| //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This transformation analyzes and transforms the induction variables (and |
| // computations derived from them) into forms suitable for efficient execution |
| // on the target. |
| // |
| // This pass performs a strength reduction on array references inside loops that |
| // have as one or more of their components the loop induction variable, it |
| // rewrites expressions to take advantage of scaled-index addressing modes |
| // available on the target, and it performs a variety of other optimizations |
| // related to loop induction variables. |
| // |
| // Terminology note: this code has a lot of handling for "post-increment" or |
| // "post-inc" users. This is not talking about post-increment addressing modes; |
| // it is instead talking about code like this: |
| // |
| // %i = phi [ 0, %entry ], [ %i.next, %latch ] |
| // ... |
| // %i.next = add %i, 1 |
| // %c = icmp eq %i.next, %n |
| // |
| // The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however |
| // it's useful to think about these as the same register, with some uses using |
| // the value of the register before the add and some using it after. In this |
| // example, the icmp is a post-increment user, since it uses %i.next, which is |
| // the value of the induction variable after the increment. The other common |
| // case of post-increment users is users outside the loop. |
| // |
| // TODO: More sophistication in the way Formulae are generated and filtered. |
| // |
| // TODO: Handle multiple loops at a time. |
| // |
| // TODO: Should the addressing mode BaseGV be changed to a ConstantExpr instead |
| // of a GlobalValue? |
| // |
| // TODO: When truncation is free, truncate ICmp users' operands to make it a |
| // smaller encoding (on x86 at least). |
| // |
| // TODO: When a negated register is used by an add (such as in a list of |
| // multiple base registers, or as the increment expression in an addrec), |
| // we may not actually need both reg and (-1 * reg) in registers; the |
| // negation can be implemented by using a sub instead of an add. The |
| // lack of support for taking this into consideration when making |
| // register pressure decisions is partly worked around by the "Special" |
| // use kind. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Transforms/Scalar/LoopStrengthReduce.h" |
| #include "llvm/ADT/APInt.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/DenseSet.h" |
| #include "llvm/ADT/Hashing.h" |
| #include "llvm/ADT/PointerIntPair.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SetVector.h" |
| #include "llvm/ADT/SmallBitVector.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/SmallSet.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/iterator_range.h" |
| #include "llvm/Analysis/IVUsers.h" |
| #include "llvm/Analysis/LoopAnalysisManager.h" |
| #include "llvm/Analysis/LoopInfo.h" |
| #include "llvm/Analysis/LoopPass.h" |
| #include "llvm/Analysis/ScalarEvolution.h" |
| #include "llvm/Analysis/ScalarEvolutionExpander.h" |
| #include "llvm/Analysis/ScalarEvolutionExpressions.h" |
| #include "llvm/Analysis/ScalarEvolutionNormalization.h" |
| #include "llvm/Analysis/TargetTransformInfo.h" |
| #include "llvm/Analysis/Utils/Local.h" |
| #include "llvm/Config/llvm-config.h" |
| #include "llvm/IR/BasicBlock.h" |
| #include "llvm/IR/Constant.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/DerivedTypes.h" |
| #include "llvm/IR/Dominators.h" |
| #include "llvm/IR/GlobalValue.h" |
| #include "llvm/IR/IRBuilder.h" |
| #include "llvm/IR/InstrTypes.h" |
| #include "llvm/IR/Instruction.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/IntrinsicInst.h" |
| #include "llvm/IR/Intrinsics.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/IR/OperandTraits.h" |
| #include "llvm/IR/Operator.h" |
| #include "llvm/IR/PassManager.h" |
| #include "llvm/IR/Type.h" |
| #include "llvm/IR/Use.h" |
| #include "llvm/IR/User.h" |
| #include "llvm/IR/Value.h" |
| #include "llvm/IR/ValueHandle.h" |
| #include "llvm/Pass.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Compiler.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Transforms/Scalar.h" |
| #include "llvm/Transforms/Utils.h" |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
| #include <algorithm> |
| #include <cassert> |
| #include <cstddef> |
| #include <cstdint> |
| #include <cstdlib> |
| #include <iterator> |
| #include <limits> |
| #include <map> |
| #include <utility> |
| |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "loop-reduce" |
| |
| /// MaxIVUsers is an arbitrary threshold that provides an early opportunitiy for |
| /// bail out. This threshold is far beyond the number of users that LSR can |
| /// conceivably solve, so it should not affect generated code, but catches the |
| /// worst cases before LSR burns too much compile time and stack space. |
| static const unsigned MaxIVUsers = 200; |
| |
| // Temporary flag to cleanup congruent phis after LSR phi expansion. |
| // It's currently disabled until we can determine whether it's truly useful or |
| // not. The flag should be removed after the v3.0 release. |
| // This is now needed for ivchains. |
| static cl::opt<bool> EnablePhiElim( |
| "enable-lsr-phielim", cl::Hidden, cl::init(true), |
| cl::desc("Enable LSR phi elimination")); |
| |
| // The flag adds instruction count to solutions cost comparision. |
| static cl::opt<bool> InsnsCost( |
| "lsr-insns-cost", cl::Hidden, cl::init(true), |
| cl::desc("Add instruction count to a LSR cost model")); |
| |
| // Flag to choose how to narrow complex lsr solution |
| static cl::opt<bool> LSRExpNarrow( |
| "lsr-exp-narrow", cl::Hidden, cl::init(false), |
| cl::desc("Narrow LSR complex solution using" |
| " expectation of registers number")); |
| |
| // Flag to narrow search space by filtering non-optimal formulae with |
| // the same ScaledReg and Scale. |
| static cl::opt<bool> FilterSameScaledReg( |
| "lsr-filter-same-scaled-reg", cl::Hidden, cl::init(true), |
| cl::desc("Narrow LSR search space by filtering non-optimal formulae" |
| " with the same ScaledReg and Scale")); |
| |
| #ifndef NDEBUG |
| // Stress test IV chain generation. |
| static cl::opt<bool> StressIVChain( |
| "stress-ivchain", cl::Hidden, cl::init(false), |
| cl::desc("Stress test LSR IV chains")); |
| #else |
| static bool StressIVChain = false; |
| #endif |
| |
| namespace { |
| |
| struct MemAccessTy { |
| /// Used in situations where the accessed memory type is unknown. |
| static const unsigned UnknownAddressSpace = |
| std::numeric_limits<unsigned>::max(); |
| |
| Type *MemTy = nullptr; |
| unsigned AddrSpace = UnknownAddressSpace; |
| |
| MemAccessTy() = default; |
| MemAccessTy(Type *Ty, unsigned AS) : MemTy(Ty), AddrSpace(AS) {} |
| |
| bool operator==(MemAccessTy Other) const { |
| return MemTy == Other.MemTy && AddrSpace == Other.AddrSpace; |
| } |
| |
| bool operator!=(MemAccessTy Other) const { return !(*this == Other); } |
| |
| static MemAccessTy getUnknown(LLVMContext &Ctx, |
| unsigned AS = UnknownAddressSpace) { |
| return MemAccessTy(Type::getVoidTy(Ctx), AS); |
| } |
| |
| Type *getType() { return MemTy; } |
| }; |
| |
| /// This class holds data which is used to order reuse candidates. |
| class RegSortData { |
| public: |
| /// This represents the set of LSRUse indices which reference |
| /// a particular register. |
| SmallBitVector UsedByIndices; |
| |
| void print(raw_ostream &OS) const; |
| void dump() const; |
| }; |
| |
| } // end anonymous namespace |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| void RegSortData::print(raw_ostream &OS) const { |
| OS << "[NumUses=" << UsedByIndices.count() << ']'; |
| } |
| |
| LLVM_DUMP_METHOD void RegSortData::dump() const { |
| print(errs()); errs() << '\n'; |
| } |
| #endif |
| |
| namespace { |
| |
| /// Map register candidates to information about how they are used. |
| class RegUseTracker { |
| using RegUsesTy = DenseMap<const SCEV *, RegSortData>; |
| |
| RegUsesTy RegUsesMap; |
| SmallVector<const SCEV *, 16> RegSequence; |
| |
| public: |
| void countRegister(const SCEV *Reg, size_t LUIdx); |
| void dropRegister(const SCEV *Reg, size_t LUIdx); |
| void swapAndDropUse(size_t LUIdx, size_t LastLUIdx); |
| |
| bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const; |
| |
| const SmallBitVector &getUsedByIndices(const SCEV *Reg) const; |
| |
| void clear(); |
| |
| using iterator = SmallVectorImpl<const SCEV *>::iterator; |
| using const_iterator = SmallVectorImpl<const SCEV *>::const_iterator; |
| |
| iterator begin() { return RegSequence.begin(); } |
| iterator end() { return RegSequence.end(); } |
| const_iterator begin() const { return RegSequence.begin(); } |
| const_iterator end() const { return RegSequence.end(); } |
| }; |
| |
| } // end anonymous namespace |
| |
| void |
| RegUseTracker::countRegister(const SCEV *Reg, size_t LUIdx) { |
| std::pair<RegUsesTy::iterator, bool> Pair = |
| RegUsesMap.insert(std::make_pair(Reg, RegSortData())); |
| RegSortData &RSD = Pair.first->second; |
| if (Pair.second) |
| RegSequence.push_back(Reg); |
| RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1)); |
| RSD.UsedByIndices.set(LUIdx); |
| } |
| |
| void |
| RegUseTracker::dropRegister(const SCEV *Reg, size_t LUIdx) { |
| RegUsesTy::iterator It = RegUsesMap.find(Reg); |
| assert(It != RegUsesMap.end()); |
| RegSortData &RSD = It->second; |
| assert(RSD.UsedByIndices.size() > LUIdx); |
| RSD.UsedByIndices.reset(LUIdx); |
| } |
| |
| void |
| RegUseTracker::swapAndDropUse(size_t LUIdx, size_t LastLUIdx) { |
| assert(LUIdx <= LastLUIdx); |
| |
| // Update RegUses. The data structure is not optimized for this purpose; |
| // we must iterate through it and update each of the bit vectors. |
| for (auto &Pair : RegUsesMap) { |
| SmallBitVector &UsedByIndices = Pair.second.UsedByIndices; |
| if (LUIdx < UsedByIndices.size()) |
| UsedByIndices[LUIdx] = |
| LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : false; |
| UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx)); |
| } |
| } |
| |
| bool |
| RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const { |
| RegUsesTy::const_iterator I = RegUsesMap.find(Reg); |
| if (I == RegUsesMap.end()) |
| return false; |
| const SmallBitVector &UsedByIndices = I->second.UsedByIndices; |
| int i = UsedByIndices.find_first(); |
| if (i == -1) return false; |
| if ((size_t)i != LUIdx) return true; |
| return UsedByIndices.find_next(i) != -1; |
| } |
| |
| const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const { |
| RegUsesTy::const_iterator I = RegUsesMap.find(Reg); |
| assert(I != RegUsesMap.end() && "Unknown register!"); |
| return I->second.UsedByIndices; |
| } |
| |
| void RegUseTracker::clear() { |
| RegUsesMap.clear(); |
| RegSequence.clear(); |
| } |
| |
| namespace { |
| |
| /// This class holds information that describes a formula for computing |
| /// satisfying a use. It may include broken-out immediates and scaled registers. |
| struct Formula { |
| /// Global base address used for complex addressing. |
| GlobalValue *BaseGV = nullptr; |
| |
| /// Base offset for complex addressing. |
| int64_t BaseOffset = 0; |
| |
| /// Whether any complex addressing has a base register. |
| bool HasBaseReg = false; |
| |
| /// The scale of any complex addressing. |
| int64_t Scale = 0; |
| |
| /// The list of "base" registers for this use. When this is non-empty. The |
| /// canonical representation of a formula is |
| /// 1. BaseRegs.size > 1 implies ScaledReg != NULL and |
| /// 2. ScaledReg != NULL implies Scale != 1 || !BaseRegs.empty(). |
| /// 3. The reg containing recurrent expr related with currect loop in the |
| /// formula should be put in the ScaledReg. |
| /// #1 enforces that the scaled register is always used when at least two |
| /// registers are needed by the formula: e.g., reg1 + reg2 is reg1 + 1 * reg2. |
| /// #2 enforces that 1 * reg is reg. |
| /// #3 ensures invariant regs with respect to current loop can be combined |
| /// together in LSR codegen. |
| /// This invariant can be temporarly broken while building a formula. |
| /// However, every formula inserted into the LSRInstance must be in canonical |
| /// form. |
| SmallVector<const SCEV *, 4> BaseRegs; |
| |
| /// The 'scaled' register for this use. This should be non-null when Scale is |
| /// not zero. |
| const SCEV *ScaledReg = nullptr; |
| |
| /// An additional constant offset which added near the use. This requires a |
| /// temporary register, but the offset itself can live in an add immediate |
| /// field rather than a register. |
| int64_t UnfoldedOffset = 0; |
| |
| Formula() = default; |
| |
| void initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE); |
| |
| bool isCanonical(const Loop &L) const; |
| |
| void canonicalize(const Loop &L); |
| |
| bool unscale(); |
| |
| bool hasZeroEnd() const; |
| |
| size_t getNumRegs() const; |
| Type *getType() const; |
| |
| void deleteBaseReg(const SCEV *&S); |
| |
| bool referencesReg(const SCEV *S) const; |
| bool hasRegsUsedByUsesOtherThan(size_t LUIdx, |
| const RegUseTracker &RegUses) const; |
| |
| void print(raw_ostream &OS) const; |
| void dump() const; |
| }; |
| |
| } // end anonymous namespace |
| |
| /// Recursion helper for initialMatch. |
| static void DoInitialMatch(const SCEV *S, Loop *L, |
| SmallVectorImpl<const SCEV *> &Good, |
| SmallVectorImpl<const SCEV *> &Bad, |
| ScalarEvolution &SE) { |
| // Collect expressions which properly dominate the loop header. |
| if (SE.properlyDominates(S, L->getHeader())) { |
| Good.push_back(S); |
| return; |
| } |
| |
| // Look at add operands. |
| if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { |
| for (const SCEV *S : Add->operands()) |
| DoInitialMatch(S, L, Good, Bad, SE); |
| return; |
| } |
| |
| // Look at addrec operands. |
| if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) |
| if (!AR->getStart()->isZero() && AR->isAffine()) { |
| DoInitialMatch(AR->getStart(), L, Good, Bad, SE); |
| DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0), |
| AR->getStepRecurrence(SE), |
| // FIXME: AR->getNoWrapFlags() |
| AR->getLoop(), SCEV::FlagAnyWrap), |
| L, Good, Bad, SE); |
| return; |
| } |
| |
| // Handle a multiplication by -1 (negation) if it didn't fold. |
| if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) |
| if (Mul->getOperand(0)->isAllOnesValue()) { |
| SmallVector<const SCEV *, 4> Ops(Mul->op_begin()+1, Mul->op_end()); |
| const SCEV *NewMul = SE.getMulExpr(Ops); |
| |
| SmallVector<const SCEV *, 4> MyGood; |
| SmallVector<const SCEV *, 4> MyBad; |
| DoInitialMatch(NewMul, L, MyGood, MyBad, SE); |
| const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue( |
| SE.getEffectiveSCEVType(NewMul->getType()))); |
| for (const SCEV *S : MyGood) |
| Good.push_back(SE.getMulExpr(NegOne, S)); |
| for (const SCEV *S : MyBad) |
| Bad.push_back(SE.getMulExpr(NegOne, S)); |
| return; |
| } |
| |
| // Ok, we can't do anything interesting. Just stuff the whole thing into a |
| // register and hope for the best. |
| Bad.push_back(S); |
| } |
| |
| /// Incorporate loop-variant parts of S into this Formula, attempting to keep |
| /// all loop-invariant and loop-computable values in a single base register. |
| void Formula::initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) { |
| SmallVector<const SCEV *, 4> Good; |
| SmallVector<const SCEV *, 4> Bad; |
| DoInitialMatch(S, L, Good, Bad, SE); |
| if (!Good.empty()) { |
| const SCEV *Sum = SE.getAddExpr(Good); |
| if (!Sum->isZero()) |
| BaseRegs.push_back(Sum); |
| HasBaseReg = true; |
| } |
| if (!Bad.empty()) { |
| const SCEV *Sum = SE.getAddExpr(Bad); |
| if (!Sum->isZero()) |
| BaseRegs.push_back(Sum); |
| HasBaseReg = true; |
| } |
| canonicalize(*L); |
| } |
| |
| /// \brief Check whether or not this formula satisfies the canonical |
| /// representation. |
| /// \see Formula::BaseRegs. |
| bool Formula::isCanonical(const Loop &L) const { |
| if (!ScaledReg) |
| return BaseRegs.size() <= 1; |
| |
| if (Scale != 1) |
| return true; |
| |
| if (Scale == 1 && BaseRegs.empty()) |
| return false; |
| |
| const SCEVAddRecExpr *SAR = dyn_cast<const SCEVAddRecExpr>(ScaledReg); |
| if (SAR && SAR->getLoop() == &L) |
| return true; |
| |
| // If ScaledReg is not a recurrent expr, or it is but its loop is not current |
| // loop, meanwhile BaseRegs contains a recurrent expr reg related with current |
| // loop, we want to swap the reg in BaseRegs with ScaledReg. |
| auto I = |
| find_if(make_range(BaseRegs.begin(), BaseRegs.end()), [&](const SCEV *S) { |
| return isa<const SCEVAddRecExpr>(S) && |
| (cast<SCEVAddRecExpr>(S)->getLoop() == &L); |
| }); |
| return I == BaseRegs.end(); |
| } |
| |
| /// \brief Helper method to morph a formula into its canonical representation. |
| /// \see Formula::BaseRegs. |
| /// Every formula having more than one base register, must use the ScaledReg |
| /// field. Otherwise, we would have to do special cases everywhere in LSR |
| /// to treat reg1 + reg2 + ... the same way as reg1 + 1*reg2 + ... |
| /// On the other hand, 1*reg should be canonicalized into reg. |
| void Formula::canonicalize(const Loop &L) { |
| if (isCanonical(L)) |
| return; |
| // So far we did not need this case. This is easy to implement but it is |
| // useless to maintain dead code. Beside it could hurt compile time. |
| assert(!BaseRegs.empty() && "1*reg => reg, should not be needed."); |
| |
| // Keep the invariant sum in BaseRegs and one of the variant sum in ScaledReg. |
| if (!ScaledReg) { |
| ScaledReg = BaseRegs.back(); |
| BaseRegs.pop_back(); |
| Scale = 1; |
| } |
| |
| // If ScaledReg is an invariant with respect to L, find the reg from |
| // BaseRegs containing the recurrent expr related with Loop L. Swap the |
| // reg with ScaledReg. |
| const SCEVAddRecExpr *SAR = dyn_cast<const SCEVAddRecExpr>(ScaledReg); |
| if (!SAR || SAR->getLoop() != &L) { |
| auto I = find_if(make_range(BaseRegs.begin(), BaseRegs.end()), |
| [&](const SCEV *S) { |
| return isa<const SCEVAddRecExpr>(S) && |
| (cast<SCEVAddRecExpr>(S)->getLoop() == &L); |
| }); |
| if (I != BaseRegs.end()) |
| std::swap(ScaledReg, *I); |
| } |
| } |
| |
| /// \brief Get rid of the scale in the formula. |
| /// In other words, this method morphes reg1 + 1*reg2 into reg1 + reg2. |
| /// \return true if it was possible to get rid of the scale, false otherwise. |
| /// \note After this operation the formula may not be in the canonical form. |
| bool Formula::unscale() { |
| if (Scale != 1) |
| return false; |
| Scale = 0; |
| BaseRegs.push_back(ScaledReg); |
| ScaledReg = nullptr; |
| return true; |
| } |
| |
| bool Formula::hasZeroEnd() const { |
| if (UnfoldedOffset || BaseOffset) |
| return false; |
| if (BaseRegs.size() != 1 || ScaledReg) |
| return false; |
| return true; |
| } |
| |
| /// Return the total number of register operands used by this formula. This does |
| /// not include register uses implied by non-constant addrec strides. |
| size_t Formula::getNumRegs() const { |
| return !!ScaledReg + BaseRegs.size(); |
| } |
| |
| /// Return the type of this formula, if it has one, or null otherwise. This type |
| /// is meaningless except for the bit size. |
| Type *Formula::getType() const { |
| return !BaseRegs.empty() ? BaseRegs.front()->getType() : |
| ScaledReg ? ScaledReg->getType() : |
| BaseGV ? BaseGV->getType() : |
| nullptr; |
| } |
| |
| /// Delete the given base reg from the BaseRegs list. |
| void Formula::deleteBaseReg(const SCEV *&S) { |
| if (&S != &BaseRegs.back()) |
| std::swap(S, BaseRegs.back()); |
| BaseRegs.pop_back(); |
| } |
| |
| /// Test if this formula references the given register. |
| bool Formula::referencesReg(const SCEV *S) const { |
| return S == ScaledReg || is_contained(BaseRegs, S); |
| } |
| |
| /// Test whether this formula uses registers which are used by uses other than |
| /// the use with the given index. |
| bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx, |
| const RegUseTracker &RegUses) const { |
| if (ScaledReg) |
| if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx)) |
| return true; |
| for (const SCEV *BaseReg : BaseRegs) |
| if (RegUses.isRegUsedByUsesOtherThan(BaseReg, LUIdx)) |
| return true; |
| return false; |
| } |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| void Formula::print(raw_ostream &OS) const { |
| bool First = true; |
| if (BaseGV) { |
| if (!First) OS << " + "; else First = false; |
| BaseGV->printAsOperand(OS, /*PrintType=*/false); |
| } |
| if (BaseOffset != 0) { |
| if (!First) OS << " + "; else First = false; |
| OS << BaseOffset; |
| } |
| for (const SCEV *BaseReg : BaseRegs) { |
| if (!First) OS << " + "; else First = false; |
| OS << "reg(" << *BaseReg << ')'; |
| } |
| if (HasBaseReg && BaseRegs.empty()) { |
| if (!First) OS << " + "; else First = false; |
| OS << "**error: HasBaseReg**"; |
| } else if (!HasBaseReg && !BaseRegs.empty()) { |
| if (!First) OS << " + "; else First = false; |
| OS << "**error: !HasBaseReg**"; |
| } |
| if (Scale != 0) { |
| if (!First) OS << " + "; else First = false; |
| OS << Scale << "*reg("; |
| if (ScaledReg) |
| OS << *ScaledReg; |
| else |
| OS << "<unknown>"; |
| OS << ')'; |
| } |
| if (UnfoldedOffset != 0) { |
| if (!First) OS << " + "; |
| OS << "imm(" << UnfoldedOffset << ')'; |
| } |
| } |
| |
| LLVM_DUMP_METHOD void Formula::dump() const { |
| print(errs()); errs() << '\n'; |
| } |
| #endif |
| |
| /// Return true if the given addrec can be sign-extended without changing its |
| /// value. |
| static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) { |
| Type *WideTy = |
| IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1); |
| return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy)); |
| } |
| |
| /// Return true if the given add can be sign-extended without changing its |
| /// value. |
| static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) { |
| Type *WideTy = |
| IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1); |
| return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy)); |
| } |
| |
| /// Return true if the given mul can be sign-extended without changing its |
| /// value. |
| static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) { |
| Type *WideTy = |
| IntegerType::get(SE.getContext(), |
| SE.getTypeSizeInBits(M->getType()) * M->getNumOperands()); |
| return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy)); |
| } |
| |
| /// Return an expression for LHS /s RHS, if it can be determined and if the |
| /// remainder is known to be zero, or null otherwise. If IgnoreSignificantBits |
| /// is true, expressions like (X * Y) /s Y are simplified to Y, ignoring that |
| /// the multiplication may overflow, which is useful when the result will be |
| /// used in a context where the most significant bits are ignored. |
| static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS, |
| ScalarEvolution &SE, |
| bool IgnoreSignificantBits = false) { |
| // Handle the trivial case, which works for any SCEV type. |
| if (LHS == RHS) |
| return SE.getConstant(LHS->getType(), 1); |
| |
| // Handle a few RHS special cases. |
| const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS); |
| if (RC) { |
| const APInt &RA = RC->getAPInt(); |
| // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do |
| // some folding. |
| if (RA.isAllOnesValue()) |
| return SE.getMulExpr(LHS, RC); |
| // Handle x /s 1 as x. |
| if (RA == 1) |
| return LHS; |
| } |
| |
| // Check for a division of a constant by a constant. |
| if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) { |
| if (!RC) |
| return nullptr; |
| const APInt &LA = C->getAPInt(); |
| const APInt &RA = RC->getAPInt(); |
| if (LA.srem(RA) != 0) |
| return nullptr; |
| return SE.getConstant(LA.sdiv(RA)); |
| } |
| |
| // Distribute the sdiv over addrec operands, if the addrec doesn't overflow. |
| if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) { |
| if ((IgnoreSignificantBits || isAddRecSExtable(AR, SE)) && AR->isAffine()) { |
| const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE, |
| IgnoreSignificantBits); |
| if (!Step) return nullptr; |
| const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE, |
| IgnoreSignificantBits); |
| if (!Start) return nullptr; |
| // FlagNW is independent of the start value, step direction, and is |
| // preserved with smaller magnitude steps. |
| // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) |
| return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap); |
| } |
| return nullptr; |
| } |
| |
| // Distribute the sdiv over add operands, if the add doesn't overflow. |
| if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) { |
| if (IgnoreSignificantBits || isAddSExtable(Add, SE)) { |
| SmallVector<const SCEV *, 8> Ops; |
| for (const SCEV *S : Add->operands()) { |
| const SCEV *Op = getExactSDiv(S, RHS, SE, IgnoreSignificantBits); |
| if (!Op) return nullptr; |
| Ops.push_back(Op); |
| } |
| return SE.getAddExpr(Ops); |
| } |
| return nullptr; |
| } |
| |
| // Check for a multiply operand that we can pull RHS out of. |
| if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) { |
| if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) { |
| SmallVector<const SCEV *, 4> Ops; |
| bool Found = false; |
| for (const SCEV *S : Mul->operands()) { |
| if (!Found) |
| if (const SCEV *Q = getExactSDiv(S, RHS, SE, |
| IgnoreSignificantBits)) { |
| S = Q; |
| Found = true; |
| } |
| Ops.push_back(S); |
| } |
| return Found ? SE.getMulExpr(Ops) : nullptr; |
| } |
| return nullptr; |
| } |
| |
| // Otherwise we don't know. |
| return nullptr; |
| } |
| |
| /// If S involves the addition of a constant integer value, return that integer |
| /// value, and mutate S to point to a new SCEV with that value excluded. |
| static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) { |
| if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { |
| if (C->getAPInt().getMinSignedBits() <= 64) { |
| S = SE.getConstant(C->getType(), 0); |
| return C->getValue()->getSExtValue(); |
| } |
| } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { |
| SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end()); |
| int64_t Result = ExtractImmediate(NewOps.front(), SE); |
| if (Result != 0) |
| S = SE.getAddExpr(NewOps); |
| return Result; |
| } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { |
| SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end()); |
| int64_t Result = ExtractImmediate(NewOps.front(), SE); |
| if (Result != 0) |
| S = SE.getAddRecExpr(NewOps, AR->getLoop(), |
| // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) |
| SCEV::FlagAnyWrap); |
| return Result; |
| } |
| return 0; |
| } |
| |
| /// If S involves the addition of a GlobalValue address, return that symbol, and |
| /// mutate S to point to a new SCEV with that value excluded. |
| static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) { |
| if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { |
| if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) { |
| S = SE.getConstant(GV->getType(), 0); |
| return GV; |
| } |
| } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { |
| SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end()); |
| GlobalValue *Result = ExtractSymbol(NewOps.back(), SE); |
| if (Result) |
| S = SE.getAddExpr(NewOps); |
| return Result; |
| } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { |
| SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end()); |
| GlobalValue *Result = ExtractSymbol(NewOps.front(), SE); |
| if (Result) |
| S = SE.getAddRecExpr(NewOps, AR->getLoop(), |
| // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) |
| SCEV::FlagAnyWrap); |
| return Result; |
| } |
| return nullptr; |
| } |
| |
| /// Returns true if the specified instruction is using the specified value as an |
| /// address. |
| static bool isAddressUse(const TargetTransformInfo &TTI, |
| Instruction *Inst, Value *OperandVal) { |
| bool isAddress = isa<LoadInst>(Inst); |
| if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { |
| if (SI->getPointerOperand() == OperandVal) |
| isAddress = true; |
| } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { |
| // Addressing modes can also be folded into prefetches and a variety |
| // of intrinsics. |
| switch (II->getIntrinsicID()) { |
| case Intrinsic::memset: |
| case Intrinsic::prefetch: |
| if (II->getArgOperand(0) == OperandVal) |
| isAddress = true; |
| break; |
| case Intrinsic::memmove: |
| case Intrinsic::memcpy: |
| if (II->getArgOperand(0) == OperandVal || |
| II->getArgOperand(1) == OperandVal) |
| isAddress = true; |
| break; |
| default: { |
| MemIntrinsicInfo IntrInfo; |
| if (TTI.getTgtMemIntrinsic(II, IntrInfo)) { |
| if (IntrInfo.PtrVal == OperandVal) |
| isAddress = true; |
| } |
| } |
| } |
| } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) { |
| if (RMW->getPointerOperand() == OperandVal) |
| isAddress = true; |
| } else if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) { |
| if (CmpX->getPointerOperand() == OperandVal) |
| isAddress = true; |
| } |
| return isAddress; |
| } |
| |
| /// Return the type of the memory being accessed. |
| static MemAccessTy getAccessType(const TargetTransformInfo &TTI, |
| Instruction *Inst) { |
| MemAccessTy AccessTy(Inst->getType(), MemAccessTy::UnknownAddressSpace); |
| if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) { |
| AccessTy.MemTy = SI->getOperand(0)->getType(); |
| AccessTy.AddrSpace = SI->getPointerAddressSpace(); |
| } else if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) { |
| AccessTy.AddrSpace = LI->getPointerAddressSpace(); |
| } else if (const AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) { |
| AccessTy.AddrSpace = RMW->getPointerAddressSpace(); |
| } else if (const AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) { |
| AccessTy.AddrSpace = CmpX->getPointerAddressSpace(); |
| } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { |
| switch (II->getIntrinsicID()) { |
| case Intrinsic::prefetch: |
| AccessTy.AddrSpace = II->getArgOperand(0)->getType()->getPointerAddressSpace(); |
| break; |
| default: { |
| MemIntrinsicInfo IntrInfo; |
| if (TTI.getTgtMemIntrinsic(II, IntrInfo) && IntrInfo.PtrVal) { |
| AccessTy.AddrSpace |
| = IntrInfo.PtrVal->getType()->getPointerAddressSpace(); |
| } |
| |
| break; |
| } |
| } |
| } |
| |
| // All pointers have the same requirements, so canonicalize them to an |
| // arbitrary pointer type to minimize variation. |
| if (PointerType *PTy = dyn_cast<PointerType>(AccessTy.MemTy)) |
| AccessTy.MemTy = PointerType::get(IntegerType::get(PTy->getContext(), 1), |
| PTy->getAddressSpace()); |
| |
| return AccessTy; |
| } |
| |
| /// Return true if this AddRec is already a phi in its loop. |
| static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) { |
| for (PHINode &PN : AR->getLoop()->getHeader()->phis()) { |
| if (SE.isSCEVable(PN.getType()) && |
| (SE.getEffectiveSCEVType(PN.getType()) == |
| SE.getEffectiveSCEVType(AR->getType())) && |
| SE.getSCEV(&PN) == AR) |
| return true; |
| } |
| return false; |
| } |
| |
| /// Check if expanding this expression is likely to incur significant cost. This |
| /// is tricky because SCEV doesn't track which expressions are actually computed |
| /// by the current IR. |
| /// |
| /// We currently allow expansion of IV increments that involve adds, |
| /// multiplication by constants, and AddRecs from existing phis. |
| /// |
| /// TODO: Allow UDivExpr if we can find an existing IV increment that is an |
| /// obvious multiple of the UDivExpr. |
| static bool isHighCostExpansion(const SCEV *S, |
| SmallPtrSetImpl<const SCEV*> &Processed, |
| ScalarEvolution &SE) { |
| // Zero/One operand expressions |
| switch (S->getSCEVType()) { |
| case scUnknown: |
| case scConstant: |
| return false; |
| case scTruncate: |
| return isHighCostExpansion(cast<SCEVTruncateExpr>(S)->getOperand(), |
| Processed, SE); |
| case scZeroExtend: |
| return isHighCostExpansion(cast<SCEVZeroExtendExpr>(S)->getOperand(), |
| Processed, SE); |
| case scSignExtend: |
| return isHighCostExpansion(cast<SCEVSignExtendExpr>(S)->getOperand(), |
| Processed, SE); |
| } |
| |
| if (!Processed.insert(S).second) |
| return false; |
| |
| if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { |
| for (const SCEV *S : Add->operands()) { |
| if (isHighCostExpansion(S, Processed, SE)) |
| return true; |
| } |
| return false; |
| } |
| |
| if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { |
| if (Mul->getNumOperands() == 2) { |
| // Multiplication by a constant is ok |
| if (isa<SCEVConstant>(Mul->getOperand(0))) |
| return isHighCostExpansion(Mul->getOperand(1), Processed, SE); |
| |
| // If we have the value of one operand, check if an existing |
| // multiplication already generates this expression. |
| if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Mul->getOperand(1))) { |
| Value *UVal = U->getValue(); |
| for (User *UR : UVal->users()) { |
| // If U is a constant, it may be used by a ConstantExpr. |
| Instruction *UI = dyn_cast<Instruction>(UR); |
| if (UI && UI->getOpcode() == Instruction::Mul && |
| SE.isSCEVable(UI->getType())) { |
| return SE.getSCEV(UI) == Mul; |
| } |
| } |
| } |
| } |
| } |
| |
| if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { |
| if (isExistingPhi(AR, SE)) |
| return false; |
| } |
| |
| // Fow now, consider any other type of expression (div/mul/min/max) high cost. |
| return true; |
| } |
| |
| /// If any of the instructions in the specified set are trivially dead, delete |
| /// them and see if this makes any of their operands subsequently dead. |
| static bool |
| DeleteTriviallyDeadInstructions(SmallVectorImpl<WeakTrackingVH> &DeadInsts) { |
| bool Changed = false; |
| |
| while (!DeadInsts.empty()) { |
| Value *V = DeadInsts.pop_back_val(); |
| Instruction *I = dyn_cast_or_null<Instruction>(V); |
| |
| if (!I || !isInstructionTriviallyDead(I)) |
| continue; |
| |
| for (Use &O : I->operands()) |
| if (Instruction *U = dyn_cast<Instruction>(O)) { |
| O = nullptr; |
| if (U->use_empty()) |
| DeadInsts.emplace_back(U); |
| } |
| |
| I->eraseFromParent(); |
| Changed = true; |
| } |
| |
| return Changed; |
| } |
| |
| namespace { |
| |
| class LSRUse; |
| |
| } // end anonymous namespace |
| |
| /// \brief Check if the addressing mode defined by \p F is completely |
| /// folded in \p LU at isel time. |
| /// This includes address-mode folding and special icmp tricks. |
| /// This function returns true if \p LU can accommodate what \p F |
| /// defines and up to 1 base + 1 scaled + offset. |
| /// In other words, if \p F has several base registers, this function may |
| /// still return true. Therefore, users still need to account for |
| /// additional base registers and/or unfolded offsets to derive an |
| /// accurate cost model. |
| static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, |
| const LSRUse &LU, const Formula &F); |
| |
| // Get the cost of the scaling factor used in F for LU. |
| static unsigned getScalingFactorCost(const TargetTransformInfo &TTI, |
| const LSRUse &LU, const Formula &F, |
| const Loop &L); |
| |
| namespace { |
| |
| /// This class is used to measure and compare candidate formulae. |
| class Cost { |
| TargetTransformInfo::LSRCost C; |
| |
| public: |
| Cost() { |
| C.Insns = 0; |
| C.NumRegs = 0; |
| C.AddRecCost = 0; |
| C.NumIVMuls = 0; |
| C.NumBaseAdds = 0; |
| C.ImmCost = 0; |
| C.SetupCost = 0; |
| C.ScaleCost = 0; |
| } |
| |
| bool isLess(Cost &Other, const TargetTransformInfo &TTI); |
| |
| void Lose(); |
| |
| #ifndef NDEBUG |
| // Once any of the metrics loses, they must all remain losers. |
| bool isValid() { |
| return ((C.Insns | C.NumRegs | C.AddRecCost | C.NumIVMuls | C.NumBaseAdds |
| | C.ImmCost | C.SetupCost | C.ScaleCost) != ~0u) |
| || ((C.Insns & C.NumRegs & C.AddRecCost & C.NumIVMuls & C.NumBaseAdds |
| & C.ImmCost & C.SetupCost & C.ScaleCost) == ~0u); |
| } |
| #endif |
| |
| bool isLoser() { |
| assert(isValid() && "invalid cost"); |
| return C.NumRegs == ~0u; |
| } |
| |
| void RateFormula(const TargetTransformInfo &TTI, |
| const Formula &F, |
| SmallPtrSetImpl<const SCEV *> &Regs, |
| const DenseSet<const SCEV *> &VisitedRegs, |
| const Loop *L, |
| ScalarEvolution &SE, DominatorTree &DT, |
| const LSRUse &LU, |
| SmallPtrSetImpl<const SCEV *> *LoserRegs = nullptr); |
| |
| void print(raw_ostream &OS) const; |
| void dump() const; |
| |
| private: |
| void RateRegister(const SCEV *Reg, |
| SmallPtrSetImpl<const SCEV *> &Regs, |
| const Loop *L, |
| ScalarEvolution &SE, DominatorTree &DT, |
| const TargetTransformInfo &TTI); |
| void RatePrimaryRegister(const SCEV *Reg, |
| SmallPtrSetImpl<const SCEV *> &Regs, |
| const Loop *L, |
| ScalarEvolution &SE, DominatorTree &DT, |
| SmallPtrSetImpl<const SCEV *> *LoserRegs, |
| const TargetTransformInfo &TTI); |
| }; |
| |
| /// An operand value in an instruction which is to be replaced with some |
| /// equivalent, possibly strength-reduced, replacement. |
| struct LSRFixup { |
| /// The instruction which will be updated. |
| Instruction *UserInst = nullptr; |
| |
| /// The operand of the instruction which will be replaced. The operand may be |
| /// used more than once; every instance will be replaced. |
| Value *OperandValToReplace = nullptr; |
| |
| /// If this user is to use the post-incremented value of an induction |
| /// variable, this set is non-empty and holds the loops associated with the |
| /// induction variable. |
| PostIncLoopSet PostIncLoops; |
| |
| /// A constant offset to be added to the LSRUse expression. This allows |
| /// multiple fixups to share the same LSRUse with different offsets, for |
| /// example in an unrolled loop. |
| int64_t Offset = 0; |
| |
| LSRFixup() = default; |
| |
| bool isUseFullyOutsideLoop(const Loop *L) const; |
| |
| void print(raw_ostream &OS) const; |
| void dump() const; |
| }; |
| |
| /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of sorted |
| /// SmallVectors of const SCEV*. |
| struct UniquifierDenseMapInfo { |
| static SmallVector<const SCEV *, 4> getEmptyKey() { |
| SmallVector<const SCEV *, 4> V; |
| V.push_back(reinterpret_cast<const SCEV *>(-1)); |
| return V; |
| } |
| |
| static SmallVector<const SCEV *, 4> getTombstoneKey() { |
| SmallVector<const SCEV *, 4> V; |
| V.push_back(reinterpret_cast<const SCEV *>(-2)); |
| return V; |
| } |
| |
| static unsigned getHashValue(const SmallVector<const SCEV *, 4> &V) { |
| return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); |
| } |
| |
| static bool isEqual(const SmallVector<const SCEV *, 4> &LHS, |
| const SmallVector<const SCEV *, 4> &RHS) { |
| return LHS == RHS; |
| } |
| }; |
| |
| /// This class holds the state that LSR keeps for each use in IVUsers, as well |
| /// as uses invented by LSR itself. It includes information about what kinds of |
| /// things can be folded into the user, information about the user itself, and |
| /// information about how the use may be satisfied. TODO: Represent multiple |
| /// users of the same expression in common? |
| class LSRUse { |
| DenseSet<SmallVector<const SCEV *, 4>, UniquifierDenseMapInfo> Uniquifier; |
| |
| public: |
| /// An enum for a kind of use, indicating what types of scaled and immediate |
| /// operands it might support. |
| enum KindType { |
| Basic, ///< A normal use, with no folding. |
| Special, ///< A special case of basic, allowing -1 scales. |
| Address, ///< An address use; folding according to TargetLowering |
| ICmpZero ///< An equality icmp with both operands folded into one. |
| // TODO: Add a generic icmp too? |
| }; |
| |
| using SCEVUseKindPair = PointerIntPair<const SCEV *, 2, KindType>; |
| |
| KindType Kind; |
| MemAccessTy AccessTy; |
| |
| /// The list of operands which are to be replaced. |
| SmallVector<LSRFixup, 8> Fixups; |
| |
| /// Keep track of the min and max offsets of the fixups. |
| int64_t MinOffset = std::numeric_limits<int64_t>::max(); |
| int64_t MaxOffset = std::numeric_limits<int64_t>::min(); |
| |
| /// This records whether all of the fixups using this LSRUse are outside of |
| /// the loop, in which case some special-case heuristics may be used. |
| bool AllFixupsOutsideLoop = true; |
| |
| /// RigidFormula is set to true to guarantee that this use will be associated |
| /// with a single formula--the one that initially matched. Some SCEV |
| /// expressions cannot be expanded. This allows LSR to consider the registers |
| /// used by those expressions without the need to expand them later after |
| /// changing the formula. |
| bool RigidFormula = false; |
| |
| /// This records the widest use type for any fixup using this |
| /// LSRUse. FindUseWithSimilarFormula can't consider uses with different max |
| /// fixup widths to be equivalent, because the narrower one may be relying on |
| /// the implicit truncation to truncate away bogus bits. |
| Type *WidestFixupType = nullptr; |
| |
| /// A list of ways to build a value that can satisfy this user. After the |
| /// list is populated, one of these is selected heuristically and used to |
| /// formulate a replacement for OperandValToReplace in UserInst. |
| SmallVector<Formula, 12> Formulae; |
| |
| /// The set of register candidates used by all formulae in this LSRUse. |
| SmallPtrSet<const SCEV *, 4> Regs; |
| |
| LSRUse(KindType K, MemAccessTy AT) : Kind(K), AccessTy(AT) {} |
| |
| LSRFixup &getNewFixup() { |
| Fixups.push_back(LSRFixup()); |
| return Fixups.back(); |
| } |
| |
| void pushFixup(LSRFixup &f) { |
| Fixups.push_back(f); |
| if (f.Offset > MaxOffset) |
| MaxOffset = f.Offset; |
| if (f.Offset < MinOffset) |
| MinOffset = f.Offset; |
| } |
| |
| bool HasFormulaWithSameRegs(const Formula &F) const; |
| float getNotSelectedProbability(const SCEV *Reg) const; |
| bool InsertFormula(const Formula &F, const Loop &L); |
| void DeleteFormula(Formula &F); |
| void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses); |
| |
| void print(raw_ostream &OS) const; |
| void dump() const; |
| }; |
| |
| } // end anonymous namespace |
| |
| static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, |
| LSRUse::KindType Kind, MemAccessTy AccessTy, |
| GlobalValue *BaseGV, int64_t BaseOffset, |
| bool HasBaseReg, int64_t Scale, |
| Instruction *Fixup = nullptr); |
| |
| /// Tally up interesting quantities from the given register. |
| void Cost::RateRegister(const SCEV *Reg, |
| SmallPtrSetImpl<const SCEV *> &Regs, |
| const Loop *L, |
| ScalarEvolution &SE, DominatorTree &DT, |
| const TargetTransformInfo &TTI) { |
| if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) { |
| // If this is an addrec for another loop, it should be an invariant |
| // with respect to L since L is the innermost loop (at least |
| // for now LSR only handles innermost loops). |
| if (AR->getLoop() != L) { |
| // If the AddRec exists, consider it's register free and leave it alone. |
| if (isExistingPhi(AR, SE)) |
| return; |
| |
| // It is bad to allow LSR for current loop to add induction variables |
| // for its sibling loops. |
| if (!AR->getLoop()->contains(L)) { |
| Lose(); |
| return; |
| } |
| |
| // Otherwise, it will be an invariant with respect to Loop L. |
| ++C.NumRegs; |
| return; |
| } |
| |
| unsigned LoopCost = 1; |
| if (TTI.shouldFavorPostInc()) { |
| const SCEV *LoopStep = AR->getStepRecurrence(SE); |
| if (isa<SCEVConstant>(LoopStep)) { |
| // Check if a post-indexed load/store can be used. |
| if (TTI.isIndexedLoadLegal(TTI.MIM_PostInc, AR->getType()) || |
| TTI.isIndexedStoreLegal(TTI.MIM_PostInc, AR->getType())) { |
| const SCEV *LoopStart = AR->getStart(); |
| if (!isa<SCEVConstant>(LoopStart) && |
| SE.isLoopInvariant(LoopStart, L)) |
| LoopCost = 0; |
| } |
| } |
| } |
| C.AddRecCost += LoopCost; |
| |
| // Add the step value register, if it needs one. |
| // TODO: The non-affine case isn't precisely modeled here. |
| if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) { |
| if (!Regs.count(AR->getOperand(1))) { |
| RateRegister(AR->getOperand(1), Regs, L, SE, DT, TTI); |
| if (isLoser()) |
| return; |
| } |
| } |
| } |
| ++C.NumRegs; |
| |
| // Rough heuristic; favor registers which don't require extra setup |
| // instructions in the preheader. |
| if (!isa<SCEVUnknown>(Reg) && |
| !isa<SCEVConstant>(Reg) && |
| !(isa<SCEVAddRecExpr>(Reg) && |
| (isa<SCEVUnknown>(cast<SCEVAddRecExpr>(Reg)->getStart()) || |
| isa<SCEVConstant>(cast<SCEVAddRecExpr>(Reg)->getStart())))) |
| ++C.SetupCost; |
| |
| C.NumIVMuls += isa<SCEVMulExpr>(Reg) && |
| SE.hasComputableLoopEvolution(Reg, L); |
| } |
| |
| /// Record this register in the set. If we haven't seen it before, rate |
| /// it. Optional LoserRegs provides a way to declare any formula that refers to |
| /// one of those regs an instant loser. |
| void Cost::RatePrimaryRegister(const SCEV *Reg, |
| SmallPtrSetImpl<const SCEV *> &Regs, |
| const Loop *L, |
| ScalarEvolution &SE, DominatorTree &DT, |
| SmallPtrSetImpl<const SCEV *> *LoserRegs, |
| const TargetTransformInfo &TTI) { |
| if (LoserRegs && LoserRegs->count(Reg)) { |
| Lose(); |
| return; |
| } |
| if (Regs.insert(Reg).second) { |
| RateRegister(Reg, Regs, L, SE, DT, TTI); |
| if (LoserRegs && isLoser()) |
| LoserRegs->insert(Reg); |
| } |
| } |
| |
| void Cost::RateFormula(const TargetTransformInfo &TTI, |
| const Formula &F, |
| SmallPtrSetImpl<const SCEV *> &Regs, |
| const DenseSet<const SCEV *> &VisitedRegs, |
| const Loop *L, |
| ScalarEvolution &SE, DominatorTree &DT, |
| const LSRUse &LU, |
| SmallPtrSetImpl<const SCEV *> *LoserRegs) { |
| assert(F.isCanonical(*L) && "Cost is accurate only for canonical formula"); |
| // Tally up the registers. |
| unsigned PrevAddRecCost = C.AddRecCost; |
| unsigned PrevNumRegs = C.NumRegs; |
| unsigned PrevNumBaseAdds = C.NumBaseAdds; |
| if (const SCEV *ScaledReg = F.ScaledReg) { |
| if (VisitedRegs.count(ScaledReg)) { |
| Lose(); |
| return; |
| } |
| RatePrimaryRegister(ScaledReg, Regs, L, SE, DT, LoserRegs, TTI); |
| if (isLoser()) |
| return; |
| } |
| for (const SCEV *BaseReg : F.BaseRegs) { |
| if (VisitedRegs.count(BaseReg)) { |
| Lose(); |
| return; |
| } |
| RatePrimaryRegister(BaseReg, Regs, L, SE, DT, LoserRegs, TTI); |
| if (isLoser()) |
| return; |
| } |
| |
| // Determine how many (unfolded) adds we'll need inside the loop. |
| size_t NumBaseParts = F.getNumRegs(); |
| if (NumBaseParts > 1) |
| // Do not count the base and a possible second register if the target |
| // allows to fold 2 registers. |
| C.NumBaseAdds += |
| NumBaseParts - (1 + (F.Scale && isAMCompletelyFolded(TTI, LU, F))); |
| C.NumBaseAdds += (F.UnfoldedOffset != 0); |
| |
| // Accumulate non-free scaling amounts. |
| C.ScaleCost += getScalingFactorCost(TTI, LU, F, *L); |
| |
| // Tally up the non-zero immediates. |
| for (const LSRFixup &Fixup : LU.Fixups) { |
| int64_t O = Fixup.Offset; |
| int64_t Offset = (uint64_t)O + F.BaseOffset; |
| if (F.BaseGV) |
| C.ImmCost += 64; // Handle symbolic values conservatively. |
| // TODO: This should probably be the pointer size. |
| else if (Offset != 0) |
| C.ImmCost += APInt(64, Offset, true).getMinSignedBits(); |
| |
| // Check with target if this offset with this instruction is |
| // specifically not supported. |
| if (LU.Kind == LSRUse::Address && Offset != 0 && |
| !isAMCompletelyFolded(TTI, LSRUse::Address, LU.AccessTy, F.BaseGV, |
| Offset, F.HasBaseReg, F.Scale, Fixup.UserInst)) |
| C.NumBaseAdds++; |
| } |
| |
| // If we don't count instruction cost exit here. |
| if (!InsnsCost) { |
| assert(isValid() && "invalid cost"); |
| return; |
| } |
| |
| // Treat every new register that exceeds TTI.getNumberOfRegisters() - 1 as |
| // additional instruction (at least fill). |
| unsigned TTIRegNum = TTI.getNumberOfRegisters(false) - 1; |
| if (C.NumRegs > TTIRegNum) { |
| // Cost already exceeded TTIRegNum, then only newly added register can add |
| // new instructions. |
| if (PrevNumRegs > TTIRegNum) |
| C.Insns += (C.NumRegs - PrevNumRegs); |
| else |
| C.Insns += (C.NumRegs - TTIRegNum); |
| } |
| |
| // If ICmpZero formula ends with not 0, it could not be replaced by |
| // just add or sub. We'll need to compare final result of AddRec. |
| // That means we'll need an additional instruction. But if the target can |
| // macro-fuse a compare with a branch, don't count this extra instruction. |
| // For -10 + {0, +, 1}: |
| // i = i + 1; |
| // cmp i, 10 |
| // |
| // For {-10, +, 1}: |
| // i = i + 1; |
| if (LU.Kind == LSRUse::ICmpZero && !F.hasZeroEnd() && !TTI.canMacroFuseCmp()) |
| C.Insns++; |
| // Each new AddRec adds 1 instruction to calculation. |
| C.Insns += (C.AddRecCost - PrevAddRecCost); |
| |
| // BaseAdds adds instructions for unfolded registers. |
| if (LU.Kind != LSRUse::ICmpZero) |
| C.Insns += C.NumBaseAdds - PrevNumBaseAdds; |
| assert(isValid() && "invalid cost"); |
| } |
| |
| /// Set this cost to a losing value. |
| void Cost::Lose() { |
| C.Insns = std::numeric_limits<unsigned>::max(); |
| C.NumRegs = std::numeric_limits<unsigned>::max(); |
| C.AddRecCost = std::numeric_limits<unsigned>::max(); |
| C.NumIVMuls = std::numeric_limits<unsigned>::max(); |
| C.NumBaseAdds = std::numeric_limits<unsigned>::max(); |
| C.ImmCost = std::numeric_limits<unsigned>::max(); |
| C.SetupCost = std::numeric_limits<unsigned>::max(); |
| C.ScaleCost = std::numeric_limits<unsigned>::max(); |
| } |
| |
| /// Choose the lower cost. |
| bool Cost::isLess(Cost &Other, const TargetTransformInfo &TTI) { |
| if (InsnsCost.getNumOccurrences() > 0 && InsnsCost && |
| C.Insns != Other.C.Insns) |
| return C.Insns < Other.C.Insns; |
| return TTI.isLSRCostLess(C, Other.C); |
| } |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| void Cost::print(raw_ostream &OS) const { |
| if (InsnsCost) |
| OS << C.Insns << " instruction" << (C.Insns == 1 ? " " : "s "); |
| OS << C.NumRegs << " reg" << (C.NumRegs == 1 ? "" : "s"); |
| if (C.AddRecCost != 0) |
| OS << ", with addrec cost " << C.AddRecCost; |
| if (C.NumIVMuls != 0) |
| OS << ", plus " << C.NumIVMuls << " IV mul" |
| << (C.NumIVMuls == 1 ? "" : "s"); |
| if (C.NumBaseAdds != 0) |
| OS << ", plus " << C.NumBaseAdds << " base add" |
| << (C.NumBaseAdds == 1 ? "" : "s"); |
| if (C.ScaleCost != 0) |
| OS << ", plus " << C.ScaleCost << " scale cost"; |
| if (C.ImmCost != 0) |
| OS << ", plus " << C.ImmCost << " imm cost"; |
| if (C.SetupCost != 0) |
| OS << ", plus " << C.SetupCost << " setup cost"; |
| } |
| |
| LLVM_DUMP_METHOD void Cost::dump() const { |
| print(errs()); errs() << '\n'; |
| } |
| #endif |
| |
| /// Test whether this fixup always uses its value outside of the given loop. |
| bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const { |
| // PHI nodes use their value in their incoming blocks. |
| if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) { |
| for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) |
| if (PN->getIncomingValue(i) == OperandValToReplace && |
| L->contains(PN->getIncomingBlock(i))) |
| return false; |
| return true; |
| } |
| |
| return !L->contains(UserInst); |
| } |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| void LSRFixup::print(raw_ostream &OS) const { |
| OS << "UserInst="; |
| // Store is common and interesting enough to be worth special-casing. |
| if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) { |
| OS << "store "; |
| Store->getOperand(0)->printAsOperand(OS, /*PrintType=*/false); |
| } else if (UserInst->getType()->isVoidTy()) |
| OS << UserInst->getOpcodeName(); |
| else |
| UserInst->printAsOperand(OS, /*PrintType=*/false); |
| |
| OS << ", OperandValToReplace="; |
| OperandValToReplace->printAsOperand(OS, /*PrintType=*/false); |
| |
| for (const Loop *PIL : PostIncLoops) { |
| OS << ", PostIncLoop="; |
| PIL->getHeader()->printAsOperand(OS, /*PrintType=*/false); |
| } |
| |
| if (Offset != 0) |
| OS << ", Offset=" << Offset; |
| } |
| |
| LLVM_DUMP_METHOD void LSRFixup::dump() const { |
| print(errs()); errs() << '\n'; |
| } |
| #endif |
| |
| /// Test whether this use as a formula which has the same registers as the given |
| /// formula. |
| bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const { |
| SmallVector<const SCEV *, 4> Key = F.BaseRegs; |
| if (F.ScaledReg) Key.push_back(F.ScaledReg); |
| // Unstable sort by host order ok, because this is only used for uniquifying. |
| llvm::sort(Key.begin(), Key.end()); |
| return Uniquifier.count(Key); |
| } |
| |
| /// The function returns a probability of selecting formula without Reg. |
| float LSRUse::getNotSelectedProbability(const SCEV *Reg) const { |
| unsigned FNum = 0; |
| for (const Formula &F : Formulae) |
| if (F.referencesReg(Reg)) |
| FNum++; |
| return ((float)(Formulae.size() - FNum)) / Formulae.size(); |
| } |
| |
| /// If the given formula has not yet been inserted, add it to the list, and |
| /// return true. Return false otherwise. The formula must be in canonical form. |
| bool LSRUse::InsertFormula(const Formula &F, const Loop &L) { |
| assert(F.isCanonical(L) && "Invalid canonical representation"); |
| |
| if (!Formulae.empty() && RigidFormula) |
| return false; |
| |
| SmallVector<const SCEV *, 4> Key = F.BaseRegs; |
| if (F.ScaledReg) Key.push_back(F.ScaledReg); |
| // Unstable sort by host order ok, because this is only used for uniquifying. |
| llvm::sort(Key.begin(), Key.end()); |
| |
| if (!Uniquifier.insert(Key).second) |
| return false; |
| |
| // Using a register to hold the value of 0 is not profitable. |
| assert((!F.ScaledReg || !F.ScaledReg->isZero()) && |
| "Zero allocated in a scaled register!"); |
| #ifndef NDEBUG |
| for (const SCEV *BaseReg : F.BaseRegs) |
| assert(!BaseReg->isZero() && "Zero allocated in a base register!"); |
| #endif |
| |
| // Add the formula to the list. |
| Formulae.push_back(F); |
| |
| // Record registers now being used by this use. |
| Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); |
| if (F.ScaledReg) |
| Regs.insert(F.ScaledReg); |
| |
| return true; |
| } |
| |
| /// Remove the given formula from this use's list. |
| void LSRUse::DeleteFormula(Formula &F) { |
| if (&F != &Formulae.back()) |
| std::swap(F, Formulae.back()); |
| Formulae.pop_back(); |
| } |
| |
| /// Recompute the Regs field, and update RegUses. |
| void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) { |
| // Now that we've filtered out some formulae, recompute the Regs set. |
| SmallPtrSet<const SCEV *, 4> OldRegs = std::move(Regs); |
| Regs.clear(); |
| for (const Formula &F : Formulae) { |
| if (F.ScaledReg) Regs.insert(F.ScaledReg); |
| Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); |
| } |
| |
| // Update the RegTracker. |
| for (const SCEV *S : OldRegs) |
| if (!Regs.count(S)) |
| RegUses.dropRegister(S, LUIdx); |
| } |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| void LSRUse::print(raw_ostream &OS) const { |
| OS << "LSR Use: Kind="; |
| switch (Kind) { |
| case Basic: OS << "Basic"; break; |
| case Special: OS << "Special"; break; |
| case ICmpZero: OS << "ICmpZero"; break; |
| case Address: |
| OS << "Address of "; |
| if (AccessTy.MemTy->isPointerTy()) |
| OS << "pointer"; // the full pointer type could be really verbose |
| else { |
| OS << *AccessTy.MemTy; |
| } |
| |
| OS << " in addrspace(" << AccessTy.AddrSpace << ')'; |
| } |
| |
| OS << ", Offsets={"; |
| bool NeedComma = false; |
| for (const LSRFixup &Fixup : Fixups) { |
| if (NeedComma) OS << ','; |
| OS << Fixup.Offset; |
| NeedComma = true; |
| } |
| OS << '}'; |
| |
| if (AllFixupsOutsideLoop) |
| OS << ", all-fixups-outside-loop"; |
| |
| if (WidestFixupType) |
| OS << ", widest fixup type: " << *WidestFixupType; |
| } |
| |
| LLVM_DUMP_METHOD void LSRUse::dump() const { |
| print(errs()); errs() << '\n'; |
| } |
| #endif |
| |
| static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, |
| LSRUse::KindType Kind, MemAccessTy AccessTy, |
| GlobalValue *BaseGV, int64_t BaseOffset, |
| bool HasBaseReg, int64_t Scale, |
| Instruction *Fixup/*= nullptr*/) { |
| switch (Kind) { |
| case LSRUse::Address: |
| return TTI.isLegalAddressingMode(AccessTy.MemTy, BaseGV, BaseOffset, |
| HasBaseReg, Scale, AccessTy.AddrSpace, Fixup); |
| |
| case LSRUse::ICmpZero: |
| // There's not even a target hook for querying whether it would be legal to |
| // fold a GV into an ICmp. |
| if (BaseGV) |
| return false; |
| |
| // ICmp only has two operands; don't allow more than two non-trivial parts. |
| if (Scale != 0 && HasBaseReg && BaseOffset != 0) |
| return false; |
| |
| // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by |
| // putting the scaled register in the other operand of the icmp. |
| if (Scale != 0 && Scale != -1) |
| return false; |
| |
| // If we have low-level target information, ask the target if it can fold an |
| // integer immediate on an icmp. |
| if (BaseOffset != 0) { |
| // We have one of: |
| // ICmpZero BaseReg + BaseOffset => ICmp BaseReg, -BaseOffset |
| // ICmpZero -1*ScaleReg + BaseOffset => ICmp ScaleReg, BaseOffset |
| // Offs is the ICmp immediate. |
| if (Scale == 0) |
| // The cast does the right thing with |
| // std::numeric_limits<int64_t>::min(). |
| BaseOffset = -(uint64_t)BaseOffset; |
| return TTI.isLegalICmpImmediate(BaseOffset); |
| } |
| |
| // ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg |
| return true; |
| |
| case LSRUse::Basic: |
| // Only handle single-register values. |
| return !BaseGV && Scale == 0 && BaseOffset == 0; |
| |
| case LSRUse::Special: |
| // Special case Basic to handle -1 scales. |
| return !BaseGV && (Scale == 0 || Scale == -1) && BaseOffset == 0; |
| } |
| |
| llvm_unreachable("Invalid LSRUse Kind!"); |
| } |
| |
| static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, |
| int64_t MinOffset, int64_t MaxOffset, |
| LSRUse::KindType Kind, MemAccessTy AccessTy, |
| GlobalValue *BaseGV, int64_t BaseOffset, |
| bool HasBaseReg, int64_t Scale) { |
| // Check for overflow. |
| if (((int64_t)((uint64_t)BaseOffset + MinOffset) > BaseOffset) != |
| (MinOffset > 0)) |
| return false; |
| MinOffset = (uint64_t)BaseOffset + MinOffset; |
| if (((int64_t)((uint64_t)BaseOffset + MaxOffset) > BaseOffset) != |
| (MaxOffset > 0)) |
| return false; |
| MaxOffset = (uint64_t)BaseOffset + MaxOffset; |
| |
| return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MinOffset, |
| HasBaseReg, Scale) && |
| isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MaxOffset, |
| HasBaseReg, Scale); |
| } |
| |
| static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, |
| int64_t MinOffset, int64_t MaxOffset, |
| LSRUse::KindType Kind, MemAccessTy AccessTy, |
| const Formula &F, const Loop &L) { |
| // For the purpose of isAMCompletelyFolded either having a canonical formula |
| // or a scale not equal to zero is correct. |
| // Problems may arise from non canonical formulae having a scale == 0. |
| // Strictly speaking it would best to just rely on canonical formulae. |
| // However, when we generate the scaled formulae, we first check that the |
| // scaling factor is profitable before computing the actual ScaledReg for |
| // compile time sake. |
| assert((F.isCanonical(L) || F.Scale != 0)); |
| return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, |
| F.BaseGV, F.BaseOffset, F.HasBaseReg, F.Scale); |
| } |
| |
| /// Test whether we know how to expand the current formula. |
| static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset, |
| int64_t MaxOffset, LSRUse::KindType Kind, |
| MemAccessTy AccessTy, GlobalValue *BaseGV, |
| int64_t BaseOffset, bool HasBaseReg, int64_t Scale) { |
| // We know how to expand completely foldable formulae. |
| return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV, |
| BaseOffset, HasBaseReg, Scale) || |
| // Or formulae that use a base register produced by a sum of base |
| // registers. |
| (Scale == 1 && |
| isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, |
| BaseGV, BaseOffset, true, 0)); |
| } |
| |
| static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset, |
| int64_t MaxOffset, LSRUse::KindType Kind, |
| MemAccessTy AccessTy, const Formula &F) { |
| return isLegalUse(TTI, MinOffset, MaxOffset, Kind, AccessTy, F.BaseGV, |
| F.BaseOffset, F.HasBaseReg, F.Scale); |
| } |
| |
| static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, |
| const LSRUse &LU, const Formula &F) { |
| // Target may want to look at the user instructions. |
| if (LU.Kind == LSRUse::Address && TTI.LSRWithInstrQueries()) { |
| for (const LSRFixup &Fixup : LU.Fixups) |
| if (!isAMCompletelyFolded(TTI, LSRUse::Address, LU.AccessTy, F.BaseGV, |
| (F.BaseOffset + Fixup.Offset), F.HasBaseReg, |
| F.Scale, Fixup.UserInst)) |
| return false; |
| return true; |
| } |
| |
| return isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, |
| LU.AccessTy, F.BaseGV, F.BaseOffset, F.HasBaseReg, |
| F.Scale); |
| } |
| |
| static unsigned getScalingFactorCost(const TargetTransformInfo &TTI, |
| const LSRUse &LU, const Formula &F, |
| const Loop &L) { |
| if (!F.Scale) |
| return 0; |
| |
| // If the use is not completely folded in that instruction, we will have to |
| // pay an extra cost only for scale != 1. |
| if (!isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, |
| LU.AccessTy, F, L)) |
| return F.Scale != 1; |
| |
| switch (LU.Kind) { |
| case LSRUse::Address: { |
| // Check the scaling factor cost with both the min and max offsets. |
| int ScaleCostMinOffset = TTI.getScalingFactorCost( |
| LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MinOffset, F.HasBaseReg, |
| F.Scale, LU.AccessTy.AddrSpace); |
| int ScaleCostMaxOffset = TTI.getScalingFactorCost( |
| LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MaxOffset, F.HasBaseReg, |
| F.Scale, LU.AccessTy.AddrSpace); |
| |
| assert(ScaleCostMinOffset >= 0 && ScaleCostMaxOffset >= 0 && |
| "Legal addressing mode has an illegal cost!"); |
| return std::max(ScaleCostMinOffset, ScaleCostMaxOffset); |
| } |
| case LSRUse::ICmpZero: |
| case LSRUse::Basic: |
| case LSRUse::Special: |
| // The use is completely folded, i.e., everything is folded into the |
| // instruction. |
| return 0; |
| } |
| |
| llvm_unreachable("Invalid LSRUse Kind!"); |
| } |
| |
| static bool isAlwaysFoldable(const TargetTransformInfo &TTI, |
| LSRUse::KindType Kind, MemAccessTy AccessTy, |
| GlobalValue *BaseGV, int64_t BaseOffset, |
| bool HasBaseReg) { |
| // Fast-path: zero is always foldable. |
| if (BaseOffset == 0 && !BaseGV) return true; |
| |
| // Conservatively, create an address with an immediate and a |
| // base and a scale. |
| int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1; |
| |
| // Canonicalize a scale of 1 to a base register if the formula doesn't |
| // already have a base register. |
| if (!HasBaseReg && Scale == 1) { |
| Scale = 0; |
| HasBaseReg = true; |
| } |
| |
| return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, BaseOffset, |
| HasBaseReg, Scale); |
| } |
| |
| static bool isAlwaysFoldable(const TargetTransformInfo &TTI, |
| ScalarEvolution &SE, int64_t MinOffset, |
| int64_t MaxOffset, LSRUse::KindType Kind, |
| MemAccessTy AccessTy, const SCEV *S, |
| bool HasBaseReg) { |
| // Fast-path: zero is always foldable. |
| if (S->isZero()) return true; |
| |
| // Conservatively, create an address with an immediate and a |
| // base and a scale. |
| int64_t BaseOffset = ExtractImmediate(S, SE); |
| GlobalValue *BaseGV = ExtractSymbol(S, SE); |
| |
| // If there's anything else involved, it's not foldable. |
| if (!S->isZero()) return false; |
| |
| // Fast-path: zero is always foldable. |
| if (BaseOffset == 0 && !BaseGV) return true; |
| |
| // Conservatively, create an address with an immediate and a |
| // base and a scale. |
| int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1; |
| |
| return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV, |
| BaseOffset, HasBaseReg, Scale); |
| } |
| |
| namespace { |
| |
| /// An individual increment in a Chain of IV increments. Relate an IV user to |
| /// an expression that computes the IV it uses from the IV used by the previous |
| /// link in the Chain. |
| /// |
| /// For the head of a chain, IncExpr holds the absolute SCEV expression for the |
| /// original IVOperand. The head of the chain's IVOperand is only valid during |
| /// chain collection, before LSR replaces IV users. During chain generation, |
| /// IncExpr can be used to find the new IVOperand that computes the same |
| /// expression. |
| struct IVInc { |
| Instruction *UserInst; |
| Value* IVOperand; |
| const SCEV *IncExpr; |
| |
| IVInc(Instruction *U, Value *O, const SCEV *E) |
| : UserInst(U), IVOperand(O), IncExpr(E) {} |
| }; |
| |
| // The list of IV increments in program order. We typically add the head of a |
| // chain without finding subsequent links. |
| struct IVChain { |
| SmallVector<IVInc, 1> Incs; |
| const SCEV *ExprBase = nullptr; |
| |
| IVChain() = default; |
| IVChain(const IVInc &Head, const SCEV *Base) |
| : Incs(1, Head), ExprBase(Base) {} |
| |
| using const_iterator = SmallVectorImpl<IVInc>::const_iterator; |
| |
| // Return the first increment in the chain. |
| const_iterator begin() const { |
| assert(!Incs.empty()); |
| return std::next(Incs.begin()); |
| } |
| const_iterator end() const { |
| return Incs.end(); |
| } |
| |
| // Returns true if this chain contains any increments. |
| bool hasIncs() const { return Incs.size() >= 2; } |
| |
| // Add an IVInc to the end of this chain. |
| void add(const IVInc &X) { Incs.push_back(X); } |
| |
| // Returns the last UserInst in the chain. |
| Instruction *tailUserInst() const { return Incs.back().UserInst; } |
| |
| // Returns true if IncExpr can be profitably added to this chain. |
| bool isProfitableIncrement(const SCEV *OperExpr, |
| const SCEV *IncExpr, |
| ScalarEvolution&); |
| }; |
| |
| /// Helper for CollectChains to track multiple IV increment uses. Distinguish |
| /// between FarUsers that definitely cross IV increments and NearUsers that may |
| /// be used between IV increments. |
| struct ChainUsers { |
| SmallPtrSet<Instruction*, 4> FarUsers; |
| SmallPtrSet<Instruction*, 4> NearUsers; |
| }; |
| |
| /// This class holds state for the main loop strength reduction logic. |
| class LSRInstance { |
| IVUsers &IU; |
| ScalarEvolution &SE; |
| DominatorTree &DT; |
| LoopInfo &LI; |
| const TargetTransformInfo &TTI; |
| Loop *const L; |
| bool Changed = false; |
| |
| /// This is the insert position that the current loop's induction variable |
| /// increment should be placed. In simple loops, this is the latch block's |
| /// terminator. But in more complicated cases, this is a position which will |
| /// dominate all the in-loop post-increment users. |
| Instruction *IVIncInsertPos = nullptr; |
| |
| /// Interesting factors between use strides. |
| /// |
| /// We explicitly use a SetVector which contains a SmallSet, instead of the |
| /// default, a SmallDenseSet, because we need to use the full range of |
| /// int64_ts, and there's currently no good way of doing that with |
| /// SmallDenseSet. |
| SetVector<int64_t, SmallVector<int64_t, 8>, SmallSet<int64_t, 8>> Factors; |
| |
| /// Interesting use types, to facilitate truncation reuse. |
| SmallSetVector<Type *, 4> Types; |
| |
| /// The list of interesting uses. |
| SmallVector<LSRUse, 16> Uses; |
| |
| /// Track which uses use which register candidates. |
| RegUseTracker RegUses; |
| |
| // Limit the number of chains to avoid quadratic behavior. We don't expect to |
| // have more than a few IV increment chains in a loop. Missing a Chain falls |
| // back to normal LSR behavior for those uses. |
| static const unsigned MaxChains = 8; |
| |
| /// IV users can form a chain of IV increments. |
| SmallVector<IVChain, MaxChains> IVChainVec; |
| |
| /// IV users that belong to profitable IVChains. |
| SmallPtrSet<Use*, MaxChains> IVIncSet; |
| |
| void OptimizeShadowIV(); |
| bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse); |
| ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse); |
| void OptimizeLoopTermCond(); |
| |
| void ChainInstruction(Instruction *UserInst, Instruction *IVOper, |
| SmallVectorImpl<ChainUsers> &ChainUsersVec); |
| void FinalizeChain(IVChain &Chain); |
| void CollectChains(); |
| void GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter, |
| SmallVectorImpl<WeakTrackingVH> &DeadInsts); |
| |
| void CollectInterestingTypesAndFactors(); |
| void CollectFixupsAndInitialFormulae(); |
| |
| // Support for sharing of LSRUses between LSRFixups. |
| using UseMapTy = DenseMap<LSRUse::SCEVUseKindPair, size_t>; |
| UseMapTy UseMap; |
| |
| bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg, |
| LSRUse::KindType Kind, MemAccessTy AccessTy); |
| |
| std::pair<size_t, int64_t> getUse(const SCEV *&Expr, LSRUse::KindType Kind, |
| MemAccessTy AccessTy); |
| |
| void DeleteUse(LSRUse &LU, size_t LUIdx); |
| |
| LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU); |
| |
| void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); |
| void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); |
| void CountRegisters(const Formula &F, size_t LUIdx); |
| bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F); |
| |
| void CollectLoopInvariantFixupsAndFormulae(); |
| |
| void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base, |
| unsigned Depth = 0); |
| |
| void GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx, |
| const Formula &Base, unsigned Depth, |
| size_t Idx, bool IsScaledReg = false); |
| void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base); |
| void GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx, |
| const Formula &Base, size_t Idx, |
| bool IsScaledReg = false); |
| void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); |
| void GenerateConstantOffsetsImpl(LSRUse &LU, unsigned LUIdx, |
| const Formula &Base, |
| const SmallVectorImpl<int64_t> &Worklist, |
| size_t Idx, bool IsScaledReg = false); |
| void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); |
| void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base); |
| void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base); |
| void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base); |
| void GenerateCrossUseConstantOffsets(); |
| void GenerateAllReuseFormulae(); |
| |
| void FilterOutUndesirableDedicatedRegisters(); |
| |
| size_t EstimateSearchSpaceComplexity() const; |
| void NarrowSearchSpaceByDetectingSupersets(); |
| void NarrowSearchSpaceByCollapsingUnrolledCode(); |
| void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(); |
| void NarrowSearchSpaceByFilterFormulaWithSameScaledReg(); |
| void NarrowSearchSpaceByDeletingCostlyFormulas(); |
| void NarrowSearchSpaceByPickingWinnerRegs(); |
| void NarrowSearchSpaceUsingHeuristics(); |
| |
| void SolveRecurse(SmallVectorImpl<const Formula *> &Solution, |
| Cost &SolutionCost, |
| SmallVectorImpl<const Formula *> &Workspace, |
| const Cost &CurCost, |
| const SmallPtrSet<const SCEV *, 16> &CurRegs, |
| DenseSet<const SCEV *> &VisitedRegs) const; |
| void Solve(SmallVectorImpl<const Formula *> &Solution) const; |
| |
| BasicBlock::iterator |
| HoistInsertPosition(BasicBlock::iterator IP, |
| const SmallVectorImpl<Instruction *> &Inputs) const; |
| BasicBlock::iterator |
| AdjustInsertPositionForExpand(BasicBlock::iterator IP, |
| const LSRFixup &LF, |
| const LSRUse &LU, |
| SCEVExpander &Rewriter) const; |
| |
| Value *Expand(const LSRUse &LU, const LSRFixup &LF, const Formula &F, |
| BasicBlock::iterator IP, SCEVExpander &Rewriter, |
| SmallVectorImpl<WeakTrackingVH> &DeadInsts) const; |
| void RewriteForPHI(PHINode *PN, const LSRUse &LU, const LSRFixup &LF, |
| const Formula &F, SCEVExpander &Rewriter, |
| SmallVectorImpl<WeakTrackingVH> &DeadInsts) const; |
| void Rewrite(const LSRUse &LU, const LSRFixup &LF, const Formula &F, |
| SCEVExpander &Rewriter, |
| SmallVectorImpl<WeakTrackingVH> &DeadInsts) const; |
| void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution); |
| |
| public: |
| LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, DominatorTree &DT, |
| LoopInfo &LI, const TargetTransformInfo &TTI); |
| |
| bool getChanged() const { return Changed; } |
| |
| void print_factors_and_types(raw_ostream &OS) const; |
| void print_fixups(raw_ostream &OS) const; |
| void print_uses(raw_ostream &OS) const; |
| void print(raw_ostream &OS) const; |
| void dump() const; |
| }; |
| |
| } // end anonymous namespace |
| |
| /// If IV is used in a int-to-float cast inside the loop then try to eliminate |
| /// the cast operation. |
| void LSRInstance::OptimizeShadowIV() { |
| const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); |
| if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) |
| return; |
| |
| for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); |
| UI != E; /* empty */) { |
| IVUsers::const_iterator CandidateUI = UI; |
| ++UI; |
| Instruction *ShadowUse = CandidateUI->getUser(); |
| Type *DestTy = nullptr; |
| bool IsSigned = false; |
| |
| /* If shadow use is a int->float cast then insert a second IV |
| to eliminate this cast. |
| |
| for (unsigned i = 0; i < n; ++i) |
| foo((double)i); |
| |
| is transformed into |
| |
| double d = 0.0; |
| for (unsigned i = 0; i < n; ++i, ++d) |
| foo(d); |
| */ |
| if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) { |
| IsSigned = false; |
| DestTy = UCast->getDestTy(); |
| } |
| else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) { |
| IsSigned = true; |
| DestTy = SCast->getDestTy(); |
| } |
| if (!DestTy) continue; |
| |
| // If target does not support DestTy natively then do not apply |
| // this transformation. |
| if (!TTI.isTypeLegal(DestTy)) continue; |
| |
| PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0)); |
| if (!PH) continue; |
| if (PH->getNumIncomingValues() != 2) continue; |
| |
| // If the calculation in integers overflows, the result in FP type will |
| // differ. So we only can do this transformation if we are guaranteed to not |
| // deal with overflowing values |
| const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(PH)); |
| if (!AR) continue; |
| if (IsSigned && !AR->hasNoSignedWrap()) continue; |
| if (!IsSigned && !AR->hasNoUnsignedWrap()) continue; |
| |
| Type *SrcTy = PH->getType(); |
| int Mantissa = DestTy->getFPMantissaWidth(); |
| if (Mantissa == -1) continue; |
| if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa) |
| continue; |
| |
| unsigned Entry, Latch; |
| if (PH->getIncomingBlock(0) == L->getLoopPreheader()) { |
| Entry = 0; |
| Latch = 1; |
| } else { |
| Entry = 1; |
| Latch = 0; |
| } |
| |
| ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry)); |
| if (!Init) continue; |
| Constant *NewInit = ConstantFP::get(DestTy, IsSigned ? |
| (double)Init->getSExtValue() : |
| (double)Init->getZExtValue()); |
| |
| BinaryOperator *Incr = |
| dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch)); |
| if (!Incr) continue; |
| if (Incr->getOpcode() != Instruction::Add |
| && Incr->getOpcode() != Instruction::Sub) |
| continue; |
| |
| /* Initialize new IV, double d = 0.0 in above example. */ |
| ConstantInt *C = nullptr; |
| if (Incr->getOperand(0) == PH) |
| C = dyn_cast<ConstantInt>(Incr->getOperand(1)); |
| else if (Incr->getOperand(1) == PH) |
| C = dyn_cast<ConstantInt>(Incr->getOperand(0)); |
| else |
| continue; |
| |
| if (!C) continue; |
| |
| // Ignore negative constants, as the code below doesn't handle them |
| // correctly. TODO: Remove this restriction. |
| if (!C->getValue().isStrictlyPositive()) continue; |
| |
| /* Add new PHINode. */ |
| PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH); |
| |
| /* create new increment. '++d' in above example. */ |
| Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue()); |
| BinaryOperator *NewIncr = |
| BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ? |
| Instruction::FAdd : Instruction::FSub, |
| NewPH, CFP, "IV.S.next.", Incr); |
| |
| NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry)); |
| NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch)); |
| |
| /* Remove cast operation */ |
| ShadowUse->replaceAllUsesWith(NewPH); |
| ShadowUse->eraseFromParent(); |
| Changed = true; |
| break; |
| } |
| } |
| |
| /// If Cond has an operand that is an expression of an IV, set the IV user and |
| /// stride information and return true, otherwise return false. |
| bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) { |
| for (IVStrideUse &U : IU) |
| if (U.getUser() == Cond) { |
| // NOTE: we could handle setcc instructions with multiple uses here, but |
| // InstCombine does it as well for simple uses, it's not clear that it |
| // occurs enough in real life to handle. |
| CondUse = &U; |
| return true; |
| } |
| return false; |
| } |
| |
| /// Rewrite the loop's terminating condition if it uses a max computation. |
| /// |
| /// This is a narrow solution to a specific, but acute, problem. For loops |
| /// like this: |
| /// |
| /// i = 0; |
| /// do { |
| /// p[i] = 0.0; |
| /// } while (++i < n); |
| /// |
| /// the trip count isn't just 'n', because 'n' might not be positive. And |
| /// unfortunately this can come up even for loops where the user didn't use |
| /// a C do-while loop. For example, seemingly well-behaved top-test loops |
| /// will commonly be lowered like this: |
| /// |
| /// if (n > 0) { |
| /// i = 0; |
| /// do { |
| /// p[i] = 0.0; |
| /// } while (++i < n); |
| /// } |
| /// |
| /// and then it's possible for subsequent optimization to obscure the if |
| /// test in such a way that indvars can't find it. |
| /// |
| /// When indvars can't find the if test in loops like this, it creates a |
| /// max expression, which allows it to give the loop a canonical |
| /// induction variable: |
| /// |
| /// i = 0; |
| /// max = n < 1 ? 1 : n; |
| /// do { |
| /// p[i] = 0.0; |
| /// } while (++i != max); |
| /// |
| /// Canonical induction variables are necessary because the loop passes |
| /// are designed around them. The most obvious example of this is the |
| /// LoopInfo analysis, which doesn't remember trip count values. It |
| /// expects to be able to rediscover the trip count each time it is |
| /// needed, and it does this using a simple analysis that only succeeds if |
| /// the loop has a canonical induction variable. |
| /// |
| /// However, when it comes time to generate code, the maximum operation |
| /// can be quite costly, especially if it's inside of an outer loop. |
| /// |
| /// This function solves this problem by detecting this type of loop and |
| /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting |
| /// the instructions for the maximum computation. |
| ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) { |
| // Check that the loop matches the pattern we're looking for. |
| if (Cond->getPredicate() != CmpInst::ICMP_EQ && |
| Cond->getPredicate() != CmpInst::ICMP_NE) |
| return Cond; |
| |
| SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1)); |
| if (!Sel || !Sel->hasOneUse()) return Cond; |
| |
| const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); |
| if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) |
| return Cond; |
| const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1); |
| |
| // Add one to the backedge-taken count to get the trip count. |
| const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount); |
| if (IterationCount != SE.getSCEV(Sel)) return Cond; |
| |
| // Check for a max calculation that matches the pattern. There's no check |
| // for ICMP_ULE here because the comparison would be with zero, which |
| // isn't interesting. |
| CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; |
| const SCEVNAryExpr *Max = nullptr; |
| if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) { |
| Pred = ICmpInst::ICMP_SLE; |
| Max = S; |
| } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) { |
| Pred = ICmpInst::ICMP_SLT; |
| Max = S; |
| } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) { |
| Pred = ICmpInst::ICMP_ULT; |
| Max = U; |
| } else { |
| // No match; bail. |
| return Cond; |
| } |
| |
| // To handle a max with more than two operands, this optimization would |
| // require additional checking and setup. |
| if (Max->getNumOperands() != 2) |
| return Cond; |
| |
| const SCEV *MaxLHS = Max->getOperand(0); |
| const SCEV *MaxRHS = Max->getOperand(1); |
| |
| // ScalarEvolution canonicalizes constants to the left. For < and >, look |
| // for a comparison with 1. For <= and >=, a comparison with zero. |
| if (!MaxLHS || |
| (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One))) |
| return Cond; |
| |
| // Check the relevant induction variable for conformance to |
| // the pattern. |
| const SCEV *IV = SE.getSCEV(Cond->getOperand(0)); |
| const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV); |
| if (!AR || !AR->isAffine() || |
| AR->getStart() != One || |
| AR->getStepRecurrence(SE) != One) |
| return Cond; |
| |
| assert(AR->getLoop() == L && |
| "Loop condition operand is an addrec in a different loop!"); |
| |
| // Check the right operand of the select, and remember it, as it will |
| // be used in the new comparison instruction. |
| Value *NewRHS = nullptr; |
| if (ICmpInst::isTrueWhenEqual(Pred)) { |
| // Look for n+1, and grab n. |
| if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1))) |
| if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1))) |
| if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS) |
| NewRHS = BO->getOperand(0); |
| if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2))) |
| if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1))) |
| if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS) |
| NewRHS = BO->getOperand(0); |
| if (!NewRHS) |
| return Cond; |
| } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS) |
| NewRHS = Sel->getOperand(1); |
| else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS) |
| NewRHS = Sel->getOperand(2); |
| else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS)) |
| NewRHS = SU->getValue(); |
| else |
| // Max doesn't match expected pattern. |
| return Cond; |
| |
| // Determine the new comparison opcode. It may be signed or unsigned, |
| // and the original comparison may be either equality or inequality. |
| if (Cond->getPredicate() == CmpInst::ICMP_EQ) |
| Pred = CmpInst::getInversePredicate(Pred); |
| |
| // Ok, everything looks ok to change the condition into an SLT or SGE and |
| // delete the max calculation. |
| ICmpInst *NewCond = |
| new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp"); |
| |
| // Delete the max calculation instructions. |
| Cond->replaceAllUsesWith(NewCond); |
| CondUse->setUser(NewCond); |
| Instruction *Cmp = cast<Instruction>(Sel->getOperand(0)); |
| Cond->eraseFromParent(); |
| Sel->eraseFromParent(); |
| if (Cmp->use_empty()) |
| Cmp->eraseFromParent(); |
| return NewCond; |
| } |
| |
| /// Change loop terminating condition to use the postinc iv when possible. |
| void |
| LSRInstance::OptimizeLoopTermCond() { |
| SmallPtrSet<Instruction *, 4> PostIncs; |
| |
| // We need a different set of heuristics for rotated and non-rotated loops. |
| // If a loop is rotated then the latch is also the backedge, so inserting |
| // post-inc expressions just before the latch is ideal. To reduce live ranges |
| // it also makes sense to rewrite terminating conditions to use post-inc |
| // expressions. |
| // |
| // If the loop is not rotated then the latch is not a backedge; the latch |
| // check is done in the loop head. Adding post-inc expressions before the |
| // latch will cause overlapping live-ranges of pre-inc and post-inc expressions |
| // in the loop body. In this case we do *not* want to use post-inc expressions |
| // in the latch check, and we want to insert post-inc expressions before |
| // the backedge. |
| BasicBlock *LatchBlock = L->getLoopLatch(); |
| SmallVector<BasicBlock*, 8> ExitingBlocks; |
| L->getExitingBlocks(ExitingBlocks); |
| if (llvm::all_of(ExitingBlocks, [&LatchBlock](const BasicBlock *BB) { |
| return LatchBlock != BB; |
| })) { |
| // The backedge doesn't exit the loop; treat this as a head-tested loop. |
| IVIncInsertPos = LatchBlock->getTerminator(); |
| return; |
| } |
| |
| // Otherwise treat this as a rotated loop. |
| for (BasicBlock *ExitingBlock : ExitingBlocks) { |
| // Get the terminating condition for the loop if possible. If we |
| // can, we want to change it to use a post-incremented version of its |
| // induction variable, to allow coalescing the live ranges for the IV into |
| // one register value. |
| |
| BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); |
| if (!TermBr) |
| continue; |
| // FIXME: Overly conservative, termination condition could be an 'or' etc.. |
| if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition())) |
| continue; |
| |
| // Search IVUsesByStride to find Cond's IVUse if there is one. |
| IVStrideUse *CondUse = nullptr; |
| ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition()); |
| if (!FindIVUserForCond(Cond, CondUse)) |
| continue; |
| |
| // If the trip count is computed in terms of a max (due to ScalarEvolution |
| // being unable to find a sufficient guard, for example), change the loop |
| // comparison to use SLT or ULT instead of NE. |
| // One consequence of doing this now is that it disrupts the count-down |
| // optimization. That's not always a bad thing though, because in such |
| // cases it may still be worthwhile to avoid a max. |
| Cond = OptimizeMax(Cond, CondUse); |
| |
| // If this exiting block dominates the latch block, it may also use |
| // the post-inc value if it won't be shared with other uses. |
| // Check for dominance. |
| if (!DT.dominates(ExitingBlock, LatchBlock)) |
| continue; |
| |
| // Conservatively avoid trying to use the post-inc value in non-latch |
| // exits if there may be pre-inc users in intervening blocks. |
| if (LatchBlock != ExitingBlock) |
| for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) |
| // Test if the use is reachable from the exiting block. This dominator |
| // query is a conservative approximation of reachability. |
| if (&*UI != CondUse && |
| !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) { |
| // Conservatively assume there may be reuse if the quotient of their |
| // strides could be a legal scale. |
| const SCEV *A = IU.getStride(*CondUse, L); |
| const SCEV *B = IU.getStride(*UI, L); |
| if (!A || !B) continue; |
| if (SE.getTypeSizeInBits(A->getType()) != |
| SE.getTypeSizeInBits(B->getType())) { |
| if (SE.getTypeSizeInBits(A->getType()) > |
| SE.getTypeSizeInBits(B->getType())) |
| B = SE.getSignExtendExpr(B, A->getType()); |
| else |
| A = SE.getSignExtendExpr(A, B->getType()); |
| } |
| if (const SCEVConstant *D = |
| dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) { |
| const ConstantInt *C = D->getValue(); |
| // Stride of one or negative one can have reuse with non-addresses. |
| if (C->isOne() || C->isMinusOne()) |
| goto decline_post_inc; |
| // Avoid weird situations. |
| if (C->getValue().getMinSignedBits() >= 64 || |
| C->getValue().isMinSignedValue()) |
| goto decline_post_inc; |
| // Check for possible scaled-address reuse. |
| MemAccessTy AccessTy = getAccessType(TTI, UI->getUser()); |
| int64_t Scale = C->getSExtValue(); |
| if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr, |
| /*BaseOffset=*/0, |
| /*HasBaseReg=*/false, Scale, |
| AccessTy.AddrSpace)) |
| goto decline_post_inc; |
| Scale = -Scale; |
| if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr, |
| /*BaseOffset=*/0, |
| /*HasBaseReg=*/false, Scale, |
| AccessTy.AddrSpace)) |
| goto decline_post_inc; |
| } |
| } |
| |
| DEBUG(dbgs() << " Change loop exiting icmp to use postinc iv: " |
| << *Cond << '\n'); |
| |
| // It's possible for the setcc instruction to be anywhere in the loop, and |
| // possible for it to have multiple users. If it is not immediately before |
| // the exiting block branch, move it. |
| if (&*++BasicBlock::iterator(Cond) != TermBr) { |
| if (Cond->hasOneUse()) { |
| Cond->moveBefore(TermBr); |
| } else { |
| // Clone the terminating condition and insert into the loopend. |
| ICmpInst *OldCond = Cond; |
| Cond = cast<ICmpInst>(Cond->clone()); |
| Cond->setName(L->getHeader()->getName() + ".termcond"); |
| ExitingBlock->getInstList().insert(TermBr->getIterator(), Cond); |
| |
| // Clone the IVUse, as the old use still exists! |
| CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace()); |
| TermBr->replaceUsesOfWith(OldCond, Cond); |
| } |
| } |
| |
| // If we get to here, we know that we can transform the setcc instruction to |
| // use the post-incremented version of the IV, allowing us to coalesce the |
| // live ranges for the IV correctly. |
| CondUse->transformToPostInc(L); |
| Changed = true; |
| |
| PostIncs.insert(Cond); |
| decline_post_inc:; |
| } |
| |
| // Determine an insertion point for the loop induction variable increment. It |
| // must dominate all the post-inc comparisons we just set up, and it must |
| // dominate the loop latch edge. |
| IVIncInsertPos = L->getLoopLatch()->getTerminator(); |
| for (Instruction *Inst : PostIncs) { |
| BasicBlock *BB = |
| DT.findNearestCommonDominator(IVIncInsertPos->getParent(), |
| Inst->getParent()); |
| if (BB == Inst->getParent()) |
| IVIncInsertPos = Inst; |
| else if (BB != IVIncInsertPos->getParent()) |
| IVIncInsertPos = BB->getTerminator(); |
| } |
| } |
| |
| /// Determine if the given use can accommodate a fixup at the given offset and |
| /// other details. If so, update the use and return true. |
| bool LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset, |
| bool HasBaseReg, LSRUse::KindType Kind, |
| MemAccessTy AccessTy) { |
| int64_t NewMinOffset = LU.MinOffset; |
| int64_t NewMaxOffset = LU.MaxOffset; |
| MemAccessTy NewAccessTy = AccessTy; |
| |
| // Check for a mismatched kind. It's tempting to collapse mismatched kinds to |
| // something conservative, however this can pessimize in the case that one of |
| // the uses will have all its uses outside the loop, for example. |
| if (LU.Kind != Kind) |
| return false; |
| |
| // Check for a mismatched access type, and fall back conservatively as needed. |
| // TODO: Be less conservative when the type is similar and can use the same |
| // addressing modes. |
| if (Kind == LSRUse::Address) { |
| if (AccessTy.MemTy != LU.AccessTy.MemTy) { |
| NewAccessTy = MemAccessTy::getUnknown(AccessTy.MemTy->getContext(), |
| AccessTy.AddrSpace); |
| } |
| } |
| |
| // Conservatively assume HasBaseReg is true for now. |
| if (NewOffset < LU.MinOffset) { |
| if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr, |
| LU.MaxOffset - NewOffset, HasBaseReg)) |
| return false; |
| NewMinOffset = NewOffset; |
| } else if (NewOffset > LU.MaxOffset) { |
| if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr, |
| NewOffset - LU.MinOffset, HasBaseReg)) |
| return false; |
| NewMaxOffset = NewOffset; |
| } |
| |
| // Update the use. |
| LU.MinOffset = NewMinOffset; |
| LU.MaxOffset = NewMaxOffset; |
| LU.AccessTy = NewAccessTy; |
| return true; |
| } |
| |
| /// Return an LSRUse index and an offset value for a fixup which needs the given |
| /// expression, with the given kind and optional access type. Either reuse an |
| /// existing use or create a new one, as needed. |
| std::pair<size_t, int64_t> LSRInstance::getUse(const SCEV *&Expr, |
| LSRUse::KindType Kind, |
| MemAccessTy AccessTy) { |
| const SCEV *Copy = Expr; |
| int64_t Offset = ExtractImmediate(Expr, SE); |
| |
| // Basic uses can't accept any offset, for example. |
| if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ nullptr, |
| Offset, /*HasBaseReg=*/ true)) { |
| Expr = Copy; |
| Offset = 0; |
| } |
| |
| std::pair<UseMapTy::iterator, bool> P = |
| UseMap.insert(std::make_pair(LSRUse::SCEVUseKindPair(Expr, Kind), 0)); |
| if (!P.second) { |
| // A use already existed with this base. |
| size_t LUIdx = P.first->second; |
| LSRUse &LU = Uses[LUIdx]; |
| if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy)) |
| // Reuse this use. |
| return std::make_pair(LUIdx, Offset); |
| } |
| |
| // Create a new use. |
| size_t LUIdx = Uses.size(); |
| P.first->second = LUIdx; |
| Uses.push_back(LSRUse(Kind, AccessTy)); |
| LSRUse &LU = Uses[LUIdx]; |
| |
| LU.MinOffset = Offset; |
| LU.MaxOffset = Offset; |
| return std::make_pair(LUIdx, Offset); |
| } |
| |
| /// Delete the given use from the Uses list. |
| void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) { |
| if (&LU != &Uses.back()) |
| std::swap(LU, Uses.back()); |
| Uses.pop_back(); |
| |
| // Update RegUses. |
| RegUses.swapAndDropUse(LUIdx, Uses.size()); |
| } |
| |
| /// Look for a use distinct from OrigLU which is has a formula that has the same |
| /// registers as the given formula. |
| LSRUse * |
| LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF, |
| const LSRUse &OrigLU) { |
| // Search all uses for the formula. This could be more clever. |
| for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { |
| LSRUse &LU = Uses[LUIdx]; |
| // Check whether this use is close enough to OrigLU, to see whether it's |
| // worthwhile looking through its formulae. |
| // Ignore ICmpZero uses because they may contain formulae generated by |
| // GenerateICmpZeroScales, in which case adding fixup offsets may |
| // be invalid. |
| if (&LU != &OrigLU && |
| LU.Kind != LSRUse::ICmpZero && |
| LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy && |
| LU.WidestFixupType == OrigLU.WidestFixupType && |
| LU.HasFormulaWithSameRegs(OrigF)) { |
| // Scan through this use's formulae. |
| for (const Formula &F : LU.Formulae) { |
| // Check to see if this formula has the same registers and symbols |
| // as OrigF. |
| if (F.BaseRegs == OrigF.BaseRegs && |
| F.ScaledReg == OrigF.ScaledReg && |
| F.BaseGV == OrigF.BaseGV && |
| F.Scale == OrigF.Scale && |
| F.UnfoldedOffset == OrigF.UnfoldedOffset) { |
| if (F.BaseOffset == 0) |
| return &LU; |
| // This is the formula where all the registers and symbols matched; |
| // there aren't going to be any others. Since we declined it, we |
| // can skip the rest of the formulae and proceed to the next LSRUse. |
| break; |
| } |
| } |
| } |
| } |
| |
| // Nothing looked good. |
| return nullptr; |
| } |
| |
| void LSRInstance::CollectInterestingTypesAndFactors() { |
| SmallSetVector<const SCEV *, 4> Strides; |
| |
| // Collect interesting types and strides. |
| SmallVector<const SCEV *, 4> Worklist; |
| for (const IVStrideUse &U : IU) { |
| const SCEV *Expr = IU.getExpr(U); |
| |
| // Collect interesting types. |
| Types.insert(SE.getEffectiveSCEVType(Expr->getType())); |
| |
| // Add strides for mentioned loops. |
| Worklist.push_back(Expr); |
| do { |
| const SCEV *S = Worklist.pop_back_val(); |
| if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { |
| if (AR->getLoop() == L) |
| Strides.insert(AR->getStepRecurrence(SE)); |
| Worklist.push_back(AR->getStart()); |
| } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { |
| Worklist.append(Add->op_begin(), Add->op_end()); |
| } |
| } while (!Worklist.empty()); |
| } |
| |
| // Compute interesting factors from the set of interesting strides. |
| for (SmallSetVector<const SCEV *, 4>::const_iterator |
| I = Strides.begin(), E = Strides.end(); I != E; ++I) |
| for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter = |
| std::next(I); NewStrideIter != E; ++NewStrideIter) { |
| const SCEV *OldStride = *I; |
| const SCEV *NewStride = *NewStrideIter; |
| |
| if (SE.getTypeSizeInBits(OldStride->getType()) != |
| SE.getTypeSizeInBits(NewStride->getType())) { |
| if (SE.getTypeSizeInBits(OldStride->getType()) > |
| SE.getTypeSizeInBits(NewStride->getType())) |
| NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType()); |
| else |
| OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType()); |
| } |
| if (const SCEVConstant *Factor = |
| dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride, |
| SE, true))) { |
| if (Factor->getAPInt().getMinSignedBits() <= 64) |
| Factors.insert(Factor->getAPInt().getSExtValue()); |
| } else if (const SCEVConstant *Factor = |
| dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride, |
| NewStride, |
| SE, true))) { |
| if (Factor->getAPInt().getMinSignedBits() <= 64) |
| Factors.insert(Factor->getAPInt().getSExtValue()); |
| } |
| } |
| |
| // If all uses use the same type, don't bother looking for truncation-based |
| // reuse. |
| if (Types.size() == 1) |
| Types.clear(); |
| |
| DEBUG(print_factors_and_types(dbgs())); |
| } |
| |
| /// Helper for CollectChains that finds an IV operand (computed by an AddRec in |
| /// this loop) within [OI,OE) or returns OE. If IVUsers mapped Instructions to |
| /// IVStrideUses, we could partially skip this. |
| static User::op_iterator |
| findIVOperand(User::op_iterator OI, User::op_iterator OE, |
| Loop *L, ScalarEvolution &SE) { |
| for(; OI != OE; ++OI) { |
| if (Instruction *Oper = dyn_cast<Instruction>(*OI)) { |
| if (!SE.isSCEVable(Oper->getType())) |
| continue; |
| |
| if (const SCEVAddRecExpr *AR = |
| dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Oper))) { |
| if (AR->getLoop() == L) |
| break; |
| } |
| } |
| } |
| return OI; |
| } |
| |
| /// IVChain logic must consistenctly peek base TruncInst operands, so wrap it in |
| /// a convenient helper. |
| static Value *getWideOperand(Value *Oper) { |
| if (TruncInst *Trunc = dyn_cast<TruncInst>(Oper)) |
| return Trunc->getOperand(0); |
| return Oper; |
| } |
| |
| /// Return true if we allow an IV chain to include both types. |
| static bool isCompatibleIVType(Value *LVal, Value *RVal) { |
| Type *LType = LVal->getType(); |
| Type *RType = RVal->getType(); |
| return (LType == RType) || (LType->isPointerTy() && RType->isPointerTy() && |
| // Different address spaces means (possibly) |
| // different types of the pointer implementation, |
| // e.g. i16 vs i32 so disallow that. |
| (LType->getPointerAddressSpace() == |
| RType->getPointerAddressSpace())); |
| } |
| |
| /// Return an approximation of this SCEV expression's "base", or NULL for any |
| /// constant. Returning the expression itself is conservative. Returning a |
| /// deeper subexpression is more precise and valid as long as it isn't less |
| /// complex than another subexpression. For expressions involving multiple |
| /// unscaled values, we need to return the pointer-type SCEVUnknown. This avoids |
| /// forming chains across objects, such as: PrevOper==a[i], IVOper==b[i], |
| /// IVInc==b-a. |
| /// |
| /// Since SCEVUnknown is the rightmost type, and pointers are the rightmost |
| /// SCEVUnknown, we simply return the rightmost SCEV operand. |
| static const SCEV *getExprBase(const SCEV *S) { |
| switch (S->getSCEVType()) { |
| default: // uncluding scUnknown. |
| return S; |
| case scConstant: |
| return nullptr; |
| case scTruncate: |
| return getExprBase(cast<SCEVTruncateExpr>(S)->getOperand()); |
| case scZeroExtend: |
| return getExprBase(cast<SCEVZeroExtendExpr>(S)->getOperand()); |
| case scSignExtend: |
| return getExprBase(cast<SCEVSignExtendExpr>(S)->getOperand()); |
| case scAddExpr: { |
| // Skip over scaled operands (scMulExpr) to follow add operands as long as |
| // there's nothing more complex. |
| // FIXME: not sure if we want to recognize negation. |
| const SCEVAddExpr *Add = cast<SCEVAddExpr>(S); |
| for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(Add->op_end()), |
| E(Add->op_begin()); I != E; ++I) { |
| const SCEV *SubExpr = *I; |
| if (SubExpr->getSCEVType() == scAddExpr) |
| return getExprBase(SubExpr); |
| |
| if (SubExpr->getSCEVType() != scMulExpr) |
| return SubExpr; |
| } |
| return S; // all operands are scaled, be conservative. |
| } |
| case scAddRecExpr: |
| return getExprBase(cast<SCEVAddRecExpr>(S)->getStart()); |
| } |
| } |
| |
| /// Return true if the chain increment is profitable to expand into a loop |
| /// invariant value, which may require its own register. A profitable chain |
| /// increment will be an offset relative to the same base. We allow such offsets |
| /// to potentially be used as chain increment as long as it's not obviously |
| /// expensive to expand using real instructions. |
| bool IVChain::isProfitableIncrement(const SCEV *OperExpr, |
| const SCEV *IncExpr, |
| ScalarEvolution &SE) { |
| // Aggressively form chains when -stress-ivchain. |
| if (StressIVChain) |
| return true; |
| |
| // Do not replace a constant offset from IV head with a nonconstant IV |
| // increment. |
| if (!isa<SCEVConstant>(IncExpr)) { |
| const SCEV *HeadExpr = SE.getSCEV(getWideOperand(Incs[0].IVOperand)); |
| if (isa<SCEVConstant>(SE.getMinusSCEV(OperExpr, HeadExpr))) |
| return false; |
| } |
| |
| SmallPtrSet<const SCEV*, 8> Processed; |
| return !isHighCostExpansion(IncExpr, Processed, SE); |
| } |
| |
| /// Return true if the number of registers needed for the chain is estimated to |
| /// be less than the number required for the individual IV users. First prohibit |
| /// any IV users that keep the IV live across increments (the Users set should |
| /// be empty). Next count the number and type of increments in the chain. |
| /// |
| /// Chaining IVs can lead to considerable code bloat if ISEL doesn't |
| /// effectively use postinc addressing modes. Only consider it profitable it the |
| /// increments can be computed in fewer registers when chained. |
| /// |
| /// TODO: Consider IVInc free if it's already used in another chains. |
| static bool |
| isProfitableChain(IVChain &Chain, SmallPtrSetImpl<Instruction*> &Users, |
| ScalarEvolution &SE, const TargetTransformInfo &TTI) { |
| if (StressIVChain) |
| return true; |
| |
| if (!Chain.hasIncs()) |
| return false; |
| |
| if (!Users.empty()) { |
| DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " users:\n"; |
| for (Instruction *Inst : Users) { |
| dbgs() << " " << *Inst << "\n"; |
| }); |
| return false; |
| } |
| assert(!Chain.Incs.empty() && "empty IV chains are not allowed"); |
| |
| // The chain itself may require a register, so intialize cost to 1. |
| int cost = 1; |
| |
| // A complete chain likely eliminates the need for keeping the original IV in |
| // a register. LSR does not currently know how to form a complete chain unless |
| // the header phi already exists. |
| if (isa<PHINode>(Chain.tailUserInst()) |
| && SE.getSCEV(Chain.tailUserInst()) == Chain.Incs[0].IncExpr) { |
| --cost; |
| } |
| const SCEV *LastIncExpr = nullptr; |
| unsigned NumConstIncrements = 0; |
| unsigned NumVarIncrements = 0; |
| unsigned NumReusedIncrements = 0; |
| for (const IVInc &Inc : Chain) { |
| if (Inc.IncExpr->isZero()) |
| continue; |
| |
| // Incrementing by zero or some constant is neutral. We assume constants can |
| // be folded into an addressing mode or an add's immediate operand. |
| if (isa<SCEVConstant>(Inc.IncExpr)) { |
| ++NumConstIncrements; |
| continue; |
| } |
| |
| if (Inc.IncExpr == LastIncExpr) |
| ++NumReusedIncrements; |
| else |
| ++NumVarIncrements; |
| |
| LastIncExpr = Inc.IncExpr; |
| } |
| // An IV chain with a single increment is handled by LSR's postinc |
| // uses. However, a chain with multiple increments requires keeping the IV's |
| // value live longer than it needs to be if chained. |
| if (NumConstIncrements > 1) |
| --cost; |
| |
| // Materializing increment expressions in the preheader that didn't exist in |
| // the original code may cost a register. For example, sign-extended array |
| // indices can produce ridiculous increments like this: |
| // IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64))) |
| cost += NumVarIncrements; |
| |
| // Reusing variable increments likely saves a register to hold the multiple of |
| // the stride. |
| cost -= NumReusedIncrements; |
| |
| DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " Cost: " << cost |
| << "\n"); |
| |
| return cost < 0; |
| } |
| |
| /// Add this IV user to an existing chain or make it the head of a new chain. |
| void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper, |
| SmallVectorImpl<ChainUsers> &ChainUsersVec) { |
| // When IVs are used as types of varying widths, they are generally converted |
| // to a wider type with some uses remaining narrow under a (free) trunc. |
| Value *const NextIV = getWideOperand(IVOper); |
| const SCEV *const OperExpr = SE.getSCEV(NextIV); |
| const SCEV *const OperExprBase = getExprBase(OperExpr); |
| |
| // Visit all existing chains. Check if its IVOper can be computed as a |
| // profitable loop invariant increment from the last link in the Chain. |
| unsigned ChainIdx = 0, NChains = IVChainVec.size(); |
| const SCEV *LastIncExpr = nullptr; |
| for (; ChainIdx < NChains; ++ChainIdx) { |
| IVChain &Chain = IVChainVec[ChainIdx]; |
| |
| // Prune the solution space aggressively by checking that both IV operands |
| // are expressions that operate on the same unscaled SCEVUnknown. This |
| // "base" will be canceled by the subsequent getMinusSCEV call. Checking |
| // first avoids creating extra SCEV expressions. |
| if (!StressIVChain && Chain.ExprBase != OperExprBase) |
| continue; |
| |
| Value *PrevIV = getWideOperand(Chain.Incs.back().IVOperand); |
| if (!isCompatibleIVType(PrevIV, NextIV)) |
| continue; |
| |
| // A phi node terminates a chain. |
| if (isa<PHINode>(UserInst) && isa<PHINode>(Chain.tailUserInst())) |
| continue; |
| |
| // The increment must be loop-invariant so it can be kept in a register. |
| const SCEV *PrevExpr = SE.getSCEV(PrevIV); |
| const SCEV *IncExpr = SE.getMinusSCEV(OperExpr, PrevExpr); |
| if (!SE.isLoopInvariant(IncExpr, L)) |
| continue; |
| |
| if (Chain.isProfitableIncrement(OperExpr, IncExpr, SE)) { |
| LastIncExpr = IncExpr; |
| break; |
| } |
| } |
| // If we haven't found a chain, create a new one, unless we hit the max. Don't |
| // bother for phi nodes, because they must be last in the chain. |
| if (ChainIdx == NChains) { |
| if (isa<PHINode>(UserInst)) |
| return; |
| if (NChains >= MaxChains && !StressIVChain) { |
| DEBUG(dbgs() << "IV Chain Limit\n"); |
| return; |
| } |
| LastIncExpr = OperExpr; |
| // IVUsers may have skipped over sign/zero extensions. We don't currently |
| // attempt to form chains involving extensions unless they can be hoisted |
| // into this loop's AddRec. |
| if (!isa<SCEVAddRecExpr>(LastIncExpr)) |
| return; |
| ++NChains; |
| IVChainVec.push_back(IVChain(IVInc(UserInst, IVOper, LastIncExpr), |
| OperExprBase)); |
| ChainUsersVec.resize(NChains); |
| DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Head: (" << *UserInst |
| << ") IV=" << *LastIncExpr << "\n"); |
| } else { |
| DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Inc: (" << *UserInst |
| << ") IV+" << *LastIncExpr << "\n"); |
| // Add this IV user to the end of the chain. |
| IVChainVec[ChainIdx].add(IVInc(UserInst, IVOper, LastIncExpr)); |
| } |
| IVChain &Chain = IVChainVec[ChainIdx]; |
| |
| SmallPtrSet<Instruction*,4> &NearUsers = ChainUsersVec[ChainIdx].NearUsers; |
| // This chain's NearUsers become FarUsers. |
| if (!LastIncExpr->isZero()) { |
| ChainUsersVec[ChainIdx].FarUsers.insert(NearUsers.begin(), |
| NearUsers.end()); |
| NearUsers.clear(); |
| } |
| |
| // All other uses of IVOperand become near uses of the chain. |
| // We currently ignore intermediate values within SCEV expressions, assuming |
| // they will eventually be used be the current chain, or can be computed |
| // from one of the chain increments. To be more precise we could |
| // transitively follow its user and only add leaf IV users to the set. |
| for (User *U : IVOper->users()) { |
| Instruction *OtherUse = dyn_cast<Instruction>(U); |
| if (!OtherUse) |
| continue; |
| // Uses in the chain will no longer be uses if the chain is formed. |
| // Include the head of the chain in this iteration (not Chain.begin()). |
| IVChain::const_iterator IncIter = Chain.Incs.begin(); |
| IVChain::const_iterator IncEnd = Chain.Incs.end(); |
| for( ; IncIter != IncEnd; ++IncIter) { |
| if (IncIter->UserInst == OtherUse) |
| break; |
| } |
| if (IncIter != IncEnd) |
| continue; |
| |
| if (SE.isSCEVable(OtherUse->getType()) |
| && !isa<SCEVUnknown>(SE.getSCEV(OtherUse)) |
| && IU.isIVUserOrOperand(OtherUse)) { |
| continue; |
| } |
| NearUsers.insert(OtherUse); |
| } |
| |
| // Since this user is part of the chain, it's no longer considered a use |
| // of the chain. |
| ChainUsersVec[ChainIdx].FarUsers.erase(UserInst); |
| } |
| |
| /// Populate the vector of Chains. |
| /// |
| /// This decreases ILP at the architecture level. Targets with ample registers, |
| /// multiple memory ports, and no register renaming probably don't want |
| /// this. However, such targets should probably disable LSR altogether. |
| /// |
| /// The job of LSR is to make a reasonable choice of induction variables across |
| /// the loop. Subsequent passes can easily "unchain" computation exposing more |
| /// ILP *within the loop* if the target wants it. |
| /// |
| /// Finding the best IV chain is potentially a scheduling problem. Since LSR |
| /// will not reorder memory operations, it will recognize this as a chain, but |
| /// will generate redundant IV increments. Ideally this would be corrected later |
| /// by a smart scheduler: |
| /// = A[i] |
| /// = A[i+x] |
| /// A[i] = |
| /// A[i+x] = |
| /// |
| /// TODO: Walk the entire domtree within this loop, not just the path to the |
| /// loop latch. This will discover chains on side paths, but requires |
| /// maintaining multiple copies of the Chains state. |
| void LSRInstance::CollectChains() { |
| DEBUG(dbgs() << "Collecting IV Chains.\n"); |
| SmallVector<ChainUsers, 8> ChainUsersVec; |
| |
| SmallVector<BasicBlock *,8> LatchPath; |
| BasicBlock *LoopHeader = L->getHeader(); |
| for (DomTreeNode *Rung = DT.getNode(L->getLoopLatch()); |
| Rung->getBlock() != LoopHeader; Rung = Rung->getIDom()) { |
| LatchPath.push_back(Rung->getBlock()); |
| } |
| LatchPath.push_back(LoopHeader); |
| |
| // Walk the instruction stream from the loop header to the loop latch. |
| for (BasicBlock *BB : reverse(LatchPath)) { |
| for (Instruction &I : *BB) { |
| // Skip instructions that weren't seen by IVUsers analysis. |
| if (isa<PHINode>(I) || !IU.isIVUserOrOperand(&I)) |
| continue; |
| |
| // Ignore users that are part of a SCEV expression. This way we only |
| // consider leaf IV Users. This effectively rediscovers a portion of |
| // IVUsers analysis but in program order this time. |
| if (SE.isSCEVable(I.getType()) && !isa<SCEVUnknown>(SE.getSCEV(&I))) |
| continue; |
| |
| // Remove this instruction from any NearUsers set it may be in. |
| for (unsigned ChainIdx = 0, NChains = IVChainVec.size(); |
| ChainIdx < NChains; ++ChainIdx) { |
| ChainUsersVec[ChainIdx].NearUsers.erase(&I); |
| } |
| // Search for operands that can be chained. |
| SmallPtrSet<Instruction*, 4> UniqueOperands; |
| User::op_iterator IVOpEnd = I.op_end(); |
| User::op_iterator IVOpIter = findIVOperand(I.op_begin(), IVOpEnd, L, SE); |
| while (IVOpIter != IVOpEnd) { |
| Instruction *IVOpInst = cast<Instruction>(*IVOpIter); |
| if (UniqueOperands.insert(IVOpInst).second) |
| ChainInstruction(&I, IVOpInst, ChainUsersVec); |
| IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE); |
| } |
| } // Continue walking down the instructions. |
| } // Continue walking down the domtree. |
| // Visit phi backedges to determine if the chain can generate the IV postinc. |
| for (PHINode &PN : L->getHeader()->phis()) { |
| if (!SE.isSCEVable(PN.getType())) |
| continue; |
| |
| Instruction *IncV = |
| dyn_cast<Instruction>(PN.getIncomingValueForBlock(L->getLoopLatch())); |
| if (IncV) |
| ChainInstruction(&PN, IncV, ChainUsersVec); |
| } |
| // Remove any unprofitable chains. |
| unsigned ChainIdx = 0; |
| for (unsigned UsersIdx = 0, NChains = IVChainVec.size(); |
| UsersIdx < NChains; ++UsersIdx) { |
| if (!isProfitableChain(IVChainVec[UsersIdx], |
| ChainUsersVec[UsersIdx].FarUsers, SE, TTI)) |
| continue; |
| // Preserve the chain at UsesIdx. |
| if (ChainIdx != UsersIdx) |
| IVChainVec[ChainIdx] = IVChainVec[UsersIdx]; |
| FinalizeChain(IVChainVec[ChainIdx]); |
| ++ChainIdx; |
| } |
| IVChainVec.resize(ChainIdx); |
| } |
| |
| void LSRInstance::FinalizeChain(IVChain &Chain) { |
| assert(!Chain.Incs.empty() && "empty IV chains are not allowed"); |
| DEBUG(dbgs() << "Final Chain: " << *Chain.Incs[0].UserInst << "\n"); |
| |
| for (const IVInc &Inc : Chain) { |
| DEBUG(dbgs() << " Inc: " << *Inc.UserInst << "\n"); |
| auto UseI = find(Inc.UserInst->operands(), Inc.IVOperand); |
| assert(UseI != Inc.UserInst->op_end() && "cannot find IV operand"); |
| IVIncSet.insert(UseI); |
| } |
| } |
| |
| /// Return true if the IVInc can be folded into an addressing mode. |
| static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst, |
| Value *Operand, const TargetTransformInfo &TTI) { |
| const SCEVConstant *IncConst = dyn_cast<SCEVConstant>(IncExpr); |
| if (!IncConst || !isAddressUse(TTI, UserInst, Operand)) |
| return false; |
| |
| if (IncConst->getAPInt().getMinSignedBits() > 64) |
| return false; |
| |
| MemAccessTy AccessTy = getAccessType(TTI, UserInst); |
| int64_t IncOffset = IncConst->getValue()->getSExtValue(); |
| if (!isAlwaysFoldable(TTI, LSRUse::Address, AccessTy, /*BaseGV=*/nullptr, |
| IncOffset, /*HaseBaseReg=*/false)) |
| return false; |
| |
| return true; |
| } |
| |
| /// Generate an add or subtract for each IVInc in a chain to materialize the IV |
| /// user's operand from the previous IV user's operand. |
| void LSRInstance::GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter, |
| SmallVectorImpl<WeakTrackingVH> &DeadInsts) { |
| // Find the new IVOperand for the head of the chain. It may have been replaced |
| // by LSR. |
| const IVInc &Head = Chain.Incs[0]; |
| User::op_iterator IVOpEnd = Head.UserInst->op_end(); |
| // findIVOperand returns IVOpEnd if it can no longer find a valid IV user. |
| User::op_iterator IVOpIter = findIVOperand(Head.UserInst->op_begin(), |
| IVOpEnd, L, SE); |
| Value *IVSrc = nullptr; |
| while (IVOpIter != IVOpEnd) { |
| IVSrc = getWideOperand(*IVOpIter); |
| |
| // If this operand computes the expression that the chain needs, we may use |
| // it. (Check this after setting IVSrc which is used below.) |
| // |
| // Note that if Head.IncExpr is wider than IVSrc, then this phi is too |
| // narrow for the chain, so we can no longer use it. We do allow using a |
| // wider phi, assuming the LSR checked for free truncation. In that case we |
| // should already have a truncate on this operand such that |
| // getSCEV(IVSrc) == IncExpr. |
| if (SE.getSCEV(*IVOpIter) == Head.IncExpr |
| || SE.getSCEV(IVSrc) == Head.IncExpr) { |
| break; |
| } |
| IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE); |
| } |
| if (IVOpIter == IVOpEnd) { |
| // Gracefully give up on this chain. |
| DEBUG(dbgs() << "Concealed chain head: " << *Head.UserInst << "\n"); |
| return; |
| } |
| |
| DEBUG(dbgs() << "Generate chain at: " << *IVSrc << "\n"); |
| Type *IVTy = IVSrc->getType(); |
| Type *IntTy = SE.getEffectiveSCEVType(IVTy); |
| const SCEV *LeftOverExpr = nullptr; |
| for (const IVInc &Inc : Chain) { |
| Instruction *InsertPt = Inc.UserInst; |
| if (isa<PHINode>(InsertPt)) |
| InsertPt = L->getLoopLatch()->getTerminator(); |
| |
| // IVOper will replace the current IV User's operand. IVSrc is the IV |
| // value currently held in a register. |
| Value *IVOper = IVSrc; |
| if (!Inc.IncExpr->isZero()) { |
| // IncExpr was the result of subtraction of two narrow values, so must |
| // be signed. |
| const SCEV *IncExpr = SE.getNoopOrSignExtend(Inc.IncExpr, IntTy); |
| LeftOverExpr = LeftOverExpr ? |
| SE.getAddExpr(LeftOverExpr, IncExpr) : IncExpr; |
| } |
| if (LeftOverExpr && !LeftOverExpr->isZero()) { |
| // Expand the IV increment. |
| Rewriter.clearPostInc(); |
| Value *IncV = Rewriter.expandCodeFor(LeftOverExpr, IntTy, InsertPt); |
| const SCEV *IVOperExpr = SE.getAddExpr(SE.getUnknown(IVSrc), |
| SE.getUnknown(IncV)); |
| IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt); |
| |
| // If an IV increment can't be folded, use it as the next IV value. |
| if (!canFoldIVIncExpr(LeftOverExpr, Inc.UserInst, Inc.IVOperand, TTI)) { |
| assert(IVTy == IVOper->getType() && "inconsistent IV increment type"); |
| IVSrc = IVOper; |
| LeftOverExpr = nullptr; |
| } |
| } |
| Type *OperTy = Inc.IVOperand->getType(); |
| if (IVTy != OperTy) { |
| assert(SE.getTypeSizeInBits(IVTy) >= SE.getTypeSizeInBits(OperTy) && |
| "cannot extend a chained IV"); |
| IRBuilder<> Builder(InsertPt); |
| IVOper = Builder.CreateTruncOrBitCast(IVOper, OperTy, "lsr.chain"); |
| } |
| Inc.UserInst->replaceUsesOfWith(Inc.IVOperand, IVOper); |
| DeadInsts.emplace_back(Inc.IVOperand); |
| } |
| // If LSR created a new, wider phi, we may also replace its postinc. We only |
| // do this if we also found a wide value for the head of the chain. |
| if (isa<PHINode>(Chain.tailUserInst())) { |
| for (PHINode &Phi : L->getHeader()->phis()) { |
| if (!isCompatibleIVType(&Phi, IVSrc)) |
| continue; |
| Instruction *PostIncV = dyn_cast<Instruction>( |
| Phi.getIncomingValueForBlock(L->getLoopLatch())); |
| if (!PostIncV || (SE.getSCEV(PostIncV) != SE.getSCEV(IVSrc))) |
| continue; |
| Value *IVOper = IVSrc; |
| Type *PostIncTy = PostIncV->getType(); |
| if (IVTy != PostIncTy) { |
| assert(PostIncTy->isPointerTy() && "mixing int/ptr IV types"); |
| IRBuilder<> Builder(L->getLoopLatch()->getTerminator()); |
| Builder.SetCurrentDebugLocation(PostIncV->getDebugLoc()); |
| IVOper = Builder.CreatePointerCast(IVSrc, PostIncTy, "lsr.chain"); |
| } |
| Phi.replaceUsesOfWith(PostIncV, IVOper); |
| DeadInsts.emplace_back(PostIncV); |
| } |
| } |
| } |
| |
| void LSRInstance::CollectFixupsAndInitialFormulae() { |
| for (const IVStrideUse &U : IU) { |
| Instruction *UserInst = U.getUser(); |
| // Skip IV users that are part of profitable IV Chains. |
| User::op_iterator UseI = |
| find(UserInst->operands(), U.getOperandValToReplace()); |
| assert(UseI != UserInst->op_end() && "cannot find IV operand"); |
| if (IVIncSet.count(UseI)) { |
| DEBUG(dbgs() << "Use is in profitable chain: " << **UseI << '\n'); |
| continue; |
| } |
| |
| LSRUse::KindType Kind = LSRUse::Basic; |
| MemAccessTy AccessTy; |
| if (isAddressUse(TTI, UserInst, U.getOperandValToReplace())) { |
| Kind = LSRUse::Address; |
| AccessTy = getAccessType(TTI, UserInst); |
| } |
| |
| const SCEV *S = IU.getExpr(U); |
| PostIncLoopSet TmpPostIncLoops = U.getPostIncLoops(); |
| |
| // Equality (== and !=) ICmps are special. We can rewrite (i == N) as |
| // (N - i == 0), and this allows (N - i) to be the expression that we work |
| // with rather than just N or i, so we can consider the register |
| // requirements for both N and i at the same time. Limiting this code to |
| // equality icmps is not a problem because all interesting loops use |
| // equality icmps, thanks to IndVarSimplify. |
| if (ICmpInst *CI = dyn_cast<ICmpInst>(UserInst)) |
| if (CI->isEquality()) { |
| // Swap the operands if needed to put the OperandValToReplace on the |
| // left, for consistency. |
| Value *NV = CI->getOperand(1); |
| if (NV == U.getOperandValToReplace()) { |
| CI->setOperand(1, CI->getOperand(0)); |
| CI->setOperand(0, NV); |
| NV = CI->getOperand(1); |
| Changed = true; |
| } |
| |
| // x == y --> x - y == 0 |
| const SCEV *N = SE.getSCEV(NV); |
| if (SE.isLoopInvariant(N, L) && isSafeToExpand(N, SE)) { |
| // S is normalized, so normalize N before folding it into S |
| // to keep the result normalized. |
| N = normalizeForPostIncUse(N, TmpPostIncLoops, SE); |
| Kind = LSRUse::ICmpZero; |
| S = SE.getMinusSCEV(N, S); |
| } |
| |
| // -1 and the negations of all interesting strides (except the negation |
| // of -1) are now also interesting. |
| for (size_t i = 0, e = Factors.size(); i != e; ++i) |
| if (Factors[i] != -1) |
| Factors.insert(-(uint64_t)Factors[i]); |
| Factors.insert(-1); |
| } |
| |
| // Get or create an LSRUse. |
| std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy); |
| size_t LUIdx = P.first; |
| int64_t Offset = P.second; |
| LSRUse &LU = Uses[LUIdx]; |
| |
| // Record the fixup. |
| LSRFixup &LF = LU.getNewFixup(); |
| LF.UserInst = UserInst; |
| LF.OperandValToReplace = U.getOperandValToReplace(); |
| LF.PostIncLoops = TmpPostIncLoops; |
| LF.Offset = Offset; |
| LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L); |
| |
| if (!LU.WidestFixupType || |
| SE.getTypeSizeInBits(LU.WidestFixupType) < |
| SE.getTypeSizeInBits(LF.OperandValToReplace->getType())) |
| LU.WidestFixupType = LF.OperandValToReplace->getType(); |
| |
| // If this is the first use of this LSRUse, give it a formula. |
| if (LU.Formulae.empty()) { |
| InsertInitialFormula(S, LU, LUIdx); |
| CountRegisters(LU.Formulae.back(), LUIdx); |
| } |
| } |
| |
| DEBUG(print_fixups(dbgs())); |
| } |
| |
| /// Insert a formula for the given expression into the given use, separating out |
| /// loop-variant portions from loop-invariant and loop-computable portions. |
| void |
| LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) { |
| // Mark uses whose expressions cannot be expanded. |
| if (!isSafeToExpand(S, SE)) |
| LU.RigidFormula = true; |
| |
| Formula F; |
| F.initialMatch(S, L, SE); |
| bool Inserted = InsertFormula(LU, LUIdx, F); |
| assert(Inserted && "Initial formula already exists!"); (void)Inserted; |
| } |
| |
| /// Insert a simple single-register formula for the given expression into the |
| /// given use. |
| void |
| LSRInstance::InsertSupplementalFormula(const SCEV *S, |
| LSRUse &LU, size_t LUIdx) { |
| Formula F; |
| F.BaseRegs.push_back(S); |
| F.HasBaseReg = true; |
| bool Inserted = InsertFormula(LU, LUIdx, F); |
| assert(Inserted && "Supplemental formula already exists!"); (void)Inserted; |
| } |
| |
| /// Note which registers are used by the given formula, updating RegUses. |
| void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) { |
| if (F.ScaledReg) |
| RegUses.countRegister(F.ScaledReg, LUIdx); |
| for (const SCEV *BaseReg : F.BaseRegs) |
| RegUses.countRegister(BaseReg, LUIdx); |
| } |
| |
| /// If the given formula has not yet been inserted, add it to the list, and |
| /// return true. Return false otherwise. |
| bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) { |
| // Do not insert formula that we will not be able to expand. |
| assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F) && |
| "Formula is illegal"); |
| |
| if (!LU.InsertFormula(F, *L)) |
| return false; |
| |
| CountRegisters(F, LUIdx); |
| return true; |
| } |
| |
| /// Check for other uses of loop-invariant values which we're tracking. These |
| /// other uses will pin these values in registers, making them less profitable |
| /// for elimination. |
| /// TODO: This currently misses non-constant addrec step registers. |
| /// TODO: Should this give more weight to users inside the loop? |
| void |
| LSRInstance::CollectLoopInvariantFixupsAndFormulae() { |
| SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end()); |
| SmallPtrSet<const SCEV *, 32> Visited; |
| |
| while (!Worklist.empty()) { |
| const SCEV *S = Worklist.pop_back_val(); |
| |
| // Don't process the same SCEV twice |
| if (!Visited.insert(S).second) |
| continue; |
| |
| if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) |
| Worklist.append(N->op_begin(), N->op_end()); |
| else if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S)) |
| Worklist.push_back(C->getOperand()); |
| else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) { |
| Worklist.push_back(D->getLHS()); |
| Worklist.push_back(D->getRHS()); |
| } else if (const SCEVUnknown *US = dyn_cast<SCEVUnknown>(S)) { |
| const Value *V = US->getValue(); |
| if (const Instruction *Inst = dyn_cast<Instruction>(V)) { |
| // Look for instructions defined outside the loop. |
| if (L->contains(Inst)) continue; |
| } else if (isa<UndefValue>(V)) |
| // Undef doesn't have a live range, so it doesn't matter. |
| continue; |
| for (const Use &U : V->uses()) { |
| const Instruction *UserInst = dyn_cast<Instruction>(U.getUser()); |
| // Ignore non-instructions. |
| if (!UserInst) |
| continue; |
| // Ignore instructions in other functions (as can happen with |
| // Constants). |
| if (UserInst->getParent()->getParent() != L->getHeader()->getParent()) |
| continue; |
| // Ignore instructions not dominated by the loop. |
| const BasicBlock *UseBB = !isa<PHINode>(UserInst) ? |
| UserInst->getParent() : |
| cast<PHINode>(UserInst)->getIncomingBlock( |
| PHINode::getIncomingValueNumForOperand(U.getOperandNo())); |
| if (!DT.dominates(L->getHeader(), UseBB)) |
| continue; |
| // Don't bother if the instruction is in a BB which ends in an EHPad. |
| if (UseBB->getTerminator()->isEHPad()) |
| continue; |
| // Don't bother rewriting PHIs in catchswitch blocks. |
| if (isa<CatchSwitchInst>(UserInst->getParent()->getTerminator())) |
| continue; |
| // Ignore uses which are part of other SCEV expressions, to avoid |
| // analyzing them multiple times. |
| if (SE.isSCEVable(UserInst->getType())) { |
| const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst)); |
| // If the user is a no-op, look through to its uses. |
| if (!isa<SCEVUnknown>(UserS)) |
| continue; |
| if (UserS == US) { |
| Worklist.push_back( |
| SE.getUnknown(const_cast<Instruction *>(UserInst))); |
| continue; |
| } |
| } |
| // Ignore icmp instructions which are already being analyzed. |
| if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) { |
| unsigned OtherIdx = !U.getOperandNo(); |
| Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx)); |
| if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L)) |
| continue; |
| } |
| |
| std::pair<size_t, int64_t> P = getUse( |
| S, LSRUse::Basic, MemAccessTy()); |
| size_t LUIdx = P.first; |
| int64_t Offset = P.second; |
| LSRUse &LU = Uses[LUIdx]; |
| LSRFixup &LF = LU.getNewFixup(); |
| LF.UserInst = const_cast<Instruction *>(UserInst); |
| LF.OperandValToReplace = U; |
| LF.Offset = Offset; |
| LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L); |
| if (!LU.WidestFixupType || |
| SE.getTypeSizeInBits(LU.WidestFixupType) < |
| SE.getTypeSizeInBits(LF.OperandValToReplace->getType())) |
| LU.WidestFixupType = LF.OperandValToReplace->getType(); |
| InsertSupplementalFormula(US, LU, LUIdx); |
| CountRegisters(LU.Formulae.back(), Uses.size() - 1); |
| break; |
| } |
| } |
| } |
| } |
| |
| /// Split S into subexpressions which can be pulled out into separate |
| /// registers. If C is non-null, multiply each subexpression by C. |
| /// |
| /// Return remainder expression after factoring the subexpressions captured by |
| /// Ops. If Ops is complete, return NULL. |
| static const SCEV *CollectSubexprs(const SCEV *S, const SCEVConstant *C, |
| SmallVectorImpl<const SCEV *> &Ops, |
| const Loop *L, |
| ScalarEvolution &SE, |
| unsigned Depth = 0) { |
| // Arbitrarily cap recursion to protect compile time. |
| if (Depth >= 3) |
| return S; |
| |
| if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { |
| // Break out add operands. |
| for (const SCEV *S : Add->operands()) { |
| const SCEV *Remainder = CollectSubexprs(S, C, Ops, L, SE, Depth+1); |
| if (Remainder) |
| Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder); |
| } |
| return nullptr; |
| } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { |
| // Split a non-zero base out of an addrec. |
| if (AR->getStart()->isZero() || !AR->isAffine()) |
| return S; |
| |
| const SCEV *Remainder = CollectSubexprs(AR->getStart(), |
| C, Ops, L, SE, Depth+1); |
| // Split the non-zero AddRec unless it is part of a nested recurrence that |
| // does not pertain to this loop. |
| if (Remainder && (AR->getLoop() == L || !isa<SCEVAddRecExpr>(Remainder))) { |
| Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder); |
| Remainder = nullptr; |
| } |
| if (Remainder != AR->getStart()) { |
| if (!Remainder) |
| Remainder = SE.getConstant(AR->getType(), 0); |
| return SE.getAddRecExpr(Remainder, |
| AR->getStepRecurrence(SE), |
| AR->getLoop(), |
| //FIXME: AR->getNoWrapFlags(SCEV::FlagNW) |
| SCEV::FlagAnyWrap); |
| } |
| } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { |
| // Break (C * (a + b + c)) into C*a + C*b + C*c. |
| if (Mul->getNumOperands() != 2) |
| return S; |
| if (const SCEVConstant *Op0 = |
| dyn_cast<SCEVConstant>(Mul->getOperand(0))) { |
| C = C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0; |
| const SCEV *Remainder = |
| CollectSubexprs(Mul->getOperand(1), C, Ops, L, SE, Depth+1); |
| if (Remainder) |
| Ops.push_back(SE.getMulExpr(C, Remainder)); |
| return nullptr; |
| } |
| } |
| return S; |
| } |
| |
| /// Return true if the SCEV represents a value that may end up as a |
| /// post-increment operation. |
| static bool mayUsePostIncMode(const TargetTransformInfo &TTI, |
| LSRUse &LU, const SCEV *S, const Loop *L, |
| ScalarEvolution &SE) { |
| if (LU.Kind != LSRUse::Address || |
| !LU.AccessTy.getType()->isIntOrIntVectorTy()) |
| return false; |
| const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S); |
| if (!AR) |
| return false; |
| const SCEV *LoopStep = AR->getStepRecurrence(SE); |
| if (!isa<SCEVConstant>(LoopStep)) |
| return false; |
| if (LU.AccessTy.getType()->getScalarSizeInBits() != |
| LoopStep->getType()->getScalarSizeInBits()) |
| return false; |
| // Check if a post-indexed load/store can be used. |
| if (TTI.isIndexedLoadLegal(TTI.MIM_PostInc, AR->getType()) || |
| TTI.isIndexedStoreLegal(TTI.MIM_PostInc, AR->getType())) { |
| const SCEV *LoopStart = AR->getStart(); |
| if (!isa<SCEVConstant>(LoopStart) && SE.isLoopInvariant(LoopStart, L)) |
| return true; |
| } |
| return false; |
| } |
| |
| /// \brief Helper function for LSRInstance::GenerateReassociations. |
| void LSRInstance::GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx, |
| const Formula &Base, |
| unsigned Depth, size_t Idx, |
| bool IsScaledReg) { |
| const SCEV *BaseReg = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; |
| // Don't generate reassociations for the base register of a value that |
| // may generate a post-increment operator. The reason is that the |
| // reassociations cause extra base+register formula to be created, |
| // and possibly chosen, but the post-increment is more efficient. |
| if (TTI.shouldFavorPostInc() && mayUsePostIncMode(TTI, LU, BaseReg, L, SE)) |
| return; |
| SmallVector<const SCEV *, 8> AddOps; |
| const SCEV *Remainder = CollectSubexprs(BaseReg, nullptr, AddOps, L, SE); |
| if (Remainder) |
| AddOps.push_back(Remainder); |
| |
| if (AddOps.size() == 1) |
| return; |
| |
| for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(), |
| JE = AddOps.end(); |
| J != JE; ++J) { |
| // Loop-variant "unknown" values are uninteresting; we won't be able to |
| // do anything meaningful with them. |
| if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L)) |
| continue; |
| |
| // Don't pull a constant into a register if the constant could be folded |
| // into an immediate field. |
| if (isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind, |
| LU.AccessTy, *J, Base.getNumRegs() > 1)) |
| continue; |
| |
| // Collect all operands except *J. |
| SmallVector<const SCEV *, 8> InnerAddOps( |
| ((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J); |
| InnerAddOps.append(std::next(J), |
| ((const SmallVector<const SCEV *, 8> &)AddOps).end()); |
| |
| // Don't leave just a constant behind in a register if the constant could |
| // be folded into an immediate field. |
| if (InnerAddOps.size() == 1 && |
| isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind, |
| LU.AccessTy, InnerAddOps[0], Base.getNumRegs() > 1)) |
| continue; |
| |
| const SCEV *InnerSum = SE.getAddExpr(InnerAddOps); |
| if (InnerSum->isZero()) |
| continue; |
| Formula F = Base; |
| |
| // Add the remaining pieces of the add back into the new formula. |
| const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum); |
| if (InnerSumSC && SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 && |
| TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset + |
| InnerSumSC->getValue()->getZExtValue())) { |
| F.UnfoldedOffset = |
| (uint64_t)F.UnfoldedOffset + InnerSumSC->getValue()->getZExtValue(); |
| if (IsScaledReg) |
| F.ScaledReg = nullptr; |
| else |
| F.BaseRegs.erase(F.BaseRegs.begin() + Idx); |
| } else if (IsScaledReg) |
| F.ScaledReg = InnerSum; |
| else |
| F.BaseRegs[Idx] = InnerSum; |
| |
| // Add J as its own register, or an unfolded immediate. |
| const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J); |
| if (SC && SE.getTypeSizeInBits(SC->getType()) <= 64 && |
| TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset + |
| SC->getValue()->getZExtValue())) |
| F.UnfoldedOffset = |
| (uint64_t)F.UnfoldedOffset + SC->getValue()->getZExtValue(); |
| else |
| F.BaseRegs.push_back(*J); |
| // We may have changed the number of register in base regs, adjust the |
| // formula accordingly. |
| F.canonicalize(*L); |
| |
| if (InsertFormula(LU, LUIdx, F)) |
| // If that formula hadn't been seen before, recurse to find more like |
| // it. |
| GenerateReassociations(LU, LUIdx, LU.Formulae.back(), Depth + 1); |
| } |
| } |
| |
| /// Split out subexpressions from adds and the bases of addrecs. |
| void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx, |
| Formula Base, unsigned Depth) { |
| assert(Base.isCanonical(*L) && "Input must be in the canonical form"); |
| // Arbitrarily cap recursion to protect compile time. |
| if (Depth >= 3) |
| return; |
| |
| for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) |
| GenerateReassociationsImpl(LU, LUIdx, Base, Depth, i); |
| |
| if (Base.Scale == 1) |
| GenerateReassociationsImpl(LU, LUIdx, Base, Depth, |
| /* Idx */ -1, /* IsScaledReg */ true); |
| } |
| |
| /// Generate a formula consisting of all of the loop-dominating registers added |
| /// into a single register. |
| void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx, |
| Formula Base) { |
| // This method is only interesting on a plurality of registers. |
| if (Base.BaseRegs.size() + (Base.Scale == 1) <= 1) |
| return; |
| |
| // Flatten the representation, i.e., reg1 + 1*reg2 => reg1 + reg2, before |
| // processing the formula. |
| Base.unscale(); |
| Formula F = Base; |
| F.BaseRegs.clear(); |
| SmallVector<const SCEV *, 4> Ops; |
| for (const SCEV *BaseReg : Base.BaseRegs) { |
| if (SE.properlyDominates(BaseReg, L->getHeader()) && |
| !SE.hasComputableLoopEvolution(BaseReg, L)) |
| Ops.push_back(BaseReg); |
| else |
| F.BaseRegs.push_back(BaseReg); |
| } |
| if (Ops.size() > 1) { |
| const SCEV *Sum = SE.getAddExpr(Ops); |
| // TODO: If Sum is zero, it probably means ScalarEvolution missed an |
| // opportunity to fold something. For now, just ignore such cases |
| // rather than proceed with zero in a register. |
| if (!Sum->isZero()) { |
| F.BaseRegs.push_back(Sum); |
| F.canonicalize(*L); |
| (void)InsertFormula(LU, LUIdx, F); |
| } |
| } |
| } |
| |
| /// \brief Helper function for LSRInstance::GenerateSymbolicOffsets. |
| void LSRInstance::GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx, |
| const Formula &Base, size_t Idx, |
| bool IsScaledReg) { |
| const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; |
| GlobalValue *GV = ExtractSymbol(G, SE); |
| if (G->isZero() || !GV) |
| return; |
| Formula F = Base; |
| F.BaseGV = GV; |
| if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) |
| return; |
| if (IsScaledReg) |
| F.ScaledReg = G; |
| else |
| F.BaseRegs[Idx] = G; |
| (void)InsertFormula(LU, LUIdx, F); |
| } |
| |
| /// Generate reuse formulae using symbolic offsets. |
| void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, |
| Formula Base) { |
| // We can't add a symbolic offset if the address already contains one. |
| if (Base.BaseGV) return; |
| |
| for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) |
| GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, i); |
| if (Base.Scale == 1) |
| GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, /* Idx */ -1, |
| /* IsScaledReg */ true); |
| } |
| |
| /// \brief Helper function for LSRInstance::GenerateConstantOffsets. |
| void LSRInstance::GenerateConstantOffsetsImpl( |
| LSRUse &LU, unsigned LUIdx, const Formula &Base, |
| const SmallVectorImpl<int64_t> &Worklist, size_t Idx, bool IsScaledReg) { |
| const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; |
| for (int64_t Offset : Worklist) { |
| Formula F = Base; |
| F.BaseOffset = (uint64_t)Base.BaseOffset - Offset; |
| if (isLegalUse(TTI, LU.MinOffset - Offset, LU.MaxOffset - Offset, LU.Kind, |
| LU.AccessTy, F)) { |
| // Add the offset to the base register. |
| const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), Offset), G); |
| // If it cancelled out, drop the base register, otherwise update it. |
| if (NewG->isZero()) { |
| if (IsScaledReg) { |
| F.Scale = 0; |
| F.ScaledReg = nullptr; |
| } else |
| F.deleteBaseReg(F.BaseRegs[Idx]); |
| F.canonicalize(*L); |
| } else if (IsScaledReg) |
| F.ScaledReg = NewG; |
| else |
| F.BaseRegs[Idx] = NewG; |
| |
| (void)InsertFormula(LU, LUIdx, F); |
| } |
| } |
| |
| int64_t Imm = ExtractImmediate(G, SE); |
| if (G->isZero() || Imm == 0) |
| return; |
| Formula F = Base; |
| F.BaseOffset = (uint64_t)F.BaseOffset + Imm; |
| if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) |
| return; |
| if (IsScaledReg) |
| F.ScaledReg = G; |
| else |
| F.BaseRegs[Idx] = G; |
| (void)InsertFormula(LU, LUIdx, F); |
| } |
| |
| /// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets. |
| void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, |
| Formula Base) { |
| // TODO: For now, just add the min and max offset, because it usually isn't |
| // worthwhile looking at everything inbetween. |
| SmallVector<int64_t, 2> Worklist; |
| Worklist.push_back(LU.MinOffset); |
| if (LU.MaxOffset != LU.MinOffset) |
| Worklist.push_back(LU.MaxOffset); |
| |
| for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) |
| GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, i); |
| if (Base.Scale == 1) |
| GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, /* Idx */ -1, |
| /* IsScaledReg */ true); |
| } |
| |
| /// For ICmpZero, check to see if we can scale up the comparison. For example, x |
| /// == y -> x*c == y*c. |
| void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, |
| Formula Base) { |
| if (LU.Kind != LSRUse::ICmpZero) return; |
| |
| // Determine the integer type for the base formula. |
| Type *IntTy = Base.getType(); |
| if (!IntTy) return; |
| if (SE.getTypeSizeInBits(IntTy) > 64) return; |
| |
| // Don't do this if there is more than one offset. |
| if (LU.MinOffset != LU.MaxOffset) return; |
| |
| // Check if transformation is valid. It is illegal to multiply pointer. |
| if (Base.ScaledReg && Base.ScaledReg->getType()->isPointerTy()) |
| return; |
| for (const SCEV *BaseReg : Base.BaseRegs) |
| if (BaseReg->getType()->isPointerTy()) |
| return; |
| assert(!Base.BaseGV && "ICmpZero use is not legal!"); |
| |
| // Check each interesting stride. |
| for (int64_t Factor : Factors) { |
| // Check that the multiplication doesn't overflow. |
| if (Base.BaseOffset == std::numeric_limits<int64_t>::min() && Factor == -1) |
| continue; |
| int64_t NewBaseOffset = (uint64_t)Base.BaseOffset * Factor; |
| if (NewBaseOffset / Factor != Base.BaseOffset) |
| continue; |
| // If the offset will be truncated at this use, check that it is in bounds. |
| if (!IntTy->isPointerTy() && |
| !ConstantInt::isValueValidForType(IntTy, NewBaseOffset)) |
| continue; |
| |
| // Check that multiplying with the use offset doesn't overflow. |
| int64_t Offset = LU.MinOffset; |
| if (Offset == std::numeric_limits<int64_t>::min() && Factor == -1) |
| continue; |
| Offset = (uint64_t)Offset * Factor; |
| if (Offset / Factor != LU.MinOffset) |
| continue; |
| // If the offset will be truncated at this use, check that it is in bounds. |
| if (!IntTy->isPointerTy() && |
| !ConstantInt::isValueValidForType(IntTy, Offset)) |
| continue; |
| |
| Formula F = Base; |
| F.BaseOffset = NewBaseOffset; |
| |
| // Check that this scale is legal. |
| if (!isLegalUse(TTI, Offset, Offset, LU.Kind, LU.AccessTy, F)) |
| continue; |
| |
| // Compensate for the use having MinOffset built into it. |
| F.BaseOffset = (uint64_t)F.BaseOffset + Offset - LU.MinOffset; |
| |
| const SCEV *FactorS = SE.getConstant(IntTy, Factor); |
| |
| // Check that multiplying with each base register doesn't overflow. |
| for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) { |
| F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS); |
| if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i]) |
| goto next; |
| } |
| |
| // Check that multiplying with the scaled register doesn't overflow. |
| if (F.ScaledReg) { |
| F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS); |
| if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg) |
| continue; |
| } |
| |
| // Check that multiplying with the unfolded offset doesn't overflow. |
| if (F.UnfoldedOffset != 0) { |
| if (F.UnfoldedOffset == std::numeric_limits<int64_t>::min() && |
| Factor == -1) |
| continue; |
| F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset * Factor; |
| if (F.UnfoldedOffset / Factor != Base.UnfoldedOffset) |
| continue; |
| // If the offset will be truncated, check that it is in bounds. |
| if (!IntTy->isPointerTy() && |
| !ConstantInt::isValueValidForType(IntTy, F.UnfoldedOffset)) |
| continue; |
| } |
| |
| // If we make it here and it's legal, add it. |
| (void)InsertFormula(LU, LUIdx, F); |
| next:; |
| } |
| } |
| |
| /// Generate stride factor reuse formulae by making use of scaled-offset address |
| /// modes, for example. |
| void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) { |
| // Determine the integer type for the base formula. |
| Type *IntTy = Base.getType(); |
| if (!IntTy) return; |
| |
| // If this Formula already has a scaled register, we can't add another one. |
| // Try to unscale the formula to generate a better scale. |
| if (Base.Scale != 0 && !Base.unscale()) |
| return; |
| |
| assert(Base.Scale == 0 && "unscale did not did its job!"); |
| |
| // Check each interesting stride. |
| for (int64_t Factor : Factors) { |
| Base.Scale = Factor; |
| Base.HasBaseReg = Base.BaseRegs.size() > 1; |
| // Check whether this scale is going to be legal. |
| if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, |
| Base)) { |
| // As a special-case, handle special out-of-loop Basic users specially. |
| // TODO: Reconsider this special case. |
| if (LU.Kind == LSRUse::Basic && |
| isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LSRUse::Special, |
| LU.AccessTy, Base) && |
| LU.AllFixupsOutsideLoop) |
| LU.Kind = LSRUse::Special; |
| else |
| continue; |
| } |
| // For an ICmpZero, negating a solitary base register won't lead to |
| // new solutions. |
| if (LU.Kind == LSRUse::ICmpZero && |
| !Base.HasBaseReg && Base.BaseOffset == 0 && !Base.BaseGV) |
| continue; |
| // For each addrec base reg, if its loop is current loop, apply the scale. |
| for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) { |
| const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i]); |
| if (AR && (AR->getLoop() == L || LU.AllFixupsOutsideLoop)) { |
| const SCEV *FactorS = SE.getConstant(IntTy, Factor); |
| if (FactorS->isZero()) |
| continue; |
| // Divide out the factor, ignoring high bits, since we'll be |
| // scaling the value back up in the end. |
| if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) { |
| // TODO: This could be optimized to avoid all the copying. |
| Formula F = Base; |
| F.ScaledReg = Quotient; |
| F.deleteBaseReg(F.BaseRegs[i]); |
| // The canonical representation of 1*reg is reg, which is already in |
| // Base. In that case, do not try to insert the formula, it will be |
| // rejected anyway. |
| if (F.Scale == 1 && (F.BaseRegs.empty() || |
| (AR->getLoop() != L && LU.AllFixupsOutsideLoop))) |
| continue; |
| // If AllFixupsOutsideLoop is true and F.Scale is 1, we may generate |
| // non canonical Formula with ScaledReg's loop not being L. |
| if (F.Scale == 1 && LU.AllFixupsOutsideLoop) |
| F.canonicalize(*L); |
| (void)InsertFormula(LU, LUIdx, F); |
| } |
| } |
| } |
| } |
| } |
| |
| /// Generate reuse formulae from different IV types. |
| void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) { |
| // Don't bother truncating symbolic values. |
| if (Base.BaseGV) return; |
| |
| // Determine the integer type for the base formula. |
| Type *DstTy = Base.getType(); |
| if (!DstTy) return; |
| DstTy = SE.getEffectiveSCEVType(DstTy); |
| |
| for (Type *SrcTy : Types) { |
| if (SrcTy != DstTy && TTI.isTruncateFree(SrcTy, DstTy)) { |
| Formula F = Base; |
| |
| if (F.ScaledReg) F.ScaledReg = SE.getAnyExtendExpr(F.ScaledReg, SrcTy); |
| for (const SCEV *&BaseReg : F.BaseRegs) |
| BaseReg = SE.getAnyExtendExpr(BaseReg, SrcTy); |
| |
| // TODO: This assumes we've done basic processing on all uses and |
| // have an idea what the register usage is. |
| if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses)) |
| continue; |
| |
| F.canonicalize(*L); |
| (void)InsertFormula(LU, LUIdx, F); |
| } |
| } |
| } |
| |
| namespace { |
| |
| /// Helper class for GenerateCrossUseConstantOffsets. It's used to defer |
| /// modifications so that the search phase doesn't have to worry about the data |
| /// structures moving underneath it. |
| struct WorkItem { |
| size_t LUIdx; |
| int64_t Imm; |
| const SCEV *OrigReg; |
| |
| WorkItem(size_t LI, int64_t I, const SCEV *R) |
| : LUIdx(LI), Imm(I), OrigReg(R) {} |
| |
| void print(raw_ostream &OS) const; |
| void dump() const; |
| }; |
| |
| } // end anonymous namespace |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| void WorkItem::print(raw_ostream &OS) const { |
| OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx |
| << " , add offset " << Imm; |
| } |
| |
| LLVM_DUMP_METHOD void WorkItem::dump() const { |
| print(errs()); errs() << '\n'; |
| } |
| #endif |
| |
| /// Look for registers which are a constant distance apart and try to form reuse |
| /// opportunities between them. |
| void LSRInstance::GenerateCrossUseConstantOffsets() { |
| // Group the registers by their value without any added constant offset. |
| using ImmMapTy = std::map<int64_t, const SCEV *>; |
| |
| DenseMap<const SCEV *, ImmMapTy> Map; |
| DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap; |
| SmallVector<const SCEV *, 8> Sequence; |
| for (const SCEV *Use : RegUses) { |
| const SCEV *Reg = Use; // Make a copy for ExtractImmediate to modify. |
| int64_t Imm = ExtractImmediate(Reg, SE); |
| auto Pair = Map.insert(std::make_pair(Reg, ImmMapTy())); |
| if (Pair.second) |
| Sequence.push_back(Reg); |
| Pair.first->second.insert(std::make_pair(Imm, Use)); |
| UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(Use); |
| } |
| |
| // Now examine each set of registers with the same base value. Build up |
| // a list of work to do and do the work in a separate step so that we're |
| // not adding formulae and register counts while we're searching. |
| SmallVector<WorkItem, 32> WorkItems; |
| SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems; |
| for (const SCEV *Reg : Sequence) { |
| const ImmMapTy &Imms = Map.find(Reg)->second; |
| |
| // It's not worthwhile looking for reuse if there's only one offset. |
| if (Imms.size() == 1) |
| continue; |
| |
| DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':'; |
| for (const auto &Entry : Imms) |
| dbgs() << ' ' << Entry.first; |
| dbgs() << '\n'); |
| |
| // Examine each offset. |
| for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end(); |
| J != JE; ++J) { |
| const SCEV *OrigReg = J->second; |
| |
| int64_t JImm = J->first; |
| const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg); |
| |
| if (!isa<SCEVConstant>(OrigReg) && |
| UsedByIndicesMap[Reg].count() == 1) { |
| DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg << '\n'); |
| continue; |
| } |
| |
| // Conservatively examine offsets between this orig reg a few selected |
| // other orig regs. |
| ImmMapTy::const_iterator OtherImms[] = { |
| Imms.begin(), std::prev(Imms.end()), |
| Imms.lower_bound((Imms.begin()->first + std::prev(Imms.end())->first) / |
| 2) |
| }; |
| for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) { |
| ImmMapTy::const_iterator M = OtherImms[i]; |
| if (M == J || M == JE) continue; |
| |
| // Compute the difference between the two. |
| int64_t Imm = (uint64_t)JImm - M->first; |
| for (unsigned LUIdx : UsedByIndices.set_bits()) |
| // Make a memo of this use, offset, and register tuple. |
| if (UniqueItems.insert(std::make_pair(LUIdx, Imm)).second) |
| WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg)); |
| } |
| } |
| } |
| |
| Map.clear(); |
| Sequence.clear(); |
| UsedByIndicesMap.clear(); |
| UniqueItems.clear(); |
| |
| // Now iterate through the worklist and add new formulae. |
| for (const WorkItem &WI : WorkItems) { |
| size_t LUIdx = WI.LUIdx; |
| LSRUse &LU = Uses[LUIdx]; |
| int64_t Imm = WI.Imm; |
| const SCEV *OrigReg = WI.OrigReg; |
| |
| Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType()); |
| const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm)); |
| unsigned BitWidth = SE.getTypeSizeInBits(IntTy); |
| |
| // TODO: Use a more targeted data structure. |
| for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) { |
| Formula F = LU.Formulae[L]; |
| // FIXME: The code for the scaled and unscaled registers looks |
| // very similar but slightly different. Investigate if they |
| // could be merged. That way, we would not have to unscale the |
| // Formula. |
| F.unscale(); |
| // Use the immediate in the scaled register. |
| if (F.ScaledReg == OrigReg) { |
| int64_t Offset = (uint64_t)F.BaseOffset + Imm * (uint64_t)F.Scale; |
| // Don't create 50 + reg(-50). |
| if (F.referencesReg(SE.getSCEV( |
| ConstantInt::get(IntTy, -(uint64_t)Offset)))) |
| continue; |
| Formula NewF = F; |
| NewF.BaseOffset = Offset; |
| if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, |
| NewF)) |
| continue; |
| NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg); |
| |
| // If the new scale is a constant in a register, and adding the constant |
| // value to the immediate would produce a value closer to zero than the |
| // immediate itself, then the formula isn't worthwhile. |
| if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg)) |
| if (C->getValue()->isNegative() != (NewF.BaseOffset < 0) && |
| (C->getAPInt().abs() * APInt(BitWidth, F.Scale)) |
| .ule(std::abs(NewF.BaseOffset))) |
| continue; |
| |
| // OK, looks good. |
| NewF.canonicalize(*this->L); |
| (void)InsertFormula(LU, LUIdx, NewF); |
| } else { |
| // Use the immediate in a base register. |
| for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) { |
| const SCEV *BaseReg = F.BaseRegs[N]; |
| if (BaseReg != OrigReg) |
| continue; |
| Formula NewF = F; |
| NewF.BaseOffset = (uint64_t)NewF.BaseOffset + Imm; |
| if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, |
| LU.Kind, LU.AccessTy, NewF)) { |
| if (TTI.shouldFavorPostInc() && |
| mayUsePostIncMode(TTI, LU, OrigReg, this->L, SE)) |
| continue; |
| if (!TTI.isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm)) |
| continue; |
| NewF = F; |
| NewF.UnfoldedOffset = (uint64_t)NewF.UnfoldedOffset + Imm; |
| } |
| NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg); |
| |
| // If the new formula has a constant in a register, and adding the |
| // constant value to the immediate would produce a value closer to |
| // zero than the immediate itself, then the formula isn't worthwhile. |
| for (const SCEV *NewReg : NewF.BaseRegs) |
| if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewReg)) |
| if ((C->getAPInt() + NewF.BaseOffset) |
| .abs() |
| .slt(std::abs(NewF.BaseOffset)) && |
| (C->getAPInt() + NewF.BaseOffset).countTrailingZeros() >= |
| countTrailingZeros<uint64_t>(NewF.BaseOffset)) |
| goto skip_formula; |
| |
| // Ok, looks good. |
| NewF.canonicalize(*this->L); |
| (void)InsertFormula(LU, LUIdx, NewF); |
| break; |
| skip_formula:; |
| } |
| } |
| } |
| } |
| } |
| |
| /// Generate formulae for each use. |
| void |
| LSRInstance::GenerateAllReuseFormulae() { |
| // This is split into multiple loops so that hasRegsUsedByUsesOtherThan |
| // queries are more precise. |
| for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { |
| LSRUse &LU = Uses[LUIdx]; |
| for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) |
| GenerateReassociations(LU, LUIdx, LU.Formulae[i]); |
| for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) |
| GenerateCombinations(LU, LUIdx, LU.Formulae[i]); |
| } |
| for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { |
| LSRUse &LU = Uses[LUIdx]; |
| for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) |
| GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]); |
| for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) |
| GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]); |
| for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) |
| GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]); |
| for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) |
| GenerateScales(LU, LUIdx, LU.Formulae[i]); |
| } |
| for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { |
| LSRUse &LU = Uses[LUIdx]; |
| for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) |
| GenerateTruncates(LU, LUIdx, LU.Formulae[i]); |
| } |
| |
| GenerateCrossUseConstantOffsets(); |
| |
| DEBUG(dbgs() << "\n" |
| "After generating reuse formulae:\n"; |
| print_uses(dbgs())); |
| } |
| |
| /// If there are multiple formulae with the same set of registers used |
| /// by other uses, pick the best one and delete the others. |
| void LSRInstance::FilterOutUndesirableDedicatedRegisters() { |
| DenseSet<const SCEV *> VisitedRegs; |
| SmallPtrSet<const SCEV *, 16> Regs; |
| SmallPtrSet<const SCEV *, 16> LoserRegs; |
| #ifndef NDEBUG |
| bool ChangedFormulae = false; |
| #endif |
| |
| // Collect the best formula for each unique set of shared registers. This |
| // is reset for each use. |
| using BestFormulaeTy = |
| DenseMap<SmallVector<const SCEV *, 4>, size_t, UniquifierDenseMapInfo>; |
| |
| BestFormulaeTy BestFormulae; |
| |
| for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { |
| LSRUse &LU = Uses[LUIdx]; |
| DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); dbgs() << '\n'); |
| |
| bool Any = false; |
| for (size_t FIdx = 0, NumForms = LU.Formulae.size(); |
| FIdx != NumForms; ++FIdx) { |
| Formula &F = LU.Formulae[FIdx]; |
| |
| // Some formulas are instant losers. For example, they may depend on |
| // nonexistent AddRecs from other loops. These need to be filtered |
| // immediately, otherwise heuristics could choose them over others leading |
| // to an unsatisfactory solution. Passing LoserRegs into RateFormula here |
| // avoids the need to recompute this information across formulae using the |
| // same bad AddRec. Passing LoserRegs is also essential unless we remove |
| // the corresponding bad register from the Regs set. |
| Cost CostF; |
| Regs.clear(); |
| CostF.RateFormula(TTI, F, Regs, VisitedRegs, L, SE, DT, LU, &LoserRegs); |
| if (CostF.isLoser()) { |
| // During initial formula generation, undesirable formulae are generated |
| // by uses within other loops that have some non-trivial address mode or |
| // use the postinc form of the IV. LSR needs to provide these formulae |
| // as the basis of rediscovering the desired formula that uses an AddRec |
| // corresponding to the existing phi. Once all formulae have been |
| // generated, these initial losers may be pruned. |
| DEBUG(dbgs() << " Filtering loser "; F.print(dbgs()); |
| dbgs() << "\n"); |
| } |
| else { |
| SmallVector<const SCEV *, 4> Key; |
| for (const SCEV *Reg : F.BaseRegs) { |
| if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx)) |
| Key.push_back(Reg); |
| } |
| if (F.ScaledReg && |
| RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx)) |
| Key.push_back(F.ScaledReg); |
| // Unstable sort by host order ok, because this is only used for |
| // uniquifying. |
| llvm::sort(Key.begin(), Key.end()); |
| |
| std::pair<BestFormulaeTy::const_iterator, bool> P = |
| BestFormulae.insert(std::make_pair(Key, FIdx)); |
| if (P.second) |
| continue; |
| |
| Formula &Best = LU.Formulae[P.first->second]; |
| |
| Cost CostBest; |
| Regs.clear(); |
| CostBest.RateFormula(TTI, Best, Regs, VisitedRegs, L, SE, DT, LU); |
| if (CostF.isLess(CostBest, TTI)) |
| std::swap(F, Best); |
| DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs()); |
| dbgs() << "\n" |
| " in favor of formula "; Best.print(dbgs()); |
| dbgs() << '\n'); |
| } |
| #ifndef NDEBUG |
| ChangedFormulae = true; |
| #endif |
| LU.DeleteFormula(F); |
| --FIdx; |
| --NumForms; |
| Any = true; |
| } |
| |
| // Now that we've filtered out some formulae, recompute the Regs set. |
| if (Any) |
| LU.RecomputeRegs(LUIdx, RegUses); |
| |
| // Reset this to prepare for the next use. |
| BestFormulae.clear(); |
| } |
| |
| DEBUG(if (ChangedFormulae) { |
| dbgs() << "\n" |
| "After filtering out undesirable candidates:\n"; |
| print_uses(dbgs()); |
| }); |
| } |
| |
| // This is a rough guess that seems to work fairly well. |
| static const size_t ComplexityLimit = std::numeric_limits<uint16_t>::max(); |
| |
| /// Estimate the worst-case number of solutions the solver might have to |
| /// consider. It almost never considers this many solutions because it prune the |
| /// search space, but the pruning isn't always sufficient. |
| size_t LSRInstance::EstimateSearchSpaceComplexity() const { |
| size_t Power = 1; |
| for (const LSRUse &LU : Uses) { |
| size_t FSize = LU.Formulae.size(); |
| if (FSize >= ComplexityLimit) { |
| Power = ComplexityLimit; |
| break; |
| } |
| Power *= FSize; |
| if (Power >= ComplexityLimit) |
| break; |
| } |
| return Power; |
| } |
| |
| /// When one formula uses a superset of the registers of another formula, it |
| /// won't help reduce register pressure (though it may not necessarily hurt |
| /// register pressure); remove it to simplify the system. |
| void LSRInstance::NarrowSearchSpaceByDetectingSupersets() { |
| if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { |
| DEBUG(dbgs() << "The search space is too complex.\n"); |
| |
| DEBUG(dbgs() << "Narrowing the search space by eliminating formulae " |
| "which use a superset of registers used by other " |
| "formulae.\n"); |
| |
| for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { |
| LSRUse &LU = Uses[LUIdx]; |
| bool Any = false; |
| for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { |
| Formula &F = LU.Formulae[i]; |
| // Look for a formula with a constant or GV in a register. If the use |
| // also has a formula with that same value in an immediate field, |
| // delete the one that uses a register. |
| for (SmallVectorImpl<const SCEV *>::const_iterator |
| I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) { |
| if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) { |
| Formula NewF = F; |
| NewF.BaseOffset += C->getValue()->getSExtValue(); |
| NewF.BaseRegs.erase(NewF.BaseRegs.begin() + |
| (I - F.BaseRegs.begin())); |
| if (LU.HasFormulaWithSameRegs(NewF)) { |
| DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n'); |
| LU.DeleteFormula(F); |
| --i; |
| --e; |
| Any = true; |
| break; |
| } |
| } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) { |
| if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) |
| if (!F.BaseGV) { |
| Formula NewF = F; |
| NewF.BaseGV = GV; |
| NewF.BaseRegs.erase(NewF.BaseRegs.begin() + |
| (I - F.BaseRegs.begin())); |
| if (LU.HasFormulaWithSameRegs(NewF)) { |
| DEBUG(dbgs() << " Deleting "; F.print(dbgs()); |
| dbgs() << '\n'); |
| LU.DeleteFormula(F); |
| --i; |
| --e; |
| Any = true; |
| break; |
| } |
| } |
| } |
| } |
| } |
| if (Any) |
| LU.RecomputeRegs(LUIdx, RegUses); |
| } |
| |
| DEBUG(dbgs() << "After pre-selection:\n"; |
| print_uses(dbgs())); |
| } |
| } |
| |
| /// When there are many registers for expressions like A, A+1, A+2, etc., |
| /// allocate a single register for them. |
| void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() { |
| if (EstimateSearchSpaceComplexity() < ComplexityLimit) |
| return; |
| |
| DEBUG(dbgs() << "The search space is too complex.\n" |
| "Narrowing the search space by assuming that uses separated " |
| "by a constant offset will use the same registers.\n"); |
| |
| // This is especially useful for unrolled loops. |
| |
| for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { |
| LSRUse &LU = Uses[LUIdx]; |
| for (const Formula &F : LU.Formulae) { |
| if (F.BaseOffset == 0 || (F.Scale != 0 && F.Scale != 1)) |
| continue; |
| |
| LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU); |
| if (!LUThatHas) |
| continue; |
| |
| if (!reconcileNewOffset(*LUThatHas, F.BaseOffset, /*HasBaseReg=*/ false, |
| LU.Kind, LU.AccessTy)) |
| continue; |
| |
| DEBUG(dbgs() << " Deleting use "; LU.print(dbgs()); dbgs() << '\n'); |
| |
| LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop; |
| |
| // Transfer the fixups of LU to LUThatHas. |
| for (LSRFixup &Fixup : LU.Fixups) { |
| Fixup.Offset += F.BaseOffset; |
| LUThatHas->pushFixup(Fixup); |
| DEBUG(dbgs() << "New fixup has offset " << Fixup.Offset << '\n'); |
| } |
| |
| // Delete formulae from the new use which are no longer legal. |
| bool Any = false; |
| for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) { |
| Formula &F = LUThatHas->Formulae[i]; |
| if (!isLegalUse(TTI, LUThatHas->MinOffset, LUThatHas->MaxOffset, |
| LUThatHas->Kind, LUThatHas->AccessTy, F)) { |
| DEBUG(dbgs() << " Deleting "; F.print(dbgs()); |
| dbgs() << '\n'); |
| LUThatHas->DeleteFormula(F); |
| --i; |
| --e; |
| Any = true; |
| } |
| } |
| |
| if (Any) |
| LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses); |
| |
| // Delete the old use. |
| DeleteUse(LU, LUIdx); |
| --LUIdx; |
| --NumUses; |
| break; |
| } |
| } |
| |
| DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); |
| } |
| |
| /// Call FilterOutUndesirableDedicatedRegisters again, if necessary, now that |
| /// we've done more filtering, as it may be able to find more formulae to |
| /// eliminate. |
| void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){ |
| if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { |
| DEBUG(dbgs() << "The search space is too complex.\n"); |
| |
| DEBUG(dbgs() << "Narrowing the search space by re-filtering out " |
| "undesirable dedicated registers.\n"); |
| |
| FilterOutUndesirableDedicatedRegisters(); |
| |
| DEBUG(dbgs() << "After pre-selection:\n"; |
| print_uses(dbgs())); |
| } |
| } |
| |
| /// If a LSRUse has multiple formulae with the same ScaledReg and Scale. |
| /// Pick the best one and delete the others. |
| /// This narrowing heuristic is to keep as many formulae with different |
| /// Scale and ScaledReg pair as possible while narrowing the search space. |
| /// The benefit is that it is more likely to find out a better solution |
| /// from a formulae set with more Scale and ScaledReg variations than |
| /// a formulae set with the same Scale and ScaledReg. The picking winner |
| /// reg heurstic will often keep the formulae with the same Scale and |
| /// ScaledReg and filter others, and we want to avoid that if possible. |
| void LSRInstance::NarrowSearchSpaceByFilterFormulaWithSameScaledReg() { |
| if (EstimateSearchSpaceComplexity() < ComplexityLimit) |
| return; |
| |
| DEBUG(dbgs() << "The search space is too complex.\n" |
| "Narrowing the search space by choosing the best Formula " |
| "from the Formulae with the same Scale and ScaledReg.\n"); |
| |
| // Map the "Scale * ScaledReg" pair to the best formula of current LSRUse. |
| using BestFormulaeTy = DenseMap<std::pair<const SCEV *, int64_t>, size_t>; |
| |
| BestFormulaeTy BestFormulae; |
| #ifndef NDEBUG |
| bool ChangedFormulae = false; |
| #endif |
| DenseSet<const SCEV *> VisitedRegs; |
| SmallPtrSet<const SCEV *, 16> Regs; |
| |
| for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { |
| LSRUse &LU = Uses[LUIdx]; |
| DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); dbgs() << '\n'); |
| |
| // Return true if Formula FA is better than Formula FB. |
| auto IsBetterThan = [&](Formula &FA, Formula &FB) { |
| // First we will try to choose the Formula with fewer new registers. |
| // For a register used by current Formula, the more the register is |
| // shared among LSRUses, the less we increase the register number |
| // counter of the formula. |
| size_t FARegNum = 0; |
| for (const SCEV *Reg : FA.BaseRegs) { |
| const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg); |
| FARegNum += (NumUses - UsedByIndices.count() + 1); |
| } |
| size_t FBRegNum = 0; |
| for (const SCEV *Reg : FB.BaseRegs) { |
| const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg); |
| FBRegNum += (NumUses - UsedByIndices.count() + 1); |
| } |
| if (FARegNum != FBRegNum) |
| return FARegNum < FBRegNum; |
| |
| // If the new register numbers are the same, choose the Formula with |
| // less Cost. |
| Cost CostFA, CostFB; |
| Regs.clear(); |
| CostFA.RateFormula(TTI, FA, Regs, VisitedRegs, L, SE, DT, LU); |
| Regs.clear(); |
| CostFB.RateFormula(TTI, FB, Regs, VisitedRegs, L, SE, DT, LU); |
| return CostFA.isLess(CostFB, TTI); |
| }; |
| |
| bool Any = false; |
| for (size_t FIdx = 0, NumForms = LU.Formulae.size(); FIdx != NumForms; |
| ++FIdx) { |
| Formula &F = LU.Formulae[FIdx]; |
| if (!F.ScaledReg) |
| continue; |
| auto P = BestFormulae.insert({{F.ScaledReg, F.Scale}, FIdx}); |
| if (P.second) |
| continue; |
| |
| Formula &Best = LU.Formulae[P.first->second]; |
| if (IsBetterThan(F, Best)) |
| std::swap(F, Best); |
| DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs()); |
| dbgs() << "\n" |
| " in favor of formula "; |
| Best.print(dbgs()); dbgs() << '\n'); |
| #ifndef NDEBUG |
| ChangedFormulae = true; |
| #endif |
| LU.DeleteFormula(F); |
| --FIdx; |
| --NumForms; |
| Any = true; |
| } |
| if (Any) |
| LU.RecomputeRegs(LUIdx, RegUses); |
| |
| // Reset this to prepare for the next use. |
| BestFormulae.clear(); |
| } |
| |
| DEBUG(if (ChangedFormulae) { |
| dbgs() << "\n" |
| "After filtering out undesirable candidates:\n"; |
| print_uses(dbgs()); |
| }); |
| } |
| |
| /// The function delete formulas with high registers number expectation. |
| /// Assuming we don't know the value of each formula (already delete |
| /// all inefficient), generate probability of not selecting for each |
| /// register. |
| /// For example, |
| /// Use1: |
| /// reg(a) + reg({0,+,1}) |
| /// reg(a) + reg({-1,+,1}) + 1 |
| /// reg({a,+,1}) |
| /// Use2: |
| /// reg(b) + reg({0,+,1}) |
| /// reg(b) + reg({-1,+,1}) + 1 |
| /// reg({b,+,1}) |
| /// Use3: |
| /// reg(c) + reg(b) + reg({0,+,1}) |
| /// reg(c) + reg({b,+,1}) |
| /// |
| /// Probability of not selecting |
| /// Use1 Use2 Use3 |
| /// reg(a) (1/3) * 1 * 1 |
| /// reg(b) 1 * (1/3) * (1/2) |
| /// reg({0,+,1}) (2/3) * (2/3) * (1/2) |
| /// reg({-1,+,1}) (2/3) * (2/3) * 1 |
| /// reg({a,+,1}) (2/3) * 1 * 1 |
| /// reg({b,+,1}) 1 * (2/3) * (2/3) |
| /// reg(c) 1 * 1 * 0 |
| /// |
| /// Now count registers number mathematical expectation for each formula: |
| /// Note that for each use we exclude probability if not selecting for the use. |
| /// For example for Use1 probability for reg(a) would be just 1 * 1 (excluding |
| /// probabilty 1/3 of not selecting for Use1). |
| /// Use1: |
| /// reg(a) + reg({0,+,1}) 1 + 1/3 -- to be deleted |
| /// reg(a) + reg({-1,+,1}) + 1 1 + 4/9 -- to be deleted |
| /// reg({a,+,1}) 1 |
| /// Use2: |
| /// reg(b) + reg({0,+,1}) 1/2 + 1/3 -- to be deleted |
| /// reg(b) + reg({-1,+,1}) + 1 1/2 + 2/3 -- to be deleted |
| /// reg({b,+,1}) 2/3 |
| /// Use3: |
| /// reg(c) + reg(b) + reg({0,+,1}) 1 + 1/3 + 4/9 -- to be deleted |
| /// reg(c) + reg({b,+,1}) 1 + 2/3 |
| void LSRInstance::NarrowSearchSpaceByDeletingCostlyFormulas() { |
| if (EstimateSearchSpaceComplexity() < ComplexityLimit) |
| return; |
| // Ok, we have too many of formulae on our hands to conveniently handle. |
| // Use a rough heuristic to thin out the list. |
| |
| // Set of Regs wich will be 100% used in final solution. |
| // Used in each formula of a solution (in example above this is reg(c)). |
| // We can skip them in calculations. |
| SmallPtrSet<const SCEV *, 4> UniqRegs; |
| DEBUG(dbgs() << "The search space is too complex.\n"); |
| |
| // Map each register to probability of not selecting |
| DenseMap <const SCEV *, float> RegNumMap; |
| for (const SCEV *Reg : RegUses) { |
| if (UniqRegs.count(Reg)) |
| continue; |
| float PNotSel = 1; |
| for (const LSRUse &LU : Uses) { |
| if (!LU.Regs.count(Reg)) |
| continue; |
| float P = LU.getNotSelectedProbability(Reg); |
| if (P != 0.0) |
| PNotSel *= P; |
| else |
| UniqRegs.insert(Reg); |
| } |
| RegNumMap.insert(std::make_pair(Reg, PNotSel)); |
| } |
| |
| DEBUG(dbgs() << "Narrowing the search space by deleting costly formulas\n"); |
| |
| // Delete formulas where registers number expectation is high. |
| for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { |
| LSRUse &LU = Uses[LUIdx]; |
| // If nothing to delete - continue. |
| if (LU.Formulae.size() < 2) |
| continue; |
| // This is temporary solution to test performance. Float should be |
| // replaced with round independent type (based on integers) to avoid |
| // different results for different target builds. |
| float FMinRegNum = LU.Formulae[0].getNumRegs(); |
| float FMinARegNum = LU.Formulae[0].getNumRegs(); |
| size_t MinIdx = 0; |
| for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { |
| Formula &F = LU.Formulae[i]; |
| float FRegNum = 0; |
| float FARegNum = 0; |
| for (const SCEV *BaseReg : F.BaseRegs) { |
| if (UniqRegs.count(BaseReg)) |
| continue; |
| FRegNum += RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg); |
| if (isa<SCEVAddRecExpr>(BaseReg)) |
| FARegNum += |
| RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg); |
| } |
| if (const SCEV *ScaledReg = F.ScaledReg) { |
| if (!UniqRegs.count(ScaledReg)) { |
| FRegNum += |
| RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg); |
| if (isa<SCEVAddRecExpr>(ScaledReg)) |
| FARegNum += |
| RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg); |
| } |
| } |
| if (FMinRegNum > FRegNum || |
| (FMinRegNum == FRegNum && FMinARegNum > FARegNum)) { |
| FMinRegNum = FRegNum; |
| FMinARegNum = FARegNum; |
| MinIdx = i; |
| } |
| } |
| DEBUG(dbgs() << " The formula "; LU.Formulae[MinIdx].print(dbgs()); |
| dbgs() << " with min reg num " << FMinRegNum << '\n'); |
| if (MinIdx != 0) |
| std::swap(LU.Formulae[MinIdx], LU.Formulae[0]); |
| while (LU.Formulae.size() != 1) { |
| DEBUG(dbgs() << " Deleting "; LU.Formulae.back().print(dbgs()); |
| dbgs() << '\n'); |
| LU.Formulae.pop_back(); |
| } |
| LU.RecomputeRegs(LUIdx, RegUses); |
| assert(LU.Formulae.size() == 1 && "Should be exactly 1 min regs formula"); |
| Formula &F = LU.Formulae[0]; |
| DEBUG(dbgs() << " Leaving only "; F.print(dbgs()); dbgs() << '\n'); |
| // When we choose the formula, the regs become unique. |
| UniqRegs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); |
| if (F.ScaledReg) |
| UniqRegs.insert(F.ScaledReg); |
| } |
| DEBUG(dbgs() << "After pre-selection:\n"; |
| print_uses(dbgs())); |
| } |
| |
| /// Pick a register which seems likely to be profitable, and then in any use |
| /// which has any reference to that register, delete all formulae which do not |
| /// reference that register. |
| void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() { |
| // With all other options exhausted, loop until the system is simple |
| // enough to handle. |
| SmallPtrSet<const SCEV *, 4> Taken; |
| while (EstimateSearchSpaceComplexity() >= ComplexityLimit) { |
| // Ok, we have too many of formulae on our hands to conveniently handle. |
| // Use a rough heuristic to thin out the list. |
| DEBUG(dbgs() << "The search space is too complex.\n"); |
| |
| // Pick the register which is used by the most LSRUses, which is likely |
| // to be a good reuse register candidate. |
| const SCEV *Best = nullptr; |
| unsigned BestNum = 0; |
| for (const SCEV *Reg : RegUses) { |
| if (Taken.count(Reg)) |
| continue; |
| if (!Best) { |
| Best = Reg; |
| BestNum = RegUses.getUsedByIndices(Reg).count(); |
| } else { |
| unsigned Count = RegUses.getUsedByIndices(Reg).count(); |
| if (Count > BestNum) { |
| Best = Reg; |
| BestNum = Count; |
| } |
| } |
| } |
| |
| DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best |
| << " will yield profitable reuse.\n"); |
| Taken.insert(Best); |
| |
| // In any use with formulae which references this register, delete formulae |
| // which don't reference it. |
| for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { |
| LSRUse &LU = Uses[LUIdx]; |
| if (!LU.Regs.count(Best)) continue; |
| |
| bool Any = false; |
| for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { |
| Formula &F = LU.Formulae[i]; |
| if (!F.referencesReg(Best)) { |
| DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n'); |
| LU.DeleteFormula(F); |
| --e; |
| --i; |
| Any = true; |
| assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?"); |
| continue; |
| } |
| } |
| |
| if (Any) |
| LU.RecomputeRegs(LUIdx, RegUses); |
| } |
| |
| DEBUG(dbgs() << "After pre-selection:\n"; |
| print_uses(dbgs())); |
| } |
| } |
| |
| /// If there are an extraordinary number of formulae to choose from, use some |
| /// rough heuristics to prune down the number of formulae. This keeps the main |
| /// solver from taking an extraordinary amount of time in some worst-case |
| /// scenarios. |
| void LSRInstance::NarrowSearchSpaceUsingHeuristics() { |
| NarrowSearchSpaceByDetectingSupersets(); |
| NarrowSearchSpaceByCollapsingUnrolledCode(); |
| NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(); |
| if (FilterSameScaledReg) |
| NarrowSearchSpaceByFilterFormulaWithSameScaledReg(); |
| if (LSRExpNarrow) |
| NarrowSearchSpaceByDeletingCostlyFormulas(); |
| else |
| NarrowSearchSpaceByPickingWinnerRegs(); |
| } |
| |
| /// This is the recursive solver. |
| void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution, |
| Cost &SolutionCost, |
| SmallVectorImpl<const Formula *> &Workspace, |
| const Cost &CurCost, |
| const SmallPtrSet<const SCEV *, 16> &CurRegs, |
| DenseSet<const SCEV *> &VisitedRegs) const { |
| // Some ideas: |
| // - prune more: |
| // - use more aggressive filtering |
| // - sort the formula so that the most profitable solutions are found first |
| // - sort the uses too |
| // - search faster: |
| // - don't compute a cost, and then compare. compare while computing a cost |
| // and bail early. |
| // - track register sets with SmallBitVector |
| |
| const LSRUse &LU = Uses[Workspace.size()]; |
| |
| // If this use references any register that's already a part of the |
| // in-progress solution, consider it a requirement that a formula must |
| // reference that register in order to be considered. This prunes out |
| // unprofitable searching. |
| SmallSetVector<const SCEV *, 4> ReqRegs; |
| for (const SCEV *S : CurRegs) |
| if (LU.Regs.count(S)) |
| ReqRegs.insert(S); |
| |
| SmallPtrSet<const SCEV *, 16> NewRegs; |
| Cost NewCost; |
| for (const Formula &F : LU.Formulae) { |
| // Ignore formulae which may not be ideal in terms of register reuse of |
| // ReqRegs. The formula should use all required registers before |
| // introducing new ones. |
| int NumReqRegsToFind = std::min(F.getNumRegs(), ReqRegs.size()); |
| for (const SCEV *Reg : ReqRegs) { |
| if ((F.ScaledReg && F.ScaledReg == Reg) || |
| is_contained(F.BaseRegs, Reg)) { |
| --NumReqRegsToFind; |
| if (NumReqRegsToFind == 0) |
| break; |
| } |
| } |
| if (NumReqRegsToFind != 0) { |
| // If none of the formulae satisfied the required registers, then we could |
| // clear ReqRegs and try again. Currently, we simply give up in this case. |
| continue; |
| } |
| |
| // Evaluate the cost of the current formula. If it's already worse than |
| // the current best, prune the search at that point. |
| NewCost = CurCost; |
| NewRegs = CurRegs; |
| NewCost.RateFormula(TTI, F, NewRegs, VisitedRegs, L, SE, DT, LU); |
| if (NewCost.isLess(SolutionCost, TTI)) { |
| Workspace.push_back(&F); |
| if (Workspace.size() != Uses.size()) { |
| SolveRecurse(Solution, SolutionCost, Workspace, NewCost, |
| NewRegs, VisitedRegs); |
| if (F.getNumRegs() == 1 && Workspace.size() == 1) |
| VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]); |
| } else { |
| DEBUG(dbgs() << "New best at "; NewCost.print(dbgs()); |
| dbgs() << ".\n Regs:"; |
| for (const SCEV *S : NewRegs) |
| dbgs() << ' ' << *S; |
| dbgs() << '\n'); |
| |
| SolutionCost = NewCost; |
| Solution = Workspace; |
| } |
| Workspace.pop_back(); |
| } |
| } |
| } |
| |
| /// Choose one formula from each use. Return the results in the given Solution |
| /// vector. |
| void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const { |
| SmallVector<const Formula *, 8> Workspace; |
| Cost SolutionCost; |
| SolutionCost.Lose(); |
| Cost CurCost; |
| SmallPtrSet<const SCEV *, 16> CurRegs; |
| DenseSet<const SCEV *> VisitedRegs; |
| Workspace.reserve(Uses.size()); |
| |
| // SolveRecurse does all the work. |
| SolveRecurse(Solution, SolutionCost, Workspace, CurCost, |
| CurRegs, VisitedRegs); |
| if (Solution.empty()) { |
| DEBUG(dbgs() << "\nNo Satisfactory Solution\n"); |
| return; |
| } |
| |
| // Ok, we've now made all our decisions. |
| DEBUG(dbgs() << "\n" |
| "The chosen solution requires "; SolutionCost.print(dbgs()); |
| dbgs() << ":\n"; |
| for (size_t i = 0, e = Uses.size(); i != e; ++i) { |
| dbgs() << " "; |
| Uses[i].print(dbgs()); |
| dbgs() << "\n" |
| " "; |
| Solution[i]->print(dbgs()); |
| dbgs() << '\n'; |
| }); |
| |
| assert(Solution.size() == Uses.size() && "Malformed solution!"); |
| } |
| |
| /// Helper for AdjustInsertPositionForExpand. Climb up the dominator tree far as |
| /// we can go while still being dominated by the input positions. This helps |
| /// canonicalize the insert position, which encourages sharing. |
| BasicBlock::iterator |
| LSRInstance::HoistInsertPosition(BasicBlock::iterator IP, |
| const SmallVectorImpl<Instruction *> &Inputs) |
| const { |
| Instruction *Tentative = &*IP; |
| while (true) { |
| bool AllDominate = true; |
| Instruction *BetterPos = nullptr; |
| // Don't bother attempting to insert before a catchswitch, their basic block |
| // cannot have other non-PHI instructions. |
| if (isa<CatchSwitchInst>(Tentative)) |
| return IP; |
| |
| for (Instruction *Inst : Inputs) { |
| if (Inst == Tentative || !DT.dominates(Inst, Tentative)) { |
| AllDominate = false; |
| break; |
| } |
| // Attempt to find an insert position in the middle of the block, |
| // instead of at the end, so that it can be used for other expansions. |
| if (Tentative->getParent() == Inst->getParent() && |
| (!BetterPos || !DT.dominates(Inst, BetterPos))) |
| BetterPos = &*std::next(BasicBlock::iterator(Inst)); |
| } |
| if (!AllDominate) |
| break; |
| if (BetterPos) |
| IP = BetterPos->getIterator(); |
| else |
| IP = Tentative->getIterator(); |
| |
| const Loop *IPLoop = LI.getLoopFor(IP->getParent()); |
| unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0; |
| |
| BasicBlock *IDom; |
| for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) { |
| if (!Rung) return IP; |
| Rung = Rung->getIDom(); |
| if (!Rung) return IP; |
| IDom = Rung->getBlock(); |
| |
| // Don't climb into a loop though. |
| const Loop *IDomLoop = LI.getLoopFor(IDom); |
| unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0; |
| if (IDomDepth <= IPLoopDepth && |
| (IDomDepth != IPLoopDepth || IDomLoop == IPLoop)) |
| break; |
| } |
| |
| Tentative = IDom->getTerminator(); |
| } |
| |
| return IP; |
| } |
| |
| /// Determine an input position which will be dominated by the operands and |
| /// which will dominate the result. |
| BasicBlock::iterator |
| LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator LowestIP, |
| const LSRFixup &LF, |
| const LSRUse &LU, |
| SCEVExpander &Rewriter) const { |
| // Collect some instructions which must be dominated by the |
| // expanding replacement. These must be dominated by any operands that |
| // will be required in the expansion. |
| SmallVector<Instruction *, 4> Inputs; |
| if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace)) |
| Inputs.push_back(I); |
| if (LU.Kind == LSRUse::ICmpZero) |
| if (Instruction *I = |
| dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1))) |
| Inputs.push_back(I); |
| if (LF.PostIncLoops.count(L)) { |
| if (LF.isUseFullyOutsideLoop(L)) |
| Inputs.push_back(L->getLoopLatch()->getTerminator()); |
| else |
| Inputs.push_back(IVIncInsertPos); |
| } |
| // The expansion must also be dominated by the increment positions of any |
| // loops it for which it is using post-inc mode. |
| for (const Loop *PIL : LF.PostIncLoops) { |
| if (PIL == L) continue; |
| |
| // Be dominated by the loop exit. |
| SmallVector<BasicBlock *, 4> ExitingBlocks; |
| PIL->getExitingBlocks(ExitingBlocks); |
| if (!ExitingBlocks.empty()) { |
| BasicBlock *BB = ExitingBlocks[0]; |
| for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i) |
| BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]); |
| Inputs.push_back(BB->getTerminator()); |
| } |
| } |
| |
| assert(!isa<PHINode>(LowestIP) && !LowestIP->isEHPad() |
| && !isa<DbgInfoIntrinsic>(LowestIP) && |
| "Insertion point must be a normal instruction"); |
| |
| // Then, climb up the immediate dominator tree as far as we can go while |
| // still being dominated by the input positions. |
| BasicBlock::iterator IP = HoistInsertPosition(LowestIP, Inputs); |
| |
| // Don't insert instructions before PHI nodes. |
| while (isa<PHINode>(IP)) ++IP; |
| |
| // Ignore landingpad instructions. |
| while (IP->isEHPad()) ++IP; |
| |
| // Ignore debug intrinsics. |
| while (isa<DbgInfoIntrinsic>(IP)) ++IP; |
| |
| // Set IP below instructions recently inserted by SCEVExpander. This keeps the |
| // IP consistent across expansions and allows the previously inserted |
| // instructions to be reused by subsequent expansion. |
| while (Rewriter.isInsertedInstruction(&*IP) && IP != LowestIP) |
| ++IP; |
| |
| return IP; |
| } |
| |
| /// Emit instructions for the leading candidate expression for this LSRUse (this |
| /// is called "expanding"). |
| Value *LSRInstance::Expand(const LSRUse &LU, const LSRFixup &LF, |
| const Formula &F, BasicBlock::iterator IP, |
| SCEVExpander &Rewriter, |
| SmallVectorImpl<WeakTrackingVH> &DeadInsts) const { |
| if (LU.RigidFormula) |
| return LF.OperandValToReplace; |
| |
| // Determine an input position which will be dominated by the operands and |
| // which will dominate the result. |
| IP = AdjustInsertPositionForExpand(IP, LF, LU, Rewriter); |
| Rewriter.setInsertPoint(&*IP); |
| |
| // Inform the Rewriter if we have a post-increment use, so that it can |
| // perform an advantageous expansion. |
| Rewriter.setPostInc(LF.PostIncLoops); |
| |
| // This is the type that the user actually needs. |
| Type *OpTy = LF.OperandValToReplace->getType(); |
| // This will be the type that we'll initially expand to. |
| Type *Ty = F.getType(); |
| if (!Ty) |
| // No type known; just expand directly to the ultimate type. |
| Ty = OpTy; |
| else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy)) |
| // Expand directly to the ultimate type if it's the right size. |
| Ty = OpTy; |
| // This is the type to do integer arithmetic in. |
| Type *IntTy = SE.getEffectiveSCEVType(Ty); |
| |
| // Build up a list of operands to add together to form the full base. |
| SmallVector<const SCEV *, 8> Ops; |
| |
| // Expand the BaseRegs portion. |
| for (const SCEV *Reg : F.BaseRegs) { |
| assert(!Reg->isZero() && "Zero allocated in a base register!"); |
| |
| // If we're expanding for a post-inc user, make the post-inc adjustment. |
| Reg = denormalizeForPostIncUse(Reg, LF.PostIncLoops, SE); |
| Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, nullptr))); |
| } |
| |
| // Expand the ScaledReg portion. |
| Value *ICmpScaledV = nullptr; |
| if (F.Scale != 0) { |
| const SCEV *ScaledS = F.ScaledReg; |
| |
| // If we're expanding for a post-inc user, make the post-inc adjustment. |
| PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops); |
| ScaledS = denormalizeForPostIncUse(ScaledS, Loops, SE); |
| |
| if (LU.Kind == LSRUse::ICmpZero) { |
| // Expand ScaleReg as if it was part of the base regs. |
| if (F.Scale == 1) |
| Ops.push_back( |
| SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr))); |
| else { |
| // An interesting way of "folding" with an icmp is to use a negated |
| // scale, which we'll implement by inserting it into the other operand |
| // of the icmp. |
| assert(F.Scale == -1 && |
| "The only scale supported by ICmpZero uses is -1!"); |
| ICmpScaledV = Rewriter.expandCodeFor(ScaledS, nullptr); |
| } |
| } else { |
| // Otherwise just expand the scaled register and an explicit scale, |
| // which is expected to be matched as part of the address. |
| |
| // Flush the operand list to suppress SCEVExpander hoisting address modes. |
| // Unless the addressing mode will not be folded. |
| if (!Ops.empty() && LU.Kind == LSRUse::Address && |
| isAMCompletelyFolded(TTI, LU, F)) { |
| Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), nullptr); |
| Ops.clear(); |
| Ops.push_back(SE.getUnknown(FullV)); |
| } |
| ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr)); |
| if (F.Scale != 1) |
| ScaledS = |
| SE.getMulExpr(ScaledS, SE.getConstant(ScaledS->getType(), F.Scale)); |
| Ops.push_back(ScaledS); |
| } |
| } |
| |
| // Expand the GV portion. |
| if (F.BaseGV) { |
| // Flush the operand list to suppress SCEVExpander hoisting. |
| if (!Ops.empty()) { |
| Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty); |
| Ops.clear(); |
| Ops.push_back(SE.getUnknown(FullV)); |
| } |
| Ops.push_back(SE.getUnknown(F.BaseGV)); |
| } |
| |
| // Flush the operand list to suppress SCEVExpander hoisting of both folded and |
| // unfolded offsets. LSR assumes they both live next to their uses. |
| if (!Ops.empty()) { |
| Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty); |
| Ops.clear(); |
| Ops.push_back(SE.getUnknown(FullV)); |
| } |
| |
| // Expand the immediate portion. |
| int64_t Offset = (uint64_t)F.BaseOffset + LF.Offset; |
| if (Offset != 0) { |
| if (LU.Kind == LSRUse::ICmpZero) { |
| // The other interesting way of "folding" with an ICmpZero is to use a |
| // negated immediate. |
| if (!ICmpScaledV) |
| ICmpScaledV = ConstantInt::get(IntTy, -(uint64_t)Offset); |
| else { |
| Ops.push_back(SE.getUnknown(ICmpScaledV)); |
| ICmpScaledV = ConstantInt::get(IntTy, Offset); |
| } |
| } else { |
| // Just add the immediate values. These again are expected to be matched |
| // as part of the address. |
| Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset))); |
| } |
| } |
| |
| // Expand the unfolded offset portion. |
| int64_t UnfoldedOffset = F.UnfoldedOffset; |
| if (UnfoldedOffset != 0) { |
| // Just add the immediate values. |
| Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, |
| UnfoldedOffset))); |
| } |
| |
| // Emit instructions summing all the operands. |
| const SCEV *FullS = Ops.empty() ? |
| SE.getConstant(IntTy, 0) : |
| SE.getAddExpr(Ops); |
| Value *FullV = Rewriter.expandCodeFor(FullS, Ty); |
| |
| // We're done expanding now, so reset the rewriter. |
| Rewriter.clearPostInc(); |
| |
| // An ICmpZero Formula represents an ICmp which we're handling as a |
| // comparison against zero. Now that we've expanded an expression for that |
| // form, update the ICmp's other operand. |
| if (LU.Kind == LSRUse::ICmpZero) { |
| ICmpInst *CI = cast<ICmpInst>(LF.UserInst); |
| DeadInsts.emplace_back(CI->getOperand(1)); |
| assert(!F.BaseGV && "ICmp does not support folding a global value and " |
| "a scale at the same time!"); |
| if (F.Scale == -1) { |
| if (ICmpScaledV->getType() != OpTy) { |
| Instruction *Cast = |
| CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false, |
| OpTy, false), |
| ICmpScaledV, OpTy, "tmp", CI); |
| ICmpScaledV = Cast; |
| } |
| CI->setOperand(1, ICmpScaledV); |
| } else { |
| // A scale of 1 means that the scale has been expanded as part of the |
| // base regs. |
| assert((F.Scale == 0 || F.Scale == 1) && |
| "ICmp does not support folding a global value and " |
| "a scale at the same time!"); |
| Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy), |
| -(uint64_t)Offset); |
| if (C->getType() != OpTy) |
| C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, |
| OpTy, false), |
| C, OpTy); |
| |
| CI->setOperand(1, C); |
| } |
| } |
| |
| return FullV; |
| } |
| |
| /// Helper for Rewrite. PHI nodes are special because the use of their operands |
| /// effectively happens in their predecessor blocks, so the expression may need |
| /// to be expanded in multiple places. |
| void LSRInstance::RewriteForPHI( |
| PHINode *PN, const LSRUse &LU, const LSRFixup &LF, const Formula &F, |
| SCEVExpander &Rewriter, SmallVectorImpl<WeakTrackingVH> &DeadInsts) const { |
| DenseMap<BasicBlock *, Value *> Inserted; |
| for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) |
| if (PN->getIncomingValue(i) == LF.OperandValToReplace) { |
| BasicBlock *BB = PN->getIncomingBlock(i); |
| |
| // If this is a critical edge, split the edge so that we do not insert |
| // the code on all predecessor/successor paths. We do this unless this |
| // is the canonical backedge for this loop, which complicates post-inc |
| // users. |
| if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 && |
| !isa<IndirectBrInst>(BB->getTerminator()) && |
| !isa<CatchSwitchInst>(BB->getTerminator())) { |
| BasicBlock *Parent = PN->getParent(); |
| Loop *PNLoop = LI.getLoopFor(Parent); |
| if (!PNLoop || Parent != PNLoop->getHeader()) { |
| // Split the critical edge. |
| BasicBlock *NewBB = nullptr; |
| if (!Parent->isLandingPad()) { |
| NewBB = SplitCriticalEdge(BB, Parent, |
| CriticalEdgeSplittingOptions(&DT, &LI) |
| .setMergeIdenticalEdges() |
| .setDontDeleteUselessPHIs()); |
| } else { |
| SmallVector<BasicBlock*, 2> NewBBs; |
| SplitLandingPadPredecessors(Parent, BB, "", "", NewBBs, &DT, &LI); |
| NewBB = NewBBs[0]; |
| } |
| // If NewBB==NULL, then SplitCriticalEdge refused to split because all |
| // phi predecessors are identical. The simple thing to do is skip |
| // splitting in this case rather than complicate the API. |
| if (NewBB) { |
| // If PN is outside of the loop and BB is in the loop, we want to |
| // move the block to be immediately before the PHI block, not |
| // immediately after BB. |
| if (L->contains(BB) && !L->contains(PN)) |
| NewBB->moveBefore(PN->getParent()); |
| |
| // Splitting the edge can reduce the number of PHI entries we have. |
| e = PN->getNumIncomingValues(); |
| BB = NewBB; |
| i = PN->getBasicBlockIndex(BB); |
| } |
| } |
| } |
| |
| std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair = |
| Inserted.insert(std::make_pair(BB, static_cast<Value *>(nullptr))); |
| if (!Pair.second) |
| PN->setIncomingValue(i, Pair.first->second); |
| else { |
| Value *FullV = Expand(LU, LF, F, BB->getTerminator()->getIterator(), |
| Rewriter, DeadInsts); |
| |
| // If this is reuse-by-noop-cast, insert the noop cast. |
| Type *OpTy = LF.OperandValToReplace->getType(); |
| if (FullV->getType() != OpTy) |
| FullV = |
| CastInst::Create(CastInst::getCastOpcode(FullV, false, |
| OpTy, false), |
| FullV, LF.OperandValToReplace->getType(), |
| "tmp", BB->getTerminator()); |
| |
| PN->setIncomingValue(i, FullV); |
| Pair.first->second = FullV; |
| } |
| } |
| } |
| |
| /// Emit instructions for the leading candidate expression for this LSRUse (this |
| /// is called "expanding"), and update the UserInst to reference the newly |
| /// expanded value. |
| void LSRInstance::Rewrite(const LSRUse &LU, const LSRFixup &LF, |
| const Formula &F, SCEVExpander &Rewriter, |
| SmallVectorImpl<WeakTrackingVH> &DeadInsts) const { |
| // First, find an insertion point that dominates UserInst. For PHI nodes, |
| // find the nearest block which dominates all the relevant uses. |
| if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) { |
| RewriteForPHI(PN, LU, LF, F, Rewriter, DeadInsts); |
| } else { |
| Value *FullV = |
| Expand(LU, LF, F, LF.UserInst->getIterator(), Rewriter, DeadInsts); |
| |
| // If this is reuse-by-noop-cast, insert the noop cast. |
| Type *OpTy = LF.OperandValToReplace->getType(); |
| if (FullV->getType() != OpTy) { |
| Instruction *Cast = |
| CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false), |
| FullV, OpTy, "tmp", LF.UserInst); |
| FullV = Cast; |
| } |
| |
| // Update the user. ICmpZero is handled specially here (for now) because |
| // Expand may have updated one of the operands of the icmp already, and |
| // its new value may happen to be equal to LF.OperandValToReplace, in |
| // which case doing replaceUsesOfWith leads to replacing both operands |
| // with the same value. TODO: Reorganize this. |
| if (LU.Kind == LSRUse::ICmpZero) |
| LF.UserInst->setOperand(0, FullV); |
| else |
| LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV); |
| } |
| |
| DeadInsts.emplace_back(LF.OperandValToReplace); |
| } |
| |
| /// Rewrite all the fixup locations with new values, following the chosen |
| /// solution. |
| void LSRInstance::ImplementSolution( |
| const SmallVectorImpl<const Formula *> &Solution) { |
| // Keep track of instructions we may have made dead, so that |
| // we can remove them after we are done working. |
| SmallVector<WeakTrackingVH, 16> DeadInsts; |
| |
| SCEVExpander Rewriter(SE, L->getHeader()->getModule()->getDataLayout(), |
| "lsr"); |
| #ifndef NDEBUG |
| Rewriter.setDebugType(DEBUG_TYPE); |
| #endif |
| Rewriter.disableCanonicalMode(); |
| Rewriter.enableLSRMode(); |
| Rewriter.setIVIncInsertPos(L, IVIncInsertPos); |
| |
| // Mark phi nodes that terminate chains so the expander tries to reuse them. |
| for (const IVChain &Chain : IVChainVec) { |
| if (PHINode *PN = dyn_cast<PHINode>(Chain.tailUserInst())) |
| Rewriter.setChainedPhi(PN); |
| } |
| |
| // Expand the new value definitions and update the users. |
| for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) |
| for (const LSRFixup &Fixup : Uses[LUIdx].Fixups) { |
| Rewrite(Uses[LUIdx], Fixup, *Solution[LUIdx], Rewriter, DeadInsts); |
| Changed = true; |
| } |
| |
| for (const IVChain &Chain : IVChainVec) { |
| GenerateIVChain(Chain, Rewriter, DeadInsts); |
| Changed = true; |
| } |
| // Clean up after ourselves. This must be done before deleting any |
| // instructions. |
| Rewriter.clear(); |
| |
| Changed |= DeleteTriviallyDeadInstructions(DeadInsts); |
| } |
| |
| LSRInstance::LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, |
| DominatorTree &DT, LoopInfo &LI, |
| const TargetTransformInfo &TTI) |
| : IU(IU), SE(SE), DT(DT), LI(LI), TTI(TTI), L(L) { |
| // If LoopSimplify form is not available, stay out of trouble. |
| if (!L->isLoopSimplifyForm()) |
| return; |
| |
| // If there's no interesting work to be done, bail early. |
| if (IU.empty()) return; |
| |
| // If there's too much analysis to be done, bail early. We won't be able to |
| // model the problem anyway. |
| unsigned NumUsers = 0; |
| for (const IVStrideUse &U : IU) { |
| if (++NumUsers > MaxIVUsers) { |
| (void)U; |
| DEBUG(dbgs() << "LSR skipping loop, too many IV Users in " << U << "\n"); |
| return; |
| } |
| // Bail out if we have a PHI on an EHPad that gets a value from a |
| // CatchSwitchInst. Because the CatchSwitchInst cannot be split, there is |
| // no good place to stick any instructions. |
| if (auto *PN = dyn_cast<PHINode>(U.getUser())) { |
| auto *FirstNonPHI = PN->getParent()->getFirstNonPHI(); |
| if (isa<FuncletPadInst>(FirstNonPHI) || |
| isa<CatchSwitchInst>(FirstNonPHI)) |
| for (BasicBlock *PredBB : PN->blocks()) |
| if (isa<CatchSwitchInst>(PredBB->getFirstNonPHI())) |
| return; |
| } |
| } |
| |
| #ifndef NDEBUG |
| // All dominating loops must have preheaders, or SCEVExpander may not be able |
| // to materialize an AddRecExpr whose Start is an outer AddRecExpr. |
| // |
| // IVUsers analysis should only create users that are dominated by simple loop |
| // headers. Since this loop should dominate all of its users, its user list |
| // should be empty if this loop itself is not within a simple loop nest. |
| for (DomTreeNode *Rung = DT.getNode(L->getLoopPreheader()); |
| Rung; Rung = Rung->getIDom()) { |
| BasicBlock *BB = Rung->getBlock(); |
| const Loop *DomLoop = LI.getLoopFor(BB); |
| if (DomLoop && DomLoop->getHeader() == BB) { |
| assert(DomLoop->getLoopPreheader() && "LSR needs a simplified loop nest"); |
| } |
| } |
| #endif // DEBUG |
| |
| DEBUG(dbgs() << "\nLSR on loop "; |
| L->getHeader()->printAsOperand(dbgs(), /*PrintType=*/false); |
| dbgs() << ":\n"); |
| |
| // First, perform some low-level loop optimizations. |
| OptimizeShadowIV(); |
| OptimizeLoopTermCond(); |
| |
| // If loop preparation eliminates all interesting IV users, bail. |
| if (IU.empty()) return; |
| |
| // Skip nested loops until we can model them better with formulae. |
| if (!L->empty()) { |
| DEBUG(dbgs() << "LSR skipping outer loop " << *L << "\n"); |
| return; |
| } |
| |
| // Start collecting data and preparing for the solver. |
| CollectChains(); |
| CollectInterestingTypesAndFactors(); |
| CollectFixupsAndInitialFormulae(); |
| CollectLoopInvariantFixupsAndFormulae(); |
| |
| assert(!Uses.empty() && "IVUsers reported at least one use"); |
| DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n"; |
| print_uses(dbgs())); |
| |
| // Now use the reuse data to generate a bunch of interesting ways |
| // to formulate the values needed for the uses. |
| GenerateAllReuseFormulae(); |
| |
| FilterOutUndesirableDedicatedRegisters(); |
| NarrowSearchSpaceUsingHeuristics(); |
| |
| SmallVector<const Formula *, 8> Solution; |
| Solve(Solution); |
| |
| // Release memory that is no longer needed. |
| Factors.clear(); |
| Types.clear(); |
| RegUses.clear(); |
| |
| if (Solution.empty()) |
| return; |
| |
| #ifndef NDEBUG |
| // Formulae should be legal. |
| for (const LSRUse &LU : Uses) { |
| for (const Formula &F : LU.Formulae) |
| assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, |
| F) && "Illegal formula generated!"); |
| }; |
| #endif |
| |
| // Now that we've decided what we want, make it so. |
| ImplementSolution(Solution); |
| } |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| void LSRInstance::print_factors_and_types(raw_ostream &OS) const { |
| if (Factors.empty() && Types.empty()) return; |
| |
| OS << "LSR has identified the following interesting factors and types: "; |
| bool First = true; |
| |
| for (int64_t Factor : Factors) { |
| if (!First) OS << ", "; |
| First = false; |
| OS << '*' << Factor; |
| } |
| |
| for (Type *Ty : Types) { |
| if (!First) OS << ", "; |
| First = false; |
| OS << '(' << *Ty << ')'; |
| } |
| OS << '\n'; |
| } |
| |
| void LSRInstance::print_fixups(raw_ostream &OS) const { |
| OS << "LSR is examining the following fixup sites:\n"; |
| for (const LSRUse &LU : Uses) |
| for (const LSRFixup &LF : LU.Fixups) { |
| dbgs() << " "; |
| LF.print(OS); |
| OS << '\n'; |
| } |
| } |
| |
| void LSRInstance::print_uses(raw_ostream &OS) const { |
| OS << "LSR is examining the following uses:\n"; |
| for (const LSRUse &LU : Uses) { |
| dbgs() << " "; |
| LU.print(OS); |
| OS << '\n'; |
| for (const Formula &F : LU.Formulae) { |
| OS << " "; |
| F.print(OS); |
| OS << '\n'; |
| } |
| } |
| } |
| |
| void LSRInstance::print(raw_ostream &OS) const { |
| print_factors_and_types(OS); |
| print_fixups(OS); |
| print_uses(OS); |
| } |
| |
| LLVM_DUMP_METHOD void LSRInstance::dump() const { |
| print(errs()); errs() << '\n'; |
| } |
| #endif |
| |
| namespace { |
| |
| class LoopStrengthReduce : public LoopPass { |
| public: |
| static char ID; // Pass ID, replacement for typeid |
| |
| LoopStrengthReduce(); |
| |
| private: |
| bool runOnLoop(Loop *L, LPPassManager &LPM) override; |
| void getAnalysisUsage(AnalysisUsage &AU) const override; |
| }; |
| |
| } // end anonymous namespace |
| |
| LoopStrengthReduce::LoopStrengthReduce() : LoopPass(ID) { |
| initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry()); |
| } |
| |
| void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const { |
| // We split critical edges, so we change the CFG. However, we do update |
| // many analyses if they are around. |
| AU.addPreservedID(LoopSimplifyID); |
| |
| AU.addRequired<LoopInfoWrapperPass>(); |
| AU.addPreserved<LoopInfoWrapperPass>(); |
| AU.addRequiredID(LoopSimplifyID); |
| AU.addRequired<DominatorTreeWrapperPass>(); |
| AU.addPreserved<DominatorTreeWrapperPass>(); |
| AU.addRequired<ScalarEvolutionWrapperPass>(); |
| AU.addPreserved<ScalarEvolutionWrapperPass>(); |
| // Requiring LoopSimplify a second time here prevents IVUsers from running |
| // twice, since LoopSimplify was invalidated by running ScalarEvolution. |
| AU.addRequiredID(LoopSimplifyID); |
| AU.addRequired<IVUsersWrapperPass>(); |
| AU.addPreserved<IVUsersWrapperPass>(); |
| AU.addRequired<TargetTransformInfoWrapperPass>(); |
| } |
| |
| static bool ReduceLoopStrength(Loop *L, IVUsers &IU, ScalarEvolution &SE, |
| DominatorTree &DT, LoopInfo &LI, |
| const TargetTransformInfo &TTI) { |
| bool Changed = false; |
| |
| // Run the main LSR transformation. |
| Changed |= LSRInstance(L, IU, SE, DT, LI, TTI).getChanged(); |
| |
| // Remove any extra phis created by processing inner loops. |
| Changed |= DeleteDeadPHIs(L->getHeader()); |
| if (EnablePhiElim && L->isLoopSimplifyForm()) { |
| SmallVector<WeakTrackingVH, 16> DeadInsts; |
| const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); |
| SCEVExpander Rewriter(SE, DL, "lsr"); |
| #ifndef NDEBUG |
| Rewriter.setDebugType(DEBUG_TYPE); |
| #endif |
| unsigned numFolded = Rewriter.replaceCongruentIVs(L, &DT, DeadInsts, &TTI); |
| if (numFolded) { |
| Changed = true; |
| DeleteTriviallyDeadInstructions(DeadInsts); |
| DeleteDeadPHIs(L->getHeader()); |
| } |
| } |
| return Changed; |
| } |
| |
| bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) { |
| if (skipLoop(L)) |
| return false; |
| |
| auto &IU = getAnalysis<IVUsersWrapperPass>().getIU(); |
| auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); |
| auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); |
| auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); |
| const auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI( |
| *L->getHeader()->getParent()); |
| return ReduceLoopStrength(L, IU, SE, DT, LI, TTI); |
| } |
| |
| PreservedAnalyses LoopStrengthReducePass::run(Loop &L, LoopAnalysisManager &AM, |
| LoopStandardAnalysisResults &AR, |
| LPMUpdater &) { |
| if (!ReduceLoopStrength(&L, AM.getResult<IVUsersAnalysis>(L, AR), AR.SE, |
| AR.DT, AR.LI, AR.TTI)) |
| return PreservedAnalyses::all(); |
| |
| return getLoopPassPreservedAnalyses(); |
| } |
| |
| char LoopStrengthReduce::ID = 0; |
| |
| INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce", |
| "Loop Strength Reduction", false, false) |
| INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) |
| INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) |
| INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) |
| INITIALIZE_PASS_DEPENDENCY(IVUsersWrapperPass) |
| INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) |
| INITIALIZE_PASS_DEPENDENCY(LoopSimplify) |
| INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce", |
| "Loop Strength Reduction", false, false) |
| |
| Pass *llvm::createLoopStrengthReducePass() { return new LoopStrengthReduce(); } |