| //===- ScopInfo.cpp -------------------------------------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // Create a polyhedral description for a static control flow region. |
| // |
| // The pass creates a polyhedral description of the Scops detected by the Scop |
| // detection derived from their LLVM-IR code. |
| // |
| // This representation is shared among several tools in the polyhedral |
| // community, which are e.g. Cloog, Pluto, Loopo, Graphite. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "polly/ScopInfo.h" |
| #include "polly/LinkAllPasses.h" |
| #include "polly/Options.h" |
| #include "polly/ScopBuilder.h" |
| #include "polly/ScopDetection.h" |
| #include "polly/Support/GICHelper.h" |
| #include "polly/Support/ISLOStream.h" |
| #include "polly/Support/ISLTools.h" |
| #include "polly/Support/SCEVAffinator.h" |
| #include "polly/Support/SCEVValidator.h" |
| #include "polly/Support/ScopHelper.h" |
| #include "llvm/ADT/APInt.h" |
| #include "llvm/ADT/ArrayRef.h" |
| #include "llvm/ADT/PostOrderIterator.h" |
| #include "llvm/ADT/Sequence.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/SmallSet.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/ADT/StringExtras.h" |
| #include "llvm/Analysis/AliasAnalysis.h" |
| #include "llvm/Analysis/AssumptionCache.h" |
| #include "llvm/Analysis/Loads.h" |
| #include "llvm/Analysis/LoopInfo.h" |
| #include "llvm/Analysis/OptimizationRemarkEmitter.h" |
| #include "llvm/Analysis/RegionInfo.h" |
| #include "llvm/Analysis/RegionIterator.h" |
| #include "llvm/Analysis/ScalarEvolution.h" |
| #include "llvm/Analysis/ScalarEvolutionExpressions.h" |
| #include "llvm/IR/BasicBlock.h" |
| #include "llvm/IR/ConstantRange.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/IR/DebugLoc.h" |
| #include "llvm/IR/Dominators.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/InstrTypes.h" |
| #include "llvm/IR/Instruction.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/IR/PassManager.h" |
| #include "llvm/IR/Type.h" |
| #include "llvm/IR/Value.h" |
| #include "llvm/InitializePasses.h" |
| #include "llvm/Support/Compiler.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "isl/aff.h" |
| #include "isl/local_space.h" |
| #include "isl/map.h" |
| #include "isl/options.h" |
| #include "isl/set.h" |
| #include <cassert> |
| #include <numeric> |
| |
| using namespace llvm; |
| using namespace polly; |
| |
| #include "polly/Support/PollyDebug.h" |
| #define DEBUG_TYPE "polly-scops" |
| |
| STATISTIC(AssumptionsAliasing, "Number of aliasing assumptions taken."); |
| STATISTIC(AssumptionsInbounds, "Number of inbounds assumptions taken."); |
| STATISTIC(AssumptionsWrapping, "Number of wrapping assumptions taken."); |
| STATISTIC(AssumptionsUnsigned, "Number of unsigned assumptions taken."); |
| STATISTIC(AssumptionsComplexity, "Number of too complex SCoPs."); |
| STATISTIC(AssumptionsUnprofitable, "Number of unprofitable SCoPs."); |
| STATISTIC(AssumptionsErrorBlock, "Number of error block assumptions taken."); |
| STATISTIC(AssumptionsInfiniteLoop, "Number of bounded loop assumptions taken."); |
| STATISTIC(AssumptionsInvariantLoad, |
| "Number of invariant loads assumptions taken."); |
| STATISTIC(AssumptionsDelinearization, |
| "Number of delinearization assumptions taken."); |
| |
| STATISTIC(NumScops, "Number of feasible SCoPs after ScopInfo"); |
| STATISTIC(NumLoopsInScop, "Number of loops in scops"); |
| STATISTIC(NumBoxedLoops, "Number of boxed loops in SCoPs after ScopInfo"); |
| STATISTIC(NumAffineLoops, "Number of affine loops in SCoPs after ScopInfo"); |
| |
| STATISTIC(NumScopsDepthZero, "Number of scops with maximal loop depth 0"); |
| STATISTIC(NumScopsDepthOne, "Number of scops with maximal loop depth 1"); |
| STATISTIC(NumScopsDepthTwo, "Number of scops with maximal loop depth 2"); |
| STATISTIC(NumScopsDepthThree, "Number of scops with maximal loop depth 3"); |
| STATISTIC(NumScopsDepthFour, "Number of scops with maximal loop depth 4"); |
| STATISTIC(NumScopsDepthFive, "Number of scops with maximal loop depth 5"); |
| STATISTIC(NumScopsDepthLarger, |
| "Number of scops with maximal loop depth 6 and larger"); |
| STATISTIC(MaxNumLoopsInScop, "Maximal number of loops in scops"); |
| |
| STATISTIC(NumValueWrites, "Number of scalar value writes after ScopInfo"); |
| STATISTIC( |
| NumValueWritesInLoops, |
| "Number of scalar value writes nested in affine loops after ScopInfo"); |
| STATISTIC(NumPHIWrites, "Number of scalar phi writes after ScopInfo"); |
| STATISTIC(NumPHIWritesInLoops, |
| "Number of scalar phi writes nested in affine loops after ScopInfo"); |
| STATISTIC(NumSingletonWrites, "Number of singleton writes after ScopInfo"); |
| STATISTIC(NumSingletonWritesInLoops, |
| "Number of singleton writes nested in affine loops after ScopInfo"); |
| |
| unsigned const polly::MaxDisjunctsInDomain = 20; |
| |
| // The number of disjunct in the context after which we stop to add more |
| // disjuncts. This parameter is there to avoid exponential growth in the |
| // number of disjunct when adding non-convex sets to the context. |
| static int const MaxDisjunctsInContext = 4; |
| |
| // Be a bit more generous for the defined behavior context which is used less |
| // often. |
| static int const MaxDisjunktsInDefinedBehaviourContext = 8; |
| |
| static cl::opt<bool> PollyRemarksMinimal( |
| "polly-remarks-minimal", |
| cl::desc("Do not emit remarks about assumptions that are known"), |
| cl::Hidden, cl::cat(PollyCategory)); |
| |
| static cl::opt<bool> |
| IslOnErrorAbort("polly-on-isl-error-abort", |
| cl::desc("Abort if an isl error is encountered"), |
| cl::init(true), cl::cat(PollyCategory)); |
| |
| static cl::opt<bool> PollyPreciseInbounds( |
| "polly-precise-inbounds", |
| cl::desc("Take more precise inbounds assumptions (do not scale well)"), |
| cl::Hidden, cl::init(false), cl::cat(PollyCategory)); |
| |
| static cl::opt<bool> PollyIgnoreParamBounds( |
| "polly-ignore-parameter-bounds", |
| cl::desc( |
| "Do not add parameter bounds and do no gist simplify sets accordingly"), |
| cl::Hidden, cl::init(false), cl::cat(PollyCategory)); |
| |
| static cl::opt<bool> PollyPreciseFoldAccesses( |
| "polly-precise-fold-accesses", |
| cl::desc("Fold memory accesses to model more possible delinearizations " |
| "(does not scale well)"), |
| cl::Hidden, cl::init(false), cl::cat(PollyCategory)); |
| |
| bool polly::UseInstructionNames; |
| |
| static cl::opt<bool, true> XUseInstructionNames( |
| "polly-use-llvm-names", |
| cl::desc("Use LLVM-IR names when deriving statement names"), |
| cl::location(UseInstructionNames), cl::Hidden, cl::cat(PollyCategory)); |
| |
| static cl::opt<bool> PollyPrintInstructions( |
| "polly-print-instructions", cl::desc("Output instructions per ScopStmt"), |
| cl::Hidden, cl::Optional, cl::init(false), cl::cat(PollyCategory)); |
| |
| static cl::list<std::string> IslArgs("polly-isl-arg", |
| cl::value_desc("argument"), |
| cl::desc("Option passed to ISL"), |
| cl::cat(PollyCategory)); |
| |
| //===----------------------------------------------------------------------===// |
| |
| static isl::set addRangeBoundsToSet(isl::set S, const ConstantRange &Range, |
| int dim, isl::dim type) { |
| isl::val V; |
| isl::ctx Ctx = S.ctx(); |
| |
| // The upper and lower bound for a parameter value is derived either from |
| // the data type of the parameter or from the - possibly more restrictive - |
| // range metadata. |
| V = valFromAPInt(Ctx.get(), Range.getSignedMin(), true); |
| S = S.lower_bound_val(type, dim, V); |
| V = valFromAPInt(Ctx.get(), Range.getSignedMax(), true); |
| S = S.upper_bound_val(type, dim, V); |
| |
| if (Range.isFullSet()) |
| return S; |
| |
| if (S.n_basic_set().release() > MaxDisjunctsInContext) |
| return S; |
| |
| // In case of signed wrapping, we can refine the set of valid values by |
| // excluding the part not covered by the wrapping range. |
| if (Range.isSignWrappedSet()) { |
| V = valFromAPInt(Ctx.get(), Range.getLower(), true); |
| isl::set SLB = S.lower_bound_val(type, dim, V); |
| |
| V = valFromAPInt(Ctx.get(), Range.getUpper(), true); |
| V = V.sub(1); |
| isl::set SUB = S.upper_bound_val(type, dim, V); |
| S = SLB.unite(SUB); |
| } |
| |
| return S; |
| } |
| |
| static const ScopArrayInfo *identifyBasePtrOriginSAI(Scop *S, Value *BasePtr) { |
| LoadInst *BasePtrLI = dyn_cast<LoadInst>(BasePtr); |
| if (!BasePtrLI) |
| return nullptr; |
| |
| if (!S->contains(BasePtrLI)) |
| return nullptr; |
| |
| ScalarEvolution &SE = *S->getSE(); |
| |
| const SCEV *OriginBaseSCEV = |
| SE.getPointerBase(SE.getSCEV(BasePtrLI->getPointerOperand())); |
| if (!OriginBaseSCEV) |
| return nullptr; |
| |
| auto *OriginBaseSCEVUnknown = dyn_cast<SCEVUnknown>(OriginBaseSCEV); |
| if (!OriginBaseSCEVUnknown) |
| return nullptr; |
| |
| return S->getScopArrayInfo(OriginBaseSCEVUnknown->getValue(), |
| MemoryKind::Array); |
| } |
| |
| ScopArrayInfo::ScopArrayInfo(Value *BasePtr, Type *ElementType, isl::ctx Ctx, |
| ArrayRef<const SCEV *> Sizes, MemoryKind Kind, |
| const DataLayout &DL, Scop *S, |
| const char *BaseName) |
| : BasePtr(BasePtr), ElementType(ElementType), Kind(Kind), DL(DL), S(*S) { |
| std::string BasePtrName = |
| BaseName ? BaseName |
| : getIslCompatibleName("MemRef", BasePtr, S->getNextArrayIdx(), |
| Kind == MemoryKind::PHI ? "__phi" : "", |
| UseInstructionNames); |
| Id = isl::id::alloc(Ctx, BasePtrName, this); |
| |
| updateSizes(Sizes); |
| |
| if (!BasePtr || Kind != MemoryKind::Array) { |
| BasePtrOriginSAI = nullptr; |
| return; |
| } |
| |
| BasePtrOriginSAI = identifyBasePtrOriginSAI(S, BasePtr); |
| if (BasePtrOriginSAI) |
| const_cast<ScopArrayInfo *>(BasePtrOriginSAI)->addDerivedSAI(this); |
| } |
| |
| ScopArrayInfo::~ScopArrayInfo() = default; |
| |
| isl::space ScopArrayInfo::getSpace() const { |
| auto Space = isl::space(Id.ctx(), 0, getNumberOfDimensions()); |
| Space = Space.set_tuple_id(isl::dim::set, Id); |
| return Space; |
| } |
| |
| bool ScopArrayInfo::isReadOnly() { |
| isl::union_set WriteSet = S.getWrites().range(); |
| isl::space Space = getSpace(); |
| WriteSet = WriteSet.extract_set(Space); |
| |
| return bool(WriteSet.is_empty()); |
| } |
| |
| bool ScopArrayInfo::isCompatibleWith(const ScopArrayInfo *Array) const { |
| if (Array->getElementType() != getElementType()) |
| return false; |
| |
| if (Array->getNumberOfDimensions() != getNumberOfDimensions()) |
| return false; |
| |
| for (unsigned i = 0; i < getNumberOfDimensions(); i++) |
| if (Array->getDimensionSize(i) != getDimensionSize(i)) |
| return false; |
| |
| return true; |
| } |
| |
| void ScopArrayInfo::updateElementType(Type *NewElementType) { |
| if (NewElementType == ElementType) |
| return; |
| |
| auto OldElementSize = DL.getTypeAllocSizeInBits(ElementType); |
| auto NewElementSize = DL.getTypeAllocSizeInBits(NewElementType); |
| |
| if (NewElementSize == OldElementSize || NewElementSize == 0) |
| return; |
| |
| if (NewElementSize % OldElementSize == 0 && NewElementSize < OldElementSize) { |
| ElementType = NewElementType; |
| } else { |
| auto GCD = std::gcd((uint64_t)NewElementSize, (uint64_t)OldElementSize); |
| ElementType = IntegerType::get(ElementType->getContext(), GCD); |
| } |
| } |
| |
| bool ScopArrayInfo::updateSizes(ArrayRef<const SCEV *> NewSizes, |
| bool CheckConsistency) { |
| int SharedDims = std::min(NewSizes.size(), DimensionSizes.size()); |
| int ExtraDimsNew = NewSizes.size() - SharedDims; |
| int ExtraDimsOld = DimensionSizes.size() - SharedDims; |
| |
| if (CheckConsistency) { |
| for (int i = 0; i < SharedDims; i++) { |
| auto *NewSize = NewSizes[i + ExtraDimsNew]; |
| auto *KnownSize = DimensionSizes[i + ExtraDimsOld]; |
| if (NewSize && KnownSize && NewSize != KnownSize) |
| return false; |
| } |
| |
| if (DimensionSizes.size() >= NewSizes.size()) |
| return true; |
| } |
| |
| DimensionSizes.clear(); |
| DimensionSizes.insert(DimensionSizes.begin(), NewSizes.begin(), |
| NewSizes.end()); |
| DimensionSizesPw.clear(); |
| for (const SCEV *Expr : DimensionSizes) { |
| if (!Expr) { |
| DimensionSizesPw.push_back(isl::pw_aff()); |
| continue; |
| } |
| isl::pw_aff Size = S.getPwAffOnly(Expr); |
| DimensionSizesPw.push_back(Size); |
| } |
| return true; |
| } |
| |
| std::string ScopArrayInfo::getName() const { return Id.get_name(); } |
| |
| int ScopArrayInfo::getElemSizeInBytes() const { |
| return DL.getTypeAllocSize(ElementType); |
| } |
| |
| isl::id ScopArrayInfo::getBasePtrId() const { return Id; } |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| LLVM_DUMP_METHOD void ScopArrayInfo::dump() const { print(errs()); } |
| #endif |
| |
| void ScopArrayInfo::print(raw_ostream &OS, bool SizeAsPwAff) const { |
| OS.indent(8) << *getElementType() << " " << getName(); |
| unsigned u = 0; |
| |
| if (getNumberOfDimensions() > 0 && !getDimensionSize(0)) { |
| OS << "[*]"; |
| u++; |
| } |
| for (; u < getNumberOfDimensions(); u++) { |
| OS << "["; |
| |
| if (SizeAsPwAff) { |
| isl::pw_aff Size = getDimensionSizePw(u); |
| OS << " " << Size << " "; |
| } else { |
| OS << *getDimensionSize(u); |
| } |
| |
| OS << "]"; |
| } |
| |
| OS << ";"; |
| |
| if (BasePtrOriginSAI) |
| OS << " [BasePtrOrigin: " << BasePtrOriginSAI->getName() << "]"; |
| |
| OS << " // Element size " << getElemSizeInBytes() << "\n"; |
| } |
| |
| const ScopArrayInfo * |
| ScopArrayInfo::getFromAccessFunction(isl::pw_multi_aff PMA) { |
| isl::id Id = PMA.get_tuple_id(isl::dim::out); |
| assert(!Id.is_null() && "Output dimension didn't have an ID"); |
| return getFromId(Id); |
| } |
| |
| const ScopArrayInfo *ScopArrayInfo::getFromId(isl::id Id) { |
| void *User = Id.get_user(); |
| const ScopArrayInfo *SAI = static_cast<ScopArrayInfo *>(User); |
| return SAI; |
| } |
| |
| void MemoryAccess::wrapConstantDimensions() { |
| auto *SAI = getScopArrayInfo(); |
| isl::space ArraySpace = SAI->getSpace(); |
| isl::ctx Ctx = ArraySpace.ctx(); |
| unsigned DimsArray = SAI->getNumberOfDimensions(); |
| |
| isl::multi_aff DivModAff = isl::multi_aff::identity( |
| ArraySpace.map_from_domain_and_range(ArraySpace)); |
| isl::local_space LArraySpace = isl::local_space(ArraySpace); |
| |
| // Begin with last dimension, to iteratively carry into higher dimensions. |
| for (int i = DimsArray - 1; i > 0; i--) { |
| auto *DimSize = SAI->getDimensionSize(i); |
| auto *DimSizeCst = dyn_cast<SCEVConstant>(DimSize); |
| |
| // This transformation is not applicable to dimensions with dynamic size. |
| if (!DimSizeCst) |
| continue; |
| |
| // This transformation is not applicable to dimensions of size zero. |
| if (DimSize->isZero()) |
| continue; |
| |
| isl::val DimSizeVal = |
| valFromAPInt(Ctx.get(), DimSizeCst->getAPInt(), false); |
| isl::aff Var = isl::aff::var_on_domain(LArraySpace, isl::dim::set, i); |
| isl::aff PrevVar = |
| isl::aff::var_on_domain(LArraySpace, isl::dim::set, i - 1); |
| |
| // Compute: index % size |
| // Modulo must apply in the divide of the previous iteration, if any. |
| isl::aff Modulo = Var.mod(DimSizeVal); |
| Modulo = Modulo.pullback(DivModAff); |
| |
| // Compute: floor(index / size) |
| isl::aff Divide = Var.div(isl::aff(LArraySpace, DimSizeVal)); |
| Divide = Divide.floor(); |
| Divide = Divide.add(PrevVar); |
| Divide = Divide.pullback(DivModAff); |
| |
| // Apply Modulo and Divide. |
| DivModAff = DivModAff.set_aff(i, Modulo); |
| DivModAff = DivModAff.set_aff(i - 1, Divide); |
| } |
| |
| // Apply all modulo/divides on the accesses. |
| isl::map Relation = AccessRelation; |
| Relation = Relation.apply_range(isl::map::from_multi_aff(DivModAff)); |
| Relation = Relation.detect_equalities(); |
| AccessRelation = Relation; |
| } |
| |
| void MemoryAccess::updateDimensionality() { |
| auto *SAI = getScopArrayInfo(); |
| isl::space ArraySpace = SAI->getSpace(); |
| isl::space AccessSpace = AccessRelation.get_space().range(); |
| isl::ctx Ctx = ArraySpace.ctx(); |
| |
| unsigned DimsArray = unsignedFromIslSize(ArraySpace.dim(isl::dim::set)); |
| unsigned DimsAccess = unsignedFromIslSize(AccessSpace.dim(isl::dim::set)); |
| assert(DimsArray >= DimsAccess); |
| unsigned DimsMissing = DimsArray - DimsAccess; |
| |
| auto *BB = getStatement()->getEntryBlock(); |
| auto &DL = BB->getModule()->getDataLayout(); |
| unsigned ArrayElemSize = SAI->getElemSizeInBytes(); |
| unsigned ElemBytes = DL.getTypeAllocSize(getElementType()); |
| |
| isl::map Map = isl::map::from_domain_and_range( |
| isl::set::universe(AccessSpace), isl::set::universe(ArraySpace)); |
| |
| for (auto i : seq<unsigned>(0, DimsMissing)) |
| Map = Map.fix_si(isl::dim::out, i, 0); |
| |
| for (auto i : seq<unsigned>(DimsMissing, DimsArray)) |
| Map = Map.equate(isl::dim::in, i - DimsMissing, isl::dim::out, i); |
| |
| AccessRelation = AccessRelation.apply_range(Map); |
| |
| // For the non delinearized arrays, divide the access function of the last |
| // subscript by the size of the elements in the array. |
| // |
| // A stride one array access in C expressed as A[i] is expressed in |
| // LLVM-IR as something like A[i * elementsize]. This hides the fact that |
| // two subsequent values of 'i' index two values that are stored next to |
| // each other in memory. By this division we make this characteristic |
| // obvious again. If the base pointer was accessed with offsets not divisible |
| // by the accesses element size, we will have chosen a smaller ArrayElemSize |
| // that divides the offsets of all accesses to this base pointer. |
| if (DimsAccess == 1) { |
| isl::val V = isl::val(Ctx, ArrayElemSize); |
| AccessRelation = AccessRelation.floordiv_val(V); |
| } |
| |
| // We currently do this only if we added at least one dimension, which means |
| // some dimension's indices have not been specified, an indicator that some |
| // index values have been added together. |
| // TODO: Investigate general usefulness; Effect on unit tests is to make index |
| // expressions more complicated. |
| if (DimsMissing) |
| wrapConstantDimensions(); |
| |
| if (!isAffine()) |
| computeBoundsOnAccessRelation(ArrayElemSize); |
| |
| // Introduce multi-element accesses in case the type loaded by this memory |
| // access is larger than the canonical element type of the array. |
| // |
| // An access ((float *)A)[i] to an array char *A is modeled as |
| // {[i] -> A[o] : 4 i <= o <= 4 i + 3 |
| if (ElemBytes > ArrayElemSize) { |
| assert(ElemBytes % ArrayElemSize == 0 && |
| "Loaded element size should be multiple of canonical element size"); |
| assert(DimsArray >= 1); |
| isl::map Map = isl::map::from_domain_and_range( |
| isl::set::universe(ArraySpace), isl::set::universe(ArraySpace)); |
| for (auto i : seq<unsigned>(0, DimsArray - 1)) |
| Map = Map.equate(isl::dim::in, i, isl::dim::out, i); |
| |
| isl::constraint C; |
| isl::local_space LS; |
| |
| LS = isl::local_space(Map.get_space()); |
| int Num = ElemBytes / getScopArrayInfo()->getElemSizeInBytes(); |
| |
| C = isl::constraint::alloc_inequality(LS); |
| C = C.set_constant_val(isl::val(Ctx, Num - 1)); |
| C = C.set_coefficient_si(isl::dim::in, DimsArray - 1, 1); |
| C = C.set_coefficient_si(isl::dim::out, DimsArray - 1, -1); |
| Map = Map.add_constraint(C); |
| |
| C = isl::constraint::alloc_inequality(LS); |
| C = C.set_coefficient_si(isl::dim::in, DimsArray - 1, -1); |
| C = C.set_coefficient_si(isl::dim::out, DimsArray - 1, 1); |
| C = C.set_constant_val(isl::val(Ctx, 0)); |
| Map = Map.add_constraint(C); |
| AccessRelation = AccessRelation.apply_range(Map); |
| } |
| } |
| |
| const std::string |
| MemoryAccess::getReductionOperatorStr(MemoryAccess::ReductionType RT) { |
| switch (RT) { |
| case MemoryAccess::RT_NONE: |
| llvm_unreachable("Requested a reduction operator string for a memory " |
| "access which isn't a reduction"); |
| case MemoryAccess::RT_BOTTOM: |
| llvm_unreachable("Requested a reduction operator string for a internal " |
| "reduction type!"); |
| case MemoryAccess::RT_ADD: |
| return "+"; |
| case MemoryAccess::RT_MUL: |
| return "*"; |
| case MemoryAccess::RT_BOR: |
| return "|"; |
| case MemoryAccess::RT_BXOR: |
| return "^"; |
| case MemoryAccess::RT_BAND: |
| return "&"; |
| } |
| llvm_unreachable("Unknown reduction type"); |
| } |
| |
| const ScopArrayInfo *MemoryAccess::getOriginalScopArrayInfo() const { |
| isl::id ArrayId = getArrayId(); |
| void *User = ArrayId.get_user(); |
| const ScopArrayInfo *SAI = static_cast<ScopArrayInfo *>(User); |
| return SAI; |
| } |
| |
| const ScopArrayInfo *MemoryAccess::getLatestScopArrayInfo() const { |
| isl::id ArrayId = getLatestArrayId(); |
| void *User = ArrayId.get_user(); |
| const ScopArrayInfo *SAI = static_cast<ScopArrayInfo *>(User); |
| return SAI; |
| } |
| |
| isl::id MemoryAccess::getOriginalArrayId() const { |
| return AccessRelation.get_tuple_id(isl::dim::out); |
| } |
| |
| isl::id MemoryAccess::getLatestArrayId() const { |
| if (!hasNewAccessRelation()) |
| return getOriginalArrayId(); |
| return NewAccessRelation.get_tuple_id(isl::dim::out); |
| } |
| |
| isl::map MemoryAccess::getAddressFunction() const { |
| return getAccessRelation().lexmin(); |
| } |
| |
| isl::pw_multi_aff |
| MemoryAccess::applyScheduleToAccessRelation(isl::union_map USchedule) const { |
| isl::map Schedule, ScheduledAccRel; |
| isl::union_set UDomain; |
| |
| UDomain = getStatement()->getDomain(); |
| USchedule = USchedule.intersect_domain(UDomain); |
| Schedule = isl::map::from_union_map(USchedule); |
| ScheduledAccRel = getAddressFunction().apply_domain(Schedule); |
| return isl::pw_multi_aff::from_map(ScheduledAccRel); |
| } |
| |
| isl::map MemoryAccess::getOriginalAccessRelation() const { |
| return AccessRelation; |
| } |
| |
| std::string MemoryAccess::getOriginalAccessRelationStr() const { |
| return stringFromIslObj(AccessRelation); |
| } |
| |
| isl::space MemoryAccess::getOriginalAccessRelationSpace() const { |
| return AccessRelation.get_space(); |
| } |
| |
| isl::map MemoryAccess::getNewAccessRelation() const { |
| return NewAccessRelation; |
| } |
| |
| std::string MemoryAccess::getNewAccessRelationStr() const { |
| return stringFromIslObj(NewAccessRelation); |
| } |
| |
| std::string MemoryAccess::getAccessRelationStr() const { |
| return stringFromIslObj(getAccessRelation()); |
| } |
| |
| isl::basic_map MemoryAccess::createBasicAccessMap(ScopStmt *Statement) { |
| isl::space Space = isl::space(Statement->getIslCtx(), 0, 1); |
| Space = Space.align_params(Statement->getDomainSpace()); |
| |
| return isl::basic_map::from_domain_and_range( |
| isl::basic_set::universe(Statement->getDomainSpace()), |
| isl::basic_set::universe(Space)); |
| } |
| |
| // Formalize no out-of-bound access assumption |
| // |
| // When delinearizing array accesses we optimistically assume that the |
| // delinearized accesses do not access out of bound locations (the subscript |
| // expression of each array evaluates for each statement instance that is |
| // executed to a value that is larger than zero and strictly smaller than the |
| // size of the corresponding dimension). The only exception is the outermost |
| // dimension for which we do not need to assume any upper bound. At this point |
| // we formalize this assumption to ensure that at code generation time the |
| // relevant run-time checks can be generated. |
| // |
| // To find the set of constraints necessary to avoid out of bound accesses, we |
| // first build the set of data locations that are not within array bounds. We |
| // then apply the reverse access relation to obtain the set of iterations that |
| // may contain invalid accesses and reduce this set of iterations to the ones |
| // that are actually executed by intersecting them with the domain of the |
| // statement. If we now project out all loop dimensions, we obtain a set of |
| // parameters that may cause statement instances to be executed that may |
| // possibly yield out of bound memory accesses. The complement of these |
| // constraints is the set of constraints that needs to be assumed to ensure such |
| // statement instances are never executed. |
| isl::set MemoryAccess::assumeNoOutOfBound() { |
| auto *SAI = getScopArrayInfo(); |
| isl::space Space = getOriginalAccessRelationSpace().range(); |
| isl::set Outside = isl::set::empty(Space); |
| for (int i = 1, Size = Space.dim(isl::dim::set).release(); i < Size; ++i) { |
| isl::local_space LS(Space); |
| isl::pw_aff Var = isl::pw_aff::var_on_domain(LS, isl::dim::set, i); |
| isl::pw_aff Zero = isl::pw_aff(LS); |
| |
| isl::set DimOutside = Var.lt_set(Zero); |
| isl::pw_aff SizeE = SAI->getDimensionSizePw(i); |
| SizeE = SizeE.add_dims(isl::dim::in, Space.dim(isl::dim::set).release()); |
| SizeE = SizeE.set_tuple_id(isl::dim::in, Space.get_tuple_id(isl::dim::set)); |
| DimOutside = DimOutside.unite(SizeE.le_set(Var)); |
| |
| Outside = Outside.unite(DimOutside); |
| } |
| |
| Outside = Outside.apply(getAccessRelation().reverse()); |
| Outside = Outside.intersect(Statement->getDomain()); |
| Outside = Outside.params(); |
| |
| // Remove divs to avoid the construction of overly complicated assumptions. |
| // Doing so increases the set of parameter combinations that are assumed to |
| // not appear. This is always save, but may make the resulting run-time check |
| // bail out more often than strictly necessary. |
| Outside = Outside.remove_divs(); |
| Outside = Outside.complement(); |
| |
| if (!PollyPreciseInbounds) |
| Outside = Outside.gist_params(Statement->getDomain().params()); |
| return Outside; |
| } |
| |
| void MemoryAccess::buildMemIntrinsicAccessRelation() { |
| assert(isMemoryIntrinsic()); |
| assert(Subscripts.size() == 2 && Sizes.size() == 1); |
| |
| isl::pw_aff SubscriptPWA = getPwAff(Subscripts[0]); |
| isl::map SubscriptMap = isl::map::from_pw_aff(SubscriptPWA); |
| |
| isl::map LengthMap; |
| if (Subscripts[1] == nullptr) { |
| LengthMap = isl::map::universe(SubscriptMap.get_space()); |
| } else { |
| isl::pw_aff LengthPWA = getPwAff(Subscripts[1]); |
| LengthMap = isl::map::from_pw_aff(LengthPWA); |
| isl::space RangeSpace = LengthMap.get_space().range(); |
| LengthMap = LengthMap.apply_range(isl::map::lex_gt(RangeSpace)); |
| } |
| LengthMap = LengthMap.lower_bound_si(isl::dim::out, 0, 0); |
| LengthMap = LengthMap.align_params(SubscriptMap.get_space()); |
| SubscriptMap = SubscriptMap.align_params(LengthMap.get_space()); |
| LengthMap = LengthMap.sum(SubscriptMap); |
| AccessRelation = |
| LengthMap.set_tuple_id(isl::dim::in, getStatement()->getDomainId()); |
| } |
| |
| void MemoryAccess::computeBoundsOnAccessRelation(unsigned ElementSize) { |
| ScalarEvolution *SE = Statement->getParent()->getSE(); |
| |
| auto MAI = MemAccInst(getAccessInstruction()); |
| if (isa<MemIntrinsic>(MAI)) |
| return; |
| |
| Value *Ptr = MAI.getPointerOperand(); |
| if (!Ptr || !SE->isSCEVable(Ptr->getType())) |
| return; |
| |
| const SCEV *PtrSCEV = SE->getSCEV(Ptr); |
| if (isa<SCEVCouldNotCompute>(PtrSCEV)) |
| return; |
| |
| const SCEV *BasePtrSCEV = SE->getPointerBase(PtrSCEV); |
| if (BasePtrSCEV && !isa<SCEVCouldNotCompute>(BasePtrSCEV)) |
| PtrSCEV = SE->getMinusSCEV(PtrSCEV, BasePtrSCEV); |
| |
| const ConstantRange &Range = SE->getSignedRange(PtrSCEV); |
| if (Range.isFullSet()) |
| return; |
| |
| if (Range.isUpperWrapped() || Range.isSignWrappedSet()) |
| return; |
| |
| bool isWrapping = Range.isSignWrappedSet(); |
| |
| unsigned BW = Range.getBitWidth(); |
| const auto One = APInt(BW, 1); |
| const auto LB = isWrapping ? Range.getLower() : Range.getSignedMin(); |
| const auto UB = isWrapping ? (Range.getUpper() - One) : Range.getSignedMax(); |
| |
| auto Min = LB.sdiv(APInt(BW, ElementSize)); |
| auto Max = UB.sdiv(APInt(BW, ElementSize)) + One; |
| |
| assert(Min.sle(Max) && "Minimum expected to be less or equal than max"); |
| |
| isl::map Relation = AccessRelation; |
| isl::set AccessRange = Relation.range(); |
| AccessRange = addRangeBoundsToSet(AccessRange, ConstantRange(Min, Max), 0, |
| isl::dim::set); |
| AccessRelation = Relation.intersect_range(AccessRange); |
| } |
| |
| void MemoryAccess::foldAccessRelation() { |
| if (Sizes.size() < 2 || isa<SCEVConstant>(Sizes[1])) |
| return; |
| |
| int Size = Subscripts.size(); |
| |
| isl::map NewAccessRelation = AccessRelation; |
| |
| for (int i = Size - 2; i >= 0; --i) { |
| isl::space Space; |
| isl::map MapOne, MapTwo; |
| isl::pw_aff DimSize = getPwAff(Sizes[i + 1]); |
| |
| isl::space SpaceSize = DimSize.get_space(); |
| isl::id ParamId = SpaceSize.get_dim_id(isl::dim::param, 0); |
| |
| Space = AccessRelation.get_space(); |
| Space = Space.range().map_from_set(); |
| Space = Space.align_params(SpaceSize); |
| |
| int ParamLocation = Space.find_dim_by_id(isl::dim::param, ParamId); |
| |
| MapOne = isl::map::universe(Space); |
| for (int j = 0; j < Size; ++j) |
| MapOne = MapOne.equate(isl::dim::in, j, isl::dim::out, j); |
| MapOne = MapOne.lower_bound_si(isl::dim::in, i + 1, 0); |
| |
| MapTwo = isl::map::universe(Space); |
| for (int j = 0; j < Size; ++j) |
| if (j < i || j > i + 1) |
| MapTwo = MapTwo.equate(isl::dim::in, j, isl::dim::out, j); |
| |
| isl::local_space LS(Space); |
| isl::constraint C; |
| C = isl::constraint::alloc_equality(LS); |
| C = C.set_constant_si(-1); |
| C = C.set_coefficient_si(isl::dim::in, i, 1); |
| C = C.set_coefficient_si(isl::dim::out, i, -1); |
| MapTwo = MapTwo.add_constraint(C); |
| C = isl::constraint::alloc_equality(LS); |
| C = C.set_coefficient_si(isl::dim::in, i + 1, 1); |
| C = C.set_coefficient_si(isl::dim::out, i + 1, -1); |
| C = C.set_coefficient_si(isl::dim::param, ParamLocation, 1); |
| MapTwo = MapTwo.add_constraint(C); |
| MapTwo = MapTwo.upper_bound_si(isl::dim::in, i + 1, -1); |
| |
| MapOne = MapOne.unite(MapTwo); |
| NewAccessRelation = NewAccessRelation.apply_range(MapOne); |
| } |
| |
| isl::id BaseAddrId = getScopArrayInfo()->getBasePtrId(); |
| isl::space Space = Statement->getDomainSpace(); |
| NewAccessRelation = NewAccessRelation.set_tuple_id( |
| isl::dim::in, Space.get_tuple_id(isl::dim::set)); |
| NewAccessRelation = NewAccessRelation.set_tuple_id(isl::dim::out, BaseAddrId); |
| NewAccessRelation = NewAccessRelation.gist_domain(Statement->getDomain()); |
| |
| // Access dimension folding might in certain cases increase the number of |
| // disjuncts in the memory access, which can possibly complicate the generated |
| // run-time checks and can lead to costly compilation. |
| if (!PollyPreciseFoldAccesses && NewAccessRelation.n_basic_map().release() > |
| AccessRelation.n_basic_map().release()) { |
| } else { |
| AccessRelation = NewAccessRelation; |
| } |
| } |
| |
| void MemoryAccess::buildAccessRelation(const ScopArrayInfo *SAI) { |
| assert(AccessRelation.is_null() && "AccessRelation already built"); |
| |
| // Initialize the invalid domain which describes all iterations for which the |
| // access relation is not modeled correctly. |
| isl::set StmtInvalidDomain = getStatement()->getInvalidDomain(); |
| InvalidDomain = isl::set::empty(StmtInvalidDomain.get_space()); |
| |
| isl::ctx Ctx = Id.ctx(); |
| isl::id BaseAddrId = SAI->getBasePtrId(); |
| |
| if (getAccessInstruction() && isa<MemIntrinsic>(getAccessInstruction())) { |
| buildMemIntrinsicAccessRelation(); |
| AccessRelation = AccessRelation.set_tuple_id(isl::dim::out, BaseAddrId); |
| return; |
| } |
| |
| if (!isAffine()) { |
| // We overapproximate non-affine accesses with a possible access to the |
| // whole array. For read accesses it does not make a difference, if an |
| // access must or may happen. However, for write accesses it is important to |
| // differentiate between writes that must happen and writes that may happen. |
| if (AccessRelation.is_null()) |
| AccessRelation = createBasicAccessMap(Statement); |
| |
| AccessRelation = AccessRelation.set_tuple_id(isl::dim::out, BaseAddrId); |
| return; |
| } |
| |
| isl::space Space = isl::space(Ctx, 0, Statement->getNumIterators(), 0); |
| AccessRelation = isl::map::universe(Space); |
| |
| for (int i = 0, Size = Subscripts.size(); i < Size; ++i) { |
| isl::pw_aff Affine = getPwAff(Subscripts[i]); |
| isl::map SubscriptMap = isl::map::from_pw_aff(Affine); |
| AccessRelation = AccessRelation.flat_range_product(SubscriptMap); |
| } |
| |
| Space = Statement->getDomainSpace(); |
| AccessRelation = AccessRelation.set_tuple_id( |
| isl::dim::in, Space.get_tuple_id(isl::dim::set)); |
| AccessRelation = AccessRelation.set_tuple_id(isl::dim::out, BaseAddrId); |
| |
| AccessRelation = AccessRelation.gist_domain(Statement->getDomain()); |
| } |
| |
| MemoryAccess::MemoryAccess(ScopStmt *Stmt, Instruction *AccessInst, |
| AccessType AccType, Value *BaseAddress, |
| Type *ElementType, bool Affine, |
| ArrayRef<const SCEV *> Subscripts, |
| ArrayRef<const SCEV *> Sizes, Value *AccessValue, |
| MemoryKind Kind) |
| : Kind(Kind), AccType(AccType), Statement(Stmt), InvalidDomain(), |
| BaseAddr(BaseAddress), ElementType(ElementType), |
| Sizes(Sizes.begin(), Sizes.end()), AccessInstruction(AccessInst), |
| AccessValue(AccessValue), IsAffine(Affine), |
| Subscripts(Subscripts.begin(), Subscripts.end()), AccessRelation(), |
| NewAccessRelation() { |
| static const std::string TypeStrings[] = {"", "_Read", "_Write", "_MayWrite"}; |
| const std::string Access = TypeStrings[AccType] + utostr(Stmt->size()); |
| |
| std::string IdName = Stmt->getBaseName() + Access; |
| Id = isl::id::alloc(Stmt->getParent()->getIslCtx(), IdName, this); |
| } |
| |
| MemoryAccess::MemoryAccess(ScopStmt *Stmt, AccessType AccType, isl::map AccRel) |
| : Kind(MemoryKind::Array), AccType(AccType), Statement(Stmt), |
| InvalidDomain(), AccessRelation(), NewAccessRelation(AccRel) { |
| isl::id ArrayInfoId = NewAccessRelation.get_tuple_id(isl::dim::out); |
| auto *SAI = ScopArrayInfo::getFromId(ArrayInfoId); |
| Sizes.push_back(nullptr); |
| for (unsigned i = 1; i < SAI->getNumberOfDimensions(); i++) |
| Sizes.push_back(SAI->getDimensionSize(i)); |
| ElementType = SAI->getElementType(); |
| BaseAddr = SAI->getBasePtr(); |
| static const std::string TypeStrings[] = {"", "_Read", "_Write", "_MayWrite"}; |
| const std::string Access = TypeStrings[AccType] + utostr(Stmt->size()); |
| |
| std::string IdName = Stmt->getBaseName() + Access; |
| Id = isl::id::alloc(Stmt->getParent()->getIslCtx(), IdName, this); |
| } |
| |
| MemoryAccess::~MemoryAccess() = default; |
| |
| void MemoryAccess::realignParams() { |
| isl::set Ctx = Statement->getParent()->getContext(); |
| InvalidDomain = InvalidDomain.gist_params(Ctx); |
| AccessRelation = AccessRelation.gist_params(Ctx); |
| |
| // Predictable parameter order is required for JSON imports. Ensure alignment |
| // by explicitly calling align_params. |
| isl::space CtxSpace = Ctx.get_space(); |
| InvalidDomain = InvalidDomain.align_params(CtxSpace); |
| AccessRelation = AccessRelation.align_params(CtxSpace); |
| } |
| |
| const std::string MemoryAccess::getReductionOperatorStr() const { |
| return MemoryAccess::getReductionOperatorStr(getReductionType()); |
| } |
| |
| isl::id MemoryAccess::getId() const { return Id; } |
| |
| raw_ostream &polly::operator<<(raw_ostream &OS, |
| MemoryAccess::ReductionType RT) { |
| switch (RT) { |
| case MemoryAccess::RT_NONE: |
| case MemoryAccess::RT_BOTTOM: |
| OS << "NONE"; |
| break; |
| default: |
| OS << MemoryAccess::getReductionOperatorStr(RT); |
| break; |
| } |
| return OS; |
| } |
| |
| void MemoryAccess::print(raw_ostream &OS) const { |
| switch (AccType) { |
| case READ: |
| OS.indent(12) << "ReadAccess :=\t"; |
| break; |
| case MUST_WRITE: |
| OS.indent(12) << "MustWriteAccess :=\t"; |
| break; |
| case MAY_WRITE: |
| OS.indent(12) << "MayWriteAccess :=\t"; |
| break; |
| } |
| |
| OS << "[Reduction Type: " << getReductionType() << "] "; |
| |
| OS << "[Scalar: " << isScalarKind() << "]\n"; |
| OS.indent(16) << getOriginalAccessRelationStr() << ";\n"; |
| if (hasNewAccessRelation()) |
| OS.indent(11) << "new: " << getNewAccessRelationStr() << ";\n"; |
| } |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| LLVM_DUMP_METHOD void MemoryAccess::dump() const { print(errs()); } |
| #endif |
| |
| isl::pw_aff MemoryAccess::getPwAff(const SCEV *E) { |
| auto *Stmt = getStatement(); |
| PWACtx PWAC = Stmt->getParent()->getPwAff(E, Stmt->getEntryBlock()); |
| isl::set StmtDom = getStatement()->getDomain(); |
| StmtDom = StmtDom.reset_tuple_id(); |
| isl::set NewInvalidDom = StmtDom.intersect(PWAC.second); |
| InvalidDomain = InvalidDomain.unite(NewInvalidDom); |
| return PWAC.first; |
| } |
| |
| // Create a map in the size of the provided set domain, that maps from the |
| // one element of the provided set domain to another element of the provided |
| // set domain. |
| // The mapping is limited to all points that are equal in all but the last |
| // dimension and for which the last dimension of the input is strict smaller |
| // than the last dimension of the output. |
| // |
| // getEqualAndLarger(set[i0, i1, ..., iX]): |
| // |
| // set[i0, i1, ..., iX] -> set[o0, o1, ..., oX] |
| // : i0 = o0, i1 = o1, ..., i(X-1) = o(X-1), iX < oX |
| // |
| static isl::map getEqualAndLarger(isl::space SetDomain) { |
| isl::space Space = SetDomain.map_from_set(); |
| isl::map Map = isl::map::universe(Space); |
| unsigned lastDimension = Map.domain_tuple_dim().release() - 1; |
| |
| // Set all but the last dimension to be equal for the input and output |
| // |
| // input[i0, i1, ..., iX] -> output[o0, o1, ..., oX] |
| // : i0 = o0, i1 = o1, ..., i(X-1) = o(X-1) |
| for (unsigned i = 0; i < lastDimension; ++i) |
| Map = Map.equate(isl::dim::in, i, isl::dim::out, i); |
| |
| // Set the last dimension of the input to be strict smaller than the |
| // last dimension of the output. |
| // |
| // input[?,?,?,...,iX] -> output[?,?,?,...,oX] : iX < oX |
| Map = Map.order_lt(isl::dim::in, lastDimension, isl::dim::out, lastDimension); |
| return Map; |
| } |
| |
| isl::set MemoryAccess::getStride(isl::map Schedule) const { |
| isl::map AccessRelation = getAccessRelation(); |
| isl::space Space = Schedule.get_space().range(); |
| isl::map NextScatt = getEqualAndLarger(Space); |
| |
| Schedule = Schedule.reverse(); |
| NextScatt = NextScatt.lexmin(); |
| |
| NextScatt = NextScatt.apply_range(Schedule); |
| NextScatt = NextScatt.apply_range(AccessRelation); |
| NextScatt = NextScatt.apply_domain(Schedule); |
| NextScatt = NextScatt.apply_domain(AccessRelation); |
| |
| isl::set Deltas = NextScatt.deltas(); |
| return Deltas; |
| } |
| |
| bool MemoryAccess::isStrideX(isl::map Schedule, int StrideWidth) const { |
| isl::set Stride, StrideX; |
| bool IsStrideX; |
| |
| Stride = getStride(Schedule); |
| StrideX = isl::set::universe(Stride.get_space()); |
| int Size = unsignedFromIslSize(StrideX.tuple_dim()); |
| for (auto i : seq<int>(0, Size - 1)) |
| StrideX = StrideX.fix_si(isl::dim::set, i, 0); |
| StrideX = StrideX.fix_si(isl::dim::set, Size - 1, StrideWidth); |
| IsStrideX = Stride.is_subset(StrideX); |
| |
| return IsStrideX; |
| } |
| |
| bool MemoryAccess::isStrideZero(isl::map Schedule) const { |
| return isStrideX(Schedule, 0); |
| } |
| |
| bool MemoryAccess::isStrideOne(isl::map Schedule) const { |
| return isStrideX(Schedule, 1); |
| } |
| |
| void MemoryAccess::setAccessRelation(isl::map NewAccess) { |
| AccessRelation = NewAccess; |
| } |
| |
| void MemoryAccess::setNewAccessRelation(isl::map NewAccess) { |
| assert(!NewAccess.is_null()); |
| |
| #ifndef NDEBUG |
| // Check domain space compatibility. |
| isl::space NewSpace = NewAccess.get_space(); |
| isl::space NewDomainSpace = NewSpace.domain(); |
| isl::space OriginalDomainSpace = getStatement()->getDomainSpace(); |
| assert(OriginalDomainSpace.has_equal_tuples(NewDomainSpace)); |
| |
| // Reads must be executed unconditionally. Writes might be executed in a |
| // subdomain only. |
| if (isRead()) { |
| // Check whether there is an access for every statement instance. |
| isl::set StmtDomain = getStatement()->getDomain(); |
| isl::set DefinedContext = |
| getStatement()->getParent()->getBestKnownDefinedBehaviorContext(); |
| StmtDomain = StmtDomain.intersect_params(DefinedContext); |
| isl::set NewDomain = NewAccess.domain(); |
| assert(!StmtDomain.is_subset(NewDomain).is_false() && |
| "Partial READ accesses not supported"); |
| } |
| |
| isl::space NewAccessSpace = NewAccess.get_space(); |
| assert(NewAccessSpace.has_tuple_id(isl::dim::set) && |
| "Must specify the array that is accessed"); |
| isl::id NewArrayId = NewAccessSpace.get_tuple_id(isl::dim::set); |
| auto *SAI = static_cast<ScopArrayInfo *>(NewArrayId.get_user()); |
| assert(SAI && "Must set a ScopArrayInfo"); |
| |
| if (SAI->isArrayKind() && SAI->getBasePtrOriginSAI()) { |
| InvariantEquivClassTy *EqClass = |
| getStatement()->getParent()->lookupInvariantEquivClass( |
| SAI->getBasePtr()); |
| assert(EqClass && |
| "Access functions to indirect arrays must have an invariant and " |
| "hoisted base pointer"); |
| } |
| |
| // Check whether access dimensions correspond to number of dimensions of the |
| // accesses array. |
| unsigned Dims = SAI->getNumberOfDimensions(); |
| unsigned SpaceSize = unsignedFromIslSize(NewAccessSpace.dim(isl::dim::set)); |
| assert(SpaceSize == Dims && "Access dims must match array dims"); |
| #endif |
| |
| NewAccess = NewAccess.gist_params(getStatement()->getParent()->getContext()); |
| NewAccess = NewAccess.gist_domain(getStatement()->getDomain()); |
| NewAccessRelation = NewAccess; |
| } |
| |
| bool MemoryAccess::isLatestPartialAccess() const { |
| isl::set StmtDom = getStatement()->getDomain(); |
| isl::set AccDom = getLatestAccessRelation().domain(); |
| |
| return !StmtDom.is_subset(AccDom); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| |
| isl::map ScopStmt::getSchedule() const { |
| isl::set Domain = getDomain(); |
| if (Domain.is_empty()) |
| return isl::map::from_aff(isl::aff(isl::local_space(getDomainSpace()))); |
| auto Schedule = getParent()->getSchedule(); |
| if (Schedule.is_null()) |
| return {}; |
| Schedule = Schedule.intersect_domain(isl::union_set(Domain)); |
| if (Schedule.is_empty()) |
| return isl::map::from_aff(isl::aff(isl::local_space(getDomainSpace()))); |
| isl::map M = M.from_union_map(Schedule); |
| M = M.coalesce(); |
| M = M.gist_domain(Domain); |
| M = M.coalesce(); |
| return M; |
| } |
| |
| void ScopStmt::restrictDomain(isl::set NewDomain) { |
| assert(NewDomain.is_subset(Domain) && |
| "New domain is not a subset of old domain!"); |
| Domain = NewDomain; |
| } |
| |
| void ScopStmt::addAccess(MemoryAccess *Access, bool Prepend) { |
| Instruction *AccessInst = Access->getAccessInstruction(); |
| |
| if (Access->isArrayKind()) { |
| MemoryAccessList &MAL = InstructionToAccess[AccessInst]; |
| MAL.emplace_front(Access); |
| } else if (Access->isValueKind() && Access->isWrite()) { |
| Instruction *AccessVal = cast<Instruction>(Access->getAccessValue()); |
| assert(!ValueWrites.lookup(AccessVal)); |
| |
| ValueWrites[AccessVal] = Access; |
| } else if (Access->isValueKind() && Access->isRead()) { |
| Value *AccessVal = Access->getAccessValue(); |
| assert(!ValueReads.lookup(AccessVal)); |
| |
| ValueReads[AccessVal] = Access; |
| } else if (Access->isAnyPHIKind() && Access->isWrite()) { |
| PHINode *PHI = cast<PHINode>(Access->getAccessValue()); |
| assert(!PHIWrites.lookup(PHI)); |
| |
| PHIWrites[PHI] = Access; |
| } else if (Access->isAnyPHIKind() && Access->isRead()) { |
| PHINode *PHI = cast<PHINode>(Access->getAccessValue()); |
| assert(!PHIReads.lookup(PHI)); |
| |
| PHIReads[PHI] = Access; |
| } |
| |
| if (Prepend) { |
| MemAccs.insert(MemAccs.begin(), Access); |
| return; |
| } |
| MemAccs.push_back(Access); |
| } |
| |
| void ScopStmt::realignParams() { |
| for (MemoryAccess *MA : *this) |
| MA->realignParams(); |
| |
| simplify(InvalidDomain); |
| simplify(Domain); |
| |
| isl::set Ctx = Parent.getContext(); |
| InvalidDomain = InvalidDomain.gist_params(Ctx); |
| Domain = Domain.gist_params(Ctx); |
| |
| // Predictable parameter order is required for JSON imports. Ensure alignment |
| // by explicitly calling align_params. |
| isl::space CtxSpace = Ctx.get_space(); |
| InvalidDomain = InvalidDomain.align_params(CtxSpace); |
| Domain = Domain.align_params(CtxSpace); |
| } |
| |
| ScopStmt::ScopStmt(Scop &parent, Region &R, StringRef Name, |
| Loop *SurroundingLoop, |
| std::vector<Instruction *> EntryBlockInstructions) |
| : Parent(parent), InvalidDomain(), Domain(), R(&R), Build(), BaseName(Name), |
| SurroundingLoop(SurroundingLoop), Instructions(EntryBlockInstructions) {} |
| |
| ScopStmt::ScopStmt(Scop &parent, BasicBlock &bb, StringRef Name, |
| Loop *SurroundingLoop, |
| std::vector<Instruction *> Instructions) |
| : Parent(parent), InvalidDomain(), Domain(), BB(&bb), Build(), |
| BaseName(Name), SurroundingLoop(SurroundingLoop), |
| Instructions(Instructions) {} |
| |
| ScopStmt::ScopStmt(Scop &parent, isl::map SourceRel, isl::map TargetRel, |
| isl::set NewDomain) |
| : Parent(parent), InvalidDomain(), Domain(NewDomain), Build() { |
| BaseName = getIslCompatibleName("CopyStmt_", "", |
| std::to_string(parent.getCopyStmtsNum())); |
| isl::id Id = isl::id::alloc(getIslCtx(), getBaseName(), this); |
| Domain = Domain.set_tuple_id(Id); |
| TargetRel = TargetRel.set_tuple_id(isl::dim::in, Id); |
| auto *Access = |
| new MemoryAccess(this, MemoryAccess::AccessType::MUST_WRITE, TargetRel); |
| parent.addAccessFunction(Access); |
| addAccess(Access); |
| SourceRel = SourceRel.set_tuple_id(isl::dim::in, Id); |
| Access = new MemoryAccess(this, MemoryAccess::AccessType::READ, SourceRel); |
| parent.addAccessFunction(Access); |
| addAccess(Access); |
| } |
| |
| ScopStmt::~ScopStmt() = default; |
| |
| std::string ScopStmt::getDomainStr() const { return stringFromIslObj(Domain); } |
| |
| std::string ScopStmt::getScheduleStr() const { |
| return stringFromIslObj(getSchedule()); |
| } |
| |
| void ScopStmt::setInvalidDomain(isl::set ID) { InvalidDomain = ID; } |
| |
| BasicBlock *ScopStmt::getEntryBlock() const { |
| if (isBlockStmt()) |
| return getBasicBlock(); |
| return getRegion()->getEntry(); |
| } |
| |
| unsigned ScopStmt::getNumIterators() const { return NestLoops.size(); } |
| |
| const char *ScopStmt::getBaseName() const { return BaseName.c_str(); } |
| |
| Loop *ScopStmt::getLoopForDimension(unsigned Dimension) const { |
| return NestLoops[Dimension]; |
| } |
| |
| isl::ctx ScopStmt::getIslCtx() const { return Parent.getIslCtx(); } |
| |
| isl::set ScopStmt::getDomain() const { return Domain; } |
| |
| isl::space ScopStmt::getDomainSpace() const { return Domain.get_space(); } |
| |
| isl::id ScopStmt::getDomainId() const { return Domain.get_tuple_id(); } |
| |
| void ScopStmt::printInstructions(raw_ostream &OS) const { |
| OS << "Instructions {\n"; |
| |
| for (Instruction *Inst : Instructions) |
| OS.indent(16) << *Inst << "\n"; |
| |
| OS.indent(12) << "}\n"; |
| } |
| |
| void ScopStmt::print(raw_ostream &OS, bool PrintInstructions) const { |
| OS << "\t" << getBaseName() << "\n"; |
| OS.indent(12) << "Domain :=\n"; |
| |
| if (!Domain.is_null()) { |
| OS.indent(16) << getDomainStr() << ";\n"; |
| } else |
| OS.indent(16) << "n/a\n"; |
| |
| OS.indent(12) << "Schedule :=\n"; |
| |
| if (!Domain.is_null()) { |
| OS.indent(16) << getScheduleStr() << ";\n"; |
| } else |
| OS.indent(16) << "n/a\n"; |
| |
| for (MemoryAccess *Access : MemAccs) |
| Access->print(OS); |
| |
| if (PrintInstructions) |
| printInstructions(OS.indent(12)); |
| } |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| LLVM_DUMP_METHOD void ScopStmt::dump() const { print(dbgs(), true); } |
| #endif |
| |
| void ScopStmt::removeAccessData(MemoryAccess *MA) { |
| if (MA->isRead() && MA->isOriginalValueKind()) { |
| bool Found = ValueReads.erase(MA->getAccessValue()); |
| (void)Found; |
| assert(Found && "Expected access data not found"); |
| } |
| if (MA->isWrite() && MA->isOriginalValueKind()) { |
| bool Found = ValueWrites.erase(cast<Instruction>(MA->getAccessValue())); |
| (void)Found; |
| assert(Found && "Expected access data not found"); |
| } |
| if (MA->isWrite() && MA->isOriginalAnyPHIKind()) { |
| bool Found = PHIWrites.erase(cast<PHINode>(MA->getAccessInstruction())); |
| (void)Found; |
| assert(Found && "Expected access data not found"); |
| } |
| if (MA->isRead() && MA->isOriginalAnyPHIKind()) { |
| bool Found = PHIReads.erase(cast<PHINode>(MA->getAccessInstruction())); |
| (void)Found; |
| assert(Found && "Expected access data not found"); |
| } |
| } |
| |
| void ScopStmt::removeMemoryAccess(MemoryAccess *MA) { |
| // Remove the memory accesses from this statement together with all scalar |
| // accesses that were caused by it. MemoryKind::Value READs have no access |
| // instruction, hence would not be removed by this function. However, it is |
| // only used for invariant LoadInst accesses, its arguments are always affine, |
| // hence synthesizable, and therefore there are no MemoryKind::Value READ |
| // accesses to be removed. |
| auto Predicate = [&](MemoryAccess *Acc) { |
| return Acc->getAccessInstruction() == MA->getAccessInstruction(); |
| }; |
| for (auto *MA : MemAccs) { |
| if (Predicate(MA)) { |
| removeAccessData(MA); |
| Parent.removeAccessData(MA); |
| } |
| } |
| llvm::erase_if(MemAccs, Predicate); |
| InstructionToAccess.erase(MA->getAccessInstruction()); |
| } |
| |
| void ScopStmt::removeSingleMemoryAccess(MemoryAccess *MA, bool AfterHoisting) { |
| if (AfterHoisting) { |
| auto MAIt = std::find(MemAccs.begin(), MemAccs.end(), MA); |
| assert(MAIt != MemAccs.end()); |
| MemAccs.erase(MAIt); |
| |
| removeAccessData(MA); |
| Parent.removeAccessData(MA); |
| } |
| |
| auto It = InstructionToAccess.find(MA->getAccessInstruction()); |
| if (It != InstructionToAccess.end()) { |
| It->second.remove(MA); |
| if (It->second.empty()) |
| InstructionToAccess.erase(MA->getAccessInstruction()); |
| } |
| } |
| |
| MemoryAccess *ScopStmt::ensureValueRead(Value *V) { |
| MemoryAccess *Access = lookupInputAccessOf(V); |
| if (Access) |
| return Access; |
| |
| ScopArrayInfo *SAI = |
| Parent.getOrCreateScopArrayInfo(V, V->getType(), {}, MemoryKind::Value); |
| Access = new MemoryAccess(this, nullptr, MemoryAccess::READ, V, V->getType(), |
| true, {}, {}, V, MemoryKind::Value); |
| Parent.addAccessFunction(Access); |
| Access->buildAccessRelation(SAI); |
| addAccess(Access); |
| Parent.addAccessData(Access); |
| return Access; |
| } |
| |
| raw_ostream &polly::operator<<(raw_ostream &OS, const ScopStmt &S) { |
| S.print(OS, PollyPrintInstructions); |
| return OS; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| /// Scop class implement |
| |
| void Scop::setContext(isl::set NewContext) { |
| Context = NewContext.align_params(Context.get_space()); |
| } |
| |
| namespace { |
| |
| /// Remap parameter values but keep AddRecs valid wrt. invariant loads. |
| class SCEVSensitiveParameterRewriter final |
| : public SCEVRewriteVisitor<SCEVSensitiveParameterRewriter> { |
| const ValueToValueMap &VMap; |
| |
| public: |
| SCEVSensitiveParameterRewriter(const ValueToValueMap &VMap, |
| ScalarEvolution &SE) |
| : SCEVRewriteVisitor(SE), VMap(VMap) {} |
| |
| static const SCEV *rewrite(const SCEV *E, ScalarEvolution &SE, |
| const ValueToValueMap &VMap) { |
| SCEVSensitiveParameterRewriter SSPR(VMap, SE); |
| return SSPR.visit(E); |
| } |
| |
| const SCEV *visitAddRecExpr(const SCEVAddRecExpr *E) { |
| const SCEV *Start = visit(E->getStart()); |
| const SCEV *AddRec = SE.getAddRecExpr(SE.getConstant(E->getType(), 0), |
| visit(E->getStepRecurrence(SE)), |
| E->getLoop(), SCEV::FlagAnyWrap); |
| return SE.getAddExpr(Start, AddRec); |
| } |
| |
| const SCEV *visitUnknown(const SCEVUnknown *E) { |
| if (auto *NewValue = VMap.lookup(E->getValue())) |
| return SE.getUnknown(NewValue); |
| return E; |
| } |
| }; |
| |
| /// Check whether we should remap a SCEV expression. |
| class SCEVFindInsideScop : public SCEVTraversal<SCEVFindInsideScop> { |
| const ValueToValueMap &VMap; |
| bool FoundInside = false; |
| const Scop *S; |
| |
| public: |
| SCEVFindInsideScop(const ValueToValueMap &VMap, ScalarEvolution &SE, |
| const Scop *S) |
| : SCEVTraversal(*this), VMap(VMap), S(S) {} |
| |
| static bool hasVariant(const SCEV *E, ScalarEvolution &SE, |
| const ValueToValueMap &VMap, const Scop *S) { |
| SCEVFindInsideScop SFIS(VMap, SE, S); |
| SFIS.visitAll(E); |
| return SFIS.FoundInside; |
| } |
| |
| bool follow(const SCEV *E) { |
| if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(E)) { |
| FoundInside |= S->getRegion().contains(AddRec->getLoop()); |
| } else if (auto *Unknown = dyn_cast<SCEVUnknown>(E)) { |
| if (Instruction *I = dyn_cast<Instruction>(Unknown->getValue())) |
| FoundInside |= S->getRegion().contains(I) && !VMap.count(I); |
| } |
| return !FoundInside; |
| } |
| |
| bool isDone() { return FoundInside; } |
| }; |
| } // end anonymous namespace |
| |
| const SCEV *Scop::getRepresentingInvariantLoadSCEV(const SCEV *E) const { |
| // Check whether it makes sense to rewrite the SCEV. (ScalarEvolution |
| // doesn't like addition between an AddRec and an expression that |
| // doesn't have a dominance relationship with it.) |
| if (SCEVFindInsideScop::hasVariant(E, *SE, InvEquivClassVMap, this)) |
| return E; |
| |
| // Rewrite SCEV. |
| return SCEVSensitiveParameterRewriter::rewrite(E, *SE, InvEquivClassVMap); |
| } |
| |
| void Scop::createParameterId(const SCEV *Parameter) { |
| assert(Parameters.count(Parameter)); |
| assert(!ParameterIds.count(Parameter)); |
| |
| std::string ParameterName = "p_" + std::to_string(getNumParams() - 1); |
| |
| if (const SCEVUnknown *ValueParameter = dyn_cast<SCEVUnknown>(Parameter)) { |
| Value *Val = ValueParameter->getValue(); |
| |
| if (UseInstructionNames) { |
| // If this parameter references a specific Value and this value has a name |
| // we use this name as it is likely to be unique and more useful than just |
| // a number. |
| if (Val->hasName()) |
| ParameterName = Val->getName().str(); |
| else if (LoadInst *LI = dyn_cast<LoadInst>(Val)) { |
| auto *LoadOrigin = LI->getPointerOperand()->stripInBoundsOffsets(); |
| if (LoadOrigin->hasName()) { |
| ParameterName += "_loaded_from_"; |
| ParameterName += |
| LI->getPointerOperand()->stripInBoundsOffsets()->getName(); |
| } |
| } |
| } |
| |
| ParameterName = getIslCompatibleName("", ParameterName, ""); |
| } |
| |
| isl::id Id = isl::id::alloc(getIslCtx(), ParameterName, |
| const_cast<void *>((const void *)Parameter)); |
| ParameterIds[Parameter] = Id; |
| } |
| |
| void Scop::addParams(const ParameterSetTy &NewParameters) { |
| for (const SCEV *Parameter : NewParameters) { |
| // Normalize the SCEV to get the representing element for an invariant load. |
| Parameter = extractConstantFactor(Parameter, *SE).second; |
| Parameter = getRepresentingInvariantLoadSCEV(Parameter); |
| |
| if (Parameters.insert(Parameter)) |
| createParameterId(Parameter); |
| } |
| } |
| |
| isl::id Scop::getIdForParam(const SCEV *Parameter) const { |
| // Normalize the SCEV to get the representing element for an invariant load. |
| Parameter = getRepresentingInvariantLoadSCEV(Parameter); |
| return ParameterIds.lookup(Parameter); |
| } |
| |
| bool Scop::isDominatedBy(const DominatorTree &DT, BasicBlock *BB) const { |
| return DT.dominates(BB, getEntry()); |
| } |
| |
| void Scop::buildContext() { |
| isl::space Space = isl::space::params_alloc(getIslCtx(), 0); |
| Context = isl::set::universe(Space); |
| InvalidContext = isl::set::empty(Space); |
| AssumedContext = isl::set::universe(Space); |
| DefinedBehaviorContext = isl::set::universe(Space); |
| } |
| |
| void Scop::addParameterBounds() { |
| unsigned PDim = 0; |
| for (auto *Parameter : Parameters) { |
| ConstantRange SRange = SE->getSignedRange(Parameter); |
| Context = addRangeBoundsToSet(Context, SRange, PDim++, isl::dim::param); |
| } |
| intersectDefinedBehavior(Context, AS_ASSUMPTION); |
| } |
| |
| void Scop::realignParams() { |
| if (PollyIgnoreParamBounds) |
| return; |
| |
| // Add all parameters into a common model. |
| isl::space Space = getFullParamSpace(); |
| |
| // Align the parameters of all data structures to the model. |
| Context = Context.align_params(Space); |
| AssumedContext = AssumedContext.align_params(Space); |
| InvalidContext = InvalidContext.align_params(Space); |
| |
| // As all parameters are known add bounds to them. |
| addParameterBounds(); |
| |
| for (ScopStmt &Stmt : *this) |
| Stmt.realignParams(); |
| // Simplify the schedule according to the context too. |
| Schedule = Schedule.gist_domain_params(getContext()); |
| |
| // Predictable parameter order is required for JSON imports. Ensure alignment |
| // by explicitly calling align_params. |
| Schedule = Schedule.align_params(Space); |
| } |
| |
| static isl::set simplifyAssumptionContext(isl::set AssumptionContext, |
| const Scop &S) { |
| // If we have modeled all blocks in the SCoP that have side effects we can |
| // simplify the context with the constraints that are needed for anything to |
| // be executed at all. However, if we have error blocks in the SCoP we already |
| // assumed some parameter combinations cannot occur and removed them from the |
| // domains, thus we cannot use the remaining domain to simplify the |
| // assumptions. |
| if (!S.hasErrorBlock()) { |
| auto DomainParameters = S.getDomains().params(); |
| AssumptionContext = AssumptionContext.gist_params(DomainParameters); |
| } |
| |
| AssumptionContext = AssumptionContext.gist_params(S.getContext()); |
| return AssumptionContext; |
| } |
| |
| void Scop::simplifyContexts() { |
| // The parameter constraints of the iteration domains give us a set of |
| // constraints that need to hold for all cases where at least a single |
| // statement iteration is executed in the whole scop. We now simplify the |
| // assumed context under the assumption that such constraints hold and at |
| // least a single statement iteration is executed. For cases where no |
| // statement instances are executed, the assumptions we have taken about |
| // the executed code do not matter and can be changed. |
| // |
| // WARNING: This only holds if the assumptions we have taken do not reduce |
| // the set of statement instances that are executed. Otherwise we |
| // may run into a case where the iteration domains suggest that |
| // for a certain set of parameter constraints no code is executed, |
| // but in the original program some computation would have been |
| // performed. In such a case, modifying the run-time conditions and |
| // possibly influencing the run-time check may cause certain scops |
| // to not be executed. |
| // |
| // Example: |
| // |
| // When delinearizing the following code: |
| // |
| // for (long i = 0; i < 100; i++) |
| // for (long j = 0; j < m; j++) |
| // A[i+p][j] = 1.0; |
| // |
| // we assume that the condition m <= 0 or (m >= 1 and p >= 0) holds as |
| // otherwise we would access out of bound data. Now, knowing that code is |
| // only executed for the case m >= 0, it is sufficient to assume p >= 0. |
| AssumedContext = simplifyAssumptionContext(AssumedContext, *this); |
| InvalidContext = InvalidContext.align_params(getParamSpace()); |
| simplify(DefinedBehaviorContext); |
| DefinedBehaviorContext = DefinedBehaviorContext.align_params(getParamSpace()); |
| } |
| |
| isl::set Scop::getDomainConditions(const ScopStmt *Stmt) const { |
| return getDomainConditions(Stmt->getEntryBlock()); |
| } |
| |
| isl::set Scop::getDomainConditions(BasicBlock *BB) const { |
| auto DIt = DomainMap.find(BB); |
| if (DIt != DomainMap.end()) |
| return DIt->getSecond(); |
| |
| auto &RI = *R.getRegionInfo(); |
| auto *BBR = RI.getRegionFor(BB); |
| while (BBR->getEntry() == BB) |
| BBR = BBR->getParent(); |
| return getDomainConditions(BBR->getEntry()); |
| } |
| |
| Scop::Scop(Region &R, ScalarEvolution &ScalarEvolution, LoopInfo &LI, |
| DominatorTree &DT, ScopDetection::DetectionContext &DC, |
| OptimizationRemarkEmitter &ORE, int ID) |
| : IslCtx(isl_ctx_alloc(), isl_ctx_free), SE(&ScalarEvolution), DT(&DT), |
| R(R), name(std::nullopt), HasSingleExitEdge(R.getExitingBlock()), DC(DC), |
| ORE(ORE), Affinator(this, LI), ID(ID) { |
| |
| // Options defaults that are different from ISL's. |
| isl_options_set_schedule_serialize_sccs(IslCtx.get(), true); |
| |
| SmallVector<char *, 8> IslArgv; |
| IslArgv.reserve(1 + IslArgs.size()); |
| |
| // Substitute for program name. |
| IslArgv.push_back(const_cast<char *>("-polly-isl-arg")); |
| |
| for (std::string &Arg : IslArgs) |
| IslArgv.push_back(const_cast<char *>(Arg.c_str())); |
| |
| // Abort if unknown argument is passed. |
| // Note that "-V" (print isl version) will always call exit(0), so we cannot |
| // avoid ISL aborting the program at this point. |
| unsigned IslParseFlags = ISL_ARG_ALL; |
| |
| isl_ctx_parse_options(IslCtx.get(), IslArgv.size(), IslArgv.data(), |
| IslParseFlags); |
| |
| if (IslOnErrorAbort) |
| isl_options_set_on_error(getIslCtx().get(), ISL_ON_ERROR_ABORT); |
| buildContext(); |
| } |
| |
| Scop::~Scop() = default; |
| |
| void Scop::removeFromStmtMap(ScopStmt &Stmt) { |
| for (Instruction *Inst : Stmt.getInstructions()) |
| InstStmtMap.erase(Inst); |
| |
| if (Stmt.isRegionStmt()) { |
| for (BasicBlock *BB : Stmt.getRegion()->blocks()) { |
| StmtMap.erase(BB); |
| // Skip entry basic block, as its instructions are already deleted as |
| // part of the statement's instruction list. |
| if (BB == Stmt.getEntryBlock()) |
| continue; |
| for (Instruction &Inst : *BB) |
| InstStmtMap.erase(&Inst); |
| } |
| } else { |
| auto StmtMapIt = StmtMap.find(Stmt.getBasicBlock()); |
| if (StmtMapIt != StmtMap.end()) |
| llvm::erase(StmtMapIt->second, &Stmt); |
| for (Instruction *Inst : Stmt.getInstructions()) |
| InstStmtMap.erase(Inst); |
| } |
| } |
| |
| void Scop::removeStmts(function_ref<bool(ScopStmt &)> ShouldDelete, |
| bool AfterHoisting) { |
| for (auto StmtIt = Stmts.begin(), StmtEnd = Stmts.end(); StmtIt != StmtEnd;) { |
| if (!ShouldDelete(*StmtIt)) { |
| StmtIt++; |
| continue; |
| } |
| |
| // Start with removing all of the statement's accesses including erasing it |
| // from all maps that are pointing to them. |
| // Make a temporary copy because removing MAs invalidates the iterator. |
| SmallVector<MemoryAccess *, 16> MAList(StmtIt->begin(), StmtIt->end()); |
| for (MemoryAccess *MA : MAList) |
| StmtIt->removeSingleMemoryAccess(MA, AfterHoisting); |
| |
| removeFromStmtMap(*StmtIt); |
| StmtIt = Stmts.erase(StmtIt); |
| } |
| } |
| |
| void Scop::removeStmtNotInDomainMap() { |
| removeStmts([this](ScopStmt &Stmt) -> bool { |
| isl::set Domain = DomainMap.lookup(Stmt.getEntryBlock()); |
| if (Domain.is_null()) |
| return true; |
| return Domain.is_empty(); |
| }); |
| } |
| |
| void Scop::simplifySCoP(bool AfterHoisting) { |
| removeStmts( |
| [AfterHoisting](ScopStmt &Stmt) -> bool { |
| // Never delete statements that contain calls to debug functions. |
| if (hasDebugCall(&Stmt)) |
| return false; |
| |
| bool RemoveStmt = Stmt.isEmpty(); |
| |
| // Remove read only statements only after invariant load hoisting. |
| if (!RemoveStmt && AfterHoisting) { |
| bool OnlyRead = true; |
| for (MemoryAccess *MA : Stmt) { |
| if (MA->isRead()) |
| continue; |
| |
| OnlyRead = false; |
| break; |
| } |
| |
| RemoveStmt = OnlyRead; |
| } |
| return RemoveStmt; |
| }, |
| AfterHoisting); |
| } |
| |
| InvariantEquivClassTy *Scop::lookupInvariantEquivClass(Value *Val) { |
| LoadInst *LInst = dyn_cast<LoadInst>(Val); |
| if (!LInst) |
| return nullptr; |
| |
| if (Value *Rep = InvEquivClassVMap.lookup(LInst)) |
| LInst = cast<LoadInst>(Rep); |
| |
| Type *Ty = LInst->getType(); |
| const SCEV *PointerSCEV = SE->getSCEV(LInst->getPointerOperand()); |
| for (auto &IAClass : InvariantEquivClasses) { |
| if (PointerSCEV != IAClass.IdentifyingPointer || Ty != IAClass.AccessType) |
| continue; |
| |
| auto &MAs = IAClass.InvariantAccesses; |
| for (auto *MA : MAs) |
| if (MA->getAccessInstruction() == Val) |
| return &IAClass; |
| } |
| |
| return nullptr; |
| } |
| |
| ScopArrayInfo *Scop::getOrCreateScopArrayInfo(Value *BasePtr, Type *ElementType, |
| ArrayRef<const SCEV *> Sizes, |
| MemoryKind Kind, |
| const char *BaseName) { |
| assert((BasePtr || BaseName) && |
| "BasePtr and BaseName can not be nullptr at the same time."); |
| assert(!(BasePtr && BaseName) && "BaseName is redundant."); |
| auto &SAI = BasePtr ? ScopArrayInfoMap[std::make_pair(BasePtr, Kind)] |
| : ScopArrayNameMap[BaseName]; |
| if (!SAI) { |
| auto &DL = getFunction().getParent()->getDataLayout(); |
| SAI.reset(new ScopArrayInfo(BasePtr, ElementType, getIslCtx(), Sizes, Kind, |
| DL, this, BaseName)); |
| ScopArrayInfoSet.insert(SAI.get()); |
| } else { |
| SAI->updateElementType(ElementType); |
| // In case of mismatching array sizes, we bail out by setting the run-time |
| // context to false. |
| if (!SAI->updateSizes(Sizes)) |
| invalidate(DELINEARIZATION, DebugLoc()); |
| } |
| return SAI.get(); |
| } |
| |
| ScopArrayInfo *Scop::createScopArrayInfo(Type *ElementType, |
| const std::string &BaseName, |
| const std::vector<unsigned> &Sizes) { |
| auto *DimSizeType = Type::getInt64Ty(getSE()->getContext()); |
| std::vector<const SCEV *> SCEVSizes; |
| |
| for (auto size : Sizes) |
| if (size) |
| SCEVSizes.push_back(getSE()->getConstant(DimSizeType, size, false)); |
| else |
| SCEVSizes.push_back(nullptr); |
| |
| auto *SAI = getOrCreateScopArrayInfo(nullptr, ElementType, SCEVSizes, |
| MemoryKind::Array, BaseName.c_str()); |
| return SAI; |
| } |
| |
| ScopArrayInfo *Scop::getScopArrayInfoOrNull(Value *BasePtr, MemoryKind Kind) { |
| auto *SAI = ScopArrayInfoMap[std::make_pair(BasePtr, Kind)].get(); |
| return SAI; |
| } |
| |
| ScopArrayInfo *Scop::getScopArrayInfo(Value *BasePtr, MemoryKind Kind) { |
| auto *SAI = getScopArrayInfoOrNull(BasePtr, Kind); |
| assert(SAI && "No ScopArrayInfo available for this base pointer"); |
| return SAI; |
| } |
| |
| std::string Scop::getContextStr() const { |
| return stringFromIslObj(getContext()); |
| } |
| |
| std::string Scop::getAssumedContextStr() const { |
| assert(!AssumedContext.is_null() && "Assumed context not yet built"); |
| return stringFromIslObj(AssumedContext); |
| } |
| |
| std::string Scop::getInvalidContextStr() const { |
| return stringFromIslObj(InvalidContext); |
| } |
| |
| std::string Scop::getNameStr() const { |
| std::string ExitName, EntryName; |
| std::tie(EntryName, ExitName) = getEntryExitStr(); |
| return EntryName + "---" + ExitName; |
| } |
| |
| std::pair<std::string, std::string> Scop::getEntryExitStr() const { |
| std::string ExitName, EntryName; |
| raw_string_ostream ExitStr(ExitName); |
| raw_string_ostream EntryStr(EntryName); |
| |
| R.getEntry()->printAsOperand(EntryStr, false); |
| |
| if (R.getExit()) { |
| R.getExit()->printAsOperand(ExitStr, false); |
| } else |
| ExitName = "FunctionExit"; |
| |
| return std::make_pair(EntryName, ExitName); |
| } |
| |
| isl::set Scop::getContext() const { return Context; } |
| |
| isl::space Scop::getParamSpace() const { return getContext().get_space(); } |
| |
| isl::space Scop::getFullParamSpace() const { |
| |
| isl::space Space = isl::space::params_alloc(getIslCtx(), ParameterIds.size()); |
| |
| unsigned PDim = 0; |
| for (const SCEV *Parameter : Parameters) { |
| isl::id Id = getIdForParam(Parameter); |
| Space = Space.set_dim_id(isl::dim::param, PDim++, Id); |
| } |
| |
| return Space; |
| } |
| |
| isl::set Scop::getAssumedContext() const { |
| assert(!AssumedContext.is_null() && "Assumed context not yet built"); |
| return AssumedContext; |
| } |
| |
| bool Scop::isProfitable(bool ScalarsAreUnprofitable) const { |
| if (PollyProcessUnprofitable) |
| return true; |
| |
| if (isEmpty()) |
| return false; |
| |
| unsigned OptimizableStmtsOrLoops = 0; |
| for (auto &Stmt : *this) { |
| if (Stmt.getNumIterators() == 0) |
| continue; |
| |
| bool ContainsArrayAccs = false; |
| bool ContainsScalarAccs = false; |
| for (auto *MA : Stmt) { |
| if (MA->isRead()) |
| continue; |
| ContainsArrayAccs |= MA->isLatestArrayKind(); |
| ContainsScalarAccs |= MA->isLatestScalarKind(); |
| } |
| |
| if (!ScalarsAreUnprofitable || (ContainsArrayAccs && !ContainsScalarAccs)) |
| OptimizableStmtsOrLoops += Stmt.getNumIterators(); |
| } |
| |
| return OptimizableStmtsOrLoops > 1; |
| } |
| |
| bool Scop::hasFeasibleRuntimeContext() const { |
| if (Stmts.empty()) |
| return false; |
| |
| isl::set PositiveContext = getAssumedContext(); |
| isl::set NegativeContext = getInvalidContext(); |
| PositiveContext = PositiveContext.intersect_params(Context); |
| PositiveContext = PositiveContext.intersect_params(getDomains().params()); |
| return PositiveContext.is_empty().is_false() && |
| PositiveContext.is_subset(NegativeContext).is_false(); |
| } |
| |
| MemoryAccess *Scop::lookupBasePtrAccess(MemoryAccess *MA) { |
| Value *PointerBase = MA->getOriginalBaseAddr(); |
| |
| auto *PointerBaseInst = dyn_cast<Instruction>(PointerBase); |
| if (!PointerBaseInst) |
| return nullptr; |
| |
| auto *BasePtrStmt = getStmtFor(PointerBaseInst); |
| if (!BasePtrStmt) |
| return nullptr; |
| |
| return BasePtrStmt->getArrayAccessOrNULLFor(PointerBaseInst); |
| } |
| |
| static std::string toString(AssumptionKind Kind) { |
| switch (Kind) { |
| case ALIASING: |
| return "No-aliasing"; |
| case INBOUNDS: |
| return "Inbounds"; |
| case WRAPPING: |
| return "No-overflows"; |
| case UNSIGNED: |
| return "Signed-unsigned"; |
| case COMPLEXITY: |
| return "Low complexity"; |
| case PROFITABLE: |
| return "Profitable"; |
| case ERRORBLOCK: |
| return "No-error"; |
| case INFINITELOOP: |
| return "Finite loop"; |
| case INVARIANTLOAD: |
| return "Invariant load"; |
| case DELINEARIZATION: |
| return "Delinearization"; |
| } |
| llvm_unreachable("Unknown AssumptionKind!"); |
| } |
| |
| bool Scop::isEffectiveAssumption(isl::set Set, AssumptionSign Sign) { |
| if (Sign == AS_ASSUMPTION) { |
| if (Context.is_subset(Set)) |
| return false; |
| |
| if (AssumedContext.is_subset(Set)) |
| return false; |
| } else { |
| if (Set.is_disjoint(Context)) |
| return false; |
| |
| if (Set.is_subset(InvalidContext)) |
| return false; |
| } |
| return true; |
| } |
| |
| bool Scop::trackAssumption(AssumptionKind Kind, isl::set Set, DebugLoc Loc, |
| AssumptionSign Sign, BasicBlock *BB) { |
| if (PollyRemarksMinimal && !isEffectiveAssumption(Set, Sign)) |
| return false; |
| |
| // Do never emit trivial assumptions as they only clutter the output. |
| if (!PollyRemarksMinimal) { |
| isl::set Univ; |
| if (Sign == AS_ASSUMPTION) |
| Univ = isl::set::universe(Set.get_space()); |
| |
| bool IsTrivial = (Sign == AS_RESTRICTION && Set.is_empty()) || |
| (Sign == AS_ASSUMPTION && Univ.is_equal(Set)); |
| |
| if (IsTrivial) |
| return false; |
| } |
| |
| switch (Kind) { |
| case ALIASING: |
| AssumptionsAliasing++; |
| break; |
| case INBOUNDS: |
| AssumptionsInbounds++; |
| break; |
| case WRAPPING: |
| AssumptionsWrapping++; |
| break; |
| case UNSIGNED: |
| AssumptionsUnsigned++; |
| break; |
| case COMPLEXITY: |
| AssumptionsComplexity++; |
| break; |
| case PROFITABLE: |
| AssumptionsUnprofitable++; |
| break; |
| case ERRORBLOCK: |
| AssumptionsErrorBlock++; |
| break; |
| case INFINITELOOP: |
| AssumptionsInfiniteLoop++; |
| break; |
| case INVARIANTLOAD: |
| AssumptionsInvariantLoad++; |
| break; |
| case DELINEARIZATION: |
| AssumptionsDelinearization++; |
| break; |
| } |
| |
| auto Suffix = Sign == AS_ASSUMPTION ? " assumption:\t" : " restriction:\t"; |
| std::string Msg = toString(Kind) + Suffix + stringFromIslObj(Set); |
| if (BB) |
| ORE.emit(OptimizationRemarkAnalysis(DEBUG_TYPE, "AssumpRestrict", Loc, BB) |
| << Msg); |
| else |
| ORE.emit(OptimizationRemarkAnalysis(DEBUG_TYPE, "AssumpRestrict", Loc, |
| R.getEntry()) |
| << Msg); |
| return true; |
| } |
| |
| void Scop::addAssumption(AssumptionKind Kind, isl::set Set, DebugLoc Loc, |
| AssumptionSign Sign, BasicBlock *BB, |
| bool RequiresRTC) { |
| // Simplify the assumptions/restrictions first. |
| Set = Set.gist_params(getContext()); |
| intersectDefinedBehavior(Set, Sign); |
| |
| if (!RequiresRTC) |
| return; |
| |
| if (!trackAssumption(Kind, Set, Loc, Sign, BB)) |
| return; |
| |
| if (Sign == AS_ASSUMPTION) |
| AssumedContext = AssumedContext.intersect(Set).coalesce(); |
| else |
| InvalidContext = InvalidContext.unite(Set).coalesce(); |
| } |
| |
| void Scop::intersectDefinedBehavior(isl::set Set, AssumptionSign Sign) { |
| if (DefinedBehaviorContext.is_null()) |
| return; |
| |
| if (Sign == AS_ASSUMPTION) |
| DefinedBehaviorContext = DefinedBehaviorContext.intersect(Set); |
| else |
| DefinedBehaviorContext = DefinedBehaviorContext.subtract(Set); |
| |
| // Limit the complexity of the context. If complexity is exceeded, simplify |
| // the set and check again. |
| if (DefinedBehaviorContext.n_basic_set().release() > |
| MaxDisjunktsInDefinedBehaviourContext) { |
| simplify(DefinedBehaviorContext); |
| if (DefinedBehaviorContext.n_basic_set().release() > |
| MaxDisjunktsInDefinedBehaviourContext) |
| DefinedBehaviorContext = {}; |
| } |
| } |
| |
| void Scop::invalidate(AssumptionKind Kind, DebugLoc Loc, BasicBlock *BB) { |
| POLLY_DEBUG(dbgs() << "Invalidate SCoP because of reason " << Kind << "\n"); |
| addAssumption(Kind, isl::set::empty(getParamSpace()), Loc, AS_ASSUMPTION, BB); |
| } |
| |
| isl::set Scop::getInvalidContext() const { return InvalidContext; } |
| |
| void Scop::printContext(raw_ostream &OS) const { |
| OS << "Context:\n"; |
| OS.indent(4) << Context << "\n"; |
| |
| OS.indent(4) << "Assumed Context:\n"; |
| OS.indent(4) << AssumedContext << "\n"; |
| |
| OS.indent(4) << "Invalid Context:\n"; |
| OS.indent(4) << InvalidContext << "\n"; |
| |
| OS.indent(4) << "Defined Behavior Context:\n"; |
| if (!DefinedBehaviorContext.is_null()) |
| OS.indent(4) << DefinedBehaviorContext << "\n"; |
| else |
| OS.indent(4) << "<unavailable>\n"; |
| |
| unsigned Dim = 0; |
| for (const SCEV *Parameter : Parameters) |
| OS.indent(4) << "p" << Dim++ << ": " << *Parameter << "\n"; |
| } |
| |
| void Scop::printAliasAssumptions(raw_ostream &OS) const { |
| int noOfGroups = 0; |
| for (const MinMaxVectorPairTy &Pair : MinMaxAliasGroups) { |
| if (Pair.second.size() == 0) |
| noOfGroups += 1; |
| else |
| noOfGroups += Pair.second.size(); |
| } |
| |
| OS.indent(4) << "Alias Groups (" << noOfGroups << "):\n"; |
| if (MinMaxAliasGroups.empty()) { |
| OS.indent(8) << "n/a\n"; |
| return; |
| } |
| |
| for (const MinMaxVectorPairTy &Pair : MinMaxAliasGroups) { |
| |
| // If the group has no read only accesses print the write accesses. |
| if (Pair.second.empty()) { |
| OS.indent(8) << "[["; |
| for (const MinMaxAccessTy &MMANonReadOnly : Pair.first) { |
| OS << " <" << MMANonReadOnly.first << ", " << MMANonReadOnly.second |
| << ">"; |
| } |
| OS << " ]]\n"; |
| } |
| |
| for (const MinMaxAccessTy &MMAReadOnly : Pair.second) { |
| OS.indent(8) << "[["; |
| OS << " <" << MMAReadOnly.first << ", " << MMAReadOnly.second << ">"; |
| for (const MinMaxAccessTy &MMANonReadOnly : Pair.first) { |
| OS << " <" << MMANonReadOnly.first << ", " << MMANonReadOnly.second |
| << ">"; |
| } |
| OS << " ]]\n"; |
| } |
| } |
| } |
| |
| void Scop::printStatements(raw_ostream &OS, bool PrintInstructions) const { |
| OS << "Statements {\n"; |
| |
| for (const ScopStmt &Stmt : *this) { |
| OS.indent(4); |
| Stmt.print(OS, PrintInstructions); |
| } |
| |
| OS.indent(4) << "}\n"; |
| } |
| |
| void Scop::printArrayInfo(raw_ostream &OS) const { |
| OS << "Arrays {\n"; |
| |
| for (auto &Array : arrays()) |
| Array->print(OS); |
| |
| OS.indent(4) << "}\n"; |
| |
| OS.indent(4) << "Arrays (Bounds as pw_affs) {\n"; |
| |
| for (auto &Array : arrays()) |
| Array->print(OS, /* SizeAsPwAff */ true); |
| |
| OS.indent(4) << "}\n"; |
| } |
| |
| void Scop::print(raw_ostream &OS, bool PrintInstructions) const { |
| OS.indent(4) << "Function: " << getFunction().getName() << "\n"; |
| OS.indent(4) << "Region: " << getNameStr() << "\n"; |
| OS.indent(4) << "Max Loop Depth: " << getMaxLoopDepth() << "\n"; |
| OS.indent(4) << "Invariant Accesses: {\n"; |
| for (const auto &IAClass : InvariantEquivClasses) { |
| const auto &MAs = IAClass.InvariantAccesses; |
| if (MAs.empty()) { |
| OS.indent(12) << "Class Pointer: " << *IAClass.IdentifyingPointer << "\n"; |
| } else { |
| MAs.front()->print(OS); |
| OS.indent(12) << "Execution Context: " << IAClass.ExecutionContext |
| << "\n"; |
| } |
| } |
| OS.indent(4) << "}\n"; |
| printContext(OS.indent(4)); |
| printArrayInfo(OS.indent(4)); |
| printAliasAssumptions(OS); |
| printStatements(OS.indent(4), PrintInstructions); |
| } |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| LLVM_DUMP_METHOD void Scop::dump() const { print(dbgs(), true); } |
| #endif |
| |
| isl::ctx Scop::getIslCtx() const { return IslCtx.get(); } |
| |
| __isl_give PWACtx Scop::getPwAff(const SCEV *E, BasicBlock *BB, |
| bool NonNegative, |
| RecordedAssumptionsTy *RecordedAssumptions) { |
| // First try to use the SCEVAffinator to generate a piecewise defined |
| // affine function from @p E in the context of @p BB. If that tasks becomes to |
| // complex the affinator might return a nullptr. In such a case we invalidate |
| // the SCoP and return a dummy value. This way we do not need to add error |
| // handling code to all users of this function. |
| auto PWAC = Affinator.getPwAff(E, BB, RecordedAssumptions); |
| if (!PWAC.first.is_null()) { |
| // TODO: We could use a heuristic and either use: |
| // SCEVAffinator::takeNonNegativeAssumption |
| // or |
| // SCEVAffinator::interpretAsUnsigned |
| // to deal with unsigned or "NonNegative" SCEVs. |
| if (NonNegative) |
| Affinator.takeNonNegativeAssumption(PWAC, RecordedAssumptions); |
| return PWAC; |
| } |
| |
| auto DL = BB ? BB->getTerminator()->getDebugLoc() : DebugLoc(); |
| invalidate(COMPLEXITY, DL, BB); |
| return Affinator.getPwAff(SE->getZero(E->getType()), BB, RecordedAssumptions); |
| } |
| |
| isl::union_set Scop::getDomains() const { |
| isl_space *EmptySpace = isl_space_params_alloc(getIslCtx().get(), 0); |
| isl_union_set *Domain = isl_union_set_empty(EmptySpace); |
| |
| for (const ScopStmt &Stmt : *this) |
| Domain = isl_union_set_add_set(Domain, Stmt.getDomain().release()); |
| |
| return isl::manage(Domain); |
| } |
| |
| isl::pw_aff Scop::getPwAffOnly(const SCEV *E, BasicBlock *BB, |
| RecordedAssumptionsTy *RecordedAssumptions) { |
| PWACtx PWAC = getPwAff(E, BB, RecordedAssumptions); |
| return PWAC.first; |
| } |
| |
| isl::union_map |
| Scop::getAccessesOfType(std::function<bool(MemoryAccess &)> Predicate) { |
| isl::union_map Accesses = isl::union_map::empty(getIslCtx()); |
| |
| for (ScopStmt &Stmt : *this) { |
| for (MemoryAccess *MA : Stmt) { |
| if (!Predicate(*MA)) |
| continue; |
| |
| isl::set Domain = Stmt.getDomain(); |
| isl::map AccessDomain = MA->getAccessRelation(); |
| AccessDomain = AccessDomain.intersect_domain(Domain); |
| Accesses = Accesses.unite(AccessDomain); |
| } |
| } |
| |
| return Accesses.coalesce(); |
| } |
| |
| isl::union_map Scop::getMustWrites() { |
| return getAccessesOfType([](MemoryAccess &MA) { return MA.isMustWrite(); }); |
| } |
| |
| isl::union_map Scop::getMayWrites() { |
| return getAccessesOfType([](MemoryAccess &MA) { return MA.isMayWrite(); }); |
| } |
| |
| isl::union_map Scop::getWrites() { |
| return getAccessesOfType([](MemoryAccess &MA) { return MA.isWrite(); }); |
| } |
| |
| isl::union_map Scop::getReads() { |
| return getAccessesOfType([](MemoryAccess &MA) { return MA.isRead(); }); |
| } |
| |
| isl::union_map Scop::getAccesses() { |
| return getAccessesOfType([](MemoryAccess &MA) { return true; }); |
| } |
| |
| isl::union_map Scop::getAccesses(ScopArrayInfo *Array) { |
| return getAccessesOfType( |
| [Array](MemoryAccess &MA) { return MA.getScopArrayInfo() == Array; }); |
| } |
| |
| isl::union_map Scop::getSchedule() const { |
| auto Tree = getScheduleTree(); |
| return Tree.get_map(); |
| } |
| |
| isl::schedule Scop::getScheduleTree() const { |
| return Schedule.intersect_domain(getDomains()); |
| } |
| |
| void Scop::setSchedule(isl::union_map NewSchedule) { |
| auto S = isl::schedule::from_domain(getDomains()); |
| Schedule = S.insert_partial_schedule( |
| isl::multi_union_pw_aff::from_union_map(NewSchedule)); |
| ScheduleModified = true; |
| } |
| |
| void Scop::setScheduleTree(isl::schedule NewSchedule) { |
| Schedule = NewSchedule; |
| ScheduleModified = true; |
| } |
| |
| bool Scop::restrictDomains(isl::union_set Domain) { |
| bool Changed = false; |
| for (ScopStmt &Stmt : *this) { |
| isl::union_set StmtDomain = isl::union_set(Stmt.getDomain()); |
| isl::union_set NewStmtDomain = StmtDomain.intersect(Domain); |
| |
| if (StmtDomain.is_subset(NewStmtDomain)) |
| continue; |
| |
| Changed = true; |
| |
| NewStmtDomain = NewStmtDomain.coalesce(); |
| |
| if (NewStmtDomain.is_empty()) |
| Stmt.restrictDomain(isl::set::empty(Stmt.getDomainSpace())); |
| else |
| Stmt.restrictDomain(isl::set(NewStmtDomain)); |
| } |
| return Changed; |
| } |
| |
| ScalarEvolution *Scop::getSE() const { return SE; } |
| |
| void Scop::addScopStmt(BasicBlock *BB, StringRef Name, Loop *SurroundingLoop, |
| std::vector<Instruction *> Instructions) { |
| assert(BB && "Unexpected nullptr!"); |
| Stmts.emplace_back(*this, *BB, Name, SurroundingLoop, Instructions); |
| auto *Stmt = &Stmts.back(); |
| StmtMap[BB].push_back(Stmt); |
| for (Instruction *Inst : Instructions) { |
| assert(!InstStmtMap.count(Inst) && |
| "Unexpected statement corresponding to the instruction."); |
| InstStmtMap[Inst] = Stmt; |
| } |
| } |
| |
| void Scop::addScopStmt(Region *R, StringRef Name, Loop *SurroundingLoop, |
| std::vector<Instruction *> Instructions) { |
| assert(R && "Unexpected nullptr!"); |
| Stmts.emplace_back(*this, *R, Name, SurroundingLoop, Instructions); |
| auto *Stmt = &Stmts.back(); |
| |
| for (Instruction *Inst : Instructions) { |
| assert(!InstStmtMap.count(Inst) && |
| "Unexpected statement corresponding to the instruction."); |
| InstStmtMap[Inst] = Stmt; |
| } |
| |
| for (BasicBlock *BB : R->blocks()) { |
| StmtMap[BB].push_back(Stmt); |
| if (BB == R->getEntry()) |
| continue; |
| for (Instruction &Inst : *BB) { |
| assert(!InstStmtMap.count(&Inst) && |
| "Unexpected statement corresponding to the instruction."); |
| InstStmtMap[&Inst] = Stmt; |
| } |
| } |
| } |
| |
| ScopStmt *Scop::addScopStmt(isl::map SourceRel, isl::map TargetRel, |
| isl::set Domain) { |
| #ifndef NDEBUG |
| isl::set SourceDomain = SourceRel.domain(); |
| isl::set TargetDomain = TargetRel.domain(); |
| assert(Domain.is_subset(TargetDomain) && |
| "Target access not defined for complete statement domain"); |
| assert(Domain.is_subset(SourceDomain) && |
| "Source access not defined for complete statement domain"); |
| #endif |
| Stmts.emplace_back(*this, SourceRel, TargetRel, Domain); |
| CopyStmtsNum++; |
| return &(Stmts.back()); |
| } |
| |
| ArrayRef<ScopStmt *> Scop::getStmtListFor(BasicBlock *BB) const { |
| auto StmtMapIt = StmtMap.find(BB); |
| if (StmtMapIt == StmtMap.end()) |
| return {}; |
| return StmtMapIt->second; |
| } |
| |
| ScopStmt *Scop::getIncomingStmtFor(const Use &U) const { |
| auto *PHI = cast<PHINode>(U.getUser()); |
| BasicBlock *IncomingBB = PHI->getIncomingBlock(U); |
| |
| // If the value is a non-synthesizable from the incoming block, use the |
| // statement that contains it as user statement. |
| if (auto *IncomingInst = dyn_cast<Instruction>(U.get())) { |
| if (IncomingInst->getParent() == IncomingBB) { |
| if (ScopStmt *IncomingStmt = getStmtFor(IncomingInst)) |
| return IncomingStmt; |
| } |
| } |
| |
| // Otherwise, use the epilogue/last statement. |
| return getLastStmtFor(IncomingBB); |
| } |
| |
| ScopStmt *Scop::getLastStmtFor(BasicBlock *BB) const { |
| ArrayRef<ScopStmt *> StmtList = getStmtListFor(BB); |
| if (!StmtList.empty()) |
| return StmtList.back(); |
| return nullptr; |
| } |
| |
| ArrayRef<ScopStmt *> Scop::getStmtListFor(RegionNode *RN) const { |
| if (RN->isSubRegion()) |
| return getStmtListFor(RN->getNodeAs<Region>()); |
| return getStmtListFor(RN->getNodeAs<BasicBlock>()); |
| } |
| |
| ArrayRef<ScopStmt *> Scop::getStmtListFor(Region *R) const { |
| return getStmtListFor(R->getEntry()); |
| } |
| |
| int Scop::getRelativeLoopDepth(const Loop *L) const { |
| if (!L || !R.contains(L)) |
| return -1; |
| // outermostLoopInRegion always returns nullptr for top level regions |
| if (R.isTopLevelRegion()) { |
| // LoopInfo's depths start at 1, we start at 0 |
| return L->getLoopDepth() - 1; |
| } else { |
| Loop *OuterLoop = R.outermostLoopInRegion(const_cast<Loop *>(L)); |
| assert(OuterLoop); |
| return L->getLoopDepth() - OuterLoop->getLoopDepth(); |
| } |
| } |
| |
| ScopArrayInfo *Scop::getArrayInfoByName(const std::string BaseName) { |
| for (auto &SAI : arrays()) { |
| if (SAI->getName() == BaseName) |
| return SAI; |
| } |
| return nullptr; |
| } |
| |
| void Scop::addAccessData(MemoryAccess *Access) { |
| const ScopArrayInfo *SAI = Access->getOriginalScopArrayInfo(); |
| assert(SAI && "can only use after access relations have been constructed"); |
| |
| if (Access->isOriginalValueKind() && Access->isRead()) |
| ValueUseAccs[SAI].push_back(Access); |
| else if (Access->isOriginalAnyPHIKind() && Access->isWrite()) |
| PHIIncomingAccs[SAI].push_back(Access); |
| } |
| |
| void Scop::removeAccessData(MemoryAccess *Access) { |
| if (Access->isOriginalValueKind() && Access->isWrite()) { |
| ValueDefAccs.erase(Access->getAccessValue()); |
| } else if (Access->isOriginalValueKind() && Access->isRead()) { |
| auto &Uses = ValueUseAccs[Access->getScopArrayInfo()]; |
| llvm::erase(Uses, Access); |
| } else if (Access->isOriginalPHIKind() && Access->isRead()) { |
| PHINode *PHI = cast<PHINode>(Access->getAccessInstruction()); |
| PHIReadAccs.erase(PHI); |
| } else if (Access->isOriginalAnyPHIKind() && Access->isWrite()) { |
| auto &Incomings = PHIIncomingAccs[Access->getScopArrayInfo()]; |
| llvm::erase(Incomings, Access); |
| } |
| } |
| |
| MemoryAccess *Scop::getValueDef(const ScopArrayInfo *SAI) const { |
| assert(SAI->isValueKind()); |
| |
| Instruction *Val = dyn_cast<Instruction>(SAI->getBasePtr()); |
| if (!Val) |
| return nullptr; |
| |
| return ValueDefAccs.lookup(Val); |
| } |
| |
| ArrayRef<MemoryAccess *> Scop::getValueUses(const ScopArrayInfo *SAI) const { |
| assert(SAI->isValueKind()); |
| auto It = ValueUseAccs.find(SAI); |
| if (It == ValueUseAccs.end()) |
| return {}; |
| return It->second; |
| } |
| |
| MemoryAccess *Scop::getPHIRead(const ScopArrayInfo *SAI) const { |
| assert(SAI->isPHIKind() || SAI->isExitPHIKind()); |
| |
| if (SAI->isExitPHIKind()) |
| return nullptr; |
| |
| PHINode *PHI = cast<PHINode>(SAI->getBasePtr()); |
| return PHIReadAccs.lookup(PHI); |
| } |
| |
| ArrayRef<MemoryAccess *> Scop::getPHIIncomings(const ScopArrayInfo *SAI) const { |
| assert(SAI->isPHIKind() || SAI->isExitPHIKind()); |
| auto It = PHIIncomingAccs.find(SAI); |
| if (It == PHIIncomingAccs.end()) |
| return {}; |
| return It->second; |
| } |
| |
| bool Scop::isEscaping(Instruction *Inst) { |
| assert(contains(Inst) && "The concept of escaping makes only sense for " |
| "values defined inside the SCoP"); |
| |
| for (Use &Use : Inst->uses()) { |
| BasicBlock *UserBB = getUseBlock(Use); |
| if (!contains(UserBB)) |
| return true; |
| |
| // When the SCoP region exit needs to be simplified, PHIs in the region exit |
| // move to a new basic block such that its incoming blocks are not in the |
| // SCoP anymore. |
| if (hasSingleExitEdge() && isa<PHINode>(Use.getUser()) && |
| isExit(cast<PHINode>(Use.getUser())->getParent())) |
| return true; |
| } |
| return false; |
| } |
| |
| void Scop::incrementNumberOfAliasingAssumptions(unsigned step) { |
| AssumptionsAliasing += step; |
| } |
| |
| Scop::ScopStatistics Scop::getStatistics() const { |
| ScopStatistics Result; |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_STATS) |
| auto LoopStat = ScopDetection::countBeneficialLoops(&R, *SE, *getLI(), 0); |
| |
| int NumTotalLoops = LoopStat.NumLoops; |
| Result.NumBoxedLoops = getBoxedLoops().size(); |
| Result.NumAffineLoops = NumTotalLoops - Result.NumBoxedLoops; |
| |
| for (const ScopStmt &Stmt : *this) { |
| isl::set Domain = Stmt.getDomain().intersect_params(getContext()); |
| bool IsInLoop = Stmt.getNumIterators() >= 1; |
| for (MemoryAccess *MA : Stmt) { |
| if (!MA->isWrite()) |
| continue; |
| |
| if (MA->isLatestValueKind()) { |
| Result.NumValueWrites += 1; |
| if (IsInLoop) |
| Result.NumValueWritesInLoops += 1; |
| } |
| |
| if (MA->isLatestAnyPHIKind()) { |
| Result.NumPHIWrites += 1; |
| if (IsInLoop) |
| Result.NumPHIWritesInLoops += 1; |
| } |
| |
| isl::set AccSet = |
| MA->getAccessRelation().intersect_domain(Domain).range(); |
| if (AccSet.is_singleton()) { |
| Result.NumSingletonWrites += 1; |
| if (IsInLoop) |
| Result.NumSingletonWritesInLoops += 1; |
| } |
| } |
| } |
| #endif |
| return Result; |
| } |
| |
| raw_ostream &polly::operator<<(raw_ostream &OS, const Scop &scop) { |
| scop.print(OS, PollyPrintInstructions); |
| return OS; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| void ScopInfoRegionPass::getAnalysisUsage(AnalysisUsage &AU) const { |
| AU.addRequired<LoopInfoWrapperPass>(); |
| AU.addRequired<RegionInfoPass>(); |
| AU.addRequired<DominatorTreeWrapperPass>(); |
| AU.addRequiredTransitive<ScalarEvolutionWrapperPass>(); |
| AU.addRequiredTransitive<ScopDetectionWrapperPass>(); |
| AU.addRequired<AAResultsWrapperPass>(); |
| AU.addRequired<AssumptionCacheTracker>(); |
| AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); |
| AU.setPreservesAll(); |
| } |
| |
| void updateLoopCountStatistic(ScopDetection::LoopStats Stats, |
| Scop::ScopStatistics ScopStats) { |
| assert(Stats.NumLoops == ScopStats.NumAffineLoops + ScopStats.NumBoxedLoops); |
| |
| NumScops++; |
| NumLoopsInScop += Stats.NumLoops; |
| MaxNumLoopsInScop = |
| std::max(MaxNumLoopsInScop.getValue(), (uint64_t)Stats.NumLoops); |
| |
| if (Stats.MaxDepth == 0) |
| NumScopsDepthZero++; |
| else if (Stats.MaxDepth == 1) |
| NumScopsDepthOne++; |
| else if (Stats.MaxDepth == 2) |
| NumScopsDepthTwo++; |
| else if (Stats.MaxDepth == 3) |
| NumScopsDepthThree++; |
| else if (Stats.MaxDepth == 4) |
| NumScopsDepthFour++; |
| else if (Stats.MaxDepth == 5) |
| NumScopsDepthFive++; |
| else |
| NumScopsDepthLarger++; |
| |
| NumAffineLoops += ScopStats.NumAffineLoops; |
| NumBoxedLoops += ScopStats.NumBoxedLoops; |
| |
| NumValueWrites += ScopStats.NumValueWrites; |
| NumValueWritesInLoops += ScopStats.NumValueWritesInLoops; |
| NumPHIWrites += ScopStats.NumPHIWrites; |
| NumPHIWritesInLoops += ScopStats.NumPHIWritesInLoops; |
| NumSingletonWrites += ScopStats.NumSingletonWrites; |
| NumSingletonWritesInLoops += ScopStats.NumSingletonWritesInLoops; |
| } |
| |
| bool ScopInfoRegionPass::runOnRegion(Region *R, RGPassManager &RGM) { |
| auto &SD = getAnalysis<ScopDetectionWrapperPass>().getSD(); |
| |
| if (!SD.isMaxRegionInScop(*R)) |
| return false; |
| |
| Function *F = R->getEntry()->getParent(); |
| auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); |
| auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); |
| auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); |
| auto const &DL = F->getParent()->getDataLayout(); |
| auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); |
| auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(*F); |
| auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); |
| |
| ScopBuilder SB(R, AC, AA, DL, DT, LI, SD, SE, ORE); |
| S = SB.getScop(); // take ownership of scop object |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_STATS) |
| if (S) { |
| ScopDetection::LoopStats Stats = |
| ScopDetection::countBeneficialLoops(&S->getRegion(), SE, LI, 0); |
| updateLoopCountStatistic(Stats, S->getStatistics()); |
| } |
| #endif |
| |
| return false; |
| } |
| |
| void ScopInfoRegionPass::print(raw_ostream &OS, const Module *) const { |
| if (S) |
| S->print(OS, PollyPrintInstructions); |
| else |
| OS << "Invalid Scop!\n"; |
| } |
| |
| char ScopInfoRegionPass::ID = 0; |
| |
| Pass *polly::createScopInfoRegionPassPass() { return new ScopInfoRegionPass(); } |
| |
| INITIALIZE_PASS_BEGIN(ScopInfoRegionPass, "polly-scops", |
| "Polly - Create polyhedral description of Scops", false, |
| false); |
| INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass); |
| INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker); |
| INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass); |
| INITIALIZE_PASS_DEPENDENCY(RegionInfoPass); |
| INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass); |
| INITIALIZE_PASS_DEPENDENCY(ScopDetectionWrapperPass); |
| INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass); |
| INITIALIZE_PASS_END(ScopInfoRegionPass, "polly-scops", |
| "Polly - Create polyhedral description of Scops", false, |
| false) |
| |
| //===----------------------------------------------------------------------===// |
| |
| namespace { |
| |
| /// Print result from ScopInfoRegionPass. |
| class ScopInfoPrinterLegacyRegionPass final : public RegionPass { |
| public: |
| static char ID; |
| |
| ScopInfoPrinterLegacyRegionPass() : ScopInfoPrinterLegacyRegionPass(outs()) {} |
| |
| explicit ScopInfoPrinterLegacyRegionPass(llvm::raw_ostream &OS) |
| : RegionPass(ID), OS(OS) {} |
| |
| bool runOnRegion(Region *R, RGPassManager &RGM) override { |
| ScopInfoRegionPass &P = getAnalysis<ScopInfoRegionPass>(); |
| |
| OS << "Printing analysis '" << P.getPassName() << "' for region: '" |
| << R->getNameStr() << "' in function '" |
| << R->getEntry()->getParent()->getName() << "':\n"; |
| P.print(OS); |
| |
| return false; |
| } |
| |
| void getAnalysisUsage(AnalysisUsage &AU) const override { |
| RegionPass::getAnalysisUsage(AU); |
| AU.addRequired<ScopInfoRegionPass>(); |
| AU.setPreservesAll(); |
| } |
| |
| private: |
| llvm::raw_ostream &OS; |
| }; |
| |
| char ScopInfoPrinterLegacyRegionPass::ID = 0; |
| } // namespace |
| |
| Pass *polly::createScopInfoPrinterLegacyRegionPass(raw_ostream &OS) { |
| return new ScopInfoPrinterLegacyRegionPass(OS); |
| } |
| |
| INITIALIZE_PASS_BEGIN(ScopInfoPrinterLegacyRegionPass, "polly-print-scops", |
| "Polly - Print polyhedral description of Scops", false, |
| false); |
| INITIALIZE_PASS_DEPENDENCY(ScopInfoRegionPass); |
| INITIALIZE_PASS_END(ScopInfoPrinterLegacyRegionPass, "polly-print-scops", |
| "Polly - Print polyhedral description of Scops", false, |
| false) |
| |
| //===----------------------------------------------------------------------===// |
| |
| ScopInfo::ScopInfo(const DataLayout &DL, ScopDetection &SD, ScalarEvolution &SE, |
| LoopInfo &LI, AliasAnalysis &AA, DominatorTree &DT, |
| AssumptionCache &AC, OptimizationRemarkEmitter &ORE) |
| : DL(DL), SD(SD), SE(SE), LI(LI), AA(AA), DT(DT), AC(AC), ORE(ORE) { |
| recompute(); |
| } |
| |
| void ScopInfo::recompute() { |
| RegionToScopMap.clear(); |
| /// Create polyhedral description of scops for all the valid regions of a |
| /// function. |
| for (auto &It : SD) { |
| Region *R = const_cast<Region *>(It); |
| if (!SD.isMaxRegionInScop(*R)) |
| continue; |
| |
| ScopBuilder SB(R, AC, AA, DL, DT, LI, SD, SE, ORE); |
| std::unique_ptr<Scop> S = SB.getScop(); |
| if (!S) |
| continue; |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_STATS) |
| ScopDetection::LoopStats Stats = |
| ScopDetection::countBeneficialLoops(&S->getRegion(), SE, LI, 0); |
| updateLoopCountStatistic(Stats, S->getStatistics()); |
| #endif |
| bool Inserted = RegionToScopMap.insert({R, std::move(S)}).second; |
| assert(Inserted && "Building Scop for the same region twice!"); |
| (void)Inserted; |
| } |
| } |
| |
| bool ScopInfo::invalidate(Function &F, const PreservedAnalyses &PA, |
| FunctionAnalysisManager::Invalidator &Inv) { |
| // Check whether the analysis, all analyses on functions have been preserved |
| // or anything we're holding references to is being invalidated |
| auto PAC = PA.getChecker<ScopInfoAnalysis>(); |
| return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) || |
| Inv.invalidate<ScopAnalysis>(F, PA) || |
| Inv.invalidate<ScalarEvolutionAnalysis>(F, PA) || |
| Inv.invalidate<LoopAnalysis>(F, PA) || |
| Inv.invalidate<AAManager>(F, PA) || |
| Inv.invalidate<DominatorTreeAnalysis>(F, PA) || |
| Inv.invalidate<AssumptionAnalysis>(F, PA); |
| } |
| |
| AnalysisKey ScopInfoAnalysis::Key; |
| |
| ScopInfoAnalysis::Result ScopInfoAnalysis::run(Function &F, |
| FunctionAnalysisManager &FAM) { |
| auto &SD = FAM.getResult<ScopAnalysis>(F); |
| auto &SE = FAM.getResult<ScalarEvolutionAnalysis>(F); |
| auto &LI = FAM.getResult<LoopAnalysis>(F); |
| auto &AA = FAM.getResult<AAManager>(F); |
| auto &DT = FAM.getResult<DominatorTreeAnalysis>(F); |
| auto &AC = FAM.getResult<AssumptionAnalysis>(F); |
| auto &DL = F.getParent()->getDataLayout(); |
| auto &ORE = FAM.getResult<OptimizationRemarkEmitterAnalysis>(F); |
| return {DL, SD, SE, LI, AA, DT, AC, ORE}; |
| } |
| |
| PreservedAnalyses ScopInfoPrinterPass::run(Function &F, |
| FunctionAnalysisManager &FAM) { |
| auto &SI = FAM.getResult<ScopInfoAnalysis>(F); |
| // Since the legacy PM processes Scops in bottom up, we print them in reverse |
| // order here to keep the output persistent |
| for (auto &It : reverse(SI)) { |
| if (It.second) |
| It.second->print(Stream, PollyPrintInstructions); |
| else |
| Stream << "Invalid Scop!\n"; |
| } |
| return PreservedAnalyses::all(); |
| } |
| |
| void ScopInfoWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { |
| AU.addRequired<LoopInfoWrapperPass>(); |
| AU.addRequired<RegionInfoPass>(); |
| AU.addRequired<DominatorTreeWrapperPass>(); |
| AU.addRequiredTransitive<ScalarEvolutionWrapperPass>(); |
| AU.addRequiredTransitive<ScopDetectionWrapperPass>(); |
| AU.addRequired<AAResultsWrapperPass>(); |
| AU.addRequired<AssumptionCacheTracker>(); |
| AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); |
| AU.setPreservesAll(); |
| } |
| |
| bool ScopInfoWrapperPass::runOnFunction(Function &F) { |
| auto &SD = getAnalysis<ScopDetectionWrapperPass>().getSD(); |
| auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); |
| auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); |
| auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); |
| auto const &DL = F.getParent()->getDataLayout(); |
| auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); |
| auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); |
| auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); |
| |
| Result.reset(new ScopInfo{DL, SD, SE, LI, AA, DT, AC, ORE}); |
| return false; |
| } |
| |
| void ScopInfoWrapperPass::print(raw_ostream &OS, const Module *) const { |
| for (auto &It : *Result) { |
| if (It.second) |
| It.second->print(OS, PollyPrintInstructions); |
| else |
| OS << "Invalid Scop!\n"; |
| } |
| } |
| |
| char ScopInfoWrapperPass::ID = 0; |
| |
| Pass *polly::createScopInfoWrapperPassPass() { |
| return new ScopInfoWrapperPass(); |
| } |
| |
| INITIALIZE_PASS_BEGIN( |
| ScopInfoWrapperPass, "polly-function-scops", |
| "Polly - Create polyhedral description of all Scops of a function", false, |
| false); |
| INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass); |
| INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker); |
| INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass); |
| INITIALIZE_PASS_DEPENDENCY(RegionInfoPass); |
| INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass); |
| INITIALIZE_PASS_DEPENDENCY(ScopDetectionWrapperPass); |
| INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass); |
| INITIALIZE_PASS_END( |
| ScopInfoWrapperPass, "polly-function-scops", |
| "Polly - Create polyhedral description of all Scops of a function", false, |
| false) |
| |
| //===----------------------------------------------------------------------===// |
| |
| namespace { |
| /// Print result from ScopInfoWrapperPass. |
| class ScopInfoPrinterLegacyFunctionPass final : public FunctionPass { |
| public: |
| static char ID; |
| |
| ScopInfoPrinterLegacyFunctionPass() |
| : ScopInfoPrinterLegacyFunctionPass(outs()) {} |
| explicit ScopInfoPrinterLegacyFunctionPass(llvm::raw_ostream &OS) |
| : FunctionPass(ID), OS(OS) {} |
| |
| bool runOnFunction(Function &F) override { |
| ScopInfoWrapperPass &P = getAnalysis<ScopInfoWrapperPass>(); |
| |
| OS << "Printing analysis '" << P.getPassName() << "' for function '" |
| << F.getName() << "':\n"; |
| P.print(OS); |
| |
| return false; |
| } |
| |
| void getAnalysisUsage(AnalysisUsage &AU) const override { |
| FunctionPass::getAnalysisUsage(AU); |
| AU.addRequired<ScopInfoWrapperPass>(); |
| AU.setPreservesAll(); |
| } |
| |
| private: |
| llvm::raw_ostream &OS; |
| }; |
| |
| char ScopInfoPrinterLegacyFunctionPass::ID = 0; |
| } // namespace |
| |
| Pass *polly::createScopInfoPrinterLegacyFunctionPass(raw_ostream &OS) { |
| return new ScopInfoPrinterLegacyFunctionPass(OS); |
| } |
| |
| INITIALIZE_PASS_BEGIN( |
| ScopInfoPrinterLegacyFunctionPass, "polly-print-function-scops", |
| "Polly - Print polyhedral description of all Scops of a function", false, |
| false); |
| INITIALIZE_PASS_DEPENDENCY(ScopInfoWrapperPass); |
| INITIALIZE_PASS_END( |
| ScopInfoPrinterLegacyFunctionPass, "polly-print-function-scops", |
| "Polly - Print polyhedral description of all Scops of a function", false, |
| false) |