncodeTypeInfo, |
| SourceLocation RParenLoc) { |
| return SemaRef.ObjC().BuildObjCEncodeExpression(AtLoc, EncodeTypeInfo, |
| RParenLoc); |
| } |
| |
| /// Build a new Objective-C class message. |
| ExprResult RebuildObjCMessageExpr(TypeSourceInfo *ReceiverTypeInfo, |
| Selector Sel, |
| ArrayRef<SourceLocation> SelectorLocs, |
| ObjCMethodDecl *Method, |
| SourceLocation LBracLoc, |
| MultiExprArg Args, |
| SourceLocation RBracLoc) { |
| return SemaRef.ObjC().BuildClassMessage( |
| ReceiverTypeInfo, ReceiverTypeInfo->getType(), |
| /*SuperLoc=*/SourceLocation(), Sel, Method, LBracLoc, SelectorLocs, |
| RBracLoc, Args); |
| } |
| |
| /// Build a new Objective-C instance message. |
| ExprResult RebuildObjCMessageExpr(Expr *Receiver, |
| Selector Sel, |
| ArrayRef<SourceLocation> SelectorLocs, |
| ObjCMethodDecl *Method, |
| SourceLocation LBracLoc, |
| MultiExprArg Args, |
| SourceLocation RBracLoc) { |
| return SemaRef.ObjC().BuildInstanceMessage(Receiver, Receiver->getType(), |
| /*SuperLoc=*/SourceLocation(), |
| Sel, Method, LBracLoc, |
| SelectorLocs, RBracLoc, Args); |
| } |
| |
| /// Build a new Objective-C instance/class message to 'super'. |
| ExprResult RebuildObjCMessageExpr(SourceLocation SuperLoc, |
| Selector Sel, |
| ArrayRef<SourceLocation> SelectorLocs, |
| QualType SuperType, |
| ObjCMethodDecl *Method, |
| SourceLocation LBracLoc, |
| MultiExprArg Args, |
| SourceLocation RBracLoc) { |
| return Method->isInstanceMethod() |
| ? SemaRef.ObjC().BuildInstanceMessage( |
| nullptr, SuperType, SuperLoc, Sel, Method, LBracLoc, |
| SelectorLocs, RBracLoc, Args) |
| : SemaRef.ObjC().BuildClassMessage(nullptr, SuperType, SuperLoc, |
| Sel, Method, LBracLoc, |
| SelectorLocs, RBracLoc, Args); |
| } |
| |
| /// Build a new Objective-C ivar reference expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| ExprResult RebuildObjCIvarRefExpr(Expr *BaseArg, ObjCIvarDecl *Ivar, |
| SourceLocation IvarLoc, |
| bool IsArrow, bool IsFreeIvar) { |
| CXXScopeSpec SS; |
| DeclarationNameInfo NameInfo(Ivar->getDeclName(), IvarLoc); |
| ExprResult Result = getSema().BuildMemberReferenceExpr( |
| BaseArg, BaseArg->getType(), |
| /*FIXME:*/ IvarLoc, IsArrow, SS, SourceLocation(), |
| /*FirstQualifierInScope=*/nullptr, NameInfo, |
| /*TemplateArgs=*/nullptr, |
| /*S=*/nullptr); |
| if (IsFreeIvar && Result.isUsable()) |
| cast<ObjCIvarRefExpr>(Result.get())->setIsFreeIvar(IsFreeIvar); |
| return Result; |
| } |
| |
| /// Build a new Objective-C property reference expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| ExprResult RebuildObjCPropertyRefExpr(Expr *BaseArg, |
| ObjCPropertyDecl *Property, |
| SourceLocation PropertyLoc) { |
| CXXScopeSpec SS; |
| DeclarationNameInfo NameInfo(Property->getDeclName(), PropertyLoc); |
| return getSema().BuildMemberReferenceExpr(BaseArg, BaseArg->getType(), |
| /*FIXME:*/PropertyLoc, |
| /*IsArrow=*/false, |
| SS, SourceLocation(), |
| /*FirstQualifierInScope=*/nullptr, |
| NameInfo, |
| /*TemplateArgs=*/nullptr, |
| /*S=*/nullptr); |
| } |
| |
| /// Build a new Objective-C property reference expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| ExprResult RebuildObjCPropertyRefExpr(Expr *Base, QualType T, |
| ObjCMethodDecl *Getter, |
| ObjCMethodDecl *Setter, |
| SourceLocation PropertyLoc) { |
| // Since these expressions can only be value-dependent, we do not |
| // need to perform semantic analysis again. |
| return Owned( |
| new (getSema().Context) ObjCPropertyRefExpr(Getter, Setter, T, |
| VK_LValue, OK_ObjCProperty, |
| PropertyLoc, Base)); |
| } |
| |
| /// Build a new Objective-C "isa" expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| ExprResult RebuildObjCIsaExpr(Expr *BaseArg, SourceLocation IsaLoc, |
| SourceLocation OpLoc, bool IsArrow) { |
| CXXScopeSpec SS; |
| DeclarationNameInfo NameInfo(&getSema().Context.Idents.get("isa"), IsaLoc); |
| return getSema().BuildMemberReferenceExpr(BaseArg, BaseArg->getType(), |
| OpLoc, IsArrow, |
| SS, SourceLocation(), |
| /*FirstQualifierInScope=*/nullptr, |
| NameInfo, |
| /*TemplateArgs=*/nullptr, |
| /*S=*/nullptr); |
| } |
| |
| /// Build a new shuffle vector expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| ExprResult RebuildShuffleVectorExpr(SourceLocation BuiltinLoc, |
| MultiExprArg SubExprs, |
| SourceLocation RParenLoc) { |
| // Find the declaration for __builtin_shufflevector |
| const IdentifierInfo &Name |
| = SemaRef.Context.Idents.get("__builtin_shufflevector"); |
| TranslationUnitDecl *TUDecl = SemaRef.Context.getTranslationUnitDecl(); |
| DeclContext::lookup_result Lookup = TUDecl->lookup(DeclarationName(&Name)); |
| assert(!Lookup.empty() && "No __builtin_shufflevector?"); |
| |
| // Build a reference to the __builtin_shufflevector builtin |
| FunctionDecl *Builtin = cast<FunctionDecl>(Lookup.front()); |
| Expr *Callee = new (SemaRef.Context) |
| DeclRefExpr(SemaRef.Context, Builtin, false, |
| SemaRef.Context.BuiltinFnTy, VK_PRValue, BuiltinLoc); |
| QualType CalleePtrTy = SemaRef.Context.getPointerType(Builtin->getType()); |
| Callee = SemaRef.ImpCastExprToType(Callee, CalleePtrTy, |
| CK_BuiltinFnToFnPtr).get(); |
| |
| // Build the CallExpr |
| ExprResult TheCall = CallExpr::Create( |
| SemaRef.Context, Callee, SubExprs, Builtin->getCallResultType(), |
| Expr::getValueKindForType(Builtin->getReturnType()), RParenLoc, |
| FPOptionsOverride()); |
| |
| // Type-check the __builtin_shufflevector expression. |
| return SemaRef.BuiltinShuffleVector(cast<CallExpr>(TheCall.get())); |
| } |
| |
| /// Build a new convert vector expression. |
| ExprResult RebuildConvertVectorExpr(SourceLocation BuiltinLoc, |
| Expr *SrcExpr, TypeSourceInfo *DstTInfo, |
| SourceLocation RParenLoc) { |
| return SemaRef.ConvertVectorExpr(SrcExpr, DstTInfo, BuiltinLoc, RParenLoc); |
| } |
| |
| /// Build a new template argument pack expansion. |
| /// |
| /// By default, performs semantic analysis to build a new pack expansion |
| /// for a template argument. Subclasses may override this routine to provide |
| /// different behavior. |
| TemplateArgumentLoc |
| RebuildPackExpansion(TemplateArgumentLoc Pattern, SourceLocation EllipsisLoc, |
| std::optional<unsigned> NumExpansions) { |
| switch (Pattern.getArgument().getKind()) { |
| case TemplateArgument::Expression: { |
| ExprResult Result |
| = getSema().CheckPackExpansion(Pattern.getSourceExpression(), |
| EllipsisLoc, NumExpansions); |
| if (Result.isInvalid()) |
| return TemplateArgumentLoc(); |
| |
| return TemplateArgumentLoc(Result.get(), Result.get()); |
| } |
| |
| case TemplateArgument::Template: |
| return TemplateArgumentLoc( |
| SemaRef.Context, |
| TemplateArgument(Pattern.getArgument().getAsTemplate(), |
| NumExpansions), |
| Pattern.getTemplateQualifierLoc(), Pattern.getTemplateNameLoc(), |
| EllipsisLoc); |
| |
| case TemplateArgument::Null: |
| case TemplateArgument::Integral: |
| case TemplateArgument::Declaration: |
| case TemplateArgument::StructuralValue: |
| case TemplateArgument::Pack: |
| case TemplateArgument::TemplateExpansion: |
| case TemplateArgument::NullPtr: |
| llvm_unreachable("Pack expansion pattern has no parameter packs"); |
| |
| case TemplateArgument::Type: |
| if (TypeSourceInfo *Expansion |
| = getSema().CheckPackExpansion(Pattern.getTypeSourceInfo(), |
| EllipsisLoc, |
| NumExpansions)) |
| return TemplateArgumentLoc(TemplateArgument(Expansion->getType()), |
| Expansion); |
| break; |
| } |
| |
| return TemplateArgumentLoc(); |
| } |
| |
| /// Build a new expression pack expansion. |
| /// |
| /// By default, performs semantic analysis to build a new pack expansion |
| /// for an expression. Subclasses may override this routine to provide |
| /// different behavior. |
| ExprResult RebuildPackExpansion(Expr *Pattern, SourceLocation EllipsisLoc, |
| std::optional<unsigned> NumExpansions) { |
| return getSema().CheckPackExpansion(Pattern, EllipsisLoc, NumExpansions); |
| } |
| |
| /// Build a new C++1z fold-expression. |
| /// |
| /// By default, performs semantic analysis in order to build a new fold |
| /// expression. |
| ExprResult RebuildCXXFoldExpr(UnresolvedLookupExpr *ULE, |
| SourceLocation LParenLoc, Expr *LHS, |
| BinaryOperatorKind Operator, |
| SourceLocation EllipsisLoc, Expr *RHS, |
| SourceLocation RParenLoc, |
| std::optional<unsigned> NumExpansions) { |
| return getSema().BuildCXXFoldExpr(ULE, LParenLoc, LHS, Operator, |
| EllipsisLoc, RHS, RParenLoc, |
| NumExpansions); |
| } |
| |
| ExprResult RebuildLambdaExpr(SourceLocation StartLoc, SourceLocation EndLoc, |
| LambdaScopeInfo *LSI) { |
| for (ParmVarDecl *PVD : LSI->CallOperator->parameters()) { |
| if (Expr *Init = PVD->getInit()) |
| LSI->ContainsUnexpandedParameterPack |= |
| Init->containsUnexpandedParameterPack(); |
| else if (PVD->hasUninstantiatedDefaultArg()) |
| LSI->ContainsUnexpandedParameterPack |= |
| PVD->getUninstantiatedDefaultArg() |
| ->containsUnexpandedParameterPack(); |
| } |
| return getSema().BuildLambdaExpr(StartLoc, EndLoc, LSI); |
| } |
| |
| /// Build an empty C++1z fold-expression with the given operator. |
| /// |
| /// By default, produces the fallback value for the fold-expression, or |
| /// produce an error if there is no fallback value. |
| ExprResult RebuildEmptyCXXFoldExpr(SourceLocation EllipsisLoc, |
| BinaryOperatorKind Operator) { |
| return getSema().BuildEmptyCXXFoldExpr(EllipsisLoc, Operator); |
| } |
| |
| /// Build a new atomic operation expression. |
| /// |
| /// By default, performs semantic analysis to build the new expression. |
| /// Subclasses may override this routine to provide different behavior. |
| ExprResult RebuildAtomicExpr(SourceLocation BuiltinLoc, MultiExprArg SubExprs, |
| AtomicExpr::AtomicOp Op, |
| SourceLocation RParenLoc) { |
| // Use this for all of the locations, since we don't know the difference |
| // between the call and the expr at this point. |
| SourceRange Range{BuiltinLoc, RParenLoc}; |
| return getSema().BuildAtomicExpr(Range, Range, RParenLoc, SubExprs, Op, |
| Sema::AtomicArgumentOrder::AST); |
| } |
| |
| ExprResult RebuildRecoveryExpr(SourceLocation BeginLoc, SourceLocation EndLoc, |
| ArrayRef<Expr *> SubExprs, QualType Type) { |
| return getSema().CreateRecoveryExpr(BeginLoc, EndLoc, SubExprs, Type); |
| } |
| |
| StmtResult RebuildOpenACCComputeConstruct(OpenACCDirectiveKind K, |
| SourceLocation BeginLoc, |
| SourceLocation DirLoc, |
| SourceLocation EndLoc, |
| ArrayRef<OpenACCClause *> Clauses, |
| StmtResult StrBlock) { |
| return getSema().OpenACC().ActOnEndStmtDirective( |
| K, BeginLoc, DirLoc, SourceLocation{}, SourceLocation{}, {}, |
| SourceLocation{}, EndLoc, Clauses, StrBlock); |
| } |
| |
| StmtResult RebuildOpenACCLoopConstruct(SourceLocation BeginLoc, |
| SourceLocation DirLoc, |
| SourceLocation EndLoc, |
| ArrayRef<OpenACCClause *> Clauses, |
| StmtResult Loop) { |
| return getSema().OpenACC().ActOnEndStmtDirective( |
| OpenACCDirectiveKind::Loop, BeginLoc, DirLoc, SourceLocation{}, |
| SourceLocation{}, {}, SourceLocation{}, EndLoc, Clauses, Loop); |
| } |
| |
| StmtResult RebuildOpenACCCombinedConstruct(OpenACCDirectiveKind K, |
| SourceLocation BeginLoc, |
| SourceLocation DirLoc, |
| SourceLocation EndLoc, |
| ArrayRef<OpenACCClause *> Clauses, |
| StmtResult Loop) { |
| return getSema().OpenACC().ActOnEndStmtDirective( |
| K, BeginLoc, DirLoc, SourceLocation{}, SourceLocation{}, {}, |
| SourceLocation{}, EndLoc, Clauses, Loop); |
| } |
| |
| StmtResult RebuildOpenACCDataConstruct(SourceLocation BeginLoc, |
| SourceLocation DirLoc, |
| SourceLocation EndLoc, |
| ArrayRef<OpenACCClause *> Clauses, |
| StmtResult StrBlock) { |
| return getSema().OpenACC().ActOnEndStmtDirective( |
| OpenACCDirectiveKind::Data, BeginLoc, DirLoc, SourceLocation{}, |
| SourceLocation{}, {}, SourceLocation{}, EndLoc, Clauses, StrBlock); |
| } |
| |
| StmtResult |
| RebuildOpenACCEnterDataConstruct(SourceLocation BeginLoc, |
| SourceLocation DirLoc, SourceLocation EndLoc, |
| ArrayRef<OpenACCClause *> Clauses) { |
| return getSema().OpenACC().ActOnEndStmtDirective( |
| OpenACCDirectiveKind::EnterData, BeginLoc, DirLoc, SourceLocation{}, |
| SourceLocation{}, {}, SourceLocation{}, EndLoc, Clauses, {}); |
| } |
| |
| StmtResult |
| RebuildOpenACCExitDataConstruct(SourceLocation BeginLoc, |
| SourceLocation DirLoc, SourceLocation EndLoc, |
| ArrayRef<OpenACCClause *> Clauses) { |
| return getSema().OpenACC().ActOnEndStmtDirective( |
| OpenACCDirectiveKind::ExitData, BeginLoc, DirLoc, SourceLocation{}, |
| SourceLocation{}, {}, SourceLocation{}, EndLoc, Clauses, {}); |
| } |
| |
| StmtResult RebuildOpenACCHostDataConstruct(SourceLocation BeginLoc, |
| SourceLocation DirLoc, |
| SourceLocation EndLoc, |
| ArrayRef<OpenACCClause *> Clauses, |
| StmtResult StrBlock) { |
| return getSema().OpenACC().ActOnEndStmtDirective( |
| OpenACCDirectiveKind::HostData, BeginLoc, DirLoc, SourceLocation{}, |
| SourceLocation{}, {}, SourceLocation{}, EndLoc, Clauses, StrBlock); |
| } |
| |
| StmtResult RebuildOpenACCInitConstruct(SourceLocation BeginLoc, |
| SourceLocation DirLoc, |
| SourceLocation EndLoc, |
| ArrayRef<OpenACCClause *> Clauses) { |
| return getSema().OpenACC().ActOnEndStmtDirective( |
| OpenACCDirectiveKind::Init, BeginLoc, DirLoc, SourceLocation{}, |
| SourceLocation{}, {}, SourceLocation{}, EndLoc, Clauses, {}); |
| } |
| |
| StmtResult |
| RebuildOpenACCShutdownConstruct(SourceLocation BeginLoc, |
| SourceLocation DirLoc, SourceLocation EndLoc, |
| ArrayRef<OpenACCClause *> Clauses) { |
| return getSema().OpenACC().ActOnEndStmtDirective( |
| OpenACCDirectiveKind::Shutdown, BeginLoc, DirLoc, SourceLocation{}, |
| SourceLocation{}, {}, SourceLocation{}, EndLoc, Clauses, {}); |
| } |
| |
| StmtResult RebuildOpenACCSetConstruct(SourceLocation BeginLoc, |
| SourceLocation DirLoc, |
| SourceLocation EndLoc, |
| ArrayRef<OpenACCClause *> Clauses) { |
| return getSema().OpenACC().ActOnEndStmtDirective( |
| OpenACCDirectiveKind::Set, BeginLoc, DirLoc, SourceLocation{}, |
| SourceLocation{}, {}, SourceLocation{}, EndLoc, Clauses, {}); |
| } |
| |
| StmtResult RebuildOpenACCUpdateConstruct(SourceLocation BeginLoc, |
| SourceLocation DirLoc, |
| SourceLocation EndLoc, |
| ArrayRef<OpenACCClause *> Clauses) { |
| return getSema().OpenACC().ActOnEndStmtDirective( |
| OpenACCDirectiveKind::Update, BeginLoc, DirLoc, SourceLocation{}, |
| SourceLocation{}, {}, SourceLocation{}, EndLoc, Clauses, {}); |
| } |
| |
| StmtResult RebuildOpenACCWaitConstruct( |
| SourceLocation BeginLoc, SourceLocation DirLoc, SourceLocation LParenLoc, |
| Expr *DevNumExpr, SourceLocation QueuesLoc, ArrayRef<Expr *> QueueIdExprs, |
| SourceLocation RParenLoc, SourceLocation EndLoc, |
| ArrayRef<OpenACCClause *> Clauses) { |
| llvm::SmallVector<Expr *> Exprs; |
| Exprs.push_back(DevNumExpr); |
| Exprs.insert(Exprs.end(), QueueIdExprs.begin(), QueueIdExprs.end()); |
| return getSema().OpenACC().ActOnEndStmtDirective( |
| OpenACCDirectiveKind::Wait, BeginLoc, DirLoc, LParenLoc, QueuesLoc, |
| Exprs, RParenLoc, EndLoc, Clauses, {}); |
| } |
| |
| ExprResult RebuildOpenACCAsteriskSizeExpr(SourceLocation AsteriskLoc) { |
| return getSema().OpenACC().ActOnOpenACCAsteriskSizeExpr(AsteriskLoc); |
| } |
| |
| private: |
| TypeLoc TransformTypeInObjectScope(TypeLoc TL, |
| QualType ObjectType, |
| NamedDecl *FirstQualifierInScope, |
| CXXScopeSpec &SS); |
| |
| TypeSourceInfo *TransformTypeInObjectScope(TypeSourceInfo *TSInfo, |
| QualType ObjectType, |
| NamedDecl *FirstQualifierInScope, |
| CXXScopeSpec &SS); |
| |
| TypeSourceInfo *TransformTSIInObjectScope(TypeLoc TL, QualType ObjectType, |
| NamedDecl *FirstQualifierInScope, |
| CXXScopeSpec &SS); |
| |
| QualType TransformDependentNameType(TypeLocBuilder &TLB, |
| DependentNameTypeLoc TL, |
| bool DeducibleTSTContext); |
| |
| llvm::SmallVector<OpenACCClause *> |
| TransformOpenACCClauseList(OpenACCDirectiveKind DirKind, |
| ArrayRef<const OpenACCClause *> OldClauses); |
| |
| OpenACCClause * |
| TransformOpenACCClause(ArrayRef<const OpenACCClause *> ExistingClauses, |
| OpenACCDirectiveKind DirKind, |
| const OpenACCClause *OldClause); |
| }; |
| |
| template <typename Derived> |
| StmtResult TreeTransform<Derived>::TransformStmt(Stmt *S, StmtDiscardKind SDK) { |
| if (!S) |
| return S; |
| |
| switch (S->getStmtClass()) { |
| case Stmt::NoStmtClass: break; |
| |
| // Transform individual statement nodes |
| // Pass SDK into statements that can produce a value |
| #define STMT(Node, Parent) \ |
| case Stmt::Node##Class: return getDerived().Transform##Node(cast<Node>(S)); |
| #define VALUESTMT(Node, Parent) \ |
| case Stmt::Node##Class: \ |
| return getDerived().Transform##Node(cast<Node>(S), SDK); |
| #define ABSTRACT_STMT(Node) |
| #define EXPR(Node, Parent) |
| #include "clang/AST/StmtNodes.inc" |
| |
| // Transform expressions by calling TransformExpr. |
| #define STMT(Node, Parent) |
| #define ABSTRACT_STMT(Stmt) |
| #define EXPR(Node, Parent) case Stmt::Node##Class: |
| #include "clang/AST/StmtNodes.inc" |
| { |
| ExprResult E = getDerived().TransformExpr(cast<Expr>(S)); |
| |
| if (SDK == SDK_StmtExprResult) |
| E = getSema().ActOnStmtExprResult(E); |
| return getSema().ActOnExprStmt(E, SDK == SDK_Discarded); |
| } |
| } |
| |
| return S; |
| } |
| |
| template<typename Derived> |
| OMPClause *TreeTransform<Derived>::TransformOMPClause(OMPClause *S) { |
| if (!S) |
| return S; |
| |
| switch (S->getClauseKind()) { |
| default: break; |
| // Transform individual clause nodes |
| #define GEN_CLANG_CLAUSE_CLASS |
| #define CLAUSE_CLASS(Enum, Str, Class) \ |
| case Enum: \ |
| return getDerived().Transform##Class(cast<Class>(S)); |
| #include "llvm/Frontend/OpenMP/OMP.inc" |
| } |
| |
| return S; |
| } |
| |
| |
| template<typename Derived> |
| ExprResult TreeTransform<Derived>::TransformExpr(Expr *E) { |
| if (!E) |
| return E; |
| |
| switch (E->getStmtClass()) { |
| case Stmt::NoStmtClass: break; |
| #define STMT(Node, Parent) case Stmt::Node##Class: break; |
| #define ABSTRACT_STMT(Stmt) |
| #define EXPR(Node, Parent) \ |
| case Stmt::Node##Class: return getDerived().Transform##Node(cast<Node>(E)); |
| #include "clang/AST/StmtNodes.inc" |
| } |
| |
| return E; |
| } |
| |
| template<typename Derived> |
| ExprResult TreeTransform<Derived>::TransformInitializer(Expr *Init, |
| bool NotCopyInit) { |
| // Initializers are instantiated like expressions, except that various outer |
| // layers are stripped. |
| if (!Init) |
| return Init; |
| |
| if (auto *FE = dyn_cast<FullExpr>(Init)) |
| Init = FE->getSubExpr(); |
| |
| if (auto *AIL = dyn_cast<ArrayInitLoopExpr>(Init)) { |
| OpaqueValueExpr *OVE = AIL->getCommonExpr(); |
| Init = OVE->getSourceExpr(); |
| } |
| |
| if (MaterializeTemporaryExpr *MTE = dyn_cast<MaterializeTemporaryExpr>(Init)) |
| Init = MTE->getSubExpr(); |
| |
| while (CXXBindTemporaryExpr *Binder = dyn_cast<CXXBindTemporaryExpr>(Init)) |
| Init = Binder->getSubExpr(); |
| |
| if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Init)) |
| Init = ICE->getSubExprAsWritten(); |
| |
| if (CXXStdInitializerListExpr *ILE = |
| dyn_cast<CXXStdInitializerListExpr>(Init)) |
| return TransformInitializer(ILE->getSubExpr(), NotCopyInit); |
| |
| // If this is copy-initialization, we only need to reconstruct |
| // InitListExprs. Other forms of copy-initialization will be a no-op if |
| // the initializer is already the right type. |
| CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(Init); |
| if (!NotCopyInit && !(Construct && Construct->isListInitialization())) |
| return getDerived().TransformExpr(Init); |
| |
| // Revert value-initialization back to empty parens. |
| if (CXXScalarValueInitExpr *VIE = dyn_cast<CXXScalarValueInitExpr>(Init)) { |
| SourceRange Parens = VIE->getSourceRange(); |
| return getDerived().RebuildParenListExpr(Parens.getBegin(), {}, |
| Parens.getEnd()); |
| } |
| |
| // FIXME: We shouldn't build ImplicitValueInitExprs for direct-initialization. |
| if (isa<ImplicitValueInitExpr>(Init)) |
| return getDerived().RebuildParenListExpr(SourceLocation(), {}, |
| SourceLocation()); |
| |
| // Revert initialization by constructor back to a parenthesized or braced list |
| // of expressions. Any other form of initializer can just be reused directly. |
| if (!Construct || isa<CXXTemporaryObjectExpr>(Construct)) |
| return getDerived().TransformExpr(Init); |
| |
| // If the initialization implicitly converted an initializer list to a |
| // std::initializer_list object, unwrap the std::initializer_list too. |
| if (Construct && Construct->isStdInitListInitialization()) |
| return TransformInitializer(Construct->getArg(0), NotCopyInit); |
| |
| // Enter a list-init context if this was list initialization. |
| EnterExpressionEvaluationContext Context( |
| getSema(), EnterExpressionEvaluationContext::InitList, |
| Construct->isListInitialization()); |
| |
| getSema().currentEvaluationContext().InLifetimeExtendingContext = |
| getSema().parentEvaluationContext().InLifetimeExtendingContext; |
| getSema().currentEvaluationContext().RebuildDefaultArgOrDefaultInit = |
| getSema().parentEvaluationContext().RebuildDefaultArgOrDefaultInit; |
| SmallVector<Expr*, 8> NewArgs; |
| bool ArgChanged = false; |
| if (getDerived().TransformExprs(Construct->getArgs(), Construct->getNumArgs(), |
| /*IsCall*/true, NewArgs, &ArgChanged)) |
| return ExprError(); |
| |
| // If this was list initialization, revert to syntactic list form. |
| if (Construct->isListInitialization()) |
| return getDerived().RebuildInitList(Construct->getBeginLoc(), NewArgs, |
| Construct->getEndLoc()); |
| |
| // Build a ParenListExpr to represent anything else. |
| SourceRange Parens = Construct->getParenOrBraceRange(); |
| if (Parens.isInvalid()) { |
| // This was a variable declaration's initialization for which no initializer |
| // was specified. |
| assert(NewArgs.empty() && |
| "no parens or braces but have direct init with arguments?"); |
| return ExprEmpty(); |
| } |
| return getDerived().RebuildParenListExpr(Parens.getBegin(), NewArgs, |
| Parens.getEnd()); |
| } |
| |
| template<typename Derived> |
| bool TreeTransform<Derived>::TransformExprs(Expr *const *Inputs, |
| unsigned NumInputs, |
| bool IsCall, |
| SmallVectorImpl<Expr *> &Outputs, |
| bool *ArgChanged) { |
| for (unsigned I = 0; I != NumInputs; ++I) { |
| // If requested, drop call arguments that need to be dropped. |
| if (IsCall && getDerived().DropCallArgument(Inputs[I])) { |
| if (ArgChanged) |
| *ArgChanged = true; |
| |
| break; |
| } |
| |
| if (PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(Inputs[I])) { |
| Expr *Pattern = Expansion->getPattern(); |
| |
| SmallVector<UnexpandedParameterPack, 2> Unexpanded; |
| getSema().collectUnexpandedParameterPacks(Pattern, Unexpanded); |
| assert(!Unexpanded.empty() && "Pack expansion without parameter packs?"); |
| |
| // Determine whether the set of unexpanded parameter packs can and should |
| // be expanded. |
| bool Expand = true; |
| bool RetainExpansion = false; |
| std::optional<unsigned> OrigNumExpansions = Expansion->getNumExpansions(); |
| std::optional<unsigned> NumExpansions = OrigNumExpansions; |
| if (getDerived().TryExpandParameterPacks(Expansion->getEllipsisLoc(), |
| Pattern->getSourceRange(), |
| Unexpanded, |
| Expand, RetainExpansion, |
| NumExpansions)) |
| return true; |
| |
| if (!Expand) { |
| // The transform has determined that we should perform a simple |
| // transformation on the pack expansion, producing another pack |
| // expansion. |
| Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), -1); |
| ExprResult OutPattern = getDerived().TransformExpr(Pattern); |
| if (OutPattern.isInvalid()) |
| return true; |
| |
| ExprResult Out = getDerived().RebuildPackExpansion(OutPattern.get(), |
| Expansion->getEllipsisLoc(), |
| NumExpansions); |
| if (Out.isInvalid()) |
| return true; |
| |
| if (ArgChanged) |
| *ArgChanged = true; |
| Outputs.push_back(Out.get()); |
| continue; |
| } |
| |
| // Record right away that the argument was changed. This needs |
| // to happen even if the array expands to nothing. |
| if (ArgChanged) *ArgChanged = true; |
| |
| // The transform has determined that we should perform an elementwise |
| // expansion of the pattern. Do so. |
| for (unsigned I = 0; I != *NumExpansions; ++I) { |
| Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), I); |
| ExprResult Out = getDerived().TransformExpr(Pattern); |
| if (Out.isInvalid()) |
| return true; |
| |
| if (Out.get()->containsUnexpandedParameterPack()) { |
| Out = getDerived().RebuildPackExpansion( |
| Out.get(), Expansion->getEllipsisLoc(), OrigNumExpansions); |
| if (Out.isInvalid()) |
| return true; |
| } |
| |
| Outputs.push_back(Out.get()); |
| } |
| |
| // If we're supposed to retain a pack expansion, do so by temporarily |
| // forgetting the partially-substituted parameter pack. |
| if (RetainExpansion) { |
| ForgetPartiallySubstitutedPackRAII Forget(getDerived()); |
| |
| ExprResult Out = getDerived().TransformExpr(Pattern); |
| if (Out.isInvalid()) |
| return true; |
| |
| Out = getDerived().RebuildPackExpansion( |
| Out.get(), Expansion->getEllipsisLoc(), OrigNumExpansions); |
| if (Out.isInvalid()) |
| return true; |
| |
| Outputs.push_back(Out.get()); |
| } |
| |
| continue; |
| } |
| |
| ExprResult Result = |
| IsCall ? getDerived().TransformInitializer(Inputs[I], /*DirectInit*/false) |
| : getDerived().TransformExpr(Inputs[I]); |
| if (Result.isInvalid()) |
| return true; |
| |
| if (Result.get() != Inputs[I] && ArgChanged) |
| *ArgChanged = true; |
| |
| Outputs.push_back(Result.get()); |
| } |
| |
| return false; |
| } |
| |
| template <typename Derived> |
| Sema::ConditionResult TreeTransform<Derived>::TransformCondition( |
| SourceLocation Loc, VarDecl *Var, Expr *Expr, Sema::ConditionKind Kind) { |
| if (Var) { |
| VarDecl *ConditionVar = cast_or_null<VarDecl>( |
| getDerived().TransformDefinition(Var->getLocation(), Var)); |
| |
| if (!ConditionVar) |
| return Sema::ConditionError(); |
| |
| return getSema().ActOnConditionVariable(ConditionVar, Loc, Kind); |
| } |
| |
| if (Expr) { |
| ExprResult CondExpr = getDerived().TransformExpr(Expr); |
| |
| if (CondExpr.isInvalid()) |
| return Sema::ConditionError(); |
| |
| return getSema().ActOnCondition(nullptr, Loc, CondExpr.get(), Kind, |
| /*MissingOK=*/true); |
| } |
| |
| return Sema::ConditionResult(); |
| } |
| |
| template <typename Derived> |
| NestedNameSpecifierLoc TreeTransform<Derived>::TransformNestedNameSpecifierLoc( |
| NestedNameSpecifierLoc NNS, QualType ObjectType, |
| NamedDecl *FirstQualifierInScope) { |
| SmallVector<NestedNameSpecifierLoc, 4> Qualifiers; |
| |
| auto insertNNS = [&Qualifiers](NestedNameSpecifierLoc NNS) { |
| for (NestedNameSpecifierLoc Qualifier = NNS; Qualifier; |
| Qualifier = Qualifier.getPrefix()) |
| Qualifiers.push_back(Qualifier); |
| }; |
| insertNNS(NNS); |
| |
| CXXScopeSpec SS; |
| while (!Qualifiers.empty()) { |
| NestedNameSpecifierLoc Q = Qualifiers.pop_back_val(); |
| NestedNameSpecifier *QNNS = Q.getNestedNameSpecifier(); |
| |
| switch (QNNS->getKind()) { |
| case NestedNameSpecifier::Identifier: { |
| Sema::NestedNameSpecInfo IdInfo(QNNS->getAsIdentifier(), |
| Q.getLocalBeginLoc(), Q.getLocalEndLoc(), |
| ObjectType); |
| if (SemaRef.BuildCXXNestedNameSpecifier(/*Scope=*/nullptr, IdInfo, false, |
| SS, FirstQualifierInScope, false)) |
| return NestedNameSpecifierLoc(); |
| break; |
| } |
| |
| case NestedNameSpecifier::Namespace: { |
| NamespaceDecl *NS = |
| cast_or_null<NamespaceDecl>(getDerived().TransformDecl( |
| Q.getLocalBeginLoc(), QNNS->getAsNamespace())); |
| SS.Extend(SemaRef.Context, NS, Q.getLocalBeginLoc(), Q.getLocalEndLoc()); |
| break; |
| } |
| |
| case NestedNameSpecifier::NamespaceAlias: { |
| NamespaceAliasDecl *Alias = |
| cast_or_null<NamespaceAliasDecl>(getDerived().TransformDecl( |
| Q.getLocalBeginLoc(), QNNS->getAsNamespaceAlias())); |
| SS.Extend(SemaRef.Context, Alias, Q.getLocalBeginLoc(), |
| Q.getLocalEndLoc()); |
| break; |
| } |
| |
| case NestedNameSpecifier::Global: |
| // There is no meaningful transformation that one could perform on the |
| // global scope. |
| SS.MakeGlobal(SemaRef.Context, Q.getBeginLoc()); |
| break; |
| |
| case NestedNameSpecifier::Super: { |
| CXXRecordDecl *RD = |
| cast_or_null<CXXRecordDecl>(getDerived().TransformDecl( |
| SourceLocation(), QNNS->getAsRecordDecl())); |
| SS.MakeSuper(SemaRef.Context, RD, Q.getBeginLoc(), Q.getEndLoc()); |
| break; |
| } |
| |
| case NestedNameSpecifier::TypeSpecWithTemplate: |
| case NestedNameSpecifier::TypeSpec: { |
| TypeLoc TL = TransformTypeInObjectScope(Q.getTypeLoc(), ObjectType, |
| FirstQualifierInScope, SS); |
| |
| if (!TL) |
| return NestedNameSpecifierLoc(); |
| |
| QualType T = TL.getType(); |
| if (T->isDependentType() || T->isRecordType() || |
| (SemaRef.getLangOpts().CPlusPlus11 && T->isEnumeralType())) { |
| if (T->isEnumeralType()) |
| SemaRef.Diag(TL.getBeginLoc(), |
| diag::warn_cxx98_compat_enum_nested_name_spec); |
| |
| if (const auto ETL = TL.getAs<ElaboratedTypeLoc>()) { |
| SS.Adopt(ETL.getQualifierLoc()); |
| TL = ETL.getNamedTypeLoc(); |
| } |
| |
| SS.Extend(SemaRef.Context, TL.getTemplateKeywordLoc(), TL, |
| Q.getLocalEndLoc()); |
| break; |
| } |
| // If the nested-name-specifier is an invalid type def, don't emit an |
| // error because a previous error should have already been emitted. |
| TypedefTypeLoc TTL = TL.getAsAdjusted<TypedefTypeLoc>(); |
| if (!TTL || !TTL.getTypedefNameDecl()->isInvalidDecl()) { |
| SemaRef.Diag(TL.getBeginLoc(), diag::err_nested_name_spec_non_tag) |
| << T << SS.getRange(); |
| } |
| return NestedNameSpecifierLoc(); |
| } |
| } |
| |
| // The qualifier-in-scope and object type only apply to the leftmost entity. |
| FirstQualifierInScope = nullptr; |
| ObjectType = QualType(); |
| } |
| |
| // Don't rebuild the nested-name-specifier if we don't have to. |
| if (SS.getScopeRep() == NNS.getNestedNameSpecifier() && |
| !getDerived().AlwaysRebuild()) |
| return NNS; |
| |
| // If we can re-use the source-location data from the original |
| // nested-name-specifier, do so. |
| if (SS.location_size() == NNS.getDataLength() && |
| memcmp(SS.location_data(), NNS.getOpaqueData(), SS.location_size()) == 0) |
| return NestedNameSpecifierLoc(SS.getScopeRep(), NNS.getOpaqueData()); |
| |
| // Allocate new nested-name-specifier location information. |
| return SS.getWithLocInContext(SemaRef.Context); |
| } |
| |
| template<typename Derived> |
| DeclarationNameInfo |
| TreeTransform<Derived> |
| ::TransformDeclarationNameInfo(const DeclarationNameInfo &NameInfo) { |
| DeclarationName Name = NameInfo.getName(); |
| if (!Name) |
| return DeclarationNameInfo(); |
| |
| switch (Name.getNameKind()) { |
| case DeclarationName::Identifier: |
| case DeclarationName::ObjCZeroArgSelector: |
| case DeclarationName::ObjCOneArgSelector: |
| case DeclarationName::ObjCMultiArgSelector: |
| case DeclarationName::CXXOperatorName: |
| case DeclarationName::CXXLiteralOperatorName: |
| case DeclarationName::CXXUsingDirective: |
| return NameInfo; |
| |
| case DeclarationName::CXXDeductionGuideName: { |
| TemplateDecl *OldTemplate = Name.getCXXDeductionGuideTemplate(); |
| TemplateDecl *NewTemplate = cast_or_null<TemplateDecl>( |
| getDerived().TransformDecl(NameInfo.getLoc(), OldTemplate)); |
| if (!NewTemplate) |
| return DeclarationNameInfo(); |
| |
| DeclarationNameInfo NewNameInfo(NameInfo); |
| NewNameInfo.setName( |
| SemaRef.Context.DeclarationNames.getCXXDeductionGuideName(NewTemplate)); |
| return NewNameInfo; |
| } |
| |
| case DeclarationName::CXXConstructorName: |
| case DeclarationName::CXXDestructorName: |
| case DeclarationName::CXXConversionFunctionName: { |
| TypeSourceInfo *NewTInfo; |
| CanQualType NewCanTy; |
| if (TypeSourceInfo *OldTInfo = NameInfo.getNamedTypeInfo()) { |
| NewTInfo = getDerived().TransformType(OldTInfo); |
| if (!NewTInfo) |
| return DeclarationNameInfo(); |
| NewCanTy = SemaRef.Context.getCanonicalType(NewTInfo->getType()); |
| } |
| else { |
| NewTInfo = nullptr; |
| TemporaryBase Rebase(*this, NameInfo.getLoc(), Name); |
| QualType NewT = getDerived().TransformType(Name.getCXXNameType()); |
| if (NewT.isNull()) |
| return DeclarationNameInfo(); |
| NewCanTy = SemaRef.Context.getCanonicalType(NewT); |
| } |
| |
| DeclarationName NewName |
| = SemaRef.Context.DeclarationNames.getCXXSpecialName(Name.getNameKind(), |
| NewCanTy); |
| DeclarationNameInfo NewNameInfo(NameInfo); |
| NewNameInfo.setName(NewName); |
| NewNameInfo.setNamedTypeInfo(NewTInfo); |
| return NewNameInfo; |
| } |
| } |
| |
| llvm_unreachable("Unknown name kind."); |
| } |
| |
| template<typename Derived> |
| TemplateName |
| TreeTransform<Derived>::TransformTemplateName(CXXScopeSpec &SS, |
| TemplateName Name, |
| SourceLocation NameLoc, |
| QualType ObjectType, |
| NamedDecl *FirstQualifierInScope, |
| bool AllowInjectedClassName) { |
| if (QualifiedTemplateName *QTN = Name.getAsQualifiedTemplateName()) { |
| TemplateDecl *Template = QTN->getUnderlyingTemplate().getAsTemplateDecl(); |
| assert(Template && "qualified template name must refer to a template"); |
| |
| TemplateDecl *TransTemplate |
| = cast_or_null<TemplateDecl>(getDerived().TransformDecl(NameLoc, |
| Template)); |
| if (!TransTemplate) |
| return TemplateName(); |
| |
| if (!getDerived().AlwaysRebuild() && |
| SS.getScopeRep() == QTN->getQualifier() && |
| TransTemplate == Template) |
| return Name; |
| |
| return getDerived().RebuildTemplateName(SS, QTN->hasTemplateKeyword(), |
| TransTemplate); |
| } |
| |
| if (DependentTemplateName *DTN = Name.getAsDependentTemplateName()) { |
| if (SS.getScopeRep()) { |
| // These apply to the scope specifier, not the template. |
| ObjectType = QualType(); |
| FirstQualifierInScope = nullptr; |
| } |
| |
| if (!getDerived().AlwaysRebuild() && |
| SS.getScopeRep() == DTN->getQualifier() && |
| ObjectType.isNull()) |
| return Name; |
| |
| // FIXME: Preserve the location of the "template" keyword. |
| SourceLocation TemplateKWLoc = NameLoc; |
| |
| if (DTN->isIdentifier()) { |
| return getDerived().RebuildTemplateName(SS, |
| TemplateKWLoc, |
| *DTN->getIdentifier(), |
| NameLoc, |
| ObjectType, |
| FirstQualifierInScope, |
| AllowInjectedClassName); |
| } |
| |
| return getDerived().RebuildTemplateName(SS, TemplateKWLoc, |
| DTN->getOperator(), NameLoc, |
| ObjectType, AllowInjectedClassName); |
| } |
| |
| // FIXME: Try to preserve more of the TemplateName. |
| if (TemplateDecl *Template = Name.getAsTemplateDecl()) { |
| TemplateDecl *TransTemplate |
| = cast_or_null<TemplateDecl>(getDerived().TransformDecl(NameLoc, |
| Template)); |
| if (!TransTemplate) |
| return TemplateName(); |
| |
| return getDerived().RebuildTemplateName(SS, /*TemplateKeyword=*/false, |
| TransTemplate); |
| } |
| |
| if (SubstTemplateTemplateParmPackStorage *SubstPack |
| = Name.getAsSubstTemplateTemplateParmPack()) { |
| return getDerived().RebuildTemplateName( |
| SubstPack->getArgumentPack(), SubstPack->getAssociatedDecl(), |
| SubstPack->getIndex(), SubstPack->getFinal()); |
| } |
| |
| // These should be getting filtered out before they reach the AST. |
| llvm_unreachable("overloaded function decl survived to here"); |
| } |
| |
| template<typename Derived> |
| void TreeTransform<Derived>::InventTemplateArgumentLoc( |
| const TemplateArgument &Arg, |
| TemplateArgumentLoc &Output) { |
| Output = getSema().getTrivialTemplateArgumentLoc( |
| Arg, QualType(), getDerived().getBaseLocation()); |
| } |
| |
| template <typename Derived> |
| bool TreeTransform<Derived>::TransformTemplateArgument( |
| const TemplateArgumentLoc &Input, TemplateArgumentLoc &Output, |
| bool Uneval) { |
| const TemplateArgument &Arg = Input.getArgument(); |
| switch (Arg.getKind()) { |
| case TemplateArgument::Null: |
| case TemplateArgument::Pack: |
| llvm_unreachable("Unexpected TemplateArgument"); |
| |
| case TemplateArgument::Integral: |
| case TemplateArgument::NullPtr: |
| case TemplateArgument::Declaration: |
| case TemplateArgument::StructuralValue: { |
| // Transform a resolved template argument straight to a resolved template |
| // argument. We get here when substituting into an already-substituted |
| // template type argument during concept satisfaction checking. |
| QualType T = Arg.getNonTypeTemplateArgumentType(); |
| QualType NewT = getDerived().TransformType(T); |
| if (NewT.isNull()) |
| return true; |
| |
| ValueDecl *D = Arg.getKind() == TemplateArgument::Declaration |
| ? Arg.getAsDecl() |
| : nullptr; |
| ValueDecl *NewD = D ? cast_or_null<ValueDecl>(getDerived().TransformDecl( |
| getDerived().getBaseLocation(), D)) |
| : nullptr; |
| if (D && !NewD) |
| return true; |
| |
| if (NewT == T && D == NewD) |
| Output = Input; |
| else if (Arg.getKind() == TemplateArgument::Integral) |
| Output = TemplateArgumentLoc( |
| TemplateArgument(getSema().Context, Arg.getAsIntegral(), NewT), |
| TemplateArgumentLocInfo()); |
| else if (Arg.getKind() == TemplateArgument::NullPtr) |
| Output = TemplateArgumentLoc(TemplateArgument(NewT, /*IsNullPtr=*/true), |
| TemplateArgumentLocInfo()); |
| else if (Arg.getKind() == TemplateArgument::Declaration) |
| Output = TemplateArgumentLoc(TemplateArgument(NewD, NewT), |
| TemplateArgumentLocInfo()); |
| else if (Arg.getKind() == TemplateArgument::StructuralValue) |
| Output = TemplateArgumentLoc( |
| TemplateArgument(getSema().Context, NewT, Arg.getAsStructuralValue()), |
| TemplateArgumentLocInfo()); |
| else |
| llvm_unreachable("unexpected template argument kind"); |
| |
| return false; |
| } |
| |
| case TemplateArgument::Type: { |
| TypeSourceInfo *DI = Input.getTypeSourceInfo(); |
| if (!DI) |
| DI = InventTypeSourceInfo(Input.getArgument().getAsType()); |
| |
| DI = getDerived().TransformType(DI); |
| if (!DI) |
| return true; |
| |
| Output = TemplateArgumentLoc(TemplateArgument(DI->getType()), DI); |
| return false; |
| } |
| |
| case TemplateArgument::Template: { |
| NestedNameSpecifierLoc QualifierLoc = Input.getTemplateQualifierLoc(); |
| if (QualifierLoc) { |
| QualifierLoc = getDerived().TransformNestedNameSpecifierLoc(QualifierLoc); |
| if (!QualifierLoc) |
| return true; |
| } |
| |
| CXXScopeSpec SS; |
| SS.Adopt(QualifierLoc); |
| TemplateName Template = getDerived().TransformTemplateName( |
| SS, Arg.getAsTemplate(), Input.getTemplateNameLoc()); |
| if (Template.isNull()) |
| return true; |
| |
| Output = TemplateArgumentLoc(SemaRef.Context, TemplateArgument(Template), |
| QualifierLoc, Input.getTemplateNameLoc()); |
| return false; |
| } |
| |
| case TemplateArgument::TemplateExpansion: |
| llvm_unreachable("Caller should expand pack expansions"); |
| |
| case TemplateArgument::Expression: { |
| // Template argument expressions are constant expressions. |
| EnterExpressionEvaluationContext Unevaluated( |
| getSema(), |
| Uneval ? Sema::ExpressionEvaluationContext::Unevaluated |
| : Sema::ExpressionEvaluationContext::ConstantEvaluated, |
| Sema::ReuseLambdaContextDecl, /*ExprContext=*/ |
| Sema::ExpressionEvaluationContextRecord::EK_TemplateArgument); |
| |
| Expr *InputExpr = Input.getSourceExpression(); |
| if (!InputExpr) |
| InputExpr = Input.getArgument().getAsExpr(); |
| |
| ExprResult E = getDerived().TransformExpr(InputExpr); |
| E = SemaRef.ActOnConstantExpression(E); |
| if (E.isInvalid()) |
| return true; |
| Output = TemplateArgumentLoc(TemplateArgument(E.get()), E.get()); |
| return false; |
| } |
| } |
| |
| // Work around bogus GCC warning |
| return true; |
| } |
| |
| /// Iterator adaptor that invents template argument location information |
| /// for each of the template arguments in its underlying iterator. |
| template<typename Derived, typename InputIterator> |
| class TemplateArgumentLocInventIterator { |
| TreeTransform<Derived> &Self; |
| InputIterator Iter; |
| |
| public: |
| typedef TemplateArgumentLoc value_type; |
| typedef TemplateArgumentLoc reference; |
| typedef typename std::iterator_traits<InputIterator>::difference_type |
| difference_type; |
| typedef std::input_iterator_tag iterator_category; |
| |
| class pointer { |
| TemplateArgumentLoc Arg; |
| |
| public: |
| explicit pointer(TemplateArgumentLoc Arg) : Arg(Arg) { } |
| |
| const TemplateArgumentLoc *operator->() const { return &Arg; } |
| }; |
| |
| explicit TemplateArgumentLocInventIterator(TreeTransform<Derived> &Self, |
| InputIterator Iter) |
| : Self(Self), Iter(Iter) { } |
| |
| TemplateArgumentLocInventIterator &operator++() { |
| ++Iter; |
| return *this; |
| } |
| |
| TemplateArgumentLocInventIterator operator++(int) { |
| TemplateArgumentLocInventIterator Old(*this); |
| ++(*this); |
| return Old; |
| } |
| |
| reference operator*() const { |
| TemplateArgumentLoc Result; |
| Self.InventTemplateArgumentLoc(*Iter, Result); |
| return Result; |
| } |
| |
| pointer operator->() const { return pointer(**this); } |
| |
| friend bool operator==(const TemplateArgumentLocInventIterator &X, |
| const TemplateArgumentLocInventIterator &Y) { |
| return X.Iter == Y.Iter; |
| } |
| |
| friend bool operator!=(const TemplateArgumentLocInventIterator &X, |
| const TemplateArgumentLocInventIterator &Y) { |
| return X.Iter != Y.Iter; |
| } |
| }; |
| |
| template<typename Derived> |
| template<typename InputIterator> |
| bool TreeTransform<Derived>::TransformTemplateArguments( |
| InputIterator First, InputIterator Last, TemplateArgumentListInfo &Outputs, |
| bool Uneval) { |
| for (; First != Last; ++First) { |
| TemplateArgumentLoc Out; |
| TemplateArgumentLoc In = *First; |
| |
| if (In.getArgument().getKind() == TemplateArgument::Pack) { |
| // Unpack argument packs, which we translate them into separate |
| // arguments. |
| // FIXME: We could do much better if we could guarantee that the |
| // TemplateArgumentLocInfo for the pack expansion would be usable for |
| // all of the template arguments in the argument pack. |
| typedef TemplateArgumentLocInventIterator<Derived, |
| TemplateArgument::pack_iterator> |
| PackLocIterator; |
| if (TransformTemplateArguments(PackLocIterator(*this, |
| In.getArgument().pack_begin()), |
| PackLocIterator(*this, |
| In.getArgument().pack_end()), |
| Outputs, Uneval)) |
| return true; |
| |
| continue; |
| } |
| |
| if (In.getArgument().isPackExpansion()) { |
| // We have a pack expansion, for which we will be substituting into |
| // the pattern. |
| SourceLocation Ellipsis; |
| std::optional<unsigned> OrigNumExpansions; |
| TemplateArgumentLoc Pattern |
| = getSema().getTemplateArgumentPackExpansionPattern( |
| In, Ellipsis, OrigNumExpansions); |
| |
| SmallVector<UnexpandedParameterPack, 2> Unexpanded; |
| getSema().collectUnexpandedParameterPacks(Pattern, Unexpanded); |
| assert(!Unexpanded.empty() && "Pack expansion without parameter packs?"); |
| |
| // Determine whether the set of unexpanded parameter packs can and should |
| // be expanded. |
| bool Expand = true; |
| bool RetainExpansion = false; |
| std::optional<unsigned> NumExpansions = OrigNumExpansions; |
| if (getDerived().TryExpandParameterPacks(Ellipsis, |
| Pattern.getSourceRange(), |
| Unexpanded, |
| Expand, |
| RetainExpansion, |
| NumExpansions)) |
| return true; |
| |
| if (!Expand) { |
| // The transform has determined that we should perform a simple |
| // transformation on the pack expansion, producing another pack |
| // expansion. |
| TemplateArgumentLoc OutPattern; |
| Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), -1); |
| if (getDerived().TransformTemplateArgument(Pattern, OutPattern, Uneval)) |
| return true; |
| |
| Out = getDerived().RebuildPackExpansion(OutPattern, Ellipsis, |
| NumExpansions); |
| if (Out.getArgument().isNull()) |
| return true; |
| |
| Outputs.addArgument(Out); |
| continue; |
| } |
| |
| // The transform has determined that we should perform an elementwise |
| // expansion of the pattern. Do so. |
| for (unsigned I = 0; I != *NumExpansions; ++I) { |
| Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), I); |
| |
| if (getDerived().TransformTemplateArgument(Pattern, Out, Uneval)) |
| return true; |
| |
| if (Out.getArgument().containsUnexpandedParameterPack()) { |
| Out = getDerived().RebuildPackExpansion(Out, Ellipsis, |
| OrigNumExpansions); |
| if (Out.getArgument().isNull()) |
| return true; |
| } |
| |
| Outputs.addArgument(Out); |
| } |
| |
| // If we're supposed to retain a pack expansion, do so by temporarily |
| // forgetting the partially-substituted parameter pack. |
| if (RetainExpansion) { |
| ForgetPartiallySubstitutedPackRAII Forget(getDerived()); |
| |
| if (getDerived().TransformTemplateArgument(Pattern, Out, Uneval)) |
| return true; |
| |
| Out = getDerived().RebuildPackExpansion(Out, Ellipsis, |
| OrigNumExpansions); |
| if (Out.getArgument().isNull()) |
| return true; |
| |
| Outputs.addArgument(Out); |
| } |
| |
| continue; |
| } |
| |
| // The simple case: |
| if (getDerived().TransformTemplateArgument(In, Out, Uneval)) |
| return true; |
| |
| Outputs.addArgument(Out); |
| } |
| |
| return false; |
| |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Type transformation |
| //===----------------------------------------------------------------------===// |
| |
| template<typename Derived> |
| QualType TreeTransform<Derived>::TransformType(QualType T) { |
| if (getDerived().AlreadyTransformed(T)) |
| return T; |
| |
| // Temporary workaround. All of these transformations should |
| // eventually turn into transformations on TypeLocs. |
| TypeSourceInfo *DI = getSema().Context.getTrivialTypeSourceInfo(T, |
| getDerived().getBaseLocation()); |
| |
| TypeSourceInfo *NewDI = getDerived().TransformType(DI); |
| |
| if (!NewDI) |
| return QualType(); |
| |
| return NewDI->getType(); |
| } |
| |
| template<typename Derived> |
| TypeSourceInfo *TreeTransform<Derived>::TransformType(TypeSourceInfo *DI) { |
| // Refine the base location to the type's location. |
| TemporaryBase Rebase(*this, DI->getTypeLoc().getBeginLoc(), |
| getDerived().getBaseEntity()); |
| if (getDerived().AlreadyTransformed(DI->getType())) |
| return DI; |
| |
| TypeLocBuilder TLB; |
| |
| TypeLoc TL = DI->getTypeLoc(); |
| TLB.reserve(TL.getFullDataSize()); |
| |
| QualType Result = getDerived().TransformType(TLB, TL); |
| if (Result.isNull()) |
| return nullptr; |
| |
| return TLB.getTypeSourceInfo(SemaRef.Context, Result); |
| } |
| |
| template<typename Derived> |
| QualType |
| TreeTransform<Derived>::TransformType(TypeLocBuilder &TLB, TypeLoc T) { |
| switch (T.getTypeLocClass()) { |
| #define ABSTRACT_TYPELOC(CLASS, PARENT) |
| #define TYPELOC(CLASS, PARENT) \ |
| case TypeLoc::CLASS: \ |
| return getDerived().Transform##CLASS##Type(TLB, \ |
| T.castAs<CLASS##TypeLoc>()); |
| #include "clang/AST/TypeLocNodes.def" |
| } |
| |
| llvm_unreachable("unhandled type loc!"); |
| } |
| |
| template<typename Derived> |
| QualType TreeTransform<Derived>::TransformTypeWithDeducedTST(QualType T) { |
| if (!isa<DependentNameType>(T)) |
| return TransformType(T); |
| |
| if (getDerived().AlreadyTransformed(T)) |
| return T; |
| TypeSourceInfo *DI = getSema().Context.getTrivialTypeSourceInfo(T, |
| getDerived().getBaseLocation()); |
| TypeSourceInfo *NewDI = getDerived().TransformTypeWithDeducedTST(DI); |
| return NewDI ? NewDI->getType() : QualType(); |
| } |
| |
| template<typename Derived> |
| TypeSourceInfo * |
| TreeTransform<Derived>::TransformTypeWithDeducedTST(TypeSourceInfo *DI) { |
| if (!isa<DependentNameType>(DI->getType())) |
| return TransformType(DI); |
| |
| // Refine the base location to the type's location. |
| TemporaryBase Rebase(*this, DI->getTypeLoc().getBeginLoc(), |
| getDerived().getBaseEntity()); |
| if (getDerived().AlreadyTransformed(DI->getType())) |
| return DI; |
| |
| TypeLocBuilder TLB; |
| |
| TypeLoc TL = DI->getTypeLoc(); |
| TLB.reserve(TL.getFullDataSize()); |
| |
| auto QTL = TL.getAs<QualifiedTypeLoc>(); |
| if (QTL) |
| TL = QTL.getUnqualifiedLoc(); |
| |
| auto DNTL = TL.castAs<DependentNameTypeLoc>(); |
| |
| QualType Result = getDerived().TransformDependentNameType( |
| TLB, DNTL, /*DeducedTSTContext*/true); |
| if (Result.isNull()) |
| return nullptr; |
| |
| if (QTL) { |
| Result = getDerived().RebuildQualifiedType(Result, QTL); |
| if (Result.isNull()) |
| return nullptr; |
| TLB.TypeWasModifiedSafely(Result); |
| } |
| |
| return TLB.getTypeSourceInfo(SemaRef.Context, Result); |
| } |
| |
| template<typename Derived> |
| QualType |
| TreeTransform<Derived>::TransformQualifiedType(TypeLocBuilder &TLB, |
| QualifiedTypeLoc T) { |
| QualType Result; |
| TypeLoc UnqualTL = T.getUnqualifiedLoc(); |
| auto SuppressObjCLifetime = |
| T.getType().getLocalQualifiers().hasObjCLifetime(); |
| if (auto TTP = UnqualTL.getAs<TemplateTypeParmTypeLoc>()) { |
| Result = getDerived().TransformTemplateTypeParmType(TLB, TTP, |
| SuppressObjCLifetime); |
| } else if (auto STTP = UnqualTL.getAs<SubstTemplateTypeParmPackTypeLoc>()) { |
| Result = getDerived().TransformSubstTemplateTypeParmPackType( |
| TLB, STTP, SuppressObjCLifetime); |
| } else { |
| Result = getDerived().TransformType(TLB, UnqualTL); |
| } |
| |
| if (Result.isNull()) |
| return QualType(); |
| |
| Result = getDerived().RebuildQualifiedType(Result, T); |
| |
| if (Result.isNull()) |
| return QualType(); |
| |
| // RebuildQualifiedType might have updated the type, but not in a way |
| // that invalidates the TypeLoc. (There's no location information for |
| // qualifiers.) |
| TLB.TypeWasModifiedSafely(Result); |
| |
| return Result; |
| } |
| |
| template <typename Derived> |
| QualType TreeTransform<Derived>::RebuildQualifiedType(QualType T, |
| QualifiedTypeLoc TL) { |
| |
| SourceLocation Loc = TL.getBeginLoc(); |
| Qualifiers Quals = TL.getType().getLocalQualifiers(); |
| |
| if ((T.getAddressSpace() != LangAS::Default && |
| Quals.getAddressSpace() != LangAS::Default) && |
| T.getAddressSpace() != Quals.getAddressSpace()) { |
| SemaRef.Diag(Loc, diag::err_address_space_mismatch_templ_inst) |
| << TL.getType() << T; |
| return QualType(); |
| } |
| |
| // C++ [dcl.fct]p7: |
| // [When] adding cv-qualifications on top of the function type [...] the |
| // cv-qualifiers are ignored. |
| if (T->isFunctionType()) { |
| T = SemaRef.getASTContext().getAddrSpaceQualType(T, |
| Quals.getAddressSpace()); |
| return T; |
| } |
| |
| // C++ [dcl.ref]p1: |
| // when the cv-qualifiers are introduced through the use of a typedef-name |
| // or decltype-specifier [...] the cv-qualifiers are ignored. |
| // Note that [dcl.ref]p1 lists all cases in which cv-qualifiers can be |
| // applied to a reference type. |
| if (T->isReferenceType()) { |
| // The only qualifier that applies to a reference type is restrict. |
| if (!Quals.hasRestrict()) |
| return T; |
| Quals = Qualifiers::fromCVRMask(Qualifiers::Restrict); |
| } |
| |
| // Suppress Objective-C lifetime qualifiers if they don't make sense for the |
| // resulting type. |
| if (Quals.hasObjCLifetime()) { |
| if (!T->isObjCLifetimeType() && !T->isDependentType()) |
| Quals.removeObjCLifetime(); |
| else if (T.getObjCLifetime()) { |
| // Objective-C ARC: |
| // A lifetime qualifier applied to a substituted template parameter |
| // overrides the lifetime qualifier from the template argument. |
| const AutoType *AutoTy; |
| if ((AutoTy = dyn_cast<AutoType>(T)) && AutoTy->isDeduced()) { |
| // 'auto' types behave the same way as template parameters. |
| QualType Deduced = AutoTy->getDeducedType(); |
| Qualifiers Qs = Deduced.getQualifiers(); |
| Qs.removeObjCLifetime(); |
| Deduced = |
| SemaRef.Context.getQualifiedType(Deduced.getUnqualifiedType(), Qs); |
| T = SemaRef.Context.getAutoType(Deduced, AutoTy->getKeyword(), |
| AutoTy->isDependentType(), |
| /*isPack=*/false, |
| AutoTy->getTypeConstraintConcept(), |
| AutoTy->getTypeConstraintArguments()); |
| } else { |
| // Otherwise, complain about the addition of a qualifier to an |
| // already-qualified type. |
| // FIXME: Why is this check not in Sema::BuildQualifiedType? |
| SemaRef.Diag(Loc, diag::err_attr_objc_ownership_redundant) << T; |
| Quals.removeObjCLifetime(); |
| } |
| } |
| } |
| |
| return SemaRef.BuildQualifiedType(T, Loc, Quals); |
| } |
| |
| template<typename Derived> |
| TypeLoc |
| TreeTransform<Derived>::TransformTypeInObjectScope(TypeLoc TL, |
| QualType ObjectType, |
| NamedDecl *UnqualLookup, |
| CXXScopeSpec &SS) { |
| if (getDerived().AlreadyTransformed(TL.getType())) |
| return TL; |
| |
| TypeSourceInfo *TSI = |
| TransformTSIInObjectScope(TL, ObjectType, UnqualLookup, SS); |
| if (TSI) |
| return TSI->getTypeLoc(); |
| return TypeLoc(); |
| } |
| |
| template<typename Derived> |
| TypeSourceInfo * |
| TreeTransform<Derived>::TransformTypeInObjectScope(TypeSourceInfo *TSInfo, |
| QualType ObjectType, |
| NamedDecl *UnqualLookup, |
| CXXScopeSpec &SS) { |
| if (getDerived().AlreadyTransformed(TSInfo->getType())) |
| return TSInfo; |
| |
| return TransformTSIInObjectScope(TSInfo->getTypeLoc(), ObjectType, |
| UnqualLookup, SS); |
| } |
| |
| template <typename Derived> |
| TypeSourceInfo *TreeTransform<Derived>::TransformTSIInObjectScope( |
| TypeLoc TL, QualType ObjectType, NamedDecl *UnqualLookup, |
| CXXScopeSpec &SS) { |
| QualType T = TL.getType(); |
| assert(!getDerived().AlreadyTransformed(T)); |
| |
| TypeLocBuilder TLB; |
| QualType Result; |
| |
| if (isa<TemplateSpecializationType>(T)) { |
| TemplateSpecializationTypeLoc SpecTL = |
| TL.castAs<TemplateSpecializationTypeLoc>(); |
| |
| TemplateName Template = getDerived().TransformTemplateName( |
| SS, SpecTL.getTypePtr()->getTemplateName(), SpecTL.getTemplateNameLoc(), |
| ObjectType, UnqualLookup, /*AllowInjectedClassName*/true); |
| if (Template.isNull()) |
| return nullptr; |
| |
| Result = getDerived().TransformTemplateSpecializationType(TLB, SpecTL, |
| Template); |
| } else if (isa<DependentTemplateSpecializationType>(T)) { |
| DependentTemplateSpecializationTypeLoc SpecTL = |
| TL.castAs<DependentTemplateSpecializationTypeLoc>(); |
| |
| TemplateName Template |
| = getDerived().RebuildTemplateName(SS, |
| SpecTL.getTemplateKeywordLoc(), |
| *SpecTL.getTypePtr()->getIdentifier(), |
| SpecTL.getTemplateNameLoc(), |
| ObjectType, UnqualLookup, |
| /*AllowInjectedClassName*/true); |
| if (Template.isNull()) |
| return nullptr; |
| |
| Result = getDerived().TransformDependentTemplateSpecializationType(TLB, |
| SpecTL, |
| Template, |
| SS); |
| } else { |
| // Nothing special needs to be done for these. |
| Result = getDerived().TransformType(TLB, TL); |
| } |
| |
| if (Result.isNull()) |
| return nullptr; |
| |
| return TLB.getTypeSourceInfo(SemaRef.Context, Result); |
| } |
| |
| template <class TyLoc> static inline |
| QualType TransformTypeSpecType(TypeLocBuilder &TLB, TyLoc T) { |
| TyLoc NewT = TLB.push<TyLoc>(T.getType()); |
| NewT.setNameLoc(T.getNameLoc()); |
| return T.getType(); |
| } |
| |
| template<typename Derived> |
| QualType TreeTransform<Derived>::TransformBuiltinType(TypeLocBuilder &TLB, |
| BuiltinTypeLoc T) { |
| BuiltinTypeLoc NewT = TLB.push<BuiltinTypeLoc>(T.getType()); |
| NewT.setBuiltinLoc(T.getBuiltinLoc()); |
| if (T.needsExtraLocalData()) |
| NewT.getWrittenBuiltinSpecs() = T.getWrittenBuiltinSpecs(); |
| return T.getType(); |
| } |
| |
| template<typename Derived> |
| QualType TreeTransform<Derived>::TransformComplexType(TypeLocBuilder &TLB, |
| ComplexTypeLoc T) { |
| // FIXME: recurse? |
| return TransformTypeSpecType(TLB, T); |
| } |
| |
| template <typename Derived> |
| QualType TreeTransform<Derived>::TransformAdjustedType(TypeLocBuilder &TLB, |
| AdjustedTypeLoc TL) { |
| // Adjustments applied during transformation are handled elsewhere. |
| return getDerived().TransformType(TLB, TL.getOriginalLoc()); |
| } |
| |
| template<typename Derived> |
| QualType TreeTransform<Derived>::TransformDecayedType(TypeLocBuilder &TLB, |
| DecayedTypeLoc TL) { |
| QualType OriginalType = getDerived().TransformType(TLB, TL.getOriginalLoc()); |
| if (OriginalType.isNull()) |
| return QualType(); |
| |
| QualType Result = TL.getType(); |
| if (getDerived().AlwaysRebuild() || |
| OriginalType != TL.getOriginalLoc().getType()) |
| Result = SemaRef.Context.getDecayedType(OriginalType); |
| TLB.push<DecayedTypeLoc>(Result); |
| // Nothing to set for DecayedTypeLoc. |
| return Result; |
| } |
| |
| template <typename Derived> |
| QualType |
| TreeTransform<Derived>::TransformArrayParameterType(TypeLocBuilder &TLB, |
| ArrayParameterTypeLoc TL) { |
| QualType OriginalType = getDerived().TransformType(TLB, TL.getElementLoc()); |
| if (OriginalType.isNull()) |
| return QualType(); |
| |
| QualType Result = TL.getType(); |
| if (getDerived().AlwaysRebuild() || |
| OriginalType != TL.getElementLoc().getType()) |
| Result = SemaRef.Context.getArrayParameterType(OriginalType); |
| TLB.push<ArrayParameterTypeLoc>(Result); |
| // Nothing to set for ArrayParameterTypeLoc. |
| return Result; |
| } |
| |
| template<typename Derived> |
| QualType TreeTransform<Derived>::TransformPointerType(TypeLocBuilder &TLB, |
| PointerTypeLoc TL) { |
| QualType PointeeType |
| = getDerived().TransformType(TLB, TL.getPointeeLoc()); |
| if (PointeeType.isNull()) |
| return QualType(); |
| |
| QualType Result = TL.getType(); |
| if (PointeeType->getAs<ObjCObjectType>()) { |
| // A dependent pointer type 'T *' has is being transformed such |
| // that an Objective-C class type is being replaced for 'T'. The |
| // resulting pointer type is an ObjCObjectPointerType, not a |
| // PointerType. |
| Result = SemaRef.Context.getObjCObjectPointerType(PointeeType); |
| |
| ObjCObjectPointerTypeLoc NewT = TLB.push<ObjCObjectPointerTypeLoc>(Result); |
| NewT.setStarLoc(TL.getStarLoc()); |
| return Result; |
| } |
| |
| if (getDerived().AlwaysRebuild() || |
| PointeeType != TL.getPointeeLoc().getType()) { |
| Result = getDerived().RebuildPointerType(PointeeType, TL.getSigilLoc()); |
| if (Result.isNull()) |
| return QualType(); |
| } |
| |
| // Objective-C ARC can add lifetime qualifiers to the type that we're |
| // pointing to. |
| TLB.TypeWasModifiedSafely(Result->getPointeeType()); |
| |
| PointerTypeLoc NewT = TLB.push<PointerTypeLoc>(Result); |
| NewT.setSigilLoc(TL.getSigilLoc()); |
| return Result; |
| } |
| |
| template<typename Derived> |
| QualType |
| TreeTransform<Derived>::TransformBlockPointerType(TypeLocBuilder &TLB, |
| BlockPointerTypeLoc TL) { |
| QualType PointeeType |
| = getDerived().TransformType(TLB, TL.getPointeeLoc()); |
| if (PointeeType.isNull()) |
| return QualType(); |
| |
| QualType Result = TL.getType(); |
| if (getDerived().AlwaysRebuild() || |
| PointeeType != TL.getPointeeLoc().getType()) { |
| Result = getDerived().RebuildBlockPointerType(PointeeType, |
| TL.getSigilLoc()); |
| if (Result.isNull()) |
| return QualType(); |
| } |
| |
| BlockPointerTypeLoc NewT = TLB.push<BlockPointerTypeLoc>(Result); |
| NewT.setSigilLoc(TL.getSigilLoc()); |
| return Result; |
| } |
| |
| /// Transforms a reference type. Note that somewhat paradoxically we |
| /// don't care whether the type itself is an l-value type or an r-value |
| /// type; we only care if the type was *written* as an l-value type |
| /// or an r-value type. |
| template<typename Derived> |
| QualType |
| TreeTransform<Derived>::TransformReferenceType(TypeLocBuilder &TLB, |
| ReferenceTypeLoc TL) { |
| const ReferenceType *T = TL.getTypePtr(); |
| |
| // Note that this works with the pointee-as-written. |
| QualType PointeeType = getDerived().TransformType(TLB, TL.getPointeeLoc()); |
| if (PointeeType.isNull()) |
| return QualType(); |
| |
| QualType Result = TL.getType(); |
| if (getDerived().AlwaysRebuild() || |
| PointeeType != T->getPointeeTypeAsWritten()) { |
| Result = getDerived().RebuildReferenceType(PointeeType, |
| T->isSpelledAsLValue(), |
| TL.getSigilLoc()); |
| if (Result.isNull()) |
| return QualType(); |
| } |
| |
| // Objective-C ARC can add lifetime qualifiers to the type that we're |
| // referring to. |
| TLB.TypeWasModifiedSafely( |
| Result->castAs<ReferenceType>()->getPointeeTypeAsWritten()); |
| |
| // r-value references can be rebuilt as l-value references. |
| ReferenceTypeLoc NewTL; |
| if (isa<LValueReferenceType>(Result)) |
| NewTL = TLB.push<LValueReferenceTypeLoc>(Result); |
| else |
| NewTL = TLB.push<RValueReferenceTypeLoc>(Result); |
| NewTL.setSigilLoc(TL.getSigilLoc()); |
| |
| return Result; |
| } |
| |
| template<typename Derived> |
| QualType |
| TreeTransform<Derived>::TransformLValueReferenceType(TypeLocBuilder &TLB, |
| LValueReferenceTypeLoc TL) { |
| return TransformReferenceType(TLB, TL); |
| } |
| |
| template<typename Derived> |
| QualType |
| TreeTransform<Derived>::TransformRValueReferenceType(TypeLocBuilder &TLB, |
| RValueReferenceTypeLoc TL) { |
| return TransformReferenceType(TLB, TL); |
| } |
| |
| template<typename Derived> |
| QualType |
| TreeTransform<Derived>::TransformMemberPointerType(TypeLocBuilder &TLB, |
| MemberPointerTypeLoc TL) { |
| QualType PointeeType = getDerived().TransformType(TLB, TL.getPointeeLoc()); |
| if (PointeeType.isNull()) |
| return QualType(); |
| |
| TypeSourceInfo* OldClsTInfo = TL.getClassTInfo(); |
| TypeSourceInfo *NewClsTInfo = nullptr; |
| if (OldClsTInfo) { |
| NewClsTInfo = getDerived().TransformType(OldClsTInfo); |
| if (!NewClsTInfo) |
| return QualType(); |
| } |
| |
| const MemberPointerType *T = TL.getTypePtr(); |
| QualType OldClsType = QualType(T->getClass(), 0); |
| QualType NewClsType; |
| if (NewClsTInfo) |
| NewClsType = NewClsTInfo->getType(); |
| else { |
| NewClsType = getDerived().TransformType(OldClsType); |
| if (NewClsType.isNull()) |
| return QualType(); |
| } |
| |
| QualType Result = TL.getType(); |
| if (getDerived().AlwaysRebuild() || |
| PointeeType != T->getPointeeType() || |
| NewClsType != OldClsType) { |
| Result = getDerived().RebuildMemberPointerType(PointeeType, NewClsType, |
| TL.getStarLoc()); |
| if (Result.isNull()) |
| return QualType(); |
| } |
| |
| // If we had to adjust the pointee type when building a member pointer, make |
| // sure to push TypeLoc info for it. |
| const MemberPointerType *MPT = Result->getAs<MemberPointerType>(); |
| if (MPT && PointeeType != MPT->getPointeeType()) { |
| assert(isa<AdjustedType>(MPT->getPointeeType())); |
| TLB.push<AdjustedTypeLoc>(MPT->getPointeeType()); |
| } |
| |
| MemberPointerTypeLoc NewTL = TLB.push<MemberPointerTypeLoc>(Result); |
| NewTL.setSigilLoc(TL.getSigilLoc()); |
| NewTL.setClassTInfo(NewClsTInfo); |
| |
| return Result; |
| } |
| |
| template<typename Derived> |
| QualType |
| TreeTransform<Derived>::TransformConstantArrayType(TypeLocBuilder &TLB, |
| ConstantArrayTypeLoc TL) { |
| const ConstantArrayType *T = TL.getTypePtr(); |
| QualType ElementType = getDerived().TransformType(TLB, TL.getElementLoc()); |
| if (ElementType.isNull()) |
| return QualType(); |
| |
| // Prefer the expression from the TypeLoc; the other may have been uniqued. |
| Expr *OldSize = TL.getSizeExpr(); |
| if (!OldSize) |
| OldSize = const_cast<Expr*>(T->getSizeExpr()); |
| Expr *NewSize = nullptr; |
| if (OldSize) { |
| EnterExpressionEvaluationContext Unevaluated( |
| SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated); |
| NewSize = getDerived().TransformExpr(OldSize).template getAs<Expr>(); |
| NewSize = SemaRef.ActOnConstantExpression(NewSize).get(); |
| } |
| |
| QualType Result = TL.getType(); |
| if (getDerived().AlwaysRebuild() || |
| ElementType != T->getElementType() || |
| (T->getSizeExpr() && NewSize != OldSize)) { |
| Result = getDerived().RebuildConstantArrayType(ElementType, |
| T->getSizeModifier(), |
| T->getSize(), NewSize, |
| T->getIndexTypeCVRQualifiers(), |
| TL.getBracketsRange()); |
| if (Result.isNull()) |
| return QualType(); |
| } |
| |
| // We might have either a ConstantArrayType or a VariableArrayType now: |
| // a ConstantArrayType is allowed to have an element type which is a |
| // VariableArrayType if the type is dependent. Fortunately, all array |
| // types have the same location layout. |
| ArrayTypeLoc NewTL = TLB.push<ArrayTypeLoc>(Result); |
| NewTL.setLBracketLoc(TL.getLBracketLoc()); |
| NewTL.setRBracketLoc(TL.getRBracketLoc()); |
| NewTL.setSizeExpr(NewSize); |
| |
| return Result; |
| } |
| |
| template<typename Derived> |
| QualType TreeTransform<Derived>::TransformIncompleteArrayType( |
| TypeLocBuilder &TLB, |
| IncompleteArrayTypeLoc TL) { |
| const IncompleteArrayType *T = TL.getTypePtr(); |
| QualType ElementType = getDerived().TransformType(TLB, TL.getElementLoc()); |
| if (ElementType.isNull()) |
| return QualType(); |
| |
| QualType Result = TL.getType(); |
| if (getDerived().AlwaysRebuild() || |
| ElementType != T->getElementType()) { |
| Result = getDerived().RebuildIncompleteArrayType(ElementType, |
| T->getSizeModifier(), |
| T->getIndexTypeCVRQualifiers(), |
| TL.getBracketsRange()); |
| if (Result.isNull()) |
| return QualType(); |
| } |
| |
| IncompleteArrayTypeLoc NewTL = TLB.push<IncompleteArrayTypeLoc>(Result); |
| NewTL.setLBracketLoc(TL.getLBracketLoc()); |
| NewTL.setRBracketLoc(TL.getRBracketLoc()); |
| NewTL.setSizeExpr(nullptr); |
| |
| return Result; |
| } |
| |
| template<typename Derived> |
| QualType |
| TreeTransform<Derived>::TransformVariableArrayType(TypeLocBuilder &TLB, |
| VariableArrayTypeLoc TL) { |
| const VariableArrayType *T = TL.getTypePtr(); |
| QualType ElementType = getDerived().TransformType(TLB, TL.getElementLoc()); |
| if (ElementType.isNull()) |
| return QualType(); |
| |
| ExprResult SizeResult; |
| { |
| EnterExpressionEvaluationContext Context( |
| SemaRef, Sema::ExpressionEvaluationContext::PotentiallyEvaluated); |
| SizeResult = getDerived().TransformExpr(T->getSizeExpr()); |
| } |
| if (SizeResult.isInvalid()) |
| return QualType(); |
| SizeResult = |
| SemaRef.ActOnFinishFullExpr(SizeResult.get(), /*DiscardedValue*/ false); |
| if (SizeResult.isInvalid()) |
| return QualType(); |
| |
| Expr *Size = SizeResult.get(); |
| |
| QualType Result = TL.getType(); |
| if (getDerived().AlwaysRebuild() || |
| ElementType != T->getElementType() || |
| Size != T->getSizeExpr()) { |
| Result = getDerived().RebuildVariableArrayType(ElementType, |
| T->getSizeModifier(), |
| Size, |
| T->getIndexTypeCVRQualifiers(), |
| TL.getBracketsRange()); |
| if (Result.isNull()) |
| return QualType(); |
| } |
| |
| // We might have constant size array now, but fortunately it has the same |
| // location layout. |
| ArrayTypeLoc NewTL = TLB.push<ArrayTypeLoc>(Result); |
| NewTL.setLBracketLoc(TL.getLBracketLoc()); |
| NewTL.setRBracketLoc(TL.getRBracketLoc()); |
| NewTL.setSizeExpr(Size); |
| |
| return Result; |
| } |
| |
| template<typename Derived> |
| QualType |
| TreeTransform<Derived>::TransformDependentSizedArrayType(TypeLocBuilder &TLB, |
| DependentSizedArrayTypeLoc TL) { |
| const DependentSizedArrayType *T = TL.getTypePtr(); |
| QualType ElementType = getDerived().TransformType(TLB, TL.getElementLoc()); |
| if (ElementType.isNull()) |
| return QualType(); |
| |
| // Array bounds are constant expressions. |
| EnterExpressionEvaluationContext Unevaluated( |
| SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated); |
| |
| // If we have a VLA then it won't be a constant. |
| SemaRef.ExprEvalContexts.back().InConditionallyConstantEvaluateContext = true; |
| |
| // Prefer the expression from the TypeLoc; the other may have been uniqued. |
| Expr *origSize = TL.getSizeExpr(); |
| if (!origSize) origSize = T->getSizeExpr(); |
| |
| ExprResult sizeResult |
| = getDerived().TransformExpr(origSize); |
| sizeResult = SemaRef.ActOnConstantExpression(sizeResult); |
| if (sizeResult.isInvalid()) |
| return QualType(); |
| |
| Expr *size = sizeResult.get(); |
| |
| QualType Result = TL.getType(); |
| if (getDerived().AlwaysRebuild() || |
| ElementType != T->getElementType() || |
| size != origSize) { |
| Result = getDerived().RebuildDependentSizedArrayType(ElementType, |
| T->getSizeModifier(), |
| size, |
| T->getIndexTypeCVRQualifiers(), |
| TL.getBracketsRange()); |
| if (Result.isNull()) |
| return QualType(); |
| } |
| |
| // We might have any sort of array type now, but fortunately they |
| // all have the same location layout. |
| ArrayTypeLoc NewTL = TLB.push<ArrayTypeLoc>(Result); |
| NewTL.setLBracketLoc(TL.getLBracketLoc()); |
| NewTL.setRBracketLoc(TL.getRBracketLoc()); |
| NewTL.setSizeExpr(size); |
| |
| return Result; |
| } |
| |
| template <typename Derived> |
| QualType TreeTransform<Derived>::TransformDependentVectorType( |
| TypeLocBuilder &TLB, DependentVectorTypeLoc TL) { |
| const DependentVectorType *T = TL.getTypePtr(); |
| QualType ElementType = getDerived().TransformType(TLB, TL.getElementLoc()); |
| if (ElementType.isNull()) |
| return QualType(); |
| |
| EnterExpressionEvaluationContext Unevaluated( |
| SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated); |
| |
| ExprResult Size = getDerived().TransformExpr(T->getSizeExpr()); |
| Size = SemaRef.ActOnConstantExpression(Size); |
| if (Size.isInvalid()) |
| return QualType(); |
| |
| QualType Result = TL.getType(); |
| if (getDerived().AlwaysRebuild() || ElementType != T->getElementType() || |
| Size.get() != T->getSizeExpr()) { |
| Result = getDerived().RebuildDependentVectorType( |
| ElementType, Size.get(), T->getAttributeLoc(), T->getVectorKind()); |
| if (Result.isNull()) |
| return QualType(); |
| } |
| |
| // Result might be dependent or not. |
| if (isa<DependentVectorType>(Result)) { |
| DependentVectorTypeLoc NewTL = |
| TLB.push<DependentVectorTypeLoc>(Result); |
| NewTL.setNameLoc(TL.getNameLoc()); |
| } else { |
| VectorTypeLoc NewTL = TLB.push<VectorTypeLoc>(Result); |
| NewTL.setNameLoc(TL.getNameLoc()); |
| } |
| |
| return Result; |
| } |
| |
| template<typename Derived> |
| QualType TreeTransform<Derived>::TransformDependentSizedExtVectorType( |
| TypeLocBuilder &TLB, |
| DependentSizedExtVectorTypeLoc TL) { |
| const DependentSizedExtVectorType *T = TL.getTypePtr(); |
| |
| // FIXME: ext vector locs should be nested |
| QualType ElementType = getDerived().TransformType(TLB, TL.getElementLoc()); |
| if (ElementType.isNull()) |
| return QualType(); |
| |
| // Vector sizes are constant expressions. |
| EnterExpressionEvaluationContext Unevaluated( |
| SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated); |
| |
| ExprResult Size = getDerived().TransformExpr(T->getSizeExpr()); |
| Size = SemaRef.ActOnConstantExpression(Size); |
| if (Size.isInvalid()) |
| return QualType(); |
| |
| QualType Result = TL.getType(); |
| if (getDerived().AlwaysRebuild() || |
| ElementType != T->getElementType() || |
| Size.get() != T->getSizeExpr()) { |
| Result = getDerived().RebuildDependentSizedExtVectorType(ElementType, |
| Size.get(), |
| T->getAttributeLoc()); |
| if (Result.isNull()) |
| return QualType(); |
| } |
| |
| // Result might be dependent or not. |
| if (isa<DependentSizedExtVectorType>(Result)) { |
| DependentSizedExtVectorTypeLoc NewTL |
| = TLB.push<DependentSizedExtVectorTypeLoc>(Result); |
| NewTL.setNameLoc(TL.getNameLoc()); |
| } else { |
| ExtVectorTypeLoc NewTL = TLB.push<ExtVectorTypeLoc>(Result); |
| NewTL.setNameLoc(TL.getNameLoc()); |
| } |
| |
| return Result; |
| } |
| |
| template <typename Derived> |
| QualType |
| TreeTransform<Derived>::TransformConstantMatrixType(TypeLocBuilder &TLB, |
| ConstantMatrixTypeLoc TL) { |
| const ConstantMatrixType *T = TL.getTypePtr(); |
| QualType ElementType = getDerived().TransformType(T->getElementType()); |
| if (ElementType.isNull()) |
| return QualType(); |
| |
| QualType Result = TL.getType(); |
| if (getDerived().AlwaysRebuild() || ElementType != T->getElementType()) { |
| Result = getDerived().RebuildConstantMatrixType( |
| ElementType, T->getNumRows(), T->getNumColumns()); |
| if (Result.isNull()) |
| return QualType(); |
| } |
| |
| ConstantMatrixTypeLoc NewTL = TLB.push<ConstantMatrixTypeLoc>(Result); |
| NewTL.setAttrNameLoc(TL.getAttrNameLoc()); |
| NewTL.setAttrOperandParensRange(TL.getAttrOperandParensRange()); |
| NewTL.setAttrRowOperand(TL.getAttrRowOperand()); |
| NewTL.setAttrColumnOperand(TL.getAttrColumnOperand()); |
| |
| return Result; |
| } |
| |
| template <typename Derived> |
| QualType TreeTransform<Derived>::TransformDependentSizedMatrixType( |
| TypeLocBuilder &TLB, DependentSizedMatrixTypeLoc TL) { |
| const DependentSizedMatrixType *T = TL.getTypePtr(); |
| |
| QualType ElementType = getDerived().TransformType(T->getElementType()); |
| if (ElementType.isNull()) { |
| return QualType(); |
| } |
| |
| // Matrix dimensions are constant expressions. |
| EnterExpressionEvaluationContext Unevaluated( |
| SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated); |
| |
| Expr *origRows = TL.getAttrRowOperand(); |
| if (!origRows) |
| origRows = T->getRowExpr(); |
| Expr *origColumns = TL.getAttrColumnOperand(); |
| if (!origColumns) |
| origColumns = T->getColumnExpr(); |
| |
| ExprResult rowResult = getDerived().TransformExpr(origRows); |
| rowResult = SemaRef.ActOnConstantExpression(rowResult); |
| if (rowResult.isInvalid()) |
| return QualType(); |
| |
| ExprResult columnResult = getDerived().TransformExpr(origColumns); |
| columnResult = SemaRef.ActOnConstantExpression(columnResult); |
| if (columnResult.isInvalid()) |
| return QualType(); |
| |
| Expr *rows = rowResult.get(); |
| Expr *columns = columnResult.get(); |
| |
| QualType Result = TL.getType(); |
| if (getDerived().AlwaysRebuild() || ElementType != T->getElementType() || |
| rows != origRows || columns != origColumns) { |
| Result = getDerived().RebuildDependentSizedMatrixType( |
| ElementType, rows, columns, T->getAttributeLoc()); |
| |
| if (Result.isNull()) |
| return QualType(); |
| } |
| |
| // We might have any sort of matrix type now, but fortunately they |
| // all have the same location layout. |
| MatrixTypeLoc NewTL = TLB.push<MatrixTypeLoc>(Result); |
| NewTL.setAttrNameLoc(TL.getAttrNameLoc()); |
| NewTL.setAttrOperandParensRange(TL.getAttrOperandParensRange()); |
| NewTL.setAttrRowOperand(rows); |
| NewTL.setAttrColumnOperand(columns); |
| return Result; |
| } |
| |
| template <typename Derived> |
| QualType TreeTransform<Derived>::TransformDependentAddressSpaceType( |
| TypeLocBuilder &TLB, DependentAddressSpaceTypeLoc TL) { |
| const DependentAddressSpaceType *T = TL.getTypePtr(); |
| |
| QualType pointeeType = |
| getDerived().TransformType(TLB, TL.getPointeeTypeLoc()); |
| |
| if (pointeeType.isNull()) |
| return QualType(); |
| |
| // Address spaces are constant expressions. |
| EnterExpressionEvaluationContext Unevaluated( |
| SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated); |
| |
| ExprResult AddrSpace = getDerived().TransformExpr(T->getAddrSpaceExpr()); |
| AddrSpace = SemaRef.ActOnConstantExpression(AddrSpace); |
| if (AddrSpace.isInvalid()) |
| return QualType(); |
| |
| QualType Result = TL.getType(); |
| if (getDerived().AlwaysRebuild() || pointeeType != T->getPointeeType() || |
| AddrSpace.get() != T->getAddrSpaceExpr()) { |
| Result = getDerived().RebuildDependentAddressSpaceType( |
| pointeeType, AddrSpace.get(), T->getAttributeLoc()); |
| if (Result.isNull()) |
| return QualType(); |
| } |
| |
| // Result might be dependent or not. |
| if (isa<DependentAddressSpaceType>(Result)) { |
| DependentAddressSpaceTypeLoc NewTL = |
| TLB.push<DependentAddressSpaceTypeLoc>(Result); |
| |
| NewTL.setAttrOperandParensRange(TL.getAttrOperandParensRange()); |
| NewTL.setAttrExprOperand(TL.getAttrExprOperand()); |
| NewTL.setAttrNameLoc(TL.getAttrNameLoc()); |
| |
| } else { |
| TLB.TypeWasModifiedSafely(Result); |
| } |
| |
| return Result; |
| } |
| |
| template <typename Derived> |
| QualType TreeTransform<Derived>::TransformVectorType(TypeLocBuilder &TLB, |
| VectorTypeLoc TL) { |
| const VectorType *T = TL.getTypePtr(); |
| QualType ElementType = getDerived().TransformType(TLB, TL.getElementLoc()); |
| if (ElementType.isNull()) |
| return QualType(); |
| |
| QualType Result = TL.getType(); |
| if (getDerived().AlwaysRebuild() || |
| ElementType != T->getElementType()) { |
| Result = getDerived().RebuildVectorType(ElementType, T->getNumElements(), |
| T->getVectorKind()); |
| if (Result.isNull()) |
| return QualType(); |
| } |
| |
| VectorTypeLoc NewTL = TLB.push<VectorTypeLoc>(Result); |
| NewTL.setNameLoc(TL.getNameLoc()); |
| |
| return Result; |
| } |
| |
| template<typename Derived> |
| QualType TreeTransform<Derived>::TransformExtVectorType(TypeLocBuilder &TLB, |
| ExtVectorTypeLoc TL) { |
| const VectorType *T = TL.getTypePtr(); |
| QualType ElementType = getDerived().TransformType(TLB, TL.getElementLoc()); |
| if (ElementType.isNull()) |
| return QualType(); |
| |
| QualType Result = TL.getType(); |
| if (getDerived().AlwaysRebuild() || |
| ElementType != T->getElementType()) { |
| Result = getDerived().RebuildExtVectorType(ElementType, |
| T->getNumElements(), |
| /*FIXME*/ SourceLocation()); |
| if (Result.isNull()) |
| return QualType(); |
| } |
| |
| ExtVectorTypeLoc NewTL = TLB.push<ExtVectorTypeLoc>(Result); |
| NewTL.setNameLoc(TL.getNameLoc()); |
| |
| return Result; |
| } |
| |
| template <typename Derived> |
| ParmVarDecl *TreeTransform<Derived>::TransformFunctionTypeParam( |
| ParmVarDecl *OldParm, int indexAdjustment, |
| std::optional<unsigned> NumExpansions, bool ExpectParameterPack) { |
| TypeSourceInfo *OldDI = OldParm->getTypeSourceInfo(); |
| TypeSourceInfo *NewDI = nullptr; |
| |
| if (NumExpansions && isa<PackExpansionType>(OldDI->getType())) { |
| // If we're substituting into a pack expansion type and we know the |
| // length we want to expand to, just substitute for the pattern. |
| TypeLoc OldTL = OldDI->getTypeLoc(); |
| PackExpansionTypeLoc OldExpansionTL = OldTL.castAs<PackExpansionTypeLoc>(); |
| |
| TypeLocBuilder TLB; |
| TypeLoc NewTL = OldDI->getTypeLoc(); |
| TLB.reserve(NewTL.getFullDataSize()); |
| |
| QualType Result = getDerived().TransformType(TLB, |
| OldExpansionTL.getPatternLoc()); |
| if (Result.isNull()) |
| return nullptr; |
| |
| Result = RebuildPackExpansionType(Result, |
| OldExpansionTL.getPatternLoc().getSourceRange(), |
| OldExpansionTL.getEllipsisLoc(), |
| NumExpansions); |
| if (Result.isNull()) |
| return nullptr; |
| |
| PackExpansionTypeLoc NewExpansionTL |
| = TLB.push<PackExpansionTypeLoc>(Result); |
| NewExpansionTL.setEllipsisLoc(OldExpansionTL.getEllipsisLoc()); |
| NewDI = TLB.getTypeSourceInfo(SemaRef.Context, Result); |
| } else |
| NewDI = getDerived().TransformType(OldDI); |
| if (!NewDI) |
| return nullptr; |
| |
| if (NewDI == OldDI && indexAdjustment == 0) |
| return OldParm; |
| |
| ParmVarDecl *newParm = ParmVarDecl::Create(SemaRef.Context, |
| OldParm->getDeclContext(), |
| OldParm->getInnerLocStart(), |
| OldParm->getLocation(), |
| OldParm->getIdentifier(), |
| NewDI->getType(), |
| NewDI, |
| OldParm->getStorageClass(), |
| /* DefArg */ nullptr); |
| newParm->setScopeInfo(OldParm->getFunctionScopeDepth(), |
| OldParm->getFunctionScopeIndex() + indexAdjustment); |
| transformedLocalDecl(OldParm, {newParm}); |
| return newParm; |
| } |
| |
| template <typename Derived> |
| bool TreeTransform<Derived>::TransformFunctionTypeParams( |
| SourceLocation Loc, ArrayRef<ParmVarDecl *> Params, |
| const QualType *ParamTypes, |
| const FunctionProtoType::ExtParameterInfo *ParamInfos, |
| SmallVectorImpl<QualType> &OutParamTypes, |
| SmallVectorImpl<ParmVarDecl *> *PVars, |
| Sema::ExtParameterInfoBuilder &PInfos, |
| unsigned *LastParamTransformed) { |
| int indexAdjustment = 0; |
| |
| unsigned NumParams = Params.size(); |
| for (unsigned i = 0; i != NumParams; ++i) { |
| if (LastParamTransformed) |
| *LastParamTransformed = i; |
| if (ParmVarDecl *OldParm = Params[i]) { |
| assert(OldParm->getFunctionScopeIndex() == i); |
| |
| std::optional<unsigned> NumExpansions; |
| ParmVarDecl *NewParm = nullptr; |
| if (OldParm->isParameterPack()) { |
| // We have a function parameter pack that may need to be expanded. |
| SmallVector<UnexpandedParameterPack, 2> Unexpanded; |
| |
| // Find the parameter packs that could be expanded. |
| TypeLoc TL = OldParm->getTypeSourceInfo()->getTypeLoc(); |
| PackExpansionTypeLoc ExpansionTL = TL.castAs<PackExpansionTypeLoc>(); |
| TypeLoc Pattern = ExpansionTL.getPatternLoc(); |
| SemaRef.collectUnexpandedParameterPacks(Pattern, Unexpanded); |
| |
| // Determine whether we should expand the parameter packs. |
| bool ShouldExpand = false; |
| bool RetainExpansion = false; |
| std::optional<unsigned> OrigNumExpansions; |
| if (Unexpanded.size() > 0) { |
| OrigNumExpansions = ExpansionTL.getTypePtr()->getNumExpansions(); |
| NumExpansions = OrigNumExpansions; |
| if (getDerived().TryExpandParameterPacks(ExpansionTL.getEllipsisLoc(), |
| Pattern.getSourceRange(), |
| Unexpanded, |
| ShouldExpand, |
| RetainExpansion, |
| NumExpansions)) { |
| return true; |
| } |
| } else { |
| #ifndef NDEBUG |
| const AutoType *AT = |
| Pattern.getType().getTypePtr()->getContainedAutoType(); |
| assert((AT && (!AT->isDeduced() || AT->getDeducedType().isNull())) && |
| "Could not find parameter packs or undeduced auto type!"); |
| #endif |
| } |
| |
| if (ShouldExpand) { |
| // Expand the function parameter pack into multiple, separate |
| // parameters. |
| getDerived().ExpandingFunctionParameterPack(OldParm); |
| for (unsigned I = 0; I != *NumExpansions; ++I) { |
| Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), I); |
| ParmVarDecl *NewParm |
| = getDerived().TransformFunctionTypeParam(OldParm, |
| indexAdjustment++, |
| OrigNumExpansions, |
| /*ExpectParameterPack=*/false); |
| if (!NewParm) |
| return true; |
| |
| if (ParamInfos) |
| PInfos.set(OutParamTypes.size(), ParamInfos[i]); |
| OutParamTypes.push_back(NewParm->getType()); |
| if (PVars) |
| PVars->push_back(NewParm); |
| } |
| |
| // If we're supposed to retain a pack expansion, do so by temporarily |
| // forgetting the partially-substituted parameter pack. |
| if (RetainExpansion) { |
| ForgetPartiallySubstitutedPackRAII Forget(getDerived()); |
| ParmVarDecl *NewParm |
| = getDerived().TransformFunctionTypeParam(OldParm, |
| indexAdjustment++, |
| OrigNumExpansions, |
| /*ExpectParameterPack=*/false); |
| if (!NewParm) |
| return true; |
| |
| if (ParamInfos) |
| PInfos.set(OutParamTypes.size(), ParamInfos[i]); |
| OutParamTypes.push_back(NewParm->getType()); |
| if (PVars) |
| PVars->push_back(NewParm); |
| } |
| |
| // The next parameter should have the same adjustment as the |
| // last thing we pushed, but we post-incremented indexAdjustment |
| // on every push. Also, if we push nothing, the adjustment should |
| // go down by one. |
| indexAdjustment--; |
| |
| // We're done with the pack expansion. |
| continue; |
| } |
| |
| // We'll substitute the parameter now without expanding the pack |
| // expansion. |
| Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), -1); |
| NewParm = getDerived().TransformFunctionTypeParam(OldParm, |
| indexAdjustment, |
| NumExpansions, |
| /*ExpectParameterPack=*/true); |
| assert(NewParm->isParameterPack() && |
| "Parameter pack no longer a parameter pack after " |
| "transformation."); |
| } else { |
| NewParm = getDerived().TransformFunctionTypeParam( |
| OldParm, indexAdjustment, std::nullopt, |
| /*ExpectParameterPack=*/false); |
| } |
| |
| if (!NewParm) |
| return true; |
| |
| if (ParamInfos) |
| PInfos.set(OutParamTypes.size(), ParamInfos[i]); |
| OutParamTypes.push_back(NewParm->getType()); |
| if (PVars) |
| PVars->push_back(NewParm); |
| continue; |
| } |
| |
| // Deal with the possibility that we don't have a parameter |
| // declaration for this parameter. |
| assert(ParamTypes); |
| QualType OldType = ParamTypes[i]; |
| bool IsPackExpansion = false; |
| std::optional<unsigned> NumExpansions; |
| QualType NewType; |
| if (const PackExpansionType *Expansion |
| = dyn_cast<PackExpansionType>(OldType)) { |
| // We have a function parameter pack that may need to be expanded. |
| QualType Pattern = Expansion->getPattern(); |
| SmallVector<UnexpandedParameterPack, 2> Unexpanded; |
| getSema().collectUnexpandedParameterPacks(Pattern, Unexpanded); |
| |
| // Determine whether we should expand the parameter packs. |
| bool ShouldExpand = false; |
| bool RetainExpansion = false; |
| if (getDerived().TryExpandParameterPacks(Loc, SourceRange(), |
| Unexpanded, |
| ShouldExpand, |
| RetainExpansion, |
| NumExpansions)) { |
| return true; |
| } |
| |
| if (ShouldExpand) { |
| // Expand the function parameter pack into multiple, separate |
| // parameters. |
| for (unsigned I = 0; I != *NumExpansions; ++I) { |
| Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), I); |
| QualType NewType = getDerived().TransformType(Pattern); |
| if (NewType.isNull()) |
| return true; |
| |
| if (NewType->containsUnexpandedParameterPack()) { |
| NewType = getSema().getASTContext().getPackExpansionType( |
| NewType, std::nullopt); |
| |
| if (NewType.isNull()) |
| return true; |
| } |
| |
| if (ParamInfos) |
| PInfos.set(OutParamTypes.size(), ParamInfos[i]); |
| OutParamTypes.push_back(NewType); |
| if (PVars) |
| PVars->push_back(nullptr); |
| } |
| |
| // We're done with the pack expansion. |
| continue; |
| } |
| |
| // If we're supposed to retain a pack expansion, do so by temporarily |
| // forgetting the partially-substituted parameter pack. |
| if (RetainExpansion) { |
| ForgetPartiallySubstitutedPackRAII Forget(getDerived()); |
| QualType NewType = getDerived().TransformType(Pattern); |
| if (NewType.isNull()) |
| return true; |
| |
| if (ParamInfos) |
| PInfos.set(OutParamTypes.size(), ParamInfos[i]); |
| OutParamTypes.push_back(NewType); |
| if (PVars) |
| PVars->push_back(nullptr); |
| } |
| |
| // We'll substitute the parameter now without expanding the pack |
| // expansion. |
| OldType = Expansion->getPattern(); |
| IsPackExpansion = true; |
| Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), -1); |
| NewType = getDerived().TransformType(OldType); |
| } else { |
| NewType = getDerived().TransformType(OldType); |
| } |
| |
| if (NewType.isNull()) |
| return true; |
| |
| if (IsPackExpansion) |
| NewType = getSema().Context.getPackExpansionType(NewType, |
| NumExpansions); |
| |
| if (ParamInfos) |
| PInfos.set(OutParamTypes.size(), ParamInfos[i]); |
| OutParamTypes.push_back(NewType); |
| if (PVars) |
| PVars->push_back(nullptr); |
| } |
| |
| #ifndef NDEBUG |
| if (PVars) { |
| for (unsigned i = 0, e = PVars->size(); i != e; ++i) |
| if (ParmVarDecl *parm = (*PVars)[i]) |
| assert(parm->getFunctionScopeIndex() == i); |
| } |
| #endif |
| |
| return false; |
| } |
| |
| template<typename Derived> |
| QualType |
| TreeTransform<Derived>::TransformFunctionProtoType(TypeLocBuilder &TLB, |
| FunctionProtoTypeLoc TL) { |
| SmallVector<QualType, 4> ExceptionStorage; |
| return getDerived().TransformFunctionProtoType( |
| TLB, TL, nullptr, Qualifiers(), |
| [&](FunctionProtoType::ExceptionSpecInfo &ESI, bool &Changed) { |
| return getDerived().TransformExceptionSpec(TL.getBeginLoc(), ESI, |
| ExceptionStorage, Changed); |
| }); |
| } |
| |
| template<typename Derived> template<typename Fn> |
| QualType TreeTransform<Derived>::TransformFunctionProtoType( |
| TypeLocBuilder &TLB, FunctionProtoTypeLoc TL, CXXRecordDecl *ThisContext, |
| Qualifiers ThisTypeQuals, Fn TransformExceptionSpec) { |
| |
| // Transform the parameters and return type. |
| // |
| // We are required to instantiate the params and return type in source order. |
| // When the function has a trailing return type, we instantiate the |
| // parameters before the return type, since the return type can then refer |
| // to the parameters themselves (via decltype, sizeof, etc.). |
| // |
| SmallVector<QualType, 4> ParamTypes; |
| SmallVector<ParmVarDecl*, 4> ParamDecls; |
| Sema::ExtParameterInfoBuilder ExtParamInfos; |
| const FunctionProtoType *T = TL.getTypePtr(); |
| |
| QualType ResultType; |
| |
| if (T->hasTrailingReturn()) { |
| if (getDerived().TransformFunctionTypeParams( |
| TL.getBeginLoc(), TL.getParams(), |
| TL.getTypePtr()->param_type_begin(), |
| T->getExtParameterInfosOrNull(), |
| ParamTypes, &ParamDecls, ExtParamInfos)) |
| return QualType(); |
| |
| { |
| // C++11 [expr.prim.general]p3: |
| // If a declaration declares a member function or member function |
| // template of a class X, the expression this is a prvalue of type |
| // "pointer to cv-qualifier-seq X" between the optional cv-qualifer-seq |
| // and the end of the function-definition, member-declarator, or |
| // declarator. |
| auto *RD = dyn_cast<CXXRecordDecl>(SemaRef.getCurLexicalContext()); |
| Sema::CXXThisScopeRAII ThisScope( |
| SemaRef, !ThisContext && RD ? RD : ThisContext, ThisTypeQuals); |
| |
| ResultType = getDerived().TransformType(TLB, TL.getReturnLoc()); |
| if (ResultType.isNull()) |
| return QualType(); |
| } |
| } |
| else { |
| ResultType = getDerived().TransformType(TLB, TL.getReturnLoc()); |
| if (ResultType.isNull()) |
| return QualType(); |
| |
| if (getDerived().TransformFunctionTypeParams( |
| TL.getBeginLoc(), TL.getParams(), |
| TL.getTypePtr()->param_type_begin(), |
| T->getExtParameterInfosOrNull(), |
| ParamTypes, &ParamDecls, ExtParamInfos)) |
| return QualType(); |
| } |
| |
| FunctionProtoType::ExtProtoInfo EPI = T->getExtProtoInfo(); |
| |
| bool EPIChanged = false; |
| if (TransformExceptionSpec(EPI.ExceptionSpec, EPIChanged)) |
| return QualType(); |
| |
| // Handle extended parameter information. |
| if (auto NewExtParamInfos = |
| ExtParamInfos.getPointerOrNull(ParamTypes.size())) { |
| if (!EPI.ExtParameterInfos || |
| llvm::ArrayRef(EPI.ExtParameterInfos, TL.getNumParams()) != |
| llvm::ArrayRef(NewExtParamInfos, ParamTypes.size())) { |
| EPIChanged = true; |
| } |
| EPI.ExtParameterInfos = NewExtParamInfos; |
| } else if (EPI.ExtParameterInfos) { |
| EPIChanged = true; |
| EPI.ExtParameterInfos = nullptr; |
| } |
| |
| // Transform any function effects with unevaluated conditions. |
| // Hold this set in a local for the rest of this function, since EPI |
| // may need to hold a FunctionEffectsRef pointing into it. |
| std::optional<FunctionEffectSet> NewFX; |
| if (ArrayRef FXConds = EPI.FunctionEffects.conditions(); !FXConds.empty()) { |
| NewFX.emplace(); |
| EnterExpressionEvaluationContext Unevaluated( |
| getSema(), Sema::ExpressionEvaluationContext::ConstantEvaluated); |
| |
| for (const FunctionEffectWithCondition &PrevEC : EPI.FunctionEffects) { |
| FunctionEffectWithCondition NewEC = PrevEC; |
| if (Expr *CondExpr = PrevEC.Cond.getCondition()) { |
| ExprResult NewExpr = getDerived().TransformExpr(CondExpr); |
| if (NewExpr.isInvalid()) |
| return QualType(); |
| std::optional<FunctionEffectMode> Mode = |
| SemaRef.ActOnEffectExpression(NewExpr.get(), PrevEC.Effect.name()); |
| if (!Mode) |
| return QualType(); |
| |
| // The condition expression has been transformed, and re-evaluated. |
| // It may or may not have become constant. |
| switch (*Mode) { |
| case FunctionEffectMode::True: |
| NewEC.Cond = {}; |
| break; |
| case FunctionEffectMode::False: |
| NewEC.Effect = FunctionEffect(PrevEC.Effect.oppositeKind()); |
| NewEC.Cond = {}; |
| break; |
| case FunctionEffectMode::Dependent: |
| NewEC.Cond = EffectConditionExpr(NewExpr.get()); |
| break; |
| case FunctionEffectMode::None: |
| llvm_unreachable( |
| "FunctionEffectMode::None shouldn't be possible here"); |
| } |
| } |
| if (!SemaRef.diagnoseConflictingFunctionEffect(*NewFX, NewEC, |
| TL.getBeginLoc())) { |
| FunctionEffectSet::Conflicts Errs; |
| NewFX->insert(NewEC, Errs); |
| assert(Errs.empty()); |
| } |
| } |
| EPI.FunctionEffects = *NewFX; |
| EPIChanged = true; |
| } |
| |
| QualType Result = TL.getType(); |
| if (getDerived().AlwaysRebuild() || ResultType != T->getReturnType() || |
| T->getParamTypes() != llvm::ArrayRef(ParamTypes) || EPIChanged) { |
| Result = getDerived().RebuildFunctionProtoType(ResultType, ParamTypes, EPI); |
| if (Result.isNull()) |
| return QualType(); |
| } |
| |
| FunctionProtoTypeLoc NewTL = TLB.push<FunctionProtoTypeLoc>(Result); |
| NewTL.setLocalRangeBegin(TL.getLocalRangeBegin()); |
| NewTL.setLParenLoc(TL.getLParenLoc()); |
| NewTL.setRParenLoc(TL.getRParenLoc()); |
| NewTL.setExceptionSpecRange(TL.getExceptionSpecRange()); |
| NewTL.setLocalRangeEnd(TL.getLocalRangeEnd()); |
| for (unsigned i = 0, e = NewTL.getNumParams(); i != e; ++i) |
| NewTL.setParam(i, ParamDecls[i]); |
| |
| return Result; |
| } |
| |
| template<typename Derived> |
| bool TreeTransform<Derived>::TransformExceptionSpec( |
| SourceLocation Loc, FunctionProtoType::ExceptionSpecInfo &ESI, |
| SmallVectorImpl<QualType> &Exceptions, bool &Changed) { |
| assert(ESI.Type != EST_Uninstantiated && ESI.Type != EST_Unevaluated); |
| |
| // Instantiate a dynamic noexcept expression, if any. |
| if (isComputedNoexcept(ESI.Type)) { |
| // Update this scrope because ContextDecl in Sema will be used in |
| // TransformExpr. |
| auto *Method = dyn_cast_if_present<CXXMethodDecl>(ESI.SourceTemplate); |
| Sema::CXXThisScopeRAII ThisScope( |
| SemaRef, Method ? Method->getParent() : nullptr, |
| Method ? Method->getMethodQualifiers() : Qualifiers{}, |
| Method != nullptr); |
| EnterExpressionEvaluationContext Unevaluated( |
| getSema(), Sema::ExpressionEvaluationContext::ConstantEvaluated); |
| ExprResult NoexceptExpr = getDerived().TransformExpr(ESI.NoexceptExpr); |
| if (NoexceptExpr.isInvalid()) |
| return true; |
| |
| ExceptionSpecificationType EST = ESI.Type; |
| NoexceptExpr = |
| getSema().ActOnNoexceptSpec(NoexceptExpr.get(), EST); |
| if (NoexceptExpr.isInvalid()) |
| return true; |
| |
| if (ESI.NoexceptExpr != NoexceptExpr.get() || EST != ESI.Type) |
| Changed = true; |
| ESI.NoexceptExpr = NoexceptExpr.get(); |
| ESI.Type = EST; |
| } |
| |
| if (ESI.Type != EST_Dynamic) |
| return false; |
| |
| // Instantiate a dynamic exception specification's type. |
| for (QualType T : ESI.Exceptions) { |
| if (const PackExpansionType *PackExpansion = |
| T->getAs<PackExpansionType>()) { |
| Changed = true; |
| |
| // We have a pack expansion. Instantiate it. |
| SmallVector<UnexpandedParameterPack, 2> Unexpanded; |
| SemaRef.collectUnexpandedParameterPacks(PackExpansion->getPattern(), |
| Unexpanded); |
| assert(!Unexpanded.empty() && "Pack expansion without parameter packs?"); |
| |
| // Determine whether the set of unexpanded parameter packs can and |
| // should |
| // be expanded. |
| bool Expand = false; |
| bool RetainExpansion = false; |
| std::optional<unsigned> NumExpansions = PackExpansion->getNumExpansions(); |
| // FIXME: Track the location of the ellipsis (and track source location |
| // information for the types in the exception specification in general). |
| if (getDerived().TryExpandParameterPacks( |
| Loc, SourceRange(), Unexpanded, Expand, |
| RetainExpansion, NumExpansions)) |
| return true; |
| |
| if (!Expand) { |
| // We can't expand this pack expansion into separate arguments yet; |
| // just substitute into the pattern and create a new pack expansion |
| // type. |
| Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), -1); |
| QualType U = getDerived().TransformType(PackExpansion->getPattern()); |
| if (U.isNull()) |
| return true; |
| |
| U = SemaRef.Context.getPackExpansionType(U, NumExpansions); |
| Exceptions.push_back(U); |
| continue; |
| } |
| |
| // Substitute into the pack expansion pattern for each slice of the |
| // pack. |
| for (unsigned ArgIdx = 0; ArgIdx != *NumExpansions; ++ArgIdx) { |
| Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), ArgIdx); |
| |
| QualType U = getDerived().TransformType(PackExpansion->getPattern()); |
| if (U.isNull() || SemaRef.CheckSpecifiedExceptionType(U, Loc)) |
| return true; |
| |
| Exceptions.push_back(U); |
| } |
| } else { |
| QualType U = getDerived().TransformType(T); |
| if (U.isNull() || SemaRef.CheckSpecifiedExceptionType(U, Loc)) |
| return true; |
| if (T != U) |
| Changed = true; |
| |
| Exceptions.push_back(U); |
| } |
| } |
| |
| ESI.Exceptions = Exceptions; |
| if (ESI.Exceptions.empty()) |
| ESI.Type = EST_DynamicNone; |
| return false; |
| } |
| |
| template<typename Derived> |
| QualType TreeTransform<Derived>::TransformFunctionNoProtoType( |
| TypeLocBuilder &TLB, |
| FunctionNoProtoTypeLoc TL) { |
| const FunctionNoProtoType *T = TL.getTypePtr(); |
| QualType ResultType = getDerived().TransformType(TLB, TL.getReturnLoc()); |
| if (ResultType.isNull()) |
| return QualType(); |
| |
| QualType Result = TL.getType(); |
| if (getDerived().AlwaysRebuild() || ResultType != T->getReturnType()) |
| Result = getDerived().RebuildFunctionNoProtoType(ResultType); |
| |
| FunctionNoProtoTypeLoc NewTL = TLB.push<FunctionNoProtoTypeLoc>(Result); |
| NewTL.setLocalRangeBegin(TL.getLocalRangeBegin()); |
| NewTL.setLParenLoc(TL.getLParenLoc()); |
| NewTL.setRParenLoc(TL.getRParenLoc()); |
| NewTL.setLocalRangeEnd(TL.getLocalRangeEnd()); |
| |
| return Result; |
| } |
| |
| template <typename Derived> |
| QualType TreeTransform<Derived>::TransformUnresolvedUsingType( |
| TypeLocBuilder &TLB, UnresolvedUsingTypeLoc TL) { |
| const UnresolvedUsingType *T = TL.getTypePtr(); |
| Decl *D = getDerived().TransformDecl(TL.getNameLoc(), T->getDecl()); |
| if (!D) |
| return QualType(); |
| |
| QualType Result = TL.getType(); |
| if (getDerived().AlwaysRebuild() || D != T->getDecl()) { |
| Result = getDerived().RebuildUnresolvedUsingType(TL.getNameLoc(), D); |
| if (Result.isNull()) |
| return QualType(); |
| } |
| |
| // We might get an arbitrary type spec type back. We should at |
| // least always get a type spec type, though. |
| TypeSpecTypeLoc NewTL = TLB.pushTypeSpec(Result); |
| NewTL.setNameLoc(TL.getNameLoc()); |
| |
| return Result; |
| } |
| |
| template <typename Derived> |
| QualType TreeTransform<Derived>::TransformUsingType(TypeLocBuilder &TLB, |
| UsingTypeLoc TL) { |
| const UsingType *T = TL.getTypePtr(); |
| |
| auto *Found = cast_or_null<UsingShadowDecl>(getDerived().TransformDecl( |
| TL.getLocalSourceRange().getBegin(), T->getFoundDecl())); |
| if (!Found) |
| return QualType(); |
| |
| QualType Underlying = getDerived().TransformType(T->desugar()); |
| if (Underlying.isNull()) |
| return QualType(); |
| |
| QualType Result = TL.getType(); |
| if (getDerived().AlwaysRebuild() || Found != T->getFoundDecl() || |
| Underlying != T->getUnderlyingType()) { |
| Result = getDerived().RebuildUsingType(Found, Underlying); |
| if (Result.isNull()) |
| return QualType(); |
| } |
| |
| TLB.pushTypeSpec(Result).setNameLoc(TL.getNameLoc()); |
| return Result; |
| } |
| |
| template<typename Derived> |
| QualType TreeTransform<Derived>::TransformTypedefType(TypeLocBuilder &TLB, |
| TypedefTypeLoc TL) { |
| const TypedefType *T = TL.getTypePtr(); |
| TypedefNameDecl *Typedef |
| = cast_or_null<TypedefNameDecl>(getDerived().TransformDecl(TL.getNameLoc(), |
| T->getDecl())); |
| if (!Typedef) |
| return QualType(); |
| |
| QualType Result = TL.getType(); |
| if (getDerived().AlwaysRebuild() || |
| Typedef != T->getDecl()) { |
| Result = getDerived().RebuildTypedefType(Typedef); |
| if (Result.isNull()) |
| return QualType(); |
| } |
| |
| TypedefTypeLoc NewTL = TLB.push<TypedefTypeLoc>(Result); |
| NewTL.setNameLoc(TL.getNameLoc()); |
| |
| return Result; |
| } |
| |
| template<typename Derived> |
| QualType TreeTransform<Derived>::TransformTypeOfExprType(TypeLocBuilder &TLB, |
| TypeOfExprTypeLoc TL) { |
| // typeof expressions are not potentially evaluated contexts |
| EnterExpressionEvaluationContext Unevaluated( |
| SemaRef, Sema::ExpressionEvaluationContext::Unevaluated, |
| Sema::ReuseLambdaContextDecl); |
| |
| ExprResult E = getDerived().TransformExpr(TL.getUnderlyingExpr()); |
| if (E.isInvalid()) |
| return QualType(); |
| |
| E = SemaRef.HandleExprEvaluationContextForTypeof(E.get()); |
| if (E.isInvalid()) |
| return QualType(); |
| |
| QualType Result = TL.getType(); |
| TypeOfKind Kind = Result->castAs<TypeOfExprType>()->getKind(); |
| if (getDerived().AlwaysRebuild() || E.get() != TL.getUnderlyingExpr()) { |
| Result = |
| getDerived().RebuildTypeOfExprType(E.get(), TL.getTypeofLoc(), Kind); |
| if (Result.isNull()) |
| return QualType(); |
| } |
| |
| TypeOfExprTypeLoc NewTL = TLB.push<TypeOfExprTypeLoc>(Result); |
| NewTL.setTypeofLoc(TL.getTypeofLoc()); |
| NewTL.setLParenLoc(TL.getLParenLoc()); |
| NewTL.setRParenLoc(TL.getRParenLoc()); |
| |
| return Result; |
| } |
| |
| template<typename Derived> |
| QualType TreeTransform<Derived>::TransformTypeOfType(TypeLocBuilder &TLB, |
| TypeOfTypeLoc TL) { |
| TypeSourceInfo* Old_Under_TI = TL.getUnmodifiedTInfo(); |
| TypeSourceInfo* New_Under_TI = getDerived().TransformType(Old_Under_TI); |
| if (!New_Under_TI) |
| return QualType(); |
| |
| QualType Result = TL.getType(); |
| TypeOfKind Kind = Result->castAs<TypeOfType>()->getKind(); |
| if (getDerived().AlwaysRebuild() || New_Under_TI != Old_Under_TI) { |
| Result = getDerived().RebuildTypeOfType(New_Under_TI->getType(), Kind); |
| if (Result.isNull()) |
| return QualType(); |
| } |
| |
| TypeOfTypeLoc NewTL = TLB.push<TypeOfTypeLoc>(Result); |
| NewTL.setTypeofLoc(TL.getTypeofLoc()); |
| NewTL.setLParenLoc(TL.getLParenLoc()); |
| NewTL.setRParenLoc(TL.getRParenLoc()); |
| NewTL.setUnmodifiedTInfo(New_Under_TI); |
| |
| return Result; |
| } |
| |
| template<typename Derived> |
| QualType TreeTransform<Derived>::TransformDecltypeType(TypeLocBuilder &TLB, |
| DecltypeTypeLoc TL) { |
| const DecltypeType *T = TL.getTypePtr(); |
| |
| // decltype expressions are not potentially evaluated contexts |
| EnterExpressionEvaluationContext Unevaluated( |
| SemaRef, Sema::ExpressionEvaluationContext::Unevaluated, nullptr, |
| Sema::ExpressionEvaluationContextRecord::EK_Decltype); |
| |
| ExprResult E = getDerived().TransformExpr(T->getUnderlyingExpr()); |
| if (E.isInvalid()) |
| return QualType(); |
| |
| E = getSema().ActOnDecltypeExpression(E.get()); |
| if (E.isInvalid()) |
| return QualType(); |
| |
| QualType Result = TL.getType(); |
| if (getDerived().AlwaysRebuild() || |
| E.get() != T->getUnderlyingExpr()) { |
| Result = getDerived().RebuildDecltypeType(E.get(), TL.getDecltypeLoc()); |
| if (Result.isNull()) |
| return QualType(); |
| } |
| else E.get(); |
| |
| DecltypeTypeLoc NewTL = TLB.push<DecltypeTypeLoc>(Result); |
| NewTL.setDecltypeLoc(TL.getDecltypeLoc()); |
| NewTL.setRParenLoc(TL.getRParenLoc()); |
| return Result; |
| } |
| |
| template <typename Derived> |
| QualType |
| TreeTransform<Derived>::TransformPackIndexingType(TypeLocBuilder &TLB, |
| PackIndexingTypeLoc TL) { |
| // Transform the index |
| ExprResult IndexExpr; |
| { |
| EnterExpressionEvaluationContext ConstantContext( |
| SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated); |
| |
| IndexExpr = getDerived().TransformExpr(TL.getIndexExpr()); |
| if (IndexExpr.isInvalid()) |
| return QualType(); |
| } |
| QualType Pattern = TL.getPattern(); |
| |
| const PackIndexingType *PIT = TL.getTypePtr(); |
| SmallVector<QualType, 5> SubtitutedTypes; |
| llvm::ArrayRef<QualType> Types = PIT->getExpansions(); |
| |
| bool NotYetExpanded = Types.empty(); |
| bool FullySubstituted = true; |
| |
| if (Types.empty() && !PIT->expandsToEmptyPack()) |
| Types = llvm::ArrayRef<QualType>(&Pattern, 1); |
| |
| for (QualType T : Types) { |
| if (!T->containsUnexpandedParameterPack()) { |
| QualType Transformed = getDerived().TransformType(T); |
| if (Transformed.isNull()) |
| return QualType(); |
| SubtitutedTypes.push_back(Transformed); |
| continue; |
| } |
| |
| SmallVector<UnexpandedParameterPack, 2> Unexpanded; |
| getSema().collectUnexpandedParameterPacks(T, Unexpanded); |
| assert(!Unexpanded.empty() && "Pack expansion without parameter packs?"); |
| // Determine whether the set of unexpanded parameter packs can and should |
| // be expanded. |
| bool ShouldExpand = true; |
| bool RetainExpansion = false; |
| std::optional<unsigned> OrigNumExpansions; |
| std::optional<unsigned> NumExpansions = OrigNumExpansions; |
| if (getDerived().TryExpandParameterPacks(TL.getEllipsisLoc(), SourceRange(), |
| Unexpanded, ShouldExpand, |
| RetainExpansion, NumExpansions)) |
| return QualType(); |
| if (!ShouldExpand) { |
| Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), -1); |
| // FIXME: should we keep TypeLoc for individual expansions in |
| // PackIndexingTypeLoc? |
| TypeSourceInfo *TI = |
| SemaRef.getASTContext().getTrivialTypeSourceInfo(T, TL.getBeginLoc()); |
| QualType Pack = getDerived().TransformType(TLB, TI->getTypeLoc()); |
| if (Pack.isNull()) |
| return QualType(); |
| if (NotYetExpanded) { |
| FullySubstituted = false; |
| QualType Out = getDerived().RebuildPackIndexingType( |
| Pack, IndexExpr.get(), SourceLocation(), TL.getEllipsisLoc(), |
| FullySubstituted); |
| if (Out.isNull()) |
| return QualType(); |
| |
| PackIndexingTypeLoc Loc = TLB.push<PackIndexingTypeLoc>(Out); |
| Loc.setEllipsisLoc(TL.getEllipsisLoc()); |
| return Out; |
| } |
| SubtitutedTypes.push_back(Pack); |
| continue; |
| } |
| for (unsigned I = 0; I != *NumExpansions; ++I) { |
| Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), I); |
| QualType Out = getDerived().TransformType(T); |
| if (Out.isNull()) |
| return QualType(); |
| SubtitutedTypes.push_back(Out); |
| FullySubstituted &= !Out->containsUnexpandedParameterPack(); |
| } |
| // If we're supposed to retain a pack expansion, do so by temporarily |
| // forgetting the partially-substituted parameter pack. |
| if (RetainExpansion) { |
| FullySubstituted = false; |
| ForgetPartiallySubstitutedPackRAII Forget(getDerived()); |
| QualType Out = getDerived().TransformType(T); |
| if (Out.isNull()) |
| return QualType(); |
| SubtitutedTypes.push_back(Out); |
| } |
| } |
| |
| // A pack indexing type can appear in a larger pack expansion, |
| // e.g. `Pack...[pack_of_indexes]...` |
| // so we need to temporarily disable substitution of pack elements |
| Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), -1); |
| QualType Result = getDerived().TransformType(TLB, TL.getPatternLoc()); |
| |
| QualType Out = getDerived().RebuildPackIndexingType( |
| Result, IndexExpr.get(), SourceLocation(), TL.getEllipsisLoc(), |
| FullySubstituted, SubtitutedTypes); |
| if (Out.isNull()) |
| return Out; |
| |
| PackIndexingTypeLoc Loc = TLB.push<PackIndexingTypeLoc>(Out); |
| Loc.setEllipsisLoc(TL.getEllipsisLoc()); |
| return Out; |
| } |
| |
| template<typename Derived> |
| QualType TreeTransform<Derived>::TransformUnaryTransformType( |
| TypeLocBuilder &TLB, |
| UnaryTransformTypeLoc TL) { |
| QualType Result = TL.getType(); |
| if (Result->isDependentType()) { |
| const UnaryTransformType *T = TL.getTypePtr(); |
| |
| TypeSourceInfo *NewBaseTSI = |
| getDerived().TransformType(TL.getUnderlyingTInfo()); |
| if (!NewBaseTSI) |
| return QualType(); |
| QualType NewBase = NewBaseTSI->getType(); |
| |
| Result = getDerived().RebuildUnaryTransformType(NewBase, |
| T->getUTTKind(), |
| TL.getKWLoc()); |
| if (Result.isNull()) |
| return QualType(); |
| } |
| |
| UnaryTransformTypeLoc NewTL = TLB.push<UnaryTransformTypeLoc>(Result); |
| NewTL.setKWLoc(TL.getKWLoc()); |
| NewTL.setParensRange(TL.getParensRange()); |
| NewTL.setUnderlyingTInfo(TL.getUnderlyingTInfo()); |
| return Result; |
| } |
| |
| template<typename Derived> |
| QualType TreeTransform<Derived>::TransformDeducedTemplateSpecializationType( |
| TypeLocBuilder &TLB, DeducedTemplateSpecializationTypeLoc TL) { |
| const DeducedTemplateSpecializationType *T = TL.getTypePtr(); |
| |
| CXXScopeSpec SS; |
| TemplateName TemplateName = getDerived().TransformTemplateName( |
| SS, T->getTemplateName(), TL.getTemplateNameLoc()); |
| if (TemplateName.isNull()) |
| return QualType(); |
| |
| QualType OldDeduced = T->getDeducedType(); |
| QualType NewDeduced; |
| if (!OldDeduced.isNull()) { |
| NewDeduced = getDerived().TransformType(OldDeduced); |
| if (NewDeduced.isNull()) |
| return QualType(); |
| } |
| |
| QualType Result = getDerived().RebuildDeducedTemplateSpecializationType( |
| TemplateName, NewDeduced); |
| if (Result.isNull()) |
| return QualType(); |
| |
| DeducedTemplateSpecializationTypeLoc NewTL = |
| TLB.push<DeducedTemplateSpecializationTypeLoc>(Result); |
| NewTL.setTemplateNameLoc(TL.getTemplateNameLoc()); |
| |
| return Result; |
| } |
| |
| template<typename Derived> |
| QualType TreeTransform<Derived>::TransformRecordType(TypeLocBuilder &TLB, |
| RecordTypeLoc TL) { |
| const RecordType *T = TL.getTypePtr(); |
| RecordDecl *Record |
| = cast_or_null<RecordDecl>(getDerived().TransformDecl(TL.getNameLoc(), |
| T->getDecl())); |
| if (!Record) |
| return QualType(); |
| |
| QualType Result = TL.getType(); |
| if (getDerived().AlwaysRebuild() || |
| Record != T->getDecl()) { |
| Result = getDerived().RebuildRecordType(Record); |
| if (Result.isNull()) |
| return QualType(); |
| } |
| |
| RecordTypeLoc NewTL = TLB.push<RecordTypeLoc>(Result); |
| NewTL.setNameLoc(TL.getNameLoc()); |
| |
| return Result; |
| } |
| |
| template<typename Derived> |
| QualType TreeTransform<Derived>::TransformEnumType(TypeLocBuilder &TLB, |
| EnumTypeLoc TL) { |
| const EnumType *T = TL.getTypePtr(); |
| EnumDecl *Enum |
| = cast_or_null<EnumDecl>(getDerived().TransformDecl(TL.getNameLoc(), |
| T->getDecl())); |
| if (!Enum) |
| return QualType(); |
| |
| QualType Result = TL.getType(); |
| if (getDerived().AlwaysRebuild() || |
| Enum != T->getDecl()) { |
| Result = getDerived().RebuildEnumType(Enum); |
| if (Result.isNull()) |
| return QualType(); |
| } |
| |
| EnumTypeLoc NewTL = TLB.push<EnumTypeLoc>(Result); |
| NewTL.setNameLoc(TL.getNameLoc()); |
| |
| return Result; |
| } |
| |
| template<typename Derived> |
| QualType TreeTransform<Derived>::TransformInjectedClassNameType( |
| TypeLocBuilder &TLB, |
| InjectedClassNameTypeLoc TL) { |
| Decl *D = getDerived().TransformDecl(TL.getNameLoc(), |
| TL.getTypePtr()->getDecl()); |
| if (!D) return QualType(); |
| |
| QualType T = SemaRef.Context.getTypeDeclType(cast<TypeDecl>(D)); |
| TLB.pushTypeSpec(T).setNameLoc(TL.getNameLoc()); |
| return T; |
| } |
| |
| template<typename Derived> |
| QualType TreeTransform<Derived>::TransformTemplateTypeParmType( |
| TypeLocBuilder &TLB, |
| TemplateTypeParmTypeLoc TL) { |
| return getDerived().TransformTemplateTypeParmType( |
| TLB, TL, |
| /*SuppressObjCLifetime=*/false); |
| } |
| |
| template <typename Derived> |
| QualType TreeTransform<Derived>::TransformTemplateTypeParmType( |
| TypeLocBuilder &TLB, TemplateTypeParmTypeLoc TL, bool) { |
| return TransformTypeSpecType(TLB, TL); |
| } |
| |
| template<typename Derived> |
| QualType TreeTransform<Derived>::TransformSubstTemplateTypeParmType( |
| TypeLocBuilder &TLB, |
| SubstTemplateTypeParmTypeLoc TL) { |
| const SubstTemplateTypeParmType *T = TL.getTypePtr(); |
| |
| Decl *NewReplaced = |
| getDerived().TransformDecl(TL.getNameLoc(), T->getAssociatedDecl()); |
| |
| // Substitute into the replacement type, which itself might involve something |
| // that needs to be transformed. This only tends to occur with default |
| // template arguments of template template parameters. |
| TemporaryBase Rebase(*this, TL.getNameLoc(), DeclarationName()); |
| QualType Replacement = getDerived().TransformType(T->getReplacementType()); |
| if (Replacement.isNull()) |
| return QualType(); |
| |
| QualType Result = SemaRef.Context.getSubstTemplateTypeParmType( |
| Replacement, NewReplaced, T->getIndex(), T->getPackIndex()); |
| |
| // Propagate type-source information. |
| SubstTemplateTypeParmTypeLoc NewTL |
| = TLB.push<SubstTemplateTypeParmTypeLoc>(Result); |
| NewTL.setNameLoc(TL.getNameLoc()); |
| return Result; |
| |
| } |
| |
| template<typename Derived> |
| QualType TreeTransform<Derived>::TransformSubstTemplateTypeParmPackType( |
| TypeLocBuilder &TLB, |
| SubstTemplateTypeParmPackTypeLoc TL) { |
| return getDerived().TransformSubstTemplateTypeParmPackType( |
| TLB, TL, /*SuppressObjCLifetime=*/false); |
| } |
| |
| template <typename Derived> |
| QualType TreeTransform<Derived>::TransformSubstTemplateTypeParmPackType( |
| TypeLocBuilder &TLB, SubstTemplateTypeParmPackTypeLoc TL, bool) { |
| return TransformTypeSpecType(TLB, TL); |
| } |
| |
| template<typename Derived> |
| QualType TreeTransform<Derived>::TransformTemplateSpecializationType( |
| TypeLocBuilder &TLB, |
| TemplateSpecializationTypeLoc TL) { |
| const TemplateSpecializationType *T = TL.getTypePtr(); |
| |
| // The nested-name-specifier never matters in a TemplateSpecializationType, |
| // because we can't have a dependent nested-name-specifier anyway. |
| CXXScopeSpec SS; |
| TemplateName Template |
| = getDerived().TransformTemplateName(SS, T->getTemplateName(), |
| TL.getTemplateNameLoc()); |
| if (Template.isNull()) |
| return QualType(); |
| |
| return getDerived().TransformTemplateSpecializationType(TLB, TL, Template); |
| } |
| |
| template<typename Derived> |
| QualType TreeTransform<Derived>::TransformAtomicType(TypeLocBuilder &TLB, |
| AtomicTypeLoc TL) { |
| QualType ValueType = getDerived().TransformType(TLB, TL.getValueLoc()); |
| if (ValueType.isNull()) |
| return QualType(); |
| |
| QualType Result = TL.getType(); |
| if (getDerived().AlwaysRebuild() || |
| ValueType != TL.getValueLoc().getType()) { |
| Result = getDerived().RebuildAtomicType(ValueType, TL.getKWLoc()); |
| if (Result.isNull()) |
| return QualType(); |
| } |
| |
| AtomicTypeLoc NewTL = TLB.push<AtomicTypeLoc>(Result); |
| NewTL.setKWLoc(TL.getKWLoc()); |
| NewTL.setLParenLoc(TL.getLParenLoc()); |
| NewTL.setRParenLoc(TL.getRParenLoc()); |
| |
| return Result; |
| } |
| |
| template <typename Derived> |
| QualType TreeTransform<Derived>::TransformPipeType(TypeLocBuilder &TLB, |
| PipeTypeLoc TL) { |
| QualType ValueType = getDerived().TransformType(TLB, TL.getValueLoc()); |
| if (ValueType.isNull()) |
| return QualType(); |
| |
| QualType Result = TL.getType(); |
| if (getDerived().AlwaysRebuild() || ValueType != TL.getValueLoc().getType()) { |
| const PipeType *PT = Result->castAs<PipeType>(); |
| bool isReadPipe = PT->isReadOnly(); |
| Result = getDerived().RebuildPipeType(ValueType, TL.getKWLoc(), isReadPipe); |
| if (Result.isNull()) |
| return QualType(); |
| } |
| |
| PipeTypeLoc NewTL = TLB.push<PipeTypeLoc>(Result); |
| NewTL.setKWLoc(TL.getKWLoc()); |
| |
| return Result; |
| } |
| |
| template <typename Derived> |
| QualType TreeTransform<Derived>::TransformBitIntType(TypeLocBuilder &TLB, |
| BitIntTypeLoc TL) { |
| const BitIntType *EIT = TL.getTypePtr(); |
| QualType Result = TL.getType(); |
| |
| if (getDerived().AlwaysRebuild()) { |
| Result = getDerived().RebuildBitIntType(EIT->isUnsigned(), |
| EIT->getNumBits(), TL.getNameLoc()); |
| if (Result.isNull()) |
| return QualType(); |
| } |
| |
| BitIntTypeLoc NewTL = TLB.push<BitIntTypeLoc>(Result); |
| NewTL.setNameLoc(TL.getNameLoc()); |
| return Result; |
| } |
| |
| template <typename Derived> |
| QualType TreeTransform<Derived>::TransformDependentBitIntType( |
| TypeLocBuilder &TLB, DependentBitIntTypeLoc TL) { |
| const DependentBitIntType *EIT = TL.getTypePtr(); |
| |
| EnterExpressionEvaluationContext Unevaluated( |
| SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated); |
| ExprResult BitsExpr = getDerived().TransformExpr(EIT->getNumBitsExpr()); |
| BitsExpr = SemaRef.ActOnConstantExpression(BitsExpr); |
| |
| if (BitsExpr.isInvalid()) |
| return QualType(); |
| |
| QualType Result = TL.getType(); |
| |
| if (getDerived().AlwaysRebuild() || BitsExpr.get() != EIT->getNumBitsExpr()) { |
| Result = getDerived().RebuildDependentBitIntType( |
| EIT->isUnsigned(), BitsExpr.get(), TL.getNameLoc()); |
| |
| if (Result.isNull()) |
| return QualType(); |
| } |
| |
| if (isa<DependentBitIntType>(Result)) { |
| DependentBitIntTypeLoc NewTL = TLB.push<DependentBitIntTypeLoc>(Result); |
| NewTL.setNameLoc(TL.getNameLoc()); |
| } else { |
| BitIntTypeLoc NewTL = TLB.push<BitIntTypeLoc>(Result); |
| NewTL.setNameLoc(TL.getNameLoc()); |
| } |
| return Result; |
| } |
| |
| /// Simple iterator that traverses the template arguments in a |
| /// container that provides a \c getArgLoc() member function. |
| /// |
| /// This iterator is intended to be used with the iterator form of |
| /// \c TreeTransform<Derived>::TransformTemplateArguments(). |
| template<typename ArgLocContainer> |
| class TemplateArgumentLocContainerIterator { |
| ArgLocContainer *Container; |
| unsigned Index; |
| |
| public: |
| typedef TemplateArgumentLoc value_type; |
| typedef TemplateArgumentLoc reference; |
| typedef int difference_type; |
| typedef std::input_iterator_tag iterator_category; |
| |
| class pointer { |
| TemplateArgumentLoc Arg; |
| |
| public: |
| explicit pointer(TemplateArgumentLoc Arg) : Arg(Arg) { } |
| |
| const TemplateArgumentLoc *operator->() const { |
| return &Arg; |
| } |
| }; |
| |
| |
| TemplateArgumentLocContainerIterator() {} |
| |
| TemplateArgumentLocContainerIterator(ArgLocContainer &Container, |
| unsigned Index) |
| : Container(&Container), Index(Index) { } |
| |
| TemplateArgumentLocContainerIterator &operator++() { |
| ++Index; |
| return *this; |
| } |
| |
| TemplateArgumentLocContainerIterator operator++(int) { |
| TemplateArgumentLocContainerIterator Old(*this); |
| ++(*this); |
| return Old; |
| } |
| |
| TemplateArgumentLoc operator*() const { |
| return Container->getArgLoc(Index); |
| } |
| |
| pointer operator->() const { |
| return pointer(Container->getArgLoc(Index)); |
| } |
| |
| friend bool operator==(const TemplateArgumentLocContainerIterator &X, |
| const TemplateArgumentLocContainerIterator &Y) { |
| return X.Container == Y.Container && X.Index == Y.Index; |
| } |
| |
| friend bool operator!=(const TemplateArgumentLocContainerIterator &X, |
| const TemplateArgumentLocContainerIterator &Y) { |
| return !(X == Y); |
| } |
| }; |
| |
| template<typename Derived> |
| QualType TreeTransform<Derived>::TransformAutoType(TypeLocBuilder &TLB, |
| AutoTypeLoc TL) { |
| const AutoType *T = TL.getTypePtr(); |
| QualType OldDeduced = T->getDeducedType(); |
| QualType NewDeduced; |
| if (!OldDeduced.isNull()) { |
| NewDeduced = getDerived().TransformType(OldDeduced); |
| if (NewDeduced.isNull()) |
| return QualType(); |
| } |
| |
| ConceptDecl *NewCD = nullptr; |
| TemplateArgumentListInfo NewTemplateArgs; |
| NestedNameSpecifierLoc NewNestedNameSpec; |
| if (T->isConstrained()) { |
| assert(TL.getConceptReference()); |
| NewCD = cast_or_null<ConceptDecl>(getDerived().TransformDecl( |
| TL.getConceptNameLoc(), T->getTypeConstraintConcept())); |
| |
| NewTemplateArgs.setLAngleLoc(TL.getLAngleLoc()); |
| NewTemplateArgs.setRAngleLoc(TL.getRAngleLoc()); |
| typedef TemplateArgumentLocContainerIterator<AutoTypeLoc> ArgIterator; |
| if (getDerived().TransformTemplateArguments( |
| ArgIterator(TL, 0), ArgIterator(TL, TL.getNumArgs()), |
| NewTemplateArgs)) |
| return QualType(); |
| |
| if (TL.getNestedNameSpecifierLoc()) { |
| NewNestedNameSpec |
| = getDerived().TransformNestedNameSpecifierLoc( |
| TL.getNestedNameSpecifierLoc()); |
| if (!NewNestedNameSpec) |
| return QualType(); |
| } |
| } |
| |
| QualType Result = TL.getType(); |
| if (getDerived().AlwaysRebuild() || NewDeduced != OldDeduced || |
| T->isDependentType() || T->isConstrained()) { |
| // FIXME: Maybe don't rebuild if all template arguments are the same. |
| llvm::SmallVector<TemplateArgument, 4> NewArgList; |
| NewArgList.reserve(NewTemplateArgs.size()); |
| for (const auto &ArgLoc : NewTemplateArgs.arguments()) |
| NewArgList.push_back(ArgLoc.getArgument()); |
| Result = getDerived().RebuildAutoType(NewDeduced, T->getKeyword(), NewCD, |
| NewArgList); |
| if (Result.isNull()) |
| return QualType(); |
| } |
| |
| AutoTypeLoc NewTL = TLB.push<AutoTypeLoc>(Result); |
| NewTL.setNameLoc(TL.getNameLoc()); |
| NewTL.setRParenLoc(TL.getRParenLoc()); |
| NewTL.setConceptReference(nullptr); |
| |
| if (T->isConstrained()) { |
| DeclarationNameInfo DNI = DeclarationNameInfo( |
| TL.getTypePtr()->getTypeConstraintConcept()->getDeclName(), |
| TL.getConceptNameLoc(), |
| TL.getTypePtr()->getTypeConstraintConcept()->getDeclName()); |
| auto *CR = ConceptReference::Create( |
| SemaRef.Context, NewNestedNameSpec, TL.getTemplateKWLoc(), DNI, |
| TL.getFoundDecl(), TL.getTypePtr()->getTypeConstraintConcept(), |
| ASTTemplateArgumentListInfo::Create(SemaRef.Context, NewTemplateArgs)); |
| NewTL.setConceptReference(CR); |
| } |
| |
| return Result; |
| } |
| |
| template <typename Derived> |
| QualType TreeTransform<Derived>::TransformTemplateSpecializationType( |
| TypeLocBuilder &TLB, |
| TemplateSpecializationTypeLoc TL, |
| TemplateName Template) { |
| TemplateArgumentListInfo NewTemplateArgs; |
| NewTemplateArgs.setLAngleLoc(TL.getLAngleLoc()); |
| NewTemplateArgs.setRAngleLoc(TL.getRAngleLoc()); |
| typedef TemplateArgumentLocContainerIterator<TemplateSpecializationTypeLoc> |
| ArgIterator; |
| if (getDerived().TransformTemplateArguments(ArgIterator(TL, 0), |
| ArgIterator(TL, TL.getNumArgs()), |
| NewTemplateArgs)) |
| return QualType(); |
| |
| // This needs to be rebuilt if either the arguments changed, or if the |
| // original template changed. If the template changed, and even if the |
| // arguments didn't change, these arguments might not correspond to their |
| // respective parameters, therefore needing conversions. |
| QualType Result = |
| getDerived().RebuildTemplateSpecializationType(Template, |
| TL.getTemplateNameLoc(), |
| NewTemplateArgs); |
| |
| if (!Result.isNull()) { |
| // Specializations of template template parameters are represented as |
| // TemplateSpecializationTypes, and substitution of type alias templates |
| // within a dependent context can transform them into |
| // DependentTemplateSpecializationTypes. |
| if (isa<DependentTemplateSpecializationType>(Result)) { |
| DependentTemplateSpecializationTypeLoc NewTL |
| = TLB.push<DependentTemplateSpecializationTypeLoc>(Result); |
| NewTL.setElaboratedKeywordLoc(SourceLocation()); |
| NewTL.setQualifierLoc(NestedNameSpecifierLoc()); |
| NewTL.setTemplateKeywordLoc(TL.getTemplateKeywordLoc()); |
| NewTL.setTemplateNameLoc(TL.getTemplateNameLoc()); |
| NewTL.setLAngleLoc(TL.getLAngleLoc()); |
| NewTL.setRAngleLoc(TL.getRAngleLoc()); |
| for (unsigned i = 0, e = NewTemplateArgs.size(); i != e; ++i) |
| NewTL.setArgLocInfo(i, NewTemplateArgs[i].getLocInfo()); |
| return Result; |
| } |
| |
| TemplateSpecializationTypeLoc NewTL |
| = TLB.push<TemplateSpecializationTypeLoc>(Result); |
| NewTL.setTemplateKeywordLoc(TL.getTemplateKeywordLoc()); |
| NewTL.setTemplateNameLoc(TL.getTemplateNameLoc()); |
| NewTL.setLAngleLoc(TL.getLAngleLoc()); |
| NewTL.setRAngleLoc(TL.getRAngleLoc()); |
| for (unsigned i = 0, e = NewTemplateArgs.size(); i != e; ++i) |
| NewTL.setArgLocInfo(i, NewTemplateArgs[i].getLocInfo()); |
| } |
| |
| return Result; |
| } |
| |
| template <typename Derived> |
| QualType TreeTransform<Derived>::TransformDependentTemplateSpecializationType( |
| TypeLocBuilder &TLB, |
| DependentTemplateSpecializationTypeLoc TL, |
| TemplateName Template, |
| CXXScopeSpec &SS) { |
| TemplateArgumentListInfo NewTemplateArgs; |
| NewTemplateArgs.setLAngleLoc(TL.getLAngleLoc()); |
| NewTemplateArgs.setRAngleLoc(TL.getRAngleLoc()); |
| typedef TemplateArgumentLocContainerIterator< |
| DependentTemplateSpecializationTypeLoc> ArgIterator; |
| if (getDerived().TransformTemplateArguments(ArgIterator(TL, 0), |
| ArgIterator(TL, TL.getNumArgs()), |
| NewTemplateArgs)) |
| return QualType(); |
| |
| // FIXME: maybe don't rebuild if all the template arguments are the same. |
| |
| if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) { |
| QualType Result = getSema().Context.getDependentTemplateSpecializationType( |
| TL.getTypePtr()->getKeyword(), DTN->getQualifier(), |
| DTN->getIdentifier(), NewTemplateArgs.arguments()); |
| |
| DependentTemplateSpecializationTypeLoc NewTL |
| = TLB.push<DependentTemplateSpecializationTypeLoc>(Result); |
| NewTL.setElaboratedKeywordLoc(TL.getElaboratedKeywordLoc()); |
| NewTL.setQualifierLoc(SS.getWithLocInContext(SemaRef.Context)); |
| NewTL.setTemplateKeywordLoc(TL.getTemplateKeywordLoc()); |
| NewTL.setTemplateNameLoc(TL.getTemplateNameLoc()); |
| NewTL.setLAngleLoc(TL.getLAngleLoc()); |
| NewTL.setRAngleLoc(TL.getRAngleLoc()); |
| for (unsigned i = 0, e = NewTemplateArgs.size(); i != e; ++i) |
| NewTL.setArgLocInfo(i, NewTemplateArgs[i].getLocInfo()); |
| return Result; |
| } |
| |
| QualType Result |
| = getDerived().RebuildTemplateSpecializationType(Template, |
| TL.getTemplateNameLoc(), |
| NewTemplateArgs); |
| |
| if (!Result.isNull()) { |
| /// FIXME: Wrap this in an elaborated-type-specifier? |
| TemplateSpecializationTypeLoc NewTL |
| = TLB.push<TemplateSpecializationTypeLoc>(Result); |
| NewTL.setTemplateKeywordLoc(TL.getTemplateKeywordLoc()); |
| NewTL.setTemplateNameLoc(TL.getTemplateNameLoc()); |
| NewTL.setLAngleLoc(TL.getLAngleLoc()); |
| NewTL.setRAngleLoc(TL.getRAngleLoc()); |
| for (unsigned i = 0, e = NewTemplateArgs.size(); i != e; ++i) |
| NewTL.setArgLocInfo(i, NewTemplateArgs[i].getLocInfo()); |
| } |
| |
| return Result; |
| } |
| |
| template<typename Derived> |
| QualType |
| TreeTransform<Derived>::TransformElaboratedType(TypeLocBuilder &TLB, |
| ElaboratedTypeLoc TL) { |
| const ElaboratedType *T = TL.getTypePtr(); |
| |
| NestedNameSpecifierLoc QualifierLoc; |
| // NOTE: the qualifier in an ElaboratedType is optional. |
| if (TL.getQualifierLoc()) { |
| QualifierLoc |
| = getDerived().TransformNestedNameSpecifierLoc(TL.getQualifierLoc()); |
| if (!QualifierLoc) |
| return QualType(); |
| } |
| |
| QualType NamedT = getDerived().TransformType(TLB, TL.getNamedTypeLoc()); |
| if (NamedT.isNull()) |
| return QualType(); |
| |
| // C++0x [dcl.type.elab]p2: |
| // If the identifier resolves to a typedef-name or the simple-template-id |
| // resolves to an alias template specialization, the |
| // elaborated-type-specifier is ill-formed. |
| if (T->getKeyword() != ElaboratedTypeKeyword::None && |
| T->getKeyword() != ElaboratedTypeKeyword::Typename) { |
| if (const TemplateSpecializationType *TST = |
| NamedT->getAs<TemplateSpecializationType>()) { |
| TemplateName Template = TST->getTemplateName(); |
| if (TypeAliasTemplateDecl *TAT = dyn_cast_or_null<TypeAliasTemplateDecl>( |
| Template.getAsTemplateDecl())) { |
| SemaRef.Diag(TL.getNamedTypeLoc().getBeginLoc(), |
| diag::err_tag_reference_non_tag) |
| << TAT << Sema::NTK_TypeAliasTemplate |
| << llvm::to_underlying( |
| ElaboratedType::getTagTypeKindForKeyword(T->getKeyword())); |
| SemaRef.Diag(TAT->getLocation(), diag::note_declared_at); |
| } |
| } |
| } |
| |
| QualType Result = TL.getType(); |
| if (getDerived().AlwaysRebuild() || |
| QualifierLoc != TL.getQualifierLoc() || |
| NamedT != T->getNamedType()) { |
| Result = getDerived().RebuildElaboratedType(TL.getElaboratedKeywordLoc(), |
| T->getKeyword(), |
| QualifierLoc, NamedT); |
| if (Result.isNull()) |
| return QualType(); |
| } |
| |
| ElaboratedTypeLoc NewTL = TLB.push<ElaboratedTypeLoc>(Result); |
| NewTL.setElaboratedKeywordLoc(TL.getElaboratedKeywordLoc()); |
| NewTL.setQualifierLoc(QualifierLoc); |
| return Result; |
| } |
| |
| template <typename Derived> |
| QualType TreeTransform<Derived>::TransformAttributedType(TypeLocBuilder &TLB, |
| AttributedTypeLoc TL) { |
| const AttributedType *oldType = TL.getTypePtr(); |
| QualType modifiedType = getDerived().TransformType(TLB, TL.getModifiedLoc()); |
| if (modifiedType.isNull()) |
| return QualType(); |
| |
| // oldAttr can be null if we started with a QualType rather than a TypeLoc. |
| const Attr *oldAttr = TL.getAttr(); |
| const Attr *newAttr = oldAttr ? getDerived().TransformAttr(oldAttr) : nullptr; |
| if (oldAttr && !newAttr) |
| return QualType(); |
| |
| QualType result = TL.getType(); |
| |
| // FIXME: dependent operand expressions? |
| if (getDerived().AlwaysRebuild() || |
| modifiedType != oldType->getModifiedType()) { |
| // If the equivalent type is equal to the modified type, we don't want to |
| // transform it as well because: |
| // |
| // 1. The transformation would yield the same result and is therefore |
| // superfluous, and |
| // |
| // 2. Transforming the same type twice can cause problems, e.g. if it |
| // is a FunctionProtoType, we may end up instantiating the function |
| // parameters twice, which causes an assertion since the parameters |
| // are already bound to their counterparts in the template for this |
| // instantiation. |
| // |
| QualType equivalentType = modifiedType; |
| if (TL.getModifiedLoc().getType() != TL.getEquivalentTypeLoc().getType()) { |
| TypeLocBuilder AuxiliaryTLB; |
| AuxiliaryTLB.reserve(TL.getFullDataSize()); |
| equivalentType = |
| getDerived().TransformType(AuxiliaryTLB, TL.getEquivalentTypeLoc()); |
| if (equivalentType.isNull()) |
| return QualType(); |
| } |
| |
| // Check whether we can add nullability; it is only represented as |
| // type sugar, and therefore cannot be diagnosed in any other way. |
| if (auto nullability = oldType->getImmediateNullability()) { |
| if (!modifiedType->canHaveNullability()) { |
| SemaRef.Diag((TL.getAttr() ? TL.getAttr()->getLocation() |
| : TL.getModifiedLoc().getBeginLoc()), |
| diag::err_nullability_nonpointer) |
| << DiagNullabilityKind(*nullability, false) << modifiedType; |
| return QualType(); |
| } |
| } |
| |
| result = SemaRef.Context.getAttributedType(TL.getAttrKind(), |
| modifiedType, |
| equivalentType, |
| TL.getAttr()); |
| } |
| |
| AttributedTypeLoc newTL = TLB.push<AttributedTypeLoc>(result); |
| newTL.setAttr(newAttr); |
| return result; |
| } |
| |
| template <typename Derived> |
| QualType TreeTransform<Derived>::TransformCountAttributedType( |
| TypeLocBuilder &TLB, CountAttributedTypeLoc TL) { |
| const CountAttributedType *OldTy = TL.getTypePtr(); |
| QualType InnerTy = getDerived().TransformType(TLB, TL.getInnerLoc()); |
| if (InnerTy.isNull()) |
| return QualType(); |
| |
| Expr *OldCount = TL.getCountExpr(); |
| Expr *NewCount = nullptr; |
| if (OldCount) { |
| ExprResult CountResult = getDerived().TransformExpr(OldCount); |
| if (CountResult.isInvalid()) |
| return QualType(); |
| NewCount = CountResult.get(); |
| } |
| |
| QualType Result = TL.getType(); |
| if (getDerived().AlwaysRebuild() || InnerTy != OldTy->desugar() || |
| OldCount != NewCount) { |
| // Currently, CountAttributedType can only wrap incomplete array types. |
| Result = SemaRef.BuildCountAttributedArrayOrPointerType( |
| InnerTy, NewCount, OldTy->isCountInBytes(), OldTy->isOrNull()); |
| } |
| |
| TLB.push<CountAttributedTypeLoc>(Result); |
| return Result; |
| } |
| |
| template <typename Derived> |
| QualType TreeTransform<Derived>::TransformBTFTagAttributedType( |
| TypeLocBuilder &TLB, BTFTagAttributedTypeLoc TL) { |
| // The BTFTagAttributedType is available for C only. |
| llvm_unreachable("Unexpected TreeTransform for BTFTagAttributedType"); |
| } |
| |
| template <typename Derived> |
| QualType TreeTransform<Derived>::TransformHLSLAttributedResourceType( |
| TypeLocBuilder &TLB, HLSLAttributedResourceTypeLoc TL) { |
| |
| const HLSLAttributedResourceType *oldType = TL.getTypePtr(); |
| |
| QualType WrappedTy = getDerived().TransformType(TLB, TL.getWrappedLoc()); |
| if (WrappedTy.isNull()) |
| return QualType(); |
| |
| QualType ContainedTy = QualType(); |
| QualType OldContainedTy = oldType->getContainedType(); |
| if (!OldContainedTy.isNull()) { |
| TypeSourceInfo *oldContainedTSI = TL.getContainedTypeSourceInfo(); |
| if (!oldContainedTSI) |
| oldContainedTSI = getSema().getASTContext().getTrivialTypeSourceInfo( |
| OldContainedTy, SourceLocation()); |
| TypeSourceInfo *ContainedTSI = getDerived().TransformType(oldContainedTSI); |
| if (!ContainedTSI) |
| return QualType(); |
| ContainedTy = ContainedTSI->getType(); |
| } |
| |
| QualType Result = TL.getType(); |
| if (getDerived().AlwaysRebuild() || WrappedTy != oldType->getWrappedType() || |
| ContainedTy != oldType->getContainedType()) { |
| Result = SemaRef.Context.getHLSLAttributedResourceType( |
| WrappedTy, ContainedTy, oldType->getAttrs()); |
| } |
| |
| TLB.push<HLSLAttributedResourceTypeLoc>(Result); |
| return Result; |
| } |
| |
| template<typename Derived> |
| QualType |
| TreeTransform<Derived>::TransformParenType(TypeLocBuilder &TLB, |
| ParenTypeLoc TL) { |
| QualType Inner = getDerived().TransformType(TLB, TL.getInnerLoc()); |
| if (Inner.isNull()) |
| return QualType(); |
| |
| QualType Result = TL.getType(); |
| if (getDerived().AlwaysRebuild() || |
| Inner != TL.getInnerLoc().getType()) { |
| Result = getDerived().RebuildParenType(Inner); |
| if (Result.isNull()) |
| return QualType(); |
| } |
| |
| ParenTypeLoc NewTL = TLB.push<ParenTypeLoc>(Result); |
| NewTL.setLParenLoc(TL.getLParenLoc()); |
| NewTL.setRParenLoc(TL.getRParenLoc()); |
| return Result; |
| } |
| |
| template <typename Derived> |
| QualType |
| TreeTransform<Derived>::TransformMacroQualifiedType(TypeLocBuilder &TLB, |
| MacroQualifiedTypeLoc TL) { |
| QualType Inner = getDerived().TransformType(TLB, TL.getInnerLoc()); |
| if (Inner.isNull()) |
| return QualType(); |
| |
| QualType Result = TL.getType(); |
| if (getDerived().AlwaysRebuild() || Inner != TL.getInnerLoc().getType()) { |
| Result = |
| getDerived().RebuildMacroQualifiedType(Inner, TL.getMacroIdentifier()); |
| if (Result.isNull()) |
| return QualType(); |
| } |
| |
| MacroQualifiedTypeLoc NewTL = TLB.push<MacroQualifiedTypeLoc>(Result); |
| NewTL.setExpansionLoc(TL.getExpansionLoc()); |
| return Result; |
| } |
| |
| template<typename Derived> |
| QualType TreeTransform<Derived>::TransformDependentNameType( |
| TypeLocBuilder &TLB, DependentNameTypeLoc TL) { |
| return TransformDependentNameType(TLB, TL, false); |
| } |
| |
| template<typename Derived> |
| QualType TreeTransform<Derived>::TransformDependentNameType( |
| TypeLocBuilder &TLB, DependentNameTypeLoc TL, bool DeducedTSTContext) { |
| const DependentNameType *T = TL.getTypePtr(); |
| |
| NestedNameSpecifierLoc QualifierLoc |
| = getDerived().TransformNestedNameSpecifierLoc(TL.getQualifierLoc()); |
| if (!QualifierLoc) |
| return QualType(); |
| |
| QualType Result |
| = getDerived().RebuildDependentNameType(T->getKeyword(), |
| TL.getElaboratedKeywordLoc(), |
| QualifierLoc, |
| T->getIdentifier(), |
| TL.getNameLoc(), |
| DeducedTSTContext); |
| if (Result.isNull()) |
| return QualType(); |
| |
| if (const ElaboratedType* ElabT = Result->getAs<ElaboratedType>()) { |
| QualType NamedT = ElabT->getNamedType(); |
| TLB.pushTypeSpec(NamedT).setNameLoc(TL.getNameLoc()); |
| |
| ElaboratedTypeLoc NewTL = TLB.push<ElaboratedTypeLoc>(Result); |
| NewTL.setElaboratedKeywordLoc(TL.getElaboratedKeywordLoc()); |
| NewTL.setQualifierLoc(QualifierLoc); |
| } else { |
| DependentNameTypeLoc NewTL = TLB.push<DependentNameTypeLoc>(Result); |
| NewTL.setElaboratedKeywordLoc(TL.getElaboratedKeywordLoc()); |
| NewTL.setQualifierLoc(QualifierLoc); |
| NewTL.setNameLoc(TL.getNameLoc()); |
| } |
| return Result; |
| } |
| |
| template<typename Derived> |
| QualType TreeTransform<Derived>:: |
| TransformDependentTemplateSpecializationType(TypeLocBuilder &TLB, |
| DependentTemplateSpecializationTypeLoc TL) { |
| NestedNameSpecifierLoc QualifierLoc; |
| if (TL.getQualifierLoc()) { |
| QualifierLoc |
| = getDerived().TransformNestedNameSpecifierLoc(TL.getQualifierLoc()); |
| if (!QualifierLoc) |
| return QualType(); |
| } |
| |
| return getDerived() |
| .TransformDependentTemplateSpecializationType(TLB, TL, QualifierLoc); |
| } |
| |
| template<typename Derived> |
| QualType TreeTransform<Derived>:: |
| TransformDependentTemplateSpecializationType(TypeLocBuilder &TLB, |
| DependentTemplateSpecializationTypeLoc TL, |
| NestedNameSpecifierLoc QualifierLoc) { |
| const DependentTemplateSpecializationType *T = TL.getTypePtr(); |
| |
| TemplateArgumentListInfo NewTemplateArgs; |
| NewTemplateArgs.setLAngleLoc(TL.getLAngleLoc()); |
| NewTemplateArgs.setRAngleLoc(TL.getRAngleLoc()); |
| |
| typedef TemplateArgumentLocContainerIterator< |
| DependentTemplateSpecializationTypeLoc> ArgIterator; |
| if (getDerived().TransformTemplateArguments(ArgIterator(TL, 0), |
| ArgIterator(TL, TL.getNumArgs()), |
| NewTemplateArgs)) |
| return QualType(); |
| |
| QualType Result = getDerived().RebuildDependentTemplateSpecializationType( |
| T->getKeyword(), QualifierLoc, TL.getTemplateKeywordLoc(), |
| T->getIdentifier(), TL.getTemplateNameLoc(), NewTemplateArgs, |
| /*AllowInjectedClassName*/ false); |
| if (Result.isNull()) |
| return QualType(); |
| |
| if (const ElaboratedType *ElabT = dyn_cast<ElaboratedType>(Result)) { |
| QualType NamedT = ElabT->getNamedType(); |
| |
| // Copy information relevant to the template specialization. |
| TemplateSpecializationTypeLoc NamedTL |
| = TLB.push<TemplateSpecializationTypeLoc>(NamedT); |
| NamedTL.setTemplateKeywordLoc(TL.getTemplateKeywordLoc()); |
| NamedTL.setTemplateNameLoc(TL.getTemplateNameLoc()); |
| NamedTL.setLAngleLoc(TL.getLAngleLoc()); |
| NamedTL.setRAngleLoc(TL.getRAngleLoc()); |
| for (unsigned I = 0, E = NewTemplateArgs.size(); I != E; ++I) |
| NamedTL.setArgLocInfo(I, NewTemplateArgs[I].getLocInfo()); |
| |
| // Copy information relevant to the elaborated type. |
| ElaboratedTypeLoc NewTL = TLB.push<ElaboratedTypeLoc>(Result); |
| NewTL.setElaboratedKeywordLoc(TL.getElaboratedKeywordLoc()); |
| NewTL.setQualifierLoc(QualifierLoc); |
| } else if (isa<DependentTemplateSpecializationType>(Result)) { |
| DependentTemplateSpecializationTypeLoc SpecTL |
| = TLB.push<DependentTemplateSpecializationTypeLoc>(Result); |
| SpecTL.setElaboratedKeywordLoc(TL.getElaboratedKeywordLoc()); |
| SpecTL.setQualifierLoc(QualifierLoc); |
| SpecTL.setTemplateKeywordLoc(TL.getTemplateKeywordLoc()); |
| SpecTL.setTemplateNameLoc(TL.getTemplateNameLoc()); |
| SpecTL.setLAngleLoc(TL.getLAngleLoc()); |
| SpecTL.setRAngleLoc(TL.getRAngleLoc()); |
| for (unsigned I = 0, E = NewTemplateArgs.size(); I != E; ++I) |
| SpecTL.setArgLocInfo(I, NewTemplateArgs[I].getLocInfo()); |
| } else { |
| TemplateSpecializationTypeLoc SpecTL |
| = TLB.push<TemplateSpecializationTypeLoc>(Result); |
| SpecTL.setTemplateKeywordLoc(TL.getTemplateKeywordLoc()); |
| SpecTL.setTemplateNameLoc(TL.getTemplateNameLoc()); |
| SpecTL.setLAngleLoc(TL.getLAngleLoc()); |
| SpecTL.setRAngleLoc(TL.getRAngleLoc()); |
| for (unsigned I = 0, E = NewTemplateArgs.size(); I != E; ++I) |
| SpecTL.setArgLocInfo(I, NewTemplateArgs[I].getLocInfo()); |
| } |
| return Result; |
| } |
| |
| template<typename Derived> |
| QualType TreeTransform<Derived>::TransformPackExpansionType(TypeLocBuilder &TLB, |
| PackExpansionTypeLoc TL) { |
| QualType Pattern |
| = getDerived().TransformType(TLB, TL.getPatternLoc()); |
| if (Pattern.isNull()) |
| return QualType(); |
| |
| QualType Result = TL.getType(); |
| if (getDerived().AlwaysRebuild() || |
| Pattern != TL.getPatternLoc().getType()) { |
| Result = getDerived().RebuildPackExpansionType(Pattern, |
| TL.getPatternLoc().getSourceRange(), |
| TL.getEllipsisLoc(), |
| TL.getTypePtr()->getNumExpansions()); |
| if (Result.isNull()) |
| return QualType(); |
| } |
| |
| PackExpansionTypeLoc NewT = TLB.push<PackExpansionTypeLoc>(Result); |
| NewT.setEllipsisLoc(TL.getEllipsisLoc()); |
| return Result; |
| } |
| |
| template<typename Derived> |
| QualType |
| TreeTransform<Derived>::TransformObjCInterfaceType(TypeLocBuilder &TLB, |
| ObjCInterfaceTypeLoc TL) { |
| // ObjCInterfaceType is never dependent. |
| TLB.pushFullCopy(TL); |
| return TL.getType(); |
| } |
| |
| template<typename Derived> |
| QualType |
| TreeTransform<Derived>::TransformObjCTypeParamType(TypeLocBuilder &TLB, |
| ObjCTypeParamTypeLoc TL) { |
| const ObjCTypeParamType *T = TL.getTypePtr(); |
| ObjCTypeParamDecl *OTP = cast_or_null<ObjCTypeParamDecl>( |
| getDerived().TransformDecl(T->getDecl()->getLocation(), T->getDecl())); |
| if (!OTP) |
| return QualType(); |
| |
| QualType Result = TL.getType(); |
| if (getDerived().AlwaysRebuild() || |
| OTP != T->getDecl()) { |
| Result = getDerived().RebuildObjCTypeParamType( |
| OTP, TL.getProtocolLAngleLoc(), |
| llvm::ArrayRef(TL.getTypePtr()->qual_begin(), TL.getNumProtocols()), |
| TL.getProtocolLocs(), TL.getProtocolRAngleLoc()); |
| if (Result.isNull()) |
| return QualType(); |
| } |
| |
| ObjCTypeParamTypeLoc NewTL = TLB.push<ObjCTypeParamTypeLoc>(Result); |
| if (TL.getNumProtocols()) { |
| NewTL.setProtocolLAngleLoc(TL.getProtocolLAngleLoc()); |
| for (unsigned i = 0, n = TL.getNumProtocols(); i != n; ++i) |
| NewTL.setProtocolLoc(i, TL.getProtocolLoc(i)); |
| NewTL.setProtocolRAngleLoc(TL.getProtocolRAngleLoc()); |
| } |
| return Result; |
| } |
| |
| template<typename Derived> |
| QualType |
| TreeTransform<Derived>::TransformObjCObjectType(TypeLocBuilder &TLB, |
| ObjCObjectTypeLoc TL) { |
| // Transform base type. |
| QualType BaseType = getDerived().TransformType(TLB, TL.getBaseLoc()); |
| if (BaseType.isNull()) |
| return QualType(); |
| |
| bool AnyChanged = BaseType != TL.getBaseLoc().getType(); |
| |
| // Transform type arguments. |
| SmallVector<TypeSourceInfo *, 4> NewTypeArgInfos; |
| for (unsigned i = 0, n = TL.getNumTypeArgs(); i != n; ++i) { |
| TypeSourceInfo *TypeArgInfo = TL.getTypeArgTInfo(i); |
| TypeLoc TypeArgLoc = TypeArgInfo->getTypeLoc(); |
| QualType TypeArg = TypeArgInfo->getType(); |
| if (auto PackExpansionLoc = TypeArgLoc.getAs<PackExpansionTypeLoc>()) { |
| AnyChanged = true; |
| |
| // We have a pack expansion. Instantiate it. |
| const auto *PackExpansion = PackExpansionLoc.getType() |
| ->castAs<PackExpansionType>(); |
| SmallVector<UnexpandedParameterPack, 2> Unexpanded; |
| SemaRef.collectUnexpandedParameterPacks(PackExpansion->getPattern(), |
| Unexpanded); |
| assert(!Unexpanded.empty() && "Pack expansion without parameter packs?"); |
| |
| // Determine whether the set of unexpanded parameter packs can |
| // and should be expanded. |
| TypeLoc PatternLoc = PackExpansionLoc.getPatternLoc(); |
| bool Expand = false; |
| bool RetainExpansion = false; |
| std::optional<unsigned> NumExpansions = PackExpansion->getNumExpansions(); |
| if (getDerived().TryExpandParameterPacks( |
| PackExpansionLoc.getEllipsisLoc(), PatternLoc.getSourceRange(), |
| Unexpanded, Expand, RetainExpansion, NumExpansions)) |
| return QualType(); |
| |
| if (!Expand) { |
| // We can't expand this pack expansion into separate arguments yet; |
| // just substitute into the pattern and create a new pack expansion |
| // type. |
| Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), -1); |
| |
| TypeLocBuilder TypeArgBuilder; |
| TypeArgBuilder.reserve(PatternLoc.getFullDataSize()); |
| QualType NewPatternType = getDerived().TransformType(TypeArgBuilder, |
| PatternLoc); |
| if (NewPatternType.isNull()) |
| return QualType(); |
| |
| QualType NewExpansionType = SemaRef.Context.getPackExpansionType( |
| NewPatternType, NumExpansions); |
| auto NewExpansionLoc = TLB.push<PackExpansionTypeLoc>(NewExpansionType); |
| NewExpansionLoc.setEllipsisLoc(PackExpansionLoc.getEllipsisLoc()); |
| NewTypeArgInfos.push_back( |
| TypeArgBuilder.getTypeSourceInfo(SemaRef.Context, NewExpansionType)); |
| continue; |
| } |
| |
| // Substitute into the pack expansion pattern for each slice of the |
| // pack. |
| for (unsigned ArgIdx = 0; ArgIdx != *NumExpansions; ++ArgIdx) { |
| Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), ArgIdx); |
| |
| TypeLocBuilder TypeArgBuilder; |
| TypeArgBuilder.reserve(PatternLoc.getFullDataSize()); |
| |
| QualType NewTypeArg = getDerived().TransformType(TypeArgBuilder, |
| PatternLoc); |
| if (NewTypeArg.isNull()) |
| return QualType(); |
| |
| NewTypeArgInfos.push_back( |
| TypeArgBuilder.getTypeSourceInfo(SemaRef.Context, NewTypeArg)); |
| } |
| |
| continue; |
| } |
| |
| TypeLocBuilder TypeArgBuilder; |
| TypeArgBuilder.reserve(TypeArgLoc.getFullDataSize()); |
| QualType NewTypeArg = |
| getDerived().TransformType(TypeArgBuilder, TypeArgLoc); |
| if (NewTypeArg.isNull()) |
| return QualType(); |
| |
| // If nothing changed, just keep the old TypeSourceInfo. |
| if (NewTypeArg == TypeArg) { |
| NewTypeArgInfos.push_back(TypeArgInfo); |
| continue; |
| } |
| |
| NewTypeArgInfos.push_back( |
| TypeArgBuilder.getTypeSourceInfo(SemaRef.Context, NewTypeArg)); |
| AnyChanged = true; |
| } |
| |
| QualType Result = TL.getType(); |
| if (getDerived().AlwaysRebuild() || AnyChanged) { |
| // Rebuild the type. |
| Result = getDerived().RebuildObjCObjectType( |
| BaseType, TL.getBeginLoc(), TL.getTypeArgsLAngleLoc(), NewTypeArgInfos, |
| TL.getTypeArgsRAngleLoc(), TL.getProtocolLAngleLoc(), |
| llvm::ArrayRef(TL.getTypePtr()->qual_begin(), TL.getNumProtocols()), |
| TL.getProtocolLocs(), TL.getProtocolRAngleLoc()); |
| |
| if (Result.isNull()) |
| return QualType(); |
| } |
| |
| ObjCObjectTypeLoc NewT = TLB.push<ObjCObjectTypeLoc>(Result); |
| NewT.setHasBaseTypeAsWritten(true); |
| NewT.setTypeArgsLAngleLoc(TL.getTypeArgsLAngleLoc()); |
| for (unsigned i = 0, n = TL.getNumTypeArgs(); i != n; ++i) |
| NewT.setTypeArgTInfo(i, NewTypeArgInfos[i]); |
| NewT.setTypeArgsRAngleLoc(TL.getTypeArgsRAngleLoc()); |
| NewT.setProtocolLAngleLoc(TL.getProtocolLAngleLoc()); |
| for (unsigned i = 0, n = TL.getNumProtocols(); i != n; ++i) |
| NewT.setProtocolLoc(i, TL.getProtocolLoc(i)); |
| NewT.setProtocolRAngleLoc(TL.getProtocolRAngleLoc()); |
| return Result; |
| } |
| |
| template<typename Derived> |
| QualType |
| TreeTransform<Derived>::TransformObjCObjectPointerType(TypeLocBuilder &TLB, |
| ObjCObjectPointerTypeLoc TL) { |
| QualType PointeeType = getDerived().TransformType(TLB, TL.getPointeeLoc()); |
| if (PointeeType.isNull()) |
| return QualType(); |
| |
| QualType Result = TL.getType(); |
| if (getDerived().AlwaysRebuild() || |
| PointeeType != TL.getPointeeLoc().getType()) { |
| Result = getDerived().RebuildObjCObjectPointerType(PointeeType, |
| TL.getStarLoc()); |
| if (Result.isNull()) |
| return QualType(); |
| } |
| |
| ObjCObjectPointerTypeLoc NewT = TLB.push<ObjCObjectPointerTypeLoc>(Result); |
| NewT.setStarLoc(TL.getStarLoc()); |
| return Result; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Statement transformation |
| //===----------------------------------------------------------------------===// |
| template<typename Derived> |
| StmtResult |
| TreeTransform<Derived>::TransformNullStmt(NullStmt *S) { |
| return S; |
| } |
| |
| template<typename Derived> |
| StmtResult |
| TreeTransform<Derived>::TransformCompoundStmt(CompoundStmt *S) { |
| return getDerived().TransformCompoundStmt(S, false); |
| } |
| |
| template<typename Derived> |
| StmtResult |
| TreeTransform<Derived>::TransformCompoundStmt(CompoundStmt *S, |
| bool IsStmtExpr) { |
| Sema::CompoundScopeRAII CompoundScope(getSema()); |
| Sema::FPFeaturesStateRAII FPSave(getSema()); |
| if (S->hasStoredFPFeatures()) |
| getSema().resetFPOptions( |
| S->getStoredFPFeatures().applyOverrides(getSema().getLangOpts())); |
| |
| const Stmt *ExprResult = S->getStmtExprResult(); |
| bool SubStmtInvalid = false; |
| bool SubStmtChanged = false; |
| SmallVector<Stmt*, 8> Statements; |
| for (auto *B : S->body()) { |
| StmtResult Result = getDerived().TransformStmt( |
| B, IsStmtExpr && B == ExprResult ? SDK_StmtExprResult : SDK_Discarded); |
| |
| if (Result.isInvalid()) { |
| // Immediately fail if this was a DeclStmt, since it's very |
| // likely that this will cause problems for future statements. |
| if (isa<DeclStmt>(B)) |
| return StmtError(); |
| |
| // Otherwise, just keep processing substatements and fail later. |
| SubStmtInvalid = true; |
| continue; |
| } |
| |
| SubStmtChanged = SubStmtChanged || Result.get() != B; |
| Statements.push_back(Result.getAs<Stmt>()); |
| } |
| |
| if (SubStmtInvalid) |
| return StmtError(); |
| |
| if (!getDerived().AlwaysRebuild() && |
| !SubStmtChanged) |
| return S; |
| |
| return getDerived().RebuildCompoundStmt(S->getLBracLoc(), |
| Statements, |
| S->getRBracLoc(), |
| IsStmtExpr); |
| } |
| |
| template<typename Derived> |
| StmtResult |
| TreeTransform<Derived>::TransformCaseStmt(CaseStmt *S) { |
| ExprResult LHS, RHS; |
| { |
| EnterExpressionEvaluationContext Unevaluated( |
| SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated); |
| |
| // Transform the left-hand case value. |
| LHS = getDerived().TransformExpr(S->getLHS()); |
| LHS = SemaRef.ActOnCaseExpr(S->getCaseLoc(), LHS); |
| if (LHS.isInvalid()) |
| return StmtError(); |
| |
| // Transform the right-hand case value (for the GNU case-range extension). |
| RHS = getDerived().TransformExpr(S->getRHS()); |
| RHS = SemaRef.ActOnCaseExpr(S->getCaseLoc(), RHS); |
| if (RHS.isInvalid()) |
| return StmtError(); |
| } |
| |
| // Build the case statement. |
| // Case statements are always rebuilt so that they will attached to their |
| // transformed switch statement. |
| StmtResult Case = getDerived().RebuildCaseStmt(S->getCaseLoc(), |
| LHS.get(), |
| S->getEllipsisLoc(), |
| RHS.get(), |
| S->getColonLoc()); |
| if (Case.isInvalid()) |
| return StmtError(); |
| |
| // Transform the statement following the case |
| StmtResult SubStmt = |
| getDerived().TransformStmt(S->getSubStmt()); |
| if (SubStmt.isInvalid()) |
| return StmtError(); |
| |
| // Attach the body to the case statement |
| return getDerived().RebuildCaseStmtBody(Case.get(), SubStmt.get()); |
| } |
| |
| template <typename Derived> |
| StmtResult TreeTransform<Derived>::TransformDefaultStmt(DefaultStmt *S) { |
| // Transform the statement following the default case |
| StmtResult SubStmt = |
| getDerived().TransformStmt(S->getSubStmt()); |
| if (SubStmt.isInvalid()) |
| return StmtError(); |
| |
| // Default statements are always rebuilt |
| return getDerived().RebuildDefaultStmt(S->getDefaultLoc(), S->getColonLoc(), |
| SubStmt.get()); |
| } |
| |
| template<typename Derived> |
| StmtResult |
| TreeTransform<Derived>::TransformLabelStmt(LabelStmt *S, StmtDiscardKind SDK) { |
| StmtResult SubStmt = getDerived().TransformStmt(S->getSubStmt(), SDK); |
| if (SubStmt.isInvalid()) |
| return StmtError(); |
| |
| Decl *LD = getDerived().TransformDecl(S->getDecl()->getLocation(), |
| S->getDecl()); |
| if (!LD) |
| return StmtError(); |
| |
| // If we're transforming "in-place" (we're not creating new local |
| // declarations), assume we're replacing the old label statement |
| // and clear out the reference to it. |
| if (LD == S->getDecl()) |
| S->getDecl()->setStmt(nullptr); |
| |
| // FIXME: Pass the real colon location in. |
| return getDerived().RebuildLabelStmt(S->getIdentLoc(), |
| cast<LabelDecl>(LD), SourceLocation(), |
| SubStmt.get()); |
| } |
| |
| template <typename Derived> |
| const Attr *TreeTransform<Derived>::TransformAttr(const Attr *R) { |
| if (!R) |
| return R; |
| |
| switch (R->getKind()) { |
| // Transform attributes by calling TransformXXXAttr. |
| #define ATTR(X) \ |
| case attr::X: \ |
| return getDerived().Transform##X##Attr(cast<X##Attr>(R)); |
| #include "clang/Basic/AttrList.inc" |
| } |
| return R; |
| } |
| |
| template <typename Derived> |
| const Attr *TreeTransform<Derived>::TransformStmtAttr(const Stmt *OrigS, |
| const Stmt *InstS, |
| const Attr *R) { |
| if (!R) |
| return R; |
| |
| switch (R->getKind()) { |
| // Transform attributes by calling TransformStmtXXXAttr. |
| #define ATTR(X) \ |
| case attr::X: \ |
| return getDerived().TransformStmt##X##Attr(OrigS, InstS, cast<X##Attr>(R)); |
| #include "clang/Basic/AttrList.inc" |
| } |
| return TransformAttr(R); |
| } |
| |
| template <typename Derived> |
| StmtResult |
| TreeTransform<Derived>::TransformAttributedStmt(AttributedStmt *S, |
| StmtDiscardKind SDK) { |
| StmtResult SubStmt = getDerived().TransformStmt(S->getSubStmt(), SDK); |
| if (SubStmt.isInvalid()) |
| return StmtError(); |
| |
| bool AttrsChanged = false; |
| SmallVector<const Attr *, 1> Attrs; |
| |
| // Visit attributes and keep track if any are transformed. |
| for (const auto *I : S->getAttrs()) { |
| const Attr *R = |
| getDerived().TransformStmtAttr(S->getSubStmt(), SubStmt.get(), I); |
| AttrsChanged |= (I != R); |
| if (R) |
| Attrs.push_back(R); |
| } |
| |
| if (SubStmt.get() == S->getSubStmt() && !AttrsChanged) |
| return S; |
| |
| // If transforming the attributes failed for all of the attributes in the |
| // statement, don't make an AttributedStmt without attributes. |
| if (Attrs.empty()) |
| return SubStmt; |
| |
| return getDerived().RebuildAttributedStmt(S->getAttrLoc(), Attrs, |
| SubStmt.get()); |
| } |
| |
| template<typename Derived> |
| StmtResult |
| TreeTransform<Derived>::TransformIfStmt(IfStmt *S) { |
| // Transform the initialization statement |
| StmtResult Init = getDerived().TransformStmt(S->getInit()); |
| if (Init.isInvalid()) |
| return StmtError(); |
| |
| Sema::ConditionResult Cond; |
| if (!S->isConsteval()) { |
| // Transform the condition |
| Cond = getDerived().TransformCondition( |
| S->getIfLoc(), S->getConditionVariable(), S->getCond(), |
| S->isConstexpr() ? Sema::ConditionKind::ConstexprIf |
| : Sema::ConditionKind::Boolean); |
| if (Cond.isInvalid()) |
| return StmtError(); |
| } |
| |
| // If this is a constexpr if, determine which arm we should instantiate. |
| std::optional<bool> ConstexprConditionValue; |
| if (S->isConstexpr()) |
| ConstexprConditionValue = Cond.getKnownValue(); |
| |
| // Transform the "then" branch. |
| StmtResult Then; |
| if (!ConstexprConditionValue || *ConstexprConditionValue) { |
| EnterExpressionEvaluationContext Ctx( |
| getSema(), Sema::ExpressionEvaluationContext::ImmediateFunctionContext, |
| nullptr, Sema::ExpressionEvaluationContextRecord::EK_Other, |
| S->isNonNegatedConsteval()); |
| |
| Then = getDerived().TransformStmt(S->getThen()); |
| if (Then.isInvalid()) |
| return StmtError(); |
| } else { |
| // Discarded branch is replaced with empty CompoundStmt so we can keep |
| // proper source location for start and end of original branch, so |
| // subsequent transformations like CoverageMapping work properly |
| Then = new (getSema().Context) |
| CompoundStmt(S->getThen()->getBeginLoc(), S->getThen()->getEndLoc()); |
| } |
| |
| // Transform the "else" branch. |
| StmtResult Else; |
| if (!ConstexprConditionValue || !*ConstexprConditionValue) { |
| EnterExpressionEvaluationContext Ctx( |
| getSema(), Sema::ExpressionEvaluationContext::ImmediateFunctionContext, |
| nullptr, Sema::ExpressionEvaluationContextRecord::EK_Other, |
| S->isNegatedConsteval()); |
| |
| Else = getDerived().TransformStmt(S->getElse()); |
| if (Else.isInvalid()) |
| return StmtError(); |
| } else if (S->getElse() && ConstexprConditionValue && |
| *ConstexprConditionValue) { |
| // Same thing here as with <then> branch, we are discarding it, we can't |
| // replace it with NULL nor NullStmt as we need to keep for source location |
| // range, for CoverageMapping |
| Else = new (getSema().Context) |
| CompoundStmt(S->getElse()->getBeginLoc(), S->getElse()->getEndLoc()); |
| } |
| |
| if (!getDerived().AlwaysRebuild() && |
| Init.get() == S->getInit() && |
| Cond.get() == std::make_pair(S->getConditionVariable(), S->getCond()) && |
| Then.get() == S->getThen() && |
| Else.get() == S->getElse()) |
| return S; |
| |
| return getDerived().RebuildIfStmt( |
| S->getIfLoc(), S->getStatementKind(), S->getLParenLoc(), Cond, |
| S->getRParenLoc(), Init.get(), Then.get(), S->getElseLoc(), Else.get()); |
| } |
| |
| template<typename Derived> |
| StmtResult |
| TreeTransform<Derived>::TransformSwitchStmt(SwitchStmt *S) { |
| // Transform the initialization statement |
| StmtResult Init = getDerived().TransformStmt(S->getInit()); |
| if (Init.isInvalid()) |
| return StmtError(); |
| |
| // Transform the condition. |
| Sema::ConditionResult Cond = getDerived().TransformCondition( |
| S->getSwitchLoc(), S->getConditionVariable(), S->getCond(), |
| Sema::ConditionKind::Switch); |
| if (Cond.isInvalid()) |
| return StmtError(); |
| |
| // Rebuild the switch statement. |
| StmtResult Switch = |
| getDerived().RebuildSwitchStmtStart(S->getSwitchLoc(), S->getLParenLoc(), |
| Init.get(), Cond, S->getRParenLoc()); |
| if (Switch.isInvalid()) |
| return StmtError(); |
| |
| // Transform the body of the switch statement. |
| StmtResult Body = getDerived().TransformStmt(S->getBody()); |
| if (Body.isInvalid()) |
| return StmtError(); |
| |
| // Complete the switch statement. |
| return getDerived().RebuildSwitchStmtBody(S->getSwitchLoc(), Switch.get(), |
| Body.get()); |
| } |
| |
| template<typename Derived> |
| StmtResult |
| TreeTransform<Derived>::TransformWhileStmt(WhileStmt *S) { |
| // Transform the condition |
| Sema::ConditionResult Cond = getDerived().TransformCondition( |
| S->getWhileLoc(), S->getConditionVariable(), S->getCond(), |
| Sema::ConditionKind::Boolean); |
| if (Cond.isInvalid()) |
| return StmtError(); |
| |
| // OpenACC Restricts a while-loop inside of certain construct/clause |
| // combinations, so diagnose that here in OpenACC mode. |
| SemaOpenACC::LoopInConstructRAII LCR{SemaRef.OpenACC()}; |
| SemaRef.OpenACC().ActOnWhileStmt(S->getBeginLoc()); |
| |
| // Transform the body |
| StmtResult Body = getDerived().TransformStmt(S->getBody()); |
| if (Body.isInvalid()) |
| return StmtError(); |
| |
| if (!getDerived().AlwaysRebuild() && |
| Cond.get() == std::make_pair(S->getConditionVariable(), S->getCond()) && |
| Body.get() == S->getBody()) |
| return Owned(S); |
| |
| return getDerived().RebuildWhileStmt(S->getWhileLoc(), S->getLParenLoc(), |
| Cond, S->getRParenLoc(), Body.get()); |
| } |
| |
| template<typename Derived> |
| StmtResult |
| TreeTransform<Derived>::TransformDoStmt(DoStmt *S) { |
| // OpenACC Restricts a do-loop inside of certain construct/clause |
| // combinations, so diagnose that here in OpenACC mode. |
| SemaOpenACC::LoopInConstructRAII LCR{SemaRef.OpenACC()}; |
| SemaRef.OpenACC().ActOnDoStmt(S->getBeginLoc()); |
| |
| // Transform the body |
| StmtResult Body = getDerived().TransformStmt(S->getBody()); |
| if (Body.isInvalid()) |
| return StmtError(); |
| |
| // Transform the condition |
| ExprResult Cond = getDerived().TransformExpr(S->getCond()); |
| if (Cond.isInvalid()) |
| return StmtError(); |
| |
| if (!getDerived().AlwaysRebuild() && |
| Cond.get() == S->getCond() && |
| Body.get() == S->getBody()) |
| return S; |
| |
| return getDerived().RebuildDoStmt(S->getDoLoc(), Body.get(), S->getWhileLoc(), |
| /*FIXME:*/S->getWhileLoc(), Cond.get(), |
| S->getRParenLoc()); |
| } |
| |
| template<typename Derived> |
| StmtResult |
| TreeTransform<Derived>::TransformForStmt(ForStmt *S) { |
| if (getSema().getLangOpts().OpenMP) |
| getSema().OpenMP().startOpenMPLoop(); |
| |
| // Transform the initialization statement |
| StmtResult Init = getDerived().TransformStmt(S->getInit()); |
| if (Init.isInvalid()) |
| return StmtError(); |
| |
| // In OpenMP loop region loop control variable must be captured and be |
| // private. Perform analysis of first part (if any). |
| if (getSema().getLangOpts().OpenMP && Init.isUsable()) |
| getSema().OpenMP().ActOnOpenMPLoopInitialization(S->getForLoc(), |
| Init.get()); |
| |
| // Transform the condition |
| Sema::ConditionResult Cond = getDerived().TransformCondition( |
| S->getForLoc(), S->getConditionVariable(), S->getCond(), |
| Sema::ConditionKind::Boolean); |
| if (Cond.isInvalid()) |
| return StmtError(); |
| |
| // Transform the increment |
| ExprResult Inc = getDerived().TransformExpr(S->getInc()); |
| if (Inc.isInvalid()) |
| return StmtError(); |
| |
| Sema::FullExprArg FullInc(getSema().MakeFullDiscardedValueExpr(Inc.get())); |
| if (S->getInc() && !FullInc.get()) |
| return StmtError(); |
| |
| // OpenACC Restricts a for-loop inside of certain construct/clause |
| // combinations, so diagnose that here in OpenACC mode. |
| SemaOpenACC::LoopInConstructRAII LCR{SemaRef.OpenACC()}; |
| SemaRef.OpenACC().ActOnForStmtBegin( |
| S->getBeginLoc(), S->getInit(), Init.get(), S->getCond(), |
| Cond.get().second, S->getInc(), Inc.get()); |
| |
| // Transform the body |
| StmtResult Body = getDerived().TransformStmt(S->getBody()); |
| if (Body.isInvalid()) |
| return StmtError(); |
| |
| SemaRef.OpenACC().ActOnForStmtEnd(S->getBeginLoc(), Body); |
| |
| if (!getDerived().AlwaysRebuild() && |
| Init.get() == S->getInit() && |
| Cond.get() == std::make_pair(S->getConditionVariable(), S->getCond()) && |
| Inc.get() == S->getInc() && |
| Body.get() == S->getBody()) |
| return S; |
| |
| return getDerived().RebuildForStmt(S->getForLoc(), S->getLParenLoc(), |
| Init.get(), Cond, FullInc, |
| S->getRParenLoc(), Body.get()); |
| } |
| |
| template<typename Derived> |
| StmtResult |
| TreeTransform<Derived>::TransformGotoStmt(GotoStmt *S) { |
| Decl *LD = getDerived().TransformDecl(S->getLabel()->getLocation(), |
| S->getLabel()); |
| if (!LD) |
| return StmtError(); |
| |
| // Goto statements must always be rebuilt, to resolve the label. |
| return getDerived().RebuildGotoStmt(S->getGotoLoc(), S->getLabelLoc(), |
| cast<LabelDecl>(LD)); |
| } |
| |
| template<typename Derived> |
| StmtResult |
| TreeTransform<Derived>::TransformIndirectGotoStmt(IndirectGotoStmt *S) { |
| ExprResult Target = getDerived().TransformExpr(S->getTarget()); |
| if (Target.isInvalid()) |
| return StmtError(); |
| Target = SemaRef.MaybeCreateExprWithCleanups(Target.get()); |
| |
| if (!getDerived().AlwaysRebuild() && |
| Target.get() == S->getTarget()) |
| return S; |
| |
| return getDerived().RebuildIndirectGotoStmt(S->getGotoLoc(), S->getStarLoc(), |
| Target.get()); |
| } |
| |
| template<typename Derived> |
| StmtResult |
| TreeTransform<Derived>::TransformContinueStmt(ContinueStmt *S) { |
| return S; |
| } |
| |
| template<typename Derived> |
| StmtResult |
| TreeTransform<Derived>::TransformBreakStmt(BreakStmt *S) { |
| return S; |
| } |
| |
| template<typename Derived> |
| StmtResult |
| TreeTransform<Derived>::TransformReturnStmt(ReturnStmt *S) { |
| ExprResult Result = getDerived().TransformInitializer(S->getRetValue(), |
| /*NotCopyInit*/false); |
| if (Result.isInvalid()) |
| return StmtError(); |
| |
| // FIXME: We always rebuild the return statement because there is no way |
| // to tell whether the return type of the function has changed. |
| return getDerived().RebuildReturnStmt(S->getReturnLoc(), Result.get()); |
| } |
| |
| template<typename Derived> |
| StmtResult |
| TreeTransform<Derived>::TransformDeclStmt(DeclStmt *S) { |
| bool DeclChanged = false; |
| SmallVector<Decl *, 4> Decls; |
| LambdaScopeInfo *LSI = getSema().getCurLambda(); |
| for (auto *D : S->decls()) { |
| Decl *Transformed = getDerived().TransformDefinition(D->getLocation(), D); |
| if (!Transformed) |
| return StmtError(); |
| |
| if (Transformed != D) |
| DeclChanged = true; |
| |
| if (LSI) { |
| if (auto *TD = dyn_cast<TypeDecl>(Transformed)) |
| LSI->ContainsUnexpandedParameterPack |= |
| getSema() |
| .getASTContext() |
| .getTypeDeclType(TD) |
| .getSingleStepDesugaredType(getSema().getASTContext()) |
| ->containsUnexpandedParameterPack(); |
| |
| if (auto *VD = dyn_cast<VarDecl>(Transformed)) |
| LSI->ContainsUnexpandedParameterPack |= |
| VD->getType()->containsUnexpandedParameterPack(); |
| } |
| |
| Decls.push_back(Transformed); |
| } |
| |
| if (!getDerived().AlwaysRebuild() && !DeclChanged) |
| return S; |
| |
| return getDerived().RebuildDeclStmt(Decls, S->getBeginLoc(), S->getEndLoc()); |
| } |
| |
| template<typename Derived> |
| StmtResult |
| TreeTransform<Derived>::TransformGCCAsmStmt(GCCAsmStmt *S) { |
| |
| SmallVector<Expr*, 8> Constraints; |
| SmallVector<Expr*, 8> Exprs; |
| SmallVector<IdentifierInfo *, 4> Names; |
| |
| ExprResult AsmString; |
| SmallVector<Expr*, 8> Clobbers; |
| |
| bool ExprsChanged = false; |
| |
| // Go through the outputs. |
| for (unsigned I = 0, E = S->getNumOutputs(); I != E; ++I) { |
| Names.push_back(S->getOutputIdentifier(I)); |
| |
| // No need to transform the constraint literal. |
| Constraints.push_back(S->getOutputConstraintLiteral(I)); |
| |
| // Transform the output expr. |
| Expr *OutputExpr = S->getOutputExpr(I); |
| ExprResult Result = getDerived().TransformExpr(OutputExpr); |
| if (Result.isInvalid()) |
| return StmtError(); |
| |
| ExprsChanged |= Result.get() != OutputExpr; |
| |
| Exprs.push_back(Result.get()); |
| } |
| |
| // Go through the inputs. |
| for (unsigned I = 0, E = S->getNumInputs(); I != E; ++I) { |
| Names.push_back(S->getInputIdentifier(I)); |
| |
| // No need to transform the constraint literal. |
| Constraints.push_back(S->getInputConstraintLiteral(I)); |
| |
| // Transform the input expr. |
| Expr *InputExpr = S->getInputExpr(I); |
| ExprResult Result = getDerived().TransformExpr(InputExpr); |
| if (Result.isInvalid()) |
| return StmtError(); |
| |
| ExprsChanged |= Result.get() != InputExpr; |
| |
| Exprs.push_back(Result.get()); |
| } |
| |
| // Go through the Labels. |
| for (unsigned I = 0, E = S->getNumLabels(); I != E; ++I) { |
| Names.push_back(S->getLabelIdentifier(I)); |
| |
| ExprResult Result = getDerived().TransformExpr(S->getLabelExpr(I)); |
| if (Result.isInvalid()) |
| return StmtError(); |
| ExprsChanged |= Result.get() != S->getLabelExpr(I); |
| Exprs.push_back(Result.get()); |
| } |
| if (!getDerived().AlwaysRebuild() && !ExprsChanged) |
| return S; |
| |
| // Go through the clobbers. |
| for (unsigned I = 0, E = S->getNumClobbers(); I != E; ++I) |
| Clobbers.push_back(S->getClobberStringLiteral(I)); |
| |
| // No need to transform the asm string literal. |
| AsmString = S->getAsmString(); |
| return getDerived().RebuildGCCAsmStmt(S->getAsmLoc(), S->isSimple(), |
| S->isVolatile(), S->getNumOutputs(), |
| S->getNumInputs(), Names.data(), |
| Constraints, Exprs, AsmString.get(), |
| Clobbers, S->getNumLabels(), |
| S->getRParenLoc()); |
| } |
| |
| template<typename Derived> |
| StmtResult |
| TreeTransform<Derived>::TransformMSAsmStmt(MSAsmStmt *S) { |
| ArrayRef<Token> AsmToks = llvm::ArrayRef(S->getAsmToks(), S->getNumAsmToks()); |
| |
| bool HadError = false, HadChange = false; |
| |
| ArrayRef<Expr*> SrcExprs = S->getAllExprs(); |
| SmallVector<Expr*, 8> TransformedExprs; |
| TransformedExprs.reserve(SrcExprs.size()); |
| for (unsigned i = 0, e = SrcExprs.size(); i != e; ++i) { |
| ExprResult Result = getDerived().TransformExpr(SrcExprs[i]); |
| if (!Result.isUsable()) { |
| HadError = true; |
| } else { |
| HadChange |= (Result.get() != SrcExprs[i]); |
| TransformedExprs.push_back(Result.get()); |
| } |
| } |
| |
| if (HadError) return StmtError(); |
| if (!HadChange && !getDerived().AlwaysRebuild()) |
| return Owned(S); |
| |
| return getDerived().RebuildMSAsmStmt(S->getAsmLoc(), S->getLBraceLoc(), |
| AsmToks, S->getAsmString(), |
| S->getNumOutputs(), S->getNumInputs(), |
| S->getAllConstraints(), S->getClobbers(), |
| TransformedExprs, S->getEndLoc()); |
| } |
| |
| // C++ Coroutines |
| template<typename Derived> |
| StmtResult |
| TreeTransform<Derived>::TransformCoroutineBodyStmt(CoroutineBodyStmt *S) { |
| auto *ScopeInfo = SemaRef.getCurFunction(); |
| auto *FD = cast<FunctionDecl>(SemaRef.CurContext); |
| assert(FD && ScopeInfo && !ScopeInfo->CoroutinePromise && |
| ScopeInfo->NeedsCoroutineSuspends && |
| ScopeInfo->CoroutineSuspends.first == nullptr && |
| ScopeInfo->CoroutineSuspends.second == nullptr && |
| "expected clean scope info"); |
| |
| // Set that we have (possibly-invalid) suspend points before we do anything |
| // that may fail. |
| ScopeInfo->setNeedsCoroutineSuspends(false); |
| |
| // We re-build the coroutine promise object (and the coroutine parameters its |
| // type and constructor depend on) based on the types used in our current |
| // function. We must do so, and set it on the current FunctionScopeInfo, |
| // before attempting to transform the other parts of the coroutine body |
| // statement, such as the implicit suspend statements (because those |
| // statements reference the FunctionScopeInfo::CoroutinePromise). |
| if (!SemaRef.buildCoroutineParameterMoves(FD->getLocation())) |
| return StmtError(); |
| auto *Promise = SemaRef.buildCoroutinePromise(FD->getLocation()); |
| if (!Promise) |
| return StmtError(); |
| getDerived().transformedLocalDecl(S->getPromiseDecl(), {Promise}); |
| ScopeInfo->CoroutinePromise = Promise; |
| |
| // Transform the implicit coroutine statements constructed using dependent |
| // types during the previous parse: initial and final suspensions, the return |
| // object, and others. We also transform the coroutine function's body. |
| StmtResult InitSuspend = getDerived().TransformStmt(S->getInitSuspendStmt()); |
| if (InitSuspend.isInvalid()) |
| return StmtError(); |
| StmtResult FinalSuspend = |
| getDerived().TransformStmt(S->getFinalSuspendStmt()); |
| if (FinalSuspend.isInvalid() || |
| !SemaRef.checkFinalSuspendNoThrow(FinalSuspend.get())) |
| return StmtError(); |
| ScopeInfo->setCoroutineSuspends(InitSuspend.get(), FinalSuspend.get()); |
| assert(isa<Expr>(InitSuspend.get()) && isa<Expr>(FinalSuspend.get())); |
| |
| StmtResult BodyRes = getDerived().TransformStmt(S->getBody()); |
| if (BodyRes.isInvalid()) |
| return StmtError(); |
| |
| CoroutineStmtBuilder Builder(SemaRef, *FD, *ScopeInfo, BodyRes.get()); |
| if (Builder.isInvalid()) |
| return StmtError(); |
| |
| Expr *ReturnObject = S->getReturnValueInit(); |
| assert(ReturnObject && "the return object is expected to be valid"); |
| ExprResult Res = getDerived().TransformInitializer(ReturnObject, |
| /*NoCopyInit*/ false); |
| if (Res.isInvalid()) |
| return StmtError(); |
| Builder.ReturnValue = Res.get(); |
| |
| // If during the previous parse the coroutine still had a dependent promise |
| // statement, we may need to build some implicit coroutine statements |
| // (such as exception and fallthrough handlers) for the first time. |
| if (S->hasDependentPromiseType()) { |
| // We can only build these statements, however, if the current promise type |
| // is not dependent. |
| if (!Promise->getType()->isDependentType()) { |
| assert(!S->getFallthroughHandler() && !S->getExceptionHandler() && |
| !S->getReturnStmtOnAllocFailure() && !S->getDeallocate() && |
| "these nodes should not have been built yet"); |
| if (!Builder.buildDependentStatements()) |
| return StmtError(); |
| } |
| } else { |
| if (auto *OnFallthrough = S->getFallthroughHandler()) { |
| StmtResult Res = getDerived().TransformStmt(OnFallthrough); |
| if (Res.isInvalid()) |
| return StmtError(); |
| Builder.OnFallthrough = Res.get(); |
| } |
| |
| if (auto *OnException = S->getExceptionHandler()) { |
| StmtResult Res = getDerived().TransformStmt(OnException); |
| if (Res.isInvalid()) |
| return StmtError(); |
| Builder.OnException = Res.get(); |
| } |
| |
| if (auto *OnAllocFailure = S->getReturnStmtOnAllocFailure()) { |
| StmtResult Res = getDerived().TransformStmt(OnAllocFailure); |
| if (Res.isInvalid()) |
| return StmtError(); |
| Builder.ReturnStmtOnAllocFailure = Res.get(); |
| } |
| |
| // Transform any additional statements we may have already built |
| assert(S->getAllocate() && S->getDeallocate() && |
| "allocation and deallocation calls must already be built"); |
| ExprResult AllocRes = getDerived().TransformExpr(S->getAllocate()); |
| if (AllocRes.isInvalid()) |
| return StmtError(); |
| Builder.Allocate = AllocRes.get(); |
| |
| ExprResult DeallocRes = getDerived().TransformExpr(S->getDeallocate()); |
| if (DeallocRes.isInvalid()) |
| return StmtError(); |
| Builder.Deallocate = DeallocRes.get(); |
| |
| if (auto *ResultDecl = S->getResultDecl()) { |
| StmtResult Res = getDerived().TransformStmt(ResultDecl); |
| if (Res.isInvalid()) |
| return StmtError(); |
| Builder.ResultDecl = Res.get(); |
| } |
| |
| if (auto *ReturnStmt = S->getReturnStmt()) { |
| StmtResult Res = getDerived().TransformStmt(ReturnStmt); |
| if (Res.isInvalid()) |
| return StmtError(); |
| Builder.ReturnStmt = Res.get(); |
| } |
| } |
| |
| return getDerived().RebuildCoroutineBodyStmt(Builder); |
| } |
| |
| template<typename Derived> |
| StmtResult |
| TreeTransform<Derived>::TransformCoreturnStmt(CoreturnStmt *S) { |
| ExprResult Result = getDerived().TransformInitializer(S->getOperand(), |
| /*NotCopyInit*/false); |
| if (Result.isInvalid()) |
| return StmtError(); |
| |
| // Always rebuild; we don't know if this needs to be injected into a new |
| // context or if the promise type has changed. |
| return getDerived().RebuildCoreturnStmt(S->getKeywordLoc(), Result.get(), |
| S->isImplicit()); |
| } |
| |
| template <typename Derived> |
| ExprResult TreeTransform<Derived>::TransformCoawaitExpr(CoawaitExpr *E) { |
| ExprResult Operand = getDerived().TransformInitializer(E->getOperand(), |
| /*NotCopyInit*/ false); |
| if (Operand.isInvalid()) |
| return ExprError(); |
| |
| // Rebuild the common-expr from the operand rather than transforming it |
| // separately. |
| |
| // FIXME: getCurScope() should not be used during template instantiation. |
| // We should pick up the set of unqualified lookup results for operator |
| // co_await during the initial parse. |
| ExprResult Lookup = getSema().BuildOperatorCoawaitLookupExpr( |
| getSema().getCurScope(), E->getKeywordLoc()); |
| |
| // Always rebuild; we don't know if this needs to be injected into a new |
| // context or if the promise type has changed. |
| return getDerived().RebuildCoawaitExpr( |
| E->getKeywordLoc(), Operand.get(), |
| cast<UnresolvedLookupExpr>(Lookup.get()), E->isImplicit()); |
| } |
| |
| template <typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformDependentCoawaitExpr(DependentCoawaitExpr *E) { |
| ExprResult OperandResult = getDerived().TransformInitializer(E->getOperand(), |
| /*NotCopyInit*/ false); |
| if (OperandResult.isInvalid()) |
| return ExprError(); |
| |
| ExprResult LookupResult = getDerived().TransformUnresolvedLookupExpr( |
| E->getOperatorCoawaitLookup()); |
| |
| if (LookupResult.isInvalid()) |
| return ExprError(); |
| |
| // Always rebuild; we don't know if this needs to be injected into a new |
| // context or if the promise type has changed. |
| return getDerived().RebuildDependentCoawaitExpr( |
| E->getKeywordLoc(), OperandResult.get(), |
| cast<UnresolvedLookupExpr>(LookupResult.get())); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformCoyieldExpr(CoyieldExpr *E) { |
| ExprResult Result = getDerived().TransformInitializer(E->getOperand(), |
| /*NotCopyInit*/false); |
| if (Result.isInvalid()) |
| return ExprError(); |
| |
| // Always rebuild; we don't know if this needs to be injected into a new |
| // context or if the promise type has changed. |
| return getDerived().RebuildCoyieldExpr(E->getKeywordLoc(), Result.get()); |
| } |
| |
| // Objective-C Statements. |
| |
| template<typename Derived> |
| StmtResult |
| TreeTransform<Derived>::TransformObjCAtTryStmt(ObjCAtTryStmt *S) { |
| // Transform the body of the @try. |
| StmtResult TryBody = getDerived().TransformStmt(S->getTryBody()); |
| if (TryBody.isInvalid()) |
| return StmtError(); |
| |
| // Transform the @catch statements (if present). |
| bool AnyCatchChanged = false; |
| SmallVector<Stmt*, 8> CatchStmts; |
| for (unsigned I = 0, N = S->getNumCatchStmts(); I != N; ++I) { |
| StmtResult Catch = getDerived().TransformStmt(S->getCatchStmt(I)); |
| if (Catch.isInvalid()) |
| return StmtError(); |
| if (Catch.get() != S->getCatchStmt(I)) |
| AnyCatchChanged = true; |
| CatchStmts.push_back(Catch.get()); |
| } |
| |
| // Transform the @finally statement (if present). |
| StmtResult Finally; |
| if (S->getFinallyStmt()) { |
| Finally = getDerived().TransformStmt(S->getFinallyStmt()); |
| if (Finally.isInvalid()) |
| return StmtError(); |
| } |
| |
| // If nothing changed, just retain this statement. |
| if (!getDerived().AlwaysRebuild() && |
| TryBody.get() == S->getTryBody() && |
| !AnyCatchChanged && |
| Finally.get() == S->getFinallyStmt()) |
| return S; |
| |
| // Build a new statement. |
| return getDerived().RebuildObjCAtTryStmt(S->getAtTryLoc(), TryBody.get(), |
| CatchStmts, Finally.get()); |
| } |
| |
| template<typename Derived> |
| StmtResult |
| TreeTransform<Derived>::TransformObjCAtCatchStmt(ObjCAtCatchStmt *S) { |
| // Transform the @catch parameter, if there is one. |
| VarDecl *Var = nullptr; |
| if (VarDecl *FromVar = S->getCatchParamDecl()) { |
| TypeSourceInfo *TSInfo = nullptr; |
| if (FromVar->getTypeSourceInfo()) { |
| TSInfo = getDerived().TransformType(FromVar->getTypeSourceInfo()); |
| if (!TSInfo) |
| return StmtError(); |
| } |
| |
| QualType T; |
| if (TSInfo) |
| T = TSInfo->getType(); |
| else { |
| T = getDerived().TransformType(FromVar->getType()); |
| if (T.isNull()) |
| return StmtError(); |
| } |
| |
| Var = getDerived().RebuildObjCExceptionDecl(FromVar, TSInfo, T); |
| if (!Var) |
| return StmtError(); |
| } |
| |
| StmtResult Body = getDerived().TransformStmt(S->getCatchBody()); |
| if (Body.isInvalid()) |
| return StmtError(); |
| |
| return getDerived().RebuildObjCAtCatchStmt(S->getAtCatchLoc(), |
| S->getRParenLoc(), |
| Var, Body.get()); |
| } |
| |
| template<typename Derived> |
| StmtResult |
| TreeTransform<Derived>::TransformObjCAtFinallyStmt(ObjCAtFinallyStmt *S) { |
| // Transform the body. |
| StmtResult Body = getDerived().TransformStmt(S->getFinallyBody()); |
| if (Body.isInvalid()) |
| return StmtError(); |
| |
| // If nothing changed, just retain this statement. |
| if (!getDerived().AlwaysRebuild() && |
| Body.get() == S->getFinallyBody()) |
| return S; |
| |
| // Build a new statement. |
| return getDerived().RebuildObjCAtFinallyStmt(S->getAtFinallyLoc(), |
| Body.get()); |
| } |
| |
| template<typename Derived> |
| StmtResult |
| TreeTransform<Derived>::TransformObjCAtThrowStmt(ObjCAtThrowStmt *S) { |
| ExprResult Operand; |
| if (S->getThrowExpr()) { |
| Operand = getDerived().TransformExpr(S->getThrowExpr()); |
| if (Operand.isInvalid()) |
| return StmtError(); |
| } |
| |
| if (!getDerived().AlwaysRebuild() && |
| Operand.get() == S->getThrowExpr()) |
| return S; |
| |
| return getDerived().RebuildObjCAtThrowStmt(S->getThrowLoc(), Operand.get()); |
| } |
| |
| template<typename Derived> |
| StmtResult |
| TreeTransform<Derived>::TransformObjCAtSynchronizedStmt( |
| ObjCAtSynchronizedStmt *S) { |
| // Transform the object we are locking. |
| ExprResult Object = getDerived().TransformExpr(S->getSynchExpr()); |
| if (Object.isInvalid()) |
| return StmtError(); |
| Object = |
| getDerived().RebuildObjCAtSynchronizedOperand(S->getAtSynchronizedLoc(), |
| Object.get()); |
| if (Object.isInvalid()) |
| return StmtError(); |
| |
| // Transform the body. |
| StmtResult Body = getDerived().TransformStmt(S->getSynchBody()); |
| if (Body.isInvalid()) |
| return StmtError(); |
| |
| // If nothing change, just retain the current statement. |
| if (!getDerived().AlwaysRebuild() && |
| Object.get() == S->getSynchExpr() && |
| Body.get() == S->getSynchBody()) |
| return S; |
| |
| // Build a new statement. |
| return getDerived().RebuildObjCAtSynchronizedStmt(S->getAtSynchronizedLoc(), |
| Object.get(), Body.get()); |
| } |
| |
| template<typename Derived> |
| StmtResult |
| TreeTransform<Derived>::TransformObjCAutoreleasePoolStmt( |
| ObjCAutoreleasePoolStmt *S) { |
| // Transform the body. |
| StmtResult Body = getDerived().TransformStmt(S->getSubStmt()); |
| if (Body.isInvalid()) |
| return StmtError(); |
| |
| // If nothing changed, just retain this statement. |
| if (!getDerived().AlwaysRebuild() && |
| Body.get() == S->getSubStmt()) |
| return S; |
| |
| // Build a new statement. |
| return getDerived().RebuildObjCAutoreleasePoolStmt( |
| S->getAtLoc(), Body.get()); |
| } |
| |
| template<typename Derived> |
| StmtResult |
| TreeTransform<Derived>::TransformObjCForCollectionStmt( |
| ObjCForCollectionStmt *S) { |
| // Transform the element statement. |
| StmtResult Element = |
| getDerived().TransformStmt(S->getElement(), SDK_NotDiscarded); |
| if (Element.isInvalid()) |
| return StmtError(); |
| |
| // Transform the collection expression. |
| ExprResult Collection = getDerived().TransformExpr(S->getCollection()); |
| if (Collection.isInvalid()) |
| return StmtError(); |
| |
| // Transform the body. |
| StmtResult Body = getDerived().TransformStmt(S->getBody()); |
| if (Body.isInvalid()) |
| return StmtError(); |
| |
| // If nothing changed, just retain this statement. |
| if (!getDerived().AlwaysRebuild() && |
| Element.get() == S->getElement() && |
| Collection.get() == S->getCollection() && |
| Body.get() == S->getBody()) |
| return S; |
| |
| // Build a new statement. |
| return getDerived().RebuildObjCForCollectionStmt(S->getForLoc(), |
| Element.get(), |
| Collection.get(), |
| S->getRParenLoc(), |
| Body.get()); |
| } |
| |
| template <typename Derived> |
| StmtResult TreeTransform<Derived>::TransformCXXCatchStmt(CXXCatchStmt *S) { |
| // Transform the exception declaration, if any. |
| VarDecl *Var = nullptr; |
| if (VarDecl *ExceptionDecl = S->getExceptionDecl()) { |
| TypeSourceInfo *T = |
| getDerived().TransformType(ExceptionDecl->getTypeSourceInfo()); |
| if (!T) |
| return StmtError(); |
| |
| Var = getDerived().RebuildExceptionDecl( |
| ExceptionDecl, T, ExceptionDecl->getInnerLocStart(), |
| ExceptionDecl->getLocation(), ExceptionDecl->getIdentifier()); |
| if (!Var || Var->isInvalidDecl()) |
| return StmtError(); |
| } |
| |
| // Transform the actual exception handler. |
| StmtResult Handler = getDerived().TransformStmt(S->getHandlerBlock()); |
| if (Handler.isInvalid()) |
| return StmtError(); |
| |
| if (!getDerived().AlwaysRebuild() && !Var && |
| Handler.get() == S->getHandlerBlock()) |
| return S; |
| |
| return getDerived().RebuildCXXCatchStmt(S->getCatchLoc(), Var, Handler.get()); |
| } |
| |
| template <typename Derived> |
| StmtResult TreeTransform<Derived>::TransformCXXTryStmt(CXXTryStmt *S) { |
| // Transform the try block itself. |
| StmtResult TryBlock = getDerived().TransformCompoundStmt(S->getTryBlock()); |
| if (TryBlock.isInvalid()) |
| return StmtError(); |
| |
| // Transform the handlers. |
| bool HandlerChanged = false; |
| SmallVector<Stmt *, 8> Handlers; |
| for (unsigned I = 0, N = S->getNumHandlers(); I != N; ++I) { |
| StmtResult Handler = getDerived().TransformCXXCatchStmt(S->getHandler(I)); |
| if (Handler.isInvalid()) |
| return StmtError(); |
| |
| HandlerChanged = HandlerChanged || Handler.get() != S->getHandler(I); |
| Handlers.push_back(Handler.getAs<Stmt>()); |
| } |
| |
| if (!getDerived().AlwaysRebuild() && TryBlock.get() == S->getTryBlock() && |
| !HandlerChanged) |
| return S; |
| |
| return getDerived().RebuildCXXTryStmt(S->getTryLoc(), TryBlock.get(), |
| Handlers); |
| } |
| |
| template<typename Derived> |
| StmtResult |
| TreeTransform<Derived>::TransformCXXForRangeStmt(CXXForRangeStmt *S) { |
| EnterExpressionEvaluationContext ForRangeInitContext( |
| getSema(), Sema::ExpressionEvaluationContext::PotentiallyEvaluated, |
| /*LambdaContextDecl=*/nullptr, |
| Sema::ExpressionEvaluationContextRecord::EK_Other, |
| getSema().getLangOpts().CPlusPlus23); |
| |
| // P2718R0 - Lifetime extension in range-based for loops. |
| if (getSema().getLangOpts().CPlusPlus23) { |
| auto &LastRecord = getSema().currentEvaluationContext(); |
| LastRecord.InLifetimeExtendingContext = true; |
| LastRecord.RebuildDefaultArgOrDefaultInit = true; |
| } |
| StmtResult Init = |
| S->getInit() ? getDerived().TransformStmt(S->getInit()) : StmtResult(); |
| if (Init.isInvalid()) |
| return StmtError(); |
| |
| StmtResult Range = getDerived().TransformStmt(S->getRangeStmt()); |
| if (Range.isInvalid()) |
| return StmtError(); |
| |
| // Before c++23, ForRangeLifetimeExtendTemps should be empty. |
| assert(getSema().getLangOpts().CPlusPlus23 || |
| getSema().ExprEvalContexts.back().ForRangeLifetimeExtendTemps.empty()); |
| auto ForRangeLifetimeExtendTemps = |
| getSema().ExprEvalContexts.back().ForRangeLifetimeExtendTemps; |
| |
| StmtResult Begin = getDerived().TransformStmt(S->getBeginStmt()); |
| if (Begin.isInvalid()) |
| return StmtError(); |
| StmtResult End = getDerived().TransformStmt(S->getEndStmt()); |
| if (End.isInvalid()) |
| return StmtError(); |
| |
| ExprResult Cond = getDerived().TransformExpr(S->getCond()); |
| if (Cond.isInvalid()) |
| return StmtError(); |
| if (Cond.get()) |
| Cond = SemaRef.CheckBooleanCondition(S->getColonLoc(), Cond.get()); |
| if (Cond.isInvalid()) |
| return StmtError(); |
| if (Cond.get()) |
| Cond = SemaRef.MaybeCreateExprWithCleanups(Cond.get()); |
| |
| ExprResult Inc = getDerived().TransformExpr(S->getInc()); |
| if (Inc.isInvalid()) |
| return StmtError(); |
| if (Inc.get()) |
| Inc = SemaRef.MaybeCreateExprWithCleanups(Inc.get()); |
| |
| StmtResult LoopVar = getDerived().TransformStmt(S->getLoopVarStmt()); |
| if (LoopVar.isInvalid()) |
| return StmtError(); |
| |
| StmtResult NewStmt = S; |
| if (getDerived().AlwaysRebuild() || |
| Init.get() != S->getInit() || |
| Range.get() != S->getRangeStmt() || |
| Begin.get() != S->getBeginStmt() || |
| End.get() != S->getEndStmt() || |
| Cond.get() != S->getCond() || |
| Inc.get() != S->getInc() || |
| LoopVar.get() != S->getLoopVarStmt()) { |
| NewStmt = getDerived().RebuildCXXForRangeStmt( |
| S->getForLoc(), S->getCoawaitLoc(), Init.get(), S->getColonLoc(), |
| Range.get(), Begin.get(), End.get(), Cond.get(), Inc.get(), |
| LoopVar.get(), S->getRParenLoc(), ForRangeLifetimeExtendTemps); |
| if (NewStmt.isInvalid() && LoopVar.get() != S->getLoopVarStmt()) { |
| // Might not have attached any initializer to the loop variable. |
| getSema().ActOnInitializerError( |
| cast<DeclStmt>(LoopVar.get())->getSingleDecl()); |
| return StmtError(); |
| } |
| } |
| |
| // OpenACC Restricts a while-loop inside of certain construct/clause |
| // combinations, so diagnose that here in OpenACC mode. |
| SemaOpenACC::LoopInConstructRAII LCR{SemaRef.OpenACC()}; |
| SemaRef.OpenACC().ActOnRangeForStmtBegin(S->getBeginLoc(), S, NewStmt.get()); |
| |
| StmtResult Body = getDerived().TransformStmt(S->getBody()); |
| if (Body.isInvalid()) |
| return StmtError(); |
| |
| SemaRef.OpenACC().ActOnForStmtEnd(S->getBeginLoc(), Body); |
| |
| // Body has changed but we didn't rebuild the for-range statement. Rebuild |
| // it now so we have a new statement to attach the body to. |
| if (Body.get() != S->getBody() && NewStmt.get() == S) { |
| NewStmt = getDerived().RebuildCXXForRangeStmt( |
| S->getForLoc(), S->getCoawaitLoc(), Init.get(), S->getColonLoc(), |
| Range.get(), Begin.get(), End.get(), Cond.get(), Inc.get(), |
| LoopVar.get(), S->getRParenLoc(), ForRangeLifetimeExtendTemps); |
| if (NewStmt.isInvalid()) |
| return StmtError(); |
| } |
| |
| if (NewStmt.get() == S) |
| return S; |
| |
| return FinishCXXForRangeStmt(NewStmt.get(), Body.get()); |
| } |
| |
| template<typename Derived> |
| StmtResult |
| TreeTransform<Derived>::TransformMSDependentExistsStmt( |
| MSDependentExistsStmt *S) { |
| // Transform the nested-name-specifier, if any. |
| NestedNameSpecifierLoc QualifierLoc; |
| if (S->getQualifierLoc()) { |
| QualifierLoc |
| = getDerived().TransformNestedNameSpecifierLoc(S->getQualifierLoc()); |
| if (!QualifierLoc) |
| return StmtError(); |
| } |
| |
| // Transform the declaration name. |
| DeclarationNameInfo NameInfo = S->getNameInfo(); |
| if (NameInfo.getName()) { |
| NameInfo = getDerived().TransformDeclarationNameInfo(NameInfo); |
| if (!NameInfo.getName()) |
| return StmtError(); |
| } |
| |
| // Check whether anything changed. |
| if (!getDerived().AlwaysRebuild() && |
| QualifierLoc == S->getQualifierLoc() && |
| NameInfo.getName() == S->getNameInfo().getName()) |
| return S; |
| |
| // Determine whether this name exists, if we can. |
| CXXScopeSpec SS; |
| SS.Adopt(QualifierLoc); |
| bool Dependent = false; |
| switch (getSema().CheckMicrosoftIfExistsSymbol(/*S=*/nullptr, SS, NameInfo)) { |
| case Sema::IER_Exists: |
| if (S->isIfExists()) |
| break; |
| |
| return new (getSema().Context) NullStmt(S->getKeywordLoc()); |
| |
| case Sema::IER_DoesNotExist: |
| if (S->isIfNotExists()) |
| break; |
| |
| return new (getSema().Context) NullStmt(S->getKeywordLoc()); |
| |
| case Sema::IER_Dependent: |
| Dependent = true; |
| break; |
| |
| case Sema::IER_Error: |
| return StmtError(); |
| } |
| |
| // We need to continue with the instantiation, so do so now. |
| StmtResult SubStmt = getDerived().TransformCompoundStmt(S->getSubStmt()); |
| if (SubStmt.isInvalid()) |
| return StmtError(); |
| |
| // If we have resolved the name, just transform to the substatement. |
| if (!Dependent) |
| return SubStmt; |
| |
| // The name is still dependent, so build a dependent expression again. |
| return getDerived().RebuildMSDependentExistsStmt(S->getKeywordLoc(), |
| S->isIfExists(), |
| QualifierLoc, |
| NameInfo, |
| SubStmt.get()); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformMSPropertyRefExpr(MSPropertyRefExpr *E) { |
| NestedNameSpecifierLoc QualifierLoc; |
| if (E->getQualifierLoc()) { |
| QualifierLoc |
| = getDerived().TransformNestedNameSpecifierLoc(E->getQualifierLoc()); |
| if (!QualifierLoc) |
| return ExprError(); |
| } |
| |
| MSPropertyDecl *PD = cast_or_null<MSPropertyDecl>( |
| getDerived().TransformDecl(E->getMemberLoc(), E->getPropertyDecl())); |
| if (!PD) |
| return ExprError(); |
| |
| ExprResult Base = getDerived().TransformExpr(E->getBaseExpr()); |
| if (Base.isInvalid()) |
| return ExprError(); |
| |
| return new (SemaRef.getASTContext()) |
| MSPropertyRefExpr(Base.get(), PD, E->isArrow(), |
| SemaRef.getASTContext().PseudoObjectTy, VK_LValue, |
| QualifierLoc, E->getMemberLoc()); |
| } |
| |
| template <typename Derived> |
| ExprResult TreeTransform<Derived>::TransformMSPropertySubscriptExpr( |
| MSPropertySubscriptExpr *E) { |
| auto BaseRes = getDerived().TransformExpr(E->getBase()); |
| if (BaseRes.isInvalid()) |
| return ExprError(); |
| auto IdxRes = getDerived().TransformExpr(E->getIdx()); |
| if (IdxRes.isInvalid()) |
| return ExprError(); |
| |
| if (!getDerived().AlwaysRebuild() && |
| BaseRes.get() == E->getBase() && |
| IdxRes.get() == E->getIdx()) |
| return E; |
| |
| return getDerived().RebuildArraySubscriptExpr( |
| BaseRes.get(), SourceLocation(), IdxRes.get(), E->getRBracketLoc()); |
| } |
| |
| template <typename Derived> |
| StmtResult TreeTransform<Derived>::TransformSEHTryStmt(SEHTryStmt *S) { |
| StmtResult TryBlock = getDerived().TransformCompoundStmt(S->getTryBlock()); |
| if (TryBlock.isInvalid()) |
| return StmtError(); |
| |
| StmtResult Handler = getDerived().TransformSEHHandler(S->getHandler()); |
| if (Handler.isInvalid()) |
| return StmtError(); |
| |
| if (!getDerived().AlwaysRebuild() && TryBlock.get() == S->getTryBlock() && |
| Handler.get() == S->getHandler()) |
| return S; |
| |
| return getDerived().RebuildSEHTryStmt(S->getIsCXXTry(), S->getTryLoc(), |
| TryBlock.get(), Handler.get()); |
| } |
| |
| template <typename Derived> |
| StmtResult TreeTransform<Derived>::TransformSEHFinallyStmt(SEHFinallyStmt *S) { |
| StmtResult Block = getDerived().TransformCompoundStmt(S->getBlock()); |
| if (Block.isInvalid()) |
| return StmtError(); |
| |
| return getDerived().RebuildSEHFinallyStmt(S->getFinallyLoc(), Block.get()); |
| } |
| |
| template <typename Derived> |
| StmtResult TreeTransform<Derived>::TransformSEHExceptStmt(SEHExceptStmt *S) { |
| ExprResult FilterExpr = getDerived().TransformExpr(S->getFilterExpr()); |
| if (FilterExpr.isInvalid()) |
| return StmtError(); |
| |
| StmtResult Block = getDerived().TransformCompoundStmt(S->getBlock()); |
| if (Block.isInvalid()) |
| return StmtError(); |
| |
| return getDerived().RebuildSEHExceptStmt(S->getExceptLoc(), FilterExpr.get(), |
| Block.get()); |
| } |
| |
| template <typename Derived> |
| StmtResult TreeTransform<Derived>::TransformSEHHandler(Stmt *Handler) { |
| if (isa<SEHFinallyStmt>(Handler)) |
| return getDerived().TransformSEHFinallyStmt(cast<SEHFinallyStmt>(Handler)); |
| else |
| return getDerived().TransformSEHExceptStmt(cast<SEHExceptStmt>(Handler)); |
| } |
| |
| template<typename Derived> |
| StmtResult |
| TreeTransform<Derived>::TransformSEHLeaveStmt(SEHLeaveStmt *S) { |
| return S; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // OpenMP directive transformation |
| //===----------------------------------------------------------------------===// |
| |
| template <typename Derived> |
| StmtResult |
| TreeTransform<Derived>::TransformOMPCanonicalLoop(OMPCanonicalLoop *L) { |
| // OMPCanonicalLoops are eliminated during transformation, since they will be |
| // recomputed by semantic analysis of the associated OMPLoopBasedDirective |
| // after transformation. |
| return getDerived().TransformStmt(L->getLoopStmt()); |
| } |
| |
| template <typename Derived> |
| StmtResult TreeTransform<Derived>::TransformOMPExecutableDirective( |
| OMPExecutableDirective *D) { |
| |
| // Transform the clauses |
| llvm::SmallVector<OMPClause *, 16> TClauses; |
| ArrayRef<OMPClause *> Clauses = D->clauses(); |
| TClauses.reserve(Clauses.size()); |
| for (ArrayRef<OMPClause *>::iterator I = Clauses.begin(), E = Clauses.end(); |
| I != E; ++I) { |
| if (*I) { |
| getDerived().getSema().OpenMP().StartOpenMPClause((*I)->getClauseKind()); |
| OMPClause *Clause = getDerived().TransformOMPClause(*I); |
| getDerived().getSema().OpenMP().EndOpenMPClause(); |
| if (Clause) |
| TClauses.push_back(Clause); |
| } else { |
| TClauses.push_back(nullptr); |
| } |
| } |
| StmtResult AssociatedStmt; |
| if (D->hasAssociatedStmt() && D->getAssociatedStmt()) { |
| getDerived().getSema().OpenMP().ActOnOpenMPRegionStart( |
| D->getDirectiveKind(), |
| /*CurScope=*/nullptr); |
| StmtResult Body; |
| { |
| Sema::CompoundScopeRAII CompoundScope(getSema()); |
| Stmt *CS; |
| if (D->getDirectiveKind() == OMPD_atomic || |
| D->getDirectiveKind() == OMPD_critical || |
| D->getDirectiveKind() == OMPD_section || |
| D->getDirectiveKind() == OMPD_master) |
| CS = D->getAssociatedStmt(); |
| else |
| CS = D->getRawStmt(); |
| Body = getDerived().TransformStmt(CS); |
| if (Body.isUsable() && isOpenMPLoopDirective(D->getDirectiveKind()) && |
| getSema().getLangOpts().OpenMPIRBuilder) |
| Body = getDerived().RebuildOMPCanonicalLoop(Body.get()); |
| } |
| AssociatedStmt = |
| getDerived().getSema().OpenMP().ActOnOpenMPRegionEnd(Body, TClauses); |
| if (AssociatedStmt.isInvalid()) { |
| return StmtError(); |
| } |
| } |
| if (TClauses.size() != Clauses.size()) { |
| return StmtError(); |
| } |
| |
| // Transform directive name for 'omp critical' directive. |
| DeclarationNameInfo DirName; |
| if (D->getDirectiveKind() == OMPD_critical) { |
| DirName = cast<OMPCriticalDirective>(D)->getDirectiveName(); |
| DirName = getDerived().TransformDeclarationNameInfo(DirName); |
| } |
| OpenMPDirectiveKind CancelRegion = OMPD_unknown; |
| if (D->getDirectiveKind() == OMPD_cancellation_point) { |
| CancelRegion = cast<OMPCancellationPointDirective>(D)->getCancelRegion(); |
| } else if (D->getDirectiveKind() == OMPD_cancel) { |
| CancelRegion = cast<OMPCancelDirective>(D)->getCancelRegion(); |
| } |
| |
| return getDerived().RebuildOMPExecutableDirective( |
| D->getDirectiveKind(), DirName, CancelRegion, TClauses, |
| AssociatedStmt.get(), D->getBeginLoc(), D->getEndLoc()); |
| } |
| |
| /// This is mostly the same as above, but allows 'informational' class |
| /// directives when rebuilding the stmt. It still takes an |
| /// OMPExecutableDirective-type argument because we're reusing that as the |
| /// superclass for the 'assume' directive at present, instead of defining a |
| /// mostly-identical OMPInformationalDirective parent class. |
| template <typename Derived> |
| StmtResult TreeTransform<Derived>::TransformOMPInformationalDirective( |
| OMPExecutableDirective *D) { |
| |
| // Transform the clauses |
| llvm::SmallVector<OMPClause *, 16> TClauses; |
| ArrayRef<OMPClause *> Clauses = D->clauses(); |
| TClauses.reserve(Clauses.size()); |
| for (OMPClause *C : Clauses) { |
| if (C) { |
| getDerived().getSema().OpenMP().StartOpenMPClause(C->getClauseKind()); |
| OMPClause *Clause = getDerived().TransformOMPClause(C); |
| getDerived().getSema().OpenMP().EndOpenMPClause(); |
| if (Clause) |
| TClauses.push_back(Clause); |
| } else { |
| TClauses.push_back(nullptr); |
| } |
| } |
| StmtResult AssociatedStmt; |
| if (D->hasAssociatedStmt() && D->getAssociatedStmt()) { |
| getDerived().getSema().OpenMP().ActOnOpenMPRegionStart( |
| D->getDirectiveKind(), |
| /*CurScope=*/nullptr); |
| StmtResult Body; |
| { |
| Sema::CompoundScopeRAII CompoundScope(getSema()); |
| assert(D->getDirectiveKind() == OMPD_assume && |
| "Unexpected informational directive"); |
| Stmt *CS = D->getAssociatedStmt(); |
| Body = getDerived().TransformStmt(CS); |
| } |
| AssociatedStmt = |
| getDerived().getSema().OpenMP().ActOnOpenMPRegionEnd(Body, TClauses); |
| if (AssociatedStmt.isInvalid()) |
| return StmtError(); |
| } |
| if (TClauses.size() != Clauses.size()) |
| return StmtError(); |
| |
| DeclarationNameInfo DirName; |
| |
| return getDerived().RebuildOMPInformationalDirective( |
| D->getDirectiveKind(), DirName, TClauses, AssociatedStmt.get(), |
| D->getBeginLoc(), D->getEndLoc()); |
| } |
| |
| template <typename Derived> |
| StmtResult |
| TreeTransform<Derived>::TransformOMPMetaDirective(OMPMetaDirective *D) { |
| // TODO: Fix This |
| SemaRef.Diag(D->getBeginLoc(), diag::err_omp_instantiation_not_supported) |
| << getOpenMPDirectiveName(D->getDirectiveKind()); |
| return StmtError(); |
| } |
| |
| template <typename Derived> |
| StmtResult |
| TreeTransform<Derived>::TransformOMPParallelDirective(OMPParallelDirective *D) { |
| DeclarationNameInfo DirName; |
| getDerived().getSema().OpenMP().StartOpenMPDSABlock( |
| OMPD_parallel, DirName, nullptr, D->getBeginLoc()); |
| StmtResult Res = getDerived().TransformOMPExecutableDirective(D); |
| getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get()); |
| return Res; |
| } |
| |
| template <typename Derived> |
| StmtResult |
| TreeTransform<Derived>::TransformOMPSimdDirective(OMPSimdDirective *D) { |
| DeclarationNameInfo DirName; |
| getDerived().getSema().OpenMP().StartOpenMPDSABlock( |
| OMPD_simd, DirName, nullptr, D->getBeginLoc()); |
| StmtResult Res = getDerived().TransformOMPExecutableDirective(D); |
| getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get()); |
| return Res; |
| } |
| |
| template <typename Derived> |
| StmtResult |
| TreeTransform<Derived>::TransformOMPTileDirective(OMPTileDirective *D) { |
| DeclarationNameInfo DirName; |
| getDerived().getSema().OpenMP().StartOpenMPDSABlock( |
| D->getDirectiveKind(), DirName, nullptr, D->getBeginLoc()); |
| StmtResult Res = getDerived().TransformOMPExecutableDirective(D); |
| getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get()); |
| return Res; |
| } |
| |
| template <typename Derived> |
| StmtResult |
| TreeTransform<Derived>::TransformOMPUnrollDirective(OMPUnrollDirective *D) { |
| DeclarationNameInfo DirName; |
| getDerived().getSema().OpenMP().StartOpenMPDSABlock( |
| D->getDirectiveKind(), DirName, nullptr, D->getBeginLoc()); |
| StmtResult Res = getDerived().TransformOMPExecutableDirective(D); |
| getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get()); |
| return Res; |
| } |
| |
| template <typename Derived> |
| StmtResult |
| TreeTransform<Derived>::TransformOMPReverseDirective(OMPReverseDirective *D) { |
| DeclarationNameInfo DirName; |
| getDerived().getSema().OpenMP().StartOpenMPDSABlock( |
| D->getDirectiveKind(), DirName, nullptr, D->getBeginLoc()); |
| StmtResult Res = getDerived().TransformOMPExecutableDirective(D); |
| getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get()); |
| return Res; |
| } |
| |
| template <typename Derived> |
| StmtResult TreeTransform<Derived>::TransformOMPInterchangeDirective( |
| OMPInterchangeDirective *D) { |
| DeclarationNameInfo DirName; |
| getDerived().getSema().OpenMP().StartOpenMPDSABlock( |
| D->getDirectiveKind(), DirName, nullptr, D->getBeginLoc()); |
| StmtResult Res = getDerived().TransformOMPExecutableDirective(D); |
| getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get()); |
| return Res; |
| } |
| |
| template <typename Derived> |
| StmtResult |
| TreeTransform<Derived>::TransformOMPForDirective(OMPForDirective *D) { |
| DeclarationNameInfo DirName; |
| getDerived().getSema().OpenMP().StartOpenMPDSABlock( |
| OMPD_for, DirName, nullptr, D->getBeginLoc()); |
| StmtResult Res = getDerived().TransformOMPExecutableDirective(D); |
| getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get()); |
| return Res; |
| } |
| |
| template <typename Derived> |
| StmtResult |
| TreeTransform<Derived>::TransformOMPForSimdDirective(OMPForSimdDirective *D) { |
| DeclarationNameInfo DirName; |
| getDerived().getSema().OpenMP().StartOpenMPDSABlock( |
| OMPD_for_simd, DirName, nullptr, D->getBeginLoc()); |
| StmtResult Res = getDerived().TransformOMPExecutableDirective(D); |
| getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get()); |
| return Res; |
| } |
| |
| template <typename Derived> |
| StmtResult |
| TreeTransform<Derived>::TransformOMPSectionsDirective(OMPSectionsDirective *D) { |
| DeclarationNameInfo DirName; |
| getDerived().getSema().OpenMP().StartOpenMPDSABlock( |
| OMPD_sections, DirName, nullptr, D->getBeginLoc()); |
| StmtResult Res = getDerived().TransformOMPExecutableDirective(D); |
| getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get()); |
| return Res; |
| } |
| |
| template <typename Derived> |
| StmtResult |
| TreeTransform<Derived>::TransformOMPSectionDirective(OMPSectionDirective *D) { |
| DeclarationNameInfo DirName; |
| getDerived().getSema().OpenMP().StartOpenMPDSABlock( |
| OMPD_section, DirName, nullptr, D->getBeginLoc()); |
| StmtResult Res = getDerived().TransformOMPExecutableDirective(D); |
| getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get()); |
| return Res; |
| } |
| |
| template <typename Derived> |
| StmtResult |
| TreeTransform<Derived>::TransformOMPScopeDirective(OMPScopeDirective *D) { |
| DeclarationNameInfo DirName; |
| getDerived().getSema().OpenMP().StartOpenMPDSABlock( |
| OMPD_scope, DirName, nullptr, D->getBeginLoc()); |
| StmtResult Res = getDerived().TransformOMPExecutableDirective(D); |
| getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get()); |
| return Res; |
| } |
| |
| template <typename Derived> |
| StmtResult |
| TreeTransform<Derived>::TransformOMPSingleDirective(OMPSingleDirective *D) { |
| DeclarationNameInfo DirName; |
| getDerived().getSema().OpenMP().StartOpenMPDSABlock( |
| OMPD_single, DirName, nullptr, D->getBeginLoc()); |
| StmtResult Res = getDerived().TransformOMPExecutableDirective(D); |
| getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get()); |
| return Res; |
| } |
| |
| template <typename Derived> |
| StmtResult |
| TreeTransform<Derived>::TransformOMPMasterDirective(OMPMasterDirective *D) { |
| DeclarationNameInfo DirName; |
| getDerived().getSema().OpenMP().StartOpenMPDSABlock( |
| OMPD_master, DirName, nullptr, D->getBeginLoc()); |
| StmtResult Res = getDerived().TransformOMPExecutableDirective(D); |
| getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get()); |
| return Res; |
| } |
| |
| template <typename Derived> |
| StmtResult |
| TreeTransform<Derived>::TransformOMPCriticalDirective(OMPCriticalDirective *D) { |
| getDerived().getSema().OpenMP().StartOpenMPDSABlock( |
| OMPD_critical, D->getDirectiveName(), nullptr, D->getBeginLoc()); |
| StmtResult Res = getDerived().TransformOMPExecutableDirective(D); |
| getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get()); |
| return Res; |
| } |
| |
| template <typename Derived> |
| StmtResult TreeTransform<Derived>::TransformOMPParallelForDirective( |
| OMPParallelForDirective *D) { |
| DeclarationNameInfo DirName; |
| getDerived().getSema().OpenMP().StartOpenMPDSABlock( |
| OMPD_parallel_for, DirName, nullptr, D->getBeginLoc()); |
| StmtResult Res = getDerived().TransformOMPExecutableDirective(D); |
| getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get()); |
| return Res; |
| } |
| |
| template <typename Derived> |
| StmtResult TreeTransform<Derived>::TransformOMPParallelForSimdDirective( |
| OMPParallelForSimdDirective *D) { |
| DeclarationNameInfo DirName; |
| getDerived().getSema().OpenMP().StartOpenMPDSABlock( |
| OMPD_parallel_for_simd, DirName, nullptr, D->getBeginLoc()); |
| StmtResult Res = getDerived().TransformOMPExecutableDirective(D); |
| getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get()); |
| return Res; |
| } |
| |
| template <typename Derived> |
| StmtResult TreeTransform<Derived>::TransformOMPParallelMasterDirective( |
| OMPParallelMasterDirective *D) { |
| DeclarationNameInfo DirName; |
| getDerived().getSema().OpenMP().StartOpenMPDSABlock( |
| OMPD_parallel_master, DirName, nullptr, D->getBeginLoc()); |
| StmtResult Res = getDerived().TransformOMPExecutableDirective(D); |
| getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get()); |
| return Res; |
| } |
| |
| template <typename Derived> |
| StmtResult TreeTransform<Derived>::TransformOMPParallelMaskedDirective( |
| OMPParallelMaskedDirective *D) { |
| DeclarationNameInfo DirName; |
| getDerived().getSema().OpenMP().StartOpenMPDSABlock( |
| OMPD_parallel_masked, DirName, nullptr, D->getBeginLoc()); |
| StmtResult Res = getDerived().TransformOMPExecutableDirective(D); |
| getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get()); |
| return Res; |
| } |
| |
| template <typename Derived> |
| StmtResult TreeTransform<Derived>::TransformOMPParallelSectionsDirective( |
| OMPParallelSectionsDirective *D) { |
| DeclarationNameInfo DirName; |
| getDerived().getSema().OpenMP().StartOpenMPDSABlock( |
| OMPD_parallel_sections, DirName, nullptr, D->getBeginLoc()); |
| StmtResult Res = getDerived().TransformOMPExecutableDirective(D); |
| getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get()); |
| return Res; |
| } |
| |
| template <typename Derived> |
| StmtResult |
| TreeTransform<Derived>::TransformOMPTaskDirective(OMPTaskDirective *D) { |
| DeclarationNameInfo DirName; |
| getDerived().getSema().OpenMP().StartOpenMPDSABlock( |
| OMPD_task, DirName, nullptr, D->getBeginLoc()); |
| StmtResult Res = getDerived().TransformOMPExecutableDirective(D); |
| getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get()); |
| return Res; |
| } |
| |
| template <typename Derived> |
| StmtResult TreeTransform<Derived>::TransformOMPTaskyieldDirective( |
| OMPTaskyieldDirective *D) { |
| DeclarationNameInfo DirName; |
| getDerived().getSema().OpenMP().StartOpenMPDSABlock( |
| OMPD_taskyield, DirName, nullptr, D->getBeginLoc()); |
| StmtResult Res = getDerived().TransformOMPExecutableDirective(D); |
| getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get()); |
| return Res; |
| } |
| |
| template <typename Derived> |
| StmtResult |
| TreeTransform<Derived>::TransformOMPBarrierDirective(OMPBarrierDirective *D) { |
| DeclarationNameInfo DirName; |
| getDerived().getSema().OpenMP().StartOpenMPDSABlock( |
| OMPD_barrier, DirName, nullptr, D->getBeginLoc()); |
| StmtResult Res = getDerived().TransformOMPExecutableDirective(D); |
| getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get()); |
| return Res; |
| } |
| |
| template <typename Derived> |
| StmtResult |
| TreeTransform<Derived>::TransformOMPTaskwaitDirective(OMPTaskwaitDirective *D) { |
| DeclarationNameInfo DirName; |
| getDerived().getSema().OpenMP().StartOpenMPDSABlock( |
| OMPD_taskwait, DirName, nullptr, D->getBeginLoc()); |
| StmtResult Res = getDerived().TransformOMPExecutableDirective(D); |
| getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get()); |
| return Res; |
| } |
| |
| template <typename Derived> |
| StmtResult |
| TreeTransform<Derived>::TransformOMPAssumeDirective(OMPAssumeDirective *D) { |
| DeclarationNameInfo DirName; |
| getDerived().getSema().OpenMP().StartOpenMPDSABlock( |
| OMPD_assume, DirName, nullptr, D->getBeginLoc()); |
| StmtResult Res = getDerived().TransformOMPInformationalDirective(D); |
| getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get()); |
| return Res; |
| } |
| |
| template <typename Derived> |
| StmtResult |
| TreeTransform<Derived>::TransformOMPErrorDirective(OMPErrorDirective *D) { |
| DeclarationNameInfo DirName; |
| getDerived().getSema().OpenMP().StartOpenMPDSABlock( |
| OMPD_error, DirName, nullptr, D->getBeginLoc()); |
| StmtResult Res = getDerived().TransformOMPExecutableDirective(D); |
| getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get()); |
| return Res; |
| } |
| |
| template <typename Derived> |
| StmtResult TreeTransform<Derived>::TransformOMPTaskgroupDirective( |
| OMPTaskgroupDirective *D) { |
| DeclarationNameInfo DirName; |
| getDerived().getSema().OpenMP().StartOpenMPDSABlock( |
| OMPD_taskgroup, DirName, nullptr, D->getBeginLoc()); |
| StmtResult Res = getDerived().TransformOMPExecutableDirective(D); |
| getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get()); |
| return Res; |
| } |
| |
| template <typename Derived> |
| StmtResult |
| TreeTransform<Derived>::TransformOMPFlushDirective(OMPFlushDirective *D) { |
| DeclarationNameInfo DirName; |
| getDerived().getSema().OpenMP().StartOpenMPDSABlock( |
| OMPD_flush, DirName, nullptr, D->getBeginLoc()); |
| StmtResult Res = getDerived().TransformOMPExecutableDirective(D); |
| getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get()); |
| return Res; |
| } |
| |
| template <typename Derived> |
| StmtResult |
| TreeTransform<Derived>::TransformOMPDepobjDirective(OMPDepobjDirective *D) { |
| DeclarationNameInfo DirName; |
| getDerived().getSema().OpenMP().StartOpenMPDSABlock( |
| OMPD_depobj, DirName, nullptr, D->getBeginLoc()); |
| StmtResult Res = getDerived().TransformOMPExecutableDirective(D); |
| getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get()); |
| return Res; |
| } |
| |
| template <typename Derived> |
| StmtResult |
| TreeTransform<Derived>::TransformOMPScanDirective(OMPScanDirective *D) { |
| DeclarationNameInfo DirName; |
| getDerived().getSema().OpenMP().StartOpenMPDSABlock( |
| OMPD_scan, DirName, nullptr, D->getBeginLoc()); |
| StmtResult Res = getDerived().TransformOMPExecutableDirective(D); |
| getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get()); |
| return Res; |
| } |
| |
| template <typename Derived> |
| StmtResult |
| TreeTransform<Derived>::TransformOMPOrderedDirective(OMPOrderedDirective *D) { |
| DeclarationNameInfo DirName; |
| getDerived().getSema().OpenMP().StartOpenMPDSABlock( |
| OMPD_ordered, DirName, nullptr, D->getBeginLoc()); |
| StmtResult Res = getDerived().TransformOMPExecutableDirective(D); |
| getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get()); |
| return Res; |
| } |
| |
| template <typename Derived> |
| StmtResult |
| TreeTransform<Derived>::TransformOMPAtomicDirective(OMPAtomicDirective *D) { |
| DeclarationNameInfo DirName; |
| getDerived().getSema().OpenMP().StartOpenMPDSABlock( |
| OMPD_atomic, DirName, nullptr, D->getBeginLoc()); |
| StmtResult Res = getDerived().TransformOMPExecutableDirective(D); |
| getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get()); |
| return Res; |
| } |
| |
| template <typename Derived> |
| StmtResult |
| TreeTransform<Derived>::TransformOMPTargetDirective(OMPTargetDirective *D) { |
| DeclarationNameInfo DirName; |
| getDerived().getSema().OpenMP().StartOpenMPDSABlock( |
| OMPD_target, DirName, nullptr, D->getBeginLoc()); |
| StmtResult Res = getDerived().TransformOMPExecutableDirective(D); |
| getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get()); |
| return Res; |
| } |
| |
| template <typename Derived> |
| StmtResult TreeTransform<Derived>::TransformOMPTargetDataDirective( |
| OMPTargetDataDirective *D) { |
| DeclarationNameInfo DirName; |
| getDerived().getSema().OpenMP().StartOpenMPDSABlock( |
| OMPD_target_data, DirName, nullptr, D->getBeginLoc()); |
| StmtResult Res = getDerived().TransformOMPExecutableDirective(D); |
| getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get()); |
| return Res; |
| } |
| |
| template <typename Derived> |
| StmtResult TreeTransform<Derived>::TransformOMPTargetEnterDataDirective( |
| OMPTargetEnterDataDirective *D) { |
| DeclarationNameInfo DirName; |
| getDerived().getSema().OpenMP().StartOpenMPDSABlock( |
| OMPD_target_enter_data, DirName, nullptr, D->getBeginLoc()); |
| StmtResult Res = getDerived().TransformOMPExecutableDirective(D); |
| getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get()); |
| return Res; |
| } |
| |
| template <typename Derived> |
| StmtResult TreeTransform<Derived>::TransformOMPTargetExitDataDirective( |
| OMPTargetExitDataDirective *D) { |
| DeclarationNameInfo DirName; |
| getDerived().getSema().OpenMP().StartOpenMPDSABlock( |
| OMPD_target_exit_data, DirName, nullptr, D->getBeginLoc()); |
| StmtResult Res = getDerived().TransformOMPExecutableDirective(D); |
| getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get()); |
| return Res; |
| } |
| |
| template <typename Derived> |
| StmtResult TreeTransform<Derived>::TransformOMPTargetParallelDirective( |
| OMPTargetParallelDirective *D) { |
| DeclarationNameInfo DirName; |
| getDerived().getSema().OpenMP().StartOpenMPDSABlock( |
| OMPD_target_parallel, DirName, nullptr, D->getBeginLoc()); |
| StmtResult Res = getDerived().TransformOMPExecutableDirective(D); |
| getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get()); |
| return Res; |
| } |
| |
| template <typename Derived> |
| StmtResult TreeTransform<Derived>::TransformOMPTargetParallelForDirective( |
| OMPTargetParallelForDirective *D) { |
| DeclarationNameInfo DirName; |
| getDerived().getSema().OpenMP().StartOpenMPDSABlock( |
| OMPD_target_parallel_for, DirName, nullptr, D->getBeginLoc()); |
| StmtResult Res = getDerived().TransformOMPExecutableDirective(D); |
| getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get()); |
| return Res; |
| } |
| |
| template <typename Derived> |
| StmtResult TreeTransform<Derived>::TransformOMPTargetUpdateDirective( |
| OMPTargetUpdateDirective *D) { |
| DeclarationNameInfo DirName; |
| getDerived().getSema().OpenMP().StartOpenMPDSABlock( |
| OMPD_target_update, DirName, nullptr, D->getBeginLoc()); |
| StmtResult Res = getDerived().TransformOMPExecutableDirective(D); |
| getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get()); |
| return Res; |
| } |
| |
| template <typename Derived> |
| StmtResult |
| TreeTransform<Derived>::TransformOMPTeamsDirective(OMPTeamsDirective *D) { |
| DeclarationNameInfo DirName; |
| getDerived().getSema().OpenMP().StartOpenMPDSABlock( |
| OMPD_teams, DirName, nullptr, D->getBeginLoc()); |
| StmtResult Res = getDerived().TransformOMPExecutableDirective(D); |
| getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get()); |
| return Res; |
| } |
| |
| template <typename Derived> |
| StmtResult TreeTransform<Derived>::TransformOMPCancellationPointDirective( |
| OMPCancellationPointDirective *D) { |
| DeclarationNameInfo DirName; |
| getDerived().getSema().OpenMP().StartOpenMPDSABlock( |
| OMPD_cancellation_point, DirName, nullptr, D->getBeginLoc()); |
| StmtResult Res = getDerived().TransformOMPExecutableDirective(D); |
| getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get()); |
| return Res; |
| } |
| |
| template <typename Derived> |
| StmtResult |
| TreeTransform<Derived>::TransformOMPCancelDirective(OMPCancelDirective *D) { |
| DeclarationNameInfo DirName; |
| getDerived().getSema().OpenMP().StartOpenMPDSABlock( |
| OMPD_cancel, DirName, nullptr, D->getBeginLoc()); |
| StmtResult Res = getDerived().TransformOMPExecutableDirective(D); |
| getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get()); |
| return Res; |
| } |
| |
| template <typename Derived> |
| StmtResult |
| TreeTransform<Derived>::TransformOMPTaskLoopDirective(OMPTaskLoopDirective *D) { |
| DeclarationNameInfo DirName; |
| getDerived().getSema().OpenMP().StartOpenMPDSABlock( |
| OMPD_taskloop, DirName, nullptr, D->getBeginLoc()); |
| StmtResult Res = getDerived().TransformOMPExecutableDirective(D); |
| getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get()); |
| return Res; |
| } |
| |
| template <typename Derived> |
| StmtResult TreeTransform<Derived>::TransformOMPTaskLoopSimdDirective( |
| OMPTaskLoopSimdDirective *D) { |
| DeclarationNameInfo DirName; |
| getDerived().getSema().OpenMP().StartOpenMPDSABlock( |
| OMPD_taskloop_simd, DirName, nullptr, D->getBeginLoc()); |
| StmtResult Res = getDerived().TransformOMPExecutableDirective(D); |
| getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get()); |
| return Res; |
| } |
| |
| template <typename Derived> |
| StmtResult TreeTransform<Derived>::TransformOMPMasterTaskLoopDirective( |
| OMPMasterTaskLoopDirective *D) { |
| DeclarationNameInfo DirName; |
| getDerived().getSema().OpenMP().StartOpenMPDSABlock( |
| OMPD_master_taskloop, DirName, nullptr, D->getBeginLoc()); |
| StmtResult Res = getDerived().TransformOMPExecutableDirective(D); |
| getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get()); |
| return Res; |
| } |
| |
| template <typename Derived> |
| StmtResult TreeTransform<Derived>::TransformOMPMaskedTaskLoopDirective( |
| OMPMaskedTaskLoopDirective *D) { |
| DeclarationNameInfo DirName; |
| getDerived().getSema().OpenMP().StartOpenMPDSABlock( |
| OMPD_masked_taskloop, DirName, nullptr, D->getBeginLoc()); |
| StmtResult Res = getDerived().TransformOMPExecutableDirective(D); |
| getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get()); |
| return Res; |
| } |
| |
| template <typename Derived> |
| StmtResult TreeTransform<Derived>::TransformOMPMasterTaskLoopSimdDirective( |
| OMPMasterTaskLoopSimdDirective *D) { |
| DeclarationNameInfo DirName; |
| getDerived().getSema().OpenMP().StartOpenMPDSABlock( |
| OMPD_master_taskloop_simd, DirName, nullptr, D->getBeginLoc()); |
| StmtResult Res = getDerived().TransformOMPExecutableDirective(D); |
| getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get()); |
| return Res; |
| } |
| |
| template <typename Derived> |
| StmtResult TreeTransform<Derived>::TransformOMPMaskedTaskLoopSimdDirective( |
| OMPMaskedTaskLoopSimdDirective *D) { |
| DeclarationNameInfo DirName; |
| getDerived().getSema().OpenMP().StartOpenMPDSABlock( |
| OMPD_masked_taskloop_simd, DirName, nullptr, D->getBeginLoc()); |
| StmtResult Res = getDerived().TransformOMPExecutableDirective(D); |
| getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get()); |
| return Res; |
| } |
| |
| template <typename Derived> |
| StmtResult TreeTransform<Derived>::TransformOMPParallelMasterTaskLoopDirective( |
| OMPParallelMasterTaskLoopDirective *D) { |
| DeclarationNameInfo DirName; |
| getDerived().getSema().OpenMP().StartOpenMPDSABlock( |
| OMPD_parallel_master_taskloop, DirName, nullptr, D->getBeginLoc()); |
| StmtResult Res = getDerived().TransformOMPExecutableDirective(D); |
| getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get()); |
| return Res; |
| } |
| |
| template <typename Derived> |
| StmtResult TreeTransform<Derived>::TransformOMPParallelMaskedTaskLoopDirective( |
| OMPParallelMaskedTaskLoopDirective *D) { |
| DeclarationNameInfo DirName; |
| getDerived().getSema().OpenMP().StartOpenMPDSABlock( |
| OMPD_parallel_masked_taskloop, DirName, nullptr, D->getBeginLoc()); |
| StmtResult Res = getDerived().TransformOMPExecutableDirective(D); |
| getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get()); |
| return Res; |
| } |
| |
| template <typename Derived> |
| StmtResult |
| TreeTransform<Derived>::TransformOMPParallelMasterTaskLoopSimdDirective( |
| OMPParallelMasterTaskLoopSimdDirective *D) { |
| DeclarationNameInfo DirName; |
| getDerived().getSema().OpenMP().StartOpenMPDSABlock( |
| OMPD_parallel_master_taskloop_simd, DirName, nullptr, D->getBeginLoc()); |
| StmtResult Res = getDerived().TransformOMPExecutableDirective(D); |
| getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get()); |
| return Res; |
| } |
| |
| template <typename Derived> |
| StmtResult |
| TreeTransform<Derived>::TransformOMPParallelMaskedTaskLoopSimdDirective( |
| OMPParallelMaskedTaskLoopSimdDirective *D) { |
| DeclarationNameInfo DirName; |
| getDerived().getSema().OpenMP().StartOpenMPDSABlock( |
| OMPD_parallel_masked_taskloop_simd, DirName, nullptr, D->getBeginLoc()); |
| StmtResult Res = getDerived().TransformOMPExecutableDirective(D); |
| getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get()); |
| return Res; |
| } |
| |
| template <typename Derived> |
| StmtResult TreeTransform<Derived>::TransformOMPDistributeDirective( |
| OMPDistributeDirective *D) { |
| DeclarationNameInfo DirName; |
| getDerived().getSema().OpenMP().StartOpenMPDSABlock( |
| OMPD_distribute, DirName, nullptr, D->getBeginLoc()); |
| StmtResult Res = getDerived().TransformOMPExecutableDirective(D); |
| getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get()); |
| return Res; |
| } |
| |
| template <typename Derived> |
| StmtResult TreeTransform<Derived>::TransformOMPDistributeParallelForDirective( |
| OMPDistributeParallelForDirective *D) { |
| DeclarationNameInfo DirName; |
| getDerived().getSema().OpenMP().StartOpenMPDSABlock( |
| OMPD_distribute_parallel_for, DirName, nullptr, D->getBeginLoc()); |
| StmtResult Res = getDerived().TransformOMPExecutableDirective(D); |
| getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get()); |
| return Res; |
| } |
| |
| template <typename Derived> |
| StmtResult |
| TreeTransform<Derived>::TransformOMPDistributeParallelForSimdDirective( |
| OMPDistributeParallelForSimdDirective *D) { |
| DeclarationNameInfo DirName; |
| getDerived().getSema().OpenMP().StartOpenMPDSABlock( |
| OMPD_distribute_parallel_for_simd, DirName, nullptr, D->getBeginLoc()); |
| StmtResult Res = getDerived().TransformOMPExecutableDirective(D); |
| getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get()); |
| return Res; |
| } |
| |
| template <typename Derived> |
| StmtResult TreeTransform<Derived>::TransformOMPDistributeSimdDirective( |
| OMPDistributeSimdDirective *D) { |
| DeclarationNameInfo DirName; |
| getDerived().getSema().OpenMP().StartOpenMPDSABlock( |
| OMPD_distribute_simd, DirName, nullptr, D->getBeginLoc()); |
| StmtResult Res = getDerived().TransformOMPExecutableDirective(D); |
| getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get()); |
| return Res; |
| } |
| |
| template <typename Derived> |
| StmtResult TreeTransform<Derived>::TransformOMPTargetParallelForSimdDirective( |
| OMPTargetParallelForSimdDirective *D) { |
| DeclarationNameInfo DirName; |
| getDerived().getSema().OpenMP().StartOpenMPDSABlock( |
| OMPD_target_parallel_for_simd, DirName, nullptr, D->getBeginLoc()); |
| StmtResult Res = getDerived().TransformOMPExecutableDirective(D); |
| getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get()); |
| return Res; |
| } |
| |
| template <typename Derived> |
| StmtResult TreeTransform<Derived>::TransformOMPTargetSimdDirective( |
| OMPTargetSimdDirective *D) { |
| DeclarationNameInfo DirName; |
| getDerived().getSema().OpenMP().StartOpenMPDSABlock( |
| OMPD_target_simd, DirName, nullptr, D->getBeginLoc()); |
| StmtResult Res = getDerived().TransformOMPExecutableDirective(D); |
| getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get()); |
| return Res; |
| } |
| |
| template <typename Derived> |
| StmtResult TreeTransform<Derived>::TransformOMPTeamsDistributeDirective( |
| OMPTeamsDistributeDirective *D) { |
| DeclarationNameInfo DirName; |
| getDerived().getSema().OpenMP().StartOpenMPDSABlock( |
| OMPD_teams_distribute, DirName, nullptr, D->getBeginLoc()); |
| StmtResult Res = getDerived().TransformOMPExecutableDirective(D); |
| getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get()); |
| return Res; |
| } |
| |
| template <typename Derived> |
| StmtResult TreeTransform<Derived>::TransformOMPTeamsDistributeSimdDirective( |
| OMPTeamsDistributeSimdDirective *D) { |
| DeclarationNameInfo DirName; |
| getDerived().getSema().OpenMP().StartOpenMPDSABlock( |
| OMPD_teams_distribute_simd, DirName, nullptr, D->getBeginLoc()); |
| StmtResult Res = getDerived().TransformOMPExecutableDirective(D); |
| getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get()); |
| return Res; |
| } |
| |
| template <typename Derived> |
| StmtResult TreeTransform<Derived>::TransformOMPTeamsDistributeParallelForSimdDirective( |
| OMPTeamsDistributeParallelForSimdDirective *D) { |
| DeclarationNameInfo DirName; |
| getDerived().getSema().OpenMP().StartOpenMPDSABlock( |
| OMPD_teams_distribute_parallel_for_simd, DirName, nullptr, |
| D->getBeginLoc()); |
| StmtResult Res = getDerived().TransformOMPExecutableDirective(D); |
| getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get()); |
| return Res; |
| } |
| |
| template <typename Derived> |
| StmtResult TreeTransform<Derived>::TransformOMPTeamsDistributeParallelForDirective( |
| OMPTeamsDistributeParallelForDirective *D) { |
| DeclarationNameInfo DirName; |
| getDerived().getSema().OpenMP().StartOpenMPDSABlock( |
| OMPD_teams_distribute_parallel_for, DirName, nullptr, D->getBeginLoc()); |
| StmtResult Res = getDerived().TransformOMPExecutableDirective(D); |
| getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get()); |
| return Res; |
| } |
| |
| template <typename Derived> |
| StmtResult TreeTransform<Derived>::TransformOMPTargetTeamsDirective( |
| OMPTargetTeamsDirective *D) { |
| DeclarationNameInfo DirName; |
| getDerived().getSema().OpenMP().StartOpenMPDSABlock( |
| OMPD_target_teams, DirName, nullptr, D->getBeginLoc()); |
| auto Res = getDerived().TransformOMPExecutableDirective(D); |
| getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get()); |
| return Res; |
| } |
| |
| template <typename Derived> |
| StmtResult TreeTransform<Derived>::TransformOMPTargetTeamsDistributeDirective( |
| OMPTargetTeamsDistributeDirective *D) { |
| DeclarationNameInfo DirName; |
| getDerived().getSema().OpenMP().StartOpenMPDSABlock( |
| OMPD_target_teams_distribute, DirName, nullptr, D->getBeginLoc()); |
| auto Res = getDerived().TransformOMPExecutableDirective(D); |
| getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get()); |
| return Res; |
| } |
| |
| template <typename Derived> |
| StmtResult |
| TreeTransform<Derived>::TransformOMPTargetTeamsDistributeParallelForDirective( |
| OMPTargetTeamsDistributeParallelForDirective *D) { |
| DeclarationNameInfo DirName; |
| getDerived().getSema().OpenMP().StartOpenMPDSABlock( |
| OMPD_target_teams_distribute_parallel_for, DirName, nullptr, |
| D->getBeginLoc()); |
| auto Res = getDerived().TransformOMPExecutableDirective(D); |
| getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get()); |
| return Res; |
| } |
| |
| template <typename Derived> |
| StmtResult TreeTransform<Derived>:: |
| TransformOMPTargetTeamsDistributeParallelForSimdDirective( |
| OMPTargetTeamsDistributeParallelForSimdDirective *D) { |
| DeclarationNameInfo DirName; |
| getDerived().getSema().OpenMP().StartOpenMPDSABlock( |
| OMPD_target_teams_distribute_parallel_for_simd, DirName, nullptr, |
| D->getBeginLoc()); |
| auto Res = getDerived().TransformOMPExecutableDirective(D); |
| getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get()); |
| return Res; |
| } |
| |
| template <typename Derived> |
| StmtResult |
| TreeTransform<Derived>::TransformOMPTargetTeamsDistributeSimdDirective( |
| OMPTargetTeamsDistributeSimdDirective *D) { |
| DeclarationNameInfo DirName; |
| getDerived().getSema().OpenMP().StartOpenMPDSABlock( |
| OMPD_target_teams_distribute_simd, DirName, nullptr, D->getBeginLoc()); |
| auto Res = getDerived().TransformOMPExecutableDirective(D); |
| getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get()); |
| return Res; |
| } |
| |
| template <typename Derived> |
| StmtResult |
| TreeTransform<Derived>::TransformOMPInteropDirective(OMPInteropDirective *D) { |
| DeclarationNameInfo DirName; |
| getDerived().getSema().OpenMP().StartOpenMPDSABlock( |
| OMPD_interop, DirName, nullptr, D->getBeginLoc()); |
| StmtResult Res = getDerived().TransformOMPExecutableDirective(D); |
| getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get()); |
| return Res; |
| } |
| |
| template <typename Derived> |
| StmtResult |
| TreeTransform<Derived>::TransformOMPDispatchDirective(OMPDispatchDirective *D) { |
| DeclarationNameInfo DirName; |
| getDerived().getSema().OpenMP().StartOpenMPDSABlock( |
| OMPD_dispatch, DirName, nullptr, D->getBeginLoc()); |
| StmtResult Res = getDerived().TransformOMPExecutableDirective(D); |
| getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get()); |
| return Res; |
| } |
| |
| template <typename Derived> |
| StmtResult |
| TreeTransform<Derived>::TransformOMPMaskedDirective(OMPMaskedDirective *D) { |
| DeclarationNameInfo DirName; |
| getDerived().getSema().OpenMP().StartOpenMPDSABlock( |
| OMPD_masked, DirName, nullptr, D->getBeginLoc()); |
| StmtResult Res = getDerived().TransformOMPExecutableDirective(D); |
| getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get()); |
| return Res; |
| } |
| |
| template <typename Derived> |
| StmtResult TreeTransform<Derived>::TransformOMPGenericLoopDirective( |
| OMPGenericLoopDirective *D) { |
| DeclarationNameInfo DirName; |
| getDerived().getSema().OpenMP().StartOpenMPDSABlock( |
| OMPD_loop, DirName, nullptr, D->getBeginLoc()); |
| StmtResult Res = getDerived().TransformOMPExecutableDirective(D); |
| getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get()); |
| return Res; |
| } |
| |
| template <typename Derived> |
| StmtResult TreeTransform<Derived>::TransformOMPTeamsGenericLoopDirective( |
| OMPTeamsGenericLoopDirective *D) { |
| DeclarationNameInfo DirName; |
| getDerived().getSema().OpenMP().StartOpenMPDSABlock( |
| OMPD_teams_loop, DirName, nullptr, D->getBeginLoc()); |
| StmtResult Res = getDerived().TransformOMPExecutableDirective(D); |
| getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get()); |
| return Res; |
| } |
| |
| template <typename Derived> |
| StmtResult TreeTransform<Derived>::TransformOMPTargetTeamsGenericLoopDirective( |
| OMPTargetTeamsGenericLoopDirective *D) { |
| DeclarationNameInfo DirName; |
| getDerived().getSema().OpenMP().StartOpenMPDSABlock( |
| OMPD_target_teams_loop, DirName, nullptr, D->getBeginLoc()); |
| StmtResult Res = getDerived().TransformOMPExecutableDirective(D); |
| getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get()); |
| return Res; |
| } |
| |
| template <typename Derived> |
| StmtResult TreeTransform<Derived>::TransformOMPParallelGenericLoopDirective( |
| OMPParallelGenericLoopDirective *D) { |
| DeclarationNameInfo DirName; |
| getDerived().getSema().OpenMP().StartOpenMPDSABlock( |
| OMPD_parallel_loop, DirName, nullptr, D->getBeginLoc()); |
| StmtResult Res = getDerived().TransformOMPExecutableDirective(D); |
| getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get()); |
| return Res; |
| } |
| |
| template <typename Derived> |
| StmtResult |
| TreeTransform<Derived>::TransformOMPTargetParallelGenericLoopDirective( |
| OMPTargetParallelGenericLoopDirective *D) { |
| DeclarationNameInfo DirName; |
| getDerived().getSema().OpenMP().StartOpenMPDSABlock( |
| OMPD_target_parallel_loop, DirName, nullptr, D->getBeginLoc()); |
| StmtResult Res = getDerived().TransformOMPExecutableDirective(D); |
| getDerived().getSema().OpenMP().EndOpenMPDSABlock(Res.get()); |
| return Res; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // OpenMP clause transformation |
| //===----------------------------------------------------------------------===// |
| template <typename Derived> |
| OMPClause *TreeTransform<Derived>::TransformOMPIfClause(OMPIfClause *C) { |
| ExprResult Cond = getDerived().TransformExpr(C->getCondition()); |
| if (Cond.isInvalid()) |
| return nullptr; |
| return getDerived().RebuildOMPIfClause( |
| C->getNameModifier(), Cond.get(), C->getBeginLoc(), C->getLParenLoc(), |
| C->getNameModifierLoc(), C->getColonLoc(), C->getEndLoc()); |
| } |
| |
| template <typename Derived> |
| OMPClause *TreeTransform<Derived>::TransformOMPFinalClause(OMPFinalClause *C) { |
| ExprResult Cond = getDerived().TransformExpr(C->getCondition()); |
| if (Cond.isInvalid()) |
| return nullptr; |
| return getDerived().RebuildOMPFinalClause(Cond.get(), C->getBeginLoc(), |
| C->getLParenLoc(), C->getEndLoc()); |
| } |
| |
| template <typename Derived> |
| OMPClause * |
| TreeTransform<Derived>::TransformOMPNumThreadsClause(OMPNumThreadsClause *C) { |
| ExprResult NumThreads = getDerived().TransformExpr(C->getNumThreads()); |
| if (NumThreads.isInvalid()) |
| return nullptr; |
| return getDerived().RebuildOMPNumThreadsClause( |
| NumThreads.get(), C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc()); |
| } |
| |
| template <typename Derived> |
| OMPClause * |
| TreeTransform<Derived>::TransformOMPSafelenClause(OMPSafelenClause *C) { |
| ExprResult E = getDerived().TransformExpr(C->getSafelen()); |
| if (E.isInvalid()) |
| return nullptr; |
| return getDerived().RebuildOMPSafelenClause( |
| E.get(), C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc()); |
| } |
| |
| template <typename Derived> |
| OMPClause * |
| TreeTransform<Derived>::TransformOMPAllocatorClause(OMPAllocatorClause *C) { |
| ExprResult E = getDerived().TransformExpr(C->getAllocator()); |
| if (E.isInvalid()) |
| return nullptr; |
| return getDerived().RebuildOMPAllocatorClause( |
| E.get(), C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc()); |
| } |
| |
| template <typename Derived> |
| OMPClause * |
| TreeTransform<Derived>::TransformOMPSimdlenClause(OMPSimdlenClause *C) { |
| ExprResult E = getDerived().TransformExpr(C->getSimdlen()); |
| if (E.isInvalid()) |
| return nullptr; |
| return getDerived().RebuildOMPSimdlenClause( |
| E.get(), C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc()); |
| } |
| |
| template <typename Derived> |
| OMPClause *TreeTransform<Derived>::TransformOMPSizesClause(OMPSizesClause *C) { |
| SmallVector<Expr *, 4> TransformedSizes; |
| TransformedSizes.reserve(C->getNumSizes()); |
| bool Changed = false; |
| for (Expr *E : C->getSizesRefs()) { |
| if (!E) { |
| TransformedSizes.push_back(nullptr); |
| continue; |
| } |
| |
| ExprResult T = getDerived().TransformExpr(E); |
| if (T.isInvalid()) |
| return nullptr; |
| if (E != T.get()) |
| Changed = true; |
| TransformedSizes.push_back(T.get()); |
| } |
| |
| if (!Changed && !getDerived().AlwaysRebuild()) |
| return C; |
| return RebuildOMPSizesClause(TransformedSizes, C->getBeginLoc(), |
| C->getLParenLoc(), C->getEndLoc()); |
| } |
| |
| template <typename Derived> |
| OMPClause * |
| TreeTransform<Derived>::TransformOMPPermutationClause(OMPPermutationClause *C) { |
| SmallVector<Expr *> TransformedArgs; |
| TransformedArgs.reserve(C->getNumLoops()); |
| bool Changed = false; |
| for (Expr *E : C->getArgsRefs()) { |
| if (!E) { |
| TransformedArgs.push_back(nullptr); |
| continue; |
| } |
| |
| ExprResult T = getDerived().TransformExpr(E); |
| if (T.isInvalid()) |
| return nullptr; |
| if (E != T.get()) |
| Changed = true; |
| TransformedArgs.push_back(T.get()); |
| } |
| |
| if (!Changed && !getDerived().AlwaysRebuild()) |
| return C; |
| return RebuildOMPPermutationClause(TransformedArgs, C->getBeginLoc(), |
| C->getLParenLoc(), C->getEndLoc()); |
| } |
| |
| template <typename Derived> |
| OMPClause *TreeTransform<Derived>::TransformOMPFullClause(OMPFullClause *C) { |
| if (!getDerived().AlwaysRebuild()) |
| return C; |
| return RebuildOMPFullClause(C->getBeginLoc(), C->getEndLoc()); |
| } |
| |
| template <typename Derived> |
| OMPClause * |
| TreeTransform<Derived>::TransformOMPPartialClause(OMPPartialClause *C) { |
| ExprResult T = getDerived().TransformExpr(C->getFactor()); |
| if (T.isInvalid()) |
| return nullptr; |
| Expr *Factor = T.get(); |
| bool Changed = Factor != C->getFactor(); |
| |
| if (!Changed && !getDerived().AlwaysRebuild()) |
| return C; |
| return RebuildOMPPartialClause(Factor, C->getBeginLoc(), C->getLParenLoc(), |
| C->getEndLoc()); |
| } |
| |
| template <typename Derived> |
| OMPClause * |
| TreeTransform<Derived>::TransformOMPCollapseClause(OMPCollapseClause *C) { |
| ExprResult E = getDerived().TransformExpr(C->getNumForLoops()); |
| if (E.isInvalid()) |
| return nullptr; |
| return getDerived().RebuildOMPCollapseClause( |
| E.get(), C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc()); |
| } |
| |
| template <typename Derived> |
| OMPClause * |
| TreeTransform<Derived>::TransformOMPDefaultClause(OMPDefaultClause *C) { |
| return getDerived().RebuildOMPDefaultClause( |
| C->getDefaultKind(), C->getDefaultKindKwLoc(), C->getBeginLoc(), |
| C->getLParenLoc(), C->getEndLoc()); |
| } |
| |
| template <typename Derived> |
| OMPClause * |
| TreeTransform<Derived>::TransformOMPProcBindClause(OMPProcBindClause *C) { |
| return getDerived().RebuildOMPProcBindClause( |
| C->getProcBindKind(), C->getProcBindKindKwLoc(), C->getBeginLoc(), |
| C->getLParenLoc(), C->getEndLoc()); |
| } |
| |
| template <typename Derived> |
| OMPClause * |
| TreeTransform<Derived>::TransformOMPScheduleClause(OMPScheduleClause *C) { |
| ExprResult E = getDerived().TransformExpr(C->getChunkSize()); |
| if (E.isInvalid()) |
| return nullptr; |
| return getDerived().RebuildOMPScheduleClause( |
| C->getFirstScheduleModifier(), C->getSecondScheduleModifier(), |
| C->getScheduleKind(), E.get(), C->getBeginLoc(), C->getLParenLoc(), |
| C->getFirstScheduleModifierLoc(), C->getSecondScheduleModifierLoc(), |
| C->getScheduleKindLoc(), C->getCommaLoc(), C->getEndLoc()); |
| } |
| |
| template <typename Derived> |
| OMPClause * |
| TreeTransform<Derived>::TransformOMPOrderedClause(OMPOrderedClause *C) { |
| ExprResult E; |
| if (auto *Num = C->getNumForLoops()) { |
| E = getDerived().TransformExpr(Num); |
| if (E.isInvalid()) |
| return nullptr; |
| } |
| return getDerived().RebuildOMPOrderedClause(C->getBeginLoc(), C->getEndLoc(), |
| C->getLParenLoc(), E.get()); |
| } |
| |
| template <typename Derived> |
| OMPClause * |
| TreeTransform<Derived>::TransformOMPDetachClause(OMPDetachClause *C) { |
| ExprResult E; |
| if (Expr *Evt = C->getEventHandler()) { |
| E = getDerived().TransformExpr(Evt); |
| if (E.isInvalid()) |
| return nullptr; |
| } |
| return getDerived().RebuildOMPDetachClause(E.get(), C->getBeginLoc(), |
| C->getLParenLoc(), C->getEndLoc()); |
| } |
| |
| template <typename Derived> |
| OMPClause * |
| TreeTransform<Derived>::TransformOMPNowaitClause(OMPNowaitClause *C) { |
| // No need to rebuild this clause, no template-dependent parameters. |
| return C; |
| } |
| |
| template <typename Derived> |
| OMPClause * |
| TreeTransform<Derived>::TransformOMPUntiedClause(OMPUntiedClause *C) { |
| // No need to rebuild this clause, no template-dependent parameters. |
| return C; |
| } |
| |
| template <typename Derived> |
| OMPClause * |
| TreeTransform<Derived>::TransformOMPMergeableClause(OMPMergeableClause *C) { |
| // No need to rebuild this clause, no template-dependent parameters. |
| return C; |
| } |
| |
| template <typename Derived> |
| OMPClause *TreeTransform<Derived>::TransformOMPReadClause(OMPReadClause *C) { |
| // No need to rebuild this clause, no template-dependent parameters. |
| return C; |
| } |
| |
| template <typename Derived> |
| OMPClause *TreeTransform<Derived>::TransformOMPWriteClause(OMPWriteClause *C) { |
| // No need to rebuild this clause, no template-dependent parameters. |
| return C; |
| } |
| |
| template <typename Derived> |
| OMPClause * |
| TreeTransform<Derived>::TransformOMPUpdateClause(OMPUpdateClause *C) { |
| // No need to rebuild this clause, no template-dependent parameters. |
| return C; |
| } |
| |
| template <typename Derived> |
| OMPClause * |
| TreeTransform<Derived>::TransformOMPCaptureClause(OMPCaptureClause *C) { |
| // No need to rebuild this clause, no template-dependent parameters. |
| return C; |
| } |
| |
| template <typename Derived> |
| OMPClause * |
| TreeTransform<Derived>::TransformOMPCompareClause(OMPCompareClause *C) { |
| // No need to rebuild this clause, no template-dependent parameters. |
| return C; |
| } |
| |
| template <typename Derived> |
| OMPClause *TreeTransform<Derived>::TransformOMPFailClause(OMPFailClause *C) { |
| // No need to rebuild this clause, no template-dependent parameters. |
| return C; |
| } |
| |
| template <typename Derived> |
| OMPClause * |
| TreeTransform<Derived>::TransformOMPAbsentClause(OMPAbsentClause *C) { |
| return C; |
| } |
| |
| template <typename Derived> |
| OMPClause *TreeTransform<Derived>::TransformOMPHoldsClause(OMPHoldsClause *C) { |
| ExprResult E = getDerived().TransformExpr(C->getExpr()); |
| if (E.isInvalid()) |
| return nullptr; |
| return getDerived().RebuildOMPHoldsClause(E.get(), C->getBeginLoc(), |
| C->getLParenLoc(), C->getEndLoc()); |
| } |
| |
| template <typename Derived> |
| OMPClause * |
| TreeTransform<Derived>::TransformOMPContainsClause(OMPContainsClause *C) { |
| return C; |
| } |
| |
| template <typename Derived> |
| OMPClause * |
| TreeTransform<Derived>::TransformOMPNoOpenMPClause(OMPNoOpenMPClause *C) { |
| return C; |
| } |
| template <typename Derived> |
| OMPClause *TreeTransform<Derived>::TransformOMPNoOpenMPRoutinesClause( |
| OMPNoOpenMPRoutinesClause *C) { |
| return C; |
| } |
| template <typename Derived> |
| OMPClause *TreeTransform<Derived>::TransformOMPNoParallelismClause( |
| OMPNoParallelismClause *C) { |
| return C; |
| } |
| |
| template <typename Derived> |
| OMPClause * |
| TreeTransform<Derived>::TransformOMPSeqCstClause(OMPSeqCstClause *C) { |
| // No need to rebuild this clause, no template-dependent parameters. |
| return C; |
| } |
| |
| template <typename Derived> |
| OMPClause * |
| TreeTransform<Derived>::TransformOMPAcqRelClause(OMPAcqRelClause *C) { |
| // No need to rebuild this clause, no template-dependent parameters. |
| return C; |
| } |
| |
| template <typename Derived> |
| OMPClause * |
| TreeTransform<Derived>::TransformOMPAcquireClause(OMPAcquireClause *C) { |
| // No need to rebuild this clause, no template-dependent parameters. |
| return C; |
| } |
| |
| template <typename Derived> |
| OMPClause * |
| TreeTransform<Derived>::TransformOMPReleaseClause(OMPReleaseClause *C) { |
| // No need to rebuild this clause, no template-dependent parameters. |
| return C; |
| } |
| |
| template <typename Derived> |
| OMPClause * |
| TreeTransform<Derived>::TransformOMPRelaxedClause(OMPRelaxedClause *C) { |
| // No need to rebuild this clause, no template-dependent parameters. |
| return C; |
| } |
| |
| template <typename Derived> |
| OMPClause *TreeTransform<Derived>::TransformOMPWeakClause(OMPWeakClause *C) { |
| // No need to rebuild this clause, no template-dependent parameters. |
| return C; |
| } |
| |
| template <typename Derived> |
| OMPClause * |
| TreeTransform<Derived>::TransformOMPThreadsClause(OMPThreadsClause *C) { |
| // No need to rebuild this clause, no template-dependent parameters. |
| return C; |
| } |
| |
| template <typename Derived> |
| OMPClause *TreeTransform<Derived>::TransformOMPSIMDClause(OMPSIMDClause *C) { |
| // No need to rebuild this clause, no template-dependent parameters. |
| return C; |
| } |
| |
| template <typename Derived> |
| OMPClause * |
| TreeTransform<Derived>::TransformOMPNogroupClause(OMPNogroupClause *C) { |
| // No need to rebuild this clause, no template-dependent parameters. |
| return C; |
| } |
| |
| template <typename Derived> |
| OMPClause *TreeTransform<Derived>::TransformOMPInitClause(OMPInitClause *C) { |
| ExprResult IVR = getDerived().TransformExpr(C->getInteropVar()); |
| if (IVR.isInvalid()) |
| return nullptr; |
| |
| OMPInteropInfo InteropInfo(C->getIsTarget(), C->getIsTargetSync()); |
| InteropInfo.PreferTypes.reserve(C->varlist_size() - 1); |
| for (Expr *E : llvm::drop_begin(C->varlist())) { |
| ExprResult ER = getDerived().TransformExpr(cast<Expr>(E)); |
| if (ER.isInvalid()) |
| return nullptr; |
| InteropInfo.PreferTypes.push_back(ER.get()); |
| } |
| return getDerived().RebuildOMPInitClause(IVR.get(), InteropInfo, |
| C->getBeginLoc(), C->getLParenLoc(), |
| C->getVarLoc(), C->getEndLoc()); |
| } |
| |
| template <typename Derived> |
| OMPClause *TreeTransform<Derived>::TransformOMPUseClause(OMPUseClause *C) { |
| ExprResult ER = getDerived().TransformExpr(C->getInteropVar()); |
| if (ER.isInvalid()) |
| return nullptr; |
| return getDerived().RebuildOMPUseClause(ER.get(), C->getBeginLoc(), |
| C->getLParenLoc(), C->getVarLoc(), |
| C->getEndLoc()); |
| } |
| |
| template <typename Derived> |
| OMPClause * |
| TreeTransform<Derived>::TransformOMPDestroyClause(OMPDestroyClause *C) { |
| ExprResult ER; |
| if (Expr *IV = C->getInteropVar()) { |
| ER = getDerived().TransformExpr(IV); |
| if (ER.isInvalid()) |
| return nullptr; |
| } |
| return getDerived().RebuildOMPDestroyClause(ER.get(), C->getBeginLoc(), |
| C->getLParenLoc(), C->getVarLoc(), |
| C->getEndLoc()); |
| } |
| |
| template <typename Derived> |
| OMPClause * |
| TreeTransform<Derived>::TransformOMPNovariantsClause(OMPNovariantsClause *C) { |
| ExprResult Cond = getDerived().TransformExpr(C->getCondition()); |
| if (Cond.isInvalid()) |
| return nullptr; |
| return getDerived().RebuildOMPNovariantsClause( |
| Cond.get(), C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc()); |
| } |
| |
| template <typename Derived> |
| OMPClause * |
| TreeTransform<Derived>::TransformOMPNocontextClause(OMPNocontextClause *C) { |
| ExprResult Cond = getDerived().TransformExpr(C->getCondition()); |
| if (Cond.isInvalid()) |
| return nullptr; |
| return getDerived().RebuildOMPNocontextClause( |
| Cond.get(), C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc()); |
| } |
| |
| template <typename Derived> |
| OMPClause * |
| TreeTransform<Derived>::TransformOMPFilterClause(OMPFilterClause *C) { |
| ExprResult ThreadID = getDerived().TransformExpr(C->getThreadID()); |
| if (ThreadID.isInvalid()) |
| return nullptr; |
| return getDerived().RebuildOMPFilterClause(ThreadID.get(), C->getBeginLoc(), |
| C->getLParenLoc(), C->getEndLoc()); |
| } |
| |
| template <typename Derived> |
| OMPClause *TreeTransform<Derived>::TransformOMPAlignClause(OMPAlignClause *C) { |
| ExprResult E = getDerived().TransformExpr(C->getAlignment()); |
| if (E.isInvalid()) |
| return nullptr; |
| return getDerived().RebuildOMPAlignClause(E.get(), C->getBeginLoc(), |
| C->getLParenLoc(), C->getEndLoc()); |
| } |
| |
| template <typename Derived> |
| OMPClause *TreeTransform<Derived>::TransformOMPUnifiedAddressClause( |
| OMPUnifiedAddressClause *C) { |
| llvm_unreachable("unified_address clause cannot appear in dependent context"); |
| } |
| |
| template <typename Derived> |
| OMPClause *TreeTransform<Derived>::TransformOMPUnifiedSharedMemoryClause( |
| OMPUnifiedSharedMemoryClause *C) { |
| llvm_unreachable( |
| "unified_shared_memory clause cannot appear in dependent context"); |
| } |
| |
| template <typename Derived> |
| OMPClause *TreeTransform<Derived>::TransformOMPReverseOffloadClause( |
| OMPReverseOffloadClause *C) { |
| llvm_unreachable("reverse_offload clause cannot appear in dependent context"); |
| } |
| |
| template <typename Derived> |
| OMPClause *TreeTransform<Derived>::TransformOMPDynamicAllocatorsClause( |
| OMPDynamicAllocatorsClause *C) { |
| llvm_unreachable( |
| "dynamic_allocators clause cannot appear in dependent context"); |
| } |
| |
| template <typename Derived> |
| OMPClause *TreeTransform<Derived>::TransformOMPAtomicDefaultMemOrderClause( |
| OMPAtomicDefaultMemOrderClause *C) { |
| llvm_unreachable( |
| "atomic_default_mem_order clause cannot appear in dependent context"); |
| } |
| |
| template <typename Derived> |
| OMPClause *TreeTransform<Derived>::TransformOMPAtClause(OMPAtClause *C) { |
| return getDerived().RebuildOMPAtClause(C->getAtKind(), C->getAtKindKwLoc(), |
| C->getBeginLoc(), C->getLParenLoc(), |
| C->getEndLoc()); |
| } |
| |
| template <typename Derived> |
| OMPClause * |
| TreeTransform<Derived>::TransformOMPSeverityClause(OMPSeverityClause *C) { |
| return getDerived().RebuildOMPSeverityClause( |
| C->getSeverityKind(), C->getSeverityKindKwLoc(), C->getBeginLoc(), |
| C->getLParenLoc(), C->getEndLoc()); |
| } |
| |
| template <typename Derived> |
| OMPClause * |
| TreeTransform<Derived>::TransformOMPMessageClause(OMPMessageClause *C) { |
| ExprResult E = getDerived().TransformExpr(C->getMessageString()); |
| if (E.isInvalid()) |
| return nullptr; |
| return getDerived().RebuildOMPMessageClause( |
| C->getMessageString(), C->getBeginLoc(), C->getLParenLoc(), |
| C->getEndLoc()); |
| } |
| |
| template <typename Derived> |
| OMPClause * |
| TreeTransform<Derived>::TransformOMPPrivateClause(OMPPrivateClause *C) { |
| llvm::SmallVector<Expr *, 16> Vars; |
| Vars.reserve(C->varlist_size()); |
| for (auto *VE : C->varlist()) { |
| ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE)); |
| if (EVar.isInvalid()) |
| return nullptr; |
| Vars.push_back(EVar.get()); |
| } |
| return getDerived().RebuildOMPPrivateClause( |
| Vars, C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc()); |
| } |
| |
| template <typename Derived> |
| OMPClause *TreeTransform<Derived>::TransformOMPFirstprivateClause( |
| OMPFirstprivateClause *C) { |
| llvm::SmallVector<Expr *, 16> Vars; |
| Vars.reserve(C->varlist_size()); |
| for (auto *VE : C->varlist()) { |
| ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE)); |
| if (EVar.isInvalid()) |
| return nullptr; |
| Vars.push_back(EVar.get()); |
| } |
| return getDerived().RebuildOMPFirstprivateClause( |
| Vars, C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc()); |
| } |
| |
| template <typename Derived> |
| OMPClause * |
| TreeTransform<Derived>::TransformOMPLastprivateClause(OMPLastprivateClause *C) { |
| llvm::SmallVector<Expr *, 16> Vars; |
| Vars.reserve(C->varlist_size()); |
| for (auto *VE : C->varlist()) { |
| ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE)); |
| if (EVar.isInvalid()) |
| return nullptr; |
| Vars.push_back(EVar.get()); |
| } |
| return getDerived().RebuildOMPLastprivateClause( |
| Vars, C->getKind(), C->getKindLoc(), C->getColonLoc(), C->getBeginLoc(), |
| C->getLParenLoc(), C->getEndLoc()); |
| } |
| |
| template <typename Derived> |
| OMPClause * |
| TreeTransform<Derived>::TransformOMPSharedClause(OMPSharedClause *C) { |
| llvm::SmallVector<Expr *, 16> Vars; |
| Vars.reserve(C->varlist_size()); |
| for (auto *VE : C->varlist()) { |
| ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE)); |
| if (EVar.isInvalid()) |
| return nullptr; |
| Vars.push_back(EVar.get()); |
| } |
| return getDerived().RebuildOMPSharedClause(Vars, C->getBeginLoc(), |
| C->getLParenLoc(), C->getEndLoc()); |
| } |
| |
| template <typename Derived> |
| OMPClause * |
| TreeTransform<Derived>::TransformOMPReductionClause(OMPReductionClause *C) { |
| llvm::SmallVector<Expr *, 16> Vars; |
| Vars.reserve(C->varlist_size()); |
| for (auto *VE : C->varlist()) { |
| ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE)); |
| if (EVar.isInvalid()) |
| return nullptr; |
| Vars.push_back(EVar.get()); |
| } |
| CXXScopeSpec ReductionIdScopeSpec; |
| ReductionIdScopeSpec.Adopt(C->getQualifierLoc()); |
| |
| DeclarationNameInfo NameInfo = C->getNameInfo(); |
| if (NameInfo.getName()) { |
| NameInfo = getDerived().TransformDeclarationNameInfo(NameInfo); |
| if (!NameInfo.getName()) |
| return nullptr; |
| } |
| // Build a list of all UDR decls with the same names ranged by the Scopes. |
| // The Scope boundary is a duplication of the previous decl. |
| llvm::SmallVector<Expr *, 16> UnresolvedReductions; |
| for (auto *E : C->reduction_ops()) { |
| // Transform all the decls. |
| if (E) { |
| auto *ULE = cast<UnresolvedLookupExpr>(E); |
| UnresolvedSet<8> Decls; |
| for (auto *D : ULE->decls()) { |
| NamedDecl *InstD = |
| cast<NamedDecl>(getDerived().TransformDecl(E->getExprLoc(), D)); |
| Decls.addDecl(InstD, InstD->getAccess()); |
| } |
| UnresolvedReductions.push_back(UnresolvedLookupExpr::Create( |
| SemaRef.Context, /*NamingClass=*/nullptr, |
| ReductionIdScopeSpec.getWithLocInContext(SemaRef.Context), NameInfo, |
| /*ADL=*/true, Decls.begin(), Decls.end(), |
| /*KnownDependent=*/false, /*KnownInstantiationDependent=*/false)); |
| } else |
| UnresolvedReductions.push_back(nullptr); |
| } |
| return getDerived().RebuildOMPReductionClause( |
| Vars, C->getModifier(), C->getBeginLoc(), C->getLParenLoc(), |
| C->getModifierLoc(), C->getColonLoc(), C->getEndLoc(), |
| ReductionIdScopeSpec, NameInfo, UnresolvedReductions); |
| } |
| |
| template <typename Derived> |
| OMPClause *TreeTransform<Derived>::TransformOMPTaskReductionClause( |
| OMPTaskReductionClause *C) { |
| llvm::SmallVector<Expr *, 16> Vars; |
| Vars.reserve(C->varlist_size()); |
| for (auto *VE : C->varlist()) { |
| ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE)); |
| if (EVar.isInvalid()) |
| return nullptr; |
| Vars.push_back(EVar.get()); |
| } |
| CXXScopeSpec ReductionIdScopeSpec; |
| ReductionIdScopeSpec.Adopt(C->getQualifierLoc()); |
| |
| DeclarationNameInfo NameInfo = C->getNameInfo(); |
| if (NameInfo.getName()) { |
| NameInfo = getDerived().TransformDeclarationNameInfo(NameInfo); |
| if (!NameInfo.getName()) |
| return nullptr; |
| } |
| // Build a list of all UDR decls with the same names ranged by the Scopes. |
| // The Scope boundary is a duplication of the previous decl. |
| llvm::SmallVector<Expr *, 16> UnresolvedReductions; |
| for (auto *E : C->reduction_ops()) { |
| // Transform all the decls. |
| if (E) { |
| auto *ULE = cast<UnresolvedLookupExpr>(E); |
| UnresolvedSet<8> Decls; |
| for (auto *D : ULE->decls()) { |
| NamedDecl *InstD = |
| cast<NamedDecl>(getDerived().TransformDecl(E->getExprLoc(), D)); |
| Decls.addDecl(InstD, InstD->getAccess()); |
| } |
| UnresolvedReductions.push_back(UnresolvedLookupExpr::Create( |
| SemaRef.Context, /*NamingClass=*/nullptr, |
| ReductionIdScopeSpec.getWithLocInContext(SemaRef.Context), NameInfo, |
| /*ADL=*/true, Decls.begin(), Decls.end(), |
| /*KnownDependent=*/false, /*KnownInstantiationDependent=*/false)); |
| } else |
| UnresolvedReductions.push_back(nullptr); |
| } |
| return getDerived().RebuildOMPTaskReductionClause( |
| Vars, C->getBeginLoc(), C->getLParenLoc(), C->getColonLoc(), |
| C->getEndLoc(), ReductionIdScopeSpec, NameInfo, UnresolvedReductions); |
| } |
| |
| template <typename Derived> |
| OMPClause * |
| TreeTransform<Derived>::TransformOMPInReductionClause(OMPInReductionClause *C) { |
| llvm::SmallVector<Expr *, 16> Vars; |
| Vars.reserve(C->varlist_size()); |
| for (auto *VE : C->varlist()) { |
| ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE)); |
| if (EVar.isInvalid()) |
| return nullptr; |
| Vars.push_back(EVar.get()); |
| } |
| CXXScopeSpec ReductionIdScopeSpec; |
| ReductionIdScopeSpec.Adopt(C->getQualifierLoc()); |
| |
| DeclarationNameInfo NameInfo = C->getNameInfo(); |
| if (NameInfo.getName()) { |
| NameInfo = getDerived().TransformDeclarationNameInfo(NameInfo); |
| if (!NameInfo.getName()) |
| return nullptr; |
| } |
| // Build a list of all UDR decls with the same names ranged by the Scopes. |
| // The Scope boundary is a duplication of the previous decl. |
| llvm::SmallVector<Expr *, 16> UnresolvedReductions; |
| for (auto *E : C->reduction_ops()) { |
| // Transform all the decls. |
| if (E) { |
| auto *ULE = cast<UnresolvedLookupExpr>(E); |
| UnresolvedSet<8> Decls; |
| for (auto *D : ULE->decls()) { |
| NamedDecl *InstD = |
| cast<NamedDecl>(getDerived().TransformDecl(E->getExprLoc(), D)); |
| Decls.addDecl(InstD, InstD->getAccess()); |
| } |
| UnresolvedReductions.push_back(UnresolvedLookupExpr::Create( |
| SemaRef.Context, /*NamingClass=*/nullptr, |
| ReductionIdScopeSpec.getWithLocInContext(SemaRef.Context), NameInfo, |
| /*ADL=*/true, Decls.begin(), Decls.end(), |
| /*KnownDependent=*/false, /*KnownInstantiationDependent=*/false)); |
| } else |
| UnresolvedReductions.push_back(nullptr); |
| } |
| return getDerived().RebuildOMPInReductionClause( |
| Vars, C->getBeginLoc(), C->getLParenLoc(), C->getColonLoc(), |
| C->getEndLoc(), ReductionIdScopeSpec, NameInfo, UnresolvedReductions); |
| } |
| |
| template <typename Derived> |
| OMPClause * |
| TreeTransform<Derived>::TransformOMPLinearClause(OMPLinearClause *C) { |
| llvm::SmallVector<Expr *, 16> Vars; |
| Vars.reserve(C->varlist_size()); |
| for (auto *VE : C->varlist()) { |
| ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE)); |
| if (EVar.isInvalid()) |
| return nullptr; |
| Vars.push_back(EVar.get()); |
| } |
| ExprResult Step = getDerived().TransformExpr(C->getStep()); |
| if (Step.isInvalid()) |
| return nullptr; |
| return getDerived().RebuildOMPLinearClause( |
| Vars, Step.get(), C->getBeginLoc(), C->getLParenLoc(), C->getModifier(), |
| C->getModifierLoc(), C->getColonLoc(), C->getStepModifierLoc(), |
| C->getEndLoc()); |
| } |
| |
| template <typename Derived> |
| OMPClause * |
| TreeTransform<Derived>::TransformOMPAlignedClause(OMPAlignedClause *C) { |
| llvm::SmallVector<Expr *, 16> Vars; |
| Vars.reserve(C->varlist_size()); |
| for (auto *VE : C->varlist()) { |
| ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE)); |
| if (EVar.isInvalid()) |
| return nullptr; |
| Vars.push_back(EVar.get()); |
| } |
| ExprResult Alignment = getDerived().TransformExpr(C->getAlignment()); |
| if (Alignment.isInvalid()) |
| return nullptr; |
| return getDerived().RebuildOMPAlignedClause( |
| Vars, Alignment.get(), C->getBeginLoc(), C->getLParenLoc(), |
| C->getColonLoc(), C->getEndLoc()); |
| } |
| |
| template <typename Derived> |
| OMPClause * |
| TreeTransform<Derived>::TransformOMPCopyinClause(OMPCopyinClause *C) { |
| llvm::SmallVector<Expr *, 16> Vars; |
| Vars.reserve(C->varlist_size()); |
| for (auto *VE : C->varlist()) { |
| ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE)); |
| if (EVar.isInvalid()) |
| return nullptr; |
| Vars.push_back(EVar.get()); |
| } |
| return getDerived().RebuildOMPCopyinClause(Vars, C->getBeginLoc(), |
| C->getLParenLoc(), C->getEndLoc()); |
| } |
| |
| template <typename Derived> |
| OMPClause * |
| TreeTransform<Derived>::TransformOMPCopyprivateClause(OMPCopyprivateClause *C) { |
| llvm::SmallVector<Expr *, 16> Vars; |
| Vars.reserve(C->varlist_size()); |
| for (auto *VE : C->varlist()) { |
| ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE)); |
| if (EVar.isInvalid()) |
| return nullptr; |
| Vars.push_back(EVar.get()); |
| } |
| return getDerived().RebuildOMPCopyprivateClause( |
| Vars, C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc()); |
| } |
| |
| template <typename Derived> |
| OMPClause *TreeTransform<Derived>::TransformOMPFlushClause(OMPFlushClause *C) { |
| llvm::SmallVector<Expr *, 16> Vars; |
| Vars.reserve(C->varlist_size()); |
| for (auto *VE : C->varlist()) { |
| ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE)); |
| if (EVar.isInvalid()) |
| return nullptr; |
| Vars.push_back(EVar.get()); |
| } |
| return getDerived().RebuildOMPFlushClause(Vars, C->getBeginLoc(), |
| C->getLParenLoc(), C->getEndLoc()); |
| } |
| |
| template <typename Derived> |
| OMPClause * |
| TreeTransform<Derived>::TransformOMPDepobjClause(OMPDepobjClause *C) { |
| ExprResult E = getDerived().TransformExpr(C->getDepobj()); |
| if (E.isInvalid()) |
| return nullptr; |
| return getDerived().RebuildOMPDepobjClause(E.get(), C->getBeginLoc(), |
| C->getLParenLoc(), C->getEndLoc()); |
| } |
| |
| template <typename Derived> |
| OMPClause * |
| TreeTransform<Derived>::TransformOMPDependClause(OMPDependClause *C) { |
| llvm::SmallVector<Expr *, 16> Vars; |
| Expr *DepModifier = C->getModifier(); |
| if (DepModifier) { |
| ExprResult DepModRes = getDerived().TransformExpr(DepModifier); |
| if (DepModRes.isInvalid()) |
| return nullptr; |
| DepModifier = DepModRes.get(); |
| } |
| Vars.reserve(C->varlist_size()); |
| for (auto *VE : C->varlist()) { |
| ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE)); |
| if (EVar.isInvalid()) |
| return nullptr; |
| Vars.push_back(EVar.get()); |
| } |
| return getDerived().RebuildOMPDependClause( |
| {C->getDependencyKind(), C->getDependencyLoc(), C->getColonLoc(), |
| C->getOmpAllMemoryLoc()}, |
| DepModifier, Vars, C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc()); |
| } |
| |
| template <typename Derived> |
| OMPClause * |
| TreeTransform<Derived>::TransformOMPDeviceClause(OMPDeviceClause *C) { |
| ExprResult E = getDerived().TransformExpr(C->getDevice()); |
| if (E.isInvalid()) |
| return nullptr; |
| return getDerived().RebuildOMPDeviceClause( |
| C->getModifier(), E.get(), C->getBeginLoc(), C->getLParenLoc(), |
| C->getModifierLoc(), C->getEndLoc()); |
| } |
| |
| template <typename Derived, class T> |
| bool transformOMPMappableExprListClause( |
| TreeTransform<Derived> &TT, OMPMappableExprListClause<T> *C, |
| llvm::SmallVectorImpl<Expr *> &Vars, CXXScopeSpec &MapperIdScopeSpec, |
| DeclarationNameInfo &MapperIdInfo, |
| llvm::SmallVectorImpl<Expr *> &UnresolvedMappers) { |
| // Transform expressions in the list. |
| Vars.reserve(C->varlist_size()); |
| for (auto *VE : C->varlist()) { |
| ExprResult EVar = TT.getDerived().TransformExpr(cast<Expr>(VE)); |
| if (EVar.isInvalid()) |
| return true; |
| Vars.push_back(EVar.get()); |
| } |
| // Transform mapper scope specifier and identifier. |
| NestedNameSpecifierLoc QualifierLoc; |
| if (C->getMapperQualifierLoc()) { |
| QualifierLoc = TT.getDerived().TransformNestedNameSpecifierLoc( |
| C->getMapperQualifierLoc()); |
| if (!QualifierLoc) |
| return true; |
| } |
| MapperIdScopeSpec.Adopt(QualifierLoc); |
| MapperIdInfo = C->getMapperIdInfo(); |
| if (MapperIdInfo.getName()) { |
| MapperIdInfo = TT.getDerived().TransformDeclarationNameInfo(MapperIdInfo); |
| if (!MapperIdInfo.getName()) |
| return true; |
| } |
| // Build a list of all candidate OMPDeclareMapperDecls, which is provided by |
| // the previous user-defined mapper lookup in dependent environment. |
| for (auto *E : C->mapperlists()) { |
| // Transform all the decls. |
| if (E) { |
| auto *ULE = cast<UnresolvedLookupExpr>(E); |
| UnresolvedSet<8> Decls; |
| for (auto *D : ULE->decls()) { |
| NamedDecl *InstD = |
| cast<NamedDecl>(TT.getDerived().TransformDecl(E->getExprLoc(), D)); |
| Decls.addDecl(InstD, InstD->getAccess()); |
| } |
| UnresolvedMappers.push_back(UnresolvedLookupExpr::Create( |
| TT.getSema().Context, /*NamingClass=*/nullptr, |
| MapperIdScopeSpec.getWithLocInContext(TT.getSema().Context), |
| MapperIdInfo, /*ADL=*/true, Decls.begin(), Decls.end(), |
| /*KnownDependent=*/false, /*KnownInstantiationDependent=*/false)); |
| } else { |
| UnresolvedMappers.push_back(nullptr); |
| } |
| } |
| return false; |
| } |
| |
| template <typename Derived> |
| OMPClause *TreeTransform<Derived>::TransformOMPMapClause(OMPMapClause *C) { |
| OMPVarListLocTy Locs(C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc()); |
| llvm::SmallVector<Expr *, 16> Vars; |
| Expr *IteratorModifier = C->getIteratorModifier(); |
| if (IteratorModifier) { |
| ExprResult MapModRes = getDerived().TransformExpr(IteratorModifier); |
| if (MapModRes.isInvalid()) |
| return nullptr; |
| IteratorModifier = MapModRes.get(); |
| } |
| CXXScopeSpec MapperIdScopeSpec; |
| DeclarationNameInfo MapperIdInfo; |
| llvm::SmallVector<Expr *, 16> UnresolvedMappers; |
| if (transformOMPMappableExprListClause<Derived, OMPMapClause>( |
| *this, C, Vars, MapperIdScopeSpec, MapperIdInfo, UnresolvedMappers)) |
| return nullptr; |
| return getDerived().RebuildOMPMapClause( |
| IteratorModifier, C->getMapTypeModifiers(), C->getMapTypeModifiersLoc(), |
| MapperIdScopeSpec, MapperIdInfo, C->getMapType(), C->isImplicitMapType(), |
| C->getMapLoc(), C->getColonLoc(), Vars, Locs, UnresolvedMappers); |
| } |
| |
| template <typename Derived> |
| OMPClause * |
| TreeTransform<Derived>::TransformOMPAllocateClause(OMPAllocateClause *C) { |
| Expr *Allocator = C->getAllocator(); |
| if (Allocator) { |
| ExprResult AllocatorRes = getDerived().TransformExpr(Allocator); |
| if (AllocatorRes.isInvalid()) |
| return nullptr; |
| Allocator = AllocatorRes.get(); |
| } |
| Expr *Alignment = C->getAlignment(); |
| if (Alignment) { |
| ExprResult AlignmentRes = getDerived().TransformExpr(Alignment); |
| if (AlignmentRes.isInvalid()) |
| return nullptr; |
| Alignment = AlignmentRes.get(); |
| } |
| llvm::SmallVector<Expr *, 16> Vars; |
| Vars.reserve(C->varlist_size()); |
| for (auto *VE : C->varlist()) { |
| ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE)); |
| if (EVar.isInvalid()) |
| return nullptr; |
| Vars.push_back(EVar.get()); |
| } |
| return getDerived().RebuildOMPAllocateClause( |
| Allocator, Alignment, C->getFirstAllocateModifier(), |
| C->getFirstAllocateModifierLoc(), C->getSecondAllocateModifier(), |
| C->getSecondAllocateModifierLoc(), Vars, C->getBeginLoc(), |
| C->getLParenLoc(), C->getColonLoc(), C->getEndLoc()); |
| } |
| |
| template <typename Derived> |
| OMPClause * |
| TreeTransform<Derived>::TransformOMPNumTeamsClause(OMPNumTeamsClause *C) { |
| llvm::SmallVector<Expr *, 3> Vars; |
| Vars.reserve(C->varlist_size()); |
| for (auto *VE : C->varlist()) { |
| ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE)); |
| if (EVar.isInvalid()) |
| return nullptr; |
| Vars.push_back(EVar.get()); |
| } |
| return getDerived().RebuildOMPNumTeamsClause( |
| Vars, C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc()); |
| } |
| |
| template <typename Derived> |
| OMPClause * |
| TreeTransform<Derived>::TransformOMPThreadLimitClause(OMPThreadLimitClause *C) { |
| llvm::SmallVector<Expr *, 3> Vars; |
| Vars.reserve(C->varlist_size()); |
| for (auto *VE : C->varlist()) { |
| ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE)); |
| if (EVar.isInvalid()) |
| return nullptr; |
| Vars.push_back(EVar.get()); |
| } |
| return getDerived().RebuildOMPThreadLimitClause( |
| Vars, C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc()); |
| } |
| |
| template <typename Derived> |
| OMPClause * |
| TreeTransform<Derived>::TransformOMPPriorityClause(OMPPriorityClause *C) { |
| ExprResult E = getDerived().TransformExpr(C->getPriority()); |
| if (E.isInvalid()) |
| return nullptr; |
| return getDerived().RebuildOMPPriorityClause( |
| E.get(), C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc()); |
| } |
| |
| template <typename Derived> |
| OMPClause * |
| TreeTransform<Derived>::TransformOMPGrainsizeClause(OMPGrainsizeClause *C) { |
| ExprResult E = getDerived().TransformExpr(C->getGrainsize()); |
| if (E.isInvalid()) |
| return nullptr; |
| return getDerived().RebuildOMPGrainsizeClause( |
| C->getModifier(), E.get(), C->getBeginLoc(), C->getLParenLoc(), |
| C->getModifierLoc(), C->getEndLoc()); |
| } |
| |
| template <typename Derived> |
| OMPClause * |
| TreeTransform<Derived>::TransformOMPNumTasksClause(OMPNumTasksClause *C) { |
| ExprResult E = getDerived().TransformExpr(C->getNumTasks()); |
| if (E.isInvalid()) |
| return nullptr; |
| return getDerived().RebuildOMPNumTasksClause( |
| C->getModifier(), E.get(), C->getBeginLoc(), C->getLParenLoc(), |
| C->getModifierLoc(), C->getEndLoc()); |
| } |
| |
| template <typename Derived> |
| OMPClause *TreeTransform<Derived>::TransformOMPHintClause(OMPHintClause *C) { |
| ExprResult E = getDerived().TransformExpr(C->getHint()); |
| if (E.isInvalid()) |
| return nullptr; |
| return getDerived().RebuildOMPHintClause(E.get(), C->getBeginLoc(), |
| C->getLParenLoc(), C->getEndLoc()); |
| } |
| |
| template <typename Derived> |
| OMPClause *TreeTransform<Derived>::TransformOMPDistScheduleClause( |
| OMPDistScheduleClause *C) { |
| ExprResult E = getDerived().TransformExpr(C->getChunkSize()); |
| if (E.isInvalid()) |
| return nullptr; |
| return getDerived().RebuildOMPDistScheduleClause( |
| C->getDistScheduleKind(), E.get(), C->getBeginLoc(), C->getLParenLoc(), |
| C->getDistScheduleKindLoc(), C->getCommaLoc(), C->getEndLoc()); |
| } |
| |
| template <typename Derived> |
| OMPClause * |
| TreeTransform<Derived>::TransformOMPDefaultmapClause(OMPDefaultmapClause *C) { |
| // Rebuild Defaultmap Clause since we need to invoke the checking of |
| // defaultmap(none:variable-category) after template initialization. |
| return getDerived().RebuildOMPDefaultmapClause(C->getDefaultmapModifier(), |
| C->getDefaultmapKind(), |
| C->getBeginLoc(), |
| C->getLParenLoc(), |
| C->getDefaultmapModifierLoc(), |
| C->getDefaultmapKindLoc(), |
| C->getEndLoc()); |
| } |
| |
| template <typename Derived> |
| OMPClause *TreeTransform<Derived>::TransformOMPToClause(OMPToClause *C) { |
| OMPVarListLocTy Locs(C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc()); |
| llvm::SmallVector<Expr *, 16> Vars; |
| CXXScopeSpec MapperIdScopeSpec; |
| DeclarationNameInfo MapperIdInfo; |
| llvm::SmallVector<Expr *, 16> UnresolvedMappers; |
| if (transformOMPMappableExprListClause<Derived, OMPToClause>( |
| *this, C, Vars, MapperIdScopeSpec, MapperIdInfo, UnresolvedMappers)) |
| return nullptr; |
| return getDerived().RebuildOMPToClause( |
| C->getMotionModifiers(), C->getMotionModifiersLoc(), MapperIdScopeSpec, |
| MapperIdInfo, C->getColonLoc(), Vars, Locs, UnresolvedMappers); |
| } |
| |
| template <typename Derived> |
| OMPClause *TreeTransform<Derived>::TransformOMPFromClause(OMPFromClause *C) { |
| OMPVarListLocTy Locs(C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc()); |
| llvm::SmallVector<Expr *, 16> Vars; |
| CXXScopeSpec MapperIdScopeSpec; |
| DeclarationNameInfo MapperIdInfo; |
| llvm::SmallVector<Expr *, 16> UnresolvedMappers; |
| if (transformOMPMappableExprListClause<Derived, OMPFromClause>( |
| *this, C, Vars, MapperIdScopeSpec, MapperIdInfo, UnresolvedMappers)) |
| return nullptr; |
| return getDerived().RebuildOMPFromClause( |
| C->getMotionModifiers(), C->getMotionModifiersLoc(), MapperIdScopeSpec, |
| MapperIdInfo, C->getColonLoc(), Vars, Locs, UnresolvedMappers); |
| } |
| |
| template <typename Derived> |
| OMPClause *TreeTransform<Derived>::TransformOMPUseDevicePtrClause( |
| OMPUseDevicePtrClause *C) { |
| llvm::SmallVector<Expr *, 16> Vars; |
| Vars.reserve(C->varlist_size()); |
| for (auto *VE : C->varlist()) { |
| ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE)); |
| if (EVar.isInvalid()) |
| return nullptr; |
| Vars.push_back(EVar.get()); |
| } |
| OMPVarListLocTy Locs(C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc()); |
| return getDerived().RebuildOMPUseDevicePtrClause(Vars, Locs); |
| } |
| |
| template <typename Derived> |
| OMPClause *TreeTransform<Derived>::TransformOMPUseDeviceAddrClause( |
| OMPUseDeviceAddrClause *C) { |
| llvm::SmallVector<Expr *, 16> Vars; |
| Vars.reserve(C->varlist_size()); |
| for (auto *VE : C->varlist()) { |
| ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE)); |
| if (EVar.isInvalid()) |
| return nullptr; |
| Vars.push_back(EVar.get()); |
| } |
| OMPVarListLocTy Locs(C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc()); |
| return getDerived().RebuildOMPUseDeviceAddrClause(Vars, Locs); |
| } |
| |
| template <typename Derived> |
| OMPClause * |
| TreeTransform<Derived>::TransformOMPIsDevicePtrClause(OMPIsDevicePtrClause *C) { |
| llvm::SmallVector<Expr *, 16> Vars; |
| Vars.reserve(C->varlist_size()); |
| for (auto *VE : C->varlist()) { |
| ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE)); |
| if (EVar.isInvalid()) |
| return nullptr; |
| Vars.push_back(EVar.get()); |
| } |
| OMPVarListLocTy Locs(C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc()); |
| return getDerived().RebuildOMPIsDevicePtrClause(Vars, Locs); |
| } |
| |
| template <typename Derived> |
| OMPClause *TreeTransform<Derived>::TransformOMPHasDeviceAddrClause( |
| OMPHasDeviceAddrClause *C) { |
| llvm::SmallVector<Expr *, 16> Vars; |
| Vars.reserve(C->varlist_size()); |
| for (auto *VE : C->varlist()) { |
| ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE)); |
| if (EVar.isInvalid()) |
| return nullptr; |
| Vars.push_back(EVar.get()); |
| } |
| OMPVarListLocTy Locs(C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc()); |
| return getDerived().RebuildOMPHasDeviceAddrClause(Vars, Locs); |
| } |
| |
| template <typename Derived> |
| OMPClause * |
| TreeTransform<Derived>::TransformOMPNontemporalClause(OMPNontemporalClause *C) { |
| llvm::SmallVector<Expr *, 16> Vars; |
| Vars.reserve(C->varlist_size()); |
| for (auto *VE : C->varlist()) { |
| ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE)); |
| if (EVar.isInvalid()) |
| return nullptr; |
| Vars.push_back(EVar.get()); |
| } |
| return getDerived().RebuildOMPNontemporalClause( |
| Vars, C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc()); |
| } |
| |
| template <typename Derived> |
| OMPClause * |
| TreeTransform<Derived>::TransformOMPInclusiveClause(OMPInclusiveClause *C) { |
| llvm::SmallVector<Expr *, 16> Vars; |
| Vars.reserve(C->varlist_size()); |
| for (auto *VE : C->varlist()) { |
| ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE)); |
| if (EVar.isInvalid()) |
| return nullptr; |
| Vars.push_back(EVar.get()); |
| } |
| return getDerived().RebuildOMPInclusiveClause( |
| Vars, C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc()); |
| } |
| |
| template <typename Derived> |
| OMPClause * |
| TreeTransform<Derived>::TransformOMPExclusiveClause(OMPExclusiveClause *C) { |
| llvm::SmallVector<Expr *, 16> Vars; |
| Vars.reserve(C->varlist_size()); |
| for (auto *VE : C->varlist()) { |
| ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE)); |
| if (EVar.isInvalid()) |
| return nullptr; |
| Vars.push_back(EVar.get()); |
| } |
| return getDerived().RebuildOMPExclusiveClause( |
| Vars, C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc()); |
| } |
| |
| template <typename Derived> |
| OMPClause *TreeTransform<Derived>::TransformOMPUsesAllocatorsClause( |
| OMPUsesAllocatorsClause *C) { |
| SmallVector<SemaOpenMP::UsesAllocatorsData, 16> Data; |
| Data.reserve(C->getNumberOfAllocators()); |
| for (unsigned I = 0, E = C->getNumberOfAllocators(); I < E; ++I) { |
| OMPUsesAllocatorsClause::Data D = C->getAllocatorData(I); |
| ExprResult Allocator = getDerived().TransformExpr(D.Allocator); |
| if (Allocator.isInvalid()) |
| continue; |
| ExprResult AllocatorTraits; |
| if (Expr *AT = D.AllocatorTraits) { |
| AllocatorTraits = getDerived().TransformExpr(AT); |
| if (AllocatorTraits.isInvalid()) |
| continue; |
| } |
| SemaOpenMP::UsesAllocatorsData &NewD = Data.emplace_back(); |
| NewD.Allocator = Allocator.get(); |
| NewD.AllocatorTraits = AllocatorTraits.get(); |
| NewD.LParenLoc = D.LParenLoc; |
| NewD.RParenLoc = D.RParenLoc; |
| } |
| return getDerived().RebuildOMPUsesAllocatorsClause( |
| Data, C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc()); |
| } |
| |
| template <typename Derived> |
| OMPClause * |
| TreeTransform<Derived>::TransformOMPAffinityClause(OMPAffinityClause *C) { |
| SmallVector<Expr *, 4> Locators; |
| Locators.reserve(C->varlist_size()); |
| ExprResult ModifierRes; |
| if (Expr *Modifier = C->getModifier()) { |
| ModifierRes = getDerived().TransformExpr(Modifier); |
| if (ModifierRes.isInvalid()) |
| return nullptr; |
| } |
| for (Expr *E : C->varlist()) { |
| ExprResult Locator = getDerived().TransformExpr(E); |
| if (Locator.isInvalid()) |
| continue; |
| Locators.push_back(Locator.get()); |
| } |
| return getDerived().RebuildOMPAffinityClause( |
| C->getBeginLoc(), C->getLParenLoc(), C->getColonLoc(), C->getEndLoc(), |
| ModifierRes.get(), Locators); |
| } |
| |
| template <typename Derived> |
| OMPClause *TreeTransform<Derived>::TransformOMPOrderClause(OMPOrderClause *C) { |
| return getDerived().RebuildOMPOrderClause( |
| C->getKind(), C->getKindKwLoc(), C->getBeginLoc(), C->getLParenLoc(), |
| C->getEndLoc(), C->getModifier(), C->getModifierKwLoc()); |
| } |
| |
| template <typename Derived> |
| OMPClause *TreeTransform<Derived>::TransformOMPBindClause(OMPBindClause *C) { |
| return getDerived().RebuildOMPBindClause( |
| C->getBindKind(), C->getBindKindLoc(), C->getBeginLoc(), |
| C->getLParenLoc(), C->getEndLoc()); |
| } |
| |
| template <typename Derived> |
| OMPClause *TreeTransform<Derived>::TransformOMPXDynCGroupMemClause( |
| OMPXDynCGroupMemClause *C) { |
| ExprResult Size = getDerived().TransformExpr(C->getSize()); |
| if (Size.isInvalid()) |
| return nullptr; |
| return getDerived().RebuildOMPXDynCGroupMemClause( |
| Size.get(), C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc()); |
| } |
| |
| template <typename Derived> |
| OMPClause * |
| TreeTransform<Derived>::TransformOMPDoacrossClause(OMPDoacrossClause *C) { |
| llvm::SmallVector<Expr *, 16> Vars; |
| Vars.reserve(C->varlist_size()); |
| for (auto *VE : C->varlist()) { |
| ExprResult EVar = getDerived().TransformExpr(cast<Expr>(VE)); |
| if (EVar.isInvalid()) |
| return nullptr; |
| Vars.push_back(EVar.get()); |
| } |
| return getDerived().RebuildOMPDoacrossClause( |
| C->getDependenceType(), C->getDependenceLoc(), C->getColonLoc(), Vars, |
| C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc()); |
| } |
| |
| template <typename Derived> |
| OMPClause * |
| TreeTransform<Derived>::TransformOMPXAttributeClause(OMPXAttributeClause *C) { |
| SmallVector<const Attr *> NewAttrs; |
| for (auto *A : C->getAttrs()) |
| NewAttrs.push_back(getDerived().TransformAttr(A)); |
| return getDerived().RebuildOMPXAttributeClause( |
| NewAttrs, C->getBeginLoc(), C->getLParenLoc(), C->getEndLoc()); |
| } |
| |
| template <typename Derived> |
| OMPClause *TreeTransform<Derived>::TransformOMPXBareClause(OMPXBareClause *C) { |
| return getDerived().RebuildOMPXBareClause(C->getBeginLoc(), C->getEndLoc()); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // OpenACC transformation |
| //===----------------------------------------------------------------------===// |
| namespace { |
| template <typename Derived> |
| class OpenACCClauseTransform final |
| : public OpenACCClauseVisitor<OpenACCClauseTransform<Derived>> { |
| TreeTransform<Derived> &Self; |
| ArrayRef<const OpenACCClause *> ExistingClauses; |
| SemaOpenACC::OpenACCParsedClause &ParsedClause; |
| OpenACCClause *NewClause = nullptr; |
| |
| llvm::SmallVector<Expr *> VisitVarList(ArrayRef<Expr *> VarList) { |
| llvm::SmallVector<Expr *> InstantiatedVarList; |
| for (Expr *CurVar : VarList) { |
| ExprResult Res = Self.TransformExpr(CurVar); |
| |
| if (!Res.isUsable()) |
| continue; |
| |
| Res = Self.getSema().OpenACC().ActOnVar(ParsedClause.getClauseKind(), |
| Res.get()); |
| |
| if (Res.isUsable()) |
| InstantiatedVarList.push_back(Res.get()); |
| } |
| |
| return InstantiatedVarList; |
| } |
| |
| public: |
| OpenACCClauseTransform(TreeTransform<Derived> &Self, |
| ArrayRef<const OpenACCClause *> ExistingClauses, |
| SemaOpenACC::OpenACCParsedClause &PC) |
| : Self(Self), ExistingClauses(ExistingClauses), ParsedClause(PC) {} |
| |
| OpenACCClause *CreatedClause() const { return NewClause; } |
| |
| #define VISIT_CLAUSE(CLAUSE_NAME) \ |
| void Visit##CLAUSE_NAME##Clause(const OpenACC##CLAUSE_NAME##Clause &Clause); |
| #include "clang/Basic/OpenACCClauses.def" |
| }; |
| |
| template <typename Derived> |
| void OpenACCClauseTransform<Derived>::VisitDefaultClause( |
| const OpenACCDefaultClause &C) { |
| ParsedClause.setDefaultDetails(C.getDefaultClauseKind()); |
| |
| NewClause = OpenACCDefaultClause::Create( |
| Self.getSema().getASTContext(), ParsedClause.getDefaultClauseKind(), |
| ParsedClause.getBeginLoc(), ParsedClause.getLParenLoc(), |
| ParsedClause.getEndLoc()); |
| } |
| |
| template <typename Derived> |
| void OpenACCClauseTransform<Derived>::VisitIfClause(const OpenACCIfClause &C) { |
| Expr *Cond = const_cast<Expr *>(C.getConditionExpr()); |
| assert(Cond && "If constructed with invalid Condition"); |
| Sema::ConditionResult Res = Self.TransformCondition( |
| Cond->getExprLoc(), /*Var=*/nullptr, Cond, Sema::ConditionKind::Boolean); |
| |
| if (Res.isInvalid() || !Res.get().second) |
| return; |
| |
| ParsedClause.setConditionDetails(Res.get().second); |
| |
| NewClause = OpenACCIfClause::Create( |
| Self.getSema().getASTContext(), ParsedClause.getBeginLoc(), |
| ParsedClause.getLParenLoc(), ParsedClause.getConditionExpr(), |
| ParsedClause.getEndLoc()); |
| } |
| |
| template <typename Derived> |
| void OpenACCClauseTransform<Derived>::VisitSelfClause( |
| const OpenACCSelfClause &C) { |
| |
| // If this is an 'update' 'self' clause, this is actually a var list instead. |
| if (ParsedClause.getDirectiveKind() == OpenACCDirectiveKind::Update) { |
| llvm::SmallVector<Expr *> InstantiatedVarList; |
| for (Expr *CurVar : C.getVarList()) { |
| ExprResult Res = Self.TransformExpr(CurVar); |
| |
| if (!Res.isUsable()) |
| continue; |
| |
| Res = Self.getSema().OpenACC().ActOnVar(ParsedClause.getClauseKind(), |
| Res.get()); |
| |
| if (Res.isUsable()) |
| InstantiatedVarList.push_back(Res.get()); |
| } |
| |
| ParsedClause.setVarListDetails(InstantiatedVarList, |
| /*IsReadOnly=*/false, /*IsZero=*/false); |
| |
| NewClause = OpenACCSelfClause::Create( |
| Self.getSema().getASTContext(), ParsedClause.getBeginLoc(), |
| ParsedClause.getLParenLoc(), ParsedClause.getVarList(), |
| ParsedClause.getEndLoc()); |
| } else { |
| |
| if (C.hasConditionExpr()) { |
| Expr *Cond = const_cast<Expr *>(C.getConditionExpr()); |
| Sema::ConditionResult Res = |
| Self.TransformCondition(Cond->getExprLoc(), /*Var=*/nullptr, Cond, |
| Sema::ConditionKind::Boolean); |
| |
| if (Res.isInvalid() || !Res.get().second) |
| return; |
| |
| ParsedClause.setConditionDetails(Res.get().second); |
| } |
| |
| NewClause = OpenACCSelfClause::Create( |
| Self.getSema().getASTContext(), ParsedClause.getBeginLoc(), |
| ParsedClause.getLParenLoc(), ParsedClause.getConditionExpr(), |
| ParsedClause.getEndLoc()); |
| } |
| } |
| |
| template <typename Derived> |
| void OpenACCClauseTransform<Derived>::VisitNumGangsClause( |
| const OpenACCNumGangsClause &C) { |
| llvm::SmallVector<Expr *> InstantiatedIntExprs; |
| |
| for (Expr *CurIntExpr : C.getIntExprs()) { |
| ExprResult Res = Self.TransformExpr(CurIntExpr); |
| |
| if (!Res.isUsable()) |
| return; |
| |
| Res = Self.getSema().OpenACC().ActOnIntExpr(OpenACCDirectiveKind::Invalid, |
| C.getClauseKind(), |
| C.getBeginLoc(), Res.get()); |
| if (!Res.isUsable()) |
| return; |
| |
| InstantiatedIntExprs.push_back(Res.get()); |
| } |
| |
| ParsedClause.setIntExprDetails(InstantiatedIntExprs); |
| NewClause = OpenACCNumGangsClause::Create( |
| Self.getSema().getASTContext(), ParsedClause.getBeginLoc(), |
| ParsedClause.getLParenLoc(), ParsedClause.getIntExprs(), |
| ParsedClause.getEndLoc()); |
| } |
| |
| template <typename Derived> |
| void OpenACCClauseTransform<Derived>::VisitPrivateClause( |
| const OpenACCPrivateClause &C) { |
| ParsedClause.setVarListDetails(VisitVarList(C.getVarList()), |
| /*IsReadOnly=*/false, /*IsZero=*/false); |
| |
| NewClause = OpenACCPrivateClause::Create( |
| Self.getSema().getASTContext(), ParsedClause.getBeginLoc(), |
| ParsedClause.getLParenLoc(), ParsedClause.getVarList(), |
| ParsedClause.getEndLoc()); |
| } |
| |
| template <typename Derived> |
| void OpenACCClauseTransform<Derived>::VisitHostClause( |
| const OpenACCHostClause &C) { |
| ParsedClause.setVarListDetails(VisitVarList(C.getVarList()), |
| /*IsReadOnly=*/false, /*IsZero=*/false); |
| |
| NewClause = OpenACCHostClause::Create( |
| Self.getSema().getASTContext(), ParsedClause.getBeginLoc(), |
| ParsedClause.getLParenLoc(), ParsedClause.getVarList(), |
| ParsedClause.getEndLoc()); |
| } |
| |
| template <typename Derived> |
| void OpenACCClauseTransform<Derived>::VisitDeviceClause( |
| const OpenACCDeviceClause &C) { |
| ParsedClause.setVarListDetails(VisitVarList(C.getVarList()), |
| /*IsReadOnly=*/false, /*IsZero=*/false); |
| |
| NewClause = OpenACCDeviceClause::Create( |
| Self.getSema().getASTContext(), ParsedClause.getBeginLoc(), |
| ParsedClause.getLParenLoc(), ParsedClause.getVarList(), |
| ParsedClause.getEndLoc()); |
| } |
| |
| template <typename Derived> |
| void OpenACCClauseTransform<Derived>::VisitFirstPrivateClause( |
| const OpenACCFirstPrivateClause &C) { |
| ParsedClause.setVarListDetails(VisitVarList(C.getVarList()), |
| /*IsReadOnly=*/false, /*IsZero=*/false); |
| |
| NewClause = OpenACCFirstPrivateClause::Create( |
| Self.getSema().getASTContext(), ParsedClause.getBeginLoc(), |
| ParsedClause.getLParenLoc(), ParsedClause.getVarList(), |
| ParsedClause.getEndLoc()); |
| } |
| |
| template <typename Derived> |
| void OpenACCClauseTransform<Derived>::VisitNoCreateClause( |
| const OpenACCNoCreateClause &C) { |
| ParsedClause.setVarListDetails(VisitVarList(C.getVarList()), |
| /*IsReadOnly=*/false, /*IsZero=*/false); |
| |
| NewClause = OpenACCNoCreateClause::Create( |
| Self.getSema().getASTContext(), ParsedClause.getBeginLoc(), |
| ParsedClause.getLParenLoc(), ParsedClause.getVarList(), |
| ParsedClause.getEndLoc()); |
| } |
| |
| template <typename Derived> |
| void OpenACCClauseTransform<Derived>::VisitPresentClause( |
| const OpenACCPresentClause &C) { |
| ParsedClause.setVarListDetails(VisitVarList(C.getVarList()), |
| /*IsReadOnly=*/false, /*IsZero=*/false); |
| |
| NewClause = OpenACCPresentClause::Create( |
| Self.getSema().getASTContext(), ParsedClause.getBeginLoc(), |
| ParsedClause.getLParenLoc(), ParsedClause.getVarList(), |
| ParsedClause.getEndLoc()); |
| } |
| |
| template <typename Derived> |
| void OpenACCClauseTransform<Derived>::VisitCopyClause( |
| const OpenACCCopyClause &C) { |
| ParsedClause.setVarListDetails(VisitVarList(C.getVarList()), |
| /*IsReadOnly=*/false, /*IsZero=*/false); |
| |
| NewClause = OpenACCCopyClause::Create( |
| Self.getSema().getASTContext(), ParsedClause.getClauseKind(), |
| ParsedClause.getBeginLoc(), ParsedClause.getLParenLoc(), |
| ParsedClause.getVarList(), ParsedClause.getEndLoc()); |
| } |
| |
| template <typename Derived> |
| void OpenACCClauseTransform<Derived>::VisitCopyInClause( |
| const OpenACCCopyInClause &C) { |
| ParsedClause.setVarListDetails(VisitVarList(C.getVarList()), C.isReadOnly(), |
| /*IsZero=*/false); |
| |
| NewClause = OpenACCCopyInClause::Create( |
| Self.getSema().getASTContext(), ParsedClause.getClauseKind(), |
| ParsedClause.getBeginLoc(), ParsedClause.getLParenLoc(), |
| ParsedClause.isReadOnly(), ParsedClause.getVarList(), |
| ParsedClause.getEndLoc()); |
| } |
| |
| template <typename Derived> |
| void OpenACCClauseTransform<Derived>::VisitCopyOutClause( |
| const OpenACCCopyOutClause &C) { |
| ParsedClause.setVarListDetails(VisitVarList(C.getVarList()), |
| /*IsReadOnly=*/false, C.isZero()); |
| |
| NewClause = OpenACCCopyOutClause::Create( |
| Self.getSema().getASTContext(), ParsedClause.getClauseKind(), |
| ParsedClause.getBeginLoc(), ParsedClause.getLParenLoc(), |
| ParsedClause.isZero(), ParsedClause.getVarList(), |
| ParsedClause.getEndLoc()); |
| } |
| |
| template <typename Derived> |
| void OpenACCClauseTransform<Derived>::VisitCreateClause( |
| const OpenACCCreateClause &C) { |
| ParsedClause.setVarListDetails(VisitVarList(C.getVarList()), |
| /*IsReadOnly=*/false, C.isZero()); |
| |
| NewClause = OpenACCCreateClause::Create( |
| Self.getSema().getASTContext(), ParsedClause.getClauseKind(), |
| ParsedClause.getBeginLoc(), ParsedClause.getLParenLoc(), |
| ParsedClause.isZero(), ParsedClause.getVarList(), |
| ParsedClause.getEndLoc()); |
| } |
| template <typename Derived> |
| void OpenACCClauseTransform<Derived>::VisitAttachClause( |
| const OpenACCAttachClause &C) { |
| llvm::SmallVector<Expr *> VarList = VisitVarList(C.getVarList()); |
| |
| // Ensure each var is a pointer type. |
| VarList.erase(std::remove_if(VarList.begin(), VarList.end(), [&](Expr *E) { |
| return Self.getSema().OpenACC().CheckVarIsPointerType( |
| OpenACCClauseKind::Attach, E); |
| }), VarList.end()); |
| |
| ParsedClause.setVarListDetails(VarList, |
| /*IsReadOnly=*/false, /*IsZero=*/false); |
| NewClause = OpenACCAttachClause::Create( |
| Self.getSema().getASTContext(), ParsedClause.getBeginLoc(), |
| ParsedClause.getLParenLoc(), ParsedClause.getVarList(), |
| ParsedClause.getEndLoc()); |
| } |
| |
| template <typename Derived> |
| void OpenACCClauseTransform<Derived>::VisitDetachClause( |
| const OpenACCDetachClause &C) { |
| llvm::SmallVector<Expr *> VarList = VisitVarList(C.getVarList()); |
| |
| // Ensure each var is a pointer type. |
| VarList.erase( |
| std::remove_if(VarList.begin(), VarList.end(), |
| [&](Expr *E) { |
| return Self.getSema().OpenACC().CheckVarIsPointerType( |
| OpenACCClauseKind::Detach, E); |
| }), |
| VarList.end()); |
| |
| ParsedClause.setVarListDetails(VarList, |
| /*IsReadOnly=*/false, /*IsZero=*/false); |
| NewClause = OpenACCDetachClause::Create( |
| Self.getSema().getASTContext(), ParsedClause.getBeginLoc(), |
| ParsedClause.getLParenLoc(), ParsedClause.getVarList(), |
| ParsedClause.getEndLoc()); |
| } |
| |
| template <typename Derived> |
| void OpenACCClauseTransform<Derived>::VisitDeleteClause( |
| const OpenACCDeleteClause &C) { |
| ParsedClause.setVarListDetails(VisitVarList(C.getVarList()), |
| /*IsReadOnly=*/false, /*IsZero=*/false); |
| NewClause = OpenACCDeleteClause::Create( |
| Self.getSema().getASTContext(), ParsedClause.getBeginLoc(), |
| ParsedClause.getLParenLoc(), ParsedClause.getVarList(), |
| ParsedClause.getEndLoc()); |
| } |
| |
| template <typename Derived> |
| void OpenACCClauseTransform<Derived>::VisitUseDeviceClause( |
| const OpenACCUseDeviceClause &C) { |
| ParsedClause.setVarListDetails(VisitVarList(C.getVarList()), |
| /*IsReadOnly=*/false, /*IsZero=*/false); |
| NewClause = OpenACCUseDeviceClause::Create( |
| Self.getSema().getASTContext(), ParsedClause.getBeginLoc(), |
| ParsedClause.getLParenLoc(), ParsedClause.getVarList(), |
| ParsedClause.getEndLoc()); |
| } |
| |
| template <typename Derived> |
| void OpenACCClauseTransform<Derived>::VisitDevicePtrClause( |
| const OpenACCDevicePtrClause &C) { |
| llvm::SmallVector<Expr *> VarList = VisitVarList(C.getVarList()); |
| |
| // Ensure each var is a pointer type. |
| VarList.erase(std::remove_if(VarList.begin(), VarList.end(), [&](Expr *E) { |
| return Self.getSema().OpenACC().CheckVarIsPointerType( |
| OpenACCClauseKind::DevicePtr, E); |
| }), VarList.end()); |
| |
| ParsedClause.setVarListDetails(VarList, |
| /*IsReadOnly=*/false, /*IsZero=*/false); |
| NewClause = OpenACCDevicePtrClause::Create( |
| Self.getSema().getASTContext(), ParsedClause.getBeginLoc(), |
| ParsedClause.getLParenLoc(), ParsedClause.getVarList(), |
| ParsedClause.getEndLoc()); |
| } |
| |
| template <typename Derived> |
| void OpenACCClauseTransform<Derived>::VisitNumWorkersClause( |
| const OpenACCNumWorkersClause &C) { |
| Expr *IntExpr = const_cast<Expr *>(C.getIntExpr()); |
| assert(IntExpr && "num_workers clause constructed with invalid int expr"); |
| |
| ExprResult Res = Self.TransformExpr(IntExpr); |
| if (!Res.isUsable()) |
| return; |
| |
| Res = Self.getSema().OpenACC().ActOnIntExpr(OpenACCDirectiveKind::Invalid, |
| C.getClauseKind(), |
| C.getBeginLoc(), Res.get()); |
| if (!Res.isUsable()) |
| return; |
| |
| ParsedClause.setIntExprDetails(Res.get()); |
| NewClause = OpenACCNumWorkersClause::Create( |
| Self.getSema().getASTContext(), ParsedClause.getBeginLoc(), |
| ParsedClause.getLParenLoc(), ParsedClause.getIntExprs()[0], |
| ParsedClause.getEndLoc()); |
| } |
| |
| template <typename Derived> |
| void OpenACCClauseTransform<Derived>::VisitDeviceNumClause ( |
| const OpenACCDeviceNumClause &C) { |
| Expr *IntExpr = const_cast<Expr *>(C.getIntExpr()); |
| assert(IntExpr && "device_num clause constructed with invalid int expr"); |
| |
| ExprResult Res = Self.TransformExpr(IntExpr); |
| if (!Res.isUsable()) |
| return; |
| |
| Res = Self.getSema().OpenACC().ActOnIntExpr(OpenACCDirectiveKind::Invalid, |
| C.getClauseKind(), |
| C.getBeginLoc(), Res.get()); |
| if (!Res.isUsable()) |
| return; |
| |
| ParsedClause.setIntExprDetails(Res.get()); |
| NewClause = OpenACCDeviceNumClause::Create( |
| Self.getSema().getASTContext(), ParsedClause.getBeginLoc(), |
| ParsedClause.getLParenLoc(), ParsedClause.getIntExprs()[0], |
| ParsedClause.getEndLoc()); |
| } |
| |
| template <typename Derived> |
| void OpenACCClauseTransform<Derived>::VisitDefaultAsyncClause( |
| const OpenACCDefaultAsyncClause &C) { |
| Expr *IntExpr = const_cast<Expr *>(C.getIntExpr()); |
| assert(IntExpr && "default_async clause constructed with invalid int expr"); |
| |
| ExprResult Res = Self.TransformExpr(IntExpr); |
| if (!Res.isUsable()) |
| return; |
| |
| Res = Self.getSema().OpenACC().ActOnIntExpr(OpenACCDirectiveKind::Invalid, |
| C.getClauseKind(), |
| C.getBeginLoc(), Res.get()); |
| if (!Res.isUsable()) |
| return; |
| |
| ParsedClause.setIntExprDetails(Res.get()); |
| NewClause = OpenACCDefaultAsyncClause::Create( |
| Self.getSema().getASTContext(), ParsedClause.getBeginLoc(), |
| ParsedClause.getLParenLoc(), ParsedClause.getIntExprs()[0], |
| ParsedClause.getEndLoc()); |
| } |
| |
| template <typename Derived> |
| void OpenACCClauseTransform<Derived>::VisitVectorLengthClause( |
| const OpenACCVectorLengthClause &C) { |
| Expr *IntExpr = const_cast<Expr *>(C.getIntExpr()); |
| assert(IntExpr && "vector_length clause constructed with invalid int expr"); |
| |
| ExprResult Res = Self.TransformExpr(IntExpr); |
| if (!Res.isUsable()) |
| return; |
| |
| Res = Self.getSema().OpenACC().ActOnIntExpr(OpenACCDirectiveKind::Invalid, |
| C.getClauseKind(), |
| C.getBeginLoc(), Res.get()); |
| if (!Res.isUsable()) |
| return; |
| |
| ParsedClause.setIntExprDetails(Res.get()); |
| NewClause = OpenACCVectorLengthClause::Create( |
| Self.getSema().getASTContext(), ParsedClause.getBeginLoc(), |
| ParsedClause.getLParenLoc(), ParsedClause.getIntExprs()[0], |
| ParsedClause.getEndLoc()); |
| } |
| |
| template <typename Derived> |
| void OpenACCClauseTransform<Derived>::VisitAsyncClause( |
| const OpenACCAsyncClause &C) { |
| if (C.hasIntExpr()) { |
| ExprResult Res = Self.TransformExpr(const_cast<Expr *>(C.getIntExpr())); |
| if (!Res.isUsable()) |
| return; |
| |
| Res = Self.getSema().OpenACC().ActOnIntExpr(OpenACCDirectiveKind::Invalid, |
| C.getClauseKind(), |
| C.getBeginLoc(), Res.get()); |
| if (!Res.isUsable()) |
| return; |
| ParsedClause.setIntExprDetails(Res.get()); |
| } |
| |
| NewClause = OpenACCAsyncClause::Create( |
| Self.getSema().getASTContext(), ParsedClause.getBeginLoc(), |
| ParsedClause.getLParenLoc(), |
| ParsedClause.getNumIntExprs() != 0 ? ParsedClause.getIntExprs()[0] |
| : nullptr, |
| ParsedClause.getEndLoc()); |
| } |
| |
| template <typename Derived> |
| void OpenACCClauseTransform<Derived>::VisitWorkerClause( |
| const OpenACCWorkerClause &C) { |
| if (C.hasIntExpr()) { |
| // restrictions on this expression are all "does it exist in certain |
| // situations" that are not possible to be dependent, so the only check we |
| // have is that it transforms, and is an int expression. |
| ExprResult Res = Self.TransformExpr(const_cast<Expr *>(C.getIntExpr())); |
| if (!Res.isUsable()) |
| return; |
| |
| Res = Self.getSema().OpenACC().ActOnIntExpr(OpenACCDirectiveKind::Invalid, |
| C.getClauseKind(), |
| C.getBeginLoc(), Res.get()); |
| if (!Res.isUsable()) |
| return; |
| ParsedClause.setIntExprDetails(Res.get()); |
| } |
| |
| NewClause = OpenACCWorkerClause::Create( |
| Self.getSema().getASTContext(), ParsedClause.getBeginLoc(), |
| ParsedClause.getLParenLoc(), |
| ParsedClause.getNumIntExprs() != 0 ? ParsedClause.getIntExprs()[0] |
| : nullptr, |
| ParsedClause.getEndLoc()); |
| } |
| |
| template <typename Derived> |
| void OpenACCClauseTransform<Derived>::VisitVectorClause( |
| const OpenACCVectorClause &C) { |
| if (C.hasIntExpr()) { |
| // restrictions on this expression are all "does it exist in certain |
| // situations" that are not possible to be dependent, so the only check we |
| // have is that it transforms, and is an int expression. |
| ExprResult Res = Self.TransformExpr(const_cast<Expr *>(C.getIntExpr())); |
| if (!Res.isUsable()) |
| return; |
| |
| Res = Self.getSema().OpenACC().ActOnIntExpr(OpenACCDirectiveKind::Invalid, |
| C.getClauseKind(), |
| C.getBeginLoc(), Res.get()); |
| if (!Res.isUsable()) |
| return; |
| ParsedClause.setIntExprDetails(Res.get()); |
| } |
| |
| NewClause = OpenACCVectorClause::Create( |
| Self.getSema().getASTContext(), ParsedClause.getBeginLoc(), |
| ParsedClause.getLParenLoc(), |
| ParsedClause.getNumIntExprs() != 0 ? ParsedClause.getIntExprs()[0] |
| : nullptr, |
| ParsedClause.getEndLoc()); |
| } |
| |
| template <typename Derived> |
| void OpenACCClauseTransform<Derived>::VisitWaitClause( |
| const OpenACCWaitClause &C) { |
| if (!C.getLParenLoc().isInvalid()) { |
| Expr *DevNumExpr = nullptr; |
| llvm::SmallVector<Expr *> InstantiatedQueueIdExprs; |
| |
| // Instantiate devnum expr if it exists. |
| if (C.getDevNumExpr()) { |
| ExprResult Res = Self.TransformExpr(C.getDevNumExpr()); |
| if (!Res.isUsable()) |
| return; |
| Res = Self.getSema().OpenACC().ActOnIntExpr(OpenACCDirectiveKind::Invalid, |
| C.getClauseKind(), |
| C.getBeginLoc(), Res.get()); |
| if (!Res.isUsable()) |
| return; |
| |
| DevNumExpr = Res.get(); |
| } |
| |
| // Instantiate queue ids. |
| for (Expr *CurQueueIdExpr : C.getQueueIdExprs()) { |
| ExprResult Res = Self.TransformExpr(CurQueueIdExpr); |
| if (!Res.isUsable()) |
| return; |
| Res = Self.getSema().OpenACC().ActOnIntExpr(OpenACCDirectiveKind::Invalid, |
| C.getClauseKind(), |
| C.getBeginLoc(), Res.get()); |
| if (!Res.isUsable()) |
| return; |
| |
| InstantiatedQueueIdExprs.push_back(Res.get()); |
| } |
| |
| ParsedClause.setWaitDetails(DevNumExpr, C.getQueuesLoc(), |
| std::move(InstantiatedQueueIdExprs)); |
| } |
| |
| NewClause = OpenACCWaitClause::Create( |
| Self.getSema().getASTContext(), ParsedClause.getBeginLoc(), |
| ParsedClause.getLParenLoc(), ParsedClause.getDevNumExpr(), |
| ParsedClause.getQueuesLoc(), ParsedClause.getQueueIdExprs(), |
| ParsedClause.getEndLoc()); |
| } |
| |
| template <typename Derived> |
| void OpenACCClauseTransform<Derived>::VisitDeviceTypeClause( |
| const OpenACCDeviceTypeClause &C) { |
| // Nothing to transform here, just create a new version of 'C'. |
| NewClause = OpenACCDeviceTypeClause::Create( |
| Self.getSema().getASTContext(), C.getClauseKind(), |
| ParsedClause.getBeginLoc(), ParsedClause.getLParenLoc(), |
| C.getArchitectures(), ParsedClause.getEndLoc()); |
| } |
| |
| template <typename Derived> |
| void OpenACCClauseTransform<Derived>::VisitAutoClause( |
| const OpenACCAutoClause &C) { |
| // Nothing to do, so just create a new node. |
| NewClause = OpenACCAutoClause::Create(Self.getSema().getASTContext(), |
| ParsedClause.getBeginLoc(), |
| ParsedClause.getEndLoc()); |
| } |
| |
| template <typename Derived> |
| void OpenACCClauseTransform<Derived>::VisitIndependentClause( |
| const OpenACCIndependentClause &C) { |
| NewClause = OpenACCIndependentClause::Create(Self.getSema().getASTContext(), |
| ParsedClause.getBeginLoc(), |
| ParsedClause.getEndLoc()); |
| } |
| |
| template <typename Derived> |
| void OpenACCClauseTransform<Derived>::VisitSeqClause( |
| const OpenACCSeqClause &C) { |
| NewClause = OpenACCSeqClause::Create(Self.getSema().getASTContext(), |
| ParsedClause.getBeginLoc(), |
| ParsedClause.getEndLoc()); |
| } |
| template <typename Derived> |
| void OpenACCClauseTransform<Derived>::VisitFinalizeClause( |
| const OpenACCFinalizeClause &C) { |
| NewClause = OpenACCFinalizeClause::Create(Self.getSema().getASTContext(), |
| ParsedClause.getBeginLoc(), |
| ParsedClause.getEndLoc()); |
| } |
| |
| template <typename Derived> |
| void OpenACCClauseTransform<Derived>::VisitIfPresentClause( |
| const OpenACCIfPresentClause &C) { |
| NewClause = OpenACCIfPresentClause::Create(Self.getSema().getASTContext(), |
| ParsedClause.getBeginLoc(), |
| ParsedClause.getEndLoc()); |
| } |
| |
| template <typename Derived> |
| void OpenACCClauseTransform<Derived>::VisitReductionClause( |
| const OpenACCReductionClause &C) { |
| SmallVector<Expr *> TransformedVars = VisitVarList(C.getVarList()); |
| SmallVector<Expr *> ValidVars; |
| |
| for (Expr *Var : TransformedVars) { |
| ExprResult Res = Self.getSema().OpenACC().CheckReductionVar( |
| ParsedClause.getDirectiveKind(), C.getReductionOp(), Var); |
| if (Res.isUsable()) |
| ValidVars.push_back(Res.get()); |
| } |
| |
| NewClause = Self.getSema().OpenACC().CheckReductionClause( |
| ExistingClauses, ParsedClause.getDirectiveKind(), |
| ParsedClause.getBeginLoc(), ParsedClause.getLParenLoc(), |
| C.getReductionOp(), ValidVars, ParsedClause.getEndLoc()); |
| } |
| |
| template <typename Derived> |
| void OpenACCClauseTransform<Derived>::VisitCollapseClause( |
| const OpenACCCollapseClause &C) { |
| Expr *LoopCount = const_cast<Expr *>(C.getLoopCount()); |
| assert(LoopCount && "collapse clause constructed with invalid loop count"); |
| |
| ExprResult NewLoopCount = Self.TransformExpr(LoopCount); |
| |
| NewLoopCount = Self.getSema().OpenACC().ActOnIntExpr( |
| OpenACCDirectiveKind::Invalid, ParsedClause.getClauseKind(), |
| NewLoopCount.get()->getBeginLoc(), NewLoopCount.get()); |
| |
| NewLoopCount = |
| Self.getSema().OpenACC().CheckCollapseLoopCount(NewLoopCount.get()); |
| |
| if (!NewLoopCount.isUsable()) |
| return; |
| |
| ParsedClause.setCollapseDetails(C.hasForce(), NewLoopCount.get()); |
| NewClause = OpenACCCollapseClause::Create( |
| Self.getSema().getASTContext(), ParsedClause.getBeginLoc(), |
| ParsedClause.getLParenLoc(), ParsedClause.isForce(), |
| ParsedClause.getLoopCount(), ParsedClause.getEndLoc()); |
| } |
| |
| template <typename Derived> |
| void OpenACCClauseTransform<Derived>::VisitTileClause( |
| const OpenACCTileClause &C) { |
| |
| llvm::SmallVector<Expr *> TransformedExprs; |
| |
| for (Expr *E : C.getSizeExprs()) { |
| ExprResult NewSizeExpr = Self.TransformExpr(E); |
| |
| if (!NewSizeExpr.isUsable()) |
| return; |
| |
| NewSizeExpr = Self.getSema().OpenACC().ActOnIntExpr( |
| OpenACCDirectiveKind::Invalid, ParsedClause.getClauseKind(), |
| NewSizeExpr.get()->getBeginLoc(), NewSizeExpr.get()); |
| |
| NewSizeExpr = Self.getSema().OpenACC().CheckTileSizeExpr(NewSizeExpr.get()); |
| |
| if (!NewSizeExpr.isUsable()) |
| return; |
| TransformedExprs.push_back(NewSizeExpr.get()); |
| } |
| |
| ParsedClause.setIntExprDetails(TransformedExprs); |
| NewClause = OpenACCTileClause::Create( |
| Self.getSema().getASTContext(), ParsedClause.getBeginLoc(), |
| ParsedClause.getLParenLoc(), ParsedClause.getIntExprs(), |
| ParsedClause.getEndLoc()); |
| } |
| template <typename Derived> |
| void OpenACCClauseTransform<Derived>::VisitGangClause( |
| const OpenACCGangClause &C) { |
| llvm::SmallVector<OpenACCGangKind> TransformedGangKinds; |
| llvm::SmallVector<Expr *> TransformedIntExprs; |
| |
| for (unsigned I = 0; I < C.getNumExprs(); ++I) { |
| ExprResult ER = Self.TransformExpr(const_cast<Expr *>(C.getExpr(I).second)); |
| if (!ER.isUsable()) |
| continue; |
| |
| ER = Self.getSema().OpenACC().CheckGangExpr(ExistingClauses, |
| ParsedClause.getDirectiveKind(), |
| C.getExpr(I).first, ER.get()); |
| if (!ER.isUsable()) |
| continue; |
| TransformedGangKinds.push_back(C.getExpr(I).first); |
| TransformedIntExprs.push_back(ER.get()); |
| } |
| |
| NewClause = Self.getSema().OpenACC().CheckGangClause( |
| ParsedClause.getDirectiveKind(), ExistingClauses, |
| ParsedClause.getBeginLoc(), ParsedClause.getLParenLoc(), |
| TransformedGangKinds, TransformedIntExprs, ParsedClause.getEndLoc()); |
| } |
| } // namespace |
| template <typename Derived> |
| OpenACCClause *TreeTransform<Derived>::TransformOpenACCClause( |
| ArrayRef<const OpenACCClause *> ExistingClauses, |
| OpenACCDirectiveKind DirKind, const OpenACCClause *OldClause) { |
| |
| SemaOpenACC::OpenACCParsedClause ParsedClause( |
| DirKind, OldClause->getClauseKind(), OldClause->getBeginLoc()); |
| ParsedClause.setEndLoc(OldClause->getEndLoc()); |
| |
| if (const auto *WithParms = dyn_cast<OpenACCClauseWithParams>(OldClause)) |
| ParsedClause.setLParenLoc(WithParms->getLParenLoc()); |
| |
| OpenACCClauseTransform<Derived> Transform{*this, ExistingClauses, |
| ParsedClause}; |
| Transform.Visit(OldClause); |
| |
| return Transform.CreatedClause(); |
| } |
| |
| template <typename Derived> |
| llvm::SmallVector<OpenACCClause *> |
| TreeTransform<Derived>::TransformOpenACCClauseList( |
| OpenACCDirectiveKind DirKind, ArrayRef<const OpenACCClause *> OldClauses) { |
| llvm::SmallVector<OpenACCClause *> TransformedClauses; |
| for (const auto *Clause : OldClauses) { |
| if (OpenACCClause *TransformedClause = getDerived().TransformOpenACCClause( |
| TransformedClauses, DirKind, Clause)) |
| TransformedClauses.push_back(TransformedClause); |
| } |
| return TransformedClauses; |
| } |
| |
| template <typename Derived> |
| StmtResult TreeTransform<Derived>::TransformOpenACCComputeConstruct( |
| OpenACCComputeConstruct *C) { |
| getSema().OpenACC().ActOnConstruct(C->getDirectiveKind(), C->getBeginLoc()); |
| |
| llvm::SmallVector<OpenACCClause *> TransformedClauses = |
| getDerived().TransformOpenACCClauseList(C->getDirectiveKind(), |
| C->clauses()); |
| |
| if (getSema().OpenACC().ActOnStartStmtDirective( |
| C->getDirectiveKind(), C->getBeginLoc(), TransformedClauses)) |
| return StmtError(); |
| |
| // Transform Structured Block. |
| SemaOpenACC::AssociatedStmtRAII AssocStmtRAII( |
| getSema().OpenACC(), C->getDirectiveKind(), C->getDirectiveLoc(), |
| C->clauses(), TransformedClauses); |
| StmtResult StrBlock = getDerived().TransformStmt(C->getStructuredBlock()); |
| StrBlock = getSema().OpenACC().ActOnAssociatedStmt( |
| C->getBeginLoc(), C->getDirectiveKind(), TransformedClauses, StrBlock); |
| |
| return getDerived().RebuildOpenACCComputeConstruct( |
| C->getDirectiveKind(), C->getBeginLoc(), C->getDirectiveLoc(), |
| C->getEndLoc(), TransformedClauses, StrBlock); |
| } |
| |
| template <typename Derived> |
| StmtResult |
| TreeTransform<Derived>::TransformOpenACCLoopConstruct(OpenACCLoopConstruct *C) { |
| |
| getSema().OpenACC().ActOnConstruct(C->getDirectiveKind(), C->getBeginLoc()); |
| |
| llvm::SmallVector<OpenACCClause *> TransformedClauses = |
| getDerived().TransformOpenACCClauseList(C->getDirectiveKind(), |
| C->clauses()); |
| |
| if (getSema().OpenACC().ActOnStartStmtDirective( |
| C->getDirectiveKind(), C->getBeginLoc(), TransformedClauses)) |
| return StmtError(); |
| |
| // Transform Loop. |
| SemaOpenACC::AssociatedStmtRAII AssocStmtRAII( |
| getSema().OpenACC(), C->getDirectiveKind(), C->getDirectiveLoc(), |
| C->clauses(), TransformedClauses); |
| StmtResult Loop = getDerived().TransformStmt(C->getLoop()); |
| Loop = getSema().OpenACC().ActOnAssociatedStmt( |
| C->getBeginLoc(), C->getDirectiveKind(), TransformedClauses, Loop); |
| |
| return getDerived().RebuildOpenACCLoopConstruct( |
| C->getBeginLoc(), C->getDirectiveLoc(), C->getEndLoc(), |
| TransformedClauses, Loop); |
| } |
| |
| template <typename Derived> |
| StmtResult TreeTransform<Derived>::TransformOpenACCCombinedConstruct( |
| OpenACCCombinedConstruct *C) { |
| getSema().OpenACC().ActOnConstruct(C->getDirectiveKind(), C->getBeginLoc()); |
| |
| llvm::SmallVector<OpenACCClause *> TransformedClauses = |
| getDerived().TransformOpenACCClauseList(C->getDirectiveKind(), |
| C->clauses()); |
| |
| if (getSema().OpenACC().ActOnStartStmtDirective( |
| C->getDirectiveKind(), C->getBeginLoc(), TransformedClauses)) |
| return StmtError(); |
| |
| // Transform Loop. |
| SemaOpenACC::AssociatedStmtRAII AssocStmtRAII( |
| getSema().OpenACC(), C->getDirectiveKind(), C->getDirectiveLoc(), |
| C->clauses(), TransformedClauses); |
| StmtResult Loop = getDerived().TransformStmt(C->getLoop()); |
| Loop = getSema().OpenACC().ActOnAssociatedStmt( |
| C->getBeginLoc(), C->getDirectiveKind(), TransformedClauses, Loop); |
| |
| return getDerived().RebuildOpenACCCombinedConstruct( |
| C->getDirectiveKind(), C->getBeginLoc(), C->getDirectiveLoc(), |
| C->getEndLoc(), TransformedClauses, Loop); |
| } |
| |
| template <typename Derived> |
| StmtResult |
| TreeTransform<Derived>::TransformOpenACCDataConstruct(OpenACCDataConstruct *C) { |
| getSema().OpenACC().ActOnConstruct(C->getDirectiveKind(), C->getBeginLoc()); |
| |
| llvm::SmallVector<OpenACCClause *> TransformedClauses = |
| getDerived().TransformOpenACCClauseList(C->getDirectiveKind(), |
| C->clauses()); |
| if (getSema().OpenACC().ActOnStartStmtDirective( |
| C->getDirectiveKind(), C->getBeginLoc(), TransformedClauses)) |
| return StmtError(); |
| |
| SemaOpenACC::AssociatedStmtRAII AssocStmtRAII( |
| getSema().OpenACC(), C->getDirectiveKind(), C->getDirectiveLoc(), |
| C->clauses(), TransformedClauses); |
| StmtResult StrBlock = getDerived().TransformStmt(C->getStructuredBlock()); |
| StrBlock = getSema().OpenACC().ActOnAssociatedStmt( |
| C->getBeginLoc(), C->getDirectiveKind(), TransformedClauses, StrBlock); |
| |
| return getDerived().RebuildOpenACCDataConstruct( |
| C->getBeginLoc(), C->getDirectiveLoc(), C->getEndLoc(), |
| TransformedClauses, StrBlock); |
| } |
| |
| template <typename Derived> |
| StmtResult TreeTransform<Derived>::TransformOpenACCEnterDataConstruct( |
| OpenACCEnterDataConstruct *C) { |
| getSema().OpenACC().ActOnConstruct(C->getDirectiveKind(), C->getBeginLoc()); |
| |
| llvm::SmallVector<OpenACCClause *> TransformedClauses = |
| getDerived().TransformOpenACCClauseList(C->getDirectiveKind(), |
| C->clauses()); |
| if (getSema().OpenACC().ActOnStartStmtDirective( |
| C->getDirectiveKind(), C->getBeginLoc(), TransformedClauses)) |
| return StmtError(); |
| |
| return getDerived().RebuildOpenACCEnterDataConstruct( |
| C->getBeginLoc(), C->getDirectiveLoc(), C->getEndLoc(), |
| TransformedClauses); |
| } |
| |
| template <typename Derived> |
| StmtResult TreeTransform<Derived>::TransformOpenACCExitDataConstruct( |
| OpenACCExitDataConstruct *C) { |
| getSema().OpenACC().ActOnConstruct(C->getDirectiveKind(), C->getBeginLoc()); |
| |
| llvm::SmallVector<OpenACCClause *> TransformedClauses = |
| getDerived().TransformOpenACCClauseList(C->getDirectiveKind(), |
| C->clauses()); |
| if (getSema().OpenACC().ActOnStartStmtDirective( |
| C->getDirectiveKind(), C->getBeginLoc(), TransformedClauses)) |
| return StmtError(); |
| |
| return getDerived().RebuildOpenACCExitDataConstruct( |
| C->getBeginLoc(), C->getDirectiveLoc(), C->getEndLoc(), |
| TransformedClauses); |
| } |
| |
| template <typename Derived> |
| StmtResult TreeTransform<Derived>::TransformOpenACCHostDataConstruct( |
| OpenACCHostDataConstruct *C) { |
| getSema().OpenACC().ActOnConstruct(C->getDirectiveKind(), C->getBeginLoc()); |
| |
| llvm::SmallVector<OpenACCClause *> TransformedClauses = |
| getDerived().TransformOpenACCClauseList(C->getDirectiveKind(), |
| C->clauses()); |
| if (getSema().OpenACC().ActOnStartStmtDirective( |
| C->getDirectiveKind(), C->getBeginLoc(), TransformedClauses)) |
| return StmtError(); |
| |
| SemaOpenACC::AssociatedStmtRAII AssocStmtRAII( |
| getSema().OpenACC(), C->getDirectiveKind(), C->getDirectiveLoc(), |
| C->clauses(), TransformedClauses); |
| StmtResult StrBlock = getDerived().TransformStmt(C->getStructuredBlock()); |
| StrBlock = getSema().OpenACC().ActOnAssociatedStmt( |
| C->getBeginLoc(), C->getDirectiveKind(), TransformedClauses, StrBlock); |
| |
| return getDerived().RebuildOpenACCHostDataConstruct( |
| C->getBeginLoc(), C->getDirectiveLoc(), C->getEndLoc(), |
| TransformedClauses, StrBlock); |
| } |
| |
| template <typename Derived> |
| StmtResult |
| TreeTransform<Derived>::TransformOpenACCInitConstruct(OpenACCInitConstruct *C) { |
| getSema().OpenACC().ActOnConstruct(C->getDirectiveKind(), C->getBeginLoc()); |
| |
| llvm::SmallVector<OpenACCClause *> TransformedClauses = |
| getDerived().TransformOpenACCClauseList(C->getDirectiveKind(), |
| C->clauses()); |
| if (getSema().OpenACC().ActOnStartStmtDirective( |
| C->getDirectiveKind(), C->getBeginLoc(), TransformedClauses)) |
| return StmtError(); |
| |
| return getDerived().RebuildOpenACCInitConstruct( |
| C->getBeginLoc(), C->getDirectiveLoc(), C->getEndLoc(), |
| TransformedClauses); |
| } |
| |
| template <typename Derived> |
| StmtResult TreeTransform<Derived>::TransformOpenACCShutdownConstruct( |
| OpenACCShutdownConstruct *C) { |
| getSema().OpenACC().ActOnConstruct(C->getDirectiveKind(), C->getBeginLoc()); |
| |
| llvm::SmallVector<OpenACCClause *> TransformedClauses = |
| getDerived().TransformOpenACCClauseList(C->getDirectiveKind(), |
| C->clauses()); |
| if (getSema().OpenACC().ActOnStartStmtDirective( |
| C->getDirectiveKind(), C->getBeginLoc(), TransformedClauses)) |
| return StmtError(); |
| |
| return getDerived().RebuildOpenACCShutdownConstruct( |
| C->getBeginLoc(), C->getDirectiveLoc(), C->getEndLoc(), |
| TransformedClauses); |
| } |
| template <typename Derived> |
| StmtResult |
| TreeTransform<Derived>::TransformOpenACCSetConstruct(OpenACCSetConstruct *C) { |
| getSema().OpenACC().ActOnConstruct(C->getDirectiveKind(), C->getBeginLoc()); |
| |
| llvm::SmallVector<OpenACCClause *> TransformedClauses = |
| getDerived().TransformOpenACCClauseList(C->getDirectiveKind(), |
| C->clauses()); |
| if (getSema().OpenACC().ActOnStartStmtDirective( |
| C->getDirectiveKind(), C->getBeginLoc(), TransformedClauses)) |
| return StmtError(); |
| |
| return getDerived().RebuildOpenACCSetConstruct( |
| C->getBeginLoc(), C->getDirectiveLoc(), C->getEndLoc(), |
| TransformedClauses); |
| } |
| |
| template <typename Derived> |
| StmtResult TreeTransform<Derived>::TransformOpenACCUpdateConstruct( |
| OpenACCUpdateConstruct *C) { |
| getSema().OpenACC().ActOnConstruct(C->getDirectiveKind(), C->getBeginLoc()); |
| |
| llvm::SmallVector<OpenACCClause *> TransformedClauses = |
| getDerived().TransformOpenACCClauseList(C->getDirectiveKind(), |
| C->clauses()); |
| if (getSema().OpenACC().ActOnStartStmtDirective( |
| C->getDirectiveKind(), C->getBeginLoc(), TransformedClauses)) |
| return StmtError(); |
| |
| return getDerived().RebuildOpenACCUpdateConstruct( |
| C->getBeginLoc(), C->getDirectiveLoc(), C->getEndLoc(), |
| TransformedClauses); |
| } |
| |
| template <typename Derived> |
| StmtResult |
| TreeTransform<Derived>::TransformOpenACCWaitConstruct(OpenACCWaitConstruct *C) { |
| getSema().OpenACC().ActOnConstruct(C->getDirectiveKind(), C->getBeginLoc()); |
| |
| ExprResult DevNumExpr; |
| if (C->hasDevNumExpr()) { |
| DevNumExpr = getDerived().TransformExpr(C->getDevNumExpr()); |
| |
| if (DevNumExpr.isUsable()) |
| DevNumExpr = getSema().OpenACC().ActOnIntExpr( |
| OpenACCDirectiveKind::Wait, OpenACCClauseKind::Invalid, |
| C->getBeginLoc(), DevNumExpr.get()); |
| } |
| |
| llvm::SmallVector<Expr *> QueueIdExprs; |
| |
| for (Expr *QE : C->getQueueIdExprs()) { |
| assert(QE && "Null queue id expr?"); |
| ExprResult NewEQ = getDerived().TransformExpr(QE); |
| |
| if (!NewEQ.isUsable()) |
| break; |
| NewEQ = getSema().OpenACC().ActOnIntExpr(OpenACCDirectiveKind::Wait, |
| OpenACCClauseKind::Invalid, |
| C->getBeginLoc(), NewEQ.get()); |
| if (NewEQ.isUsable()) |
| QueueIdExprs.push_back(NewEQ.get()); |
| } |
| |
| llvm::SmallVector<OpenACCClause *> TransformedClauses = |
| getDerived().TransformOpenACCClauseList(C->getDirectiveKind(), |
| C->clauses()); |
| |
| if (getSema().OpenACC().ActOnStartStmtDirective( |
| C->getDirectiveKind(), C->getBeginLoc(), TransformedClauses)) |
| return StmtError(); |
| |
| return getDerived().RebuildOpenACCWaitConstruct( |
| C->getBeginLoc(), C->getDirectiveLoc(), C->getLParenLoc(), |
| DevNumExpr.isUsable() ? DevNumExpr.get() : nullptr, C->getQueuesLoc(), |
| QueueIdExprs, C->getRParenLoc(), C->getEndLoc(), TransformedClauses); |
| } |
| |
| template <typename Derived> |
| ExprResult TreeTransform<Derived>::TransformOpenACCAsteriskSizeExpr( |
| OpenACCAsteriskSizeExpr *E) { |
| if (getDerived().AlwaysRebuild()) |
| return getDerived().RebuildOpenACCAsteriskSizeExpr(E->getLocation()); |
| // Nothing can ever change, so there is never anything to transform. |
| return E; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Expression transformation |
| //===----------------------------------------------------------------------===// |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformConstantExpr(ConstantExpr *E) { |
| return TransformExpr(E->getSubExpr()); |
| } |
| |
| template <typename Derived> |
| ExprResult TreeTransform<Derived>::TransformSYCLUniqueStableNameExpr( |
| SYCLUniqueStableNameExpr *E) { |
| if (!E->isTypeDependent()) |
| return E; |
| |
| TypeSourceInfo *NewT = getDerived().TransformType(E->getTypeSourceInfo()); |
| |
| if (!NewT) |
| return ExprError(); |
| |
| if (!getDerived().AlwaysRebuild() && E->getTypeSourceInfo() == NewT) |
| return E; |
| |
| return getDerived().RebuildSYCLUniqueStableNameExpr( |
| E->getLocation(), E->getLParenLocation(), E->getRParenLocation(), NewT); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformPredefinedExpr(PredefinedExpr *E) { |
| if (!E->isTypeDependent()) |
| return E; |
| |
| return getDerived().RebuildPredefinedExpr(E->getLocation(), |
| E->getIdentKind()); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformDeclRefExpr(DeclRefExpr *E) { |
| NestedNameSpecifierLoc QualifierLoc; |
| if (E->getQualifierLoc()) { |
| QualifierLoc |
| = getDerived().TransformNestedNameSpecifierLoc(E->getQualifierLoc()); |
| if (!QualifierLoc) |
| return ExprError(); |
| } |
| |
| ValueDecl *ND |
| = cast_or_null<ValueDecl>(getDerived().TransformDecl(E->getLocation(), |
| E->getDecl())); |
| if (!ND) |
| return ExprError(); |
| |
| NamedDecl *Found = ND; |
| if (E->getFoundDecl() != E->getDecl()) { |
| Found = cast_or_null<NamedDecl>( |
| getDerived().TransformDecl(E->getLocation(), E->getFoundDecl())); |
| if (!Found) |
| return ExprError(); |
| } |
| |
| DeclarationNameInfo NameInfo = E->getNameInfo(); |
| if (NameInfo.getName()) { |
| NameInfo = getDerived().TransformDeclarationNameInfo(NameInfo); |
| if (!NameInfo.getName()) |
| return ExprError(); |
| } |
| |
| if (!getDerived().AlwaysRebuild() && |
| !E->isCapturedByCopyInLambdaWithExplicitObjectParameter() && |
| QualifierLoc == E->getQualifierLoc() && ND == E->getDecl() && |
| Found == E->getFoundDecl() && |
| NameInfo.getName() == E->getDecl()->getDeclName() && |
| !E->hasExplicitTemplateArgs()) { |
| |
| // Mark it referenced in the new context regardless. |
| // FIXME: this is a bit instantiation-specific. |
| SemaRef.MarkDeclRefReferenced(E); |
| |
| return E; |
| } |
| |
| TemplateArgumentListInfo TransArgs, *TemplateArgs = nullptr; |
| if (E->hasExplicitTemplateArgs()) { |
| TemplateArgs = &TransArgs; |
| TransArgs.setLAngleLoc(E->getLAngleLoc()); |
| TransArgs.setRAngleLoc(E->getRAngleLoc()); |
| if (getDerived().TransformTemplateArguments(E->getTemplateArgs(), |
| E->getNumTemplateArgs(), |
| TransArgs)) |
| return ExprError(); |
| } |
| |
| return getDerived().RebuildDeclRefExpr(QualifierLoc, ND, NameInfo, |
| Found, TemplateArgs); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformIntegerLiteral(IntegerLiteral *E) { |
| return E; |
| } |
| |
| template <typename Derived> |
| ExprResult TreeTransform<Derived>::TransformFixedPointLiteral( |
| FixedPointLiteral *E) { |
| return E; |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformFloatingLiteral(FloatingLiteral *E) { |
| return E; |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformImaginaryLiteral(ImaginaryLiteral *E) { |
| return E; |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformStringLiteral(StringLiteral *E) { |
| return E; |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformCharacterLiteral(CharacterLiteral *E) { |
| return E; |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformUserDefinedLiteral(UserDefinedLiteral *E) { |
| return getDerived().TransformCallExpr(E); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformGenericSelectionExpr(GenericSelectionExpr *E) { |
| ExprResult ControllingExpr; |
| TypeSourceInfo *ControllingType = nullptr; |
| if (E->isExprPredicate()) |
| ControllingExpr = getDerived().TransformExpr(E->getControllingExpr()); |
| else |
| ControllingType = getDerived().TransformType(E->getControllingType()); |
| |
| if (ControllingExpr.isInvalid() && !ControllingType) |
| return ExprError(); |
| |
| SmallVector<Expr *, 4> AssocExprs; |
| SmallVector<TypeSourceInfo *, 4> AssocTypes; |
| for (const GenericSelectionExpr::Association Assoc : E->associations()) { |
| TypeSourceInfo *TSI = Assoc.getTypeSourceInfo(); |
| if (TSI) { |
| TypeSourceInfo *AssocType = getDerived().TransformType(TSI); |
| if (!AssocType) |
| return ExprError(); |
| AssocTypes.push_back(AssocType); |
| } else { |
| AssocTypes.push_back(nullptr); |
| } |
| |
| ExprResult AssocExpr = |
| getDerived().TransformExpr(Assoc.getAssociationExpr()); |
| if (AssocExpr.isInvalid()) |
| return ExprError(); |
| AssocExprs.push_back(AssocExpr.get()); |
| } |
| |
| if (!ControllingType) |
| return getDerived().RebuildGenericSelectionExpr(E->getGenericLoc(), |
| E->getDefaultLoc(), |
| E->getRParenLoc(), |
| ControllingExpr.get(), |
| AssocTypes, |
| AssocExprs); |
| return getDerived().RebuildGenericSelectionExpr( |
| E->getGenericLoc(), E->getDefaultLoc(), E->getRParenLoc(), |
| ControllingType, AssocTypes, AssocExprs); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformParenExpr(ParenExpr *E) { |
| ExprResult SubExpr = getDerived().TransformExpr(E->getSubExpr()); |
| if (SubExpr.isInvalid()) |
| return ExprError(); |
| |
| if (!getDerived().AlwaysRebuild() && SubExpr.get() == E->getSubExpr()) |
| return E; |
| |
| return getDerived().RebuildParenExpr(SubExpr.get(), E->getLParen(), |
| E->getRParen()); |
| } |
| |
| /// The operand of a unary address-of operator has special rules: it's |
| /// allowed to refer to a non-static member of a class even if there's no 'this' |
| /// object available. |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformAddressOfOperand(Expr *E) { |
| if (DependentScopeDeclRefExpr *DRE = dyn_cast<DependentScopeDeclRefExpr>(E)) |
| return getDerived().TransformDependentScopeDeclRefExpr( |
| DRE, /*IsAddressOfOperand=*/true, nullptr); |
| else if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) |
| return getDerived().TransformUnresolvedLookupExpr( |
| ULE, /*IsAddressOfOperand=*/true); |
| else |
| return getDerived().TransformExpr(E); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformUnaryOperator(UnaryOperator *E) { |
| ExprResult SubExpr; |
| if (E->getOpcode() == UO_AddrOf) |
| SubExpr = TransformAddressOfOperand(E->getSubExpr()); |
| else |
| SubExpr = TransformExpr(E->getSubExpr()); |
| if (SubExpr.isInvalid()) |
| return ExprError(); |
| |
| if (!getDerived().AlwaysRebuild() && SubExpr.get() == E->getSubExpr()) |
| return E; |
| |
| return getDerived().RebuildUnaryOperator(E->getOperatorLoc(), |
| E->getOpcode(), |
| SubExpr.get()); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformOffsetOfExpr(OffsetOfExpr *E) { |
| // Transform the type. |
| TypeSourceInfo *Type = getDerived().TransformType(E->getTypeSourceInfo()); |
| if (!Type) |
| return ExprError(); |
| |
| // Transform all of the components into components similar to what the |
| // parser uses. |
| // FIXME: It would be slightly more efficient in the non-dependent case to |
| // just map FieldDecls, rather than requiring the rebuilder to look for |
| // the fields again. However, __builtin_offsetof is rare enough in |
| // template code that we don't care. |
| bool ExprChanged = false; |
| typedef Sema::OffsetOfComponent Component; |
| SmallVector<Component, 4> Components; |
| for (unsigned I = 0, N = E->getNumComponents(); I != N; ++I) { |
| const OffsetOfNode &ON = E->getComponent(I); |
| Component Comp; |
| Comp.isBrackets = true; |
| Comp.LocStart = ON.getSourceRange().getBegin(); |
| Comp.LocEnd = ON.getSourceRange().getEnd(); |
| switch (ON.getKind()) { |
| case OffsetOfNode::Array: { |
| Expr *FromIndex = E->getIndexExpr(ON.getArrayExprIndex()); |
| ExprResult Index = getDerived().TransformExpr(FromIndex); |
| if (Index.isInvalid()) |
| return ExprError(); |
| |
| ExprChanged = ExprChanged || Index.get() != FromIndex; |
| Comp.isBrackets = true; |
| Comp.U.E = Index.get(); |
| break; |
| } |
| |
| case OffsetOfNode::Field: |
| case OffsetOfNode::Identifier: |
| Comp.isBrackets = false; |
| Comp.U.IdentInfo = ON.getFieldName(); |
| if (!Comp.U.IdentInfo) |
| continue; |
| |
| break; |
| |
| case OffsetOfNode::Base: |
| // Will be recomputed during the rebuild. |
| continue; |
| } |
| |
| Components.push_back(Comp); |
| } |
| |
| // If nothing changed, retain the existing expression. |
| if (!getDerived().AlwaysRebuild() && |
| Type == E->getTypeSourceInfo() && |
| !ExprChanged) |
| return E; |
| |
| // Build a new offsetof expression. |
| return getDerived().RebuildOffsetOfExpr(E->getOperatorLoc(), Type, |
| Components, E->getRParenLoc()); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformOpaqueValueExpr(OpaqueValueExpr *E) { |
| assert((!E->getSourceExpr() || getDerived().AlreadyTransformed(E->getType())) && |
| "opaque value expression requires transformation"); |
| return E; |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformTypoExpr(TypoExpr *E) { |
| return E; |
| } |
| |
| template <typename Derived> |
| ExprResult TreeTransform<Derived>::TransformRecoveryExpr(RecoveryExpr *E) { |
| llvm::SmallVector<Expr *, 8> Children; |
| bool Changed = false; |
| for (Expr *C : E->subExpressions()) { |
| ExprResult NewC = getDerived().TransformExpr(C); |
| if (NewC.isInvalid()) |
| return ExprError(); |
| Children.push_back(NewC.get()); |
| |
| Changed |= NewC.get() != C; |
| } |
| if (!getDerived().AlwaysRebuild() && !Changed) |
| return E; |
| return getDerived().RebuildRecoveryExpr(E->getBeginLoc(), E->getEndLoc(), |
| Children, E->getType()); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformPseudoObjectExpr(PseudoObjectExpr *E) { |
| // Rebuild the syntactic form. The original syntactic form has |
| // opaque-value expressions in it, so strip those away and rebuild |
| // the result. This is a really awful way of doing this, but the |
| // better solution (rebuilding the semantic expressions and |
| // rebinding OVEs as necessary) doesn't work; we'd need |
| // TreeTransform to not strip away implicit conversions. |
| Expr *newSyntacticForm = SemaRef.PseudoObject().recreateSyntacticForm(E); |
| ExprResult result = getDerived().TransformExpr(newSyntacticForm); |
| if (result.isInvalid()) return ExprError(); |
| |
| // If that gives us a pseudo-object result back, the pseudo-object |
| // expression must have been an lvalue-to-rvalue conversion which we |
| // should reapply. |
| if (result.get()->hasPlaceholderType(BuiltinType::PseudoObject)) |
| result = SemaRef.PseudoObject().checkRValue(result.get()); |
| |
| return result; |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformUnaryExprOrTypeTraitExpr( |
| UnaryExprOrTypeTraitExpr *E) { |
| if (E->isArgumentType()) { |
| TypeSourceInfo *OldT = E->getArgumentTypeInfo(); |
| |
| TypeSourceInfo *NewT = getDerived().TransformType(OldT); |
| if (!NewT) |
| return ExprError(); |
| |
| if (!getDerived().AlwaysRebuild() && OldT == NewT) |
| return E; |
| |
| return getDerived().RebuildUnaryExprOrTypeTrait(NewT, E->getOperatorLoc(), |
| E->getKind(), |
| E->getSourceRange()); |
| } |
| |
| // C++0x [expr.sizeof]p1: |
| // The operand is either an expression, which is an unevaluated operand |
| // [...] |
| EnterExpressionEvaluationContext Unevaluated( |
| SemaRef, Sema::ExpressionEvaluationContext::Unevaluated, |
| Sema::ReuseLambdaContextDecl); |
| |
| // Try to recover if we have something like sizeof(T::X) where X is a type. |
| // Notably, there must be *exactly* one set of parens if X is a type. |
| TypeSourceInfo *RecoveryTSI = nullptr; |
| ExprResult SubExpr; |
| auto *PE = dyn_cast<ParenExpr>(E->getArgumentExpr()); |
| if (auto *DRE = |
| PE ? dyn_cast<DependentScopeDeclRefExpr>(PE->getSubExpr()) : nullptr) |
| SubExpr = getDerived().TransformParenDependentScopeDeclRefExpr( |
| PE, DRE, false, &RecoveryTSI); |
| else |
| SubExpr = getDerived().TransformExpr(E->getArgumentExpr()); |
| |
| if (RecoveryTSI) { |
| return getDerived().RebuildUnaryExprOrTypeTrait( |
| RecoveryTSI, E->getOperatorLoc(), E->getKind(), E->getSourceRange()); |
| } else if (SubExpr.isInvalid()) |
| return ExprError(); |
| |
| if (!getDerived().AlwaysRebuild() && SubExpr.get() == E->getArgumentExpr()) |
| return E; |
| |
| return getDerived().RebuildUnaryExprOrTypeTrait(SubExpr.get(), |
| E->getOperatorLoc(), |
| E->getKind(), |
| E->getSourceRange()); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformArraySubscriptExpr(ArraySubscriptExpr *E) { |
| ExprResult LHS = getDerived().TransformExpr(E->getLHS()); |
| if (LHS.isInvalid()) |
| return ExprError(); |
| |
| ExprResult RHS = getDerived().TransformExpr(E->getRHS()); |
| if (RHS.isInvalid()) |
| return ExprError(); |
| |
| |
| if (!getDerived().AlwaysRebuild() && |
| LHS.get() == E->getLHS() && |
| RHS.get() == E->getRHS()) |
| return E; |
| |
| return getDerived().RebuildArraySubscriptExpr( |
| LHS.get(), |
| /*FIXME:*/ E->getLHS()->getBeginLoc(), RHS.get(), E->getRBracketLoc()); |
| } |
| |
| template <typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformMatrixSubscriptExpr(MatrixSubscriptExpr *E) { |
| ExprResult Base = getDerived().TransformExpr(E->getBase()); |
| if (Base.isInvalid()) |
| return ExprError(); |
| |
| ExprResult RowIdx = getDerived().TransformExpr(E->getRowIdx()); |
| if (RowIdx.isInvalid()) |
| return ExprError(); |
| |
| ExprResult ColumnIdx = getDerived().TransformExpr(E->getColumnIdx()); |
| if (ColumnIdx.isInvalid()) |
| return ExprError(); |
| |
| if (!getDerived().AlwaysRebuild() && Base.get() == E->getBase() && |
| RowIdx.get() == E->getRowIdx() && ColumnIdx.get() == E->getColumnIdx()) |
| return E; |
| |
| return getDerived().RebuildMatrixSubscriptExpr( |
| Base.get(), RowIdx.get(), ColumnIdx.get(), E->getRBracketLoc()); |
| } |
| |
| template <typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformArraySectionExpr(ArraySectionExpr *E) { |
| ExprResult Base = getDerived().TransformExpr(E->getBase()); |
| if (Base.isInvalid()) |
| return ExprError(); |
| |
| ExprResult LowerBound; |
| if (E->getLowerBound()) { |
| LowerBound = getDerived().TransformExpr(E->getLowerBound()); |
| if (LowerBound.isInvalid()) |
| return ExprError(); |
| } |
| |
| ExprResult Length; |
| if (E->getLength()) { |
| Length = getDerived().TransformExpr(E->getLength()); |
| if (Length.isInvalid()) |
| return ExprError(); |
| } |
| |
| ExprResult Stride; |
| if (E->isOMPArraySection()) { |
| if (Expr *Str = E->getStride()) { |
| Stride = getDerived().TransformExpr(Str); |
| if (Stride.isInvalid()) |
| return ExprError(); |
| } |
| } |
| |
| if (!getDerived().AlwaysRebuild() && Base.get() == E->getBase() && |
| LowerBound.get() == E->getLowerBound() && |
| Length.get() == E->getLength() && |
| (E->isOpenACCArraySection() || Stride.get() == E->getStride())) |
| return E; |
| |
| return getDerived().RebuildArraySectionExpr( |
| E->isOMPArraySection(), Base.get(), E->getBase()->getEndLoc(), |
| LowerBound.get(), E->getColonLocFirst(), |
| E->isOMPArraySection() ? E->getColonLocSecond() : SourceLocation{}, |
| Length.get(), Stride.get(), E->getRBracketLoc()); |
| } |
| |
| template <typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformOMPArrayShapingExpr(OMPArrayShapingExpr *E) { |
| ExprResult Base = getDerived().TransformExpr(E->getBase()); |
| if (Base.isInvalid()) |
| return ExprError(); |
| |
| SmallVector<Expr *, 4> Dims; |
| bool ErrorFound = false; |
| for (Expr *Dim : E->getDimensions()) { |
| ExprResult DimRes = getDerived().TransformExpr(Dim); |
| if (DimRes.isInvalid()) { |
| ErrorFound = true; |
| continue; |
| } |
| Dims.push_back(DimRes.get()); |
| } |
| |
| if (ErrorFound) |
| return ExprError(); |
| return getDerived().RebuildOMPArrayShapingExpr(Base.get(), E->getLParenLoc(), |
| E->getRParenLoc(), Dims, |
| E->getBracketsRanges()); |
| } |
| |
| template <typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformOMPIteratorExpr(OMPIteratorExpr *E) { |
| unsigned NumIterators = E->numOfIterators(); |
| SmallVector<SemaOpenMP::OMPIteratorData, 4> Data(NumIterators); |
| |
| bool ErrorFound = false; |
| bool NeedToRebuild = getDerived().AlwaysRebuild(); |
| for (unsigned I = 0; I < NumIterators; ++I) { |
| auto *D = cast<VarDecl>(E->getIteratorDecl(I)); |
| Data[I].DeclIdent = D->getIdentifier(); |
| Data[I].DeclIdentLoc = D->getLocation(); |
| if (D->getLocation() == D->getBeginLoc()) { |
| assert(SemaRef.Context.hasSameType(D->getType(), SemaRef.Context.IntTy) && |
| "Implicit type must be int."); |
| } else { |
| TypeSourceInfo *TSI = getDerived().TransformType(D->getTypeSourceInfo()); |
| QualType DeclTy = getDerived().TransformType(D->getType()); |
| Data[I].Type = SemaRef.CreateParsedType(DeclTy, TSI); |
| } |
| OMPIteratorExpr::IteratorRange Range = E->getIteratorRange(I); |
| ExprResult Begin = getDerived().TransformExpr(Range.Begin); |
| ExprResult End = getDerived().TransformExpr(Range.End); |
| ExprResult Step = getDerived().TransformExpr(Range.Step); |
| ErrorFound = ErrorFound || |
| !(!D->getTypeSourceInfo() || (Data[I].Type.getAsOpaquePtr() && |
| !Data[I].Type.get().isNull())) || |
| Begin.isInvalid() || End.isInvalid() || Step.isInvalid(); |
| if (ErrorFound) |
| continue; |
| Data[I].Range.Begin = Begin.get(); |
| Data[I].Range.End = End.get(); |
| Data[I].Range.Step = Step.get(); |
| Data[I].AssignLoc = E->getAssignLoc(I); |
| Data[I].ColonLoc = E->getColonLoc(I); |
| Data[I].SecColonLoc = E->getSecondColonLoc(I); |
| NeedToRebuild = |
| NeedToRebuild || |
| (D->getTypeSourceInfo() && Data[I].Type.get().getTypePtrOrNull() != |
| D->getType().getTypePtrOrNull()) || |
| Range.Begin != Data[I].Range.Begin || Range.End != Data[I].Range.End || |
| Range.Step != Data[I].Range.Step; |
| } |
| if (ErrorFound) |
| return ExprError(); |
| if (!NeedToRebuild) |
| return E; |
| |
| ExprResult Res = getDerived().RebuildOMPIteratorExpr( |
| E->getIteratorKwLoc(), E->getLParenLoc(), E->getRParenLoc(), Data); |
| if (!Res.isUsable()) |
| return Res; |
| auto *IE = cast<OMPIteratorExpr>(Res.get()); |
| for (unsigned I = 0; I < NumIterators; ++I) |
| getDerived().transformedLocalDecl(E->getIteratorDecl(I), |
| IE->getIteratorDecl(I)); |
| return Res; |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformCallExpr(CallExpr *E) { |
| // Transform the callee. |
| ExprResult Callee = getDerived().TransformExpr(E->getCallee()); |
| if (Callee.isInvalid()) |
| return ExprError(); |
| |
| // Transform arguments. |
| bool ArgChanged = false; |
| SmallVector<Expr*, 8> Args; |
| if (getDerived().TransformExprs(E->getArgs(), E->getNumArgs(), true, Args, |
| &ArgChanged)) |
| return ExprError(); |
| |
| if (!getDerived().AlwaysRebuild() && |
| Callee.get() == E->getCallee() && |
| !ArgChanged) |
| return SemaRef.MaybeBindToTemporary(E); |
| |
| // FIXME: Wrong source location information for the '('. |
| SourceLocation FakeLParenLoc |
| = ((Expr *)Callee.get())->getSourceRange().getBegin(); |
| |
| Sema::FPFeaturesStateRAII FPFeaturesState(getSema()); |
| if (E->hasStoredFPFeatures()) { |
| FPOptionsOverride NewOverrides = E->getFPFeatures(); |
| getSema().CurFPFeatures = |
| NewOverrides.applyOverrides(getSema().getLangOpts()); |
| getSema().FpPragmaStack.CurrentValue = NewOverrides; |
| } |
| |
| return getDerived().RebuildCallExpr(Callee.get(), FakeLParenLoc, |
| Args, |
| E->getRParenLoc()); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformMemberExpr(MemberExpr *E) { |
| ExprResult Base = getDerived().TransformExpr(E->getBase()); |
| if (Base.isInvalid()) |
| return ExprError(); |
| |
| NestedNameSpecifierLoc QualifierLoc; |
| if (E->hasQualifier()) { |
| QualifierLoc |
| = getDerived().TransformNestedNameSpecifierLoc(E->getQualifierLoc()); |
| |
| if (!QualifierLoc) |
| return ExprError(); |
| } |
| SourceLocation TemplateKWLoc = E->getTemplateKeywordLoc(); |
| |
| ValueDecl *Member |
| = cast_or_null<ValueDecl>(getDerived().TransformDecl(E->getMemberLoc(), |
| E->getMemberDecl())); |
| if (!Member) |
| return ExprError(); |
| |
| NamedDecl *FoundDecl = E->getFoundDecl(); |
| if (FoundDecl == E->getMemberDecl()) { |
| FoundDecl = Member; |
| } else { |
| FoundDecl = cast_or_null<NamedDecl>( |
| getDerived().TransformDecl(E->getMemberLoc(), FoundDecl)); |
| if (!FoundDecl) |
| return ExprError(); |
| } |
| |
| if (!getDerived().AlwaysRebuild() && |
| Base.get() == E->getBase() && |
| QualifierLoc == E->getQualifierLoc() && |
| Member == E->getMemberDecl() && |
| FoundDecl == E->getFoundDecl() && |
| !E->hasExplicitTemplateArgs()) { |
| |
| // Skip for member expression of (this->f), rebuilt thisi->f is needed |
| // for Openmp where the field need to be privatizized in the case. |
| if (!(isa<CXXThisExpr>(E->getBase()) && |
| getSema().OpenMP().isOpenMPRebuildMemberExpr( |
| cast<ValueDecl>(Member)))) { |
| // Mark it referenced in the new context regardless. |
| // FIXME: this is a bit instantiation-specific. |
| SemaRef.MarkMemberReferenced(E); |
| return E; |
| } |
| } |
| |
| TemplateArgumentListInfo TransArgs; |
| if (E->hasExplicitTemplateArgs()) { |
| TransArgs.setLAngleLoc(E->getLAngleLoc()); |
| TransArgs.setRAngleLoc(E->getRAngleLoc()); |
| if (getDerived().TransformTemplateArguments(E->getTemplateArgs(), |
| E->getNumTemplateArgs(), |
| TransArgs)) |
| return ExprError(); |
| } |
| |
| // FIXME: Bogus source location for the operator |
| SourceLocation FakeOperatorLoc = |
| SemaRef.getLocForEndOfToken(E->getBase()->getSourceRange().getEnd()); |
| |
| // FIXME: to do this check properly, we will need to preserve the |
| // first-qualifier-in-scope here, just in case we had a dependent |
| // base (and therefore couldn't do the check) and a |
| // nested-name-qualifier (and therefore could do the lookup). |
| NamedDecl *FirstQualifierInScope = nullptr; |
| DeclarationNameInfo MemberNameInfo = E->getMemberNameInfo(); |
| if (MemberNameInfo.getName()) { |
| MemberNameInfo = getDerived().TransformDeclarationNameInfo(MemberNameInfo); |
| if (!MemberNameInfo.getName()) |
| return ExprError(); |
| } |
| |
| return getDerived().RebuildMemberExpr(Base.get(), FakeOperatorLoc, |
| E->isArrow(), |
| QualifierLoc, |
| TemplateKWLoc, |
| MemberNameInfo, |
| Member, |
| FoundDecl, |
| (E->hasExplicitTemplateArgs() |
| ? &TransArgs : nullptr), |
| FirstQualifierInScope); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformBinaryOperator(BinaryOperator *E) { |
| ExprResult LHS = getDerived().TransformExpr(E->getLHS()); |
| if (LHS.isInvalid()) |
| return ExprError(); |
| |
| ExprResult RHS = |
| getDerived().TransformInitializer(E->getRHS(), /*NotCopyInit=*/false); |
| if (RHS.isInvalid()) |
| return ExprError(); |
| |
| if (!getDerived().AlwaysRebuild() && |
| LHS.get() == E->getLHS() && |
| RHS.get() == E->getRHS()) |
| return E; |
| |
| if (E->isCompoundAssignmentOp()) |
| // FPFeatures has already been established from trailing storage |
| return getDerived().RebuildBinaryOperator( |
| E->getOperatorLoc(), E->getOpcode(), LHS.get(), RHS.get()); |
| Sema::FPFeaturesStateRAII FPFeaturesState(getSema()); |
| FPOptionsOverride NewOverrides(E->getFPFeatures()); |
| getSema().CurFPFeatures = |
| NewOverrides.applyOverrides(getSema().getLangOpts()); |
| getSema().FpPragmaStack.CurrentValue = NewOverrides; |
| return getDerived().RebuildBinaryOperator(E->getOperatorLoc(), E->getOpcode(), |
| LHS.get(), RHS.get()); |
| } |
| |
| template <typename Derived> |
| ExprResult TreeTransform<Derived>::TransformCXXRewrittenBinaryOperator( |
| CXXRewrittenBinaryOperator *E) { |
| CXXRewrittenBinaryOperator::DecomposedForm Decomp = E->getDecomposedForm(); |
| |
| ExprResult LHS = getDerived().TransformExpr(const_cast<Expr*>(Decomp.LHS)); |
| if (LHS.isInvalid()) |
| return ExprError(); |
| |
| ExprResult RHS = getDerived().TransformExpr(const_cast<Expr*>(Decomp.RHS)); |
| if (RHS.isInvalid()) |
| return ExprError(); |
| |
| // Extract the already-resolved callee declarations so that we can restrict |
| // ourselves to using them as the unqualified lookup results when rebuilding. |
| UnresolvedSet<2> UnqualLookups; |
| bool ChangedAnyLookups = false; |
| Expr *PossibleBinOps[] = {E->getSemanticForm(), |
| const_cast<Expr *>(Decomp.InnerBinOp)}; |
| for (Expr *PossibleBinOp : PossibleBinOps) { |
| auto *Op = dyn_cast<CXXOperatorCallExpr>(PossibleBinOp->IgnoreImplicit()); |
| if (!Op) |
| continue; |
| auto *Callee = dyn_cast<DeclRefExpr>(Op->getCallee()->IgnoreImplicit()); |
| if (!Callee || isa<CXXMethodDecl>(Callee->getDecl())) |
| continue; |
| |
| // Transform the callee in case we built a call to a local extern |
| // declaration. |
| NamedDecl *Found = cast_or_null<NamedDecl>(getDerived().TransformDecl( |
| E->getOperatorLoc(), Callee->getFoundDecl())); |
| if (!Found) |
| return ExprError(); |
| if (Found != Callee->getFoundDecl()) |
| ChangedAnyLookups = true; |
| UnqualLookups.addDecl(Found); |
| } |
| |
| if (!getDerived().AlwaysRebuild() && !ChangedAnyLookups && |
| LHS.get() == Decomp.LHS && RHS.get() == Decomp.RHS) { |
| // Mark all functions used in the rewrite as referenced. Note that when |
| // a < b is rewritten to (a <=> b) < 0, both the <=> and the < might be |
| // function calls, and/or there might be a user-defined conversion sequence |
| // applied to the operands of the <. |
| // FIXME: this is a bit instantiation-specific. |
| const Expr *StopAt[] = {Decomp.LHS, Decomp.RHS}; |
| SemaRef.MarkDeclarationsReferencedInExpr(E, false, StopAt); |
| return E; |
| } |
| |
| return getDerived().RebuildCXXRewrittenBinaryOperator( |
| E->getOperatorLoc(), Decomp.Opcode, UnqualLookups, LHS.get(), RHS.get()); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformCompoundAssignOperator( |
| CompoundAssignOperator *E) { |
| Sema::FPFeaturesStateRAII FPFeaturesState(getSema()); |
| FPOptionsOverride NewOverrides(E->getFPFeatures()); |
| getSema().CurFPFeatures = |
| NewOverrides.applyOverrides(getSema().getLangOpts()); |
| getSema().FpPragmaStack.CurrentValue = NewOverrides; |
| return getDerived().TransformBinaryOperator(E); |
| } |
| |
| template<typename Derived> |
| ExprResult TreeTransform<Derived>:: |
| TransformBinaryConditionalOperator(BinaryConditionalOperator *e) { |
| // Just rebuild the common and RHS expressions and see whether we |
| // get any changes. |
| |
| ExprResult commonExpr = getDerived().TransformExpr(e->getCommon()); |
| if (commonExpr.isInvalid()) |
| return ExprError(); |
| |
| ExprResult rhs = getDerived().TransformExpr(e->getFalseExpr()); |
| if (rhs.isInvalid()) |
| return ExprError(); |
| |
| if (!getDerived().AlwaysRebuild() && |
| commonExpr.get() == e->getCommon() && |
| rhs.get() == e->getFalseExpr()) |
| return e; |
| |
| return getDerived().RebuildConditionalOperator(commonExpr.get(), |
| e->getQuestionLoc(), |
| nullptr, |
| e->getColonLoc(), |
| rhs.get()); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformConditionalOperator(ConditionalOperator *E) { |
| ExprResult Cond = getDerived().TransformExpr(E->getCond()); |
| if (Cond.isInvalid()) |
| return ExprError(); |
| |
| ExprResult LHS = getDerived().TransformExpr(E->getLHS()); |
| if (LHS.isInvalid()) |
| return ExprError(); |
| |
| ExprResult RHS = getDerived().TransformExpr(E->getRHS()); |
| if (RHS.isInvalid()) |
| return ExprError(); |
| |
| if (!getDerived().AlwaysRebuild() && |
| Cond.get() == E->getCond() && |
| LHS.get() == E->getLHS() && |
| RHS.get() == E->getRHS()) |
| return E; |
| |
| return getDerived().RebuildConditionalOperator(Cond.get(), |
| E->getQuestionLoc(), |
| LHS.get(), |
| E->getColonLoc(), |
| RHS.get()); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformImplicitCastExpr(ImplicitCastExpr *E) { |
| // Implicit casts are eliminated during transformation, since they |
| // will be recomputed by semantic analysis after transformation. |
| return getDerived().TransformExpr(E->getSubExprAsWritten()); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformCStyleCastExpr(CStyleCastExpr *E) { |
| TypeSourceInfo *Type = getDerived().TransformType(E->getTypeInfoAsWritten()); |
| if (!Type) |
| return ExprError(); |
| |
| ExprResult SubExpr |
| = getDerived().TransformExpr(E->getSubExprAsWritten()); |
| if (SubExpr.isInvalid()) |
| return ExprError(); |
| |
| if (!getDerived().AlwaysRebuild() && |
| Type == E->getTypeInfoAsWritten() && |
| SubExpr.get() == E->getSubExpr()) |
| return E; |
| |
| return getDerived().RebuildCStyleCastExpr(E->getLParenLoc(), |
| Type, |
| E->getRParenLoc(), |
| SubExpr.get()); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformCompoundLiteralExpr(CompoundLiteralExpr *E) { |
| TypeSourceInfo *OldT = E->getTypeSourceInfo(); |
| TypeSourceInfo *NewT = getDerived().TransformType(OldT); |
| if (!NewT) |
| return ExprError(); |
| |
| ExprResult Init = getDerived().TransformExpr(E->getInitializer()); |
| if (Init.isInvalid()) |
| return ExprError(); |
| |
| if (!getDerived().AlwaysRebuild() && |
| OldT == NewT && |
| Init.get() == E->getInitializer()) |
| return SemaRef.MaybeBindToTemporary(E); |
| |
| // Note: the expression type doesn't necessarily match the |
| // type-as-written, but that's okay, because it should always be |
| // derivable from the initializer. |
| |
| return getDerived().RebuildCompoundLiteralExpr( |
| E->getLParenLoc(), NewT, |
| /*FIXME:*/ E->getInitializer()->getEndLoc(), Init.get()); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformExtVectorElementExpr(ExtVectorElementExpr *E) { |
| ExprResult Base = getDerived().TransformExpr(E->getBase()); |
| if (Base.isInvalid()) |
| return ExprError(); |
| |
| if (!getDerived().AlwaysRebuild() && |
| Base.get() == E->getBase()) |
| return E; |
| |
| // FIXME: Bad source location |
| SourceLocation FakeOperatorLoc = |
| SemaRef.getLocForEndOfToken(E->getBase()->getEndLoc()); |
| return getDerived().RebuildExtVectorElementExpr( |
| Base.get(), FakeOperatorLoc, E->isArrow(), E->getAccessorLoc(), |
| E->getAccessor()); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformInitListExpr(InitListExpr *E) { |
| if (InitListExpr *Syntactic = E->getSyntacticForm()) |
| E = Syntactic; |
| |
| bool InitChanged = false; |
| |
| EnterExpressionEvaluationContext Context( |
| getSema(), EnterExpressionEvaluationContext::InitList); |
| |
| SmallVector<Expr*, 4> Inits; |
| if (getDerived().TransformExprs(E->getInits(), E->getNumInits(), false, |
| Inits, &InitChanged)) |
| return ExprError(); |
| |
| if (!getDerived().AlwaysRebuild() && !InitChanged) { |
| // FIXME: Attempt to reuse the existing syntactic form of the InitListExpr |
| // in some cases. We can't reuse it in general, because the syntactic and |
| // semantic forms are linked, and we can't know that semantic form will |
| // match even if the syntactic form does. |
| } |
| |
| return getDerived().RebuildInitList(E->getLBraceLoc(), Inits, |
| E->getRBraceLoc()); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformDesignatedInitExpr(DesignatedInitExpr *E) { |
| Designation Desig; |
| |
| // transform the initializer value |
| ExprResult Init = getDerived().TransformExpr(E->getInit()); |
| if (Init.isInvalid()) |
| return ExprError(); |
| |
| // transform the designators. |
| SmallVector<Expr*, 4> ArrayExprs; |
| bool ExprChanged = false; |
| for (const DesignatedInitExpr::Designator &D : E->designators()) { |
| if (D.isFieldDesignator()) { |
| if (D.getFieldDecl()) { |
| FieldDecl *Field = cast_or_null<FieldDecl>( |
| getDerived().TransformDecl(D.getFieldLoc(), D.getFieldDecl())); |
| if (Field != D.getFieldDecl()) |
| // Rebuild the expression when the transformed FieldDecl is |
| // different to the already assigned FieldDecl. |
| ExprChanged = true; |
| if (Field->isAnonymousStructOrUnion()) |
| continue; |
| } else { |
| // Ensure that the designator expression is rebuilt when there isn't |
| // a resolved FieldDecl in the designator as we don't want to assign |
| // a FieldDecl to a pattern designator that will be instantiated again. |
| ExprChanged = true; |
| } |
| Desig.AddDesignator(Designator::CreateFieldDesignator( |
| D.getFieldName(), D.getDotLoc(), D.getFieldLoc())); |
| continue; |
| } |
| |
| if (D.isArrayDesignator()) { |
| ExprResult Index = getDerived().TransformExpr(E->getArrayIndex(D)); |
| if (Index.isInvalid()) |
| return ExprError(); |
| |
| Desig.AddDesignator( |
| Designator::CreateArrayDesignator(Index.get(), D.getLBracketLoc())); |
| |
| ExprChanged = ExprChanged || Init.get() != E->getArrayIndex(D); |
| ArrayExprs.push_back(Index.get()); |
| continue; |
| } |
| |
| assert(D.isArrayRangeDesignator() && "New kind of designator?"); |
| ExprResult Start |
| = getDerived().TransformExpr(E->getArrayRangeStart(D)); |
| if (Start.isInvalid()) |
| return ExprError(); |
| |
| ExprResult End = getDerived().TransformExpr(E->getArrayRangeEnd(D)); |
| if (End.isInvalid()) |
| return ExprError(); |
| |
| Desig.AddDesignator(Designator::CreateArrayRangeDesignator( |
| Start.get(), End.get(), D.getLBracketLoc(), D.getEllipsisLoc())); |
| |
| ExprChanged = ExprChanged || Start.get() != E->getArrayRangeStart(D) || |
| End.get() != E->getArrayRangeEnd(D); |
| |
| ArrayExprs.push_back(Start.get()); |
| ArrayExprs.push_back(End.get()); |
| } |
| |
| if (!getDerived().AlwaysRebuild() && |
| Init.get() == E->getInit() && |
| !ExprChanged) |
| return E; |
| |
| return getDerived().RebuildDesignatedInitExpr(Desig, ArrayExprs, |
| E->getEqualOrColonLoc(), |
| E->usesGNUSyntax(), Init.get()); |
| } |
| |
| // Seems that if TransformInitListExpr() only works on the syntactic form of an |
| // InitListExpr, then a DesignatedInitUpdateExpr is not encountered. |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformDesignatedInitUpdateExpr( |
| DesignatedInitUpdateExpr *E) { |
| llvm_unreachable("Unexpected DesignatedInitUpdateExpr in syntactic form of " |
| "initializer"); |
| return ExprError(); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformNoInitExpr( |
| NoInitExpr *E) { |
| llvm_unreachable("Unexpected NoInitExpr in syntactic form of initializer"); |
| return ExprError(); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformArrayInitLoopExpr(ArrayInitLoopExpr *E) { |
| llvm_unreachable("Unexpected ArrayInitLoopExpr outside of initializer"); |
| return ExprError(); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformArrayInitIndexExpr(ArrayInitIndexExpr *E) { |
| llvm_unreachable("Unexpected ArrayInitIndexExpr outside of initializer"); |
| return ExprError(); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformImplicitValueInitExpr( |
| ImplicitValueInitExpr *E) { |
| TemporaryBase Rebase(*this, E->getBeginLoc(), DeclarationName()); |
| |
| // FIXME: Will we ever have proper type location here? Will we actually |
| // need to transform the type? |
| QualType T = getDerived().TransformType(E->getType()); |
| if (T.isNull()) |
| return ExprError(); |
| |
| if (!getDerived().AlwaysRebuild() && |
| T == E->getType()) |
| return E; |
| |
| return getDerived().RebuildImplicitValueInitExpr(T); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformVAArgExpr(VAArgExpr *E) { |
| TypeSourceInfo *TInfo = getDerived().TransformType(E->getWrittenTypeInfo()); |
| if (!TInfo) |
| return ExprError(); |
| |
| ExprResult SubExpr = getDerived().TransformExpr(E->getSubExpr()); |
| if (SubExpr.isInvalid()) |
| return ExprError(); |
| |
| if (!getDerived().AlwaysRebuild() && |
| TInfo == E->getWrittenTypeInfo() && |
| SubExpr.get() == E->getSubExpr()) |
| return E; |
| |
| return getDerived().RebuildVAArgExpr(E->getBuiltinLoc(), SubExpr.get(), |
| TInfo, E->getRParenLoc()); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformParenListExpr(ParenListExpr *E) { |
| bool ArgumentChanged = false; |
| SmallVector<Expr*, 4> Inits; |
| if (TransformExprs(E->getExprs(), E->getNumExprs(), true, Inits, |
| &ArgumentChanged)) |
| return ExprError(); |
| |
| return getDerived().RebuildParenListExpr(E->getLParenLoc(), |
| Inits, |
| E->getRParenLoc()); |
| } |
| |
| /// Transform an address-of-label expression. |
| /// |
| /// By default, the transformation of an address-of-label expression always |
| /// rebuilds the expression, so that the label identifier can be resolved to |
| /// the corresponding label statement by semantic analysis. |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformAddrLabelExpr(AddrLabelExpr *E) { |
| Decl *LD = getDerived().TransformDecl(E->getLabel()->getLocation(), |
| E->getLabel()); |
| if (!LD) |
| return ExprError(); |
| |
| return getDerived().RebuildAddrLabelExpr(E->getAmpAmpLoc(), E->getLabelLoc(), |
| cast<LabelDecl>(LD)); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformStmtExpr(StmtExpr *E) { |
| SemaRef.ActOnStartStmtExpr(); |
| StmtResult SubStmt |
| = getDerived().TransformCompoundStmt(E->getSubStmt(), true); |
| if (SubStmt.isInvalid()) { |
| SemaRef.ActOnStmtExprError(); |
| return ExprError(); |
| } |
| |
| unsigned OldDepth = E->getTemplateDepth(); |
| unsigned NewDepth = getDerived().TransformTemplateDepth(OldDepth); |
| |
| if (!getDerived().AlwaysRebuild() && OldDepth == NewDepth && |
| SubStmt.get() == E->getSubStmt()) { |
| // Calling this an 'error' is unintuitive, but it does the right thing. |
| SemaRef.ActOnStmtExprError(); |
| return SemaRef.MaybeBindToTemporary(E); |
| } |
| |
| return getDerived().RebuildStmtExpr(E->getLParenLoc(), SubStmt.get(), |
| E->getRParenLoc(), NewDepth); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformChooseExpr(ChooseExpr *E) { |
| ExprResult Cond = getDerived().TransformExpr(E->getCond()); |
| if (Cond.isInvalid()) |
| return ExprError(); |
| |
| ExprResult LHS = getDerived().TransformExpr(E->getLHS()); |
| if (LHS.isInvalid()) |
| return ExprError(); |
| |
| ExprResult RHS = getDerived().TransformExpr(E->getRHS()); |
| if (RHS.isInvalid()) |
| return ExprError(); |
| |
| if (!getDerived().AlwaysRebuild() && |
| Cond.get() == E->getCond() && |
| LHS.get() == E->getLHS() && |
| RHS.get() == E->getRHS()) |
| return E; |
| |
| return getDerived().RebuildChooseExpr(E->getBuiltinLoc(), |
| Cond.get(), LHS.get(), RHS.get(), |
| E->getRParenLoc()); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformGNUNullExpr(GNUNullExpr *E) { |
| return E; |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformCXXOperatorCallExpr(CXXOperatorCallExpr *E) { |
| switch (E->getOperator()) { |
| case OO_New: |
| case OO_Delete: |
| case OO_Array_New: |
| case OO_Array_Delete: |
| llvm_unreachable("new and delete operators cannot use CXXOperatorCallExpr"); |
| |
| case OO_Subscript: |
| case OO_Call: { |
| // This is a call to an object's operator(). |
| assert(E->getNumArgs() >= 1 && "Object call is missing arguments"); |
| |
| // Transform the object itself. |
| ExprResult Object = getDerived().TransformExpr(E->getArg(0)); |
| if (Object.isInvalid()) |
| return ExprError(); |
| |
| // FIXME: Poor location information |
| SourceLocation FakeLParenLoc = SemaRef.getLocForEndOfToken( |
| static_cast<Expr *>(Object.get())->getEndLoc()); |
| |
| // Transform the call arguments. |
| SmallVector<Expr*, 8> Args; |
| if (getDerived().TransformExprs(E->getArgs() + 1, E->getNumArgs() - 1, true, |
| Args)) |
| return ExprError(); |
| |
| if (E->getOperator() == OO_Subscript) |
| return getDerived().RebuildCxxSubscriptExpr(Object.get(), FakeLParenLoc, |
| Args, E->getEndLoc()); |
| |
| return getDerived().RebuildCallExpr(Object.get(), FakeLParenLoc, Args, |
| E->getEndLoc()); |
| } |
| |
| #define OVERLOADED_OPERATOR(Name, Spelling, Token, Unary, Binary, MemberOnly) \ |
| case OO_##Name: \ |
| break; |
| |
| #define OVERLOADED_OPERATOR_MULTI(Name,Spelling,Unary,Binary,MemberOnly) |
| #include "clang/Basic/OperatorKinds.def" |
| |
| case OO_Conditional: |
| llvm_unreachable("conditional operator is not actually overloadable"); |
| |
| case OO_None: |
| case NUM_OVERLOADED_OPERATORS: |
| llvm_unreachable("not an overloaded operator?"); |
| } |
| |
| ExprResult First; |
| if (E->getNumArgs() == 1 && E->getOperator() == OO_Amp) |
| First = getDerived().TransformAddressOfOperand(E->getArg(0)); |
| else |
| First = getDerived().TransformExpr(E->getArg(0)); |
| if (First.isInvalid()) |
| return ExprError(); |
| |
| ExprResult Second; |
| if (E->getNumArgs() == 2) { |
| Second = |
| getDerived().TransformInitializer(E->getArg(1), /*NotCopyInit=*/false); |
| if (Second.isInvalid()) |
| return ExprError(); |
| } |
| |
| Sema::FPFeaturesStateRAII FPFeaturesState(getSema()); |
| FPOptionsOverride NewOverrides(E->getFPFeatures()); |
| getSema().CurFPFeatures = |
| NewOverrides.applyOverrides(getSema().getLangOpts()); |
| getSema().FpPragmaStack.CurrentValue = NewOverrides; |
| |
| Expr *Callee = E->getCallee(); |
| if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(Callee)) { |
| LookupResult R(SemaRef, ULE->getName(), ULE->getNameLoc(), |
| Sema::LookupOrdinaryName); |
| if (getDerived().TransformOverloadExprDecls(ULE, ULE->requiresADL(), R)) |
| return ExprError(); |
| |
| return getDerived().RebuildCXXOperatorCallExpr( |
| E->getOperator(), E->getOperatorLoc(), Callee->getBeginLoc(), |
| ULE->requiresADL(), R.asUnresolvedSet(), First.get(), Second.get()); |
| } |
| |
| UnresolvedSet<1> Functions; |
| if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Callee)) |
| Callee = ICE->getSubExprAsWritten(); |
| NamedDecl *DR = cast<DeclRefExpr>(Callee)->getDecl(); |
| ValueDecl *VD = cast_or_null<ValueDecl>( |
| getDerived().TransformDecl(DR->getLocation(), DR)); |
| if (!VD) |
| return ExprError(); |
| |
| if (!isa<CXXMethodDecl>(VD)) |
| Functions.addDecl(VD); |
| |
| return getDerived().RebuildCXXOperatorCallExpr( |
| E->getOperator(), E->getOperatorLoc(), Callee->getBeginLoc(), |
| /*RequiresADL=*/false, Functions, First.get(), Second.get()); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformCXXMemberCallExpr(CXXMemberCallExpr *E) { |
| return getDerived().TransformCallExpr(E); |
| } |
| |
| template <typename Derived> |
| ExprResult TreeTransform<Derived>::TransformSourceLocExpr(SourceLocExpr *E) { |
| bool NeedRebuildFunc = SourceLocExpr::MayBeDependent(E->getIdentKind()) && |
| getSema().CurContext != E->getParentContext(); |
| |
| if (!getDerived().AlwaysRebuild() && !NeedRebuildFunc) |
| return E; |
| |
| return getDerived().RebuildSourceLocExpr(E->getIdentKind(), E->getType(), |
| E->getBeginLoc(), E->getEndLoc(), |
| getSema().CurContext); |
| } |
| |
| template <typename Derived> |
| ExprResult TreeTransform<Derived>::TransformEmbedExpr(EmbedExpr *E) { |
| return E; |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformCUDAKernelCallExpr(CUDAKernelCallExpr *E) { |
| // Transform the callee. |
| ExprResult Callee = getDerived().TransformExpr(E->getCallee()); |
| if (Callee.isInvalid()) |
| return ExprError(); |
| |
| // Transform exec config. |
| ExprResult EC = getDerived().TransformCallExpr(E->getConfig()); |
| if (EC.isInvalid()) |
| return ExprError(); |
| |
| // Transform arguments. |
| bool ArgChanged = false; |
| SmallVector<Expr*, 8> Args; |
| if (getDerived().TransformExprs(E->getArgs(), E->getNumArgs(), true, Args, |
| &ArgChanged)) |
| return ExprError(); |
| |
| if (!getDerived().AlwaysRebuild() && |
| Callee.get() == E->getCallee() && |
| !ArgChanged) |
| return SemaRef.MaybeBindToTemporary(E); |
| |
| // FIXME: Wrong source location information for the '('. |
| SourceLocation FakeLParenLoc |
| = ((Expr *)Callee.get())->getSourceRange().getBegin(); |
| return getDerived().RebuildCallExpr(Callee.get(), FakeLParenLoc, |
| Args, |
| E->getRParenLoc(), EC.get()); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformCXXNamedCastExpr(CXXNamedCastExpr *E) { |
| TypeSourceInfo *Type = getDerived().TransformType(E->getTypeInfoAsWritten()); |
| if (!Type) |
| return ExprError(); |
| |
| ExprResult SubExpr |
| = getDerived().TransformExpr(E->getSubExprAsWritten()); |
| if (SubExpr.isInvalid()) |
| return ExprError(); |
| |
| if (!getDerived().AlwaysRebuild() && |
| Type == E->getTypeInfoAsWritten() && |
| SubExpr.get() == E->getSubExpr()) |
| return E; |
| return getDerived().RebuildCXXNamedCastExpr( |
| E->getOperatorLoc(), E->getStmtClass(), E->getAngleBrackets().getBegin(), |
| Type, E->getAngleBrackets().getEnd(), |
| // FIXME. this should be '(' location |
| E->getAngleBrackets().getEnd(), SubExpr.get(), E->getRParenLoc()); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformBuiltinBitCastExpr(BuiltinBitCastExpr *BCE) { |
| TypeSourceInfo *TSI = |
| getDerived().TransformType(BCE->getTypeInfoAsWritten()); |
| if (!TSI) |
| return ExprError(); |
| |
| ExprResult Sub = getDerived().TransformExpr(BCE->getSubExpr()); |
| if (Sub.isInvalid()) |
| return ExprError(); |
| |
| return getDerived().RebuildBuiltinBitCastExpr(BCE->getBeginLoc(), TSI, |
| Sub.get(), BCE->getEndLoc()); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformCXXStaticCastExpr(CXXStaticCastExpr *E) { |
| return getDerived().TransformCXXNamedCastExpr(E); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformCXXDynamicCastExpr(CXXDynamicCastExpr *E) { |
| return getDerived().TransformCXXNamedCastExpr(E); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformCXXReinterpretCastExpr( |
| CXXReinterpretCastExpr *E) { |
| return getDerived().TransformCXXNamedCastExpr(E); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformCXXConstCastExpr(CXXConstCastExpr *E) { |
| return getDerived().TransformCXXNamedCastExpr(E); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformCXXAddrspaceCastExpr(CXXAddrspaceCastExpr *E) { |
| return getDerived().TransformCXXNamedCastExpr(E); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformCXXFunctionalCastExpr( |
| CXXFunctionalCastExpr *E) { |
| TypeSourceInfo *Type = |
| getDerived().TransformTypeWithDeducedTST(E->getTypeInfoAsWritten()); |
| if (!Type) |
| return ExprError(); |
| |
| ExprResult SubExpr |
| = getDerived().TransformExpr(E->getSubExprAsWritten()); |
| if (SubExpr.isInvalid()) |
| return ExprError(); |
| |
| if (!getDerived().AlwaysRebuild() && |
| Type == E->getTypeInfoAsWritten() && |
| SubExpr.get() == E->getSubExpr()) |
| return E; |
| |
| return getDerived().RebuildCXXFunctionalCastExpr(Type, |
| E->getLParenLoc(), |
| SubExpr.get(), |
| E->getRParenLoc(), |
| E->isListInitialization()); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformCXXTypeidExpr(CXXTypeidExpr *E) { |
| if (E->isTypeOperand()) { |
| TypeSourceInfo *TInfo |
| = getDerived().TransformType(E->getTypeOperandSourceInfo()); |
| if (!TInfo) |
| return ExprError(); |
| |
| if (!getDerived().AlwaysRebuild() && |
| TInfo == E->getTypeOperandSourceInfo()) |
| return E; |
| |
| return getDerived().RebuildCXXTypeidExpr(E->getType(), E->getBeginLoc(), |
| TInfo, E->getEndLoc()); |
| } |
| |
| // Typeid's operand is an unevaluated context, unless it's a polymorphic |
| // type. We must not unilaterally enter unevaluated context here, as then |
| // semantic processing can re-transform an already transformed operand. |
| Expr *Op = E->getExprOperand(); |
| auto EvalCtx = Sema::ExpressionEvaluationContext::Unevaluated; |
| if (E->isGLValue()) |
| if (auto *RecordT = Op->getType()->getAs<RecordType>()) |
| if (cast<CXXRecordDecl>(RecordT->getDecl())->isPolymorphic()) |
| EvalCtx = SemaRef.ExprEvalContexts.back().Context; |
| |
| EnterExpressionEvaluationContext Unevaluated(SemaRef, EvalCtx, |
| Sema::ReuseLambdaContextDecl); |
| |
| ExprResult SubExpr = getDerived().TransformExpr(Op); |
| if (SubExpr.isInvalid()) |
| return ExprError(); |
| |
| if (!getDerived().AlwaysRebuild() && |
| SubExpr.get() == E->getExprOperand()) |
| return E; |
| |
| return getDerived().RebuildCXXTypeidExpr(E->getType(), E->getBeginLoc(), |
| SubExpr.get(), E->getEndLoc()); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformCXXUuidofExpr(CXXUuidofExpr *E) { |
| if (E->isTypeOperand()) { |
| TypeSourceInfo *TInfo |
| = getDerived().TransformType(E->getTypeOperandSourceInfo()); |
| if (!TInfo) |
| return ExprError(); |
| |
| if (!getDerived().AlwaysRebuild() && |
| TInfo == E->getTypeOperandSourceInfo()) |
| return E; |
| |
| return getDerived().RebuildCXXUuidofExpr(E->getType(), E->getBeginLoc(), |
| TInfo, E->getEndLoc()); |
| } |
| |
| EnterExpressionEvaluationContext Unevaluated( |
| SemaRef, Sema::ExpressionEvaluationContext::Unevaluated); |
| |
| ExprResult SubExpr = getDerived().TransformExpr(E->getExprOperand()); |
| if (SubExpr.isInvalid()) |
| return ExprError(); |
| |
| if (!getDerived().AlwaysRebuild() && |
| SubExpr.get() == E->getExprOperand()) |
| return E; |
| |
| return getDerived().RebuildCXXUuidofExpr(E->getType(), E->getBeginLoc(), |
| SubExpr.get(), E->getEndLoc()); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformCXXBoolLiteralExpr(CXXBoolLiteralExpr *E) { |
| return E; |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformCXXNullPtrLiteralExpr( |
| CXXNullPtrLiteralExpr *E) { |
| return E; |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformCXXThisExpr(CXXThisExpr *E) { |
| |
| // In lambdas, the qualifiers of the type depends of where in |
| // the call operator `this` appear, and we do not have a good way to |
| // rebuild this information, so we transform the type. |
| // |
| // In other contexts, the type of `this` may be overrided |
| // for type deduction, so we need to recompute it. |
| // |
| // Always recompute the type if we're in the body of a lambda, and |
| // 'this' is dependent on a lambda's explicit object parameter. |
| QualType T = [&]() { |
| auto &S = getSema(); |
| if (E->isCapturedByCopyInLambdaWithExplicitObjectParameter()) |
| return S.getCurrentThisType(); |
| if (S.getCurLambda()) |
| return getDerived().TransformType(E->getType()); |
| return S.getCurrentThisType(); |
| }(); |
| |
| if (!getDerived().AlwaysRebuild() && T == E->getType()) { |
| // Mark it referenced in the new context regardless. |
| // FIXME: this is a bit instantiation-specific. |
| getSema().MarkThisReferenced(E); |
| return E; |
| } |
| |
| return getDerived().RebuildCXXThisExpr(E->getBeginLoc(), T, E->isImplicit()); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformCXXThrowExpr(CXXThrowExpr *E) { |
| ExprResult SubExpr = getDerived().TransformExpr(E->getSubExpr()); |
| if (SubExpr.isInvalid()) |
| return ExprError(); |
| |
| if (!getDerived().AlwaysRebuild() && |
| SubExpr.get() == E->getSubExpr()) |
| return E; |
| |
| return getDerived().RebuildCXXThrowExpr(E->getThrowLoc(), SubExpr.get(), |
| E->isThrownVariableInScope()); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformCXXDefaultArgExpr(CXXDefaultArgExpr *E) { |
| ParmVarDecl *Param = cast_or_null<ParmVarDecl>( |
| getDerived().TransformDecl(E->getBeginLoc(), E->getParam())); |
| if (!Param) |
| return ExprError(); |
| |
| ExprResult InitRes; |
| if (E->hasRewrittenInit()) { |
| InitRes = getDerived().TransformExpr(E->getRewrittenExpr()); |
| if (InitRes.isInvalid()) |
| return ExprError(); |
| } |
| |
| if (!getDerived().AlwaysRebuild() && Param == E->getParam() && |
| E->getUsedContext() == SemaRef.CurContext && |
| InitRes.get() == E->getRewrittenExpr()) |
| return E; |
| |
| return getDerived().RebuildCXXDefaultArgExpr(E->getUsedLocation(), Param, |
| InitRes.get()); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformCXXDefaultInitExpr(CXXDefaultInitExpr *E) { |
| FieldDecl *Field = cast_or_null<FieldDecl>( |
| getDerived().TransformDecl(E->getBeginLoc(), E->getField())); |
| if (!Field) |
| return ExprError(); |
| |
| if (!getDerived().AlwaysRebuild() && Field == E->getField() && |
| E->getUsedContext() == SemaRef.CurContext) |
| return E; |
| |
| return getDerived().RebuildCXXDefaultInitExpr(E->getExprLoc(), Field); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformCXXScalarValueInitExpr( |
| CXXScalarValueInitExpr *E) { |
| TypeSourceInfo *T = getDerived().TransformType(E->getTypeSourceInfo()); |
| if (!T) |
| return ExprError(); |
| |
| if (!getDerived().AlwaysRebuild() && |
| T == E->getTypeSourceInfo()) |
| return E; |
| |
| return getDerived().RebuildCXXScalarValueInitExpr(T, |
| /*FIXME:*/T->getTypeLoc().getEndLoc(), |
| E->getRParenLoc()); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformCXXNewExpr(CXXNewExpr *E) { |
| // Transform the type that we're allocating |
| TypeSourceInfo *AllocTypeInfo = |
| getDerived().TransformTypeWithDeducedTST(E->getAllocatedTypeSourceInfo()); |
| if (!AllocTypeInfo) |
| return ExprError(); |
| |
| // Transform the size of the array we're allocating (if any). |
| std::optional<Expr *> ArraySize; |
| if (E->isArray()) { |
| ExprResult NewArraySize; |
| if (std::optional<Expr *> OldArraySize = E->getArraySize()) { |
| NewArraySize = getDerived().TransformExpr(*OldArraySize); |
| if (NewArraySize.isInvalid()) |
| return ExprError(); |
| } |
| ArraySize = NewArraySize.get(); |
| } |
| |
| // Transform the placement arguments (if any). |
| bool ArgumentChanged = false; |
| SmallVector<Expr*, 8> PlacementArgs; |
| if (getDerived().TransformExprs(E->getPlacementArgs(), |
| E->getNumPlacementArgs(), true, |
| PlacementArgs, &ArgumentChanged)) |
| return ExprError(); |
| |
| // Transform the initializer (if any). |
| Expr *OldInit = E->getInitializer(); |
| ExprResult NewInit; |
| if (OldInit) |
| NewInit = getDerived().TransformInitializer(OldInit, true); |
| if (NewInit.isInvalid()) |
| return ExprError(); |
| |
| // Transform new operator and delete operator. |
| FunctionDecl *OperatorNew = nullptr; |
| if (E->getOperatorNew()) { |
| OperatorNew = cast_or_null<FunctionDecl>( |
| getDerived().TransformDecl(E->getBeginLoc(), E->getOperatorNew())); |
| if (!OperatorNew) |
| return ExprError(); |
| } |
| |
| FunctionDecl *OperatorDelete = nullptr; |
| if (E->getOperatorDelete()) { |
| OperatorDelete = cast_or_null<FunctionDecl>( |
| getDerived().TransformDecl(E->getBeginLoc(), E->getOperatorDelete())); |
| if (!OperatorDelete) |
| return ExprError(); |
| } |
| |
| if (!getDerived().AlwaysRebuild() && |
| AllocTypeInfo == E->getAllocatedTypeSourceInfo() && |
| ArraySize == E->getArraySize() && |
| NewInit.get() == OldInit && |
| OperatorNew == E->getOperatorNew() && |
| OperatorDelete == E->getOperatorDelete() && |
| !ArgumentChanged) { |
| // Mark any declarations we need as referenced. |
| // FIXME: instantiation-specific. |
| if (OperatorNew) |
| SemaRef.MarkFunctionReferenced(E->getBeginLoc(), OperatorNew); |
| if (OperatorDelete) |
| SemaRef.MarkFunctionReferenced(E->getBeginLoc(), OperatorDelete); |
| |
| if (E->isArray() && !E->getAllocatedType()->isDependentType()) { |
| QualType ElementType |
| = SemaRef.Context.getBaseElementType(E->getAllocatedType()); |
| if (const RecordType *RecordT = ElementType->getAs<RecordType>()) { |
| CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordT->getDecl()); |
| if (CXXDestructorDecl *Destructor = SemaRef.LookupDestructor(Record)) { |
| SemaRef.MarkFunctionReferenced(E->getBeginLoc(), Destructor); |
| } |
| } |
| } |
| |
| return E; |
| } |
| |
| QualType AllocType = AllocTypeInfo->getType(); |
| if (!ArraySize) { |
| // If no array size was specified, but the new expression was |
| // instantiated with an array type (e.g., "new T" where T is |
| // instantiated with "int[4]"), extract the outer bound from the |
| // array type as our array size. We do this with constant and |
| // dependently-sized array types. |
| const ArrayType *ArrayT = SemaRef.Context.getAsArrayType(AllocType); |
| if (!ArrayT) { |
| // Do nothing |
| } else if (const ConstantArrayType *ConsArrayT |
| = dyn_cast<ConstantArrayType>(ArrayT)) { |
| ArraySize = IntegerLiteral::Create(SemaRef.Context, ConsArrayT->getSize(), |
| SemaRef.Context.getSizeType(), |
| /*FIXME:*/ E->getBeginLoc()); |
| AllocType = ConsArrayT->getElementType(); |
| } else if (const DependentSizedArrayType *DepArrayT |
| = dyn_cast<DependentSizedArrayType>(ArrayT)) { |
| if (DepArrayT->getSizeExpr()) { |
| ArraySize = DepArrayT->getSizeExpr(); |
| AllocType = DepArrayT->getElementType(); |
| } |
| } |
| } |
| |
| return getDerived().RebuildCXXNewExpr( |
| E->getBeginLoc(), E->isGlobalNew(), |
| /*FIXME:*/ E->getBeginLoc(), PlacementArgs, |
| /*FIXME:*/ E->getBeginLoc(), E->getTypeIdParens(), AllocType, |
| AllocTypeInfo, ArraySize, E->getDirectInitRange(), NewInit.get()); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformCXXDeleteExpr(CXXDeleteExpr *E) { |
| ExprResult Operand = getDerived().TransformExpr(E->getArgument()); |
| if (Operand.isInvalid()) |
| return ExprError(); |
| |
| // Transform the delete operator, if known. |
| FunctionDecl *OperatorDelete = nullptr; |
| if (E->getOperatorDelete()) { |
| OperatorDelete = cast_or_null<FunctionDecl>( |
| getDerived().TransformDecl(E->getBeginLoc(), E->getOperatorDelete())); |
| if (!OperatorDelete) |
| return ExprError(); |
| } |
| |
| if (!getDerived().AlwaysRebuild() && |
| Operand.get() == E->getArgument() && |
| OperatorDelete == E->getOperatorDelete()) { |
| // Mark any declarations we need as referenced. |
| // FIXME: instantiation-specific. |
| if (OperatorDelete) |
| SemaRef.MarkFunctionReferenced(E->getBeginLoc(), OperatorDelete); |
| |
| if (!E->getArgument()->isTypeDependent()) { |
| QualType Destroyed = SemaRef.Context.getBaseElementType( |
| E->getDestroyedType()); |
| if (const RecordType *DestroyedRec = Destroyed->getAs<RecordType>()) { |
| CXXRecordDecl *Record = cast<CXXRecordDecl>(DestroyedRec->getDecl()); |
| SemaRef.MarkFunctionReferenced(E->getBeginLoc(), |
| SemaRef.LookupDestructor(Record)); |
| } |
| } |
| |
| return E; |
| } |
| |
| return getDerived().RebuildCXXDeleteExpr( |
| E->getBeginLoc(), E->isGlobalDelete(), E->isArrayForm(), Operand.get()); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformCXXPseudoDestructorExpr( |
| CXXPseudoDestructorExpr *E) { |
| ExprResult Base = getDerived().TransformExpr(E->getBase()); |
| if (Base.isInvalid()) |
| return ExprError(); |
| |
| ParsedType ObjectTypePtr; |
| bool MayBePseudoDestructor = false; |
| Base = SemaRef.ActOnStartCXXMemberReference(nullptr, Base.get(), |
| E->getOperatorLoc(), |
| E->isArrow()? tok::arrow : tok::period, |
| ObjectTypePtr, |
| MayBePseudoDestructor); |
| if (Base.isInvalid()) |
| return ExprError(); |
| |
| QualType ObjectType = ObjectTypePtr.get(); |
| NestedNameSpecifierLoc QualifierLoc = E->getQualifierLoc(); |
| if (QualifierLoc) { |
| QualifierLoc |
| = getDerived().TransformNestedNameSpecifierLoc(QualifierLoc, ObjectType); |
| if (!QualifierLoc) |
| return ExprError(); |
| } |
| CXXScopeSpec SS; |
| SS.Adopt(QualifierLoc); |
| |
| PseudoDestructorTypeStorage Destroyed; |
| if (E->getDestroyedTypeInfo()) { |
| TypeSourceInfo *DestroyedTypeInfo |
| = getDerived().TransformTypeInObjectScope(E->getDestroyedTypeInfo(), |
| ObjectType, nullptr, SS); |
| if (!DestroyedTypeInfo) |
| return ExprError(); |
| Destroyed = DestroyedTypeInfo; |
| } else if (!ObjectType.isNull() && ObjectType->isDependentType()) { |
| // We aren't likely to be able to resolve the identifier down to a type |
| // now anyway, so just retain the identifier. |
| Destroyed = PseudoDestructorTypeStorage(E->getDestroyedTypeIdentifier(), |
| E->getDestroyedTypeLoc()); |
| } else { |
| // Look for a destructor known with the given name. |
| ParsedType T = SemaRef.getDestructorName( |
| *E->getDestroyedTypeIdentifier(), E->getDestroyedTypeLoc(), |
| /*Scope=*/nullptr, SS, ObjectTypePtr, false); |
| if (!T) |
| return ExprError(); |
| |
| Destroyed |
| = SemaRef.Context.getTrivialTypeSourceInfo(SemaRef.GetTypeFromParser(T), |
| E->getDestroyedTypeLoc()); |
| } |
| |
| TypeSourceInfo *ScopeTypeInfo = nullptr; |
| if (E->getScopeTypeInfo()) { |
| CXXScopeSpec EmptySS; |
| ScopeTypeInfo = getDerived().TransformTypeInObjectScope( |
| E->getScopeTypeInfo(), ObjectType, nullptr, EmptySS); |
| if (!ScopeTypeInfo) |
| return ExprError(); |
| } |
| |
| return getDerived().RebuildCXXPseudoDestructorExpr(Base.get(), |
| E->getOperatorLoc(), |
| E->isArrow(), |
| SS, |
| ScopeTypeInfo, |
| E->getColonColonLoc(), |
| E->getTildeLoc(), |
| Destroyed); |
| } |
| |
| template <typename Derived> |
| bool TreeTransform<Derived>::TransformOverloadExprDecls(OverloadExpr *Old, |
| bool RequiresADL, |
| LookupResult &R) { |
| // Transform all the decls. |
| bool AllEmptyPacks = true; |
| for (auto *OldD : Old->decls()) { |
| Decl *InstD = getDerived().TransformDecl(Old->getNameLoc(), OldD); |
| if (!InstD) { |
| // Silently ignore these if a UsingShadowDecl instantiated to nothing. |
| // This can happen because of dependent hiding. |
| if (isa<UsingShadowDecl>(OldD)) |
| continue; |
| else { |
| R.clear(); |
| return true; |
| } |
| } |
| |
| // Expand using pack declarations. |
| NamedDecl *SingleDecl = cast<NamedDecl>(InstD); |
| ArrayRef<NamedDecl*> Decls = SingleDecl; |
| if (auto *UPD = dyn_cast<UsingPackDecl>(InstD)) |
| Decls = UPD->expansions(); |
| |
| // Expand using declarations. |
| for (auto *D : Decls) { |
| if (auto *UD = dyn_cast<UsingDecl>(D)) { |
| for (auto *SD : UD->shadows()) |
| R.addDecl(SD); |
| } else { |
| R.addDecl(D); |
| } |
| } |
| |
| AllEmptyPacks &= Decls.empty(); |
| } |
| |
| // C++ [temp.res]/8.4.2: |
| // The program is ill-formed, no diagnostic required, if [...] lookup for |
| // a name in the template definition found a using-declaration, but the |
| // lookup in the corresponding scope in the instantiation odoes not find |
| // any declarations because the using-declaration was a pack expansion and |
| // the corresponding pack is empty |
| if (AllEmptyPacks && !RequiresADL) { |
| getSema().Diag(Old->getNameLoc(), diag::err_using_pack_expansion_empty) |
| << isa<UnresolvedMemberExpr>(Old) << Old->getName(); |
| return true; |
| } |
| |
| // Resolve a kind, but don't do any further analysis. If it's |
| // ambiguous, the callee needs to deal with it. |
| R.resolveKind(); |
| |
| if (Old->hasTemplateKeyword() && !R.empty()) { |
| NamedDecl *FoundDecl = R.getRepresentativeDecl()->getUnderlyingDecl(); |
| getSema().FilterAcceptableTemplateNames(R, |
| /*AllowFunctionTemplates=*/true, |
| /*AllowDependent=*/true); |
| if (R.empty()) { |
| // If a 'template' keyword was used, a lookup that finds only non-template |
| // names is an error. |
| getSema().Diag(R.getNameLoc(), |
| diag::err_template_kw_refers_to_non_template) |
| << R.getLookupName() << Old->getQualifierLoc().getSourceRange() |
| << Old->hasTemplateKeyword() << Old->getTemplateKeywordLoc(); |
| getSema().Diag(FoundDecl->getLocation(), |
| diag::note_template_kw_refers_to_non_template) |
| << R.getLookupName(); |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| template <typename Derived> |
| ExprResult TreeTransform<Derived>::TransformUnresolvedLookupExpr( |
| UnresolvedLookupExpr *Old) { |
| return TransformUnresolvedLookupExpr(Old, /*IsAddressOfOperand=*/false); |
| } |
| |
| template <typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformUnresolvedLookupExpr(UnresolvedLookupExpr *Old, |
| bool IsAddressOfOperand) { |
| LookupResult R(SemaRef, Old->getName(), Old->getNameLoc(), |
| Sema::LookupOrdinaryName); |
| |
| // Transform the declaration set. |
| if (TransformOverloadExprDecls(Old, Old->requiresADL(), R)) |
| return ExprError(); |
| |
| // Rebuild the nested-name qualifier, if present. |
| CXXScopeSpec SS; |
| if (Old->getQualifierLoc()) { |
| NestedNameSpecifierLoc QualifierLoc |
| = getDerived().TransformNestedNameSpecifierLoc(Old->getQualifierLoc()); |
| if (!QualifierLoc) |
| return ExprError(); |
| |
| SS.Adopt(QualifierLoc); |
| } |
| |
| if (Old->getNamingClass()) { |
| CXXRecordDecl *NamingClass |
| = cast_or_null<CXXRecordDecl>(getDerived().TransformDecl( |
| Old->getNameLoc(), |
| Old->getNamingClass())); |
| if (!NamingClass) { |
| R.clear(); |
| return ExprError(); |
| } |
| |
| R.setNamingClass(NamingClass); |
| } |
| |
| // Rebuild the template arguments, if any. |
| SourceLocation TemplateKWLoc = Old->getTemplateKeywordLoc(); |
| TemplateArgumentListInfo TransArgs(Old->getLAngleLoc(), Old->getRAngleLoc()); |
| if (Old->hasExplicitTemplateArgs() && |
| getDerived().TransformTemplateArguments(Old->getTemplateArgs(), |
| Old->getNumTemplateArgs(), |
| TransArgs)) { |
| R.clear(); |
| return ExprError(); |
| } |
| |
| // An UnresolvedLookupExpr can refer to a class member. This occurs e.g. when |
| // a non-static data member is named in an unevaluated operand, or when |
| // a member is named in a dependent class scope function template explicit |
| // specialization that is neither declared static nor with an explicit object |
| // parameter. |
| if (SemaRef.isPotentialImplicitMemberAccess(SS, R, IsAddressOfOperand)) |
| return SemaRef.BuildPossibleImplicitMemberExpr( |
| SS, TemplateKWLoc, R, |
| Old->hasExplicitTemplateArgs() ? &TransArgs : nullptr, |
| /*S=*/nullptr); |
| |
| // If we have neither explicit template arguments, nor the template keyword, |
| // it's a normal declaration name or member reference. |
| if (!Old->hasExplicitTemplateArgs() && !TemplateKWLoc.isValid()) |
| return getDerived().RebuildDeclarationNameExpr(SS, R, Old->requiresADL()); |
| |
| // If we have template arguments, then rebuild the template-id expression. |
| return getDerived().RebuildTemplateIdExpr(SS, TemplateKWLoc, R, |
| Old->requiresADL(), &TransArgs); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformTypeTraitExpr(TypeTraitExpr *E) { |
| bool ArgChanged = false; |
| SmallVector<TypeSourceInfo *, 4> Args; |
| for (unsigned I = 0, N = E->getNumArgs(); I != N; ++I) { |
| TypeSourceInfo *From = E->getArg(I); |
| TypeLoc FromTL = From->getTypeLoc(); |
| if (!FromTL.getAs<PackExpansionTypeLoc>()) { |
| TypeLocBuilder TLB; |
| TLB.reserve(FromTL.getFullDataSize()); |
| QualType To = getDerived().TransformType(TLB, FromTL); |
| if (To.isNull()) |
| return ExprError(); |
| |
| if (To == From->getType()) |
| Args.push_back(From); |
| else { |
| Args.push_back(TLB.getTypeSourceInfo(SemaRef.Context, To)); |
| ArgChanged = true; |
| } |
| continue; |
| } |
| |
| ArgChanged = true; |
| |
| // We have a pack expansion. Instantiate it. |
| PackExpansionTypeLoc ExpansionTL = FromTL.castAs<PackExpansionTypeLoc>(); |
| TypeLoc PatternTL = ExpansionTL.getPatternLoc(); |
| SmallVector<UnexpandedParameterPack, 2> Unexpanded; |
| SemaRef.collectUnexpandedParameterPacks(PatternTL, Unexpanded); |
| |
| // Determine whether the set of unexpanded parameter packs can and should |
| // be expanded. |
| bool Expand = true; |
| bool RetainExpansion = false; |
| std::optional<unsigned> OrigNumExpansions = |
| ExpansionTL.getTypePtr()->getNumExpansions(); |
| std::optional<unsigned> NumExpansions = OrigNumExpansions; |
| if (getDerived().TryExpandParameterPacks(ExpansionTL.getEllipsisLoc(), |
| PatternTL.getSourceRange(), |
| Unexpanded, |
| Expand, RetainExpansion, |
| NumExpansions)) |
| return ExprError(); |
| |
| if (!Expand) { |
| // The transform has determined that we should perform a simple |
| // transformation on the pack expansion, producing another pack |
| // expansion. |
| Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), -1); |
| |
| TypeLocBuilder TLB; |
| TLB.reserve(From->getTypeLoc().getFullDataSize()); |
| |
| QualType To = getDerived().TransformType(TLB, PatternTL); |
| if (To.isNull()) |
| return ExprError(); |
| |
| To = getDerived().RebuildPackExpansionType(To, |
| PatternTL.getSourceRange(), |
| ExpansionTL.getEllipsisLoc(), |
| NumExpansions); |
| if (To.isNull()) |
| return ExprError(); |
| |
| PackExpansionTypeLoc ToExpansionTL |
| = TLB.push<PackExpansionTypeLoc>(To); |
| ToExpansionTL.setEllipsisLoc(ExpansionTL.getEllipsisLoc()); |
| Args.push_back(TLB.getTypeSourceInfo(SemaRef.Context, To)); |
| continue; |
| } |
| |
| // Expand the pack expansion by substituting for each argument in the |
| // pack(s). |
| for (unsigned I = 0; I != *NumExpansions; ++I) { |
| Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, I); |
| TypeLocBuilder TLB; |
| TLB.reserve(PatternTL.getFullDataSize()); |
| QualType To = getDerived().TransformType(TLB, PatternTL); |
| if (To.isNull()) |
| return ExprError(); |
| |
| if (To->containsUnexpandedParameterPack()) { |
| To = getDerived().RebuildPackExpansionType(To, |
| PatternTL.getSourceRange(), |
| ExpansionTL.getEllipsisLoc(), |
| NumExpansions); |
| if (To.isNull()) |
| return ExprError(); |
| |
| PackExpansionTypeLoc ToExpansionTL |
| = TLB.push<PackExpansionTypeLoc>(To); |
| ToExpansionTL.setEllipsisLoc(ExpansionTL.getEllipsisLoc()); |
| } |
| |
| Args.push_back(TLB.getTypeSourceInfo(SemaRef.Context, To)); |
| } |
| |
| if (!RetainExpansion) |
| continue; |
| |
| // If we're supposed to retain a pack expansion, do so by temporarily |
| // forgetting the partially-substituted parameter pack. |
| ForgetPartiallySubstitutedPackRAII Forget(getDerived()); |
| |
| TypeLocBuilder TLB; |
| TLB.reserve(From->getTypeLoc().getFullDataSize()); |
| |
| QualType To = getDerived().TransformType(TLB, PatternTL); |
| if (To.isNull()) |
| return ExprError(); |
| |
| To = getDerived().RebuildPackExpansionType(To, |
| PatternTL.getSourceRange(), |
| ExpansionTL.getEllipsisLoc(), |
| NumExpansions); |
| if (To.isNull()) |
| return ExprError(); |
| |
| PackExpansionTypeLoc ToExpansionTL |
| = TLB.push<PackExpansionTypeLoc>(To); |
| ToExpansionTL.setEllipsisLoc(ExpansionTL.getEllipsisLoc()); |
| Args.push_back(TLB.getTypeSourceInfo(SemaRef.Context, To)); |
| } |
| |
| if (!getDerived().AlwaysRebuild() && !ArgChanged) |
| return E; |
| |
| return getDerived().RebuildTypeTrait(E->getTrait(), E->getBeginLoc(), Args, |
| E->getEndLoc()); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformConceptSpecializationExpr( |
| ConceptSpecializationExpr *E) { |
| const ASTTemplateArgumentListInfo *Old = E->getTemplateArgsAsWritten(); |
| TemplateArgumentListInfo TransArgs(Old->LAngleLoc, Old->RAngleLoc); |
| if (getDerived().TransformTemplateArguments(Old->getTemplateArgs(), |
| Old->NumTemplateArgs, TransArgs)) |
| return ExprError(); |
| |
| return getDerived().RebuildConceptSpecializationExpr( |
| E->getNestedNameSpecifierLoc(), E->getTemplateKWLoc(), |
| E->getConceptNameInfo(), E->getFoundDecl(), E->getNamedConcept(), |
| &TransArgs); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformRequiresExpr(RequiresExpr *E) { |
| SmallVector<ParmVarDecl*, 4> TransParams; |
| SmallVector<QualType, 4> TransParamTypes; |
| Sema::ExtParameterInfoBuilder ExtParamInfos; |
| |
| // C++2a [expr.prim.req]p2 |
| // Expressions appearing within a requirement-body are unevaluated operands. |
| EnterExpressionEvaluationContext Ctx( |
| SemaRef, Sema::ExpressionEvaluationContext::Unevaluated, |
| Sema::ReuseLambdaContextDecl); |
| |
| RequiresExprBodyDecl *Body = RequiresExprBodyDecl::Create( |
| getSema().Context, getSema().CurContext, |
| E->getBody()->getBeginLoc()); |
| |
| Sema::ContextRAII SavedContext(getSema(), Body, /*NewThisContext*/false); |
| |
| ExprResult TypeParamResult = getDerived().TransformRequiresTypeParams( |
| E->getRequiresKWLoc(), E->getRBraceLoc(), E, Body, |
| E->getLocalParameters(), TransParamTypes, TransParams, ExtParamInfos); |
| |
| for (ParmVarDecl *Param : TransParams) |
| if (Param) |
| Param->setDeclContext(Body); |
| |
| // On failure to transform, TransformRequiresTypeParams returns an expression |
| // in the event that the transformation of the type params failed in some way. |
| // It is expected that this will result in a 'not satisfied' Requires clause |
| // when instantiating. |
| if (!TypeParamResult.isUnset()) |
| return TypeParamResult; |
| |
| SmallVector<concepts::Requirement *, 4> TransReqs; |
| if (getDerived().TransformRequiresExprRequirements(E->getRequirements(), |
| TransReqs)) |
| return ExprError(); |
| |
| for (concepts::Requirement *Req : TransReqs) { |
| if (auto *ER = dyn_cast<concepts::ExprRequirement>(Req)) { |
| if (ER->getReturnTypeRequirement().isTypeConstraint()) { |
| ER->getReturnTypeRequirement() |
| .getTypeConstraintTemplateParameterList()->getParam(0) |
| ->setDeclContext(Body); |
| } |
| } |
| } |
| |
| return getDerived().RebuildRequiresExpr( |
| E->getRequiresKWLoc(), Body, E->getLParenLoc(), TransParams, |
| E->getRParenLoc(), TransReqs, E->getRBraceLoc()); |
| } |
| |
| template<typename Derived> |
| bool TreeTransform<Derived>::TransformRequiresExprRequirements( |
| ArrayRef<concepts::Requirement *> Reqs, |
| SmallVectorImpl<concepts::Requirement *> &Transformed) { |
| for (concepts::Requirement *Req : Reqs) { |
| concepts::Requirement *TransReq = nullptr; |
| if (auto *TypeReq = dyn_cast<concepts::TypeRequirement>(Req)) |
| TransReq = getDerived().TransformTypeRequirement(TypeReq); |
| else if (auto *ExprReq = dyn_cast<concepts::ExprRequirement>(Req)) |
| TransReq = getDerived().TransformExprRequirement(ExprReq); |
| else |
| TransReq = getDerived().TransformNestedRequirement( |
| cast<concepts::NestedRequirement>(Req)); |
| if (!TransReq) |
| return true; |
| Transformed.push_back(TransReq); |
| } |
| return false; |
| } |
| |
| template<typename Derived> |
| concepts::TypeRequirement * |
| TreeTransform<Derived>::TransformTypeRequirement( |
| concepts::TypeRequirement *Req) { |
| if (Req->isSubstitutionFailure()) { |
| if (getDerived().AlwaysRebuild()) |
| return getDerived().RebuildTypeRequirement( |
| Req->getSubstitutionDiagnostic()); |
| return Req; |
| } |
| TypeSourceInfo *TransType = getDerived().TransformType(Req->getType()); |
| if (!TransType) |
| return nullptr; |
| return getDerived().RebuildTypeRequirement(TransType); |
| } |
| |
| template<typename Derived> |
| concepts::ExprRequirement * |
| TreeTransform<Derived>::TransformExprRequirement(concepts::ExprRequirement *Req) { |
| llvm::PointerUnion<Expr *, concepts::Requirement::SubstitutionDiagnostic *> TransExpr; |
| if (Req->isExprSubstitutionFailure()) |
| TransExpr = Req->getExprSubstitutionDiagnostic(); |
| else { |
| ExprResult TransExprRes = getDerived().TransformExpr(Req->getExpr()); |
| if (TransExprRes.isUsable() && TransExprRes.get()->hasPlaceholderType()) |
| TransExprRes = SemaRef.CheckPlaceholderExpr(TransExprRes.get()); |
| if (TransExprRes.isInvalid()) |
| return nullptr; |
| TransExpr = TransExprRes.get(); |
| } |
| |
| std::optional<concepts::ExprRequirement::ReturnTypeRequirement> TransRetReq; |
| const auto &RetReq = Req->getReturnTypeRequirement(); |
| if (RetReq.isEmpty()) |
| TransRetReq.emplace(); |
| else if (RetReq.isSubstitutionFailure()) |
| TransRetReq.emplace(RetReq.getSubstitutionDiagnostic()); |
| else if (RetReq.isTypeConstraint()) { |
| TemplateParameterList *OrigTPL = |
| RetReq.getTypeConstraintTemplateParameterList(); |
| TemplateParameterList *TPL = |
| getDerived().TransformTemplateParameterList(OrigTPL); |
| if (!TPL) |
| return nullptr; |
| TransRetReq.emplace(TPL); |
| } |
| assert(TransRetReq && "All code paths leading here must set TransRetReq"); |
| if (Expr *E = dyn_cast<Expr *>(TransExpr)) |
| return getDerived().RebuildExprRequirement(E, Req->isSimple(), |
| Req->getNoexceptLoc(), |
| std::move(*TransRetReq)); |
| return getDerived().RebuildExprRequirement( |
| cast<concepts::Requirement::SubstitutionDiagnostic *>(TransExpr), |
| Req->isSimple(), Req->getNoexceptLoc(), std::move(*TransRetReq)); |
| } |
| |
| template<typename Derived> |
| concepts::NestedRequirement * |
| TreeTransform<Derived>::TransformNestedRequirement( |
| concepts::NestedRequirement *Req) { |
| if (Req->hasInvalidConstraint()) { |
| if (getDerived().AlwaysRebuild()) |
| return getDerived().RebuildNestedRequirement( |
| Req->getInvalidConstraintEntity(), Req->getConstraintSatisfaction()); |
| return Req; |
| } |
| ExprResult TransConstraint = |
| getDerived().TransformExpr(Req->getConstraintExpr()); |
| if (TransConstraint.isInvalid()) |
| return nullptr; |
| return getDerived().RebuildNestedRequirement(TransConstraint.get()); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformArrayTypeTraitExpr(ArrayTypeTraitExpr *E) { |
| TypeSourceInfo *T = getDerived().TransformType(E->getQueriedTypeSourceInfo()); |
| if (!T) |
| return ExprError(); |
| |
| if (!getDerived().AlwaysRebuild() && |
| T == E->getQueriedTypeSourceInfo()) |
| return E; |
| |
| ExprResult SubExpr; |
| { |
| EnterExpressionEvaluationContext Unevaluated( |
| SemaRef, Sema::ExpressionEvaluationContext::Unevaluated); |
| SubExpr = getDerived().TransformExpr(E->getDimensionExpression()); |
| if (SubExpr.isInvalid()) |
| return ExprError(); |
| } |
| |
| return getDerived().RebuildArrayTypeTrait(E->getTrait(), E->getBeginLoc(), T, |
| SubExpr.get(), E->getEndLoc()); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformExpressionTraitExpr(ExpressionTraitExpr *E) { |
| ExprResult SubExpr; |
| { |
| EnterExpressionEvaluationContext Unevaluated( |
| SemaRef, Sema::ExpressionEvaluationContext::Unevaluated); |
| SubExpr = getDerived().TransformExpr(E->getQueriedExpression()); |
| if (SubExpr.isInvalid()) |
| return ExprError(); |
| |
| if (!getDerived().AlwaysRebuild() && SubExpr.get() == E->getQueriedExpression()) |
| return E; |
| } |
| |
| return getDerived().RebuildExpressionTrait(E->getTrait(), E->getBeginLoc(), |
| SubExpr.get(), E->getEndLoc()); |
| } |
| |
| template <typename Derived> |
| ExprResult TreeTransform<Derived>::TransformParenDependentScopeDeclRefExpr( |
| ParenExpr *PE, DependentScopeDeclRefExpr *DRE, bool AddrTaken, |
| TypeSourceInfo **RecoveryTSI) { |
| ExprResult NewDRE = getDerived().TransformDependentScopeDeclRefExpr( |
| DRE, AddrTaken, RecoveryTSI); |
| |
| // Propagate both errors and recovered types, which return ExprEmpty. |
| if (!NewDRE.isUsable()) |
| return NewDRE; |
| |
| // We got an expr, wrap it up in parens. |
| if (!getDerived().AlwaysRebuild() && NewDRE.get() == DRE) |
| return PE; |
| return getDerived().RebuildParenExpr(NewDRE.get(), PE->getLParen(), |
| PE->getRParen()); |
| } |
| |
| template <typename Derived> |
| ExprResult TreeTransform<Derived>::TransformDependentScopeDeclRefExpr( |
| DependentScopeDeclRefExpr *E) { |
| return TransformDependentScopeDeclRefExpr(E, /*IsAddressOfOperand=*/false, |
| nullptr); |
| } |
| |
| template <typename Derived> |
| ExprResult TreeTransform<Derived>::TransformDependentScopeDeclRefExpr( |
| DependentScopeDeclRefExpr *E, bool IsAddressOfOperand, |
| TypeSourceInfo **RecoveryTSI) { |
| assert(E->getQualifierLoc()); |
| NestedNameSpecifierLoc QualifierLoc = |
| getDerived().TransformNestedNameSpecifierLoc(E->getQualifierLoc()); |
| if (!QualifierLoc) |
| return ExprError(); |
| SourceLocation TemplateKWLoc = E->getTemplateKeywordLoc(); |
| |
| // TODO: If this is a conversion-function-id, verify that the |
| // destination type name (if present) resolves the same way after |
| // instantiation as it did in the local scope. |
| |
| DeclarationNameInfo NameInfo = |
| getDerived().TransformDeclarationNameInfo(E->getNameInfo()); |
| if (!NameInfo.getName()) |
| return ExprError(); |
| |
| if (!E->hasExplicitTemplateArgs()) { |
| if (!getDerived().AlwaysRebuild() && QualifierLoc == E->getQualifierLoc() && |
| // Note: it is sufficient to compare the Name component of NameInfo: |
| // if name has not changed, DNLoc has not changed either. |
| NameInfo.getName() == E->getDeclName()) |
| return E; |
| |
| return getDerived().RebuildDependentScopeDeclRefExpr( |
| QualifierLoc, TemplateKWLoc, NameInfo, /*TemplateArgs=*/nullptr, |
| IsAddressOfOperand, RecoveryTSI); |
| } |
| |
| TemplateArgumentListInfo TransArgs(E->getLAngleLoc(), E->getRAngleLoc()); |
| if (getDerived().TransformTemplateArguments( |
| E->getTemplateArgs(), E->getNumTemplateArgs(), TransArgs)) |
| return ExprError(); |
| |
| return getDerived().RebuildDependentScopeDeclRefExpr( |
| QualifierLoc, TemplateKWLoc, NameInfo, &TransArgs, IsAddressOfOperand, |
| RecoveryTSI); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformCXXConstructExpr(CXXConstructExpr *E) { |
| // CXXConstructExprs other than for list-initialization and |
| // CXXTemporaryObjectExpr are always implicit, so when we have |
| // a 1-argument construction we just transform that argument. |
| if (getDerived().AllowSkippingCXXConstructExpr() && |
| ((E->getNumArgs() == 1 || |
| (E->getNumArgs() > 1 && getDerived().DropCallArgument(E->getArg(1)))) && |
| (!getDerived().DropCallArgument(E->getArg(0))) && |
| !E->isListInitialization())) |
| return getDerived().TransformInitializer(E->getArg(0), |
| /*DirectInit*/ false); |
| |
| TemporaryBase Rebase(*this, /*FIXME*/ E->getBeginLoc(), DeclarationName()); |
| |
| QualType T = getDerived().TransformType(E->getType()); |
| if (T.isNull()) |
| return ExprError(); |
| |
| CXXConstructorDecl *Constructor = cast_or_null<CXXConstructorDecl>( |
| getDerived().TransformDecl(E->getBeginLoc(), E->getConstructor())); |
| if (!Constructor) |
| return ExprError(); |
| |
| bool ArgumentChanged = false; |
| SmallVector<Expr*, 8> Args; |
| { |
| EnterExpressionEvaluationContext Context( |
| getSema(), EnterExpressionEvaluationContext::InitList, |
| E->isListInitialization()); |
| if (getDerived().TransformExprs(E->getArgs(), E->getNumArgs(), true, Args, |
| &ArgumentChanged)) |
| return ExprError(); |
| } |
| |
| if (!getDerived().AlwaysRebuild() && |
| T == E->getType() && |
| Constructor == E->getConstructor() && |
| !ArgumentChanged) { |
| // Mark the constructor as referenced. |
| // FIXME: Instantiation-specific |
| SemaRef.MarkFunctionReferenced(E->getBeginLoc(), Constructor); |
| return E; |
| } |
| |
| return getDerived().RebuildCXXConstructExpr( |
| T, /*FIXME:*/ E->getBeginLoc(), Constructor, E->isElidable(), Args, |
| E->hadMultipleCandidates(), E->isListInitialization(), |
| E->isStdInitListInitialization(), E->requiresZeroInitialization(), |
| E->getConstructionKind(), E->getParenOrBraceRange()); |
| } |
| |
| template<typename Derived> |
| ExprResult TreeTransform<Derived>::TransformCXXInheritedCtorInitExpr( |
| CXXInheritedCtorInitExpr *E) { |
| QualType T = getDerived().TransformType(E->getType()); |
| if (T.isNull()) |
| return ExprError(); |
| |
| CXXConstructorDecl *Constructor = cast_or_null<CXXConstructorDecl>( |
| getDerived().TransformDecl(E->getBeginLoc(), E->getConstructor())); |
| if (!Constructor) |
| return ExprError(); |
| |
| if (!getDerived().AlwaysRebuild() && |
| T == E->getType() && |
| Constructor == E->getConstructor()) { |
| // Mark the constructor as referenced. |
| // FIXME: Instantiation-specific |
| SemaRef.MarkFunctionReferenced(E->getBeginLoc(), Constructor); |
| return E; |
| } |
| |
| return getDerived().RebuildCXXInheritedCtorInitExpr( |
| T, E->getLocation(), Constructor, |
| E->constructsVBase(), E->inheritedFromVBase()); |
| } |
| |
| /// Transform a C++ temporary-binding expression. |
| /// |
| /// Since CXXBindTemporaryExpr nodes are implicitly generated, we just |
| /// transform the subexpression and return that. |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { |
| if (auto *Dtor = E->getTemporary()->getDestructor()) |
| SemaRef.MarkFunctionReferenced(E->getBeginLoc(), |
| const_cast<CXXDestructorDecl *>(Dtor)); |
| return getDerived().TransformExpr(E->getSubExpr()); |
| } |
| |
| /// Transform a C++ expression that contains cleanups that should |
| /// be run after the expression is evaluated. |
| /// |
| /// Since ExprWithCleanups nodes are implicitly generated, we |
| /// just transform the subexpression and return that. |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformExprWithCleanups(ExprWithCleanups *E) { |
| return getDerived().TransformExpr(E->getSubExpr()); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformCXXTemporaryObjectExpr( |
| CXXTemporaryObjectExpr *E) { |
| TypeSourceInfo *T = |
| getDerived().TransformTypeWithDeducedTST(E->getTypeSourceInfo()); |
| if (!T) |
| return ExprError(); |
| |
| CXXConstructorDecl *Constructor = cast_or_null<CXXConstructorDecl>( |
| getDerived().TransformDecl(E->getBeginLoc(), E->getConstructor())); |
| if (!Constructor) |
| return ExprError(); |
| |
| bool ArgumentChanged = false; |
| SmallVector<Expr*, 8> Args; |
| Args.reserve(E->getNumArgs()); |
| { |
| EnterExpressionEvaluationContext Context( |
| getSema(), EnterExpressionEvaluationContext::InitList, |
| E->isListInitialization()); |
| if (TransformExprs(E->getArgs(), E->getNumArgs(), true, Args, |
| &ArgumentChanged)) |
| return ExprError(); |
| |
| if (E->isListInitialization() && !E->isStdInitListInitialization()) { |
| ExprResult Res = RebuildInitList(E->getBeginLoc(), Args, E->getEndLoc()); |
| if (Res.isInvalid()) |
| return ExprError(); |
| Args = {Res.get()}; |
| } |
| } |
| |
| if (!getDerived().AlwaysRebuild() && |
| T == E->getTypeSourceInfo() && |
| Constructor == E->getConstructor() && |
| !ArgumentChanged) { |
| // FIXME: Instantiation-specific |
| SemaRef.MarkFunctionReferenced(E->getBeginLoc(), Constructor); |
| return SemaRef.MaybeBindToTemporary(E); |
| } |
| |
| SourceLocation LParenLoc = T->getTypeLoc().getEndLoc(); |
| return getDerived().RebuildCXXTemporaryObjectExpr( |
| T, LParenLoc, Args, E->getEndLoc(), E->isListInitialization()); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformLambdaExpr(LambdaExpr *E) { |
| // Transform any init-capture expressions before entering the scope of the |
| // lambda body, because they are not semantically within that scope. |
| typedef std::pair<ExprResult, QualType> InitCaptureInfoTy; |
| struct TransformedInitCapture { |
| // The location of the ... if the result is retaining a pack expansion. |
| SourceLocation EllipsisLoc; |
| // Zero or more expansions of the init-capture. |
| SmallVector<InitCaptureInfoTy, 4> Expansions; |
| }; |
| SmallVector<TransformedInitCapture, 4> InitCaptures; |
| InitCaptures.resize(E->explicit_capture_end() - E->explicit_capture_begin()); |
| for (LambdaExpr::capture_iterator C = E->capture_begin(), |
| CEnd = E->capture_end(); |
| C != CEnd; ++C) { |
| if (!E->isInitCapture(C)) |
| continue; |
| |
| TransformedInitCapture &Result = InitCaptures[C - E->capture_begin()]; |
| auto *OldVD = cast<VarDecl>(C->getCapturedVar()); |
| |
| auto SubstInitCapture = [&](SourceLocation EllipsisLoc, |
| std::optional<unsigned> NumExpansions) { |
| ExprResult NewExprInitResult = getDerived().TransformInitializer( |
| OldVD->getInit(), OldVD->getInitStyle() == VarDecl::CallInit); |
| |
| if (NewExprInitResult.isInvalid()) { |
| Result.Expansions.push_back(InitCaptureInfoTy(ExprError(), QualType())); |
| return; |
| } |
| Expr *NewExprInit = NewExprInitResult.get(); |
| |
| QualType NewInitCaptureType = |
| getSema().buildLambdaInitCaptureInitialization( |
| C->getLocation(), C->getCaptureKind() == LCK_ByRef, |
| EllipsisLoc, NumExpansions, OldVD->getIdentifier(), |
| cast<VarDecl>(C->getCapturedVar())->getInitStyle() != |
| VarDecl::CInit, |
| NewExprInit); |
| Result.Expansions.push_back( |
| InitCaptureInfoTy(NewExprInit, NewInitCaptureType)); |
| }; |
| |
| // If this is an init-capture pack, consider expanding the pack now. |
| if (OldVD->isParameterPack()) { |
| PackExpansionTypeLoc ExpansionTL = OldVD->getTypeSourceInfo() |
| ->getTypeLoc() |
| .castAs<PackExpansionTypeLoc>(); |
| SmallVector<UnexpandedParameterPack, 2> Unexpanded; |
| SemaRef.collectUnexpandedParameterPacks(OldVD->getInit(), Unexpanded); |
| |
| // Determine whether the set of unexpanded parameter packs can and should |
| // be expanded. |
| bool Expand = true; |
| bool RetainExpansion = false; |
| std::optional<unsigned> OrigNumExpansions = |
| ExpansionTL.getTypePtr()->getNumExpansions(); |
| std::optional<unsigned> NumExpansions = OrigNumExpansions; |
| if (getDerived().TryExpandParameterPacks( |
| ExpansionTL.getEllipsisLoc(), |
| OldVD->getInit()->getSourceRange(), Unexpanded, Expand, |
| RetainExpansion, NumExpansions)) |
| return ExprError(); |
| assert(!RetainExpansion && "Should not need to retain expansion after a " |
| "capture since it cannot be extended"); |
| if (Expand) { |
| for (unsigned I = 0; I != *NumExpansions; ++I) { |
| Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), I); |
| SubstInitCapture(SourceLocation(), std::nullopt); |
| } |
| } else { |
| SubstInitCapture(ExpansionTL.getEllipsisLoc(), NumExpansions); |
| Result.EllipsisLoc = ExpansionTL.getEllipsisLoc(); |
| } |
| } else { |
| SubstInitCapture(SourceLocation(), std::nullopt); |
| } |
| } |
| |
| LambdaScopeInfo *LSI = getSema().PushLambdaScope(); |
| Sema::FunctionScopeRAII FuncScopeCleanup(getSema()); |
| |
| // Create the local class that will describe the lambda. |
| |
| // FIXME: DependencyKind below is wrong when substituting inside a templated |
| // context that isn't a DeclContext (such as a variable template), or when |
| // substituting an unevaluated lambda inside of a function's parameter's type |
| // - as parameter types are not instantiated from within a function's DC. We |
| // use evaluation contexts to distinguish the function parameter case. |
| CXXRecordDecl::LambdaDependencyKind DependencyKind = |
| CXXRecordDecl::LDK_Unknown; |
| DeclContext *DC = getSema().CurContext; |
| // A RequiresExprBodyDecl is not interesting for dependencies. |
| // For the following case, |
| // |
| // template <typename> |
| // concept C = requires { [] {}; }; |
| // |
| // template <class F> |
| // struct Widget; |
| // |
| // template <C F> |
| // struct Widget<F> {}; |
| // |
| // While we are substituting Widget<F>, the parent of DC would be |
| // the template specialization itself. Thus, the lambda expression |
| // will be deemed as dependent even if there are no dependent template |
| // arguments. |
| // (A ClassTemplateSpecializationDecl is always a dependent context.) |
| while (DC->isRequiresExprBody()) |
| DC = DC->getParent(); |
| if ((getSema().isUnevaluatedContext() || |
| getSema().isConstantEvaluatedContext()) && |
| (DC->isFileContext() || !DC->getParent()->isDependentContext())) |
| DependencyKind = CXXRecordDecl::LDK_NeverDependent; |
| |
| CXXRecordDecl *OldClass = E->getLambdaClass(); |
| CXXRecordDecl *Class = getSema().createLambdaClosureType( |
| E->getIntroducerRange(), /*Info=*/nullptr, DependencyKind, |
| E->getCaptureDefault()); |
| getDerived().transformedLocalDecl(OldClass, {Class}); |
| |
| CXXMethodDecl *NewCallOperator = |
| getSema().CreateLambdaCallOperator(E->getIntroducerRange(), Class); |
| |
| // Enter the scope of the lambda. |
| getSema().buildLambdaScope(LSI, NewCallOperator, E->getIntroducerRange(), |
| E->getCaptureDefault(), E->getCaptureDefaultLoc(), |
| E->hasExplicitParameters(), E->isMutable()); |
| |
| // Introduce the context of the call operator. |
| Sema::ContextRAII SavedContext(getSema(), NewCallOperator, |
| /*NewThisContext*/false); |
| |
| bool Invalid = false; |
| |
| // Transform captures. |
| for (LambdaExpr::capture_iterator C = E->capture_begin(), |
| CEnd = E->capture_end(); |
| C != CEnd; ++C) { |
| // When we hit the first implicit capture, tell Sema that we've finished |
| // the list of explicit captures. |
| if (C->isImplicit()) |
| break; |
| |
| // Capturing 'this' is trivial. |
| if (C->capturesThis()) { |
| // If this is a lambda that is part of a default member initialiser |
| // and which we're instantiating outside the class that 'this' is |
| // supposed to refer to, adjust the type of 'this' accordingly. |
| // |
| // Otherwise, leave the type of 'this' as-is. |
| Sema::CXXThisScopeRAII ThisScope( |
| getSema(), |
| dyn_cast_if_present<CXXRecordDecl>( |
| getSema().getFunctionLevelDeclContext()), |
| Qualifiers()); |
| getSema().CheckCXXThisCapture(C->getLocation(), C->isExplicit(), |
| /*BuildAndDiagnose*/ true, nullptr, |
| C->getCaptureKind() == LCK_StarThis); |
| continue; |
| } |
| // Captured expression will be recaptured during captured variables |
| // rebuilding. |
| if (C->capturesVLAType()) |
| continue; |
| |
| // Rebuild init-captures, including the implied field declaration. |
| if (E->isInitCapture(C)) { |
| TransformedInitCapture &NewC = InitCaptures[C - E->capture_begin()]; |
| |
| auto *OldVD = cast<VarDecl>(C->getCapturedVar()); |
| llvm::SmallVector<Decl*, 4> NewVDs; |
| |
| for (InitCaptureInfoTy &Info : NewC.Expansions) { |
| ExprResult Init = Info.first; |
| QualType InitQualType = Info.second; |
| if (Init.isInvalid() || InitQualType.isNull()) { |
| Invalid = true; |
| break; |
| } |
| VarDecl *NewVD = getSema().createLambdaInitCaptureVarDecl( |
| OldVD->getLocation(), InitQualType, NewC.EllipsisLoc, |
| OldVD->getIdentifier(), OldVD->getInitStyle(), Init.get(), |
| getSema().CurContext); |
| if (!NewVD) { |
| Invalid = true; |
| break; |
| } |
| NewVDs.push_back(NewVD); |
| getSema().addInitCapture(LSI, NewVD, C->getCaptureKind() == LCK_ByRef); |
| // Cases we want to tackle: |
| // ([C(Pack)] {}, ...) |
| // But rule out cases e.g. |
| // [...C = Pack()] {} |
| if (NewC.EllipsisLoc.isInvalid()) |
| LSI->ContainsUnexpandedParameterPack |= |
| Init.get()->containsUnexpandedParameterPack(); |
| } |
| |
| if (Invalid) |
| break; |
| |
| getDerived().transformedLocalDecl(OldVD, NewVDs); |
| continue; |
| } |
| |
| assert(C->capturesVariable() && "unexpected kind of lambda capture"); |
| |
| // Determine the capture kind for Sema. |
| Sema::TryCaptureKind Kind |
| = C->isImplicit()? Sema::TryCapture_Implicit |
| : C->getCaptureKind() == LCK_ByCopy |
| ? Sema::TryCapture_ExplicitByVal |
| : Sema::TryCapture_ExplicitByRef; |
| SourceLocation EllipsisLoc; |
| if (C->isPackExpansion()) { |
| UnexpandedParameterPack Unexpanded(C->getCapturedVar(), C->getLocation()); |
| bool ShouldExpand = false; |
| bool RetainExpansion = false; |
| std::optional<unsigned> NumExpansions; |
| if (getDerived().TryExpandParameterPacks(C->getEllipsisLoc(), |
| C->getLocation(), |
| Unexpanded, |
| ShouldExpand, RetainExpansion, |
| NumExpansions)) { |
| Invalid = true; |
| continue; |
| } |
| |
| if (ShouldExpand) { |
| // The transform has determined that we should perform an expansion; |
| // transform and capture each of the arguments. |
| // expansion of the pattern. Do so. |
| auto *Pack = cast<ValueDecl>(C->getCapturedVar()); |
| for (unsigned I = 0; I != *NumExpansions; ++I) { |
| Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), I); |
| ValueDecl *CapturedVar = cast_if_present<ValueDecl>( |
| getDerived().TransformDecl(C->getLocation(), Pack)); |
| if (!CapturedVar) { |
| Invalid = true; |
| continue; |
| } |
| |
| // Capture the transformed variable. |
| getSema().tryCaptureVariable(CapturedVar, C->getLocation(), Kind); |
| } |
| |
| // FIXME: Retain a pack expansion if RetainExpansion is true. |
| |
| continue; |
| } |
| |
| EllipsisLoc = C->getEllipsisLoc(); |
| } |
| |
| // Transform the captured variable. |
| auto *CapturedVar = cast_or_null<ValueDecl>( |
| getDerived().TransformDecl(C->getLocation(), C->getCapturedVar())); |
| if (!CapturedVar || CapturedVar->isInvalidDecl()) { |
| Invalid = true; |
| continue; |
| } |
| |
| // This is not an init-capture; however it contains an unexpanded pack e.g. |
| // ([Pack] {}(), ...) |
| if (auto *VD = dyn_cast<VarDecl>(CapturedVar); VD && !C->isPackExpansion()) |
| LSI->ContainsUnexpandedParameterPack |= VD->isParameterPack(); |
| |
| // Capture the transformed variable. |
| getSema().tryCaptureVariable(CapturedVar, C->getLocation(), Kind, |
| EllipsisLoc); |
| } |
| getSema().finishLambdaExplicitCaptures(LSI); |
| |
| // Transform the template parameters, and add them to the current |
| // instantiation scope. The null case is handled correctly. |
| auto TPL = getDerived().TransformTemplateParameterList( |
| E->getTemplateParameterList()); |
| LSI->GLTemplateParameterList = TPL; |
| if (TPL) { |
| getSema().AddTemplateParametersToLambdaCallOperator(NewCallOperator, Class, |
| TPL); |
| LSI->ContainsUnexpandedParameterPack |= |
| TPL->containsUnexpandedParameterPack(); |
| } |
| |
| TypeLocBuilder NewCallOpTLBuilder; |
| TypeLoc OldCallOpTypeLoc = |
| E->getCallOperator()->getTypeSourceInfo()->getTypeLoc(); |
| QualType NewCallOpType = |
| getDerived().TransformType(NewCallOpTLBuilder, OldCallOpTypeLoc); |
| if (NewCallOpType.isNull()) |
| return ExprError(); |
| LSI->ContainsUnexpandedParameterPack |= |
| NewCallOpType->containsUnexpandedParameterPack(); |
| TypeSourceInfo *NewCallOpTSI = |
| NewCallOpTLBuilder.getTypeSourceInfo(getSema().Context, NewCallOpType); |
| |
| // The type may be an AttributedType or some other kind of sugar; |
| // get the actual underlying FunctionProtoType. |
| auto FPTL = NewCallOpTSI->getTypeLoc().getAsAdjusted<FunctionProtoTypeLoc>(); |
| assert(FPTL && "Not a FunctionProtoType?"); |
| |
| getSema().CompleteLambdaCallOperator( |
| NewCallOperator, E->getCallOperator()->getLocation(), |
| E->getCallOperator()->getInnerLocStart(), |
| E->getCallOperator()->getTrailingRequiresClause(), NewCallOpTSI, |
| E->getCallOperator()->getConstexprKind(), |
| E->getCallOperator()->getStorageClass(), FPTL.getParams(), |
| E->hasExplicitResultType()); |
| |
| getDerived().transformAttrs(E->getCallOperator(), NewCallOperator); |
| getDerived().transformedLocalDecl(E->getCallOperator(), {NewCallOperator}); |
| |
| { |
| // Number the lambda for linkage purposes if necessary. |
| Sema::ContextRAII ManglingContext(getSema(), Class->getDeclContext()); |
| |
| std::optional<CXXRecordDecl::LambdaNumbering> Numbering; |
| if (getDerived().ReplacingOriginal()) { |
| Numbering = OldClass->getLambdaNumbering(); |
| } |
| |
| getSema().handleLambdaNumbering(Class, NewCallOperator, Numbering); |
| } |
| |
| // FIXME: Sema's lambda-building mechanism expects us to push an expression |
| // evaluation context even if we're not transforming the function body. |
| getSema().PushExpressionEvaluationContext( |
| E->getCallOperator()->isConsteval() ? |
| Sema::ExpressionEvaluationContext::ImmediateFunctionContext : |
| Sema::ExpressionEvaluationContext::PotentiallyEvaluated); |
| getSema().currentEvaluationContext().InImmediateEscalatingFunctionContext = |
| getSema().getLangOpts().CPlusPlus20 && |
| E->getCallOperator()->isImmediateEscalating(); |
| |
| Sema::CodeSynthesisContext C; |
| C.Kind = clang::Sema::CodeSynthesisContext::LambdaExpressionSubstitution; |
| C.PointOfInstantiation = E->getBody()->getBeginLoc(); |
| getSema().pushCodeSynthesisContext(C); |
| |
| // Instantiate the body of the lambda expression. |
| StmtResult Body = |
| Invalid ? StmtError() : getDerived().TransformLambdaBody(E, E->getBody()); |
| |
| getSema().popCodeSynthesisContext(); |
| |
| // ActOnLambda* will pop the function scope for us. |
| FuncScopeCleanup.disable(); |
| |
| if (Body.isInvalid()) { |
| SavedContext.pop(); |
| getSema().ActOnLambdaError(E->getBeginLoc(), /*CurScope=*/nullptr, |
| /*IsInstantiation=*/true); |
| return ExprError(); |
| } |
| |
| // Copy the LSI before ActOnFinishFunctionBody removes it. |
| // FIXME: This is dumb. Store the lambda information somewhere that outlives |
| // the call operator. |
| auto LSICopy = *LSI; |
| getSema().ActOnFinishFunctionBody(NewCallOperator, Body.get(), |
| /*IsInstantiation*/ true); |
| SavedContext.pop(); |
| |
| // Recompute the dependency of the lambda so that we can defer the lambda call |
| // construction until after we have all the necessary template arguments. For |
| // example, given |
| // |
| // template <class> struct S { |
| // template <class U> |
| // using Type = decltype([](U){}(42.0)); |
| // }; |
| // void foo() { |
| // using T = S<int>::Type<float>; |
| // ^~~~~~ |
| // } |
| // |
| // We would end up here from instantiating S<int> when ensuring its |
| // completeness. That would transform the lambda call expression regardless of |
| // the absence of the corresponding argument for U. |
| // |
| // Going ahead with unsubstituted type U makes things worse: we would soon |
| // compare the argument type (which is float) against the parameter U |
| // somewhere in Sema::BuildCallExpr. Then we would quickly run into a bogus |
| // error suggesting unmatched types 'U' and 'float'! |
| // |
| // That said, everything will be fine if we defer that semantic checking. |
| // Fortunately, we have such a mechanism that bypasses it if the CallExpr is |
| // dependent. Since the CallExpr's dependency boils down to the lambda's |
| // dependency in this case, we can harness that by recomputing the dependency |
| // from the instantiation arguments. |
| // |
| // FIXME: Creating the type of a lambda requires us to have a dependency |
| // value, which happens before its substitution. We update its dependency |
| // *after* the substitution in case we can't decide the dependency |
| // so early, e.g. because we want to see if any of the *substituted* |
| // parameters are dependent. |
| DependencyKind = getDerived().ComputeLambdaDependency(&LSICopy); |
| Class->setLambdaDependencyKind(DependencyKind); |
| // Clean up the type cache created previously. Then, we re-create a type for |
| // such Decl with the new DependencyKind. |
| Class->setTypeForDecl(nullptr); |
| getSema().Context.getTypeDeclType(Class); |
| |
| return getDerived().RebuildLambdaExpr(E->getBeginLoc(), |
| Body.get()->getEndLoc(), &LSICopy); |
| } |
| |
| template<typename Derived> |
| StmtResult |
| TreeTransform<Derived>::TransformLambdaBody(LambdaExpr *E, Stmt *S) { |
| return TransformStmt(S); |
| } |
| |
| template<typename Derived> |
| StmtResult |
| TreeTransform<Derived>::SkipLambdaBody(LambdaExpr *E, Stmt *S) { |
| // Transform captures. |
| for (LambdaExpr::capture_iterator C = E->capture_begin(), |
| CEnd = E->capture_end(); |
| C != CEnd; ++C) { |
| // When we hit the first implicit capture, tell Sema that we've finished |
| // the list of explicit captures. |
| if (!C->isImplicit()) |
| continue; |
| |
| // Capturing 'this' is trivial. |
| if (C->capturesThis()) { |
| getSema().CheckCXXThisCapture(C->getLocation(), C->isExplicit(), |
| /*BuildAndDiagnose*/ true, nullptr, |
| C->getCaptureKind() == LCK_StarThis); |
| continue; |
| } |
| // Captured expression will be recaptured during captured variables |
| // rebuilding. |
| if (C->capturesVLAType()) |
| continue; |
| |
| assert(C->capturesVariable() && "unexpected kind of lambda capture"); |
| assert(!E->isInitCapture(C) && "implicit init-capture?"); |
| |
| // Transform the captured variable. |
| VarDecl *CapturedVar = cast_or_null<VarDecl>( |
| getDerived().TransformDecl(C->getLocation(), C->getCapturedVar())); |
| if (!CapturedVar || CapturedVar->isInvalidDecl()) |
| return StmtError(); |
| |
| // Capture the transformed variable. |
| getSema().tryCaptureVariable(CapturedVar, C->getLocation()); |
| } |
| |
| return S; |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformCXXUnresolvedConstructExpr( |
| CXXUnresolvedConstructExpr *E) { |
| TypeSourceInfo *T = |
| getDerived().TransformTypeWithDeducedTST(E->getTypeSourceInfo()); |
| if (!T) |
| return ExprError(); |
| |
| bool ArgumentChanged = false; |
| SmallVector<Expr*, 8> Args; |
| Args.reserve(E->getNumArgs()); |
| { |
| EnterExpressionEvaluationContext Context( |
| getSema(), EnterExpressionEvaluationContext::InitList, |
| E->isListInitialization()); |
| if (getDerived().TransformExprs(E->arg_begin(), E->getNumArgs(), true, Args, |
| &ArgumentChanged)) |
| return ExprError(); |
| } |
| |
| if (!getDerived().AlwaysRebuild() && |
| T == E->getTypeSourceInfo() && |
| !ArgumentChanged) |
| return E; |
| |
| // FIXME: we're faking the locations of the commas |
| return getDerived().RebuildCXXUnresolvedConstructExpr( |
| T, E->getLParenLoc(), Args, E->getRParenLoc(), E->isListInitialization()); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformCXXDependentScopeMemberExpr( |
| CXXDependentScopeMemberExpr *E) { |
| // Transform the base of the expression. |
| ExprResult Base((Expr*) nullptr); |
| Expr *OldBase; |
| QualType BaseType; |
| QualType ObjectType; |
| if (!E->isImplicitAccess()) { |
| OldBase = E->getBase(); |
| Base = getDerived().TransformExpr(OldBase); |
| if (Base.isInvalid()) |
| return ExprError(); |
| |
| // Start the member reference and compute the object's type. |
| ParsedType ObjectTy; |
| bool MayBePseudoDestructor = false; |
| Base = SemaRef.ActOnStartCXXMemberReference(nullptr, Base.get(), |
| E->getOperatorLoc(), |
| E->isArrow()? tok::arrow : tok::period, |
| ObjectTy, |
| MayBePseudoDestructor); |
| if (Base.isInvalid()) |
| return ExprError(); |
| |
| ObjectType = ObjectTy.get(); |
| BaseType = ((Expr*) Base.get())->getType(); |
| } else { |
| OldBase = nullptr; |
| BaseType = getDerived().TransformType(E->getBaseType()); |
| ObjectType = BaseType->castAs<PointerType>()->getPointeeType(); |
| } |
| |
| // Transform the first part of the nested-name-specifier that qualifies |
| // the member name. |
| NamedDecl *FirstQualifierInScope |
| = getDerived().TransformFirstQualifierInScope( |
| E->getFirstQualifierFoundInScope(), |
| E->getQualifierLoc().getBeginLoc()); |
| |
| NestedNameSpecifierLoc QualifierLoc; |
| if (E->getQualifier()) { |
| QualifierLoc |
| = getDerived().TransformNestedNameSpecifierLoc(E->getQualifierLoc(), |
| ObjectType, |
| FirstQualifierInScope); |
| if (!QualifierLoc) |
| return ExprError(); |
| } |
| |
| SourceLocation TemplateKWLoc = E->getTemplateKeywordLoc(); |
| |
| // TODO: If this is a conversion-function-id, verify that the |
| // destination type name (if present) resolves the same way after |
| // instantiation as it did in the local scope. |
| |
| DeclarationNameInfo NameInfo |
| = getDerived().TransformDeclarationNameInfo(E->getMemberNameInfo()); |
| if (!NameInfo.getName()) |
| return ExprError(); |
| |
| if (!E->hasExplicitTemplateArgs()) { |
| // This is a reference to a member without an explicitly-specified |
| // template argument list. Optimize for this common case. |
| if (!getDerived().AlwaysRebuild() && |
| Base.get() == OldBase && |
| BaseType == E->getBaseType() && |
| QualifierLoc == E->getQualifierLoc() && |
| NameInfo.getName() == E->getMember() && |
| FirstQualifierInScope == E->getFirstQualifierFoundInScope()) |
| return E; |
| |
| return getDerived().RebuildCXXDependentScopeMemberExpr(Base.get(), |
| BaseType, |
| E->isArrow(), |
| E->getOperatorLoc(), |
| QualifierLoc, |
| TemplateKWLoc, |
| FirstQualifierInScope, |
| NameInfo, |
| /*TemplateArgs*/nullptr); |
| } |
| |
| TemplateArgumentListInfo TransArgs(E->getLAngleLoc(), E->getRAngleLoc()); |
| if (getDerived().TransformTemplateArguments(E->getTemplateArgs(), |
| E->getNumTemplateArgs(), |
| TransArgs)) |
| return ExprError(); |
| |
| return getDerived().RebuildCXXDependentScopeMemberExpr(Base.get(), |
| BaseType, |
| E->isArrow(), |
| E->getOperatorLoc(), |
| QualifierLoc, |
| TemplateKWLoc, |
| FirstQualifierInScope, |
| NameInfo, |
| &TransArgs); |
| } |
| |
| template <typename Derived> |
| ExprResult TreeTransform<Derived>::TransformUnresolvedMemberExpr( |
| UnresolvedMemberExpr *Old) { |
| // Transform the base of the expression. |
| ExprResult Base((Expr *)nullptr); |
| QualType BaseType; |
| if (!Old->isImplicitAccess()) { |
| Base = getDerived().TransformExpr(Old->getBase()); |
| if (Base.isInvalid()) |
| return ExprError(); |
| Base = |
| getSema().PerformMemberExprBaseConversion(Base.get(), Old->isArrow()); |
| if (Base.isInvalid()) |
| return ExprError(); |
| BaseType = Base.get()->getType(); |
| } else { |
| BaseType = getDerived().TransformType(Old->getBaseType()); |
| } |
| |
| NestedNameSpecifierLoc QualifierLoc; |
| if (Old->getQualifierLoc()) { |
| QualifierLoc = |
| getDerived().TransformNestedNameSpecifierLoc(Old->getQualifierLoc()); |
| if (!QualifierLoc) |
| return ExprError(); |
| } |
| |
| SourceLocation TemplateKWLoc = Old->getTemplateKeywordLoc(); |
| |
| LookupResult R(SemaRef, Old->getMemberNameInfo(), Sema::LookupOrdinaryName); |
| |
| // Transform the declaration set. |
| if (TransformOverloadExprDecls(Old, /*RequiresADL*/ false, R)) |
| return ExprError(); |
| |
| // Determine the naming class. |
| if (Old->getNamingClass()) { |
| CXXRecordDecl *NamingClass = cast_or_null<CXXRecordDecl>( |
| getDerived().TransformDecl(Old->getMemberLoc(), Old->getNamingClass())); |
| if (!NamingClass) |
| return ExprError(); |
| |
| R.setNamingClass(NamingClass); |
| } |
| |
| TemplateArgumentListInfo TransArgs; |
| if (Old->hasExplicitTemplateArgs()) { |
| TransArgs.setLAngleLoc(Old->getLAngleLoc()); |
| TransArgs.setRAngleLoc(Old->getRAngleLoc()); |
| if (getDerived().TransformTemplateArguments( |
| Old->getTemplateArgs(), Old->getNumTemplateArgs(), TransArgs)) |
| return ExprError(); |
| } |
| |
| // FIXME: to do this check properly, we will need to preserve the |
| // first-qualifier-in-scope here, just in case we had a dependent |
| // base (and therefore couldn't do the check) and a |
| // nested-name-qualifier (and therefore could do the lookup). |
| NamedDecl *FirstQualifierInScope = nullptr; |
| |
| return getDerived().RebuildUnresolvedMemberExpr( |
| Base.get(), BaseType, Old->getOperatorLoc(), Old->isArrow(), QualifierLoc, |
| TemplateKWLoc, FirstQualifierInScope, R, |
| (Old->hasExplicitTemplateArgs() ? &TransArgs : nullptr)); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformCXXNoexceptExpr(CXXNoexceptExpr *E) { |
| EnterExpressionEvaluationContext Unevaluated( |
| SemaRef, Sema::ExpressionEvaluationContext::Unevaluated); |
| ExprResult SubExpr = getDerived().TransformExpr(E->getOperand()); |
| if (SubExpr.isInvalid()) |
| return ExprError(); |
| |
| if (!getDerived().AlwaysRebuild() && SubExpr.get() == E->getOperand()) |
| return E; |
| |
| return getDerived().RebuildCXXNoexceptExpr(E->getSourceRange(),SubExpr.get()); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformPackExpansionExpr(PackExpansionExpr *E) { |
| ExprResult Pattern = getDerived().TransformExpr(E->getPattern()); |
| if (Pattern.isInvalid()) |
| return ExprError(); |
| |
| if (!getDerived().AlwaysRebuild() && Pattern.get() == E->getPattern()) |
| return E; |
| |
| return getDerived().RebuildPackExpansion(Pattern.get(), E->getEllipsisLoc(), |
| E->getNumExpansions()); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformSizeOfPackExpr(SizeOfPackExpr *E) { |
| // If E is not value-dependent, then nothing will change when we transform it. |
| // Note: This is an instantiation-centric view. |
| if (!E->isValueDependent()) |
| return E; |
| |
| EnterExpressionEvaluationContext Unevaluated( |
| getSema(), Sema::ExpressionEvaluationContext::Unevaluated); |
| |
| ArrayRef<TemplateArgument> PackArgs; |
| TemplateArgument ArgStorage; |
| |
| // Find the argument list to transform. |
| if (E->isPartiallySubstituted()) { |
| PackArgs = E->getPartialArguments(); |
| } else if (E->isValueDependent()) { |
| UnexpandedParameterPack Unexpanded(E->getPack(), E->getPackLoc()); |
| bool ShouldExpand = false; |
| bool RetainExpansion = false; |
| std::optional<unsigned> NumExpansions; |
| if (getDerived().TryExpandParameterPacks(E->getOperatorLoc(), E->getPackLoc(), |
| Unexpanded, |
| ShouldExpand, RetainExpansion, |
| NumExpansions)) |
| return ExprError(); |
| |
| // If we need to expand the pack, build a template argument from it and |
| // expand that. |
| if (ShouldExpand) { |
| auto *Pack = E->getPack(); |
| if (auto *TTPD = dyn_cast<TemplateTypeParmDecl>(Pack)) { |
| ArgStorage = getSema().Context.getPackExpansionType( |
| getSema().Context.getTypeDeclType(TTPD), std::nullopt); |
| } else if (auto *TTPD = dyn_cast<TemplateTemplateParmDecl>(Pack)) { |
| ArgStorage = TemplateArgument(TemplateName(TTPD), std::nullopt); |
| } else { |
| auto *VD = cast<ValueDecl>(Pack); |
| ExprResult DRE = getSema().BuildDeclRefExpr( |
| VD, VD->getType().getNonLValueExprType(getSema().Context), |
| VD->getType()->isReferenceType() ? VK_LValue : VK_PRValue, |
| E->getPackLoc()); |
| if (DRE.isInvalid()) |
| return ExprError(); |
| ArgStorage = new (getSema().Context) |
| PackExpansionExpr(getSema().Context.DependentTy, DRE.get(), |
| E->getPackLoc(), std::nullopt); |
| } |
| PackArgs = ArgStorage; |
| } |
| } |
| |
| // If we're not expanding the pack, just transform the decl. |
| if (!PackArgs.size()) { |
| auto *Pack = cast_or_null<NamedDecl>( |
| getDerived().TransformDecl(E->getPackLoc(), E->getPack())); |
| if (!Pack) |
| return ExprError(); |
| return getDerived().RebuildSizeOfPackExpr( |
| E->getOperatorLoc(), Pack, E->getPackLoc(), E->getRParenLoc(), |
| std::nullopt, {}); |
| } |
| |
| // Try to compute the result without performing a partial substitution. |
| std::optional<unsigned> Result = 0; |
| for (const TemplateArgument &Arg : PackArgs) { |
| if (!Arg.isPackExpansion()) { |
| Result = *Result + 1; |
| continue; |
| } |
| |
| TemplateArgumentLoc ArgLoc; |
| InventTemplateArgumentLoc(Arg, ArgLoc); |
| |
| // Find the pattern of the pack expansion. |
| SourceLocation Ellipsis; |
| std::optional<unsigned> OrigNumExpansions; |
| TemplateArgumentLoc Pattern = |
| getSema().getTemplateArgumentPackExpansionPattern(ArgLoc, Ellipsis, |
| OrigNumExpansions); |
| |
| // Substitute under the pack expansion. Do not expand the pack (yet). |
| TemplateArgumentLoc OutPattern; |
| Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), -1); |
| if (getDerived().TransformTemplateArgument(Pattern, OutPattern, |
| /*Uneval*/ true)) |
| return true; |
| |
| // See if we can determine the number of arguments from the result. |
| std::optional<unsigned> NumExpansions = |
| getSema().getFullyPackExpandedSize(OutPattern.getArgument()); |
| if (!NumExpansions) { |
| // No: we must be in an alias template expansion, and we're going to need |
| // to actually expand the packs. |
| Result = std::nullopt; |
| break; |
| } |
| |
| Result = *Result + *NumExpansions; |
| } |
| |
| // Common case: we could determine the number of expansions without |
| // substituting. |
| if (Result) |
| return getDerived().RebuildSizeOfPackExpr(E->getOperatorLoc(), E->getPack(), |
| E->getPackLoc(), |
| E->getRParenLoc(), *Result, {}); |
| |
| TemplateArgumentListInfo TransformedPackArgs(E->getPackLoc(), |
| E->getPackLoc()); |
| { |
| TemporaryBase Rebase(*this, E->getPackLoc(), getBaseEntity()); |
| typedef TemplateArgumentLocInventIterator< |
| Derived, const TemplateArgument*> PackLocIterator; |
| if (TransformTemplateArguments(PackLocIterator(*this, PackArgs.begin()), |
| PackLocIterator(*this, PackArgs.end()), |
| TransformedPackArgs, /*Uneval*/true)) |
| return ExprError(); |
| } |
| |
| // Check whether we managed to fully-expand the pack. |
| // FIXME: Is it possible for us to do so and not hit the early exit path? |
| SmallVector<TemplateArgument, 8> Args; |
| bool PartialSubstitution = false; |
| for (auto &Loc : TransformedPackArgs.arguments()) { |
| Args.push_back(Loc.getArgument()); |
| if (Loc.getArgument().isPackExpansion()) |
| PartialSubstitution = true; |
| } |
| |
| if (PartialSubstitution) |
| return getDerived().RebuildSizeOfPackExpr( |
| E->getOperatorLoc(), E->getPack(), E->getPackLoc(), E->getRParenLoc(), |
| std::nullopt, Args); |
| |
| return getDerived().RebuildSizeOfPackExpr(E->getOperatorLoc(), E->getPack(), |
| E->getPackLoc(), E->getRParenLoc(), |
| Args.size(), {}); |
| } |
| |
| template <typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformPackIndexingExpr(PackIndexingExpr *E) { |
| if (!E->isValueDependent()) |
| return E; |
| |
| // Transform the index |
| ExprResult IndexExpr; |
| { |
| EnterExpressionEvaluationContext ConstantContext( |
| SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated); |
| IndexExpr = getDerived().TransformExpr(E->getIndexExpr()); |
| if (IndexExpr.isInvalid()) |
| return ExprError(); |
| } |
| |
| SmallVector<Expr *, 5> ExpandedExprs; |
| bool FullySubstituted = true; |
| if (!E->expandsToEmptyPack() && E->getExpressions().empty()) { |
| Expr *Pattern = E->getPackIdExpression(); |
| SmallVector<UnexpandedParameterPack, 2> Unexpanded; |
| getSema().collectUnexpandedParameterPacks(E->getPackIdExpression(), |
| Unexpanded); |
| assert(!Unexpanded.empty() && "Pack expansion without parameter packs?"); |
| |
| // Determine whether the set of unexpanded parameter packs can and should |
| // be expanded. |
| bool ShouldExpand = true; |
| bool RetainExpansion = false; |
| std::optional<unsigned> OrigNumExpansions; |
| std::optional<unsigned> NumExpansions = OrigNumExpansions; |
| if (getDerived().TryExpandParameterPacks( |
| E->getEllipsisLoc(), Pattern->getSourceRange(), Unexpanded, |
| ShouldExpand, RetainExpansion, NumExpansions)) |
| return true; |
| if (!ShouldExpand) { |
| Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), -1); |
| ExprResult Pack = getDerived().TransformExpr(Pattern); |
| if (Pack.isInvalid()) |
| return ExprError(); |
| return getDerived().RebuildPackIndexingExpr( |
| E->getEllipsisLoc(), E->getRSquareLoc(), Pack.get(), IndexExpr.get(), |
| {}, /*FullySubstituted=*/false); |
| } |
| for (unsigned I = 0; I != *NumExpansions; ++I) { |
| Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), I); |
| ExprResult Out = getDerived().TransformExpr(Pattern); |
| if (Out.isInvalid()) |
| return true; |
| if (Out.get()->containsUnexpandedParameterPack()) { |
| Out = getDerived().RebuildPackExpansion(Out.get(), E->getEllipsisLoc(), |
| OrigNumExpansions); |
| if (Out.isInvalid()) |
| return true; |
| FullySubstituted = false; |
| } |
| ExpandedExprs.push_back(Out.get()); |
| } |
| // If we're supposed to retain a pack expansion, do so by temporarily |
| // forgetting the partially-substituted parameter pack. |
| if (RetainExpansion) { |
| ForgetPartiallySubstitutedPackRAII Forget(getDerived()); |
| |
| ExprResult Out = getDerived().TransformExpr(Pattern); |
| if (Out.isInvalid()) |
| return true; |
| |
| Out = getDerived().RebuildPackExpansion(Out.get(), E->getEllipsisLoc(), |
| OrigNumExpansions); |
| if (Out.isInvalid()) |
| return true; |
| FullySubstituted = false; |
| ExpandedExprs.push_back(Out.get()); |
| } |
| } else if (!E->expandsToEmptyPack()) { |
| if (getDerived().TransformExprs(E->getExpressions().data(), |
| E->getExpressions().size(), false, |
| ExpandedExprs)) |
| return ExprError(); |
| } |
| |
| return getDerived().RebuildPackIndexingExpr( |
| E->getEllipsisLoc(), E->getRSquareLoc(), E->getPackIdExpression(), |
| IndexExpr.get(), ExpandedExprs, FullySubstituted); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformSubstNonTypeTemplateParmPackExpr( |
| SubstNonTypeTemplateParmPackExpr *E) { |
| // Default behavior is to do nothing with this transformation. |
| return E; |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformSubstNonTypeTemplateParmExpr( |
| SubstNonTypeTemplateParmExpr *E) { |
| // Default behavior is to do nothing with this transformation. |
| return E; |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformFunctionParmPackExpr(FunctionParmPackExpr *E) { |
| // Default behavior is to do nothing with this transformation. |
| return E; |
| } |
| |
| template <typename Derived> |
| ExprResult TreeTransform<Derived>::TransformResolvedUnexpandedPackExpr( |
| ResolvedUnexpandedPackExpr *E) { |
| bool ArgumentChanged = false; |
| SmallVector<Expr *, 12> NewExprs; |
| if (TransformExprs(E->getExprs().begin(), E->getNumExprs(), |
| /*IsCall=*/false, NewExprs, &ArgumentChanged)) |
| return ExprError(); |
| |
| if (!AlwaysRebuild() && !ArgumentChanged) |
| return E; |
| |
| // NOTE: The type is just a superficial PackExpansionType |
| // that needs no substitution. |
| return RebuildResolvedUnexpandedPackExpr(E->getBeginLoc(), E->getType(), |
| NewExprs); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformMaterializeTemporaryExpr( |
| MaterializeTemporaryExpr *E) { |
| return getDerived().TransformExpr(E->getSubExpr()); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformCXXFoldExpr(CXXFoldExpr *E) { |
| UnresolvedLookupExpr *Callee = nullptr; |
| if (Expr *OldCallee = E->getCallee()) { |
| ExprResult CalleeResult = getDerived().TransformExpr(OldCallee); |
| if (CalleeResult.isInvalid()) |
| return ExprError(); |
| Callee = cast<UnresolvedLookupExpr>(CalleeResult.get()); |
| } |
| |
| Expr *Pattern = E->getPattern(); |
| |
| SmallVector<UnexpandedParameterPack, 2> Unexpanded; |
| getSema().collectUnexpandedParameterPacks(Pattern, Unexpanded); |
| assert(!Unexpanded.empty() && "Pack expansion without parameter packs?"); |
| |
| // Determine whether the set of unexpanded parameter packs can and should |
| // be expanded. |
| bool Expand = true; |
| bool RetainExpansion = false; |
| std::optional<unsigned> OrigNumExpansions = E->getNumExpansions(), |
| NumExpansions = OrigNumExpansions; |
| if (getDerived().TryExpandParameterPacks(E->getEllipsisLoc(), |
| Pattern->getSourceRange(), |
| Unexpanded, |
| Expand, RetainExpansion, |
| NumExpansions)) |
| return true; |
| |
| if (!Expand) { |
| // Do not expand any packs here, just transform and rebuild a fold |
| // expression. |
| Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), -1); |
| |
| ExprResult LHS = |
| E->getLHS() ? getDerived().TransformExpr(E->getLHS()) : ExprResult(); |
| if (LHS.isInvalid()) |
| return true; |
| |
| ExprResult RHS = |
| E->getRHS() ? getDerived().TransformExpr(E->getRHS()) : ExprResult(); |
| if (RHS.isInvalid()) |
| return true; |
| |
| if (!getDerived().AlwaysRebuild() && |
| LHS.get() == E->getLHS() && RHS.get() == E->getRHS()) |
| return E; |
| |
| return getDerived().RebuildCXXFoldExpr( |
| Callee, E->getBeginLoc(), LHS.get(), E->getOperator(), |
| E->getEllipsisLoc(), RHS.get(), E->getEndLoc(), NumExpansions); |
| } |
| |
| // Formally a fold expression expands to nested parenthesized expressions. |
| // Enforce this limit to avoid creating trees so deep we can't safely traverse |
| // them. |
| if (NumExpansions && SemaRef.getLangOpts().BracketDepth < NumExpansions) { |
| SemaRef.Diag(E->getEllipsisLoc(), |
| clang::diag::err_fold_expression_limit_exceeded) |
| << *NumExpansions << SemaRef.getLangOpts().BracketDepth |
| << E->getSourceRange(); |
| SemaRef.Diag(E->getEllipsisLoc(), diag::note_bracket_depth); |
| return ExprError(); |
| } |
| |
| // The transform has determined that we should perform an elementwise |
| // expansion of the pattern. Do so. |
| ExprResult Result = getDerived().TransformExpr(E->getInit()); |
| if (Result.isInvalid()) |
| return true; |
| bool LeftFold = E->isLeftFold(); |
| |
| // If we're retaining an expansion for a right fold, it is the innermost |
| // component and takes the init (if any). |
| if (!LeftFold && RetainExpansion) { |
| ForgetPartiallySubstitutedPackRAII Forget(getDerived()); |
| |
| ExprResult Out = getDerived().TransformExpr(Pattern); |
| if (Out.isInvalid()) |
| return true; |
| |
| Result = getDerived().RebuildCXXFoldExpr( |
| Callee, E->getBeginLoc(), Out.get(), E->getOperator(), |
| E->getEllipsisLoc(), Result.get(), E->getEndLoc(), OrigNumExpansions); |
| if (Result.isInvalid()) |
| return true; |
| } |
| |
| for (unsigned I = 0; I != *NumExpansions; ++I) { |
| Sema::ArgumentPackSubstitutionIndexRAII SubstIndex( |
| getSema(), LeftFold ? I : *NumExpansions - I - 1); |
| ExprResult Out = getDerived().TransformExpr(Pattern); |
| if (Out.isInvalid()) |
| return true; |
| |
| if (Out.get()->containsUnexpandedParameterPack()) { |
| // We still have a pack; retain a pack expansion for this slice. |
| Result = getDerived().RebuildCXXFoldExpr( |
| Callee, E->getBeginLoc(), LeftFold ? Result.get() : Out.get(), |
| E->getOperator(), E->getEllipsisLoc(), |
| LeftFold ? Out.get() : Result.get(), E->getEndLoc(), |
| OrigNumExpansions); |
| } else if (Result.isUsable()) { |
| // We've got down to a single element; build a binary operator. |
| Expr *LHS = LeftFold ? Result.get() : Out.get(); |
| Expr *RHS = LeftFold ? Out.get() : Result.get(); |
| if (Callee) { |
| UnresolvedSet<16> Functions; |
| Functions.append(Callee->decls_begin(), Callee->decls_end()); |
| Result = getDerived().RebuildCXXOperatorCallExpr( |
| BinaryOperator::getOverloadedOperator(E->getOperator()), |
| E->getEllipsisLoc(), Callee->getBeginLoc(), Callee->requiresADL(), |
| Functions, LHS, RHS); |
| } else { |
| Result = getDerived().RebuildBinaryOperator(E->getEllipsisLoc(), |
| E->getOperator(), LHS, RHS); |
| } |
| } else |
| Result = Out; |
| |
| if (Result.isInvalid()) |
| return true; |
| } |
| |
| // If we're retaining an expansion for a left fold, it is the outermost |
| // component and takes the complete expansion so far as its init (if any). |
| if (LeftFold && RetainExpansion) { |
| ForgetPartiallySubstitutedPackRAII Forget(getDerived()); |
| |
| ExprResult Out = getDerived().TransformExpr(Pattern); |
| if (Out.isInvalid()) |
| return true; |
| |
| Result = getDerived().RebuildCXXFoldExpr( |
| Callee, E->getBeginLoc(), Result.get(), E->getOperator(), |
| E->getEllipsisLoc(), Out.get(), E->getEndLoc(), OrigNumExpansions); |
| if (Result.isInvalid()) |
| return true; |
| } |
| |
| if (ParenExpr *PE = dyn_cast_or_null<ParenExpr>(Result.get())) |
| PE->setIsProducedByFoldExpansion(); |
| |
| // If we had no init and an empty pack, and we're not retaining an expansion, |
| // then produce a fallback value or error. |
| if (Result.isUnset()) |
| return getDerived().RebuildEmptyCXXFoldExpr(E->getEllipsisLoc(), |
| E->getOperator()); |
| return Result; |
| } |
| |
| template <typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformCXXParenListInitExpr(CXXParenListInitExpr *E) { |
| SmallVector<Expr *, 4> TransformedInits; |
| ArrayRef<Expr *> InitExprs = E->getInitExprs(); |
| if (TransformExprs(InitExprs.data(), InitExprs.size(), true, |
| TransformedInits)) |
| return ExprError(); |
| |
| return getDerived().RebuildParenListExpr(E->getBeginLoc(), TransformedInits, |
| E->getEndLoc()); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformCXXStdInitializerListExpr( |
| CXXStdInitializerListExpr *E) { |
| return getDerived().TransformExpr(E->getSubExpr()); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformObjCStringLiteral(ObjCStringLiteral *E) { |
| return SemaRef.MaybeBindToTemporary(E); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformObjCBoolLiteralExpr(ObjCBoolLiteralExpr *E) { |
| return E; |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformObjCBoxedExpr(ObjCBoxedExpr *E) { |
| ExprResult SubExpr = getDerived().TransformExpr(E->getSubExpr()); |
| if (SubExpr.isInvalid()) |
| return ExprError(); |
| |
| if (!getDerived().AlwaysRebuild() && |
| SubExpr.get() == E->getSubExpr()) |
| return E; |
| |
| return getDerived().RebuildObjCBoxedExpr(E->getSourceRange(), SubExpr.get()); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformObjCArrayLiteral(ObjCArrayLiteral *E) { |
| // Transform each of the elements. |
| SmallVector<Expr *, 8> Elements; |
| bool ArgChanged = false; |
| if (getDerived().TransformExprs(E->getElements(), E->getNumElements(), |
| /*IsCall=*/false, Elements, &ArgChanged)) |
| return ExprError(); |
| |
| if (!getDerived().AlwaysRebuild() && !ArgChanged) |
| return SemaRef.MaybeBindToTemporary(E); |
| |
| return getDerived().RebuildObjCArrayLiteral(E->getSourceRange(), |
| Elements.data(), |
| Elements.size()); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformObjCDictionaryLiteral( |
| ObjCDictionaryLiteral *E) { |
| // Transform each of the elements. |
| SmallVector<ObjCDictionaryElement, 8> Elements; |
| bool ArgChanged = false; |
| for (unsigned I = 0, N = E->getNumElements(); I != N; ++I) { |
| ObjCDictionaryElement OrigElement = E->getKeyValueElement(I); |
| |
| if (OrigElement.isPackExpansion()) { |
| // This key/value element is a pack expansion. |
| SmallVector<UnexpandedParameterPack, 2> Unexpanded; |
| getSema().collectUnexpandedParameterPacks(OrigElement.Key, Unexpanded); |
| getSema().collectUnexpandedParameterPacks(OrigElement.Value, Unexpanded); |
| assert(!Unexpanded.empty() && "Pack expansion without parameter packs?"); |
| |
| // Determine whether the set of unexpanded parameter packs can |
| // and should be expanded. |
| bool Expand = true; |
| bool RetainExpansion = false; |
| std::optional<unsigned> OrigNumExpansions = OrigElement.NumExpansions; |
| std::optional<unsigned> NumExpansions = OrigNumExpansions; |
| SourceRange PatternRange(OrigElement.Key->getBeginLoc(), |
| OrigElement.Value->getEndLoc()); |
| if (getDerived().TryExpandParameterPacks(OrigElement.EllipsisLoc, |
| PatternRange, Unexpanded, Expand, |
| RetainExpansion, NumExpansions)) |
| return ExprError(); |
| |
| if (!Expand) { |
| // The transform has determined that we should perform a simple |
| // transformation on the pack expansion, producing another pack |
| // expansion. |
| Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), -1); |
| ExprResult Key = getDerived().TransformExpr(OrigElement.Key); |
| if (Key.isInvalid()) |
| return ExprError(); |
| |
| if (Key.get() != OrigElement.Key) |
| ArgChanged = true; |
| |
| ExprResult Value = getDerived().TransformExpr(OrigElement.Value); |
| if (Value.isInvalid()) |
| return ExprError(); |
| |
| if (Value.get() != OrigElement.Value) |
| ArgChanged = true; |
| |
| ObjCDictionaryElement Expansion = { |
| Key.get(), Value.get(), OrigElement.EllipsisLoc, NumExpansions |
| }; |
| Elements.push_back(Expansion); |
| continue; |
| } |
| |
| // Record right away that the argument was changed. This needs |
| // to happen even if the array expands to nothing. |
| ArgChanged = true; |
| |
| // The transform has determined that we should perform an elementwise |
| // expansion of the pattern. Do so. |
| for (unsigned I = 0; I != *NumExpansions; ++I) { |
| Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), I); |
| ExprResult Key = getDerived().TransformExpr(OrigElement.Key); |
| if (Key.isInvalid()) |
| return ExprError(); |
| |
| ExprResult Value = getDerived().TransformExpr(OrigElement.Value); |
| if (Value.isInvalid()) |
| return ExprError(); |
| |
| ObjCDictionaryElement Element = { |
| Key.get(), Value.get(), SourceLocation(), NumExpansions |
| }; |
| |
| // If any unexpanded parameter packs remain, we still have a |
| // pack expansion. |
| // FIXME: Can this really happen? |
| if (Key.get()->containsUnexpandedParameterPack() || |
| Value.get()->containsUnexpandedParameterPack()) |
| Element.EllipsisLoc = OrigElement.EllipsisLoc; |
| |
| Elements.push_back(Element); |
| } |
| |
| // FIXME: Retain a pack expansion if RetainExpansion is true. |
| |
| // We've finished with this pack expansion. |
| continue; |
| } |
| |
| // Transform and check key. |
| ExprResult Key = getDerived().TransformExpr(OrigElement.Key); |
| if (Key.isInvalid()) |
| return ExprError(); |
| |
| if (Key.get() != OrigElement.Key) |
| ArgChanged = true; |
| |
| // Transform and check value. |
| ExprResult Value |
| = getDerived().TransformExpr(OrigElement.Value); |
| if (Value.isInvalid()) |
| return ExprError(); |
| |
| if (Value.get() != OrigElement.Value) |
| ArgChanged = true; |
| |
| ObjCDictionaryElement Element = {Key.get(), Value.get(), SourceLocation(), |
| std::nullopt}; |
| Elements.push_back(Element); |
| } |
| |
| if (!getDerived().AlwaysRebuild() && !ArgChanged) |
| return SemaRef.MaybeBindToTemporary(E); |
| |
| return getDerived().RebuildObjCDictionaryLiteral(E->getSourceRange(), |
| Elements); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformObjCEncodeExpr(ObjCEncodeExpr *E) { |
| TypeSourceInfo *EncodedTypeInfo |
| = getDerived().TransformType(E->getEncodedTypeSourceInfo()); |
| if (!EncodedTypeInfo) |
| return ExprError(); |
| |
| if (!getDerived().AlwaysRebuild() && |
| EncodedTypeInfo == E->getEncodedTypeSourceInfo()) |
| return E; |
| |
| return getDerived().RebuildObjCEncodeExpr(E->getAtLoc(), |
| EncodedTypeInfo, |
| E->getRParenLoc()); |
| } |
| |
| template<typename Derived> |
| ExprResult TreeTransform<Derived>:: |
| TransformObjCIndirectCopyRestoreExpr(ObjCIndirectCopyRestoreExpr *E) { |
| // This is a kind of implicit conversion, and it needs to get dropped |
| // and recomputed for the same general reasons that ImplicitCastExprs |
| // do, as well a more specific one: this expression is only valid when |
| // it appears *immediately* as an argument expression. |
| return getDerived().TransformExpr(E->getSubExpr()); |
| } |
| |
| template<typename Derived> |
| ExprResult TreeTransform<Derived>:: |
| TransformObjCBridgedCastExpr(ObjCBridgedCastExpr *E) { |
| TypeSourceInfo *TSInfo |
| = getDerived().TransformType(E->getTypeInfoAsWritten()); |
| if (!TSInfo) |
| return ExprError(); |
| |
| ExprResult Result = getDerived().TransformExpr(E->getSubExpr()); |
| if (Result.isInvalid()) |
| return ExprError(); |
| |
| if (!getDerived().AlwaysRebuild() && |
| TSInfo == E->getTypeInfoAsWritten() && |
| Result.get() == E->getSubExpr()) |
| return E; |
| |
| return SemaRef.ObjC().BuildObjCBridgedCast( |
| E->getLParenLoc(), E->getBridgeKind(), E->getBridgeKeywordLoc(), TSInfo, |
| Result.get()); |
| } |
| |
| template <typename Derived> |
| ExprResult TreeTransform<Derived>::TransformObjCAvailabilityCheckExpr( |
| ObjCAvailabilityCheckExpr *E) { |
| return E; |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformObjCMessageExpr(ObjCMessageExpr *E) { |
| // Transform arguments. |
| bool ArgChanged = false; |
| SmallVector<Expr*, 8> Args; |
| Args.reserve(E->getNumArgs()); |
| if (getDerived().TransformExprs(E->getArgs(), E->getNumArgs(), false, Args, |
| &ArgChanged)) |
| return ExprError(); |
| |
| if (E->getReceiverKind() == ObjCMessageExpr::Class) { |
| // Class message: transform the receiver type. |
| TypeSourceInfo *ReceiverTypeInfo |
| = getDerived().TransformType(E->getClassReceiverTypeInfo()); |
| if (!ReceiverTypeInfo) |
| return ExprError(); |
| |
| // If nothing changed, just retain the existing message send. |
| if (!getDerived().AlwaysRebuild() && |
| ReceiverTypeInfo == E->getClassReceiverTypeInfo() && !ArgChanged) |
| return SemaRef.MaybeBindToTemporary(E); |
| |
| // Build a new class message send. |
| SmallVector<SourceLocation, 16> SelLocs; |
| E->getSelectorLocs(SelLocs); |
| return getDerived().RebuildObjCMessageExpr(ReceiverTypeInfo, |
| E->getSelector(), |
| SelLocs, |
| E->getMethodDecl(), |
| E->getLeftLoc(), |
| Args, |
| E->getRightLoc()); |
| } |
| else if (E->getReceiverKind() == ObjCMessageExpr::SuperClass || |
| E->getReceiverKind() == ObjCMessageExpr::SuperInstance) { |
| if (!E->getMethodDecl()) |
| return ExprError(); |
| |
| // Build a new class message send to 'super'. |
| SmallVector<SourceLocation, 16> SelLocs; |
| E->getSelectorLocs(SelLocs); |
| return getDerived().RebuildObjCMessageExpr(E->getSuperLoc(), |
| E->getSelector(), |
| SelLocs, |
| E->getReceiverType(), |
| E->getMethodDecl(), |
| E->getLeftLoc(), |
| Args, |
| E->getRightLoc()); |
| } |
| |
| // Instance message: transform the receiver |
| assert(E->getReceiverKind() == ObjCMessageExpr::Instance && |
| "Only class and instance messages may be instantiated"); |
| ExprResult Receiver |
| = getDerived().TransformExpr(E->getInstanceReceiver()); |
| if (Receiver.isInvalid()) |
| return ExprError(); |
| |
| // If nothing changed, just retain the existing message send. |
| if (!getDerived().AlwaysRebuild() && |
| Receiver.get() == E->getInstanceReceiver() && !ArgChanged) |
| return SemaRef.MaybeBindToTemporary(E); |
| |
| // Build a new instance message send. |
| SmallVector<SourceLocation, 16> SelLocs; |
| E->getSelectorLocs(SelLocs); |
| return getDerived().RebuildObjCMessageExpr(Receiver.get(), |
| E->getSelector(), |
| SelLocs, |
| E->getMethodDecl(), |
| E->getLeftLoc(), |
| Args, |
| E->getRightLoc()); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformObjCSelectorExpr(ObjCSelectorExpr *E) { |
| return E; |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformObjCProtocolExpr(ObjCProtocolExpr *E) { |
| return E; |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformObjCIvarRefExpr(ObjCIvarRefExpr *E) { |
| // Transform the base expression. |
| ExprResult Base = getDerived().TransformExpr(E->getBase()); |
| if (Base.isInvalid()) |
| return ExprError(); |
| |
| // We don't need to transform the ivar; it will never change. |
| |
| // If nothing changed, just retain the existing expression. |
| if (!getDerived().AlwaysRebuild() && |
| Base.get() == E->getBase()) |
| return E; |
| |
| return getDerived().RebuildObjCIvarRefExpr(Base.get(), E->getDecl(), |
| E->getLocation(), |
| E->isArrow(), E->isFreeIvar()); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformObjCPropertyRefExpr(ObjCPropertyRefExpr *E) { |
| // 'super' and types never change. Property never changes. Just |
| // retain the existing expression. |
| if (!E->isObjectReceiver()) |
| return E; |
| |
| // Transform the base expression. |
| ExprResult Base = getDerived().TransformExpr(E->getBase()); |
| if (Base.isInvalid()) |
| return ExprError(); |
| |
| // We don't need to transform the property; it will never change. |
| |
| // If nothing changed, just retain the existing expression. |
| if (!getDerived().AlwaysRebuild() && |
| Base.get() == E->getBase()) |
| return E; |
| |
| if (E->isExplicitProperty()) |
| return getDerived().RebuildObjCPropertyRefExpr(Base.get(), |
| E->getExplicitProperty(), |
| E->getLocation()); |
| |
| return getDerived().RebuildObjCPropertyRefExpr(Base.get(), |
| SemaRef.Context.PseudoObjectTy, |
| E->getImplicitPropertyGetter(), |
| E->getImplicitPropertySetter(), |
| E->getLocation()); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformObjCSubscriptRefExpr(ObjCSubscriptRefExpr *E) { |
| // Transform the base expression. |
| ExprResult Base = getDerived().TransformExpr(E->getBaseExpr()); |
| if (Base.isInvalid()) |
| return ExprError(); |
| |
| // Transform the key expression. |
| ExprResult Key = getDerived().TransformExpr(E->getKeyExpr()); |
| if (Key.isInvalid()) |
| return ExprError(); |
| |
| // If nothing changed, just retain the existing expression. |
| if (!getDerived().AlwaysRebuild() && |
| Key.get() == E->getKeyExpr() && Base.get() == E->getBaseExpr()) |
| return E; |
| |
| return getDerived().RebuildObjCSubscriptRefExpr(E->getRBracket(), |
| Base.get(), Key.get(), |
| E->getAtIndexMethodDecl(), |
| E->setAtIndexMethodDecl()); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformObjCIsaExpr(ObjCIsaExpr *E) { |
| // Transform the base expression. |
| ExprResult Base = getDerived().TransformExpr(E->getBase()); |
| if (Base.isInvalid()) |
| return ExprError(); |
| |
| // If nothing changed, just retain the existing expression. |
| if (!getDerived().AlwaysRebuild() && |
| Base.get() == E->getBase()) |
| return E; |
| |
| return getDerived().RebuildObjCIsaExpr(Base.get(), E->getIsaMemberLoc(), |
| E->getOpLoc(), |
| E->isArrow()); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformShuffleVectorExpr(ShuffleVectorExpr *E) { |
| bool ArgumentChanged = false; |
| SmallVector<Expr*, 8> SubExprs; |
| SubExprs.reserve(E->getNumSubExprs()); |
| if (getDerived().TransformExprs(E->getSubExprs(), E->getNumSubExprs(), false, |
| SubExprs, &ArgumentChanged)) |
| return ExprError(); |
| |
| if (!getDerived().AlwaysRebuild() && |
| !ArgumentChanged) |
| return E; |
| |
| return getDerived().RebuildShuffleVectorExpr(E->getBuiltinLoc(), |
| SubExprs, |
| E->getRParenLoc()); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformConvertVectorExpr(ConvertVectorExpr *E) { |
| ExprResult SrcExpr = getDerived().TransformExpr(E->getSrcExpr()); |
| if (SrcExpr.isInvalid()) |
| return ExprError(); |
| |
| TypeSourceInfo *Type = getDerived().TransformType(E->getTypeSourceInfo()); |
| if (!Type) |
| return ExprError(); |
| |
| if (!getDerived().AlwaysRebuild() && |
| Type == E->getTypeSourceInfo() && |
| SrcExpr.get() == E->getSrcExpr()) |
| return E; |
| |
| return getDerived().RebuildConvertVectorExpr(E->getBuiltinLoc(), |
| SrcExpr.get(), Type, |
| E->getRParenLoc()); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformBlockExpr(BlockExpr *E) { |
| BlockDecl *oldBlock = E->getBlockDecl(); |
| |
| SemaRef.ActOnBlockStart(E->getCaretLocation(), /*Scope=*/nullptr); |
| BlockScopeInfo *blockScope = SemaRef.getCurBlock(); |
| |
| blockScope->TheDecl->setIsVariadic(oldBlock->isVariadic()); |
| blockScope->TheDecl->setBlockMissingReturnType( |
| oldBlock->blockMissingReturnType()); |
| |
| SmallVector<ParmVarDecl*, 4> params; |
| SmallVector<QualType, 4> paramTypes; |
| |
| const FunctionProtoType *exprFunctionType = E->getFunctionType(); |
| |
| // Parameter substitution. |
| Sema::ExtParameterInfoBuilder extParamInfos; |
| if (getDerived().TransformFunctionTypeParams( |
| E->getCaretLocation(), oldBlock->parameters(), nullptr, |
| exprFunctionType->getExtParameterInfosOrNull(), paramTypes, ¶ms, |
| extParamInfos)) { |
| getSema().ActOnBlockError(E->getCaretLocation(), /*Scope=*/nullptr); |
| return ExprError(); |
| } |
| |
| QualType exprResultType = |
| getDerived().TransformType(exprFunctionType->getReturnType()); |
| |
| auto epi = exprFunctionType->getExtProtoInfo(); |
| epi.ExtParameterInfos = extParamInfos.getPointerOrNull(paramTypes.size()); |
| |
| QualType functionType = |
| getDerived().RebuildFunctionProtoType(exprResultType, paramTypes, epi); |
| blockScope->FunctionType = functionType; |
| |
| // Set the parameters on the block decl. |
| if (!params.empty()) |
| blockScope->TheDecl->setParams(params); |
| |
| if (!oldBlock->blockMissingReturnType()) { |
| blockScope->HasImplicitReturnType = false; |
| blockScope->ReturnType = exprResultType; |
| } |
| |
| // Transform the body |
| StmtResult body = getDerived().TransformStmt(E->getBody()); |
| if (body.isInvalid()) { |
| getSema().ActOnBlockError(E->getCaretLocation(), /*Scope=*/nullptr); |
| return ExprError(); |
| } |
| |
| #ifndef NDEBUG |
| // In builds with assertions, make sure that we captured everything we |
| // captured before. |
| if (!SemaRef.getDiagnostics().hasErrorOccurred()) { |
| for (const auto &I : oldBlock->captures()) { |
| VarDecl *oldCapture = I.getVariable(); |
| |
| // Ignore parameter packs. |
| if (oldCapture->isParameterPack()) |
| continue; |
| |
| VarDecl *newCapture = |
| cast<VarDecl>(getDerived().TransformDecl(E->getCaretLocation(), |
| oldCapture)); |
| assert(blockScope->CaptureMap.count(newCapture)); |
| } |
| |
| // The this pointer may not be captured by the instantiated block, even when |
| // it's captured by the original block, if the expression causing the |
| // capture is in the discarded branch of a constexpr if statement. |
| assert((!blockScope->isCXXThisCaptured() || oldBlock->capturesCXXThis()) && |
| "this pointer isn't captured in the old block"); |
| } |
| #endif |
| |
| return SemaRef.ActOnBlockStmtExpr(E->getCaretLocation(), body.get(), |
| /*Scope=*/nullptr); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformAsTypeExpr(AsTypeExpr *E) { |
| ExprResult SrcExpr = getDerived().TransformExpr(E->getSrcExpr()); |
| if (SrcExpr.isInvalid()) |
| return ExprError(); |
| |
| QualType Type = getDerived().TransformType(E->getType()); |
| |
| return SemaRef.BuildAsTypeExpr(SrcExpr.get(), Type, E->getBuiltinLoc(), |
| E->getRParenLoc()); |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::TransformAtomicExpr(AtomicExpr *E) { |
| bool ArgumentChanged = false; |
| SmallVector<Expr*, 8> SubExprs; |
| SubExprs.reserve(E->getNumSubExprs()); |
| if (getDerived().TransformExprs(E->getSubExprs(), E->getNumSubExprs(), false, |
| SubExprs, &ArgumentChanged)) |
| return ExprError(); |
| |
| if (!getDerived().AlwaysRebuild() && |
| !ArgumentChanged) |
| return E; |
| |
| return getDerived().RebuildAtomicExpr(E->getBuiltinLoc(), SubExprs, |
| E->getOp(), E->getRParenLoc()); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Type reconstruction |
| //===----------------------------------------------------------------------===// |
| |
| template<typename Derived> |
| QualType TreeTransform<Derived>::RebuildPointerType(QualType PointeeType, |
| SourceLocation Star) { |
| return SemaRef.BuildPointerType(PointeeType, Star, |
| getDerived().getBaseEntity()); |
| } |
| |
| template<typename Derived> |
| QualType TreeTransform<Derived>::RebuildBlockPointerType(QualType PointeeType, |
| SourceLocation Star) { |
| return SemaRef.BuildBlockPointerType(PointeeType, Star, |
| getDerived().getBaseEntity()); |
| } |
| |
| template<typename Derived> |
| QualType |
| TreeTransform<Derived>::RebuildReferenceType(QualType ReferentType, |
| bool WrittenAsLValue, |
| SourceLocation Sigil) { |
| return SemaRef.BuildReferenceType(ReferentType, WrittenAsLValue, |
| Sigil, getDerived().getBaseEntity()); |
| } |
| |
| template<typename Derived> |
| QualType |
| TreeTransform<Derived>::RebuildMemberPointerType(QualType PointeeType, |
| QualType ClassType, |
| SourceLocation Sigil) { |
| return SemaRef.BuildMemberPointerType(PointeeType, ClassType, Sigil, |
| getDerived().getBaseEntity()); |
| } |
| |
| template<typename Derived> |
| QualType TreeTransform<Derived>::RebuildObjCTypeParamType( |
| const ObjCTypeParamDecl *Decl, |
| SourceLocation ProtocolLAngleLoc, |
| ArrayRef<ObjCProtocolDecl *> Protocols, |
| ArrayRef<SourceLocation> ProtocolLocs, |
| SourceLocation ProtocolRAngleLoc) { |
| return SemaRef.ObjC().BuildObjCTypeParamType( |
| Decl, ProtocolLAngleLoc, Protocols, ProtocolLocs, ProtocolRAngleLoc, |
| /*FailOnError=*/true); |
| } |
| |
| template<typename Derived> |
| QualType TreeTransform<Derived>::RebuildObjCObjectType( |
| QualType BaseType, |
| SourceLocation Loc, |
| SourceLocation TypeArgsLAngleLoc, |
| ArrayRef<TypeSourceInfo *> TypeArgs, |
| SourceLocation TypeArgsRAngleLoc, |
| SourceLocation ProtocolLAngleLoc, |
| ArrayRef<ObjCProtocolDecl *> Protocols, |
| ArrayRef<SourceLocation> ProtocolLocs, |
| SourceLocation ProtocolRAngleLoc) { |
| return SemaRef.ObjC().BuildObjCObjectType( |
| BaseType, Loc, TypeArgsLAngleLoc, TypeArgs, TypeArgsRAngleLoc, |
| ProtocolLAngleLoc, Protocols, ProtocolLocs, ProtocolRAngleLoc, |
| /*FailOnError=*/true, |
| /*Rebuilding=*/true); |
| } |
| |
| template<typename Derived> |
| QualType TreeTransform<Derived>::RebuildObjCObjectPointerType( |
| QualType PointeeType, |
| SourceLocation Star) { |
| return SemaRef.Context.getObjCObjectPointerType(PointeeType); |
| } |
| |
| template <typename Derived> |
| QualType TreeTransform<Derived>::RebuildArrayType( |
| QualType ElementType, ArraySizeModifier SizeMod, const llvm::APInt *Size, |
| Expr *SizeExpr, unsigned IndexTypeQuals, SourceRange BracketsRange) { |
| if (SizeExpr || !Size) |
| return SemaRef.BuildArrayType(ElementType, SizeMod, SizeExpr, |
| IndexTypeQuals, BracketsRange, |
| getDerived().getBaseEntity()); |
| |
| QualType Types[] = { |
| SemaRef.Context.UnsignedCharTy, SemaRef.Context.UnsignedShortTy, |
| SemaRef.Context.UnsignedIntTy, SemaRef.Context.UnsignedLongTy, |
| SemaRef.Context.UnsignedLongLongTy, SemaRef.Context.UnsignedInt128Ty |
| }; |
| QualType SizeType; |
| for (const auto &T : Types) |
| if (Size->getBitWidth() == SemaRef.Context.getIntWidth(T)) { |
| SizeType = T; |
| break; |
| } |
| |
| // Note that we can return a VariableArrayType here in the case where |
| // the element type was a dependent VariableArrayType. |
| IntegerLiteral *ArraySize |
| = IntegerLiteral::Create(SemaRef.Context, *Size, SizeType, |
| /*FIXME*/BracketsRange.getBegin()); |
| return SemaRef.BuildArrayType(ElementType, SizeMod, ArraySize, |
| IndexTypeQuals, BracketsRange, |
| getDerived().getBaseEntity()); |
| } |
| |
| template <typename Derived> |
| QualType TreeTransform<Derived>::RebuildConstantArrayType( |
| QualType ElementType, ArraySizeModifier SizeMod, const llvm::APInt &Size, |
| Expr *SizeExpr, unsigned IndexTypeQuals, SourceRange BracketsRange) { |
| return getDerived().RebuildArrayType(ElementType, SizeMod, &Size, SizeExpr, |
| IndexTypeQuals, BracketsRange); |
| } |
| |
| template <typename Derived> |
| QualType TreeTransform<Derived>::RebuildIncompleteArrayType( |
| QualType ElementType, ArraySizeModifier SizeMod, unsigned IndexTypeQuals, |
| SourceRange BracketsRange) { |
| return getDerived().RebuildArrayType(ElementType, SizeMod, nullptr, nullptr, |
| IndexTypeQuals, BracketsRange); |
| } |
| |
| template <typename Derived> |
| QualType TreeTransform<Derived>::RebuildVariableArrayType( |
| QualType ElementType, ArraySizeModifier SizeMod, Expr *SizeExpr, |
| unsigned IndexTypeQuals, SourceRange BracketsRange) { |
| return getDerived().RebuildArrayType(ElementType, SizeMod, nullptr, |
| SizeExpr, |
| IndexTypeQuals, BracketsRange); |
| } |
| |
| template <typename Derived> |
| QualType TreeTransform<Derived>::RebuildDependentSizedArrayType( |
| QualType ElementType, ArraySizeModifier SizeMod, Expr *SizeExpr, |
| unsigned IndexTypeQuals, SourceRange BracketsRange) { |
| return getDerived().RebuildArrayType(ElementType, SizeMod, nullptr, |
| SizeExpr, |
| IndexTypeQuals, BracketsRange); |
| } |
| |
| template <typename Derived> |
| QualType TreeTransform<Derived>::RebuildDependentAddressSpaceType( |
| QualType PointeeType, Expr *AddrSpaceExpr, SourceLocation AttributeLoc) { |
| return SemaRef.BuildAddressSpaceAttr(PointeeType, AddrSpaceExpr, |
| AttributeLoc); |
| } |
| |
| template <typename Derived> |
| QualType TreeTransform<Derived>::RebuildVectorType(QualType ElementType, |
| unsigned NumElements, |
| VectorKind VecKind) { |
| // FIXME: semantic checking! |
| return SemaRef.Context.getVectorType(ElementType, NumElements, VecKind); |
| } |
| |
| template <typename Derived> |
| QualType TreeTransform<Derived>::RebuildDependentVectorType( |
| QualType ElementType, Expr *SizeExpr, SourceLocation AttributeLoc, |
| VectorKind VecKind) { |
| return SemaRef.BuildVectorType(ElementType, SizeExpr, AttributeLoc); |
| } |
| |
| template<typename Derived> |
| QualType TreeTransform<Derived>::RebuildExtVectorType(QualType ElementType, |
| unsigned NumElements, |
| SourceLocation AttributeLoc) { |
| llvm::APInt numElements(SemaRef.Context.getIntWidth(SemaRef.Context.IntTy), |
| NumElements, true); |
| IntegerLiteral *VectorSize |
| = IntegerLiteral::Create(SemaRef.Context, numElements, SemaRef.Context.IntTy, |
| AttributeLoc); |
| return SemaRef.BuildExtVectorType(ElementType, VectorSize, AttributeLoc); |
| } |
| |
| template<typename Derived> |
| QualType |
| TreeTransform<Derived>::RebuildDependentSizedExtVectorType(QualType ElementType, |
| Expr *SizeExpr, |
| SourceLocation AttributeLoc) { |
| return SemaRef.BuildExtVectorType(ElementType, SizeExpr, AttributeLoc); |
| } |
| |
| template <typename Derived> |
| QualType TreeTransform<Derived>::RebuildConstantMatrixType( |
| QualType ElementType, unsigned NumRows, unsigned NumColumns) { |
| return SemaRef.Context.getConstantMatrixType(ElementType, NumRows, |
| NumColumns); |
| } |
| |
| template <typename Derived> |
| QualType TreeTransform<Derived>::RebuildDependentSizedMatrixType( |
| QualType ElementType, Expr *RowExpr, Expr *ColumnExpr, |
| SourceLocation AttributeLoc) { |
| return SemaRef.BuildMatrixType(ElementType, RowExpr, ColumnExpr, |
| AttributeLoc); |
| } |
| |
| template <typename Derived> |
| QualType TreeTransform<Derived>::RebuildFunctionProtoType( |
| QualType T, MutableArrayRef<QualType> ParamTypes, |
| const FunctionProtoType::ExtProtoInfo &EPI) { |
| return SemaRef.BuildFunctionType(T, ParamTypes, |
| getDerived().getBaseLocation(), |
| getDerived().getBaseEntity(), |
| EPI); |
| } |
| |
| template<typename Derived> |
| QualType TreeTransform<Derived>::RebuildFunctionNoProtoType(QualType T) { |
| return SemaRef.Context.getFunctionNoProtoType(T); |
| } |
| |
| template<typename Derived> |
| QualType TreeTransform<Derived>::RebuildUnresolvedUsingType(SourceLocation Loc, |
| Decl *D) { |
| assert(D && "no decl found"); |
| if (D->isInvalidDecl()) return QualType(); |
| |
| // FIXME: Doesn't account for ObjCInterfaceDecl! |
| if (auto *UPD = dyn_cast<UsingPackDecl>(D)) { |
| // A valid resolved using typename pack expansion decl can have multiple |
| // UsingDecls, but they must each have exactly one type, and it must be |
| // the same type in every case. But we must have at least one expansion! |
| if (UPD->expansions().empty()) { |
| getSema().Diag(Loc, diag::err_using_pack_expansion_empty) |
| << UPD->isCXXClassMember() << UPD; |
| return QualType(); |
| } |
| |
| // We might still have some unresolved types. Try to pick a resolved type |
| // if we can. The final instantiation will check that the remaining |
| // unresolved types instantiate to the type we pick. |
| QualType FallbackT; |
| QualType T; |
| for (auto *E : UPD->expansions()) { |
| QualType ThisT = RebuildUnresolvedUsingType(Loc, E); |
| if (ThisT.isNull()) |
| continue; |
| else if (ThisT->getAs<UnresolvedUsingType>()) |
| FallbackT = ThisT; |
| else if (T.isNull()) |
| T = ThisT; |
| else |
| assert(getSema().Context.hasSameType(ThisT, T) && |
| "mismatched resolved types in using pack expansion"); |
| } |
| return T.isNull() ? FallbackT : T; |
| } else if (auto *Using = dyn_cast<UsingDecl>(D)) { |
| assert(Using->hasTypename() && |
| "UnresolvedUsingTypenameDecl transformed to non-typename using"); |
| |
| // A valid resolved using typename decl points to exactly one type decl. |
| assert(++Using->shadow_begin() == Using->shadow_end()); |
| |
| UsingShadowDecl *Shadow = *Using->shadow_begin(); |
| if (SemaRef.DiagnoseUseOfDecl(Shadow->getTargetDecl(), Loc)) |
| return QualType(); |
| return SemaRef.Context.getUsingType( |
| Shadow, SemaRef.Context.getTypeDeclType( |
| cast<TypeDecl>(Shadow->getTargetDecl()))); |
| } else { |
| assert(isa<UnresolvedUsingTypenameDecl>(D) && |
| "UnresolvedUsingTypenameDecl transformed to non-using decl"); |
| return SemaRef.Context.getTypeDeclType( |
| cast<UnresolvedUsingTypenameDecl>(D)); |
| } |
| } |
| |
| template <typename Derived> |
| QualType TreeTransform<Derived>::RebuildTypeOfExprType(Expr *E, SourceLocation, |
| TypeOfKind Kind) { |
| return SemaRef.BuildTypeofExprType(E, Kind); |
| } |
| |
| template<typename Derived> |
| QualType TreeTransform<Derived>::RebuildTypeOfType(QualType Underlying, |
| TypeOfKind Kind) { |
| return SemaRef.Context.getTypeOfType(Underlying, Kind); |
| } |
| |
| template <typename Derived> |
| QualType TreeTransform<Derived>::RebuildDecltypeType(Expr *E, SourceLocation) { |
| return SemaRef.BuildDecltypeType(E); |
| } |
| |
| template <typename Derived> |
| QualType TreeTransform<Derived>::RebuildPackIndexingType( |
| QualType Pattern, Expr *IndexExpr, SourceLocation Loc, |
| SourceLocation EllipsisLoc, bool FullySubstituted, |
| ArrayRef<QualType> Expansions) { |
| return SemaRef.BuildPackIndexingType(Pattern, IndexExpr, Loc, EllipsisLoc, |
| FullySubstituted, Expansions); |
| } |
| |
| template<typename Derived> |
| QualType TreeTransform<Derived>::RebuildUnaryTransformType(QualType BaseType, |
| UnaryTransformType::UTTKind UKind, |
| SourceLocation Loc) { |
| return SemaRef.BuildUnaryTransformType(BaseType, UKind, Loc); |
| } |
| |
| template<typename Derived> |
| QualType TreeTransform<Derived>::RebuildTemplateSpecializationType( |
| TemplateName Template, |
| SourceLocation TemplateNameLoc, |
| TemplateArgumentListInfo &TemplateArgs) { |
| return SemaRef.CheckTemplateIdType(Template, TemplateNameLoc, TemplateArgs); |
| } |
| |
| template<typename Derived> |
| QualType TreeTransform<Derived>::RebuildAtomicType(QualType ValueType, |
| SourceLocation KWLoc) { |
| return SemaRef.BuildAtomicType(ValueType, KWLoc); |
| } |
| |
| template<typename Derived> |
| QualType TreeTransform<Derived>::RebuildPipeType(QualType ValueType, |
| SourceLocation KWLoc, |
| bool isReadPipe) { |
| return isReadPipe ? SemaRef.BuildReadPipeType(ValueType, KWLoc) |
| : SemaRef.BuildWritePipeType(ValueType, KWLoc); |
| } |
| |
| template <typename Derived> |
| QualType TreeTransform<Derived>::RebuildBitIntType(bool IsUnsigned, |
| unsigned NumBits, |
| SourceLocation Loc) { |
| llvm::APInt NumBitsAP(SemaRef.Context.getIntWidth(SemaRef.Context.IntTy), |
| NumBits, true); |
| IntegerLiteral *Bits = IntegerLiteral::Create(SemaRef.Context, NumBitsAP, |
| SemaRef.Context.IntTy, Loc); |
| return SemaRef.BuildBitIntType(IsUnsigned, Bits, Loc); |
| } |
| |
| template <typename Derived> |
| QualType TreeTransform<Derived>::RebuildDependentBitIntType( |
| bool IsUnsigned, Expr *NumBitsExpr, SourceLocation Loc) { |
| return SemaRef.BuildBitIntType(IsUnsigned, NumBitsExpr, Loc); |
| } |
| |
| template<typename Derived> |
| TemplateName |
| TreeTransform<Derived>::RebuildTemplateName(CXXScopeSpec &SS, |
| bool TemplateKW, |
| TemplateDecl *Template) { |
| return SemaRef.Context.getQualifiedTemplateName(SS.getScopeRep(), TemplateKW, |
| TemplateName(Template)); |
| } |
| |
| template<typename Derived> |
| TemplateName |
| TreeTransform<Derived>::RebuildTemplateName(CXXScopeSpec &SS, |
| SourceLocation TemplateKWLoc, |
| const IdentifierInfo &Name, |
| SourceLocation NameLoc, |
| QualType ObjectType, |
| NamedDecl *FirstQualifierInScope, |
| bool AllowInjectedClassName) { |
| UnqualifiedId TemplateName; |
| TemplateName.setIdentifier(&Name, NameLoc); |
| Sema::TemplateTy Template; |
| getSema().ActOnTemplateName(/*Scope=*/nullptr, SS, TemplateKWLoc, |
| TemplateName, ParsedType::make(ObjectType), |
| /*EnteringContext=*/false, Template, |
| AllowInjectedClassName); |
| return Template.get(); |
| } |
| |
| template<typename Derived> |
| TemplateName |
| TreeTransform<Derived>::RebuildTemplateName(CXXScopeSpec &SS, |
| SourceLocation TemplateKWLoc, |
| OverloadedOperatorKind Operator, |
| SourceLocation NameLoc, |
| QualType ObjectType, |
| bool AllowInjectedClassName) { |
| UnqualifiedId Name; |
| // FIXME: Bogus location information. |
| SourceLocation SymbolLocations[3] = { NameLoc, NameLoc, NameLoc }; |
| Name.setOperatorFunctionId(NameLoc, Operator, SymbolLocations); |
| Sema::TemplateTy Template; |
| getSema().ActOnTemplateName( |
| /*Scope=*/nullptr, SS, TemplateKWLoc, Name, ParsedType::make(ObjectType), |
| /*EnteringContext=*/false, Template, AllowInjectedClassName); |
| return Template.get(); |
| } |
| |
| template <typename Derived> |
| ExprResult TreeTransform<Derived>::RebuildCXXOperatorCallExpr( |
| OverloadedOperatorKind Op, SourceLocation OpLoc, SourceLocation CalleeLoc, |
| bool RequiresADL, const UnresolvedSetImpl &Functions, Expr *First, |
| Expr *Second) { |
| bool isPostIncDec = Second && (Op == OO_PlusPlus || Op == OO_MinusMinus); |
| |
| if (First->getObjectKind() == OK_ObjCProperty) { |
| BinaryOperatorKind Opc = BinaryOperator::getOverloadedOpcode(Op); |
| if (BinaryOperator::isAssignmentOp(Opc)) |
| return SemaRef.PseudoObject().checkAssignment(/*Scope=*/nullptr, OpLoc, |
| Opc, First, Second); |
| ExprResult Result = SemaRef.CheckPlaceholderExpr(First); |
| if (Result.isInvalid()) |
| return ExprError(); |
| First = Result.get(); |
| } |
| |
| if (Second && Second->getObjectKind() == OK_ObjCProperty) { |
| ExprResult Result = SemaRef.CheckPlaceholderExpr(Second); |
| if (Result.isInvalid()) |
| return ExprError(); |
| Second = Result.get(); |
| } |
| |
| // Determine whether this should be a builtin operation. |
| if (Op == OO_Subscript) { |
| if (!First->getType()->isOverloadableType() && |
| !Second->getType()->isOverloadableType()) |
| return getSema().CreateBuiltinArraySubscriptExpr(First, CalleeLoc, Second, |
| OpLoc); |
| } else if (Op == OO_Arrow) { |
| // It is possible that the type refers to a RecoveryExpr created earlier |
| // in the tree transformation. |
| if (First->getType()->isDependentType()) |
| return ExprError(); |
| // -> is never a builtin operation. |
| return SemaRef.BuildOverloadedArrowExpr(nullptr, First, OpLoc); |
| } else if (Second == nullptr || isPostIncDec) { |
| if (!First->getType()->isOverloadableType() || |
| (Op == OO_Amp && getSema().isQualifiedMemberAccess(First))) { |
| // The argument is not of overloadable type, or this is an expression |
| // of the form &Class::member, so try to create a built-in unary |
| // operation. |
| UnaryOperatorKind Opc |
| = UnaryOperator::getOverloadedOpcode(Op, isPostIncDec); |
| |
| return getSema().CreateBuiltinUnaryOp(OpLoc, Opc, First); |
| } |
| } else { |
| if (!First->isTypeDependent() && !Second->isTypeDependent() && |
| !First->getType()->isOverloadableType() && |
| !Second->getType()->isOverloadableType()) { |
| // Neither of the arguments is type-dependent or has an overloadable |
| // type, so try to create a built-in binary operation. |
| BinaryOperatorKind Opc = BinaryOperator::getOverloadedOpcode(Op); |
| ExprResult Result |
| = SemaRef.CreateBuiltinBinOp(OpLoc, Opc, First, Second); |
| if (Result.isInvalid()) |
| return ExprError(); |
| |
| return Result; |
| } |
| } |
| |
| // Create the overloaded operator invocation for unary operators. |
| if (!Second || isPostIncDec) { |
| UnaryOperatorKind Opc |
| = UnaryOperator::getOverloadedOpcode(Op, isPostIncDec); |
| return SemaRef.CreateOverloadedUnaryOp(OpLoc, Opc, Functions, First, |
| RequiresADL); |
| } |
| |
| // Create the overloaded operator invocation for binary operators. |
| BinaryOperatorKind Opc = BinaryOperator::getOverloadedOpcode(Op); |
| ExprResult Result = SemaRef.CreateOverloadedBinOp(OpLoc, Opc, Functions, |
| First, Second, RequiresADL); |
| if (Result.isInvalid()) |
| return ExprError(); |
| |
| return Result; |
| } |
| |
| template<typename Derived> |
| ExprResult |
| TreeTransform<Derived>::RebuildCXXPseudoDestructorExpr(Expr *Base, |
| SourceLocation OperatorLoc, |
| bool isArrow, |
| CXXScopeSpec &SS, |
| TypeSourceInfo *ScopeType, |
| SourceLocation CCLoc, |
| SourceLocation TildeLoc, |
| PseudoDestructorTypeStorage Destroyed) { |
| QualType BaseType = Base->getType(); |
| if (Base->isTypeDependent() || Destroyed.getIdentifier() || |
| (!isArrow && !BaseType->getAs<RecordType>()) || |
| (isArrow && BaseType->getAs<PointerType>() && |
| !BaseType->castAs<PointerType>()->getPointeeType() |
| ->template getAs<RecordType>())){ |
| // This pseudo-destructor expression is still a pseudo-destructor. |
| return SemaRef.BuildPseudoDestructorExpr( |
| Base, OperatorLoc, isArrow ? tok::arrow : tok::period, SS, ScopeType, |
| CCLoc, TildeLoc, Destroyed); |
| } |
| |
| TypeSourceInfo *DestroyedType = Destroyed.getTypeSourceInfo(); |
| DeclarationName Name(SemaRef.Context.DeclarationNames.getCXXDestructorName( |
| SemaRef.Context.getCanonicalType(DestroyedType->getType()))); |
| DeclarationNameInfo NameInfo(Name, Destroyed.getLocation()); |
| NameInfo.setNamedTypeInfo(DestroyedType); |
| |
| // The scope type is now known to be a valid nested name specifier |
| // component. Tack it on to the end of the nested name specifier. |
| if (ScopeType) { |
| if (!ScopeType->getType()->getAs<TagType>()) { |
| getSema().Diag(ScopeType->getTypeLoc().getBeginLoc(), |
| diag::err_expected_class_or_namespace) |
| << ScopeType->getType() << getSema().getLangOpts().CPlusPlus; |
| return ExprError(); |
| } |
| SS.Extend(SemaRef.Context, SourceLocation(), ScopeType->getTypeLoc(), |
| CCLoc); |
| } |
| |
| SourceLocation TemplateKWLoc; // FIXME: retrieve it from caller. |
| return getSema().BuildMemberReferenceExpr(Base, BaseType, |
| OperatorLoc, isArrow, |
| SS, TemplateKWLoc, |
| /*FIXME: FirstQualifier*/ nullptr, |
| NameInfo, |
| /*TemplateArgs*/ nullptr, |
| /*S*/nullptr); |
| } |
| |
| template<typename Derived> |
| StmtResult |
| TreeTransform<Derived>::TransformCapturedStmt(CapturedStmt *S) { |
| SourceLocation Loc = S->getBeginLoc(); |
| CapturedDecl *CD = S->getCapturedDecl(); |
| unsigned NumParams = CD->getNumParams(); |
| unsigned ContextParamPos = CD->getContextParamPosition(); |
| SmallVector<Sema::CapturedParamNameType, 4> Params; |
| for (unsigned I = 0; I < NumParams; ++I) { |
| if (I != ContextParamPos) { |
| Params.push_back( |
| std::make_pair( |
| CD->getParam(I)->getName(), |
| getDerived().TransformType(CD->getParam(I)->getType()))); |
| } else { |
| Params.push_back(std::make_pair(StringRef(), QualType())); |
| } |
| } |
| getSema().ActOnCapturedRegionStart(Loc, /*CurScope*/nullptr, |
| S->getCapturedRegionKind(), Params); |
| StmtResult Body; |
| { |
| Sema::CompoundScopeRAII CompoundScope(getSema()); |
| Body = getDerived().TransformStmt(S->getCapturedStmt()); |
| } |
| |
| if (Body.isInvalid()) { |
| getSema().ActOnCapturedRegionError(); |
| return StmtError(); |
| } |
| |
| return getSema().ActOnCapturedRegionEnd(Body.get()); |
| } |
| |
| template <typename Derived> |
| StmtResult |
| TreeTransform<Derived>::TransformSYCLKernelCallStmt(SYCLKernelCallStmt *S) { |
| // SYCLKernelCallStmt nodes are inserted upon completion of a (non-template) |
| // function definition or instantiation of a function template specialization |
| // and will therefore never appear in a dependent context. |
| llvm_unreachable("SYCL kernel call statement cannot appear in dependent " |
| "context"); |
| } |
| |
| template <typename Derived> |
| ExprResult TreeTransform<Derived>::TransformHLSLOutArgExpr(HLSLOutArgExpr *E) { |
| // We can transform the base expression and allow argument resolution to fill |
| // in the rest. |
| return getDerived().TransformExpr(E->getArgLValue()); |
| } |
| |
| } // end namespace clang |
| |
| #endif // LLVM_CLANG_LIB_SEMA_TREETRANSFORM_H |