| //===-- LoopPredication.cpp - Guard based loop predication pass -----------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // The LoopPredication pass tries to convert loop variant range checks to loop |
| // invariant by widening checks across loop iterations. For example, it will |
| // convert |
| // |
| // for (i = 0; i < n; i++) { |
| // guard(i < len); |
| // ... |
| // } |
| // |
| // to |
| // |
| // for (i = 0; i < n; i++) { |
| // guard(n - 1 < len); |
| // ... |
| // } |
| // |
| // After this transformation the condition of the guard is loop invariant, so |
| // loop-unswitch can later unswitch the loop by this condition which basically |
| // predicates the loop by the widened condition: |
| // |
| // if (n - 1 < len) |
| // for (i = 0; i < n; i++) { |
| // ... |
| // } |
| // else |
| // deoptimize |
| // |
| // It's tempting to rely on SCEV here, but it has proven to be problematic. |
| // Generally the facts SCEV provides about the increment step of add |
| // recurrences are true if the backedge of the loop is taken, which implicitly |
| // assumes that the guard doesn't fail. Using these facts to optimize the |
| // guard results in a circular logic where the guard is optimized under the |
| // assumption that it never fails. |
| // |
| // For example, in the loop below the induction variable will be marked as nuw |
| // basing on the guard. Basing on nuw the guard predicate will be considered |
| // monotonic. Given a monotonic condition it's tempting to replace the induction |
| // variable in the condition with its value on the last iteration. But this |
| // transformation is not correct, e.g. e = 4, b = 5 breaks the loop. |
| // |
| // for (int i = b; i != e; i++) |
| // guard(i u< len) |
| // |
| // One of the ways to reason about this problem is to use an inductive proof |
| // approach. Given the loop: |
| // |
| // if (B(0)) { |
| // do { |
| // I = PHI(0, I.INC) |
| // I.INC = I + Step |
| // guard(G(I)); |
| // } while (B(I)); |
| // } |
| // |
| // where B(x) and G(x) are predicates that map integers to booleans, we want a |
| // loop invariant expression M such the following program has the same semantics |
| // as the above: |
| // |
| // if (B(0)) { |
| // do { |
| // I = PHI(0, I.INC) |
| // I.INC = I + Step |
| // guard(G(0) && M); |
| // } while (B(I)); |
| // } |
| // |
| // One solution for M is M = forall X . (G(X) && B(X)) => G(X + Step) |
| // |
| // Informal proof that the transformation above is correct: |
| // |
| // By the definition of guards we can rewrite the guard condition to: |
| // G(I) && G(0) && M |
| // |
| // Let's prove that for each iteration of the loop: |
| // G(0) && M => G(I) |
| // And the condition above can be simplified to G(Start) && M. |
| // |
| // Induction base. |
| // G(0) && M => G(0) |
| // |
| // Induction step. Assuming G(0) && M => G(I) on the subsequent |
| // iteration: |
| // |
| // B(I) is true because it's the backedge condition. |
| // G(I) is true because the backedge is guarded by this condition. |
| // |
| // So M = forall X . (G(X) && B(X)) => G(X + Step) implies G(I + Step). |
| // |
| // Note that we can use anything stronger than M, i.e. any condition which |
| // implies M. |
| // |
| // When S = 1 (i.e. forward iterating loop), the transformation is supported |
| // when: |
| // * The loop has a single latch with the condition of the form: |
| // B(X) = latchStart + X <pred> latchLimit, |
| // where <pred> is u<, u<=, s<, or s<=. |
| // * The guard condition is of the form |
| // G(X) = guardStart + X u< guardLimit |
| // |
| // For the ult latch comparison case M is: |
| // forall X . guardStart + X u< guardLimit && latchStart + X <u latchLimit => |
| // guardStart + X + 1 u< guardLimit |
| // |
| // The only way the antecedent can be true and the consequent can be false is |
| // if |
| // X == guardLimit - 1 - guardStart |
| // (and guardLimit is non-zero, but we won't use this latter fact). |
| // If X == guardLimit - 1 - guardStart then the second half of the antecedent is |
| // latchStart + guardLimit - 1 - guardStart u< latchLimit |
| // and its negation is |
| // latchStart + guardLimit - 1 - guardStart u>= latchLimit |
| // |
| // In other words, if |
| // latchLimit u<= latchStart + guardLimit - 1 - guardStart |
| // then: |
| // (the ranges below are written in ConstantRange notation, where [A, B) is the |
| // set for (I = A; I != B; I++ /*maywrap*/) yield(I);) |
| // |
| // forall X . guardStart + X u< guardLimit && |
| // latchStart + X u< latchLimit => |
| // guardStart + X + 1 u< guardLimit |
| // == forall X . guardStart + X u< guardLimit && |
| // latchStart + X u< latchStart + guardLimit - 1 - guardStart => |
| // guardStart + X + 1 u< guardLimit |
| // == forall X . (guardStart + X) in [0, guardLimit) && |
| // (latchStart + X) in [0, latchStart + guardLimit - 1 - guardStart) => |
| // (guardStart + X + 1) in [0, guardLimit) |
| // == forall X . X in [-guardStart, guardLimit - guardStart) && |
| // X in [-latchStart, guardLimit - 1 - guardStart) => |
| // X in [-guardStart - 1, guardLimit - guardStart - 1) |
| // == true |
| // |
| // So the widened condition is: |
| // guardStart u< guardLimit && |
| // latchStart + guardLimit - 1 - guardStart u>= latchLimit |
| // Similarly for ule condition the widened condition is: |
| // guardStart u< guardLimit && |
| // latchStart + guardLimit - 1 - guardStart u> latchLimit |
| // For slt condition the widened condition is: |
| // guardStart u< guardLimit && |
| // latchStart + guardLimit - 1 - guardStart s>= latchLimit |
| // For sle condition the widened condition is: |
| // guardStart u< guardLimit && |
| // latchStart + guardLimit - 1 - guardStart s> latchLimit |
| // |
| // When S = -1 (i.e. reverse iterating loop), the transformation is supported |
| // when: |
| // * The loop has a single latch with the condition of the form: |
| // B(X) = X <pred> latchLimit, where <pred> is u>, u>=, s>, or s>=. |
| // * The guard condition is of the form |
| // G(X) = X - 1 u< guardLimit |
| // |
| // For the ugt latch comparison case M is: |
| // forall X. X-1 u< guardLimit and X u> latchLimit => X-2 u< guardLimit |
| // |
| // The only way the antecedent can be true and the consequent can be false is if |
| // X == 1. |
| // If X == 1 then the second half of the antecedent is |
| // 1 u> latchLimit, and its negation is latchLimit u>= 1. |
| // |
| // So the widened condition is: |
| // guardStart u< guardLimit && latchLimit u>= 1. |
| // Similarly for sgt condition the widened condition is: |
| // guardStart u< guardLimit && latchLimit s>= 1. |
| // For uge condition the widened condition is: |
| // guardStart u< guardLimit && latchLimit u> 1. |
| // For sge condition the widened condition is: |
| // guardStart u< guardLimit && latchLimit s> 1. |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Transforms/Scalar/LoopPredication.h" |
| #include "llvm/Analysis/BranchProbabilityInfo.h" |
| #include "llvm/Analysis/LoopInfo.h" |
| #include "llvm/Analysis/LoopPass.h" |
| #include "llvm/Analysis/ScalarEvolution.h" |
| #include "llvm/Analysis/ScalarEvolutionExpander.h" |
| #include "llvm/Analysis/ScalarEvolutionExpressions.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/GlobalValue.h" |
| #include "llvm/IR/IntrinsicInst.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/IR/PatternMatch.h" |
| #include "llvm/Pass.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Transforms/Scalar.h" |
| #include "llvm/Transforms/Utils/LoopUtils.h" |
| |
| #define DEBUG_TYPE "loop-predication" |
| |
| using namespace llvm; |
| |
| static cl::opt<bool> EnableIVTruncation("loop-predication-enable-iv-truncation", |
| cl::Hidden, cl::init(true)); |
| |
| static cl::opt<bool> EnableCountDownLoop("loop-predication-enable-count-down-loop", |
| cl::Hidden, cl::init(true)); |
| |
| static cl::opt<bool> |
| SkipProfitabilityChecks("loop-predication-skip-profitability-checks", |
| cl::Hidden, cl::init(false)); |
| |
| // This is the scale factor for the latch probability. We use this during |
| // profitability analysis to find other exiting blocks that have a much higher |
| // probability of exiting the loop instead of loop exiting via latch. |
| // This value should be greater than 1 for a sane profitability check. |
| static cl::opt<float> LatchExitProbabilityScale( |
| "loop-predication-latch-probability-scale", cl::Hidden, cl::init(2.0), |
| cl::desc("scale factor for the latch probability. Value should be greater " |
| "than 1. Lower values are ignored")); |
| |
| namespace { |
| class LoopPredication { |
| /// Represents an induction variable check: |
| /// icmp Pred, <induction variable>, <loop invariant limit> |
| struct LoopICmp { |
| ICmpInst::Predicate Pred; |
| const SCEVAddRecExpr *IV; |
| const SCEV *Limit; |
| LoopICmp(ICmpInst::Predicate Pred, const SCEVAddRecExpr *IV, |
| const SCEV *Limit) |
| : Pred(Pred), IV(IV), Limit(Limit) {} |
| LoopICmp() {} |
| void dump() { |
| dbgs() << "LoopICmp Pred = " << Pred << ", IV = " << *IV |
| << ", Limit = " << *Limit << "\n"; |
| } |
| }; |
| |
| ScalarEvolution *SE; |
| BranchProbabilityInfo *BPI; |
| |
| Loop *L; |
| const DataLayout *DL; |
| BasicBlock *Preheader; |
| LoopICmp LatchCheck; |
| |
| bool isSupportedStep(const SCEV* Step); |
| Optional<LoopICmp> parseLoopICmp(ICmpInst *ICI) { |
| return parseLoopICmp(ICI->getPredicate(), ICI->getOperand(0), |
| ICI->getOperand(1)); |
| } |
| Optional<LoopICmp> parseLoopICmp(ICmpInst::Predicate Pred, Value *LHS, |
| Value *RHS); |
| |
| Optional<LoopICmp> parseLoopLatchICmp(); |
| |
| bool CanExpand(const SCEV* S); |
| Value *expandCheck(SCEVExpander &Expander, IRBuilder<> &Builder, |
| ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, |
| Instruction *InsertAt); |
| |
| Optional<Value *> widenICmpRangeCheck(ICmpInst *ICI, SCEVExpander &Expander, |
| IRBuilder<> &Builder); |
| Optional<Value *> widenICmpRangeCheckIncrementingLoop(LoopICmp LatchCheck, |
| LoopICmp RangeCheck, |
| SCEVExpander &Expander, |
| IRBuilder<> &Builder); |
| Optional<Value *> widenICmpRangeCheckDecrementingLoop(LoopICmp LatchCheck, |
| LoopICmp RangeCheck, |
| SCEVExpander &Expander, |
| IRBuilder<> &Builder); |
| bool widenGuardConditions(IntrinsicInst *II, SCEVExpander &Expander); |
| |
| // If the loop always exits through another block in the loop, we should not |
| // predicate based on the latch check. For example, the latch check can be a |
| // very coarse grained check and there can be more fine grained exit checks |
| // within the loop. We identify such unprofitable loops through BPI. |
| bool isLoopProfitableToPredicate(); |
| |
| // When the IV type is wider than the range operand type, we can still do loop |
| // predication, by generating SCEVs for the range and latch that are of the |
| // same type. We achieve this by generating a SCEV truncate expression for the |
| // latch IV. This is done iff truncation of the IV is a safe operation, |
| // without loss of information. |
| // Another way to achieve this is by generating a wider type SCEV for the |
| // range check operand, however, this needs a more involved check that |
| // operands do not overflow. This can lead to loss of information when the |
| // range operand is of the form: add i32 %offset, %iv. We need to prove that |
| // sext(x + y) is same as sext(x) + sext(y). |
| // This function returns true if we can safely represent the IV type in |
| // the RangeCheckType without loss of information. |
| bool isSafeToTruncateWideIVType(Type *RangeCheckType); |
| // Return the loopLatchCheck corresponding to the RangeCheckType if safe to do |
| // so. |
| Optional<LoopICmp> generateLoopLatchCheck(Type *RangeCheckType); |
| |
| public: |
| LoopPredication(ScalarEvolution *SE, BranchProbabilityInfo *BPI) |
| : SE(SE), BPI(BPI){}; |
| bool runOnLoop(Loop *L); |
| }; |
| |
| class LoopPredicationLegacyPass : public LoopPass { |
| public: |
| static char ID; |
| LoopPredicationLegacyPass() : LoopPass(ID) { |
| initializeLoopPredicationLegacyPassPass(*PassRegistry::getPassRegistry()); |
| } |
| |
| void getAnalysisUsage(AnalysisUsage &AU) const override { |
| AU.addRequired<BranchProbabilityInfoWrapperPass>(); |
| getLoopAnalysisUsage(AU); |
| } |
| |
| bool runOnLoop(Loop *L, LPPassManager &LPM) override { |
| if (skipLoop(L)) |
| return false; |
| auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); |
| BranchProbabilityInfo &BPI = |
| getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI(); |
| LoopPredication LP(SE, &BPI); |
| return LP.runOnLoop(L); |
| } |
| }; |
| |
| char LoopPredicationLegacyPass::ID = 0; |
| } // end namespace llvm |
| |
| INITIALIZE_PASS_BEGIN(LoopPredicationLegacyPass, "loop-predication", |
| "Loop predication", false, false) |
| INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass) |
| INITIALIZE_PASS_DEPENDENCY(LoopPass) |
| INITIALIZE_PASS_END(LoopPredicationLegacyPass, "loop-predication", |
| "Loop predication", false, false) |
| |
| Pass *llvm::createLoopPredicationPass() { |
| return new LoopPredicationLegacyPass(); |
| } |
| |
| PreservedAnalyses LoopPredicationPass::run(Loop &L, LoopAnalysisManager &AM, |
| LoopStandardAnalysisResults &AR, |
| LPMUpdater &U) { |
| const auto &FAM = |
| AM.getResult<FunctionAnalysisManagerLoopProxy>(L, AR).getManager(); |
| Function *F = L.getHeader()->getParent(); |
| auto *BPI = FAM.getCachedResult<BranchProbabilityAnalysis>(*F); |
| LoopPredication LP(&AR.SE, BPI); |
| if (!LP.runOnLoop(&L)) |
| return PreservedAnalyses::all(); |
| |
| return getLoopPassPreservedAnalyses(); |
| } |
| |
| Optional<LoopPredication::LoopICmp> |
| LoopPredication::parseLoopICmp(ICmpInst::Predicate Pred, Value *LHS, |
| Value *RHS) { |
| const SCEV *LHSS = SE->getSCEV(LHS); |
| if (isa<SCEVCouldNotCompute>(LHSS)) |
| return None; |
| const SCEV *RHSS = SE->getSCEV(RHS); |
| if (isa<SCEVCouldNotCompute>(RHSS)) |
| return None; |
| |
| // Canonicalize RHS to be loop invariant bound, LHS - a loop computable IV |
| if (SE->isLoopInvariant(LHSS, L)) { |
| std::swap(LHS, RHS); |
| std::swap(LHSS, RHSS); |
| Pred = ICmpInst::getSwappedPredicate(Pred); |
| } |
| |
| const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHSS); |
| if (!AR || AR->getLoop() != L) |
| return None; |
| |
| return LoopICmp(Pred, AR, RHSS); |
| } |
| |
| Value *LoopPredication::expandCheck(SCEVExpander &Expander, |
| IRBuilder<> &Builder, |
| ICmpInst::Predicate Pred, const SCEV *LHS, |
| const SCEV *RHS, Instruction *InsertAt) { |
| // TODO: we can check isLoopEntryGuardedByCond before emitting the check |
| |
| Type *Ty = LHS->getType(); |
| assert(Ty == RHS->getType() && "expandCheck operands have different types?"); |
| |
| if (SE->isLoopEntryGuardedByCond(L, Pred, LHS, RHS)) |
| return Builder.getTrue(); |
| |
| Value *LHSV = Expander.expandCodeFor(LHS, Ty, InsertAt); |
| Value *RHSV = Expander.expandCodeFor(RHS, Ty, InsertAt); |
| return Builder.CreateICmp(Pred, LHSV, RHSV); |
| } |
| |
| Optional<LoopPredication::LoopICmp> |
| LoopPredication::generateLoopLatchCheck(Type *RangeCheckType) { |
| |
| auto *LatchType = LatchCheck.IV->getType(); |
| if (RangeCheckType == LatchType) |
| return LatchCheck; |
| // For now, bail out if latch type is narrower than range type. |
| if (DL->getTypeSizeInBits(LatchType) < DL->getTypeSizeInBits(RangeCheckType)) |
| return None; |
| if (!isSafeToTruncateWideIVType(RangeCheckType)) |
| return None; |
| // We can now safely identify the truncated version of the IV and limit for |
| // RangeCheckType. |
| LoopICmp NewLatchCheck; |
| NewLatchCheck.Pred = LatchCheck.Pred; |
| NewLatchCheck.IV = dyn_cast<SCEVAddRecExpr>( |
| SE->getTruncateExpr(LatchCheck.IV, RangeCheckType)); |
| if (!NewLatchCheck.IV) |
| return None; |
| NewLatchCheck.Limit = SE->getTruncateExpr(LatchCheck.Limit, RangeCheckType); |
| DEBUG(dbgs() << "IV of type: " << *LatchType |
| << "can be represented as range check type:" << *RangeCheckType |
| << "\n"); |
| DEBUG(dbgs() << "LatchCheck.IV: " << *NewLatchCheck.IV << "\n"); |
| DEBUG(dbgs() << "LatchCheck.Limit: " << *NewLatchCheck.Limit << "\n"); |
| return NewLatchCheck; |
| } |
| |
| bool LoopPredication::isSupportedStep(const SCEV* Step) { |
| return Step->isOne() || (Step->isAllOnesValue() && EnableCountDownLoop); |
| } |
| |
| bool LoopPredication::CanExpand(const SCEV* S) { |
| return SE->isLoopInvariant(S, L) && isSafeToExpand(S, *SE); |
| } |
| |
| Optional<Value *> LoopPredication::widenICmpRangeCheckIncrementingLoop( |
| LoopPredication::LoopICmp LatchCheck, LoopPredication::LoopICmp RangeCheck, |
| SCEVExpander &Expander, IRBuilder<> &Builder) { |
| auto *Ty = RangeCheck.IV->getType(); |
| // Generate the widened condition for the forward loop: |
| // guardStart u< guardLimit && |
| // latchLimit <pred> guardLimit - 1 - guardStart + latchStart |
| // where <pred> depends on the latch condition predicate. See the file |
| // header comment for the reasoning. |
| // guardLimit - guardStart + latchStart - 1 |
| const SCEV *GuardStart = RangeCheck.IV->getStart(); |
| const SCEV *GuardLimit = RangeCheck.Limit; |
| const SCEV *LatchStart = LatchCheck.IV->getStart(); |
| const SCEV *LatchLimit = LatchCheck.Limit; |
| |
| // guardLimit - guardStart + latchStart - 1 |
| const SCEV *RHS = |
| SE->getAddExpr(SE->getMinusSCEV(GuardLimit, GuardStart), |
| SE->getMinusSCEV(LatchStart, SE->getOne(Ty))); |
| if (!CanExpand(GuardStart) || !CanExpand(GuardLimit) || |
| !CanExpand(LatchLimit) || !CanExpand(RHS)) { |
| DEBUG(dbgs() << "Can't expand limit check!\n"); |
| return None; |
| } |
| auto LimitCheckPred = |
| ICmpInst::getFlippedStrictnessPredicate(LatchCheck.Pred); |
| |
| DEBUG(dbgs() << "LHS: " << *LatchLimit << "\n"); |
| DEBUG(dbgs() << "RHS: " << *RHS << "\n"); |
| DEBUG(dbgs() << "Pred: " << LimitCheckPred << "\n"); |
| |
| Instruction *InsertAt = Preheader->getTerminator(); |
| auto *LimitCheck = |
| expandCheck(Expander, Builder, LimitCheckPred, LatchLimit, RHS, InsertAt); |
| auto *FirstIterationCheck = expandCheck(Expander, Builder, RangeCheck.Pred, |
| GuardStart, GuardLimit, InsertAt); |
| return Builder.CreateAnd(FirstIterationCheck, LimitCheck); |
| } |
| |
| Optional<Value *> LoopPredication::widenICmpRangeCheckDecrementingLoop( |
| LoopPredication::LoopICmp LatchCheck, LoopPredication::LoopICmp RangeCheck, |
| SCEVExpander &Expander, IRBuilder<> &Builder) { |
| auto *Ty = RangeCheck.IV->getType(); |
| const SCEV *GuardStart = RangeCheck.IV->getStart(); |
| const SCEV *GuardLimit = RangeCheck.Limit; |
| const SCEV *LatchLimit = LatchCheck.Limit; |
| if (!CanExpand(GuardStart) || !CanExpand(GuardLimit) || |
| !CanExpand(LatchLimit)) { |
| DEBUG(dbgs() << "Can't expand limit check!\n"); |
| return None; |
| } |
| // The decrement of the latch check IV should be the same as the |
| // rangeCheckIV. |
| auto *PostDecLatchCheckIV = LatchCheck.IV->getPostIncExpr(*SE); |
| if (RangeCheck.IV != PostDecLatchCheckIV) { |
| DEBUG(dbgs() << "Not the same. PostDecLatchCheckIV: " |
| << *PostDecLatchCheckIV |
| << " and RangeCheckIV: " << *RangeCheck.IV << "\n"); |
| return None; |
| } |
| |
| // Generate the widened condition for CountDownLoop: |
| // guardStart u< guardLimit && |
| // latchLimit <pred> 1. |
| // See the header comment for reasoning of the checks. |
| Instruction *InsertAt = Preheader->getTerminator(); |
| auto LimitCheckPred = |
| ICmpInst::getFlippedStrictnessPredicate(LatchCheck.Pred); |
| auto *FirstIterationCheck = expandCheck(Expander, Builder, ICmpInst::ICMP_ULT, |
| GuardStart, GuardLimit, InsertAt); |
| auto *LimitCheck = expandCheck(Expander, Builder, LimitCheckPred, LatchLimit, |
| SE->getOne(Ty), InsertAt); |
| return Builder.CreateAnd(FirstIterationCheck, LimitCheck); |
| } |
| |
| /// If ICI can be widened to a loop invariant condition emits the loop |
| /// invariant condition in the loop preheader and return it, otherwise |
| /// returns None. |
| Optional<Value *> LoopPredication::widenICmpRangeCheck(ICmpInst *ICI, |
| SCEVExpander &Expander, |
| IRBuilder<> &Builder) { |
| DEBUG(dbgs() << "Analyzing ICmpInst condition:\n"); |
| DEBUG(ICI->dump()); |
| |
| // parseLoopStructure guarantees that the latch condition is: |
| // ++i <pred> latchLimit, where <pred> is u<, u<=, s<, or s<=. |
| // We are looking for the range checks of the form: |
| // i u< guardLimit |
| auto RangeCheck = parseLoopICmp(ICI); |
| if (!RangeCheck) { |
| DEBUG(dbgs() << "Failed to parse the loop latch condition!\n"); |
| return None; |
| } |
| DEBUG(dbgs() << "Guard check:\n"); |
| DEBUG(RangeCheck->dump()); |
| if (RangeCheck->Pred != ICmpInst::ICMP_ULT) { |
| DEBUG(dbgs() << "Unsupported range check predicate(" << RangeCheck->Pred |
| << ")!\n"); |
| return None; |
| } |
| auto *RangeCheckIV = RangeCheck->IV; |
| if (!RangeCheckIV->isAffine()) { |
| DEBUG(dbgs() << "Range check IV is not affine!\n"); |
| return None; |
| } |
| auto *Step = RangeCheckIV->getStepRecurrence(*SE); |
| // We cannot just compare with latch IV step because the latch and range IVs |
| // may have different types. |
| if (!isSupportedStep(Step)) { |
| DEBUG(dbgs() << "Range check and latch have IVs different steps!\n"); |
| return None; |
| } |
| auto *Ty = RangeCheckIV->getType(); |
| auto CurrLatchCheckOpt = generateLoopLatchCheck(Ty); |
| if (!CurrLatchCheckOpt) { |
| DEBUG(dbgs() << "Failed to generate a loop latch check " |
| "corresponding to range type: " |
| << *Ty << "\n"); |
| return None; |
| } |
| |
| LoopICmp CurrLatchCheck = *CurrLatchCheckOpt; |
| // At this point, the range and latch step should have the same type, but need |
| // not have the same value (we support both 1 and -1 steps). |
| assert(Step->getType() == |
| CurrLatchCheck.IV->getStepRecurrence(*SE)->getType() && |
| "Range and latch steps should be of same type!"); |
| if (Step != CurrLatchCheck.IV->getStepRecurrence(*SE)) { |
| DEBUG(dbgs() << "Range and latch have different step values!\n"); |
| return None; |
| } |
| |
| if (Step->isOne()) |
| return widenICmpRangeCheckIncrementingLoop(CurrLatchCheck, *RangeCheck, |
| Expander, Builder); |
| else { |
| assert(Step->isAllOnesValue() && "Step should be -1!"); |
| return widenICmpRangeCheckDecrementingLoop(CurrLatchCheck, *RangeCheck, |
| Expander, Builder); |
| } |
| } |
| |
| bool LoopPredication::widenGuardConditions(IntrinsicInst *Guard, |
| SCEVExpander &Expander) { |
| DEBUG(dbgs() << "Processing guard:\n"); |
| DEBUG(Guard->dump()); |
| |
| IRBuilder<> Builder(cast<Instruction>(Preheader->getTerminator())); |
| |
| // The guard condition is expected to be in form of: |
| // cond1 && cond2 && cond3 ... |
| // Iterate over subconditions looking for icmp conditions which can be |
| // widened across loop iterations. Widening these conditions remember the |
| // resulting list of subconditions in Checks vector. |
| SmallVector<Value *, 4> Worklist(1, Guard->getOperand(0)); |
| SmallPtrSet<Value *, 4> Visited; |
| |
| SmallVector<Value *, 4> Checks; |
| |
| unsigned NumWidened = 0; |
| do { |
| Value *Condition = Worklist.pop_back_val(); |
| if (!Visited.insert(Condition).second) |
| continue; |
| |
| Value *LHS, *RHS; |
| using namespace llvm::PatternMatch; |
| if (match(Condition, m_And(m_Value(LHS), m_Value(RHS)))) { |
| Worklist.push_back(LHS); |
| Worklist.push_back(RHS); |
| continue; |
| } |
| |
| if (ICmpInst *ICI = dyn_cast<ICmpInst>(Condition)) { |
| if (auto NewRangeCheck = widenICmpRangeCheck(ICI, Expander, Builder)) { |
| Checks.push_back(NewRangeCheck.getValue()); |
| NumWidened++; |
| continue; |
| } |
| } |
| |
| // Save the condition as is if we can't widen it |
| Checks.push_back(Condition); |
| } while (Worklist.size() != 0); |
| |
| if (NumWidened == 0) |
| return false; |
| |
| // Emit the new guard condition |
| Builder.SetInsertPoint(Guard); |
| Value *LastCheck = nullptr; |
| for (auto *Check : Checks) |
| if (!LastCheck) |
| LastCheck = Check; |
| else |
| LastCheck = Builder.CreateAnd(LastCheck, Check); |
| Guard->setOperand(0, LastCheck); |
| |
| DEBUG(dbgs() << "Widened checks = " << NumWidened << "\n"); |
| return true; |
| } |
| |
| Optional<LoopPredication::LoopICmp> LoopPredication::parseLoopLatchICmp() { |
| using namespace PatternMatch; |
| |
| BasicBlock *LoopLatch = L->getLoopLatch(); |
| if (!LoopLatch) { |
| DEBUG(dbgs() << "The loop doesn't have a single latch!\n"); |
| return None; |
| } |
| |
| ICmpInst::Predicate Pred; |
| Value *LHS, *RHS; |
| BasicBlock *TrueDest, *FalseDest; |
| |
| if (!match(LoopLatch->getTerminator(), |
| m_Br(m_ICmp(Pred, m_Value(LHS), m_Value(RHS)), TrueDest, |
| FalseDest))) { |
| DEBUG(dbgs() << "Failed to match the latch terminator!\n"); |
| return None; |
| } |
| assert((TrueDest == L->getHeader() || FalseDest == L->getHeader()) && |
| "One of the latch's destinations must be the header"); |
| if (TrueDest != L->getHeader()) |
| Pred = ICmpInst::getInversePredicate(Pred); |
| |
| auto Result = parseLoopICmp(Pred, LHS, RHS); |
| if (!Result) { |
| DEBUG(dbgs() << "Failed to parse the loop latch condition!\n"); |
| return None; |
| } |
| |
| // Check affine first, so if it's not we don't try to compute the step |
| // recurrence. |
| if (!Result->IV->isAffine()) { |
| DEBUG(dbgs() << "The induction variable is not affine!\n"); |
| return None; |
| } |
| |
| auto *Step = Result->IV->getStepRecurrence(*SE); |
| if (!isSupportedStep(Step)) { |
| DEBUG(dbgs() << "Unsupported loop stride(" << *Step << ")!\n"); |
| return None; |
| } |
| |
| auto IsUnsupportedPredicate = [](const SCEV *Step, ICmpInst::Predicate Pred) { |
| if (Step->isOne()) { |
| return Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_SLT && |
| Pred != ICmpInst::ICMP_ULE && Pred != ICmpInst::ICMP_SLE; |
| } else { |
| assert(Step->isAllOnesValue() && "Step should be -1!"); |
| return Pred != ICmpInst::ICMP_UGT && Pred != ICmpInst::ICMP_SGT && |
| Pred != ICmpInst::ICMP_UGE && Pred != ICmpInst::ICMP_SGE; |
| } |
| }; |
| |
| if (IsUnsupportedPredicate(Step, Result->Pred)) { |
| DEBUG(dbgs() << "Unsupported loop latch predicate(" << Result->Pred |
| << ")!\n"); |
| return None; |
| } |
| return Result; |
| } |
| |
| // Returns true if its safe to truncate the IV to RangeCheckType. |
| bool LoopPredication::isSafeToTruncateWideIVType(Type *RangeCheckType) { |
| if (!EnableIVTruncation) |
| return false; |
| assert(DL->getTypeSizeInBits(LatchCheck.IV->getType()) > |
| DL->getTypeSizeInBits(RangeCheckType) && |
| "Expected latch check IV type to be larger than range check operand " |
| "type!"); |
| // The start and end values of the IV should be known. This is to guarantee |
| // that truncating the wide type will not lose information. |
| auto *Limit = dyn_cast<SCEVConstant>(LatchCheck.Limit); |
| auto *Start = dyn_cast<SCEVConstant>(LatchCheck.IV->getStart()); |
| if (!Limit || !Start) |
| return false; |
| // This check makes sure that the IV does not change sign during loop |
| // iterations. Consider latchType = i64, LatchStart = 5, Pred = ICMP_SGE, |
| // LatchEnd = 2, rangeCheckType = i32. If it's not a monotonic predicate, the |
| // IV wraps around, and the truncation of the IV would lose the range of |
| // iterations between 2^32 and 2^64. |
| bool Increasing; |
| if (!SE->isMonotonicPredicate(LatchCheck.IV, LatchCheck.Pred, Increasing)) |
| return false; |
| // The active bits should be less than the bits in the RangeCheckType. This |
| // guarantees that truncating the latch check to RangeCheckType is a safe |
| // operation. |
| auto RangeCheckTypeBitSize = DL->getTypeSizeInBits(RangeCheckType); |
| return Start->getAPInt().getActiveBits() < RangeCheckTypeBitSize && |
| Limit->getAPInt().getActiveBits() < RangeCheckTypeBitSize; |
| } |
| |
| bool LoopPredication::isLoopProfitableToPredicate() { |
| if (SkipProfitabilityChecks || !BPI) |
| return true; |
| |
| SmallVector<std::pair<const BasicBlock *, const BasicBlock *>, 8> ExitEdges; |
| L->getExitEdges(ExitEdges); |
| // If there is only one exiting edge in the loop, it is always profitable to |
| // predicate the loop. |
| if (ExitEdges.size() == 1) |
| return true; |
| |
| // Calculate the exiting probabilities of all exiting edges from the loop, |
| // starting with the LatchExitProbability. |
| // Heuristic for profitability: If any of the exiting blocks' probability of |
| // exiting the loop is larger than exiting through the latch block, it's not |
| // profitable to predicate the loop. |
| auto *LatchBlock = L->getLoopLatch(); |
| assert(LatchBlock && "Should have a single latch at this point!"); |
| auto *LatchTerm = LatchBlock->getTerminator(); |
| assert(LatchTerm->getNumSuccessors() == 2 && |
| "expected to be an exiting block with 2 succs!"); |
| unsigned LatchBrExitIdx = |
| LatchTerm->getSuccessor(0) == L->getHeader() ? 1 : 0; |
| BranchProbability LatchExitProbability = |
| BPI->getEdgeProbability(LatchBlock, LatchBrExitIdx); |
| |
| // Protect against degenerate inputs provided by the user. Providing a value |
| // less than one, can invert the definition of profitable loop predication. |
| float ScaleFactor = LatchExitProbabilityScale; |
| if (ScaleFactor < 1) { |
| DEBUG( |
| dbgs() |
| << "Ignored user setting for loop-predication-latch-probability-scale: " |
| << LatchExitProbabilityScale << "\n"); |
| DEBUG(dbgs() << "The value is set to 1.0\n"); |
| ScaleFactor = 1.0; |
| } |
| const auto LatchProbabilityThreshold = |
| LatchExitProbability * ScaleFactor; |
| |
| for (const auto &ExitEdge : ExitEdges) { |
| BranchProbability ExitingBlockProbability = |
| BPI->getEdgeProbability(ExitEdge.first, ExitEdge.second); |
| // Some exiting edge has higher probability than the latch exiting edge. |
| // No longer profitable to predicate. |
| if (ExitingBlockProbability > LatchProbabilityThreshold) |
| return false; |
| } |
| // Using BPI, we have concluded that the most probable way to exit from the |
| // loop is through the latch (or there's no profile information and all |
| // exits are equally likely). |
| return true; |
| } |
| |
| bool LoopPredication::runOnLoop(Loop *Loop) { |
| L = Loop; |
| |
| DEBUG(dbgs() << "Analyzing "); |
| DEBUG(L->dump()); |
| |
| Module *M = L->getHeader()->getModule(); |
| |
| // There is nothing to do if the module doesn't use guards |
| auto *GuardDecl = |
| M->getFunction(Intrinsic::getName(Intrinsic::experimental_guard)); |
| if (!GuardDecl || GuardDecl->use_empty()) |
| return false; |
| |
| DL = &M->getDataLayout(); |
| |
| Preheader = L->getLoopPreheader(); |
| if (!Preheader) |
| return false; |
| |
| auto LatchCheckOpt = parseLoopLatchICmp(); |
| if (!LatchCheckOpt) |
| return false; |
| LatchCheck = *LatchCheckOpt; |
| |
| DEBUG(dbgs() << "Latch check:\n"); |
| DEBUG(LatchCheck.dump()); |
| |
| if (!isLoopProfitableToPredicate()) { |
| DEBUG(dbgs()<< "Loop not profitable to predicate!\n"); |
| return false; |
| } |
| // Collect all the guards into a vector and process later, so as not |
| // to invalidate the instruction iterator. |
| SmallVector<IntrinsicInst *, 4> Guards; |
| for (const auto BB : L->blocks()) |
| for (auto &I : *BB) |
| if (auto *II = dyn_cast<IntrinsicInst>(&I)) |
| if (II->getIntrinsicID() == Intrinsic::experimental_guard) |
| Guards.push_back(II); |
| |
| if (Guards.empty()) |
| return false; |
| |
| SCEVExpander Expander(*SE, *DL, "loop-predication"); |
| |
| bool Changed = false; |
| for (auto *Guard : Guards) |
| Changed |= widenGuardConditions(Guard, Expander); |
| |
| return Changed; |
| } |