| //===- CorrelatedValuePropagation.cpp - Propagate CFG-derived info --------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the Correlated Value Propagation pass. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Transforms/Scalar/CorrelatedValuePropagation.h" |
| #include "llvm/ADT/DepthFirstIterator.h" |
| #include "llvm/ADT/Optional.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/Analysis/GlobalsModRef.h" |
| #include "llvm/Analysis/InstructionSimplify.h" |
| #include "llvm/Analysis/LazyValueInfo.h" |
| #include "llvm/Analysis/Utils/Local.h" |
| #include "llvm/IR/Attributes.h" |
| #include "llvm/IR/BasicBlock.h" |
| #include "llvm/IR/CFG.h" |
| #include "llvm/IR/CallSite.h" |
| #include "llvm/IR/Constant.h" |
| #include "llvm/IR/ConstantRange.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/DerivedTypes.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/IRBuilder.h" |
| #include "llvm/IR/InstrTypes.h" |
| #include "llvm/IR/Instruction.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/IntrinsicInst.h" |
| #include "llvm/IR/Operator.h" |
| #include "llvm/IR/PassManager.h" |
| #include "llvm/IR/Type.h" |
| #include "llvm/IR/Value.h" |
| #include "llvm/Pass.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Transforms/Scalar.h" |
| #include <cassert> |
| #include <utility> |
| |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "correlated-value-propagation" |
| |
| STATISTIC(NumPhis, "Number of phis propagated"); |
| STATISTIC(NumPhiCommon, "Number of phis deleted via common incoming value"); |
| STATISTIC(NumSelects, "Number of selects propagated"); |
| STATISTIC(NumMemAccess, "Number of memory access targets propagated"); |
| STATISTIC(NumCmps, "Number of comparisons propagated"); |
| STATISTIC(NumReturns, "Number of return values propagated"); |
| STATISTIC(NumDeadCases, "Number of switch cases removed"); |
| STATISTIC(NumSDivs, "Number of sdiv converted to udiv"); |
| STATISTIC(NumUDivs, "Number of udivs whose width was decreased"); |
| STATISTIC(NumAShrs, "Number of ashr converted to lshr"); |
| STATISTIC(NumSRems, "Number of srem converted to urem"); |
| STATISTIC(NumOverflows, "Number of overflow checks removed"); |
| |
| static cl::opt<bool> DontProcessAdds("cvp-dont-process-adds", cl::init(true)); |
| |
| namespace { |
| |
| class CorrelatedValuePropagation : public FunctionPass { |
| public: |
| static char ID; |
| |
| CorrelatedValuePropagation(): FunctionPass(ID) { |
| initializeCorrelatedValuePropagationPass(*PassRegistry::getPassRegistry()); |
| } |
| |
| bool runOnFunction(Function &F) override; |
| |
| void getAnalysisUsage(AnalysisUsage &AU) const override { |
| AU.addRequired<DominatorTreeWrapperPass>(); |
| AU.addRequired<LazyValueInfoWrapperPass>(); |
| AU.addPreserved<GlobalsAAWrapperPass>(); |
| } |
| }; |
| |
| } // end anonymous namespace |
| |
| char CorrelatedValuePropagation::ID = 0; |
| |
| INITIALIZE_PASS_BEGIN(CorrelatedValuePropagation, "correlated-propagation", |
| "Value Propagation", false, false) |
| INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) |
| INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass) |
| INITIALIZE_PASS_END(CorrelatedValuePropagation, "correlated-propagation", |
| "Value Propagation", false, false) |
| |
| // Public interface to the Value Propagation pass |
| Pass *llvm::createCorrelatedValuePropagationPass() { |
| return new CorrelatedValuePropagation(); |
| } |
| |
| static bool processSelect(SelectInst *S, LazyValueInfo *LVI) { |
| if (S->getType()->isVectorTy()) return false; |
| if (isa<Constant>(S->getOperand(0))) return false; |
| |
| Constant *C = LVI->getConstant(S->getCondition(), S->getParent(), S); |
| if (!C) return false; |
| |
| ConstantInt *CI = dyn_cast<ConstantInt>(C); |
| if (!CI) return false; |
| |
| Value *ReplaceWith = S->getTrueValue(); |
| Value *Other = S->getFalseValue(); |
| if (!CI->isOne()) std::swap(ReplaceWith, Other); |
| if (ReplaceWith == S) ReplaceWith = UndefValue::get(S->getType()); |
| |
| S->replaceAllUsesWith(ReplaceWith); |
| S->eraseFromParent(); |
| |
| ++NumSelects; |
| |
| return true; |
| } |
| |
| /// Try to simplify a phi with constant incoming values that match the edge |
| /// values of a non-constant value on all other edges: |
| /// bb0: |
| /// %isnull = icmp eq i8* %x, null |
| /// br i1 %isnull, label %bb2, label %bb1 |
| /// bb1: |
| /// br label %bb2 |
| /// bb2: |
| /// %r = phi i8* [ %x, %bb1 ], [ null, %bb0 ] |
| /// --> |
| /// %r = %x |
| static bool simplifyCommonValuePhi(PHINode *P, LazyValueInfo *LVI, |
| const SimplifyQuery &SQ) { |
| // Collect incoming constants and initialize possible common value. |
| SmallVector<std::pair<Constant *, unsigned>, 4> IncomingConstants; |
| Value *CommonValue = nullptr; |
| for (unsigned i = 0, e = P->getNumIncomingValues(); i != e; ++i) { |
| Value *Incoming = P->getIncomingValue(i); |
| if (auto *IncomingConstant = dyn_cast<Constant>(Incoming)) { |
| IncomingConstants.push_back(std::make_pair(IncomingConstant, i)); |
| } else if (!CommonValue) { |
| // The potential common value is initialized to the first non-constant. |
| CommonValue = Incoming; |
| } else if (Incoming != CommonValue) { |
| // There can be only one non-constant common value. |
| return false; |
| } |
| } |
| |
| if (!CommonValue || IncomingConstants.empty()) |
| return false; |
| |
| // The common value must be valid in all incoming blocks. |
| BasicBlock *ToBB = P->getParent(); |
| if (auto *CommonInst = dyn_cast<Instruction>(CommonValue)) |
| if (!SQ.DT->dominates(CommonInst, ToBB)) |
| return false; |
| |
| // We have a phi with exactly 1 variable incoming value and 1 or more constant |
| // incoming values. See if all constant incoming values can be mapped back to |
| // the same incoming variable value. |
| for (auto &IncomingConstant : IncomingConstants) { |
| Constant *C = IncomingConstant.first; |
| BasicBlock *IncomingBB = P->getIncomingBlock(IncomingConstant.second); |
| if (C != LVI->getConstantOnEdge(CommonValue, IncomingBB, ToBB, P)) |
| return false; |
| } |
| |
| // All constant incoming values map to the same variable along the incoming |
| // edges of the phi. The phi is unnecessary. |
| P->replaceAllUsesWith(CommonValue); |
| P->eraseFromParent(); |
| ++NumPhiCommon; |
| return true; |
| } |
| |
| static bool processPHI(PHINode *P, LazyValueInfo *LVI, |
| const SimplifyQuery &SQ) { |
| bool Changed = false; |
| |
| BasicBlock *BB = P->getParent(); |
| for (unsigned i = 0, e = P->getNumIncomingValues(); i < e; ++i) { |
| Value *Incoming = P->getIncomingValue(i); |
| if (isa<Constant>(Incoming)) continue; |
| |
| Value *V = LVI->getConstantOnEdge(Incoming, P->getIncomingBlock(i), BB, P); |
| |
| // Look if the incoming value is a select with a scalar condition for which |
| // LVI can tells us the value. In that case replace the incoming value with |
| // the appropriate value of the select. This often allows us to remove the |
| // select later. |
| if (!V) { |
| SelectInst *SI = dyn_cast<SelectInst>(Incoming); |
| if (!SI) continue; |
| |
| Value *Condition = SI->getCondition(); |
| if (!Condition->getType()->isVectorTy()) { |
| if (Constant *C = LVI->getConstantOnEdge( |
| Condition, P->getIncomingBlock(i), BB, P)) { |
| if (C->isOneValue()) { |
| V = SI->getTrueValue(); |
| } else if (C->isZeroValue()) { |
| V = SI->getFalseValue(); |
| } |
| // Once LVI learns to handle vector types, we could also add support |
| // for vector type constants that are not all zeroes or all ones. |
| } |
| } |
| |
| // Look if the select has a constant but LVI tells us that the incoming |
| // value can never be that constant. In that case replace the incoming |
| // value with the other value of the select. This often allows us to |
| // remove the select later. |
| if (!V) { |
| Constant *C = dyn_cast<Constant>(SI->getFalseValue()); |
| if (!C) continue; |
| |
| if (LVI->getPredicateOnEdge(ICmpInst::ICMP_EQ, SI, C, |
| P->getIncomingBlock(i), BB, P) != |
| LazyValueInfo::False) |
| continue; |
| V = SI->getTrueValue(); |
| } |
| |
| DEBUG(dbgs() << "CVP: Threading PHI over " << *SI << '\n'); |
| } |
| |
| P->setIncomingValue(i, V); |
| Changed = true; |
| } |
| |
| if (Value *V = SimplifyInstruction(P, SQ)) { |
| P->replaceAllUsesWith(V); |
| P->eraseFromParent(); |
| Changed = true; |
| } |
| |
| if (!Changed) |
| Changed = simplifyCommonValuePhi(P, LVI, SQ); |
| |
| if (Changed) |
| ++NumPhis; |
| |
| return Changed; |
| } |
| |
| static bool processMemAccess(Instruction *I, LazyValueInfo *LVI) { |
| Value *Pointer = nullptr; |
| if (LoadInst *L = dyn_cast<LoadInst>(I)) |
| Pointer = L->getPointerOperand(); |
| else |
| Pointer = cast<StoreInst>(I)->getPointerOperand(); |
| |
| if (isa<Constant>(Pointer)) return false; |
| |
| Constant *C = LVI->getConstant(Pointer, I->getParent(), I); |
| if (!C) return false; |
| |
| ++NumMemAccess; |
| I->replaceUsesOfWith(Pointer, C); |
| return true; |
| } |
| |
| /// See if LazyValueInfo's ability to exploit edge conditions or range |
| /// information is sufficient to prove this comparison. Even for local |
| /// conditions, this can sometimes prove conditions instcombine can't by |
| /// exploiting range information. |
| static bool processCmp(CmpInst *C, LazyValueInfo *LVI) { |
| Value *Op0 = C->getOperand(0); |
| Constant *Op1 = dyn_cast<Constant>(C->getOperand(1)); |
| if (!Op1) return false; |
| |
| // As a policy choice, we choose not to waste compile time on anything where |
| // the comparison is testing local values. While LVI can sometimes reason |
| // about such cases, it's not its primary purpose. We do make sure to do |
| // the block local query for uses from terminator instructions, but that's |
| // handled in the code for each terminator. |
| auto *I = dyn_cast<Instruction>(Op0); |
| if (I && I->getParent() == C->getParent()) |
| return false; |
| |
| LazyValueInfo::Tristate Result = |
| LVI->getPredicateAt(C->getPredicate(), Op0, Op1, C); |
| if (Result == LazyValueInfo::Unknown) return false; |
| |
| ++NumCmps; |
| if (Result == LazyValueInfo::True) |
| C->replaceAllUsesWith(ConstantInt::getTrue(C->getContext())); |
| else |
| C->replaceAllUsesWith(ConstantInt::getFalse(C->getContext())); |
| C->eraseFromParent(); |
| |
| return true; |
| } |
| |
| /// Simplify a switch instruction by removing cases which can never fire. If the |
| /// uselessness of a case could be determined locally then constant propagation |
| /// would already have figured it out. Instead, walk the predecessors and |
| /// statically evaluate cases based on information available on that edge. Cases |
| /// that cannot fire no matter what the incoming edge can safely be removed. If |
| /// a case fires on every incoming edge then the entire switch can be removed |
| /// and replaced with a branch to the case destination. |
| static bool processSwitch(SwitchInst *SI, LazyValueInfo *LVI) { |
| Value *Cond = SI->getCondition(); |
| BasicBlock *BB = SI->getParent(); |
| |
| // If the condition was defined in same block as the switch then LazyValueInfo |
| // currently won't say anything useful about it, though in theory it could. |
| if (isa<Instruction>(Cond) && cast<Instruction>(Cond)->getParent() == BB) |
| return false; |
| |
| // If the switch is unreachable then trying to improve it is a waste of time. |
| pred_iterator PB = pred_begin(BB), PE = pred_end(BB); |
| if (PB == PE) return false; |
| |
| // Analyse each switch case in turn. |
| bool Changed = false; |
| for (auto CI = SI->case_begin(), CE = SI->case_end(); CI != CE;) { |
| ConstantInt *Case = CI->getCaseValue(); |
| |
| // Check to see if the switch condition is equal to/not equal to the case |
| // value on every incoming edge, equal/not equal being the same each time. |
| LazyValueInfo::Tristate State = LazyValueInfo::Unknown; |
| for (pred_iterator PI = PB; PI != PE; ++PI) { |
| // Is the switch condition equal to the case value? |
| LazyValueInfo::Tristate Value = LVI->getPredicateOnEdge(CmpInst::ICMP_EQ, |
| Cond, Case, *PI, |
| BB, SI); |
| // Give up on this case if nothing is known. |
| if (Value == LazyValueInfo::Unknown) { |
| State = LazyValueInfo::Unknown; |
| break; |
| } |
| |
| // If this was the first edge to be visited, record that all other edges |
| // need to give the same result. |
| if (PI == PB) { |
| State = Value; |
| continue; |
| } |
| |
| // If this case is known to fire for some edges and known not to fire for |
| // others then there is nothing we can do - give up. |
| if (Value != State) { |
| State = LazyValueInfo::Unknown; |
| break; |
| } |
| } |
| |
| if (State == LazyValueInfo::False) { |
| // This case never fires - remove it. |
| CI->getCaseSuccessor()->removePredecessor(BB); |
| CI = SI->removeCase(CI); |
| CE = SI->case_end(); |
| |
| // The condition can be modified by removePredecessor's PHI simplification |
| // logic. |
| Cond = SI->getCondition(); |
| |
| ++NumDeadCases; |
| Changed = true; |
| continue; |
| } |
| if (State == LazyValueInfo::True) { |
| // This case always fires. Arrange for the switch to be turned into an |
| // unconditional branch by replacing the switch condition with the case |
| // value. |
| SI->setCondition(Case); |
| NumDeadCases += SI->getNumCases(); |
| Changed = true; |
| break; |
| } |
| |
| // Increment the case iterator since we didn't delete it. |
| ++CI; |
| } |
| |
| if (Changed) |
| // If the switch has been simplified to the point where it can be replaced |
| // by a branch then do so now. |
| ConstantFoldTerminator(BB); |
| |
| return Changed; |
| } |
| |
| // See if we can prove that the given overflow intrinsic will not overflow. |
| static bool willNotOverflow(IntrinsicInst *II, LazyValueInfo *LVI) { |
| using OBO = OverflowingBinaryOperator; |
| auto NoWrap = [&] (Instruction::BinaryOps BinOp, unsigned NoWrapKind) { |
| Value *RHS = II->getOperand(1); |
| ConstantRange RRange = LVI->getConstantRange(RHS, II->getParent(), II); |
| ConstantRange NWRegion = ConstantRange::makeGuaranteedNoWrapRegion( |
| BinOp, RRange, NoWrapKind); |
| // As an optimization, do not compute LRange if we do not need it. |
| if (NWRegion.isEmptySet()) |
| return false; |
| Value *LHS = II->getOperand(0); |
| ConstantRange LRange = LVI->getConstantRange(LHS, II->getParent(), II); |
| return NWRegion.contains(LRange); |
| }; |
| switch (II->getIntrinsicID()) { |
| default: |
| break; |
| case Intrinsic::uadd_with_overflow: |
| return NoWrap(Instruction::Add, OBO::NoUnsignedWrap); |
| case Intrinsic::sadd_with_overflow: |
| return NoWrap(Instruction::Add, OBO::NoSignedWrap); |
| case Intrinsic::usub_with_overflow: |
| return NoWrap(Instruction::Sub, OBO::NoUnsignedWrap); |
| case Intrinsic::ssub_with_overflow: |
| return NoWrap(Instruction::Sub, OBO::NoSignedWrap); |
| } |
| return false; |
| } |
| |
| static void processOverflowIntrinsic(IntrinsicInst *II) { |
| Value *NewOp = nullptr; |
| switch (II->getIntrinsicID()) { |
| default: |
| llvm_unreachable("Unexpected instruction."); |
| case Intrinsic::uadd_with_overflow: |
| case Intrinsic::sadd_with_overflow: |
| NewOp = BinaryOperator::CreateAdd(II->getOperand(0), II->getOperand(1), |
| II->getName(), II); |
| break; |
| case Intrinsic::usub_with_overflow: |
| case Intrinsic::ssub_with_overflow: |
| NewOp = BinaryOperator::CreateSub(II->getOperand(0), II->getOperand(1), |
| II->getName(), II); |
| break; |
| } |
| ++NumOverflows; |
| IRBuilder<> B(II); |
| Value *NewI = B.CreateInsertValue(UndefValue::get(II->getType()), NewOp, 0); |
| NewI = B.CreateInsertValue(NewI, ConstantInt::getFalse(II->getContext()), 1); |
| II->replaceAllUsesWith(NewI); |
| II->eraseFromParent(); |
| } |
| |
| /// Infer nonnull attributes for the arguments at the specified callsite. |
| static bool processCallSite(CallSite CS, LazyValueInfo *LVI) { |
| SmallVector<unsigned, 4> ArgNos; |
| unsigned ArgNo = 0; |
| |
| if (auto *II = dyn_cast<IntrinsicInst>(CS.getInstruction())) { |
| if (willNotOverflow(II, LVI)) { |
| processOverflowIntrinsic(II); |
| return true; |
| } |
| } |
| |
| for (Value *V : CS.args()) { |
| PointerType *Type = dyn_cast<PointerType>(V->getType()); |
| // Try to mark pointer typed parameters as non-null. We skip the |
| // relatively expensive analysis for constants which are obviously either |
| // null or non-null to start with. |
| if (Type && !CS.paramHasAttr(ArgNo, Attribute::NonNull) && |
| !isa<Constant>(V) && |
| LVI->getPredicateAt(ICmpInst::ICMP_EQ, V, |
| ConstantPointerNull::get(Type), |
| CS.getInstruction()) == LazyValueInfo::False) |
| ArgNos.push_back(ArgNo); |
| ArgNo++; |
| } |
| |
| assert(ArgNo == CS.arg_size() && "sanity check"); |
| |
| if (ArgNos.empty()) |
| return false; |
| |
| AttributeList AS = CS.getAttributes(); |
| LLVMContext &Ctx = CS.getInstruction()->getContext(); |
| AS = AS.addParamAttribute(Ctx, ArgNos, |
| Attribute::get(Ctx, Attribute::NonNull)); |
| CS.setAttributes(AS); |
| |
| return true; |
| } |
| |
| static bool hasPositiveOperands(BinaryOperator *SDI, LazyValueInfo *LVI) { |
| Constant *Zero = ConstantInt::get(SDI->getType(), 0); |
| for (Value *O : SDI->operands()) { |
| auto Result = LVI->getPredicateAt(ICmpInst::ICMP_SGE, O, Zero, SDI); |
| if (Result != LazyValueInfo::True) |
| return false; |
| } |
| return true; |
| } |
| |
| /// Try to shrink a udiv/urem's width down to the smallest power of two that's |
| /// sufficient to contain its operands. |
| static bool processUDivOrURem(BinaryOperator *Instr, LazyValueInfo *LVI) { |
| assert(Instr->getOpcode() == Instruction::UDiv || |
| Instr->getOpcode() == Instruction::URem); |
| if (Instr->getType()->isVectorTy()) |
| return false; |
| |
| // Find the smallest power of two bitwidth that's sufficient to hold Instr's |
| // operands. |
| auto OrigWidth = Instr->getType()->getIntegerBitWidth(); |
| ConstantRange OperandRange(OrigWidth, /*isFullset=*/false); |
| for (Value *Operand : Instr->operands()) { |
| OperandRange = OperandRange.unionWith( |
| LVI->getConstantRange(Operand, Instr->getParent())); |
| } |
| // Don't shrink below 8 bits wide. |
| unsigned NewWidth = std::max<unsigned>( |
| PowerOf2Ceil(OperandRange.getUnsignedMax().getActiveBits()), 8); |
| // NewWidth might be greater than OrigWidth if OrigWidth is not a power of |
| // two. |
| if (NewWidth >= OrigWidth) |
| return false; |
| |
| ++NumUDivs; |
| auto *TruncTy = Type::getIntNTy(Instr->getContext(), NewWidth); |
| auto *LHS = CastInst::Create(Instruction::Trunc, Instr->getOperand(0), TruncTy, |
| Instr->getName() + ".lhs.trunc", Instr); |
| auto *RHS = CastInst::Create(Instruction::Trunc, Instr->getOperand(1), TruncTy, |
| Instr->getName() + ".rhs.trunc", Instr); |
| auto *BO = |
| BinaryOperator::Create(Instr->getOpcode(), LHS, RHS, Instr->getName(), Instr); |
| auto *Zext = CastInst::Create(Instruction::ZExt, BO, Instr->getType(), |
| Instr->getName() + ".zext", Instr); |
| if (BO->getOpcode() == Instruction::UDiv) |
| BO->setIsExact(Instr->isExact()); |
| |
| Instr->replaceAllUsesWith(Zext); |
| Instr->eraseFromParent(); |
| return true; |
| } |
| |
| static bool processSRem(BinaryOperator *SDI, LazyValueInfo *LVI) { |
| if (SDI->getType()->isVectorTy() || !hasPositiveOperands(SDI, LVI)) |
| return false; |
| |
| ++NumSRems; |
| auto *BO = BinaryOperator::CreateURem(SDI->getOperand(0), SDI->getOperand(1), |
| SDI->getName(), SDI); |
| SDI->replaceAllUsesWith(BO); |
| SDI->eraseFromParent(); |
| |
| // Try to process our new urem. |
| processUDivOrURem(BO, LVI); |
| |
| return true; |
| } |
| |
| /// See if LazyValueInfo's ability to exploit edge conditions or range |
| /// information is sufficient to prove the both operands of this SDiv are |
| /// positive. If this is the case, replace the SDiv with a UDiv. Even for local |
| /// conditions, this can sometimes prove conditions instcombine can't by |
| /// exploiting range information. |
| static bool processSDiv(BinaryOperator *SDI, LazyValueInfo *LVI) { |
| if (SDI->getType()->isVectorTy() || !hasPositiveOperands(SDI, LVI)) |
| return false; |
| |
| ++NumSDivs; |
| auto *BO = BinaryOperator::CreateUDiv(SDI->getOperand(0), SDI->getOperand(1), |
| SDI->getName(), SDI); |
| BO->setIsExact(SDI->isExact()); |
| SDI->replaceAllUsesWith(BO); |
| SDI->eraseFromParent(); |
| |
| // Try to simplify our new udiv. |
| processUDivOrURem(BO, LVI); |
| |
| return true; |
| } |
| |
| static bool processAShr(BinaryOperator *SDI, LazyValueInfo *LVI) { |
| if (SDI->getType()->isVectorTy()) |
| return false; |
| |
| Constant *Zero = ConstantInt::get(SDI->getType(), 0); |
| if (LVI->getPredicateAt(ICmpInst::ICMP_SGE, SDI->getOperand(0), Zero, SDI) != |
| LazyValueInfo::True) |
| return false; |
| |
| ++NumAShrs; |
| auto *BO = BinaryOperator::CreateLShr(SDI->getOperand(0), SDI->getOperand(1), |
| SDI->getName(), SDI); |
| BO->setIsExact(SDI->isExact()); |
| SDI->replaceAllUsesWith(BO); |
| SDI->eraseFromParent(); |
| |
| return true; |
| } |
| |
| static bool processAdd(BinaryOperator *AddOp, LazyValueInfo *LVI) { |
| using OBO = OverflowingBinaryOperator; |
| |
| if (DontProcessAdds) |
| return false; |
| |
| if (AddOp->getType()->isVectorTy()) |
| return false; |
| |
| bool NSW = AddOp->hasNoSignedWrap(); |
| bool NUW = AddOp->hasNoUnsignedWrap(); |
| if (NSW && NUW) |
| return false; |
| |
| BasicBlock *BB = AddOp->getParent(); |
| |
| Value *LHS = AddOp->getOperand(0); |
| Value *RHS = AddOp->getOperand(1); |
| |
| ConstantRange LRange = LVI->getConstantRange(LHS, BB, AddOp); |
| |
| // Initialize RRange only if we need it. If we know that guaranteed no wrap |
| // range for the given LHS range is empty don't spend time calculating the |
| // range for the RHS. |
| Optional<ConstantRange> RRange; |
| auto LazyRRange = [&] () { |
| if (!RRange) |
| RRange = LVI->getConstantRange(RHS, BB, AddOp); |
| return RRange.getValue(); |
| }; |
| |
| bool Changed = false; |
| if (!NUW) { |
| ConstantRange NUWRange = ConstantRange::makeGuaranteedNoWrapRegion( |
| BinaryOperator::Add, LRange, OBO::NoUnsignedWrap); |
| if (!NUWRange.isEmptySet()) { |
| bool NewNUW = NUWRange.contains(LazyRRange()); |
| AddOp->setHasNoUnsignedWrap(NewNUW); |
| Changed |= NewNUW; |
| } |
| } |
| if (!NSW) { |
| ConstantRange NSWRange = ConstantRange::makeGuaranteedNoWrapRegion( |
| BinaryOperator::Add, LRange, OBO::NoSignedWrap); |
| if (!NSWRange.isEmptySet()) { |
| bool NewNSW = NSWRange.contains(LazyRRange()); |
| AddOp->setHasNoSignedWrap(NewNSW); |
| Changed |= NewNSW; |
| } |
| } |
| |
| return Changed; |
| } |
| |
| static Constant *getConstantAt(Value *V, Instruction *At, LazyValueInfo *LVI) { |
| if (Constant *C = LVI->getConstant(V, At->getParent(), At)) |
| return C; |
| |
| // TODO: The following really should be sunk inside LVI's core algorithm, or |
| // at least the outer shims around such. |
| auto *C = dyn_cast<CmpInst>(V); |
| if (!C) return nullptr; |
| |
| Value *Op0 = C->getOperand(0); |
| Constant *Op1 = dyn_cast<Constant>(C->getOperand(1)); |
| if (!Op1) return nullptr; |
| |
| LazyValueInfo::Tristate Result = |
| LVI->getPredicateAt(C->getPredicate(), Op0, Op1, At); |
| if (Result == LazyValueInfo::Unknown) |
| return nullptr; |
| |
| return (Result == LazyValueInfo::True) ? |
| ConstantInt::getTrue(C->getContext()) : |
| ConstantInt::getFalse(C->getContext()); |
| } |
| |
| static bool runImpl(Function &F, LazyValueInfo *LVI, const SimplifyQuery &SQ) { |
| bool FnChanged = false; |
| // Visiting in a pre-order depth-first traversal causes us to simplify early |
| // blocks before querying later blocks (which require us to analyze early |
| // blocks). Eagerly simplifying shallow blocks means there is strictly less |
| // work to do for deep blocks. This also means we don't visit unreachable |
| // blocks. |
| for (BasicBlock *BB : depth_first(&F.getEntryBlock())) { |
| bool BBChanged = false; |
| for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); BI != BE;) { |
| Instruction *II = &*BI++; |
| switch (II->getOpcode()) { |
| case Instruction::Select: |
| BBChanged |= processSelect(cast<SelectInst>(II), LVI); |
| break; |
| case Instruction::PHI: |
| BBChanged |= processPHI(cast<PHINode>(II), LVI, SQ); |
| break; |
| case Instruction::ICmp: |
| case Instruction::FCmp: |
| BBChanged |= processCmp(cast<CmpInst>(II), LVI); |
| break; |
| case Instruction::Load: |
| case Instruction::Store: |
| BBChanged |= processMemAccess(II, LVI); |
| break; |
| case Instruction::Call: |
| case Instruction::Invoke: |
| BBChanged |= processCallSite(CallSite(II), LVI); |
| break; |
| case Instruction::SRem: |
| BBChanged |= processSRem(cast<BinaryOperator>(II), LVI); |
| break; |
| case Instruction::SDiv: |
| BBChanged |= processSDiv(cast<BinaryOperator>(II), LVI); |
| break; |
| case Instruction::UDiv: |
| case Instruction::URem: |
| BBChanged |= processUDivOrURem(cast<BinaryOperator>(II), LVI); |
| break; |
| case Instruction::AShr: |
| BBChanged |= processAShr(cast<BinaryOperator>(II), LVI); |
| break; |
| case Instruction::Add: |
| BBChanged |= processAdd(cast<BinaryOperator>(II), LVI); |
| break; |
| } |
| } |
| |
| Instruction *Term = BB->getTerminator(); |
| switch (Term->getOpcode()) { |
| case Instruction::Switch: |
| BBChanged |= processSwitch(cast<SwitchInst>(Term), LVI); |
| break; |
| case Instruction::Ret: { |
| auto *RI = cast<ReturnInst>(Term); |
| // Try to determine the return value if we can. This is mainly here to |
| // simplify the writing of unit tests, but also helps to enable IPO by |
| // constant folding the return values of callees. |
| auto *RetVal = RI->getReturnValue(); |
| if (!RetVal) break; // handle "ret void" |
| if (isa<Constant>(RetVal)) break; // nothing to do |
| if (auto *C = getConstantAt(RetVal, RI, LVI)) { |
| ++NumReturns; |
| RI->replaceUsesOfWith(RetVal, C); |
| BBChanged = true; |
| } |
| } |
| } |
| |
| FnChanged |= BBChanged; |
| } |
| |
| return FnChanged; |
| } |
| |
| bool CorrelatedValuePropagation::runOnFunction(Function &F) { |
| if (skipFunction(F)) |
| return false; |
| |
| LazyValueInfo *LVI = &getAnalysis<LazyValueInfoWrapperPass>().getLVI(); |
| return runImpl(F, LVI, getBestSimplifyQuery(*this, F)); |
| } |
| |
| PreservedAnalyses |
| CorrelatedValuePropagationPass::run(Function &F, FunctionAnalysisManager &AM) { |
| |
| LazyValueInfo *LVI = &AM.getResult<LazyValueAnalysis>(F); |
| bool Changed = runImpl(F, LVI, getBestSimplifyQuery(AM, F)); |
| |
| if (!Changed) |
| return PreservedAnalyses::all(); |
| PreservedAnalyses PA; |
| PA.preserve<GlobalsAA>(); |
| return PA; |
| } |