| //===----------------------------------------------------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| // |
| // C++ interface to lower levels of libunwind |
| //===----------------------------------------------------------------------===// |
| |
| #ifndef __UNWINDCURSOR_HPP__ |
| #define __UNWINDCURSOR_HPP__ |
| |
| #include "cet_unwind.h" |
| #include <stdint.h> |
| #include <stdio.h> |
| #include <stdlib.h> |
| #include <unwind.h> |
| |
| #ifdef _WIN32 |
| #include <windows.h> |
| #include <ntverp.h> |
| #endif |
| #ifdef __APPLE__ |
| #include <mach-o/dyld.h> |
| #endif |
| #ifdef _AIX |
| #include <dlfcn.h> |
| #include <sys/debug.h> |
| #include <sys/pseg.h> |
| #endif |
| |
| #if defined(_LIBUNWIND_TARGET_LINUX) && \ |
| (defined(_LIBUNWIND_TARGET_AARCH64) || defined(_LIBUNWIND_TARGET_RISCV) || \ |
| defined(_LIBUNWIND_TARGET_S390X)) |
| #include <errno.h> |
| #include <signal.h> |
| #include <sys/syscall.h> |
| #include <unistd.h> |
| #define _LIBUNWIND_CHECK_LINUX_SIGRETURN 1 |
| #endif |
| |
| #include "AddressSpace.hpp" |
| #include "CompactUnwinder.hpp" |
| #include "config.h" |
| #include "DwarfInstructions.hpp" |
| #include "EHHeaderParser.hpp" |
| #include "libunwind.h" |
| #include "libunwind_ext.h" |
| #include "Registers.hpp" |
| #include "RWMutex.hpp" |
| #include "Unwind-EHABI.h" |
| |
| #if defined(_LIBUNWIND_SUPPORT_SEH_UNWIND) |
| // Provide a definition for the DISPATCHER_CONTEXT struct for old (Win7 and |
| // earlier) SDKs. |
| // MinGW-w64 has always provided this struct. |
| #if defined(_WIN32) && defined(_LIBUNWIND_TARGET_X86_64) && \ |
| !defined(__MINGW32__) && VER_PRODUCTBUILD < 8000 |
| struct _DISPATCHER_CONTEXT { |
| ULONG64 ControlPc; |
| ULONG64 ImageBase; |
| PRUNTIME_FUNCTION FunctionEntry; |
| ULONG64 EstablisherFrame; |
| ULONG64 TargetIp; |
| PCONTEXT ContextRecord; |
| PEXCEPTION_ROUTINE LanguageHandler; |
| PVOID HandlerData; |
| PUNWIND_HISTORY_TABLE HistoryTable; |
| ULONG ScopeIndex; |
| ULONG Fill0; |
| }; |
| #endif |
| |
| struct UNWIND_INFO { |
| uint8_t Version : 3; |
| uint8_t Flags : 5; |
| uint8_t SizeOfProlog; |
| uint8_t CountOfCodes; |
| uint8_t FrameRegister : 4; |
| uint8_t FrameOffset : 4; |
| uint16_t UnwindCodes[2]; |
| }; |
| |
| extern "C" _Unwind_Reason_Code __libunwind_seh_personality( |
| int, _Unwind_Action, uint64_t, _Unwind_Exception *, |
| struct _Unwind_Context *); |
| |
| #endif |
| |
| namespace libunwind { |
| |
| #if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND) |
| /// Cache of recently found FDEs. |
| template <typename A> |
| class _LIBUNWIND_HIDDEN DwarfFDECache { |
| typedef typename A::pint_t pint_t; |
| public: |
| static constexpr pint_t kSearchAll = static_cast<pint_t>(-1); |
| static pint_t findFDE(pint_t mh, pint_t pc); |
| static void add(pint_t mh, pint_t ip_start, pint_t ip_end, pint_t fde); |
| static void removeAllIn(pint_t mh); |
| static void iterateCacheEntries(void (*func)(unw_word_t ip_start, |
| unw_word_t ip_end, |
| unw_word_t fde, unw_word_t mh)); |
| |
| private: |
| |
| struct entry { |
| pint_t mh; |
| pint_t ip_start; |
| pint_t ip_end; |
| pint_t fde; |
| }; |
| |
| // These fields are all static to avoid needing an initializer. |
| // There is only one instance of this class per process. |
| static RWMutex _lock; |
| #ifdef __APPLE__ |
| static void dyldUnloadHook(const struct mach_header *mh, intptr_t slide); |
| static bool _registeredForDyldUnloads; |
| #endif |
| static entry *_buffer; |
| static entry *_bufferUsed; |
| static entry *_bufferEnd; |
| static entry _initialBuffer[64]; |
| }; |
| |
| template <typename A> |
| typename DwarfFDECache<A>::entry * |
| DwarfFDECache<A>::_buffer = _initialBuffer; |
| |
| template <typename A> |
| typename DwarfFDECache<A>::entry * |
| DwarfFDECache<A>::_bufferUsed = _initialBuffer; |
| |
| template <typename A> |
| typename DwarfFDECache<A>::entry * |
| DwarfFDECache<A>::_bufferEnd = &_initialBuffer[64]; |
| |
| template <typename A> |
| typename DwarfFDECache<A>::entry DwarfFDECache<A>::_initialBuffer[64]; |
| |
| template <typename A> |
| RWMutex DwarfFDECache<A>::_lock; |
| |
| #ifdef __APPLE__ |
| template <typename A> |
| bool DwarfFDECache<A>::_registeredForDyldUnloads = false; |
| #endif |
| |
| template <typename A> |
| typename A::pint_t DwarfFDECache<A>::findFDE(pint_t mh, pint_t pc) { |
| pint_t result = 0; |
| _LIBUNWIND_LOG_IF_FALSE(_lock.lock_shared()); |
| for (entry *p = _buffer; p < _bufferUsed; ++p) { |
| if ((mh == p->mh) || (mh == kSearchAll)) { |
| if ((p->ip_start <= pc) && (pc < p->ip_end)) { |
| result = p->fde; |
| break; |
| } |
| } |
| } |
| _LIBUNWIND_LOG_IF_FALSE(_lock.unlock_shared()); |
| return result; |
| } |
| |
| template <typename A> |
| void DwarfFDECache<A>::add(pint_t mh, pint_t ip_start, pint_t ip_end, |
| pint_t fde) { |
| #if !defined(_LIBUNWIND_NO_HEAP) |
| _LIBUNWIND_LOG_IF_FALSE(_lock.lock()); |
| if (_bufferUsed >= _bufferEnd) { |
| size_t oldSize = (size_t)(_bufferEnd - _buffer); |
| size_t newSize = oldSize * 4; |
| // Can't use operator new (we are below it). |
| entry *newBuffer = (entry *)malloc(newSize * sizeof(entry)); |
| memcpy(newBuffer, _buffer, oldSize * sizeof(entry)); |
| if (_buffer != _initialBuffer) |
| free(_buffer); |
| _buffer = newBuffer; |
| _bufferUsed = &newBuffer[oldSize]; |
| _bufferEnd = &newBuffer[newSize]; |
| } |
| _bufferUsed->mh = mh; |
| _bufferUsed->ip_start = ip_start; |
| _bufferUsed->ip_end = ip_end; |
| _bufferUsed->fde = fde; |
| ++_bufferUsed; |
| #ifdef __APPLE__ |
| if (!_registeredForDyldUnloads) { |
| _dyld_register_func_for_remove_image(&dyldUnloadHook); |
| _registeredForDyldUnloads = true; |
| } |
| #endif |
| _LIBUNWIND_LOG_IF_FALSE(_lock.unlock()); |
| #endif |
| } |
| |
| template <typename A> |
| void DwarfFDECache<A>::removeAllIn(pint_t mh) { |
| _LIBUNWIND_LOG_IF_FALSE(_lock.lock()); |
| entry *d = _buffer; |
| for (const entry *s = _buffer; s < _bufferUsed; ++s) { |
| if (s->mh != mh) { |
| if (d != s) |
| *d = *s; |
| ++d; |
| } |
| } |
| _bufferUsed = d; |
| _LIBUNWIND_LOG_IF_FALSE(_lock.unlock()); |
| } |
| |
| #ifdef __APPLE__ |
| template <typename A> |
| void DwarfFDECache<A>::dyldUnloadHook(const struct mach_header *mh, intptr_t ) { |
| removeAllIn((pint_t) mh); |
| } |
| #endif |
| |
| template <typename A> |
| void DwarfFDECache<A>::iterateCacheEntries(void (*func)( |
| unw_word_t ip_start, unw_word_t ip_end, unw_word_t fde, unw_word_t mh)) { |
| _LIBUNWIND_LOG_IF_FALSE(_lock.lock()); |
| for (entry *p = _buffer; p < _bufferUsed; ++p) { |
| (*func)(p->ip_start, p->ip_end, p->fde, p->mh); |
| } |
| _LIBUNWIND_LOG_IF_FALSE(_lock.unlock()); |
| } |
| #endif // defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND) |
| |
| #define arrayoffsetof(type, index, field) \ |
| (sizeof(type) * (index) + offsetof(type, field)) |
| |
| #if defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND) |
| template <typename A> class UnwindSectionHeader { |
| public: |
| UnwindSectionHeader(A &addressSpace, typename A::pint_t addr) |
| : _addressSpace(addressSpace), _addr(addr) {} |
| |
| uint32_t version() const { |
| return _addressSpace.get32(_addr + |
| offsetof(unwind_info_section_header, version)); |
| } |
| uint32_t commonEncodingsArraySectionOffset() const { |
| return _addressSpace.get32(_addr + |
| offsetof(unwind_info_section_header, |
| commonEncodingsArraySectionOffset)); |
| } |
| uint32_t commonEncodingsArrayCount() const { |
| return _addressSpace.get32(_addr + offsetof(unwind_info_section_header, |
| commonEncodingsArrayCount)); |
| } |
| uint32_t personalityArraySectionOffset() const { |
| return _addressSpace.get32(_addr + offsetof(unwind_info_section_header, |
| personalityArraySectionOffset)); |
| } |
| uint32_t personalityArrayCount() const { |
| return _addressSpace.get32( |
| _addr + offsetof(unwind_info_section_header, personalityArrayCount)); |
| } |
| uint32_t indexSectionOffset() const { |
| return _addressSpace.get32( |
| _addr + offsetof(unwind_info_section_header, indexSectionOffset)); |
| } |
| uint32_t indexCount() const { |
| return _addressSpace.get32( |
| _addr + offsetof(unwind_info_section_header, indexCount)); |
| } |
| |
| private: |
| A &_addressSpace; |
| typename A::pint_t _addr; |
| }; |
| |
| template <typename A> class UnwindSectionIndexArray { |
| public: |
| UnwindSectionIndexArray(A &addressSpace, typename A::pint_t addr) |
| : _addressSpace(addressSpace), _addr(addr) {} |
| |
| uint32_t functionOffset(uint32_t index) const { |
| return _addressSpace.get32( |
| _addr + arrayoffsetof(unwind_info_section_header_index_entry, index, |
| functionOffset)); |
| } |
| uint32_t secondLevelPagesSectionOffset(uint32_t index) const { |
| return _addressSpace.get32( |
| _addr + arrayoffsetof(unwind_info_section_header_index_entry, index, |
| secondLevelPagesSectionOffset)); |
| } |
| uint32_t lsdaIndexArraySectionOffset(uint32_t index) const { |
| return _addressSpace.get32( |
| _addr + arrayoffsetof(unwind_info_section_header_index_entry, index, |
| lsdaIndexArraySectionOffset)); |
| } |
| |
| private: |
| A &_addressSpace; |
| typename A::pint_t _addr; |
| }; |
| |
| template <typename A> class UnwindSectionRegularPageHeader { |
| public: |
| UnwindSectionRegularPageHeader(A &addressSpace, typename A::pint_t addr) |
| : _addressSpace(addressSpace), _addr(addr) {} |
| |
| uint32_t kind() const { |
| return _addressSpace.get32( |
| _addr + offsetof(unwind_info_regular_second_level_page_header, kind)); |
| } |
| uint16_t entryPageOffset() const { |
| return _addressSpace.get16( |
| _addr + offsetof(unwind_info_regular_second_level_page_header, |
| entryPageOffset)); |
| } |
| uint16_t entryCount() const { |
| return _addressSpace.get16( |
| _addr + |
| offsetof(unwind_info_regular_second_level_page_header, entryCount)); |
| } |
| |
| private: |
| A &_addressSpace; |
| typename A::pint_t _addr; |
| }; |
| |
| template <typename A> class UnwindSectionRegularArray { |
| public: |
| UnwindSectionRegularArray(A &addressSpace, typename A::pint_t addr) |
| : _addressSpace(addressSpace), _addr(addr) {} |
| |
| uint32_t functionOffset(uint32_t index) const { |
| return _addressSpace.get32( |
| _addr + arrayoffsetof(unwind_info_regular_second_level_entry, index, |
| functionOffset)); |
| } |
| uint32_t encoding(uint32_t index) const { |
| return _addressSpace.get32( |
| _addr + |
| arrayoffsetof(unwind_info_regular_second_level_entry, index, encoding)); |
| } |
| |
| private: |
| A &_addressSpace; |
| typename A::pint_t _addr; |
| }; |
| |
| template <typename A> class UnwindSectionCompressedPageHeader { |
| public: |
| UnwindSectionCompressedPageHeader(A &addressSpace, typename A::pint_t addr) |
| : _addressSpace(addressSpace), _addr(addr) {} |
| |
| uint32_t kind() const { |
| return _addressSpace.get32( |
| _addr + |
| offsetof(unwind_info_compressed_second_level_page_header, kind)); |
| } |
| uint16_t entryPageOffset() const { |
| return _addressSpace.get16( |
| _addr + offsetof(unwind_info_compressed_second_level_page_header, |
| entryPageOffset)); |
| } |
| uint16_t entryCount() const { |
| return _addressSpace.get16( |
| _addr + |
| offsetof(unwind_info_compressed_second_level_page_header, entryCount)); |
| } |
| uint16_t encodingsPageOffset() const { |
| return _addressSpace.get16( |
| _addr + offsetof(unwind_info_compressed_second_level_page_header, |
| encodingsPageOffset)); |
| } |
| uint16_t encodingsCount() const { |
| return _addressSpace.get16( |
| _addr + offsetof(unwind_info_compressed_second_level_page_header, |
| encodingsCount)); |
| } |
| |
| private: |
| A &_addressSpace; |
| typename A::pint_t _addr; |
| }; |
| |
| template <typename A> class UnwindSectionCompressedArray { |
| public: |
| UnwindSectionCompressedArray(A &addressSpace, typename A::pint_t addr) |
| : _addressSpace(addressSpace), _addr(addr) {} |
| |
| uint32_t functionOffset(uint32_t index) const { |
| return UNWIND_INFO_COMPRESSED_ENTRY_FUNC_OFFSET( |
| _addressSpace.get32(_addr + index * sizeof(uint32_t))); |
| } |
| uint16_t encodingIndex(uint32_t index) const { |
| return UNWIND_INFO_COMPRESSED_ENTRY_ENCODING_INDEX( |
| _addressSpace.get32(_addr + index * sizeof(uint32_t))); |
| } |
| |
| private: |
| A &_addressSpace; |
| typename A::pint_t _addr; |
| }; |
| |
| template <typename A> class UnwindSectionLsdaArray { |
| public: |
| UnwindSectionLsdaArray(A &addressSpace, typename A::pint_t addr) |
| : _addressSpace(addressSpace), _addr(addr) {} |
| |
| uint32_t functionOffset(uint32_t index) const { |
| return _addressSpace.get32( |
| _addr + arrayoffsetof(unwind_info_section_header_lsda_index_entry, |
| index, functionOffset)); |
| } |
| uint32_t lsdaOffset(uint32_t index) const { |
| return _addressSpace.get32( |
| _addr + arrayoffsetof(unwind_info_section_header_lsda_index_entry, |
| index, lsdaOffset)); |
| } |
| |
| private: |
| A &_addressSpace; |
| typename A::pint_t _addr; |
| }; |
| #endif // defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND) |
| |
| class _LIBUNWIND_HIDDEN AbstractUnwindCursor { |
| public: |
| // NOTE: provide a class specific placement deallocation function (S5.3.4 p20) |
| // This avoids an unnecessary dependency to libc++abi. |
| void operator delete(void *, size_t) {} |
| |
| virtual ~AbstractUnwindCursor() {} |
| virtual bool validReg(int) { _LIBUNWIND_ABORT("validReg not implemented"); } |
| virtual unw_word_t getReg(int) { _LIBUNWIND_ABORT("getReg not implemented"); } |
| virtual void setReg(int, unw_word_t) { |
| _LIBUNWIND_ABORT("setReg not implemented"); |
| } |
| virtual bool validFloatReg(int) { |
| _LIBUNWIND_ABORT("validFloatReg not implemented"); |
| } |
| virtual unw_fpreg_t getFloatReg(int) { |
| _LIBUNWIND_ABORT("getFloatReg not implemented"); |
| } |
| virtual void setFloatReg(int, unw_fpreg_t) { |
| _LIBUNWIND_ABORT("setFloatReg not implemented"); |
| } |
| virtual int step(bool = false) { _LIBUNWIND_ABORT("step not implemented"); } |
| virtual void getInfo(unw_proc_info_t *) { |
| _LIBUNWIND_ABORT("getInfo not implemented"); |
| } |
| virtual void jumpto() { _LIBUNWIND_ABORT("jumpto not implemented"); } |
| virtual bool isSignalFrame() { |
| _LIBUNWIND_ABORT("isSignalFrame not implemented"); |
| } |
| virtual bool getFunctionName(char *, size_t, unw_word_t *) { |
| _LIBUNWIND_ABORT("getFunctionName not implemented"); |
| } |
| virtual void setInfoBasedOnIPRegister(bool = false) { |
| _LIBUNWIND_ABORT("setInfoBasedOnIPRegister not implemented"); |
| } |
| virtual const char *getRegisterName(int) { |
| _LIBUNWIND_ABORT("getRegisterName not implemented"); |
| } |
| #ifdef __arm__ |
| virtual void saveVFPAsX() { _LIBUNWIND_ABORT("saveVFPAsX not implemented"); } |
| #endif |
| |
| #ifdef _AIX |
| virtual uintptr_t getDataRelBase() { |
| _LIBUNWIND_ABORT("getDataRelBase not implemented"); |
| } |
| #endif |
| |
| #if defined(_LIBUNWIND_USE_CET) || defined(_LIBUNWIND_USE_GCS) |
| virtual void *get_registers() { |
| _LIBUNWIND_ABORT("get_registers not implemented"); |
| } |
| #endif |
| }; |
| |
| #if defined(_LIBUNWIND_SUPPORT_SEH_UNWIND) && defined(_WIN32) |
| |
| /// \c UnwindCursor contains all state (including all register values) during |
| /// an unwind. This is normally stack-allocated inside a unw_cursor_t. |
| template <typename A, typename R> |
| class UnwindCursor : public AbstractUnwindCursor { |
| typedef typename A::pint_t pint_t; |
| public: |
| UnwindCursor(unw_context_t *context, A &as); |
| UnwindCursor(CONTEXT *context, A &as); |
| UnwindCursor(A &as, void *threadArg); |
| virtual ~UnwindCursor() {} |
| virtual bool validReg(int); |
| virtual unw_word_t getReg(int); |
| virtual void setReg(int, unw_word_t); |
| virtual bool validFloatReg(int); |
| virtual unw_fpreg_t getFloatReg(int); |
| virtual void setFloatReg(int, unw_fpreg_t); |
| virtual int step(bool = false); |
| virtual void getInfo(unw_proc_info_t *); |
| virtual void jumpto(); |
| virtual bool isSignalFrame(); |
| virtual bool getFunctionName(char *buf, size_t len, unw_word_t *off); |
| virtual void setInfoBasedOnIPRegister(bool isReturnAddress = false); |
| virtual const char *getRegisterName(int num); |
| #ifdef __arm__ |
| virtual void saveVFPAsX(); |
| #endif |
| |
| DISPATCHER_CONTEXT *getDispatcherContext() { return &_dispContext; } |
| void setDispatcherContext(DISPATCHER_CONTEXT *disp) { |
| _dispContext = *disp; |
| _info.lsda = reinterpret_cast<unw_word_t>(_dispContext.HandlerData); |
| if (_dispContext.LanguageHandler) { |
| _info.handler = reinterpret_cast<unw_word_t>(__libunwind_seh_personality); |
| } else |
| _info.handler = 0; |
| } |
| |
| // libunwind does not and should not depend on C++ library which means that we |
| // need our own definition of inline placement new. |
| static void *operator new(size_t, UnwindCursor<A, R> *p) { return p; } |
| |
| private: |
| |
| pint_t getLastPC() const { return _dispContext.ControlPc; } |
| void setLastPC(pint_t pc) { _dispContext.ControlPc = pc; } |
| RUNTIME_FUNCTION *lookUpSEHUnwindInfo(pint_t pc, pint_t *base) { |
| #ifdef __arm__ |
| // Remove the thumb bit; FunctionEntry ranges don't include the thumb bit. |
| pc &= ~1U; |
| #endif |
| // If pc points exactly at the end of the range, we might resolve the |
| // next function instead. Decrement pc by 1 to fit inside the current |
| // function. |
| pc -= 1; |
| _dispContext.FunctionEntry = RtlLookupFunctionEntry(pc, |
| &_dispContext.ImageBase, |
| _dispContext.HistoryTable); |
| *base = _dispContext.ImageBase; |
| return _dispContext.FunctionEntry; |
| } |
| bool getInfoFromSEH(pint_t pc); |
| int stepWithSEHData() { |
| _dispContext.LanguageHandler = RtlVirtualUnwind(UNW_FLAG_UHANDLER, |
| _dispContext.ImageBase, |
| _dispContext.ControlPc, |
| _dispContext.FunctionEntry, |
| _dispContext.ContextRecord, |
| &_dispContext.HandlerData, |
| &_dispContext.EstablisherFrame, |
| NULL); |
| // Update some fields of the unwind info now, since we have them. |
| _info.lsda = reinterpret_cast<unw_word_t>(_dispContext.HandlerData); |
| if (_dispContext.LanguageHandler) { |
| _info.handler = reinterpret_cast<unw_word_t>(__libunwind_seh_personality); |
| } else |
| _info.handler = 0; |
| return UNW_STEP_SUCCESS; |
| } |
| |
| A &_addressSpace; |
| unw_proc_info_t _info; |
| DISPATCHER_CONTEXT _dispContext; |
| CONTEXT _msContext; |
| UNWIND_HISTORY_TABLE _histTable; |
| bool _unwindInfoMissing; |
| }; |
| |
| |
| template <typename A, typename R> |
| UnwindCursor<A, R>::UnwindCursor(unw_context_t *context, A &as) |
| : _addressSpace(as), _unwindInfoMissing(false) { |
| static_assert((check_fit<UnwindCursor<A, R>, unw_cursor_t>::does_fit), |
| "UnwindCursor<> does not fit in unw_cursor_t"); |
| static_assert((alignof(UnwindCursor<A, R>) <= alignof(unw_cursor_t)), |
| "UnwindCursor<> requires more alignment than unw_cursor_t"); |
| memset(&_info, 0, sizeof(_info)); |
| memset(&_histTable, 0, sizeof(_histTable)); |
| memset(&_dispContext, 0, sizeof(_dispContext)); |
| _dispContext.ContextRecord = &_msContext; |
| _dispContext.HistoryTable = &_histTable; |
| // Initialize MS context from ours. |
| R r(context); |
| RtlCaptureContext(&_msContext); |
| _msContext.ContextFlags = CONTEXT_CONTROL|CONTEXT_INTEGER|CONTEXT_FLOATING_POINT; |
| #if defined(_LIBUNWIND_TARGET_X86_64) |
| _msContext.Rax = r.getRegister(UNW_X86_64_RAX); |
| _msContext.Rcx = r.getRegister(UNW_X86_64_RCX); |
| _msContext.Rdx = r.getRegister(UNW_X86_64_RDX); |
| _msContext.Rbx = r.getRegister(UNW_X86_64_RBX); |
| _msContext.Rsp = r.getRegister(UNW_X86_64_RSP); |
| _msContext.Rbp = r.getRegister(UNW_X86_64_RBP); |
| _msContext.Rsi = r.getRegister(UNW_X86_64_RSI); |
| _msContext.Rdi = r.getRegister(UNW_X86_64_RDI); |
| _msContext.R8 = r.getRegister(UNW_X86_64_R8); |
| _msContext.R9 = r.getRegister(UNW_X86_64_R9); |
| _msContext.R10 = r.getRegister(UNW_X86_64_R10); |
| _msContext.R11 = r.getRegister(UNW_X86_64_R11); |
| _msContext.R12 = r.getRegister(UNW_X86_64_R12); |
| _msContext.R13 = r.getRegister(UNW_X86_64_R13); |
| _msContext.R14 = r.getRegister(UNW_X86_64_R14); |
| _msContext.R15 = r.getRegister(UNW_X86_64_R15); |
| _msContext.Rip = r.getRegister(UNW_REG_IP); |
| union { |
| v128 v; |
| M128A m; |
| } t; |
| t.v = r.getVectorRegister(UNW_X86_64_XMM0); |
| _msContext.Xmm0 = t.m; |
| t.v = r.getVectorRegister(UNW_X86_64_XMM1); |
| _msContext.Xmm1 = t.m; |
| t.v = r.getVectorRegister(UNW_X86_64_XMM2); |
| _msContext.Xmm2 = t.m; |
| t.v = r.getVectorRegister(UNW_X86_64_XMM3); |
| _msContext.Xmm3 = t.m; |
| t.v = r.getVectorRegister(UNW_X86_64_XMM4); |
| _msContext.Xmm4 = t.m; |
| t.v = r.getVectorRegister(UNW_X86_64_XMM5); |
| _msContext.Xmm5 = t.m; |
| t.v = r.getVectorRegister(UNW_X86_64_XMM6); |
| _msContext.Xmm6 = t.m; |
| t.v = r.getVectorRegister(UNW_X86_64_XMM7); |
| _msContext.Xmm7 = t.m; |
| t.v = r.getVectorRegister(UNW_X86_64_XMM8); |
| _msContext.Xmm8 = t.m; |
| t.v = r.getVectorRegister(UNW_X86_64_XMM9); |
| _msContext.Xmm9 = t.m; |
| t.v = r.getVectorRegister(UNW_X86_64_XMM10); |
| _msContext.Xmm10 = t.m; |
| t.v = r.getVectorRegister(UNW_X86_64_XMM11); |
| _msContext.Xmm11 = t.m; |
| t.v = r.getVectorRegister(UNW_X86_64_XMM12); |
| _msContext.Xmm12 = t.m; |
| t.v = r.getVectorRegister(UNW_X86_64_XMM13); |
| _msContext.Xmm13 = t.m; |
| t.v = r.getVectorRegister(UNW_X86_64_XMM14); |
| _msContext.Xmm14 = t.m; |
| t.v = r.getVectorRegister(UNW_X86_64_XMM15); |
| _msContext.Xmm15 = t.m; |
| #elif defined(_LIBUNWIND_TARGET_ARM) |
| _msContext.R0 = r.getRegister(UNW_ARM_R0); |
| _msContext.R1 = r.getRegister(UNW_ARM_R1); |
| _msContext.R2 = r.getRegister(UNW_ARM_R2); |
| _msContext.R3 = r.getRegister(UNW_ARM_R3); |
| _msContext.R4 = r.getRegister(UNW_ARM_R4); |
| _msContext.R5 = r.getRegister(UNW_ARM_R5); |
| _msContext.R6 = r.getRegister(UNW_ARM_R6); |
| _msContext.R7 = r.getRegister(UNW_ARM_R7); |
| _msContext.R8 = r.getRegister(UNW_ARM_R8); |
| _msContext.R9 = r.getRegister(UNW_ARM_R9); |
| _msContext.R10 = r.getRegister(UNW_ARM_R10); |
| _msContext.R11 = r.getRegister(UNW_ARM_R11); |
| _msContext.R12 = r.getRegister(UNW_ARM_R12); |
| _msContext.Sp = r.getRegister(UNW_ARM_SP); |
| _msContext.Lr = r.getRegister(UNW_ARM_LR); |
| _msContext.Pc = r.getRegister(UNW_ARM_IP); |
| for (int i = UNW_ARM_D0; i <= UNW_ARM_D31; ++i) { |
| union { |
| uint64_t w; |
| double d; |
| } d; |
| d.d = r.getFloatRegister(i); |
| _msContext.D[i - UNW_ARM_D0] = d.w; |
| } |
| #elif defined(_LIBUNWIND_TARGET_AARCH64) |
| for (int i = UNW_AARCH64_X0; i <= UNW_ARM64_X30; ++i) |
| _msContext.X[i - UNW_AARCH64_X0] = r.getRegister(i); |
| _msContext.Sp = r.getRegister(UNW_REG_SP); |
| _msContext.Pc = r.getRegister(UNW_REG_IP); |
| for (int i = UNW_AARCH64_V0; i <= UNW_ARM64_D31; ++i) |
| _msContext.V[i - UNW_AARCH64_V0].D[0] = r.getFloatRegister(i); |
| #endif |
| } |
| |
| template <typename A, typename R> |
| UnwindCursor<A, R>::UnwindCursor(CONTEXT *context, A &as) |
| : _addressSpace(as), _unwindInfoMissing(false) { |
| static_assert((check_fit<UnwindCursor<A, R>, unw_cursor_t>::does_fit), |
| "UnwindCursor<> does not fit in unw_cursor_t"); |
| memset(&_info, 0, sizeof(_info)); |
| memset(&_histTable, 0, sizeof(_histTable)); |
| memset(&_dispContext, 0, sizeof(_dispContext)); |
| _dispContext.ContextRecord = &_msContext; |
| _dispContext.HistoryTable = &_histTable; |
| _msContext = *context; |
| } |
| |
| |
| template <typename A, typename R> |
| bool UnwindCursor<A, R>::validReg(int regNum) { |
| if (regNum == UNW_REG_IP || regNum == UNW_REG_SP) return true; |
| #if defined(_LIBUNWIND_TARGET_X86_64) |
| if (regNum >= UNW_X86_64_RAX && regNum <= UNW_X86_64_RIP) return true; |
| #elif defined(_LIBUNWIND_TARGET_ARM) |
| if ((regNum >= UNW_ARM_R0 && regNum <= UNW_ARM_R15) || |
| regNum == UNW_ARM_RA_AUTH_CODE) |
| return true; |
| #elif defined(_LIBUNWIND_TARGET_AARCH64) |
| if (regNum >= UNW_AARCH64_X0 && regNum <= UNW_ARM64_X30) return true; |
| #endif |
| return false; |
| } |
| |
| template <typename A, typename R> |
| unw_word_t UnwindCursor<A, R>::getReg(int regNum) { |
| switch (regNum) { |
| #if defined(_LIBUNWIND_TARGET_X86_64) |
| case UNW_X86_64_RIP: |
| case UNW_REG_IP: return _msContext.Rip; |
| case UNW_X86_64_RAX: return _msContext.Rax; |
| case UNW_X86_64_RDX: return _msContext.Rdx; |
| case UNW_X86_64_RCX: return _msContext.Rcx; |
| case UNW_X86_64_RBX: return _msContext.Rbx; |
| case UNW_REG_SP: |
| case UNW_X86_64_RSP: return _msContext.Rsp; |
| case UNW_X86_64_RBP: return _msContext.Rbp; |
| case UNW_X86_64_RSI: return _msContext.Rsi; |
| case UNW_X86_64_RDI: return _msContext.Rdi; |
| case UNW_X86_64_R8: return _msContext.R8; |
| case UNW_X86_64_R9: return _msContext.R9; |
| case UNW_X86_64_R10: return _msContext.R10; |
| case UNW_X86_64_R11: return _msContext.R11; |
| case UNW_X86_64_R12: return _msContext.R12; |
| case UNW_X86_64_R13: return _msContext.R13; |
| case UNW_X86_64_R14: return _msContext.R14; |
| case UNW_X86_64_R15: return _msContext.R15; |
| #elif defined(_LIBUNWIND_TARGET_ARM) |
| case UNW_ARM_R0: return _msContext.R0; |
| case UNW_ARM_R1: return _msContext.R1; |
| case UNW_ARM_R2: return _msContext.R2; |
| case UNW_ARM_R3: return _msContext.R3; |
| case UNW_ARM_R4: return _msContext.R4; |
| case UNW_ARM_R5: return _msContext.R5; |
| case UNW_ARM_R6: return _msContext.R6; |
| case UNW_ARM_R7: return _msContext.R7; |
| case UNW_ARM_R8: return _msContext.R8; |
| case UNW_ARM_R9: return _msContext.R9; |
| case UNW_ARM_R10: return _msContext.R10; |
| case UNW_ARM_R11: return _msContext.R11; |
| case UNW_ARM_R12: return _msContext.R12; |
| case UNW_REG_SP: |
| case UNW_ARM_SP: return _msContext.Sp; |
| case UNW_ARM_LR: return _msContext.Lr; |
| case UNW_REG_IP: |
| case UNW_ARM_IP: return _msContext.Pc; |
| #elif defined(_LIBUNWIND_TARGET_AARCH64) |
| case UNW_REG_SP: return _msContext.Sp; |
| case UNW_REG_IP: return _msContext.Pc; |
| default: return _msContext.X[regNum - UNW_AARCH64_X0]; |
| #endif |
| } |
| _LIBUNWIND_ABORT("unsupported register"); |
| } |
| |
| template <typename A, typename R> |
| void UnwindCursor<A, R>::setReg(int regNum, unw_word_t value) { |
| switch (regNum) { |
| #if defined(_LIBUNWIND_TARGET_X86_64) |
| case UNW_X86_64_RIP: |
| case UNW_REG_IP: _msContext.Rip = value; break; |
| case UNW_X86_64_RAX: _msContext.Rax = value; break; |
| case UNW_X86_64_RDX: _msContext.Rdx = value; break; |
| case UNW_X86_64_RCX: _msContext.Rcx = value; break; |
| case UNW_X86_64_RBX: _msContext.Rbx = value; break; |
| case UNW_REG_SP: |
| case UNW_X86_64_RSP: _msContext.Rsp = value; break; |
| case UNW_X86_64_RBP: _msContext.Rbp = value; break; |
| case UNW_X86_64_RSI: _msContext.Rsi = value; break; |
| case UNW_X86_64_RDI: _msContext.Rdi = value; break; |
| case UNW_X86_64_R8: _msContext.R8 = value; break; |
| case UNW_X86_64_R9: _msContext.R9 = value; break; |
| case UNW_X86_64_R10: _msContext.R10 = value; break; |
| case UNW_X86_64_R11: _msContext.R11 = value; break; |
| case UNW_X86_64_R12: _msContext.R12 = value; break; |
| case UNW_X86_64_R13: _msContext.R13 = value; break; |
| case UNW_X86_64_R14: _msContext.R14 = value; break; |
| case UNW_X86_64_R15: _msContext.R15 = value; break; |
| #elif defined(_LIBUNWIND_TARGET_ARM) |
| case UNW_ARM_R0: _msContext.R0 = value; break; |
| case UNW_ARM_R1: _msContext.R1 = value; break; |
| case UNW_ARM_R2: _msContext.R2 = value; break; |
| case UNW_ARM_R3: _msContext.R3 = value; break; |
| case UNW_ARM_R4: _msContext.R4 = value; break; |
| case UNW_ARM_R5: _msContext.R5 = value; break; |
| case UNW_ARM_R6: _msContext.R6 = value; break; |
| case UNW_ARM_R7: _msContext.R7 = value; break; |
| case UNW_ARM_R8: _msContext.R8 = value; break; |
| case UNW_ARM_R9: _msContext.R9 = value; break; |
| case UNW_ARM_R10: _msContext.R10 = value; break; |
| case UNW_ARM_R11: _msContext.R11 = value; break; |
| case UNW_ARM_R12: _msContext.R12 = value; break; |
| case UNW_REG_SP: |
| case UNW_ARM_SP: _msContext.Sp = value; break; |
| case UNW_ARM_LR: _msContext.Lr = value; break; |
| case UNW_REG_IP: |
| case UNW_ARM_IP: _msContext.Pc = value; break; |
| #elif defined(_LIBUNWIND_TARGET_AARCH64) |
| case UNW_REG_SP: _msContext.Sp = value; break; |
| case UNW_REG_IP: _msContext.Pc = value; break; |
| case UNW_AARCH64_X0: |
| case UNW_AARCH64_X1: |
| case UNW_AARCH64_X2: |
| case UNW_AARCH64_X3: |
| case UNW_AARCH64_X4: |
| case UNW_AARCH64_X5: |
| case UNW_AARCH64_X6: |
| case UNW_AARCH64_X7: |
| case UNW_AARCH64_X8: |
| case UNW_AARCH64_X9: |
| case UNW_AARCH64_X10: |
| case UNW_AARCH64_X11: |
| case UNW_AARCH64_X12: |
| case UNW_AARCH64_X13: |
| case UNW_AARCH64_X14: |
| case UNW_AARCH64_X15: |
| case UNW_AARCH64_X16: |
| case UNW_AARCH64_X17: |
| case UNW_AARCH64_X18: |
| case UNW_AARCH64_X19: |
| case UNW_AARCH64_X20: |
| case UNW_AARCH64_X21: |
| case UNW_AARCH64_X22: |
| case UNW_AARCH64_X23: |
| case UNW_AARCH64_X24: |
| case UNW_AARCH64_X25: |
| case UNW_AARCH64_X26: |
| case UNW_AARCH64_X27: |
| case UNW_AARCH64_X28: |
| case UNW_AARCH64_FP: |
| case UNW_AARCH64_LR: _msContext.X[regNum - UNW_ARM64_X0] = value; break; |
| #endif |
| default: |
| _LIBUNWIND_ABORT("unsupported register"); |
| } |
| } |
| |
| template <typename A, typename R> |
| bool UnwindCursor<A, R>::validFloatReg(int regNum) { |
| #if defined(_LIBUNWIND_TARGET_ARM) |
| if (regNum >= UNW_ARM_S0 && regNum <= UNW_ARM_S31) return true; |
| if (regNum >= UNW_ARM_D0 && regNum <= UNW_ARM_D31) return true; |
| #elif defined(_LIBUNWIND_TARGET_AARCH64) |
| if (regNum >= UNW_AARCH64_V0 && regNum <= UNW_ARM64_D31) return true; |
| #else |
| (void)regNum; |
| #endif |
| return false; |
| } |
| |
| template <typename A, typename R> |
| unw_fpreg_t UnwindCursor<A, R>::getFloatReg(int regNum) { |
| #if defined(_LIBUNWIND_TARGET_ARM) |
| if (regNum >= UNW_ARM_S0 && regNum <= UNW_ARM_S31) { |
| union { |
| uint32_t w; |
| float f; |
| } d; |
| d.w = _msContext.S[regNum - UNW_ARM_S0]; |
| return d.f; |
| } |
| if (regNum >= UNW_ARM_D0 && regNum <= UNW_ARM_D31) { |
| union { |
| uint64_t w; |
| double d; |
| } d; |
| d.w = _msContext.D[regNum - UNW_ARM_D0]; |
| return d.d; |
| } |
| _LIBUNWIND_ABORT("unsupported float register"); |
| #elif defined(_LIBUNWIND_TARGET_AARCH64) |
| return _msContext.V[regNum - UNW_AARCH64_V0].D[0]; |
| #else |
| (void)regNum; |
| _LIBUNWIND_ABORT("float registers unimplemented"); |
| #endif |
| } |
| |
| template <typename A, typename R> |
| void UnwindCursor<A, R>::setFloatReg(int regNum, unw_fpreg_t value) { |
| #if defined(_LIBUNWIND_TARGET_ARM) |
| if (regNum >= UNW_ARM_S0 && regNum <= UNW_ARM_S31) { |
| union { |
| uint32_t w; |
| float f; |
| } d; |
| d.f = (float)value; |
| _msContext.S[regNum - UNW_ARM_S0] = d.w; |
| } |
| if (regNum >= UNW_ARM_D0 && regNum <= UNW_ARM_D31) { |
| union { |
| uint64_t w; |
| double d; |
| } d; |
| d.d = value; |
| _msContext.D[regNum - UNW_ARM_D0] = d.w; |
| } |
| _LIBUNWIND_ABORT("unsupported float register"); |
| #elif defined(_LIBUNWIND_TARGET_AARCH64) |
| _msContext.V[regNum - UNW_AARCH64_V0].D[0] = value; |
| #else |
| (void)regNum; |
| (void)value; |
| _LIBUNWIND_ABORT("float registers unimplemented"); |
| #endif |
| } |
| |
| template <typename A, typename R> void UnwindCursor<A, R>::jumpto() { |
| RtlRestoreContext(&_msContext, nullptr); |
| } |
| |
| #ifdef __arm__ |
| template <typename A, typename R> void UnwindCursor<A, R>::saveVFPAsX() {} |
| #endif |
| |
| template <typename A, typename R> |
| const char *UnwindCursor<A, R>::getRegisterName(int regNum) { |
| return R::getRegisterName(regNum); |
| } |
| |
| template <typename A, typename R> bool UnwindCursor<A, R>::isSignalFrame() { |
| return false; |
| } |
| |
| #else // !defined(_LIBUNWIND_SUPPORT_SEH_UNWIND) || !defined(_WIN32) |
| |
| /// UnwindCursor contains all state (including all register values) during |
| /// an unwind. This is normally stack allocated inside a unw_cursor_t. |
| template <typename A, typename R> |
| class UnwindCursor : public AbstractUnwindCursor{ |
| typedef typename A::pint_t pint_t; |
| public: |
| UnwindCursor(unw_context_t *context, A &as); |
| UnwindCursor(A &as, void *threadArg); |
| virtual ~UnwindCursor() {} |
| virtual bool validReg(int); |
| virtual unw_word_t getReg(int); |
| virtual void setReg(int, unw_word_t); |
| virtual bool validFloatReg(int); |
| virtual unw_fpreg_t getFloatReg(int); |
| virtual void setFloatReg(int, unw_fpreg_t); |
| virtual int step(bool stage2 = false); |
| virtual void getInfo(unw_proc_info_t *); |
| virtual void jumpto(); |
| virtual bool isSignalFrame(); |
| virtual bool getFunctionName(char *buf, size_t len, unw_word_t *off); |
| virtual void setInfoBasedOnIPRegister(bool isReturnAddress = false); |
| virtual const char *getRegisterName(int num); |
| #ifdef __arm__ |
| virtual void saveVFPAsX(); |
| #endif |
| |
| #ifdef _AIX |
| virtual uintptr_t getDataRelBase(); |
| #endif |
| |
| #if defined(_LIBUNWIND_USE_CET) || defined(_LIBUNWIND_USE_GCS) |
| virtual void *get_registers() { return &_registers; } |
| #endif |
| |
| // libunwind does not and should not depend on C++ library which means that we |
| // need our own definition of inline placement new. |
| static void *operator new(size_t, UnwindCursor<A, R> *p) { return p; } |
| |
| private: |
| |
| #if defined(_LIBUNWIND_ARM_EHABI) |
| bool getInfoFromEHABISection(pint_t pc, const UnwindInfoSections §s); |
| |
| int stepWithEHABI() { |
| size_t len = 0; |
| size_t off = 0; |
| // FIXME: Calling decode_eht_entry() here is violating the libunwind |
| // abstraction layer. |
| const uint32_t *ehtp = |
| decode_eht_entry(reinterpret_cast<const uint32_t *>(_info.unwind_info), |
| &off, &len); |
| if (_Unwind_VRS_Interpret((_Unwind_Context *)this, ehtp, off, len) != |
| _URC_CONTINUE_UNWIND) |
| return UNW_STEP_END; |
| return UNW_STEP_SUCCESS; |
| } |
| #endif |
| |
| #if defined(_LIBUNWIND_CHECK_LINUX_SIGRETURN) |
| bool setInfoForSigReturn() { |
| R dummy; |
| return setInfoForSigReturn(dummy); |
| } |
| int stepThroughSigReturn() { |
| R dummy; |
| return stepThroughSigReturn(dummy); |
| } |
| bool isReadableAddr(const pint_t addr) const; |
| #if defined(_LIBUNWIND_TARGET_AARCH64) |
| bool setInfoForSigReturn(Registers_arm64 &); |
| int stepThroughSigReturn(Registers_arm64 &); |
| #endif |
| #if defined(_LIBUNWIND_TARGET_RISCV) |
| bool setInfoForSigReturn(Registers_riscv &); |
| int stepThroughSigReturn(Registers_riscv &); |
| #endif |
| #if defined(_LIBUNWIND_TARGET_S390X) |
| bool setInfoForSigReturn(Registers_s390x &); |
| int stepThroughSigReturn(Registers_s390x &); |
| #endif |
| template <typename Registers> bool setInfoForSigReturn(Registers &) { |
| return false; |
| } |
| template <typename Registers> int stepThroughSigReturn(Registers &) { |
| return UNW_STEP_END; |
| } |
| #elif defined(_LIBUNWIND_TARGET_HAIKU) |
| bool setInfoForSigReturn(); |
| int stepThroughSigReturn(); |
| #endif |
| |
| #if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND) |
| bool getInfoFromFdeCie(const typename CFI_Parser<A>::FDE_Info &fdeInfo, |
| const typename CFI_Parser<A>::CIE_Info &cieInfo, |
| pint_t pc, uintptr_t dso_base); |
| bool getInfoFromDwarfSection(pint_t pc, const UnwindInfoSections §s, |
| uint32_t fdeSectionOffsetHint=0); |
| int stepWithDwarfFDE(bool stage2) { |
| return DwarfInstructions<A, R>::stepWithDwarf( |
| _addressSpace, (pint_t)this->getReg(UNW_REG_IP), |
| (pint_t)_info.unwind_info, _registers, _isSignalFrame, stage2); |
| } |
| #endif |
| |
| #if defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND) |
| bool getInfoFromCompactEncodingSection(pint_t pc, |
| const UnwindInfoSections §s); |
| int stepWithCompactEncoding(bool stage2 = false) { |
| #if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND) |
| if ( compactSaysUseDwarf() ) |
| return stepWithDwarfFDE(stage2); |
| #endif |
| R dummy; |
| return stepWithCompactEncoding(dummy); |
| } |
| |
| #if defined(_LIBUNWIND_TARGET_X86_64) |
| int stepWithCompactEncoding(Registers_x86_64 &) { |
| return CompactUnwinder_x86_64<A>::stepWithCompactEncoding( |
| _info.format, _info.start_ip, _addressSpace, _registers); |
| } |
| #endif |
| |
| #if defined(_LIBUNWIND_TARGET_I386) |
| int stepWithCompactEncoding(Registers_x86 &) { |
| return CompactUnwinder_x86<A>::stepWithCompactEncoding( |
| _info.format, (uint32_t)_info.start_ip, _addressSpace, _registers); |
| } |
| #endif |
| |
| #if defined(_LIBUNWIND_TARGET_PPC) |
| int stepWithCompactEncoding(Registers_ppc &) { |
| return UNW_EINVAL; |
| } |
| #endif |
| |
| #if defined(_LIBUNWIND_TARGET_PPC64) |
| int stepWithCompactEncoding(Registers_ppc64 &) { |
| return UNW_EINVAL; |
| } |
| #endif |
| |
| |
| #if defined(_LIBUNWIND_TARGET_AARCH64) |
| int stepWithCompactEncoding(Registers_arm64 &) { |
| return CompactUnwinder_arm64<A>::stepWithCompactEncoding( |
| _info.format, _info.start_ip, _addressSpace, _registers); |
| } |
| #endif |
| |
| #if defined(_LIBUNWIND_TARGET_MIPS_O32) |
| int stepWithCompactEncoding(Registers_mips_o32 &) { |
| return UNW_EINVAL; |
| } |
| #endif |
| |
| #if defined(_LIBUNWIND_TARGET_MIPS_NEWABI) |
| int stepWithCompactEncoding(Registers_mips_newabi &) { |
| return UNW_EINVAL; |
| } |
| #endif |
| |
| #if defined(_LIBUNWIND_TARGET_LOONGARCH) |
| int stepWithCompactEncoding(Registers_loongarch &) { return UNW_EINVAL; } |
| #endif |
| |
| #if defined(_LIBUNWIND_TARGET_SPARC) |
| int stepWithCompactEncoding(Registers_sparc &) { return UNW_EINVAL; } |
| #endif |
| |
| #if defined(_LIBUNWIND_TARGET_SPARC64) |
| int stepWithCompactEncoding(Registers_sparc64 &) { return UNW_EINVAL; } |
| #endif |
| |
| #if defined (_LIBUNWIND_TARGET_RISCV) |
| int stepWithCompactEncoding(Registers_riscv &) { |
| return UNW_EINVAL; |
| } |
| #endif |
| |
| bool compactSaysUseDwarf(uint32_t *offset=NULL) const { |
| R dummy; |
| return compactSaysUseDwarf(dummy, offset); |
| } |
| |
| #if defined(_LIBUNWIND_TARGET_X86_64) |
| bool compactSaysUseDwarf(Registers_x86_64 &, uint32_t *offset) const { |
| if ((_info.format & UNWIND_X86_64_MODE_MASK) == UNWIND_X86_64_MODE_DWARF) { |
| if (offset) |
| *offset = (_info.format & UNWIND_X86_64_DWARF_SECTION_OFFSET); |
| return true; |
| } |
| return false; |
| } |
| #endif |
| |
| #if defined(_LIBUNWIND_TARGET_I386) |
| bool compactSaysUseDwarf(Registers_x86 &, uint32_t *offset) const { |
| if ((_info.format & UNWIND_X86_MODE_MASK) == UNWIND_X86_MODE_DWARF) { |
| if (offset) |
| *offset = (_info.format & UNWIND_X86_DWARF_SECTION_OFFSET); |
| return true; |
| } |
| return false; |
| } |
| #endif |
| |
| #if defined(_LIBUNWIND_TARGET_PPC) |
| bool compactSaysUseDwarf(Registers_ppc &, uint32_t *) const { |
| return true; |
| } |
| #endif |
| |
| #if defined(_LIBUNWIND_TARGET_PPC64) |
| bool compactSaysUseDwarf(Registers_ppc64 &, uint32_t *) const { |
| return true; |
| } |
| #endif |
| |
| #if defined(_LIBUNWIND_TARGET_AARCH64) |
| bool compactSaysUseDwarf(Registers_arm64 &, uint32_t *offset) const { |
| if ((_info.format & UNWIND_ARM64_MODE_MASK) == UNWIND_ARM64_MODE_DWARF) { |
| if (offset) |
| *offset = (_info.format & UNWIND_ARM64_DWARF_SECTION_OFFSET); |
| return true; |
| } |
| return false; |
| } |
| #endif |
| |
| #if defined(_LIBUNWIND_TARGET_MIPS_O32) |
| bool compactSaysUseDwarf(Registers_mips_o32 &, uint32_t *) const { |
| return true; |
| } |
| #endif |
| |
| #if defined(_LIBUNWIND_TARGET_MIPS_NEWABI) |
| bool compactSaysUseDwarf(Registers_mips_newabi &, uint32_t *) const { |
| return true; |
| } |
| #endif |
| |
| #if defined(_LIBUNWIND_TARGET_LOONGARCH) |
| bool compactSaysUseDwarf(Registers_loongarch &, uint32_t *) const { |
| return true; |
| } |
| #endif |
| |
| #if defined(_LIBUNWIND_TARGET_SPARC) |
| bool compactSaysUseDwarf(Registers_sparc &, uint32_t *) const { return true; } |
| #endif |
| |
| #if defined(_LIBUNWIND_TARGET_SPARC64) |
| bool compactSaysUseDwarf(Registers_sparc64 &, uint32_t *) const { |
| return true; |
| } |
| #endif |
| |
| #if defined (_LIBUNWIND_TARGET_RISCV) |
| bool compactSaysUseDwarf(Registers_riscv &, uint32_t *) const { |
| return true; |
| } |
| #endif |
| |
| #endif // defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND) |
| |
| #if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND) |
| compact_unwind_encoding_t dwarfEncoding() const { |
| R dummy; |
| return dwarfEncoding(dummy); |
| } |
| |
| #if defined(_LIBUNWIND_TARGET_X86_64) |
| compact_unwind_encoding_t dwarfEncoding(Registers_x86_64 &) const { |
| return UNWIND_X86_64_MODE_DWARF; |
| } |
| #endif |
| |
| #if defined(_LIBUNWIND_TARGET_I386) |
| compact_unwind_encoding_t dwarfEncoding(Registers_x86 &) const { |
| return UNWIND_X86_MODE_DWARF; |
| } |
| #endif |
| |
| #if defined(_LIBUNWIND_TARGET_PPC) |
| compact_unwind_encoding_t dwarfEncoding(Registers_ppc &) const { |
| return 0; |
| } |
| #endif |
| |
| #if defined(_LIBUNWIND_TARGET_PPC64) |
| compact_unwind_encoding_t dwarfEncoding(Registers_ppc64 &) const { |
| return 0; |
| } |
| #endif |
| |
| #if defined(_LIBUNWIND_TARGET_AARCH64) |
| compact_unwind_encoding_t dwarfEncoding(Registers_arm64 &) const { |
| return UNWIND_ARM64_MODE_DWARF; |
| } |
| #endif |
| |
| #if defined(_LIBUNWIND_TARGET_ARM) |
| compact_unwind_encoding_t dwarfEncoding(Registers_arm &) const { |
| return 0; |
| } |
| #endif |
| |
| #if defined (_LIBUNWIND_TARGET_OR1K) |
| compact_unwind_encoding_t dwarfEncoding(Registers_or1k &) const { |
| return 0; |
| } |
| #endif |
| |
| #if defined (_LIBUNWIND_TARGET_HEXAGON) |
| compact_unwind_encoding_t dwarfEncoding(Registers_hexagon &) const { |
| return 0; |
| } |
| #endif |
| |
| #if defined (_LIBUNWIND_TARGET_MIPS_O32) |
| compact_unwind_encoding_t dwarfEncoding(Registers_mips_o32 &) const { |
| return 0; |
| } |
| #endif |
| |
| #if defined (_LIBUNWIND_TARGET_MIPS_NEWABI) |
| compact_unwind_encoding_t dwarfEncoding(Registers_mips_newabi &) const { |
| return 0; |
| } |
| #endif |
| |
| #if defined(_LIBUNWIND_TARGET_LOONGARCH) |
| compact_unwind_encoding_t dwarfEncoding(Registers_loongarch &) const { |
| return 0; |
| } |
| #endif |
| |
| #if defined(_LIBUNWIND_TARGET_SPARC) |
| compact_unwind_encoding_t dwarfEncoding(Registers_sparc &) const { return 0; } |
| #endif |
| |
| #if defined(_LIBUNWIND_TARGET_SPARC64) |
| compact_unwind_encoding_t dwarfEncoding(Registers_sparc64 &) const { |
| return 0; |
| } |
| #endif |
| |
| #if defined (_LIBUNWIND_TARGET_RISCV) |
| compact_unwind_encoding_t dwarfEncoding(Registers_riscv &) const { |
| return 0; |
| } |
| #endif |
| |
| #if defined (_LIBUNWIND_TARGET_S390X) |
| compact_unwind_encoding_t dwarfEncoding(Registers_s390x &) const { |
| return 0; |
| } |
| #endif |
| |
| #endif // defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND) |
| |
| #if defined(_LIBUNWIND_SUPPORT_SEH_UNWIND) |
| // For runtime environments using SEH unwind data without Windows runtime |
| // support. |
| pint_t getLastPC() const { /* FIXME: Implement */ return 0; } |
| void setLastPC(pint_t pc) { /* FIXME: Implement */ } |
| RUNTIME_FUNCTION *lookUpSEHUnwindInfo(pint_t pc, pint_t *base) { |
| /* FIXME: Implement */ |
| *base = 0; |
| return nullptr; |
| } |
| bool getInfoFromSEH(pint_t pc); |
| int stepWithSEHData() { /* FIXME: Implement */ return 0; } |
| #endif // defined(_LIBUNWIND_SUPPORT_SEH_UNWIND) |
| |
| #if defined(_LIBUNWIND_SUPPORT_TBTAB_UNWIND) |
| bool getInfoFromTBTable(pint_t pc, R ®isters); |
| int stepWithTBTable(pint_t pc, tbtable *TBTable, R ®isters, |
| bool &isSignalFrame); |
| int stepWithTBTableData() { |
| return stepWithTBTable(reinterpret_cast<pint_t>(this->getReg(UNW_REG_IP)), |
| reinterpret_cast<tbtable *>(_info.unwind_info), |
| _registers, _isSignalFrame); |
| } |
| #endif // defined(_LIBUNWIND_SUPPORT_TBTAB_UNWIND) |
| |
| A &_addressSpace; |
| R _registers; |
| unw_proc_info_t _info; |
| bool _unwindInfoMissing; |
| bool _isSignalFrame; |
| #if defined(_LIBUNWIND_CHECK_LINUX_SIGRETURN) || \ |
| defined(_LIBUNWIND_TARGET_HAIKU) |
| bool _isSigReturn = false; |
| #endif |
| }; |
| |
| |
| template <typename A, typename R> |
| UnwindCursor<A, R>::UnwindCursor(unw_context_t *context, A &as) |
| : _addressSpace(as), _registers(context), _unwindInfoMissing(false), |
| _isSignalFrame(false) { |
| static_assert((check_fit<UnwindCursor<A, R>, unw_cursor_t>::does_fit), |
| "UnwindCursor<> does not fit in unw_cursor_t"); |
| static_assert((alignof(UnwindCursor<A, R>) <= alignof(unw_cursor_t)), |
| "UnwindCursor<> requires more alignment than unw_cursor_t"); |
| memset(&_info, 0, sizeof(_info)); |
| } |
| |
| template <typename A, typename R> |
| UnwindCursor<A, R>::UnwindCursor(A &as, void *) |
| : _addressSpace(as), _unwindInfoMissing(false), _isSignalFrame(false) { |
| memset(&_info, 0, sizeof(_info)); |
| // FIXME |
| // fill in _registers from thread arg |
| } |
| |
| |
| template <typename A, typename R> |
| bool UnwindCursor<A, R>::validReg(int regNum) { |
| return _registers.validRegister(regNum); |
| } |
| |
| template <typename A, typename R> |
| unw_word_t UnwindCursor<A, R>::getReg(int regNum) { |
| return _registers.getRegister(regNum); |
| } |
| |
| template <typename A, typename R> |
| void UnwindCursor<A, R>::setReg(int regNum, unw_word_t value) { |
| _registers.setRegister(regNum, (typename A::pint_t)value); |
| } |
| |
| template <typename A, typename R> |
| bool UnwindCursor<A, R>::validFloatReg(int regNum) { |
| return _registers.validFloatRegister(regNum); |
| } |
| |
| template <typename A, typename R> |
| unw_fpreg_t UnwindCursor<A, R>::getFloatReg(int regNum) { |
| return _registers.getFloatRegister(regNum); |
| } |
| |
| template <typename A, typename R> |
| void UnwindCursor<A, R>::setFloatReg(int regNum, unw_fpreg_t value) { |
| _registers.setFloatRegister(regNum, value); |
| } |
| |
| template <typename A, typename R> void UnwindCursor<A, R>::jumpto() { |
| _registers.jumpto(); |
| } |
| |
| #ifdef __arm__ |
| template <typename A, typename R> void UnwindCursor<A, R>::saveVFPAsX() { |
| _registers.saveVFPAsX(); |
| } |
| #endif |
| |
| #ifdef _AIX |
| template <typename A, typename R> |
| uintptr_t UnwindCursor<A, R>::getDataRelBase() { |
| return reinterpret_cast<uintptr_t>(_info.extra); |
| } |
| #endif |
| |
| template <typename A, typename R> |
| const char *UnwindCursor<A, R>::getRegisterName(int regNum) { |
| return _registers.getRegisterName(regNum); |
| } |
| |
| template <typename A, typename R> bool UnwindCursor<A, R>::isSignalFrame() { |
| return _isSignalFrame; |
| } |
| |
| #endif // defined(_LIBUNWIND_SUPPORT_SEH_UNWIND) |
| |
| #if defined(_LIBUNWIND_ARM_EHABI) |
| template<typename A> |
| struct EHABISectionIterator { |
| typedef EHABISectionIterator _Self; |
| |
| typedef typename A::pint_t value_type; |
| typedef typename A::pint_t* pointer; |
| typedef typename A::pint_t& reference; |
| typedef size_t size_type; |
| typedef size_t difference_type; |
| |
| static _Self begin(A& addressSpace, const UnwindInfoSections& sects) { |
| return _Self(addressSpace, sects, 0); |
| } |
| static _Self end(A& addressSpace, const UnwindInfoSections& sects) { |
| return _Self(addressSpace, sects, |
| sects.arm_section_length / sizeof(EHABIIndexEntry)); |
| } |
| |
| EHABISectionIterator(A& addressSpace, const UnwindInfoSections& sects, size_t i) |
| : _i(i), _addressSpace(&addressSpace), _sects(§s) {} |
| |
| _Self& operator++() { ++_i; return *this; } |
| _Self& operator+=(size_t a) { _i += a; return *this; } |
| _Self& operator--() { assert(_i > 0); --_i; return *this; } |
| _Self& operator-=(size_t a) { assert(_i >= a); _i -= a; return *this; } |
| |
| _Self operator+(size_t a) { _Self out = *this; out._i += a; return out; } |
| _Self operator-(size_t a) { assert(_i >= a); _Self out = *this; out._i -= a; return out; } |
| |
| size_t operator-(const _Self& other) const { return _i - other._i; } |
| |
| bool operator==(const _Self& other) const { |
| assert(_addressSpace == other._addressSpace); |
| assert(_sects == other._sects); |
| return _i == other._i; |
| } |
| |
| bool operator!=(const _Self& other) const { |
| assert(_addressSpace == other._addressSpace); |
| assert(_sects == other._sects); |
| return _i != other._i; |
| } |
| |
| typename A::pint_t operator*() const { return functionAddress(); } |
| |
| typename A::pint_t functionAddress() const { |
| typename A::pint_t indexAddr = _sects->arm_section + arrayoffsetof( |
| EHABIIndexEntry, _i, functionOffset); |
| return indexAddr + signExtendPrel31(_addressSpace->get32(indexAddr)); |
| } |
| |
| typename A::pint_t dataAddress() { |
| typename A::pint_t indexAddr = _sects->arm_section + arrayoffsetof( |
| EHABIIndexEntry, _i, data); |
| return indexAddr; |
| } |
| |
| private: |
| size_t _i; |
| A* _addressSpace; |
| const UnwindInfoSections* _sects; |
| }; |
| |
| namespace { |
| |
| template <typename A> |
| EHABISectionIterator<A> EHABISectionUpperBound( |
| EHABISectionIterator<A> first, |
| EHABISectionIterator<A> last, |
| typename A::pint_t value) { |
| size_t len = last - first; |
| while (len > 0) { |
| size_t l2 = len / 2; |
| EHABISectionIterator<A> m = first + l2; |
| if (value < *m) { |
| len = l2; |
| } else { |
| first = ++m; |
| len -= l2 + 1; |
| } |
| } |
| return first; |
| } |
| |
| } |
| |
| template <typename A, typename R> |
| bool UnwindCursor<A, R>::getInfoFromEHABISection( |
| pint_t pc, |
| const UnwindInfoSections §s) { |
| EHABISectionIterator<A> begin = |
| EHABISectionIterator<A>::begin(_addressSpace, sects); |
| EHABISectionIterator<A> end = |
| EHABISectionIterator<A>::end(_addressSpace, sects); |
| if (begin == end) |
| return false; |
| |
| EHABISectionIterator<A> itNextPC = EHABISectionUpperBound(begin, end, pc); |
| if (itNextPC == begin) |
| return false; |
| EHABISectionIterator<A> itThisPC = itNextPC - 1; |
| |
| pint_t thisPC = itThisPC.functionAddress(); |
| // If an exception is thrown from a function, corresponding to the last entry |
| // in the table, we don't really know the function extent and have to choose a |
| // value for nextPC. Choosing max() will allow the range check during trace to |
| // succeed. |
| pint_t nextPC = (itNextPC == end) ? UINTPTR_MAX : itNextPC.functionAddress(); |
| pint_t indexDataAddr = itThisPC.dataAddress(); |
| |
| if (indexDataAddr == 0) |
| return false; |
| |
| uint32_t indexData = _addressSpace.get32(indexDataAddr); |
| if (indexData == UNW_EXIDX_CANTUNWIND) |
| return false; |
| |
| // If the high bit is set, the exception handling table entry is inline inside |
| // the index table entry on the second word (aka |indexDataAddr|). Otherwise, |
| // the table points at an offset in the exception handling table (section 5 |
| // EHABI). |
| pint_t exceptionTableAddr; |
| uint32_t exceptionTableData; |
| bool isSingleWordEHT; |
| if (indexData & 0x80000000) { |
| exceptionTableAddr = indexDataAddr; |
| // TODO(ajwong): Should this data be 0? |
| exceptionTableData = indexData; |
| isSingleWordEHT = true; |
| } else { |
| exceptionTableAddr = indexDataAddr + signExtendPrel31(indexData); |
| exceptionTableData = _addressSpace.get32(exceptionTableAddr); |
| isSingleWordEHT = false; |
| } |
| |
| // Now we know the 3 things: |
| // exceptionTableAddr -- exception handler table entry. |
| // exceptionTableData -- the data inside the first word of the eht entry. |
| // isSingleWordEHT -- whether the entry is in the index. |
| unw_word_t personalityRoutine = 0xbadf00d; |
| bool scope32 = false; |
| uintptr_t lsda; |
| |
| // If the high bit in the exception handling table entry is set, the entry is |
| // in compact form (section 6.3 EHABI). |
| if (exceptionTableData & 0x80000000) { |
| // Grab the index of the personality routine from the compact form. |
| uint32_t choice = (exceptionTableData & 0x0f000000) >> 24; |
| uint32_t extraWords = 0; |
| switch (choice) { |
| case 0: |
| personalityRoutine = (unw_word_t) &__aeabi_unwind_cpp_pr0; |
| extraWords = 0; |
| scope32 = false; |
| lsda = isSingleWordEHT ? 0 : (exceptionTableAddr + 4); |
| break; |
| case 1: |
| personalityRoutine = (unw_word_t) &__aeabi_unwind_cpp_pr1; |
| extraWords = (exceptionTableData & 0x00ff0000) >> 16; |
| scope32 = false; |
| lsda = exceptionTableAddr + (extraWords + 1) * 4; |
| break; |
| case 2: |
| personalityRoutine = (unw_word_t) &__aeabi_unwind_cpp_pr2; |
| extraWords = (exceptionTableData & 0x00ff0000) >> 16; |
| scope32 = true; |
| lsda = exceptionTableAddr + (extraWords + 1) * 4; |
| break; |
| default: |
| _LIBUNWIND_ABORT("unknown personality routine"); |
| return false; |
| } |
| |
| if (isSingleWordEHT) { |
| if (extraWords != 0) { |
| _LIBUNWIND_ABORT("index inlined table detected but pr function " |
| "requires extra words"); |
| return false; |
| } |
| } |
| } else { |
| pint_t personalityAddr = |
| exceptionTableAddr + signExtendPrel31(exceptionTableData); |
| personalityRoutine = personalityAddr; |
| |
| // ARM EHABI # 6.2, # 9.2 |
| // |
| // +---- ehtp |
| // v |
| // +--------------------------------------+ |
| // | +--------+--------+--------+-------+ | |
| // | |0| prel31 to personalityRoutine | | |
| // | +--------+--------+--------+-------+ | |
| // | | N | unwind opcodes | | <-- UnwindData |
| // | +--------+--------+--------+-------+ | |
| // | | Word 2 unwind opcodes | | |
| // | +--------+--------+--------+-------+ | |
| // | ... | |
| // | +--------+--------+--------+-------+ | |
| // | | Word N unwind opcodes | | |
| // | +--------+--------+--------+-------+ | |
| // | | LSDA | | <-- lsda |
| // | | ... | | |
| // | +--------+--------+--------+-------+ | |
| // +--------------------------------------+ |
| |
| uint32_t *UnwindData = reinterpret_cast<uint32_t*>(exceptionTableAddr) + 1; |
| uint32_t FirstDataWord = *UnwindData; |
| size_t N = ((FirstDataWord >> 24) & 0xff); |
| size_t NDataWords = N + 1; |
| lsda = reinterpret_cast<uintptr_t>(UnwindData + NDataWords); |
| } |
| |
| _info.start_ip = thisPC; |
| _info.end_ip = nextPC; |
| _info.handler = personalityRoutine; |
| _info.unwind_info = exceptionTableAddr; |
| _info.lsda = lsda; |
| // flags is pr_cache.additional. See EHABI #7.2 for definition of bit 0. |
| _info.flags = (isSingleWordEHT ? 1 : 0) | (scope32 ? 0x2 : 0); // Use enum? |
| |
| return true; |
| } |
| #endif |
| |
| #if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND) |
| template <typename A, typename R> |
| bool UnwindCursor<A, R>::getInfoFromFdeCie( |
| const typename CFI_Parser<A>::FDE_Info &fdeInfo, |
| const typename CFI_Parser<A>::CIE_Info &cieInfo, pint_t pc, |
| uintptr_t dso_base) { |
| typename CFI_Parser<A>::PrologInfo prolog; |
| if (CFI_Parser<A>::parseFDEInstructions(_addressSpace, fdeInfo, cieInfo, pc, |
| R::getArch(), &prolog)) { |
| // Save off parsed FDE info |
| _info.start_ip = fdeInfo.pcStart; |
| _info.end_ip = fdeInfo.pcEnd; |
| _info.lsda = fdeInfo.lsda; |
| _info.handler = cieInfo.personality; |
| // Some frameless functions need SP altered when resuming in function, so |
| // propagate spExtraArgSize. |
| _info.gp = prolog.spExtraArgSize; |
| _info.flags = 0; |
| _info.format = dwarfEncoding(); |
| _info.unwind_info = fdeInfo.fdeStart; |
| _info.unwind_info_size = static_cast<uint32_t>(fdeInfo.fdeLength); |
| _info.extra = static_cast<unw_word_t>(dso_base); |
| return true; |
| } |
| return false; |
| } |
| |
| template <typename A, typename R> |
| bool UnwindCursor<A, R>::getInfoFromDwarfSection(pint_t pc, |
| const UnwindInfoSections §s, |
| uint32_t fdeSectionOffsetHint) { |
| typename CFI_Parser<A>::FDE_Info fdeInfo; |
| typename CFI_Parser<A>::CIE_Info cieInfo; |
| bool foundFDE = false; |
| bool foundInCache = false; |
| // If compact encoding table gave offset into dwarf section, go directly there |
| if (fdeSectionOffsetHint != 0) { |
| foundFDE = CFI_Parser<A>::findFDE(_addressSpace, pc, sects.dwarf_section, |
| sects.dwarf_section_length, |
| sects.dwarf_section + fdeSectionOffsetHint, |
| &fdeInfo, &cieInfo); |
| } |
| #if defined(_LIBUNWIND_SUPPORT_DWARF_INDEX) |
| if (!foundFDE && (sects.dwarf_index_section != 0)) { |
| foundFDE = EHHeaderParser<A>::findFDE( |
| _addressSpace, pc, sects.dwarf_index_section, |
| (uint32_t)sects.dwarf_index_section_length, &fdeInfo, &cieInfo); |
| } |
| #endif |
| if (!foundFDE) { |
| // otherwise, search cache of previously found FDEs. |
| pint_t cachedFDE = DwarfFDECache<A>::findFDE(sects.dso_base, pc); |
| if (cachedFDE != 0) { |
| foundFDE = |
| CFI_Parser<A>::findFDE(_addressSpace, pc, sects.dwarf_section, |
| sects.dwarf_section_length, |
| cachedFDE, &fdeInfo, &cieInfo); |
| foundInCache = foundFDE; |
| } |
| } |
| if (!foundFDE) { |
| // Still not found, do full scan of __eh_frame section. |
| foundFDE = CFI_Parser<A>::findFDE(_addressSpace, pc, sects.dwarf_section, |
| sects.dwarf_section_length, 0, |
| &fdeInfo, &cieInfo); |
| } |
| if (foundFDE) { |
| if (getInfoFromFdeCie(fdeInfo, cieInfo, pc, sects.dso_base)) { |
| // Add to cache (to make next lookup faster) if we had no hint |
| // and there was no index. |
| if (!foundInCache && (fdeSectionOffsetHint == 0)) { |
| #if defined(_LIBUNWIND_SUPPORT_DWARF_INDEX) |
| if (sects.dwarf_index_section == 0) |
| #endif |
| DwarfFDECache<A>::add(sects.dso_base, fdeInfo.pcStart, fdeInfo.pcEnd, |
| fdeInfo.fdeStart); |
| } |
| return true; |
| } |
| } |
| //_LIBUNWIND_DEBUG_LOG("can't find/use FDE for pc=0x%llX", (uint64_t)pc); |
| return false; |
| } |
| #endif // defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND) |
| |
| |
| #if defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND) |
| template <typename A, typename R> |
| bool UnwindCursor<A, R>::getInfoFromCompactEncodingSection(pint_t pc, |
| const UnwindInfoSections §s) { |
| const bool log = false; |
| if (log) |
| fprintf(stderr, "getInfoFromCompactEncodingSection(pc=0x%llX, mh=0x%llX)\n", |
| (uint64_t)pc, (uint64_t)sects.dso_base); |
| |
| const UnwindSectionHeader<A> sectionHeader(_addressSpace, |
| sects.compact_unwind_section); |
| if (sectionHeader.version() != UNWIND_SECTION_VERSION) |
| return false; |
| |
| // do a binary search of top level index to find page with unwind info |
| pint_t targetFunctionOffset = pc - sects.dso_base; |
| const UnwindSectionIndexArray<A> topIndex(_addressSpace, |
| sects.compact_unwind_section |
| + sectionHeader.indexSectionOffset()); |
| uint32_t low = 0; |
| uint32_t high = sectionHeader.indexCount(); |
| uint32_t last = high - 1; |
| while (low < high) { |
| uint32_t mid = (low + high) / 2; |
| //if ( log ) fprintf(stderr, "\tmid=%d, low=%d, high=%d, *mid=0x%08X\n", |
| //mid, low, high, topIndex.functionOffset(mid)); |
| if (topIndex.functionOffset(mid) <= targetFunctionOffset) { |
| if ((mid == last) || |
| (topIndex.functionOffset(mid + 1) > targetFunctionOffset)) { |
| low = mid; |
| break; |
| } else { |
| low = mid + 1; |
| } |
| } else { |
| high = mid; |
| } |
| } |
| const uint32_t firstLevelFunctionOffset = topIndex.functionOffset(low); |
| const uint32_t firstLevelNextPageFunctionOffset = |
| topIndex.functionOffset(low + 1); |
| const pint_t secondLevelAddr = |
| sects.compact_unwind_section + topIndex.secondLevelPagesSectionOffset(low); |
| const pint_t lsdaArrayStartAddr = |
| sects.compact_unwind_section + topIndex.lsdaIndexArraySectionOffset(low); |
| const pint_t lsdaArrayEndAddr = |
| sects.compact_unwind_section + topIndex.lsdaIndexArraySectionOffset(low+1); |
| if (log) |
| fprintf(stderr, "\tfirst level search for result index=%d " |
| "to secondLevelAddr=0x%llX\n", |
| low, (uint64_t) secondLevelAddr); |
| // do a binary search of second level page index |
| uint32_t encoding = 0; |
| pint_t funcStart = 0; |
| pint_t funcEnd = 0; |
| pint_t lsda = 0; |
| pint_t personality = 0; |
| uint32_t pageKind = _addressSpace.get32(secondLevelAddr); |
| if (pageKind == UNWIND_SECOND_LEVEL_REGULAR) { |
| // regular page |
| UnwindSectionRegularPageHeader<A> pageHeader(_addressSpace, |
| secondLevelAddr); |
| UnwindSectionRegularArray<A> pageIndex( |
| _addressSpace, secondLevelAddr + pageHeader.entryPageOffset()); |
| // binary search looks for entry with e where index[e].offset <= pc < |
| // index[e+1].offset |
| if (log) |
| fprintf(stderr, "\tbinary search for targetFunctionOffset=0x%08llX in " |
| "regular page starting at secondLevelAddr=0x%llX\n", |
| (uint64_t) targetFunctionOffset, (uint64_t) secondLevelAddr); |
| low = 0; |
| high = pageHeader.entryCount(); |
| while (low < high) { |
| uint32_t mid = (low + high) / 2; |
| if (pageIndex.functionOffset(mid) <= targetFunctionOffset) { |
| if (mid == (uint32_t)(pageHeader.entryCount() - 1)) { |
| // at end of table |
| low = mid; |
| funcEnd = firstLevelNextPageFunctionOffset + sects.dso_base; |
| break; |
| } else if (pageIndex.functionOffset(mid + 1) > targetFunctionOffset) { |
| // next is too big, so we found it |
| low = mid; |
| funcEnd = pageIndex.functionOffset(low + 1) + sects.dso_base; |
| break; |
| } else { |
| low = mid + 1; |
| } |
| } else { |
| high = mid; |
| } |
| } |
| encoding = pageIndex.encoding(low); |
| funcStart = pageIndex.functionOffset(low) + sects.dso_base; |
| if (pc < funcStart) { |
| if (log) |
| fprintf( |
| stderr, |
| "\tpc not in table, pc=0x%llX, funcStart=0x%llX, funcEnd=0x%llX\n", |
| (uint64_t) pc, (uint64_t) funcStart, (uint64_t) funcEnd); |
| return false; |
| } |
| if (pc > funcEnd) { |
| if (log) |
| fprintf( |
| stderr, |
| "\tpc not in table, pc=0x%llX, funcStart=0x%llX, funcEnd=0x%llX\n", |
| (uint64_t) pc, (uint64_t) funcStart, (uint64_t) funcEnd); |
| return false; |
| } |
| } else if (pageKind == UNWIND_SECOND_LEVEL_COMPRESSED) { |
| // compressed page |
| UnwindSectionCompressedPageHeader<A> pageHeader(_addressSpace, |
| secondLevelAddr); |
| UnwindSectionCompressedArray<A> pageIndex( |
| _addressSpace, secondLevelAddr + pageHeader.entryPageOffset()); |
| const uint32_t targetFunctionPageOffset = |
| (uint32_t)(targetFunctionOffset - firstLevelFunctionOffset); |
| // binary search looks for entry with e where index[e].offset <= pc < |
| // index[e+1].offset |
| if (log) |
| fprintf(stderr, "\tbinary search of compressed page starting at " |
| "secondLevelAddr=0x%llX\n", |
| (uint64_t) secondLevelAddr); |
| low = 0; |
| last = pageHeader.entryCount() - 1; |
| high = pageHeader.entryCount(); |
| while (low < high) { |
| uint32_t mid = (low + high) / 2; |
| if (pageIndex.functionOffset(mid) <= targetFunctionPageOffset) { |
| if ((mid == last) || |
| (pageIndex.functionOffset(mid + 1) > targetFunctionPageOffset)) { |
| low = mid; |
| break; |
| } else { |
| low = mid + 1; |
| } |
| } else { |
| high = mid; |
| } |
| } |
| funcStart = pageIndex.functionOffset(low) + firstLevelFunctionOffset |
| + sects.dso_base; |
| if (low < last) |
| funcEnd = |
| pageIndex.functionOffset(low + 1) + firstLevelFunctionOffset |
| + sects.dso_base; |
| else |
| funcEnd = firstLevelNextPageFunctionOffset + sects.dso_base; |
| if (pc < funcStart) { |
| _LIBUNWIND_DEBUG_LOG("malformed __unwind_info, pc=0x%llX " |
| "not in second level compressed unwind table. " |
| "funcStart=0x%llX", |
| (uint64_t) pc, (uint64_t) funcStart); |
| return false; |
| } |
| if (pc > funcEnd) { |
| _LIBUNWIND_DEBUG_LOG("malformed __unwind_info, pc=0x%llX " |
| "not in second level compressed unwind table. " |
| "funcEnd=0x%llX", |
| (uint64_t) pc, (uint64_t) funcEnd); |
| return false; |
| } |
| uint16_t encodingIndex = pageIndex.encodingIndex(low); |
| if (encodingIndex < sectionHeader.commonEncodingsArrayCount()) { |
| // encoding is in common table in section header |
| encoding = _addressSpace.get32( |
| sects.compact_unwind_section + |
| sectionHeader.commonEncodingsArraySectionOffset() + |
| encodingIndex * sizeof(uint32_t)); |
| } else { |
| // encoding is in page specific table |
| uint16_t pageEncodingIndex = |
| encodingIndex - (uint16_t)sectionHeader.commonEncodingsArrayCount(); |
| encoding = _addressSpace.get32(secondLevelAddr + |
| pageHeader.encodingsPageOffset() + |
| pageEncodingIndex * sizeof(uint32_t)); |
| } |
| } else { |
| _LIBUNWIND_DEBUG_LOG( |
| "malformed __unwind_info at 0x%0llX bad second level page", |
| (uint64_t)sects.compact_unwind_section); |
| return false; |
| } |
| |
| // look up LSDA, if encoding says function has one |
| if (encoding & UNWIND_HAS_LSDA) { |
| UnwindSectionLsdaArray<A> lsdaIndex(_addressSpace, lsdaArrayStartAddr); |
| uint32_t funcStartOffset = (uint32_t)(funcStart - sects.dso_base); |
| low = 0; |
| high = (uint32_t)(lsdaArrayEndAddr - lsdaArrayStartAddr) / |
| sizeof(unwind_info_section_header_lsda_index_entry); |
| // binary search looks for entry with exact match for functionOffset |
| if (log) |
| fprintf(stderr, |
| "\tbinary search of lsda table for targetFunctionOffset=0x%08X\n", |
| funcStartOffset); |
| while (low < high) { |
| uint32_t mid = (low + high) / 2; |
| if (lsdaIndex.functionOffset(mid) == funcStartOffset) { |
| lsda = lsdaIndex.lsdaOffset(mid) + sects.dso_base; |
| break; |
| } else if (lsdaIndex.functionOffset(mid) < funcStartOffset) { |
| low = mid + 1; |
| } else { |
| high = mid; |
| } |
| } |
| if (lsda == 0) { |
| _LIBUNWIND_DEBUG_LOG("found encoding 0x%08X with HAS_LSDA bit set for " |
| "pc=0x%0llX, but lsda table has no entry", |
| encoding, (uint64_t) pc); |
| return false; |
| } |
| } |
| |
| // extract personality routine, if encoding says function has one |
| uint32_t personalityIndex = (encoding & UNWIND_PERSONALITY_MASK) >> |
| (__builtin_ctz(UNWIND_PERSONALITY_MASK)); |
| if (personalityIndex != 0) { |
| --personalityIndex; // change 1-based to zero-based index |
| if (personalityIndex >= sectionHeader.personalityArrayCount()) { |
| _LIBUNWIND_DEBUG_LOG("found encoding 0x%08X with personality index %d, " |
| "but personality table has only %d entries", |
| encoding, personalityIndex, |
| sectionHeader.personalityArrayCount()); |
| return false; |
| } |
| int32_t personalityDelta = (int32_t)_addressSpace.get32( |
| sects.compact_unwind_section + |
| sectionHeader.personalityArraySectionOffset() + |
| personalityIndex * sizeof(uint32_t)); |
| pint_t personalityPointer = sects.dso_base + (pint_t)personalityDelta; |
| personality = _addressSpace.getP(personalityPointer); |
| if (log) |
| fprintf(stderr, "getInfoFromCompactEncodingSection(pc=0x%llX), " |
| "personalityDelta=0x%08X, personality=0x%08llX\n", |
| (uint64_t) pc, personalityDelta, (uint64_t) personality); |
| } |
| |
| if (log) |
| fprintf(stderr, "getInfoFromCompactEncodingSection(pc=0x%llX), " |
| "encoding=0x%08X, lsda=0x%08llX for funcStart=0x%llX\n", |
| (uint64_t) pc, encoding, (uint64_t) lsda, (uint64_t) funcStart); |
| _info.start_ip = funcStart; |
| _info.end_ip = funcEnd; |
| _info.lsda = lsda; |
| _info.handler = personality; |
| _info.gp = 0; |
| _info.flags = 0; |
| _info.format = encoding; |
| _info.unwind_info = 0; |
| _info.unwind_info_size = 0; |
| _info.extra = sects.dso_base; |
| return true; |
| } |
| #endif // defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND) |
| |
| |
| #if defined(_LIBUNWIND_SUPPORT_SEH_UNWIND) |
| template <typename A, typename R> |
| bool UnwindCursor<A, R>::getInfoFromSEH(pint_t pc) { |
| pint_t base; |
| RUNTIME_FUNCTION *unwindEntry = lookUpSEHUnwindInfo(pc, &base); |
| if (!unwindEntry) { |
| _LIBUNWIND_DEBUG_LOG("\tpc not in table, pc=0x%llX", (uint64_t) pc); |
| return false; |
| } |
| _info.gp = 0; |
| _info.flags = 0; |
| _info.format = 0; |
| _info.unwind_info_size = sizeof(RUNTIME_FUNCTION); |
| _info.unwind_info = reinterpret_cast<unw_word_t>(unwindEntry); |
| _info.extra = base; |
| _info.start_ip = base + unwindEntry->BeginAddress; |
| #ifdef _LIBUNWIND_TARGET_X86_64 |
| _info.end_ip = base + unwindEntry->EndAddress; |
| // Only fill in the handler and LSDA if they're stale. |
| if (pc != getLastPC()) { |
| UNWIND_INFO *xdata = reinterpret_cast<UNWIND_INFO *>(base + unwindEntry->UnwindData); |
| if (xdata->Flags & (UNW_FLAG_EHANDLER|UNW_FLAG_UHANDLER)) { |
| // The personality is given in the UNWIND_INFO itself. The LSDA immediately |
| // follows the UNWIND_INFO. (This follows how both Clang and MSVC emit |
| // these structures.) |
| // N.B. UNWIND_INFO structs are DWORD-aligned. |
| uint32_t lastcode = (xdata->CountOfCodes + 1) & ~1; |
| const uint32_t *handler = reinterpret_cast<uint32_t *>(&xdata->UnwindCodes[lastcode]); |
| _info.lsda = reinterpret_cast<unw_word_t>(handler+1); |
| _dispContext.HandlerData = reinterpret_cast<void *>(_info.lsda); |
| _dispContext.LanguageHandler = |
| reinterpret_cast<EXCEPTION_ROUTINE *>(base + *handler); |
| if (*handler) { |
| _info.handler = reinterpret_cast<unw_word_t>(__libunwind_seh_personality); |
| } else |
| _info.handler = 0; |
| } else { |
| _info.lsda = 0; |
| _info.handler = 0; |
| } |
| } |
| #endif |
| setLastPC(pc); |
| return true; |
| } |
| #endif |
| |
| #if defined(_LIBUNWIND_SUPPORT_TBTAB_UNWIND) |
| // Masks for traceback table field xtbtable. |
| enum xTBTableMask : uint8_t { |
| reservedBit = 0x02, // The traceback table was incorrectly generated if set |
| // (see comments in function getInfoFromTBTable(). |
| ehInfoBit = 0x08 // Exception handling info is present if set |
| }; |
| |
| enum frameType : unw_word_t { |
| frameWithXLEHStateTable = 0, |
| frameWithEHInfo = 1 |
| }; |
| |
| extern "C" { |
| typedef _Unwind_Reason_Code __xlcxx_personality_v0_t(int, _Unwind_Action, |
| uint64_t, |
| _Unwind_Exception *, |
| struct _Unwind_Context *); |
| } |
| |
| static __xlcxx_personality_v0_t *xlcPersonalityV0; |
| static RWMutex xlcPersonalityV0InitLock; |
| |
| template <typename A, typename R> |
| bool UnwindCursor<A, R>::getInfoFromTBTable(pint_t pc, R ®isters) { |
| uint32_t *p = reinterpret_cast<uint32_t *>(pc); |
| |
| // Keep looking forward until a word of 0 is found. The traceback |
| // table starts at the following word. |
| while (*p) |
| ++p; |
| tbtable *TBTable = reinterpret_cast<tbtable *>(p + 1); |
| |
| if (_LIBUNWIND_TRACING_UNWINDING) { |
| char functionBuf[512]; |
| const char *functionName = functionBuf; |
| unw_word_t offset; |
| if (!getFunctionName(functionBuf, sizeof(functionBuf), &offset)) { |
| functionName = ".anonymous."; |
| } |
| _LIBUNWIND_TRACE_UNWINDING("%s: Look up traceback table of func=%s at %p", |
| __func__, functionName, |
| reinterpret_cast<void *>(TBTable)); |
| } |
| |
| // If the traceback table does not contain necessary info, bypass this frame. |
| if (!TBTable->tb.has_tboff) |
| return false; |
| |
| // Structure tbtable_ext contains important data we are looking for. |
| p = reinterpret_cast<uint32_t *>(&TBTable->tb_ext); |
| |
| // Skip field parminfo if it exists. |
| if (TBTable->tb.fixedparms || TBTable->tb.floatparms) |
| ++p; |
| |
| // p now points to tb_offset, the offset from start of function to TB table. |
| unw_word_t start_ip = |
| reinterpret_cast<unw_word_t>(TBTable) - *p - sizeof(uint32_t); |
| unw_word_t end_ip = reinterpret_cast<unw_word_t>(TBTable); |
| ++p; |
| |
| _LIBUNWIND_TRACE_UNWINDING("start_ip=%p, end_ip=%p\n", |
| reinterpret_cast<void *>(start_ip), |
| reinterpret_cast<void *>(end_ip)); |
| |
| // Skip field hand_mask if it exists. |
| if (TBTable->tb.int_hndl) |
| ++p; |
| |
| unw_word_t lsda = 0; |
| unw_word_t handler = 0; |
| unw_word_t flags = frameType::frameWithXLEHStateTable; |
| |
| if (TBTable->tb.lang == TB_CPLUSPLUS && TBTable->tb.has_ctl) { |
| // State table info is available. The ctl_info field indicates the |
| // number of CTL anchors. There should be only one entry for the C++ |
| // state table. |
| assert(*p == 1 && "libunwind: there must be only one ctl_info entry"); |
| ++p; |
| // p points to the offset of the state table into the stack. |
| pint_t stateTableOffset = *p++; |
| |
| int framePointerReg; |
| |
| // Skip fields name_len and name if exist. |
| if (TBTable->tb.name_present) { |
| const uint16_t name_len = *(reinterpret_cast<uint16_t *>(p)); |
| p = reinterpret_cast<uint32_t *>(reinterpret_cast<char *>(p) + name_len + |
| sizeof(uint16_t)); |
| } |
| |
| if (TBTable->tb.uses_alloca) |
| framePointerReg = *(reinterpret_cast<char *>(p)); |
| else |
| framePointerReg = 1; // default frame pointer == SP |
| |
| _LIBUNWIND_TRACE_UNWINDING( |
| "framePointerReg=%d, framePointer=%p, " |
| "stateTableOffset=%#lx\n", |
| framePointerReg, |
| reinterpret_cast<void *>(_registers.getRegister(framePointerReg)), |
| stateTableOffset); |
| lsda = _registers.getRegister(framePointerReg) + stateTableOffset; |
| |
| // Since the traceback table generated by the legacy XLC++ does not |
| // provide the location of the personality for the state table, |
| // function __xlcxx_personality_v0(), which is the personality for the state |
| // table and is exported from libc++abi, is directly assigned as the |
| // handler here. When a legacy XLC++ frame is encountered, the symbol |
| // is resolved dynamically using dlopen() to avoid a hard dependency of |
| // libunwind on libc++abi in cases such as non-C++ applications. |
| |
| // Resolve the function pointer to the state table personality if it has |
| // not already been done. |
| if (xlcPersonalityV0 == NULL) { |
| xlcPersonalityV0InitLock.lock(); |
| if (xlcPersonalityV0 == NULL) { |
| // Resolve __xlcxx_personality_v0 using dlopen(). |
| const char *libcxxabi = "libc++abi.a(libc++abi.so.1)"; |
| void *libHandle; |
| // The AIX dlopen() sets errno to 0 when it is successful, which |
| // clobbers the value of errno from the user code. This is an AIX |
| // bug because according to POSIX it should not set errno to 0. To |
| // workaround before AIX fixes the bug, errno is saved and restored. |
| int saveErrno = errno; |
| libHandle = dlopen(libcxxabi, RTLD_MEMBER | RTLD_NOW); |
| if (libHandle == NULL) { |
| _LIBUNWIND_TRACE_UNWINDING("dlopen() failed with errno=%d\n", errno); |
| assert(0 && "dlopen() failed"); |
| } |
| xlcPersonalityV0 = reinterpret_cast<__xlcxx_personality_v0_t *>( |
| dlsym(libHandle, "__xlcxx_personality_v0")); |
| if (xlcPersonalityV0 == NULL) { |
| _LIBUNWIND_TRACE_UNWINDING("dlsym() failed with errno=%d\n", errno); |
| dlclose(libHandle); |
| assert(0 && "dlsym() failed"); |
| } |
| errno = saveErrno; |
| } |
| xlcPersonalityV0InitLock.unlock(); |
| } |
| handler = reinterpret_cast<unw_word_t>(xlcPersonalityV0); |
| _LIBUNWIND_TRACE_UNWINDING("State table: LSDA=%p, Personality=%p\n", |
| reinterpret_cast<void *>(lsda), |
| reinterpret_cast<void *>(handler)); |
| } else if (TBTable->tb.longtbtable) { |
| // This frame has the traceback table extension. Possible cases are |
| // 1) a C++ frame that has the 'eh_info' structure; 2) a C++ frame that |
| // is not EH aware; or, 3) a frame of other languages. We need to figure out |
| // if the traceback table extension contains the 'eh_info' structure. |
| // |
| // We also need to deal with the complexity arising from some XL compiler |
| // versions use the wrong ordering of 'longtbtable' and 'has_vec' bits |
| // where the 'longtbtable' bit is meant to be the 'has_vec' bit and vice |
| // versa. For frames of code generated by those compilers, the 'longtbtable' |
| // bit may be set but there isn't really a traceback table extension. |
| // |
| // In </usr/include/sys/debug.h>, there is the following definition of |
| // 'struct tbtable_ext'. It is not really a structure but a dummy to |
| // collect the description of optional parts of the traceback table. |
| // |
| // struct tbtable_ext { |
| // ... |
| // char alloca_reg; /* Register for alloca automatic storage */ |
| // struct vec_ext vec_ext; /* Vector extension (if has_vec is set) */ |
| // unsigned char xtbtable; /* More tbtable fields, if longtbtable is set*/ |
| // }; |
| // |
| // Depending on how the 'has_vec'/'longtbtable' bit is interpreted, the data |
| // following 'alloca_reg' can be treated either as 'struct vec_ext' or |
| // 'unsigned char xtbtable'. 'xtbtable' bits are defined in |
| // </usr/include/sys/debug.h> as flags. The 7th bit '0x02' is currently |
| // unused and should not be set. 'struct vec_ext' is defined in |
| // </usr/include/sys/debug.h> as follows: |
| // |
| // struct vec_ext { |
| // unsigned vr_saved:6; /* Number of non-volatile vector regs saved |
| // */ |
| // /* first register saved is assumed to be */ |
| // /* 32 - vr_saved */ |
| // unsigned saves_vrsave:1; /* Set if vrsave is saved on the stack */ |
| // unsigned has_varargs:1; |
| // ... |
| // }; |
| // |
| // Here, the 7th bit is used as 'saves_vrsave'. To determine whether it |
| // is 'struct vec_ext' or 'xtbtable' that follows 'alloca_reg', |
| // we checks if the 7th bit is set or not because 'xtbtable' should |
| // never have the 7th bit set. The 7th bit of 'xtbtable' will be reserved |
| // in the future to make sure the mitigation works. This mitigation |
| // is not 100% bullet proof because 'struct vec_ext' may not always have |
| // 'saves_vrsave' bit set. |
| // |
| // 'reservedBit' is defined in enum 'xTBTableMask' above as the mask for |
| // checking the 7th bit. |
| |
| // p points to field name len. |
| uint8_t *charPtr = reinterpret_cast<uint8_t *>(p); |
| |
| // Skip fields name_len and name if they exist. |
| if (TBTable->tb.name_present) { |
| const uint16_t name_len = *(reinterpret_cast<uint16_t *>(charPtr)); |
| charPtr = charPtr + name_len + sizeof(uint16_t); |
| } |
| |
| // Skip field alloc_reg if it exists. |
| if (TBTable->tb.uses_alloca) |
| ++charPtr; |
| |
| // Check traceback table bit has_vec. Skip struct vec_ext if it exists. |
| if (TBTable->tb.has_vec) |
| // Note struct vec_ext does exist at this point because whether the |
| // ordering of longtbtable and has_vec bits is correct or not, both |
| // are set. |
| charPtr += sizeof(struct vec_ext); |
| |
| // charPtr points to field 'xtbtable'. Check if the EH info is available. |
| // Also check if the reserved bit of the extended traceback table field |
| // 'xtbtable' is set. If it is, the traceback table was incorrectly |
| // generated by an XL compiler that uses the wrong ordering of 'longtbtable' |
| // and 'has_vec' bits and this is in fact 'struct vec_ext'. So skip the |
| // frame. |
| if ((*charPtr & xTBTableMask::ehInfoBit) && |
| !(*charPtr & xTBTableMask::reservedBit)) { |
| // Mark this frame has the new EH info. |
| flags = frameType::frameWithEHInfo; |
| |
| // eh_info is available. |
| charPtr++; |
| // The pointer is 4-byte aligned. |
| if (reinterpret_cast<uintptr_t>(charPtr) % 4) |
| charPtr += 4 - reinterpret_cast<uintptr_t>(charPtr) % 4; |
| uintptr_t *ehInfo = |
| reinterpret_cast<uintptr_t *>(*(reinterpret_cast<uintptr_t *>( |
| registers.getRegister(2) + |
| *(reinterpret_cast<uintptr_t *>(charPtr))))); |
| |
| // ehInfo points to structure en_info. The first member is version. |
| // Only version 0 is currently supported. |
| assert(*(reinterpret_cast<uint32_t *>(ehInfo)) == 0 && |
| "libunwind: ehInfo version other than 0 is not supported"); |
| |
| // Increment ehInfo to point to member lsda. |
| ++ehInfo; |
| lsda = *ehInfo++; |
| |
| // enInfo now points to member personality. |
| handler = *ehInfo; |
| |
| _LIBUNWIND_TRACE_UNWINDING("Range table: LSDA=%#lx, Personality=%#lx\n", |
| lsda, handler); |
| } |
| } |
| |
| _info.start_ip = start_ip; |
| _info.end_ip = end_ip; |
| _info.lsda = lsda; |
| _info.handler = handler; |
| _info.gp = 0; |
| _info.flags = flags; |
| _info.format = 0; |
| _info.unwind_info = reinterpret_cast<unw_word_t>(TBTable); |
| _info.unwind_info_size = 0; |
| _info.extra = registers.getRegister(2); |
| |
| return true; |
| } |
| |
| // Step back up the stack following the frame back link. |
| template <typename A, typename R> |
| int UnwindCursor<A, R>::stepWithTBTable(pint_t pc, tbtable *TBTable, |
| R ®isters, bool &isSignalFrame) { |
| if (_LIBUNWIND_TRACING_UNWINDING) { |
| char functionBuf[512]; |
| const char *functionName = functionBuf; |
| unw_word_t offset; |
| if (!getFunctionName(functionBuf, sizeof(functionBuf), &offset)) { |
| functionName = ".anonymous."; |
| } |
| _LIBUNWIND_TRACE_UNWINDING( |
| "%s: Look up traceback table of func=%s at %p, pc=%p, " |
| "SP=%p, saves_lr=%d, stores_bc=%d", |
| __func__, functionName, reinterpret_cast<void *>(TBTable), |
| reinterpret_cast<void *>(pc), |
| reinterpret_cast<void *>(registers.getSP()), TBTable->tb.saves_lr, |
| TBTable->tb.stores_bc); |
| } |
| |
| #if defined(__powerpc64__) |
| // Instruction to reload TOC register "ld r2,40(r1)" |
| const uint32_t loadTOCRegInst = 0xe8410028; |
| const int32_t unwPPCF0Index = UNW_PPC64_F0; |
| const int32_t unwPPCV0Index = UNW_PPC64_V0; |
| #else |
| // Instruction to reload TOC register "lwz r2,20(r1)" |
| const uint32_t loadTOCRegInst = 0x80410014; |
| const int32_t unwPPCF0Index = UNW_PPC_F0; |
| const int32_t unwPPCV0Index = UNW_PPC_V0; |
| #endif |
| |
| // lastStack points to the stack frame of the next routine up. |
| pint_t curStack = static_cast<pint_t>(registers.getSP()); |
| pint_t lastStack = *reinterpret_cast<pint_t *>(curStack); |
| |
| if (lastStack == 0) |
| return UNW_STEP_END; |
| |
| R newRegisters = registers; |
| |
| // If backchain is not stored, use the current stack frame. |
| if (!TBTable->tb.stores_bc) |
| lastStack = curStack; |
| |
| // Return address is the address after call site instruction. |
| pint_t returnAddress; |
| |
| if (isSignalFrame) { |
| _LIBUNWIND_TRACE_UNWINDING("Possible signal handler frame: lastStack=%p", |
| reinterpret_cast<void *>(lastStack)); |
| |
| sigcontext *sigContext = reinterpret_cast<sigcontext *>( |
| reinterpret_cast<char *>(lastStack) + STKMINALIGN); |
| returnAddress = sigContext->sc_jmpbuf.jmp_context.iar; |
| |
| bool useSTKMIN = false; |
| if (returnAddress < 0x10000000) { |
| // Try again using STKMIN. |
| sigContext = reinterpret_cast<sigcontext *>( |
| reinterpret_cast<char *>(lastStack) + STKMIN); |
| returnAddress = sigContext->sc_jmpbuf.jmp_context.iar; |
| if (returnAddress < 0x10000000) { |
| _LIBUNWIND_TRACE_UNWINDING("Bad returnAddress=%p from sigcontext=%p", |
| reinterpret_cast<void *>(returnAddress), |
| reinterpret_cast<void *>(sigContext)); |
| return UNW_EBADFRAME; |
| } |
| useSTKMIN = true; |
| } |
| _LIBUNWIND_TRACE_UNWINDING("Returning from a signal handler %s: " |
| "sigContext=%p, returnAddress=%p. " |
| "Seems to be a valid address", |
| useSTKMIN ? "STKMIN" : "STKMINALIGN", |
| reinterpret_cast<void *>(sigContext), |
| reinterpret_cast<void *>(returnAddress)); |
| |
| // Restore the condition register from sigcontext. |
| newRegisters.setCR(sigContext->sc_jmpbuf.jmp_context.cr); |
| |
| // Save the LR in sigcontext for stepping up when the function that |
| // raised the signal is a leaf function. This LR has the return address |
| // to the caller of the leaf function. |
| newRegisters.setLR(sigContext->sc_jmpbuf.jmp_context.lr); |
| _LIBUNWIND_TRACE_UNWINDING( |
| "Save LR=%p from sigcontext", |
| reinterpret_cast<void *>(sigContext->sc_jmpbuf.jmp_context.lr)); |
| |
| // Restore GPRs from sigcontext. |
| for (int i = 0; i < 32; ++i) |
| newRegisters.setRegister(i, sigContext->sc_jmpbuf.jmp_context.gpr[i]); |
| |
| // Restore FPRs from sigcontext. |
| for (int i = 0; i < 32; ++i) |
| newRegisters.setFloatRegister(i + unwPPCF0Index, |
| sigContext->sc_jmpbuf.jmp_context.fpr[i]); |
| |
| // Restore vector registers if there is an associated extended context |
| // structure. |
| if (sigContext->sc_jmpbuf.jmp_context.msr & __EXTCTX) { |
| ucontext_t *uContext = reinterpret_cast<ucontext_t *>(sigContext); |
| if (uContext->__extctx->__extctx_magic == __EXTCTX_MAGIC) { |
| for (int i = 0; i < 32; ++i) |
| newRegisters.setVectorRegister( |
| i + unwPPCV0Index, *(reinterpret_cast<v128 *>( |
| &(uContext->__extctx->__vmx.__vr[i])))); |
| } |
| } |
| } else { |
| // Step up a normal frame. |
| |
| if (!TBTable->tb.saves_lr && registers.getLR()) { |
| // This case should only occur if we were called from a signal handler |
| // and the signal occurred in a function that doesn't save the LR. |
| returnAddress = static_cast<pint_t>(registers.getLR()); |
| _LIBUNWIND_TRACE_UNWINDING("Use saved LR=%p", |
| reinterpret_cast<void *>(returnAddress)); |
| } else { |
| // Otherwise, use the LR value in the stack link area. |
| returnAddress = reinterpret_cast<pint_t *>(lastStack)[2]; |
| } |
| |
| // Reset LR in the current context. |
| newRegisters.setLR(static_cast<uintptr_t>(NULL)); |
| |
| _LIBUNWIND_TRACE_UNWINDING( |
| "Extract info from lastStack=%p, returnAddress=%p", |
| reinterpret_cast<void *>(lastStack), |
| reinterpret_cast<void *>(returnAddress)); |
| _LIBUNWIND_TRACE_UNWINDING("fpr_regs=%d, gpr_regs=%d, saves_cr=%d", |
| TBTable->tb.fpr_saved, TBTable->tb.gpr_saved, |
| TBTable->tb.saves_cr); |
| |
| // Restore FP registers. |
| char *ptrToRegs = reinterpret_cast<char *>(lastStack); |
| double *FPRegs = reinterpret_cast<double *>( |
| ptrToRegs - (TBTable->tb.fpr_saved * sizeof(double))); |
| for (int i = 0; i < TBTable->tb.fpr_saved; ++i) |
| newRegisters.setFloatRegister( |
| 32 - TBTable->tb.fpr_saved + i + unwPPCF0Index, FPRegs[i]); |
| |
| // Restore GP registers. |
| ptrToRegs = reinterpret_cast<char *>(FPRegs); |
| uintptr_t *GPRegs = reinterpret_cast<uintptr_t *>( |
| ptrToRegs - (TBTable->tb.gpr_saved * sizeof(uintptr_t))); |
| for (int i = 0; i < TBTable->tb.gpr_saved; ++i) |
| newRegisters.setRegister(32 - TBTable->tb.gpr_saved + i, GPRegs[i]); |
| |
| // Restore Vector registers. |
| ptrToRegs = reinterpret_cast<char *>(GPRegs); |
| |
| // Restore vector registers only if this is a Clang frame. Also |
| // check if traceback table bit has_vec is set. If it is, structure |
| // vec_ext is available. |
| if (_info.flags == frameType::frameWithEHInfo && TBTable->tb.has_vec) { |
| |
| // Get to the vec_ext structure to check if vector registers are saved. |
| uint32_t *p = reinterpret_cast<uint32_t *>(&TBTable->tb_ext); |
| |
| // Skip field parminfo if exists. |
| if (TBTable->tb.fixedparms || TBTable->tb.floatparms) |
| ++p; |
| |
| // Skip field tb_offset if exists. |
| if (TBTable->tb.has_tboff) |
| ++p; |
| |
| // Skip field hand_mask if exists. |
| if (TBTable->tb.int_hndl) |
| ++p; |
| |
| // Skip fields ctl_info and ctl_info_disp if exist. |
| if (TBTable->tb.has_ctl) { |
| // Skip field ctl_info. |
| ++p; |
| // Skip field ctl_info_disp. |
| ++p; |
| } |
| |
| // Skip fields name_len and name if exist. |
| // p is supposed to point to field name_len now. |
| uint8_t *charPtr = reinterpret_cast<uint8_t *>(p); |
| if (TBTable->tb.name_present) { |
| const uint16_t name_len = *(reinterpret_cast<uint16_t *>(charPtr)); |
| charPtr = charPtr + name_len + sizeof(uint16_t); |
| } |
| |
| // Skip field alloc_reg if it exists. |
| if (TBTable->tb.uses_alloca) |
| ++charPtr; |
| |
| struct vec_ext *vec_ext = reinterpret_cast<struct vec_ext *>(charPtr); |
| |
| _LIBUNWIND_TRACE_UNWINDING("vr_saved=%d", vec_ext->vr_saved); |
| |
| // Restore vector register(s) if saved on the stack. |
| if (vec_ext->vr_saved) { |
| // Saved vector registers are 16-byte aligned. |
| if (reinterpret_cast<uintptr_t>(ptrToRegs) % 16) |
| ptrToRegs -= reinterpret_cast<uintptr_t>(ptrToRegs) % 16; |
| v128 *VecRegs = reinterpret_cast<v128 *>(ptrToRegs - vec_ext->vr_saved * |
| sizeof(v128)); |
| for (int i = 0; i < vec_ext->vr_saved; ++i) { |
| newRegisters.setVectorRegister( |
| 32 - vec_ext->vr_saved + i + unwPPCV0Index, VecRegs[i]); |
| } |
| } |
| } |
| if (TBTable->tb.saves_cr) { |
| // Get the saved condition register. The condition register is only |
| // a single word. |
| newRegisters.setCR( |
| *(reinterpret_cast<uint32_t *>(lastStack + sizeof(uintptr_t)))); |
| } |
| |
| // Restore the SP. |
| newRegisters.setSP(lastStack); |
| |
| // The first instruction after return. |
| uint32_t firstInstruction = *(reinterpret_cast<uint32_t *>(returnAddress)); |
| |
| // Do we need to set the TOC register? |
| _LIBUNWIND_TRACE_UNWINDING( |
| "Current gpr2=%p", |
| reinterpret_cast<void *>(newRegisters.getRegister(2))); |
| if (firstInstruction == loadTOCRegInst) { |
| _LIBUNWIND_TRACE_UNWINDING( |
| "Set gpr2=%p from frame", |
| reinterpret_cast<void *>(reinterpret_cast<pint_t *>(lastStack)[5])); |
| newRegisters.setRegister(2, reinterpret_cast<pint_t *>(lastStack)[5]); |
| } |
| } |
| _LIBUNWIND_TRACE_UNWINDING("lastStack=%p, returnAddress=%p, pc=%p\n", |
| reinterpret_cast<void *>(lastStack), |
| reinterpret_cast<void *>(returnAddress), |
| reinterpret_cast<void *>(pc)); |
| |
| // The return address is the address after call site instruction, so |
| // setting IP to that simulates a return. |
| newRegisters.setIP(reinterpret_cast<uintptr_t>(returnAddress)); |
| |
| // Simulate the step by replacing the register set with the new ones. |
| registers = newRegisters; |
| |
| // Check if the next frame is a signal frame. |
| pint_t nextStack = *(reinterpret_cast<pint_t *>(registers.getSP())); |
| |
| // Return address is the address after call site instruction. |
| pint_t nextReturnAddress = reinterpret_cast<pint_t *>(nextStack)[2]; |
| |
| if (nextReturnAddress > 0x01 && nextReturnAddress < 0x10000) { |
| _LIBUNWIND_TRACE_UNWINDING("The next is a signal handler frame: " |
| "nextStack=%p, next return address=%p\n", |
| reinterpret_cast<void *>(nextStack), |
| reinterpret_cast<void *>(nextReturnAddress)); |
| isSignalFrame = true; |
| } else { |
| isSignalFrame = false; |
| } |
| return UNW_STEP_SUCCESS; |
| } |
| #endif // defined(_LIBUNWIND_SUPPORT_TBTAB_UNWIND) |
| |
| template <typename A, typename R> |
| void UnwindCursor<A, R>::setInfoBasedOnIPRegister(bool isReturnAddress) { |
| #if defined(_LIBUNWIND_CHECK_LINUX_SIGRETURN) || \ |
| defined(_LIBUNWIND_TARGET_HAIKU) |
| _isSigReturn = false; |
| #endif |
| |
| pint_t pc = static_cast<pint_t>(this->getReg(UNW_REG_IP)); |
| #if defined(_LIBUNWIND_ARM_EHABI) |
| // Remove the thumb bit so the IP represents the actual instruction address. |
| // This matches the behaviour of _Unwind_GetIP on arm. |
| pc &= (pint_t)~0x1; |
| #endif |
| |
| // Exit early if at the top of the stack. |
| if (pc == 0) { |
| _unwindInfoMissing = true; |
| return; |
| } |
| |
| // If the last line of a function is a "throw" the compiler sometimes |
| // emits no instructions after the call to __cxa_throw. This means |
| // the return address is actually the start of the next function. |
| // To disambiguate this, back up the pc when we know it is a return |
| // address. |
| if (isReturnAddress) |
| #if defined(_AIX) |
| // PC needs to be a 4-byte aligned address to be able to look for a |
| // word of 0 that indicates the start of the traceback table at the end |
| // of a function on AIX. |
| pc -= 4; |
| #else |
| --pc; |
| #endif |
| |
| #if !(defined(_LIBUNWIND_SUPPORT_SEH_UNWIND) && defined(_WIN32)) && \ |
| !defined(_LIBUNWIND_SUPPORT_TBTAB_UNWIND) |
| // In case of this is frame of signal handler, the IP saved in the signal |
| // handler points to first non-executed instruction, while FDE/CIE expects IP |
| // to be after the first non-executed instruction. |
| if (_isSignalFrame) |
| ++pc; |
| #endif |
| |
| // Ask address space object to find unwind sections for this pc. |
| UnwindInfoSections sects; |
| if (_addressSpace.findUnwindSections(pc, sects)) { |
| #if defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND) |
| // If there is a compact unwind encoding table, look there first. |
| if (sects.compact_unwind_section != 0) { |
| if (this->getInfoFromCompactEncodingSection(pc, sects)) { |
| #if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND) |
| // Found info in table, done unless encoding says to use dwarf. |
| uint32_t dwarfOffset; |
| if ((sects.dwarf_section != 0) && compactSaysUseDwarf(&dwarfOffset)) { |
| if (this->getInfoFromDwarfSection(pc, sects, dwarfOffset)) { |
| // found info in dwarf, done |
| return; |
| } |
| } |
| #endif |
| // If unwind table has entry, but entry says there is no unwind info, |
| // record that we have no unwind info. |
| if (_info.format == 0) |
| _unwindInfoMissing = true; |
| return; |
| } |
| } |
| #endif // defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND) |
| |
| #if defined(_LIBUNWIND_SUPPORT_SEH_UNWIND) |
| // If there is SEH unwind info, look there next. |
| if (this->getInfoFromSEH(pc)) |
| return; |
| #endif |
| |
| #if defined(_LIBUNWIND_SUPPORT_TBTAB_UNWIND) |
| // If there is unwind info in the traceback table, look there next. |
| if (this->getInfoFromTBTable(pc, _registers)) |
| return; |
| #endif |
| |
| #if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND) |
| // If there is dwarf unwind info, look there next. |
| if (sects.dwarf_section != 0) { |
| if (this->getInfoFromDwarfSection(pc, sects)) { |
| // found info in dwarf, done |
| return; |
| } |
| } |
| #endif |
| |
| #if defined(_LIBUNWIND_ARM_EHABI) |
| // If there is ARM EHABI unwind info, look there next. |
| if (sects.arm_section != 0 && this->getInfoFromEHABISection(pc, sects)) |
| return; |
| #endif |
| } |
| |
| #if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND) |
| // There is no static unwind info for this pc. Look to see if an FDE was |
| // dynamically registered for it. |
| pint_t cachedFDE = DwarfFDECache<A>::findFDE(DwarfFDECache<A>::kSearchAll, |
| pc); |
| if (cachedFDE != 0) { |
| typename CFI_Parser<A>::FDE_Info fdeInfo; |
| typename CFI_Parser<A>::CIE_Info cieInfo; |
| if (!CFI_Parser<A>::decodeFDE(_addressSpace, cachedFDE, &fdeInfo, &cieInfo)) |
| if (getInfoFromFdeCie(fdeInfo, cieInfo, pc, 0)) |
| return; |
| } |
| |
| // Lastly, ask AddressSpace object about platform specific ways to locate |
| // other FDEs. |
| pint_t fde; |
| if (_addressSpace.findOtherFDE(pc, fde)) { |
| typename CFI_Parser<A>::FDE_Info fdeInfo; |
| typename CFI_Parser<A>::CIE_Info cieInfo; |
| if (!CFI_Parser<A>::decodeFDE(_addressSpace, fde, &fdeInfo, &cieInfo)) { |
| // Double check this FDE is for a function that includes the pc. |
| if ((fdeInfo.pcStart <= pc) && (pc < fdeInfo.pcEnd)) |
| if (getInfoFromFdeCie(fdeInfo, cieInfo, pc, 0)) |
| return; |
| } |
| } |
| #endif // #if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND) |
| |
| #if defined(_LIBUNWIND_CHECK_LINUX_SIGRETURN) || \ |
| defined(_LIBUNWIND_TARGET_HAIKU) |
| if (setInfoForSigReturn()) |
| return; |
| #endif |
| |
| // no unwind info, flag that we can't reliably unwind |
| _unwindInfoMissing = true; |
| } |
| |
| #if defined(_LIBUNWIND_CHECK_LINUX_SIGRETURN) && \ |
| defined(_LIBUNWIND_TARGET_AARCH64) |
| template <typename A, typename R> |
| bool UnwindCursor<A, R>::setInfoForSigReturn(Registers_arm64 &) { |
| // Look for the sigreturn trampoline. The trampoline's body is two |
| // specific instructions (see below). Typically the trampoline comes from the |
| // vDSO[1] (i.e. the __kernel_rt_sigreturn function). A libc might provide its |
| // own restorer function, though, or user-mode QEMU might write a trampoline |
| // onto the stack. |
| // |
| // This special code path is a fallback that is only used if the trampoline |
| // lacks proper (e.g. DWARF) unwind info. On AArch64, a new DWARF register |
| // constant for the PC needs to be defined before DWARF can handle a signal |
| // trampoline. This code may segfault if the target PC is unreadable, e.g.: |
| // - The PC points at a function compiled without unwind info, and which is |
| // part of an execute-only mapping (e.g. using -Wl,--execute-only). |
| // - The PC is invalid and happens to point to unreadable or unmapped memory. |
| // |
| // [1] https://github.com/torvalds/linux/blob/master/arch/arm64/kernel/vdso/sigreturn.S |
| const pint_t pc = static_cast<pint_t>(this->getReg(UNW_REG_IP)); |
| // The PC might contain an invalid address if the unwind info is bad, so |
| // directly accessing it could cause a SIGSEGV. |
| if (!isReadableAddr(pc)) |
| return false; |
| auto *instructions = reinterpret_cast<const uint32_t *>(pc); |
| // Look for instructions: mov x8, #0x8b; svc #0x0 |
| if (instructions[0] != 0xd2801168 || instructions[1] != 0xd4000001) |
| return false; |
| |
| _info = {}; |
| _info.start_ip = pc; |
| _info.end_ip = pc + 4; |
| _isSigReturn = true; |
| return true; |
| } |
| |
| template <typename A, typename R> |
| int UnwindCursor<A, R>::stepThroughSigReturn(Registers_arm64 &) { |
| // In the signal trampoline frame, sp points to an rt_sigframe[1], which is: |
| // - 128-byte siginfo struct |
| // - ucontext struct: |
| // - 8-byte long (uc_flags) |
| // - 8-byte pointer (uc_link) |
| // - 24-byte stack_t |
| // - 128-byte signal set |
| // - 8 bytes of padding because sigcontext has 16-byte alignment |
| // - sigcontext/mcontext_t |
| // [1] https://github.com/torvalds/linux/blob/master/arch/arm64/kernel/signal.c |
| const pint_t kOffsetSpToSigcontext = (128 + 8 + 8 + 24 + 128 + 8); // 304 |
| |
| // Offsets from sigcontext to each register. |
| const pint_t kOffsetGprs = 8; // offset to "__u64 regs[31]" field |
| const pint_t kOffsetSp = 256; // offset to "__u64 sp" field |
| const pint_t kOffsetPc = 264; // offset to "__u64 pc" field |
| |
| pint_t sigctx = _registers.getSP() + kOffsetSpToSigcontext; |
| |
| for (int i = 0; i <= 30; ++i) { |
| uint64_t value = _addressSpace.get64(sigctx + kOffsetGprs + |
| static_cast<pint_t>(i * 8)); |
| _registers.setRegister(UNW_AARCH64_X0 + i, value); |
| } |
| _registers.setSP(_addressSpace.get64(sigctx + kOffsetSp)); |
| _registers.setIP(_addressSpace.get64(sigctx + kOffsetPc)); |
| _isSignalFrame = true; |
| return UNW_STEP_SUCCESS; |
| } |
| |
| #elif defined(_LIBUNWIND_TARGET_HAIKU) && defined(_LIBUNWIND_TARGET_X86_64) |
| #include <commpage_defs.h> |
| #include <signal.h> |
| |
| extern "C" { |
| extern void *__gCommPageAddress; |
| } |
| |
| template <typename A, typename R> |
| bool UnwindCursor<A, R>::setInfoForSigReturn() { |
| #if defined(_LIBUNWIND_TARGET_X86_64) |
| addr_t signal_handler = |
| (((addr_t *)__gCommPageAddress)[COMMPAGE_ENTRY_X86_SIGNAL_HANDLER] + |
| (addr_t)__gCommPageAddress); |
| addr_t signal_handler_ret = signal_handler + 45; |
| #endif |
| pint_t pc = static_cast<pint_t>(this->getReg(UNW_REG_IP)); |
| if (pc == signal_handler_ret) { |
| _info = {}; |
| _info.start_ip = signal_handler; |
| _info.end_ip = signal_handler_ret; |
| _isSigReturn = true; |
| return true; |
| } |
| return false; |
| } |
| |
| template <typename A, typename R> |
| int UnwindCursor<A, R>::stepThroughSigReturn() { |
| _isSignalFrame = true; |
| pint_t sp = _registers.getSP(); |
| #if defined(_LIBUNWIND_TARGET_X86_64) |
| vregs *regs = (vregs *)(sp + 0x70); |
| |
| _registers.setRegister(UNW_REG_IP, regs->rip); |
| _registers.setRegister(UNW_REG_SP, regs->rsp); |
| _registers.setRegister(UNW_X86_64_RAX, regs->rax); |
| _registers.setRegister(UNW_X86_64_RDX, regs->rdx); |
| _registers.setRegister(UNW_X86_64_RCX, regs->rcx); |
| _registers.setRegister(UNW_X86_64_RBX, regs->rbx); |
| _registers.setRegister(UNW_X86_64_RSI, regs->rsi); |
| _registers.setRegister(UNW_X86_64_RDI, regs->rdi); |
| _registers.setRegister(UNW_X86_64_RBP, regs->rbp); |
| _registers.setRegister(UNW_X86_64_R8, regs->r8); |
| _registers.setRegister(UNW_X86_64_R9, regs->r9); |
| _registers.setRegister(UNW_X86_64_R10, regs->r10); |
| _registers.setRegister(UNW_X86_64_R11, regs->r11); |
| _registers.setRegister(UNW_X86_64_R12, regs->r12); |
| _registers.setRegister(UNW_X86_64_R13, regs->r13); |
| _registers.setRegister(UNW_X86_64_R14, regs->r14); |
| _registers.setRegister(UNW_X86_64_R15, regs->r15); |
| // TODO: XMM |
| #endif |
| |
| return UNW_STEP_SUCCESS; |
| } |
| #endif // defined(_LIBUNWIND_CHECK_LINUX_SIGRETURN) && |
| // defined(_LIBUNWIND_TARGET_AARCH64) |
| |
| #if defined(_LIBUNWIND_CHECK_LINUX_SIGRETURN) && \ |
| defined(_LIBUNWIND_TARGET_RISCV) |
| template <typename A, typename R> |
| bool UnwindCursor<A, R>::setInfoForSigReturn(Registers_riscv &) { |
| const pint_t pc = static_cast<pint_t>(getReg(UNW_REG_IP)); |
| // The PC might contain an invalid address if the unwind info is bad, so |
| // directly accessing it could cause a SIGSEGV. |
| if (!isReadableAddr(pc)) |
| return false; |
| const auto *instructions = reinterpret_cast<const uint32_t *>(pc); |
| // Look for the two instructions used in the sigreturn trampoline |
| // __vdso_rt_sigreturn: |
| // |
| // 0x08b00893 li a7,0x8b |
| // 0x00000073 ecall |
| if (instructions[0] != 0x08b00893 || instructions[1] != 0x00000073) |
| return false; |
| |
| _info = {}; |
| _info.start_ip = pc; |
| _info.end_ip = pc + 4; |
| _isSigReturn = true; |
| return true; |
| } |
| |
| template <typename A, typename R> |
| int UnwindCursor<A, R>::stepThroughSigReturn(Registers_riscv &) { |
| // In the signal trampoline frame, sp points to an rt_sigframe[1], which is: |
| // - 128-byte siginfo struct |
| // - ucontext_t struct: |
| // - 8-byte long (__uc_flags) |
| // - 8-byte pointer (*uc_link) |
| // - 24-byte uc_stack |
| // - 8-byte uc_sigmask |
| // - 120-byte of padding to allow sigset_t to be expanded in the future |
| // - 8 bytes of padding because sigcontext has 16-byte alignment |
| // - struct sigcontext uc_mcontext |
| // [1] |
| // https://github.com/torvalds/linux/blob/master/arch/riscv/kernel/signal.c |
| const pint_t kOffsetSpToSigcontext = 128 + 8 + 8 + 24 + 8 + 128; |
| |
| const pint_t sigctx = _registers.getSP() + kOffsetSpToSigcontext; |
| _registers.setIP(_addressSpace.get64(sigctx)); |
| for (int i = UNW_RISCV_X1; i <= UNW_RISCV_X31; ++i) { |
| uint64_t value = _addressSpace.get64(sigctx + static_cast<pint_t>(i * 8)); |
| _registers.setRegister(i, value); |
| } |
| _isSignalFrame = true; |
| return UNW_STEP_SUCCESS; |
| } |
| #endif // defined(_LIBUNWIND_CHECK_LINUX_SIGRETURN) && |
| // defined(_LIBUNWIND_TARGET_RISCV) |
| |
| #if defined(_LIBUNWIND_CHECK_LINUX_SIGRETURN) && \ |
| defined(_LIBUNWIND_TARGET_S390X) |
| template <typename A, typename R> |
| bool UnwindCursor<A, R>::setInfoForSigReturn(Registers_s390x &) { |
| // Look for the sigreturn trampoline. The trampoline's body is a |
| // specific instruction (see below). Typically the trampoline comes from the |
| // vDSO (i.e. the __kernel_[rt_]sigreturn function). A libc might provide its |
| // own restorer function, though, or user-mode QEMU might write a trampoline |
| // onto the stack. |
| const pint_t pc = static_cast<pint_t>(this->getReg(UNW_REG_IP)); |
| // The PC might contain an invalid address if the unwind info is bad, so |
| // directly accessing it could cause a SIGSEGV. |
| if (!isReadableAddr(pc)) |
| return false; |
| const auto inst = *reinterpret_cast<const uint16_t *>(pc); |
| if (inst == 0x0a77 || inst == 0x0aad) { |
| _info = {}; |
| _info.start_ip = pc; |
| _info.end_ip = pc + 2; |
| _isSigReturn = true; |
| return true; |
| } |
| return false; |
| } |
| |
| template <typename A, typename R> |
| int UnwindCursor<A, R>::stepThroughSigReturn(Registers_s390x &) { |
| // Determine current SP. |
| const pint_t sp = static_cast<pint_t>(this->getReg(UNW_REG_SP)); |
| // According to the s390x ABI, the CFA is at (incoming) SP + 160. |
| const pint_t cfa = sp + 160; |
| |
| // Determine current PC and instruction there (this must be either |
| // a "svc __NR_sigreturn" or "svc __NR_rt_sigreturn"). |
| const pint_t pc = static_cast<pint_t>(this->getReg(UNW_REG_IP)); |
| const uint16_t inst = _addressSpace.get16(pc); |
| |
| // Find the addresses of the signo and sigcontext in the frame. |
| pint_t pSigctx = 0; |
| pint_t pSigno = 0; |
| |
| // "svc __NR_sigreturn" uses a non-RT signal trampoline frame. |
| if (inst == 0x0a77) { |
| // Layout of a non-RT signal trampoline frame, starting at the CFA: |
| // - 8-byte signal mask |
| // - 8-byte pointer to sigcontext, followed by signo |
| // - 4-byte signo |
| pSigctx = _addressSpace.get64(cfa + 8); |
| pSigno = pSigctx + 344; |
| } |
| |
| // "svc __NR_rt_sigreturn" uses a RT signal trampoline frame. |
| if (inst == 0x0aad) { |
| // Layout of a RT signal trampoline frame, starting at the CFA: |
| // - 8-byte retcode (+ alignment) |
| // - 128-byte siginfo struct (starts with signo) |
| // - ucontext struct: |
| // - 8-byte long (uc_flags) |
| // - 8-byte pointer (uc_link) |
| // - 24-byte stack_t |
| // - 8 bytes of padding because sigcontext has 16-byte alignment |
| // - sigcontext/mcontext_t |
| pSigctx = cfa + 8 + 128 + 8 + 8 + 24 + 8; |
| pSigno = cfa + 8; |
| } |
| |
| assert(pSigctx != 0); |
| assert(pSigno != 0); |
| |
| // Offsets from sigcontext to each register. |
| const pint_t kOffsetPc = 8; |
| const pint_t kOffsetGprs = 16; |
| const pint_t kOffsetFprs = 216; |
| |
| // Restore all registers. |
| for (int i = 0; i < 16; ++i) { |
| uint64_t value = _addressSpace.get64(pSigctx + kOffsetGprs + |
| static_cast<pint_t>(i * 8)); |
| _registers.setRegister(UNW_S390X_R0 + i, value); |
| } |
| for (int i = 0; i < 16; ++i) { |
| static const int fpr[16] = { |
| UNW_S390X_F0, UNW_S390X_F1, UNW_S390X_F2, UNW_S390X_F3, |
| UNW_S390X_F4, UNW_S390X_F5, UNW_S390X_F6, UNW_S390X_F7, |
| UNW_S390X_F8, UNW_S390X_F9, UNW_S390X_F10, UNW_S390X_F11, |
| UNW_S390X_F12, UNW_S390X_F13, UNW_S390X_F14, UNW_S390X_F15 |
| }; |
| double value = _addressSpace.getDouble(pSigctx + kOffsetFprs + |
| static_cast<pint_t>(i * 8)); |
| _registers.setFloatRegister(fpr[i], value); |
| } |
| _registers.setIP(_addressSpace.get64(pSigctx + kOffsetPc)); |
| |
| // SIGILL, SIGFPE and SIGTRAP are delivered with psw_addr |
| // after the faulting instruction rather than before it. |
| // Do not set _isSignalFrame in that case. |
| uint32_t signo = _addressSpace.get32(pSigno); |
| _isSignalFrame = (signo != 4 && signo != 5 && signo != 8); |
| |
| return UNW_STEP_SUCCESS; |
| } |
| #endif // defined(_LIBUNWIND_CHECK_LINUX_SIGRETURN) && |
| // defined(_LIBUNWIND_TARGET_S390X) |
| |
| template <typename A, typename R> int UnwindCursor<A, R>::step(bool stage2) { |
| (void)stage2; |
| // Bottom of stack is defined is when unwind info cannot be found. |
| if (_unwindInfoMissing) |
| return UNW_STEP_END; |
| |
| // Use unwinding info to modify register set as if function returned. |
| int result; |
| #if defined(_LIBUNWIND_CHECK_LINUX_SIGRETURN) || \ |
| defined(_LIBUNWIND_TARGET_HAIKU) |
| if (_isSigReturn) { |
| result = this->stepThroughSigReturn(); |
| } else |
| #endif |
| { |
| #if defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND) |
| result = this->stepWithCompactEncoding(stage2); |
| #elif defined(_LIBUNWIND_SUPPORT_SEH_UNWIND) |
| result = this->stepWithSEHData(); |
| #elif defined(_LIBUNWIND_SUPPORT_TBTAB_UNWIND) |
| result = this->stepWithTBTableData(); |
| #elif defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND) |
| result = this->stepWithDwarfFDE(stage2); |
| #elif defined(_LIBUNWIND_ARM_EHABI) |
| result = this->stepWithEHABI(); |
| #else |
| #error Need _LIBUNWIND_SUPPORT_COMPACT_UNWIND or \ |
| _LIBUNWIND_SUPPORT_SEH_UNWIND or \ |
| _LIBUNWIND_SUPPORT_DWARF_UNWIND or \ |
| _LIBUNWIND_ARM_EHABI |
| #endif |
| } |
| |
| // update info based on new PC |
| if (result == UNW_STEP_SUCCESS) { |
| this->setInfoBasedOnIPRegister(true); |
| if (_unwindInfoMissing) |
| return UNW_STEP_END; |
| } |
| |
| return result; |
| } |
| |
| template <typename A, typename R> |
| void UnwindCursor<A, R>::getInfo(unw_proc_info_t *info) { |
| if (_unwindInfoMissing) |
| memset(info, 0, sizeof(*info)); |
| else |
| *info = _info; |
| } |
| |
| template <typename A, typename R> |
| bool UnwindCursor<A, R>::getFunctionName(char *buf, size_t bufLen, |
| unw_word_t *offset) { |
| return _addressSpace.findFunctionName((pint_t)this->getReg(UNW_REG_IP), |
| buf, bufLen, offset); |
| } |
| |
| #if defined(_LIBUNWIND_CHECK_LINUX_SIGRETURN) |
| template <typename A, typename R> |
| bool UnwindCursor<A, R>::isReadableAddr(const pint_t addr) const { |
| // We use SYS_rt_sigprocmask, inspired by Abseil's AddressIsReadable. |
| |
| const auto sigsetAddr = reinterpret_cast<sigset_t *>(addr); |
| // We have to check that addr is nullptr because sigprocmask allows that |
| // as an argument without failure. |
| if (!sigsetAddr) |
| return false; |
| const auto saveErrno = errno; |
| // We MUST use a raw syscall here, as wrappers may try to access |
| // sigsetAddr which may cause a SIGSEGV. A raw syscall however is |
| // safe. Additionally, we need to pass the kernel_sigset_size, which is |
| // different from libc sizeof(sigset_t). For the majority of architectures, |
| // it's 64 bits (_NSIG), and libc NSIG is _NSIG + 1. |
| const auto kernelSigsetSize = NSIG / 8; |
| [[maybe_unused]] const int Result = syscall( |
| SYS_rt_sigprocmask, /*how=*/~0, sigsetAddr, nullptr, kernelSigsetSize); |
| // Because our "how" is invalid, this syscall should always fail, and our |
| // errno should always be EINVAL or an EFAULT. This relies on the Linux |
| // kernel to check copy_from_user before checking if the "how" argument is |
| // invalid. |
| assert(Result == -1); |
| assert(errno == EFAULT || errno == EINVAL); |
| const auto readable = errno != EFAULT; |
| errno = saveErrno; |
| return readable; |
| } |
| #endif |
| |
| #if defined(_LIBUNWIND_USE_CET) || defined(_LIBUNWIND_USE_GCS) |
| extern "C" void *__libunwind_cet_get_registers(unw_cursor_t *cursor) { |
| AbstractUnwindCursor *co = (AbstractUnwindCursor *)cursor; |
| return co->get_registers(); |
| } |
| #endif |
| } // namespace libunwind |
| |
| #endif // __UNWINDCURSOR_HPP__ |