| //===- MemCpyOptimizer.cpp - Optimize use of memcpy and friends -----------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This pass performs various transformations related to eliminating memcpy |
| // calls, or transforming sets of stores into memset's. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Transforms/Scalar/MemCpyOptimizer.h" |
| #include "llvm/ADT/DenseSet.h" |
| #include "llvm/ADT/None.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/ADT/iterator_range.h" |
| #include "llvm/Analysis/AliasAnalysis.h" |
| #include "llvm/Analysis/AssumptionCache.h" |
| #include "llvm/Analysis/GlobalsModRef.h" |
| #include "llvm/Analysis/MemoryDependenceAnalysis.h" |
| #include "llvm/Analysis/MemoryLocation.h" |
| #include "llvm/Analysis/TargetLibraryInfo.h" |
| #include "llvm/Analysis/Utils/Local.h" |
| #include "llvm/Analysis/ValueTracking.h" |
| #include "llvm/IR/Argument.h" |
| #include "llvm/IR/BasicBlock.h" |
| #include "llvm/IR/CallSite.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/IR/DerivedTypes.h" |
| #include "llvm/IR/Dominators.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/GetElementPtrTypeIterator.h" |
| #include "llvm/IR/GlobalVariable.h" |
| #include "llvm/IR/IRBuilder.h" |
| #include "llvm/IR/InstrTypes.h" |
| #include "llvm/IR/Instruction.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/IntrinsicInst.h" |
| #include "llvm/IR/Intrinsics.h" |
| #include "llvm/IR/LLVMContext.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/IR/Operator.h" |
| #include "llvm/IR/PassManager.h" |
| #include "llvm/IR/Type.h" |
| #include "llvm/IR/User.h" |
| #include "llvm/IR/Value.h" |
| #include "llvm/Pass.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Transforms/Scalar.h" |
| #include <algorithm> |
| #include <cassert> |
| #include <cstdint> |
| #include <utility> |
| |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "memcpyopt" |
| |
| STATISTIC(NumMemCpyInstr, "Number of memcpy instructions deleted"); |
| STATISTIC(NumMemSetInfer, "Number of memsets inferred"); |
| STATISTIC(NumMoveToCpy, "Number of memmoves converted to memcpy"); |
| STATISTIC(NumCpyToSet, "Number of memcpys converted to memset"); |
| |
| static int64_t GetOffsetFromIndex(const GEPOperator *GEP, unsigned Idx, |
| bool &VariableIdxFound, |
| const DataLayout &DL) { |
| // Skip over the first indices. |
| gep_type_iterator GTI = gep_type_begin(GEP); |
| for (unsigned i = 1; i != Idx; ++i, ++GTI) |
| /*skip along*/; |
| |
| // Compute the offset implied by the rest of the indices. |
| int64_t Offset = 0; |
| for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) { |
| ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i)); |
| if (!OpC) |
| return VariableIdxFound = true; |
| if (OpC->isZero()) continue; // No offset. |
| |
| // Handle struct indices, which add their field offset to the pointer. |
| if (StructType *STy = GTI.getStructTypeOrNull()) { |
| Offset += DL.getStructLayout(STy)->getElementOffset(OpC->getZExtValue()); |
| continue; |
| } |
| |
| // Otherwise, we have a sequential type like an array or vector. Multiply |
| // the index by the ElementSize. |
| uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType()); |
| Offset += Size*OpC->getSExtValue(); |
| } |
| |
| return Offset; |
| } |
| |
| /// Return true if Ptr1 is provably equal to Ptr2 plus a constant offset, and |
| /// return that constant offset. For example, Ptr1 might be &A[42], and Ptr2 |
| /// might be &A[40]. In this case offset would be -8. |
| static bool IsPointerOffset(Value *Ptr1, Value *Ptr2, int64_t &Offset, |
| const DataLayout &DL) { |
| Ptr1 = Ptr1->stripPointerCasts(); |
| Ptr2 = Ptr2->stripPointerCasts(); |
| |
| // Handle the trivial case first. |
| if (Ptr1 == Ptr2) { |
| Offset = 0; |
| return true; |
| } |
| |
| GEPOperator *GEP1 = dyn_cast<GEPOperator>(Ptr1); |
| GEPOperator *GEP2 = dyn_cast<GEPOperator>(Ptr2); |
| |
| bool VariableIdxFound = false; |
| |
| // If one pointer is a GEP and the other isn't, then see if the GEP is a |
| // constant offset from the base, as in "P" and "gep P, 1". |
| if (GEP1 && !GEP2 && GEP1->getOperand(0)->stripPointerCasts() == Ptr2) { |
| Offset = -GetOffsetFromIndex(GEP1, 1, VariableIdxFound, DL); |
| return !VariableIdxFound; |
| } |
| |
| if (GEP2 && !GEP1 && GEP2->getOperand(0)->stripPointerCasts() == Ptr1) { |
| Offset = GetOffsetFromIndex(GEP2, 1, VariableIdxFound, DL); |
| return !VariableIdxFound; |
| } |
| |
| // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical |
| // base. After that base, they may have some number of common (and |
| // potentially variable) indices. After that they handle some constant |
| // offset, which determines their offset from each other. At this point, we |
| // handle no other case. |
| if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0)) |
| return false; |
| |
| // Skip any common indices and track the GEP types. |
| unsigned Idx = 1; |
| for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx) |
| if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx)) |
| break; |
| |
| int64_t Offset1 = GetOffsetFromIndex(GEP1, Idx, VariableIdxFound, DL); |
| int64_t Offset2 = GetOffsetFromIndex(GEP2, Idx, VariableIdxFound, DL); |
| if (VariableIdxFound) return false; |
| |
| Offset = Offset2-Offset1; |
| return true; |
| } |
| |
| namespace { |
| |
| /// Represents a range of memset'd bytes with the ByteVal value. |
| /// This allows us to analyze stores like: |
| /// store 0 -> P+1 |
| /// store 0 -> P+0 |
| /// store 0 -> P+3 |
| /// store 0 -> P+2 |
| /// which sometimes happens with stores to arrays of structs etc. When we see |
| /// the first store, we make a range [1, 2). The second store extends the range |
| /// to [0, 2). The third makes a new range [2, 3). The fourth store joins the |
| /// two ranges into [0, 3) which is memset'able. |
| struct MemsetRange { |
| // Start/End - A semi range that describes the span that this range covers. |
| // The range is closed at the start and open at the end: [Start, End). |
| int64_t Start, End; |
| |
| /// StartPtr - The getelementptr instruction that points to the start of the |
| /// range. |
| Value *StartPtr; |
| |
| /// Alignment - The known alignment of the first store. |
| unsigned Alignment; |
| |
| /// TheStores - The actual stores that make up this range. |
| SmallVector<Instruction*, 16> TheStores; |
| |
| bool isProfitableToUseMemset(const DataLayout &DL) const; |
| }; |
| |
| } // end anonymous namespace |
| |
| bool MemsetRange::isProfitableToUseMemset(const DataLayout &DL) const { |
| // If we found more than 4 stores to merge or 16 bytes, use memset. |
| if (TheStores.size() >= 4 || End-Start >= 16) return true; |
| |
| // If there is nothing to merge, don't do anything. |
| if (TheStores.size() < 2) return false; |
| |
| // If any of the stores are a memset, then it is always good to extend the |
| // memset. |
| for (Instruction *SI : TheStores) |
| if (!isa<StoreInst>(SI)) |
| return true; |
| |
| // Assume that the code generator is capable of merging pairs of stores |
| // together if it wants to. |
| if (TheStores.size() == 2) return false; |
| |
| // If we have fewer than 8 stores, it can still be worthwhile to do this. |
| // For example, merging 4 i8 stores into an i32 store is useful almost always. |
| // However, merging 2 32-bit stores isn't useful on a 32-bit architecture (the |
| // memset will be split into 2 32-bit stores anyway) and doing so can |
| // pessimize the llvm optimizer. |
| // |
| // Since we don't have perfect knowledge here, make some assumptions: assume |
| // the maximum GPR width is the same size as the largest legal integer |
| // size. If so, check to see whether we will end up actually reducing the |
| // number of stores used. |
| unsigned Bytes = unsigned(End-Start); |
| unsigned MaxIntSize = DL.getLargestLegalIntTypeSizeInBits() / 8; |
| if (MaxIntSize == 0) |
| MaxIntSize = 1; |
| unsigned NumPointerStores = Bytes / MaxIntSize; |
| |
| // Assume the remaining bytes if any are done a byte at a time. |
| unsigned NumByteStores = Bytes % MaxIntSize; |
| |
| // If we will reduce the # stores (according to this heuristic), do the |
| // transformation. This encourages merging 4 x i8 -> i32 and 2 x i16 -> i32 |
| // etc. |
| return TheStores.size() > NumPointerStores+NumByteStores; |
| } |
| |
| namespace { |
| |
| class MemsetRanges { |
| using range_iterator = SmallVectorImpl<MemsetRange>::iterator; |
| |
| /// A sorted list of the memset ranges. |
| SmallVector<MemsetRange, 8> Ranges; |
| |
| const DataLayout &DL; |
| |
| public: |
| MemsetRanges(const DataLayout &DL) : DL(DL) {} |
| |
| using const_iterator = SmallVectorImpl<MemsetRange>::const_iterator; |
| |
| const_iterator begin() const { return Ranges.begin(); } |
| const_iterator end() const { return Ranges.end(); } |
| bool empty() const { return Ranges.empty(); } |
| |
| void addInst(int64_t OffsetFromFirst, Instruction *Inst) { |
| if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) |
| addStore(OffsetFromFirst, SI); |
| else |
| addMemSet(OffsetFromFirst, cast<MemSetInst>(Inst)); |
| } |
| |
| void addStore(int64_t OffsetFromFirst, StoreInst *SI) { |
| int64_t StoreSize = DL.getTypeStoreSize(SI->getOperand(0)->getType()); |
| |
| addRange(OffsetFromFirst, StoreSize, |
| SI->getPointerOperand(), SI->getAlignment(), SI); |
| } |
| |
| void addMemSet(int64_t OffsetFromFirst, MemSetInst *MSI) { |
| int64_t Size = cast<ConstantInt>(MSI->getLength())->getZExtValue(); |
| addRange(OffsetFromFirst, Size, MSI->getDest(), MSI->getDestAlignment(), MSI); |
| } |
| |
| void addRange(int64_t Start, int64_t Size, Value *Ptr, |
| unsigned Alignment, Instruction *Inst); |
| }; |
| |
| } // end anonymous namespace |
| |
| /// Add a new store to the MemsetRanges data structure. This adds a |
| /// new range for the specified store at the specified offset, merging into |
| /// existing ranges as appropriate. |
| void MemsetRanges::addRange(int64_t Start, int64_t Size, Value *Ptr, |
| unsigned Alignment, Instruction *Inst) { |
| int64_t End = Start+Size; |
| |
| range_iterator I = std::lower_bound(Ranges.begin(), Ranges.end(), Start, |
| [](const MemsetRange &LHS, int64_t RHS) { return LHS.End < RHS; }); |
| |
| // We now know that I == E, in which case we didn't find anything to merge |
| // with, or that Start <= I->End. If End < I->Start or I == E, then we need |
| // to insert a new range. Handle this now. |
| if (I == Ranges.end() || End < I->Start) { |
| MemsetRange &R = *Ranges.insert(I, MemsetRange()); |
| R.Start = Start; |
| R.End = End; |
| R.StartPtr = Ptr; |
| R.Alignment = Alignment; |
| R.TheStores.push_back(Inst); |
| return; |
| } |
| |
| // This store overlaps with I, add it. |
| I->TheStores.push_back(Inst); |
| |
| // At this point, we may have an interval that completely contains our store. |
| // If so, just add it to the interval and return. |
| if (I->Start <= Start && I->End >= End) |
| return; |
| |
| // Now we know that Start <= I->End and End >= I->Start so the range overlaps |
| // but is not entirely contained within the range. |
| |
| // See if the range extends the start of the range. In this case, it couldn't |
| // possibly cause it to join the prior range, because otherwise we would have |
| // stopped on *it*. |
| if (Start < I->Start) { |
| I->Start = Start; |
| I->StartPtr = Ptr; |
| I->Alignment = Alignment; |
| } |
| |
| // Now we know that Start <= I->End and Start >= I->Start (so the startpoint |
| // is in or right at the end of I), and that End >= I->Start. Extend I out to |
| // End. |
| if (End > I->End) { |
| I->End = End; |
| range_iterator NextI = I; |
| while (++NextI != Ranges.end() && End >= NextI->Start) { |
| // Merge the range in. |
| I->TheStores.append(NextI->TheStores.begin(), NextI->TheStores.end()); |
| if (NextI->End > I->End) |
| I->End = NextI->End; |
| Ranges.erase(NextI); |
| NextI = I; |
| } |
| } |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // MemCpyOptLegacyPass Pass |
| //===----------------------------------------------------------------------===// |
| |
| namespace { |
| |
| class MemCpyOptLegacyPass : public FunctionPass { |
| MemCpyOptPass Impl; |
| |
| public: |
| static char ID; // Pass identification, replacement for typeid |
| |
| MemCpyOptLegacyPass() : FunctionPass(ID) { |
| initializeMemCpyOptLegacyPassPass(*PassRegistry::getPassRegistry()); |
| } |
| |
| bool runOnFunction(Function &F) override; |
| |
| private: |
| // This transformation requires dominator postdominator info |
| void getAnalysisUsage(AnalysisUsage &AU) const override { |
| AU.setPreservesCFG(); |
| AU.addRequired<AssumptionCacheTracker>(); |
| AU.addRequired<DominatorTreeWrapperPass>(); |
| AU.addRequired<MemoryDependenceWrapperPass>(); |
| AU.addRequired<AAResultsWrapperPass>(); |
| AU.addRequired<TargetLibraryInfoWrapperPass>(); |
| AU.addPreserved<GlobalsAAWrapperPass>(); |
| AU.addPreserved<MemoryDependenceWrapperPass>(); |
| } |
| }; |
| |
| } // end anonymous namespace |
| |
| char MemCpyOptLegacyPass::ID = 0; |
| |
| /// The public interface to this file... |
| FunctionPass *llvm::createMemCpyOptPass() { return new MemCpyOptLegacyPass(); } |
| |
| INITIALIZE_PASS_BEGIN(MemCpyOptLegacyPass, "memcpyopt", "MemCpy Optimization", |
| false, false) |
| INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) |
| INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) |
| INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass) |
| INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) |
| INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) |
| INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) |
| INITIALIZE_PASS_END(MemCpyOptLegacyPass, "memcpyopt", "MemCpy Optimization", |
| false, false) |
| |
| /// When scanning forward over instructions, we look for some other patterns to |
| /// fold away. In particular, this looks for stores to neighboring locations of |
| /// memory. If it sees enough consecutive ones, it attempts to merge them |
| /// together into a memcpy/memset. |
| Instruction *MemCpyOptPass::tryMergingIntoMemset(Instruction *StartInst, |
| Value *StartPtr, |
| Value *ByteVal) { |
| const DataLayout &DL = StartInst->getModule()->getDataLayout(); |
| |
| // Okay, so we now have a single store that can be splatable. Scan to find |
| // all subsequent stores of the same value to offset from the same pointer. |
| // Join these together into ranges, so we can decide whether contiguous blocks |
| // are stored. |
| MemsetRanges Ranges(DL); |
| |
| BasicBlock::iterator BI(StartInst); |
| for (++BI; !isa<TerminatorInst>(BI); ++BI) { |
| if (!isa<StoreInst>(BI) && !isa<MemSetInst>(BI)) { |
| // If the instruction is readnone, ignore it, otherwise bail out. We |
| // don't even allow readonly here because we don't want something like: |
| // A[1] = 2; strlen(A); A[2] = 2; -> memcpy(A, ...); strlen(A). |
| if (BI->mayWriteToMemory() || BI->mayReadFromMemory()) |
| break; |
| continue; |
| } |
| |
| if (StoreInst *NextStore = dyn_cast<StoreInst>(BI)) { |
| // If this is a store, see if we can merge it in. |
| if (!NextStore->isSimple()) break; |
| |
| // Check to see if this stored value is of the same byte-splattable value. |
| if (ByteVal != isBytewiseValue(NextStore->getOperand(0))) |
| break; |
| |
| // Check to see if this store is to a constant offset from the start ptr. |
| int64_t Offset; |
| if (!IsPointerOffset(StartPtr, NextStore->getPointerOperand(), Offset, |
| DL)) |
| break; |
| |
| Ranges.addStore(Offset, NextStore); |
| } else { |
| MemSetInst *MSI = cast<MemSetInst>(BI); |
| |
| if (MSI->isVolatile() || ByteVal != MSI->getValue() || |
| !isa<ConstantInt>(MSI->getLength())) |
| break; |
| |
| // Check to see if this store is to a constant offset from the start ptr. |
| int64_t Offset; |
| if (!IsPointerOffset(StartPtr, MSI->getDest(), Offset, DL)) |
| break; |
| |
| Ranges.addMemSet(Offset, MSI); |
| } |
| } |
| |
| // If we have no ranges, then we just had a single store with nothing that |
| // could be merged in. This is a very common case of course. |
| if (Ranges.empty()) |
| return nullptr; |
| |
| // If we had at least one store that could be merged in, add the starting |
| // store as well. We try to avoid this unless there is at least something |
| // interesting as a small compile-time optimization. |
| Ranges.addInst(0, StartInst); |
| |
| // If we create any memsets, we put it right before the first instruction that |
| // isn't part of the memset block. This ensure that the memset is dominated |
| // by any addressing instruction needed by the start of the block. |
| IRBuilder<> Builder(&*BI); |
| |
| // Now that we have full information about ranges, loop over the ranges and |
| // emit memset's for anything big enough to be worthwhile. |
| Instruction *AMemSet = nullptr; |
| for (const MemsetRange &Range : Ranges) { |
| if (Range.TheStores.size() == 1) continue; |
| |
| // If it is profitable to lower this range to memset, do so now. |
| if (!Range.isProfitableToUseMemset(DL)) |
| continue; |
| |
| // Otherwise, we do want to transform this! Create a new memset. |
| // Get the starting pointer of the block. |
| StartPtr = Range.StartPtr; |
| |
| // Determine alignment |
| unsigned Alignment = Range.Alignment; |
| if (Alignment == 0) { |
| Type *EltType = |
| cast<PointerType>(StartPtr->getType())->getElementType(); |
| Alignment = DL.getABITypeAlignment(EltType); |
| } |
| |
| AMemSet = |
| Builder.CreateMemSet(StartPtr, ByteVal, Range.End-Range.Start, Alignment); |
| |
| DEBUG(dbgs() << "Replace stores:\n"; |
| for (Instruction *SI : Range.TheStores) |
| dbgs() << *SI << '\n'; |
| dbgs() << "With: " << *AMemSet << '\n'); |
| |
| if (!Range.TheStores.empty()) |
| AMemSet->setDebugLoc(Range.TheStores[0]->getDebugLoc()); |
| |
| // Zap all the stores. |
| for (Instruction *SI : Range.TheStores) { |
| MD->removeInstruction(SI); |
| SI->eraseFromParent(); |
| } |
| ++NumMemSetInfer; |
| } |
| |
| return AMemSet; |
| } |
| |
| static unsigned findStoreAlignment(const DataLayout &DL, const StoreInst *SI) { |
| unsigned StoreAlign = SI->getAlignment(); |
| if (!StoreAlign) |
| StoreAlign = DL.getABITypeAlignment(SI->getOperand(0)->getType()); |
| return StoreAlign; |
| } |
| |
| static unsigned findLoadAlignment(const DataLayout &DL, const LoadInst *LI) { |
| unsigned LoadAlign = LI->getAlignment(); |
| if (!LoadAlign) |
| LoadAlign = DL.getABITypeAlignment(LI->getType()); |
| return LoadAlign; |
| } |
| |
| static unsigned findCommonAlignment(const DataLayout &DL, const StoreInst *SI, |
| const LoadInst *LI) { |
| unsigned StoreAlign = findStoreAlignment(DL, SI); |
| unsigned LoadAlign = findLoadAlignment(DL, LI); |
| return MinAlign(StoreAlign, LoadAlign); |
| } |
| |
| // This method try to lift a store instruction before position P. |
| // It will lift the store and its argument + that anything that |
| // may alias with these. |
| // The method returns true if it was successful. |
| static bool moveUp(AliasAnalysis &AA, StoreInst *SI, Instruction *P, |
| const LoadInst *LI) { |
| // If the store alias this position, early bail out. |
| MemoryLocation StoreLoc = MemoryLocation::get(SI); |
| if (isModOrRefSet(AA.getModRefInfo(P, StoreLoc))) |
| return false; |
| |
| // Keep track of the arguments of all instruction we plan to lift |
| // so we can make sure to lift them as well if apropriate. |
| DenseSet<Instruction*> Args; |
| if (auto *Ptr = dyn_cast<Instruction>(SI->getPointerOperand())) |
| if (Ptr->getParent() == SI->getParent()) |
| Args.insert(Ptr); |
| |
| // Instruction to lift before P. |
| SmallVector<Instruction*, 8> ToLift; |
| |
| // Memory locations of lifted instructions. |
| SmallVector<MemoryLocation, 8> MemLocs{StoreLoc}; |
| |
| // Lifted callsites. |
| SmallVector<ImmutableCallSite, 8> CallSites; |
| |
| const MemoryLocation LoadLoc = MemoryLocation::get(LI); |
| |
| for (auto I = --SI->getIterator(), E = P->getIterator(); I != E; --I) { |
| auto *C = &*I; |
| |
| bool MayAlias = isModOrRefSet(AA.getModRefInfo(C, None)); |
| |
| bool NeedLift = false; |
| if (Args.erase(C)) |
| NeedLift = true; |
| else if (MayAlias) { |
| NeedLift = llvm::any_of(MemLocs, [C, &AA](const MemoryLocation &ML) { |
| return isModOrRefSet(AA.getModRefInfo(C, ML)); |
| }); |
| |
| if (!NeedLift) |
| NeedLift = |
| llvm::any_of(CallSites, [C, &AA](const ImmutableCallSite &CS) { |
| return isModOrRefSet(AA.getModRefInfo(C, CS)); |
| }); |
| } |
| |
| if (!NeedLift) |
| continue; |
| |
| if (MayAlias) { |
| // Since LI is implicitly moved downwards past the lifted instructions, |
| // none of them may modify its source. |
| if (isModSet(AA.getModRefInfo(C, LoadLoc))) |
| return false; |
| else if (auto CS = ImmutableCallSite(C)) { |
| // If we can't lift this before P, it's game over. |
| if (isModOrRefSet(AA.getModRefInfo(P, CS))) |
| return false; |
| |
| CallSites.push_back(CS); |
| } else if (isa<LoadInst>(C) || isa<StoreInst>(C) || isa<VAArgInst>(C)) { |
| // If we can't lift this before P, it's game over. |
| auto ML = MemoryLocation::get(C); |
| if (isModOrRefSet(AA.getModRefInfo(P, ML))) |
| return false; |
| |
| MemLocs.push_back(ML); |
| } else |
| // We don't know how to lift this instruction. |
| return false; |
| } |
| |
| ToLift.push_back(C); |
| for (unsigned k = 0, e = C->getNumOperands(); k != e; ++k) |
| if (auto *A = dyn_cast<Instruction>(C->getOperand(k))) |
| if (A->getParent() == SI->getParent()) |
| Args.insert(A); |
| } |
| |
| // We made it, we need to lift |
| for (auto *I : llvm::reverse(ToLift)) { |
| DEBUG(dbgs() << "Lifting " << *I << " before " << *P << "\n"); |
| I->moveBefore(P); |
| } |
| |
| return true; |
| } |
| |
| bool MemCpyOptPass::processStore(StoreInst *SI, BasicBlock::iterator &BBI) { |
| if (!SI->isSimple()) return false; |
| |
| // Avoid merging nontemporal stores since the resulting |
| // memcpy/memset would not be able to preserve the nontemporal hint. |
| // In theory we could teach how to propagate the !nontemporal metadata to |
| // memset calls. However, that change would force the backend to |
| // conservatively expand !nontemporal memset calls back to sequences of |
| // store instructions (effectively undoing the merging). |
| if (SI->getMetadata(LLVMContext::MD_nontemporal)) |
| return false; |
| |
| const DataLayout &DL = SI->getModule()->getDataLayout(); |
| |
| // Load to store forwarding can be interpreted as memcpy. |
| if (LoadInst *LI = dyn_cast<LoadInst>(SI->getOperand(0))) { |
| if (LI->isSimple() && LI->hasOneUse() && |
| LI->getParent() == SI->getParent()) { |
| |
| auto *T = LI->getType(); |
| if (T->isAggregateType()) { |
| AliasAnalysis &AA = LookupAliasAnalysis(); |
| MemoryLocation LoadLoc = MemoryLocation::get(LI); |
| |
| // We use alias analysis to check if an instruction may store to |
| // the memory we load from in between the load and the store. If |
| // such an instruction is found, we try to promote there instead |
| // of at the store position. |
| Instruction *P = SI; |
| for (auto &I : make_range(++LI->getIterator(), SI->getIterator())) { |
| if (isModSet(AA.getModRefInfo(&I, LoadLoc))) { |
| P = &I; |
| break; |
| } |
| } |
| |
| // We found an instruction that may write to the loaded memory. |
| // We can try to promote at this position instead of the store |
| // position if nothing alias the store memory after this and the store |
| // destination is not in the range. |
| if (P && P != SI) { |
| if (!moveUp(AA, SI, P, LI)) |
| P = nullptr; |
| } |
| |
| // If a valid insertion position is found, then we can promote |
| // the load/store pair to a memcpy. |
| if (P) { |
| // If we load from memory that may alias the memory we store to, |
| // memmove must be used to preserve semantic. If not, memcpy can |
| // be used. |
| bool UseMemMove = false; |
| if (!AA.isNoAlias(MemoryLocation::get(SI), LoadLoc)) |
| UseMemMove = true; |
| |
| uint64_t Size = DL.getTypeStoreSize(T); |
| |
| IRBuilder<> Builder(P); |
| Instruction *M; |
| if (UseMemMove) |
| M = Builder.CreateMemMove( |
| SI->getPointerOperand(), findStoreAlignment(DL, SI), |
| LI->getPointerOperand(), findLoadAlignment(DL, LI), Size, |
| SI->isVolatile()); |
| else |
| M = Builder.CreateMemCpy( |
| SI->getPointerOperand(), findStoreAlignment(DL, SI), |
| LI->getPointerOperand(), findLoadAlignment(DL, LI), Size, |
| SI->isVolatile()); |
| |
| DEBUG(dbgs() << "Promoting " << *LI << " to " << *SI |
| << " => " << *M << "\n"); |
| |
| MD->removeInstruction(SI); |
| SI->eraseFromParent(); |
| MD->removeInstruction(LI); |
| LI->eraseFromParent(); |
| ++NumMemCpyInstr; |
| |
| // Make sure we do not invalidate the iterator. |
| BBI = M->getIterator(); |
| return true; |
| } |
| } |
| |
| // Detect cases where we're performing call slot forwarding, but |
| // happen to be using a load-store pair to implement it, rather than |
| // a memcpy. |
| MemDepResult ldep = MD->getDependency(LI); |
| CallInst *C = nullptr; |
| if (ldep.isClobber() && !isa<MemCpyInst>(ldep.getInst())) |
| C = dyn_cast<CallInst>(ldep.getInst()); |
| |
| if (C) { |
| // Check that nothing touches the dest of the "copy" between |
| // the call and the store. |
| Value *CpyDest = SI->getPointerOperand()->stripPointerCasts(); |
| bool CpyDestIsLocal = isa<AllocaInst>(CpyDest); |
| AliasAnalysis &AA = LookupAliasAnalysis(); |
| MemoryLocation StoreLoc = MemoryLocation::get(SI); |
| for (BasicBlock::iterator I = --SI->getIterator(), E = C->getIterator(); |
| I != E; --I) { |
| if (isModOrRefSet(AA.getModRefInfo(&*I, StoreLoc))) { |
| C = nullptr; |
| break; |
| } |
| // The store to dest may never happen if an exception can be thrown |
| // between the load and the store. |
| if (I->mayThrow() && !CpyDestIsLocal) { |
| C = nullptr; |
| break; |
| } |
| } |
| } |
| |
| if (C) { |
| bool changed = performCallSlotOptzn( |
| LI, SI->getPointerOperand()->stripPointerCasts(), |
| LI->getPointerOperand()->stripPointerCasts(), |
| DL.getTypeStoreSize(SI->getOperand(0)->getType()), |
| findCommonAlignment(DL, SI, LI), C); |
| if (changed) { |
| MD->removeInstruction(SI); |
| SI->eraseFromParent(); |
| MD->removeInstruction(LI); |
| LI->eraseFromParent(); |
| ++NumMemCpyInstr; |
| return true; |
| } |
| } |
| } |
| } |
| |
| // There are two cases that are interesting for this code to handle: memcpy |
| // and memset. Right now we only handle memset. |
| |
| // Ensure that the value being stored is something that can be memset'able a |
| // byte at a time like "0" or "-1" or any width, as well as things like |
| // 0xA0A0A0A0 and 0.0. |
| auto *V = SI->getOperand(0); |
| if (Value *ByteVal = isBytewiseValue(V)) { |
| if (Instruction *I = tryMergingIntoMemset(SI, SI->getPointerOperand(), |
| ByteVal)) { |
| BBI = I->getIterator(); // Don't invalidate iterator. |
| return true; |
| } |
| |
| // If we have an aggregate, we try to promote it to memset regardless |
| // of opportunity for merging as it can expose optimization opportunities |
| // in subsequent passes. |
| auto *T = V->getType(); |
| if (T->isAggregateType()) { |
| uint64_t Size = DL.getTypeStoreSize(T); |
| unsigned Align = SI->getAlignment(); |
| if (!Align) |
| Align = DL.getABITypeAlignment(T); |
| IRBuilder<> Builder(SI); |
| auto *M = Builder.CreateMemSet(SI->getPointerOperand(), ByteVal, |
| Size, Align, SI->isVolatile()); |
| |
| DEBUG(dbgs() << "Promoting " << *SI << " to " << *M << "\n"); |
| |
| MD->removeInstruction(SI); |
| SI->eraseFromParent(); |
| NumMemSetInfer++; |
| |
| // Make sure we do not invalidate the iterator. |
| BBI = M->getIterator(); |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| bool MemCpyOptPass::processMemSet(MemSetInst *MSI, BasicBlock::iterator &BBI) { |
| // See if there is another memset or store neighboring this memset which |
| // allows us to widen out the memset to do a single larger store. |
| if (isa<ConstantInt>(MSI->getLength()) && !MSI->isVolatile()) |
| if (Instruction *I = tryMergingIntoMemset(MSI, MSI->getDest(), |
| MSI->getValue())) { |
| BBI = I->getIterator(); // Don't invalidate iterator. |
| return true; |
| } |
| return false; |
| } |
| |
| /// Takes a memcpy and a call that it depends on, |
| /// and checks for the possibility of a call slot optimization by having |
| /// the call write its result directly into the destination of the memcpy. |
| bool MemCpyOptPass::performCallSlotOptzn(Instruction *cpy, Value *cpyDest, |
| Value *cpySrc, uint64_t cpyLen, |
| unsigned cpyAlign, CallInst *C) { |
| // The general transformation to keep in mind is |
| // |
| // call @func(..., src, ...) |
| // memcpy(dest, src, ...) |
| // |
| // -> |
| // |
| // memcpy(dest, src, ...) |
| // call @func(..., dest, ...) |
| // |
| // Since moving the memcpy is technically awkward, we additionally check that |
| // src only holds uninitialized values at the moment of the call, meaning that |
| // the memcpy can be discarded rather than moved. |
| |
| // Lifetime marks shouldn't be operated on. |
| if (Function *F = C->getCalledFunction()) |
| if (F->isIntrinsic() && F->getIntrinsicID() == Intrinsic::lifetime_start) |
| return false; |
| |
| // Deliberately get the source and destination with bitcasts stripped away, |
| // because we'll need to do type comparisons based on the underlying type. |
| CallSite CS(C); |
| |
| // Require that src be an alloca. This simplifies the reasoning considerably. |
| AllocaInst *srcAlloca = dyn_cast<AllocaInst>(cpySrc); |
| if (!srcAlloca) |
| return false; |
| |
| ConstantInt *srcArraySize = dyn_cast<ConstantInt>(srcAlloca->getArraySize()); |
| if (!srcArraySize) |
| return false; |
| |
| const DataLayout &DL = cpy->getModule()->getDataLayout(); |
| uint64_t srcSize = DL.getTypeAllocSize(srcAlloca->getAllocatedType()) * |
| srcArraySize->getZExtValue(); |
| |
| if (cpyLen < srcSize) |
| return false; |
| |
| // Check that accessing the first srcSize bytes of dest will not cause a |
| // trap. Otherwise the transform is invalid since it might cause a trap |
| // to occur earlier than it otherwise would. |
| if (AllocaInst *A = dyn_cast<AllocaInst>(cpyDest)) { |
| // The destination is an alloca. Check it is larger than srcSize. |
| ConstantInt *destArraySize = dyn_cast<ConstantInt>(A->getArraySize()); |
| if (!destArraySize) |
| return false; |
| |
| uint64_t destSize = DL.getTypeAllocSize(A->getAllocatedType()) * |
| destArraySize->getZExtValue(); |
| |
| if (destSize < srcSize) |
| return false; |
| } else if (Argument *A = dyn_cast<Argument>(cpyDest)) { |
| // The store to dest may never happen if the call can throw. |
| if (C->mayThrow()) |
| return false; |
| |
| if (A->getDereferenceableBytes() < srcSize) { |
| // If the destination is an sret parameter then only accesses that are |
| // outside of the returned struct type can trap. |
| if (!A->hasStructRetAttr()) |
| return false; |
| |
| Type *StructTy = cast<PointerType>(A->getType())->getElementType(); |
| if (!StructTy->isSized()) { |
| // The call may never return and hence the copy-instruction may never |
| // be executed, and therefore it's not safe to say "the destination |
| // has at least <cpyLen> bytes, as implied by the copy-instruction", |
| return false; |
| } |
| |
| uint64_t destSize = DL.getTypeAllocSize(StructTy); |
| if (destSize < srcSize) |
| return false; |
| } |
| } else { |
| return false; |
| } |
| |
| // Check that dest points to memory that is at least as aligned as src. |
| unsigned srcAlign = srcAlloca->getAlignment(); |
| if (!srcAlign) |
| srcAlign = DL.getABITypeAlignment(srcAlloca->getAllocatedType()); |
| bool isDestSufficientlyAligned = srcAlign <= cpyAlign; |
| // If dest is not aligned enough and we can't increase its alignment then |
| // bail out. |
| if (!isDestSufficientlyAligned && !isa<AllocaInst>(cpyDest)) |
| return false; |
| |
| // Check that src is not accessed except via the call and the memcpy. This |
| // guarantees that it holds only undefined values when passed in (so the final |
| // memcpy can be dropped), that it is not read or written between the call and |
| // the memcpy, and that writing beyond the end of it is undefined. |
| SmallVector<User*, 8> srcUseList(srcAlloca->user_begin(), |
| srcAlloca->user_end()); |
| while (!srcUseList.empty()) { |
| User *U = srcUseList.pop_back_val(); |
| |
| if (isa<BitCastInst>(U) || isa<AddrSpaceCastInst>(U)) { |
| for (User *UU : U->users()) |
| srcUseList.push_back(UU); |
| continue; |
| } |
| if (GetElementPtrInst *G = dyn_cast<GetElementPtrInst>(U)) { |
| if (!G->hasAllZeroIndices()) |
| return false; |
| |
| for (User *UU : U->users()) |
| srcUseList.push_back(UU); |
| continue; |
| } |
| if (const IntrinsicInst *IT = dyn_cast<IntrinsicInst>(U)) |
| if (IT->getIntrinsicID() == Intrinsic::lifetime_start || |
| IT->getIntrinsicID() == Intrinsic::lifetime_end) |
| continue; |
| |
| if (U != C && U != cpy) |
| return false; |
| } |
| |
| // Check that src isn't captured by the called function since the |
| // transformation can cause aliasing issues in that case. |
| for (unsigned i = 0, e = CS.arg_size(); i != e; ++i) |
| if (CS.getArgument(i) == cpySrc && !CS.doesNotCapture(i)) |
| return false; |
| |
| // Since we're changing the parameter to the callsite, we need to make sure |
| // that what would be the new parameter dominates the callsite. |
| DominatorTree &DT = LookupDomTree(); |
| if (Instruction *cpyDestInst = dyn_cast<Instruction>(cpyDest)) |
| if (!DT.dominates(cpyDestInst, C)) |
| return false; |
| |
| // In addition to knowing that the call does not access src in some |
| // unexpected manner, for example via a global, which we deduce from |
| // the use analysis, we also need to know that it does not sneakily |
| // access dest. We rely on AA to figure this out for us. |
| AliasAnalysis &AA = LookupAliasAnalysis(); |
| ModRefInfo MR = AA.getModRefInfo(C, cpyDest, srcSize); |
| // If necessary, perform additional analysis. |
| if (isModOrRefSet(MR)) |
| MR = AA.callCapturesBefore(C, cpyDest, srcSize, &DT); |
| if (isModOrRefSet(MR)) |
| return false; |
| |
| // We can't create address space casts here because we don't know if they're |
| // safe for the target. |
| if (cpySrc->getType()->getPointerAddressSpace() != |
| cpyDest->getType()->getPointerAddressSpace()) |
| return false; |
| for (unsigned i = 0; i < CS.arg_size(); ++i) |
| if (CS.getArgument(i)->stripPointerCasts() == cpySrc && |
| cpySrc->getType()->getPointerAddressSpace() != |
| CS.getArgument(i)->getType()->getPointerAddressSpace()) |
| return false; |
| |
| // All the checks have passed, so do the transformation. |
| bool changedArgument = false; |
| for (unsigned i = 0; i < CS.arg_size(); ++i) |
| if (CS.getArgument(i)->stripPointerCasts() == cpySrc) { |
| Value *Dest = cpySrc->getType() == cpyDest->getType() ? cpyDest |
| : CastInst::CreatePointerCast(cpyDest, cpySrc->getType(), |
| cpyDest->getName(), C); |
| changedArgument = true; |
| if (CS.getArgument(i)->getType() == Dest->getType()) |
| CS.setArgument(i, Dest); |
| else |
| CS.setArgument(i, CastInst::CreatePointerCast(Dest, |
| CS.getArgument(i)->getType(), Dest->getName(), C)); |
| } |
| |
| if (!changedArgument) |
| return false; |
| |
| // If the destination wasn't sufficiently aligned then increase its alignment. |
| if (!isDestSufficientlyAligned) { |
| assert(isa<AllocaInst>(cpyDest) && "Can only increase alloca alignment!"); |
| cast<AllocaInst>(cpyDest)->setAlignment(srcAlign); |
| } |
| |
| // Drop any cached information about the call, because we may have changed |
| // its dependence information by changing its parameter. |
| MD->removeInstruction(C); |
| |
| // Update AA metadata |
| // FIXME: MD_tbaa_struct and MD_mem_parallel_loop_access should also be |
| // handled here, but combineMetadata doesn't support them yet |
| unsigned KnownIDs[] = {LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, |
| LLVMContext::MD_noalias, |
| LLVMContext::MD_invariant_group}; |
| combineMetadata(C, cpy, KnownIDs); |
| |
| // Remove the memcpy. |
| MD->removeInstruction(cpy); |
| ++NumMemCpyInstr; |
| |
| return true; |
| } |
| |
| /// We've found that the (upward scanning) memory dependence of memcpy 'M' is |
| /// the memcpy 'MDep'. Try to simplify M to copy from MDep's input if we can. |
| bool MemCpyOptPass::processMemCpyMemCpyDependence(MemCpyInst *M, |
| MemCpyInst *MDep) { |
| // We can only transforms memcpy's where the dest of one is the source of the |
| // other. |
| if (M->getSource() != MDep->getDest() || MDep->isVolatile()) |
| return false; |
| |
| // If dep instruction is reading from our current input, then it is a noop |
| // transfer and substituting the input won't change this instruction. Just |
| // ignore the input and let someone else zap MDep. This handles cases like: |
| // memcpy(a <- a) |
| // memcpy(b <- a) |
| if (M->getSource() == MDep->getSource()) |
| return false; |
| |
| // Second, the length of the memcpy's must be the same, or the preceding one |
| // must be larger than the following one. |
| ConstantInt *MDepLen = dyn_cast<ConstantInt>(MDep->getLength()); |
| ConstantInt *MLen = dyn_cast<ConstantInt>(M->getLength()); |
| if (!MDepLen || !MLen || MDepLen->getZExtValue() < MLen->getZExtValue()) |
| return false; |
| |
| AliasAnalysis &AA = LookupAliasAnalysis(); |
| |
| // Verify that the copied-from memory doesn't change in between the two |
| // transfers. For example, in: |
| // memcpy(a <- b) |
| // *b = 42; |
| // memcpy(c <- a) |
| // It would be invalid to transform the second memcpy into memcpy(c <- b). |
| // |
| // TODO: If the code between M and MDep is transparent to the destination "c", |
| // then we could still perform the xform by moving M up to the first memcpy. |
| // |
| // NOTE: This is conservative, it will stop on any read from the source loc, |
| // not just the defining memcpy. |
| MemDepResult SourceDep = |
| MD->getPointerDependencyFrom(MemoryLocation::getForSource(MDep), false, |
| M->getIterator(), M->getParent()); |
| if (!SourceDep.isClobber() || SourceDep.getInst() != MDep) |
| return false; |
| |
| // If the dest of the second might alias the source of the first, then the |
| // source and dest might overlap. We still want to eliminate the intermediate |
| // value, but we have to generate a memmove instead of memcpy. |
| bool UseMemMove = false; |
| if (!AA.isNoAlias(MemoryLocation::getForDest(M), |
| MemoryLocation::getForSource(MDep))) |
| UseMemMove = true; |
| |
| // If all checks passed, then we can transform M. |
| |
| // TODO: Is this worth it if we're creating a less aligned memcpy? For |
| // example we could be moving from movaps -> movq on x86. |
| IRBuilder<> Builder(M); |
| if (UseMemMove) |
| Builder.CreateMemMove(M->getRawDest(), M->getDestAlignment(), |
| MDep->getRawSource(), MDep->getSourceAlignment(), |
| M->getLength(), M->isVolatile()); |
| else |
| Builder.CreateMemCpy(M->getRawDest(), M->getDestAlignment(), |
| MDep->getRawSource(), MDep->getSourceAlignment(), |
| M->getLength(), M->isVolatile()); |
| |
| // Remove the instruction we're replacing. |
| MD->removeInstruction(M); |
| M->eraseFromParent(); |
| ++NumMemCpyInstr; |
| return true; |
| } |
| |
| /// We've found that the (upward scanning) memory dependence of \p MemCpy is |
| /// \p MemSet. Try to simplify \p MemSet to only set the trailing bytes that |
| /// weren't copied over by \p MemCpy. |
| /// |
| /// In other words, transform: |
| /// \code |
| /// memset(dst, c, dst_size); |
| /// memcpy(dst, src, src_size); |
| /// \endcode |
| /// into: |
| /// \code |
| /// memcpy(dst, src, src_size); |
| /// memset(dst + src_size, c, dst_size <= src_size ? 0 : dst_size - src_size); |
| /// \endcode |
| bool MemCpyOptPass::processMemSetMemCpyDependence(MemCpyInst *MemCpy, |
| MemSetInst *MemSet) { |
| // We can only transform memset/memcpy with the same destination. |
| if (MemSet->getDest() != MemCpy->getDest()) |
| return false; |
| |
| // Check that there are no other dependencies on the memset destination. |
| MemDepResult DstDepInfo = |
| MD->getPointerDependencyFrom(MemoryLocation::getForDest(MemSet), false, |
| MemCpy->getIterator(), MemCpy->getParent()); |
| if (DstDepInfo.getInst() != MemSet) |
| return false; |
| |
| // Use the same i8* dest as the memcpy, killing the memset dest if different. |
| Value *Dest = MemCpy->getRawDest(); |
| Value *DestSize = MemSet->getLength(); |
| Value *SrcSize = MemCpy->getLength(); |
| |
| // By default, create an unaligned memset. |
| unsigned Align = 1; |
| // If Dest is aligned, and SrcSize is constant, use the minimum alignment |
| // of the sum. |
| const unsigned DestAlign = |
| std::max(MemSet->getDestAlignment(), MemCpy->getDestAlignment()); |
| if (DestAlign > 1) |
| if (ConstantInt *SrcSizeC = dyn_cast<ConstantInt>(SrcSize)) |
| Align = MinAlign(SrcSizeC->getZExtValue(), DestAlign); |
| |
| IRBuilder<> Builder(MemCpy); |
| |
| // If the sizes have different types, zext the smaller one. |
| if (DestSize->getType() != SrcSize->getType()) { |
| if (DestSize->getType()->getIntegerBitWidth() > |
| SrcSize->getType()->getIntegerBitWidth()) |
| SrcSize = Builder.CreateZExt(SrcSize, DestSize->getType()); |
| else |
| DestSize = Builder.CreateZExt(DestSize, SrcSize->getType()); |
| } |
| |
| Value *Ule = Builder.CreateICmpULE(DestSize, SrcSize); |
| Value *SizeDiff = Builder.CreateSub(DestSize, SrcSize); |
| Value *MemsetLen = Builder.CreateSelect( |
| Ule, ConstantInt::getNullValue(DestSize->getType()), SizeDiff); |
| Builder.CreateMemSet(Builder.CreateGEP(Dest, SrcSize), MemSet->getOperand(1), |
| MemsetLen, Align); |
| |
| MD->removeInstruction(MemSet); |
| MemSet->eraseFromParent(); |
| return true; |
| } |
| |
| /// Transform memcpy to memset when its source was just memset. |
| /// In other words, turn: |
| /// \code |
| /// memset(dst1, c, dst1_size); |
| /// memcpy(dst2, dst1, dst2_size); |
| /// \endcode |
| /// into: |
| /// \code |
| /// memset(dst1, c, dst1_size); |
| /// memset(dst2, c, dst2_size); |
| /// \endcode |
| /// When dst2_size <= dst1_size. |
| /// |
| /// The \p MemCpy must have a Constant length. |
| bool MemCpyOptPass::performMemCpyToMemSetOptzn(MemCpyInst *MemCpy, |
| MemSetInst *MemSet) { |
| AliasAnalysis &AA = LookupAliasAnalysis(); |
| |
| // Make sure that memcpy(..., memset(...), ...), that is we are memsetting and |
| // memcpying from the same address. Otherwise it is hard to reason about. |
| if (!AA.isMustAlias(MemSet->getRawDest(), MemCpy->getRawSource())) |
| return false; |
| |
| ConstantInt *CopySize = cast<ConstantInt>(MemCpy->getLength()); |
| ConstantInt *MemSetSize = dyn_cast<ConstantInt>(MemSet->getLength()); |
| // Make sure the memcpy doesn't read any more than what the memset wrote. |
| // Don't worry about sizes larger than i64. |
| if (!MemSetSize || CopySize->getZExtValue() > MemSetSize->getZExtValue()) |
| return false; |
| |
| IRBuilder<> Builder(MemCpy); |
| Builder.CreateMemSet(MemCpy->getRawDest(), MemSet->getOperand(1), |
| CopySize, MemCpy->getDestAlignment()); |
| return true; |
| } |
| |
| /// Perform simplification of memcpy's. If we have memcpy A |
| /// which copies X to Y, and memcpy B which copies Y to Z, then we can rewrite |
| /// B to be a memcpy from X to Z (or potentially a memmove, depending on |
| /// circumstances). This allows later passes to remove the first memcpy |
| /// altogether. |
| bool MemCpyOptPass::processMemCpy(MemCpyInst *M) { |
| // We can only optimize non-volatile memcpy's. |
| if (M->isVolatile()) return false; |
| |
| // If the source and destination of the memcpy are the same, then zap it. |
| if (M->getSource() == M->getDest()) { |
| MD->removeInstruction(M); |
| M->eraseFromParent(); |
| return false; |
| } |
| |
| // If copying from a constant, try to turn the memcpy into a memset. |
| if (GlobalVariable *GV = dyn_cast<GlobalVariable>(M->getSource())) |
| if (GV->isConstant() && GV->hasDefinitiveInitializer()) |
| if (Value *ByteVal = isBytewiseValue(GV->getInitializer())) { |
| IRBuilder<> Builder(M); |
| Builder.CreateMemSet(M->getRawDest(), ByteVal, M->getLength(), |
| M->getDestAlignment(), false); |
| MD->removeInstruction(M); |
| M->eraseFromParent(); |
| ++NumCpyToSet; |
| return true; |
| } |
| |
| MemDepResult DepInfo = MD->getDependency(M); |
| |
| // Try to turn a partially redundant memset + memcpy into |
| // memcpy + smaller memset. We don't need the memcpy size for this. |
| if (DepInfo.isClobber()) |
| if (MemSetInst *MDep = dyn_cast<MemSetInst>(DepInfo.getInst())) |
| if (processMemSetMemCpyDependence(M, MDep)) |
| return true; |
| |
| // The optimizations after this point require the memcpy size. |
| ConstantInt *CopySize = dyn_cast<ConstantInt>(M->getLength()); |
| if (!CopySize) return false; |
| |
| // There are four possible optimizations we can do for memcpy: |
| // a) memcpy-memcpy xform which exposes redundance for DSE. |
| // b) call-memcpy xform for return slot optimization. |
| // c) memcpy from freshly alloca'd space or space that has just started its |
| // lifetime copies undefined data, and we can therefore eliminate the |
| // memcpy in favor of the data that was already at the destination. |
| // d) memcpy from a just-memset'd source can be turned into memset. |
| if (DepInfo.isClobber()) { |
| if (CallInst *C = dyn_cast<CallInst>(DepInfo.getInst())) { |
| // FIXME: Can we pass in either of dest/src alignment here instead |
| // of conservatively taking the minimum? |
| unsigned Align = MinAlign(M->getDestAlignment(), M->getSourceAlignment()); |
| if (performCallSlotOptzn(M, M->getDest(), M->getSource(), |
| CopySize->getZExtValue(), Align, |
| C)) { |
| MD->removeInstruction(M); |
| M->eraseFromParent(); |
| return true; |
| } |
| } |
| } |
| |
| MemoryLocation SrcLoc = MemoryLocation::getForSource(M); |
| MemDepResult SrcDepInfo = MD->getPointerDependencyFrom( |
| SrcLoc, true, M->getIterator(), M->getParent()); |
| |
| if (SrcDepInfo.isClobber()) { |
| if (MemCpyInst *MDep = dyn_cast<MemCpyInst>(SrcDepInfo.getInst())) |
| return processMemCpyMemCpyDependence(M, MDep); |
| } else if (SrcDepInfo.isDef()) { |
| Instruction *I = SrcDepInfo.getInst(); |
| bool hasUndefContents = false; |
| |
| if (isa<AllocaInst>(I)) { |
| hasUndefContents = true; |
| } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { |
| if (II->getIntrinsicID() == Intrinsic::lifetime_start) |
| if (ConstantInt *LTSize = dyn_cast<ConstantInt>(II->getArgOperand(0))) |
| if (LTSize->getZExtValue() >= CopySize->getZExtValue()) |
| hasUndefContents = true; |
| } |
| |
| if (hasUndefContents) { |
| MD->removeInstruction(M); |
| M->eraseFromParent(); |
| ++NumMemCpyInstr; |
| return true; |
| } |
| } |
| |
| if (SrcDepInfo.isClobber()) |
| if (MemSetInst *MDep = dyn_cast<MemSetInst>(SrcDepInfo.getInst())) |
| if (performMemCpyToMemSetOptzn(M, MDep)) { |
| MD->removeInstruction(M); |
| M->eraseFromParent(); |
| ++NumCpyToSet; |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /// Transforms memmove calls to memcpy calls when the src/dst are guaranteed |
| /// not to alias. |
| bool MemCpyOptPass::processMemMove(MemMoveInst *M) { |
| AliasAnalysis &AA = LookupAliasAnalysis(); |
| |
| if (!TLI->has(LibFunc_memmove)) |
| return false; |
| |
| // See if the pointers alias. |
| if (!AA.isNoAlias(MemoryLocation::getForDest(M), |
| MemoryLocation::getForSource(M))) |
| return false; |
| |
| DEBUG(dbgs() << "MemCpyOptPass: Optimizing memmove -> memcpy: " << *M |
| << "\n"); |
| |
| // If not, then we know we can transform this. |
| Type *ArgTys[3] = { M->getRawDest()->getType(), |
| M->getRawSource()->getType(), |
| M->getLength()->getType() }; |
| M->setCalledFunction(Intrinsic::getDeclaration(M->getModule(), |
| Intrinsic::memcpy, ArgTys)); |
| |
| // MemDep may have over conservative information about this instruction, just |
| // conservatively flush it from the cache. |
| MD->removeInstruction(M); |
| |
| ++NumMoveToCpy; |
| return true; |
| } |
| |
| /// This is called on every byval argument in call sites. |
| bool MemCpyOptPass::processByValArgument(CallSite CS, unsigned ArgNo) { |
| const DataLayout &DL = CS.getCaller()->getParent()->getDataLayout(); |
| // Find out what feeds this byval argument. |
| Value *ByValArg = CS.getArgument(ArgNo); |
| Type *ByValTy = cast<PointerType>(ByValArg->getType())->getElementType(); |
| uint64_t ByValSize = DL.getTypeAllocSize(ByValTy); |
| MemDepResult DepInfo = MD->getPointerDependencyFrom( |
| MemoryLocation(ByValArg, ByValSize), true, |
| CS.getInstruction()->getIterator(), CS.getInstruction()->getParent()); |
| if (!DepInfo.isClobber()) |
| return false; |
| |
| // If the byval argument isn't fed by a memcpy, ignore it. If it is fed by |
| // a memcpy, see if we can byval from the source of the memcpy instead of the |
| // result. |
| MemCpyInst *MDep = dyn_cast<MemCpyInst>(DepInfo.getInst()); |
| if (!MDep || MDep->isVolatile() || |
| ByValArg->stripPointerCasts() != MDep->getDest()) |
| return false; |
| |
| // The length of the memcpy must be larger or equal to the size of the byval. |
| ConstantInt *C1 = dyn_cast<ConstantInt>(MDep->getLength()); |
| if (!C1 || C1->getValue().getZExtValue() < ByValSize) |
| return false; |
| |
| // Get the alignment of the byval. If the call doesn't specify the alignment, |
| // then it is some target specific value that we can't know. |
| unsigned ByValAlign = CS.getParamAlignment(ArgNo); |
| if (ByValAlign == 0) return false; |
| |
| // If it is greater than the memcpy, then we check to see if we can force the |
| // source of the memcpy to the alignment we need. If we fail, we bail out. |
| AssumptionCache &AC = LookupAssumptionCache(); |
| DominatorTree &DT = LookupDomTree(); |
| if (MDep->getSourceAlignment() < ByValAlign && |
| getOrEnforceKnownAlignment(MDep->getSource(), ByValAlign, DL, |
| CS.getInstruction(), &AC, &DT) < ByValAlign) |
| return false; |
| |
| // The address space of the memcpy source must match the byval argument |
| if (MDep->getSource()->getType()->getPointerAddressSpace() != |
| ByValArg->getType()->getPointerAddressSpace()) |
| return false; |
| |
| // Verify that the copied-from memory doesn't change in between the memcpy and |
| // the byval call. |
| // memcpy(a <- b) |
| // *b = 42; |
| // foo(*a) |
| // It would be invalid to transform the second memcpy into foo(*b). |
| // |
| // NOTE: This is conservative, it will stop on any read from the source loc, |
| // not just the defining memcpy. |
| MemDepResult SourceDep = MD->getPointerDependencyFrom( |
| MemoryLocation::getForSource(MDep), false, |
| CS.getInstruction()->getIterator(), MDep->getParent()); |
| if (!SourceDep.isClobber() || SourceDep.getInst() != MDep) |
| return false; |
| |
| Value *TmpCast = MDep->getSource(); |
| if (MDep->getSource()->getType() != ByValArg->getType()) |
| TmpCast = new BitCastInst(MDep->getSource(), ByValArg->getType(), |
| "tmpcast", CS.getInstruction()); |
| |
| DEBUG(dbgs() << "MemCpyOptPass: Forwarding memcpy to byval:\n" |
| << " " << *MDep << "\n" |
| << " " << *CS.getInstruction() << "\n"); |
| |
| // Otherwise we're good! Update the byval argument. |
| CS.setArgument(ArgNo, TmpCast); |
| ++NumMemCpyInstr; |
| return true; |
| } |
| |
| /// Executes one iteration of MemCpyOptPass. |
| bool MemCpyOptPass::iterateOnFunction(Function &F) { |
| bool MadeChange = false; |
| |
| DominatorTree &DT = LookupDomTree(); |
| |
| // Walk all instruction in the function. |
| for (BasicBlock &BB : F) { |
| // Skip unreachable blocks. For example processStore assumes that an |
| // instruction in a BB can't be dominated by a later instruction in the |
| // same BB (which is a scenario that can happen for an unreachable BB that |
| // has itself as a predecessor). |
| if (!DT.isReachableFromEntry(&BB)) |
| continue; |
| |
| for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) { |
| // Avoid invalidating the iterator. |
| Instruction *I = &*BI++; |
| |
| bool RepeatInstruction = false; |
| |
| if (StoreInst *SI = dyn_cast<StoreInst>(I)) |
| MadeChange |= processStore(SI, BI); |
| else if (MemSetInst *M = dyn_cast<MemSetInst>(I)) |
| RepeatInstruction = processMemSet(M, BI); |
| else if (MemCpyInst *M = dyn_cast<MemCpyInst>(I)) |
| RepeatInstruction = processMemCpy(M); |
| else if (MemMoveInst *M = dyn_cast<MemMoveInst>(I)) |
| RepeatInstruction = processMemMove(M); |
| else if (auto CS = CallSite(I)) { |
| for (unsigned i = 0, e = CS.arg_size(); i != e; ++i) |
| if (CS.isByValArgument(i)) |
| MadeChange |= processByValArgument(CS, i); |
| } |
| |
| // Reprocess the instruction if desired. |
| if (RepeatInstruction) { |
| if (BI != BB.begin()) |
| --BI; |
| MadeChange = true; |
| } |
| } |
| } |
| |
| return MadeChange; |
| } |
| |
| PreservedAnalyses MemCpyOptPass::run(Function &F, FunctionAnalysisManager &AM) { |
| auto &MD = AM.getResult<MemoryDependenceAnalysis>(F); |
| auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); |
| |
| auto LookupAliasAnalysis = [&]() -> AliasAnalysis & { |
| return AM.getResult<AAManager>(F); |
| }; |
| auto LookupAssumptionCache = [&]() -> AssumptionCache & { |
| return AM.getResult<AssumptionAnalysis>(F); |
| }; |
| auto LookupDomTree = [&]() -> DominatorTree & { |
| return AM.getResult<DominatorTreeAnalysis>(F); |
| }; |
| |
| bool MadeChange = runImpl(F, &MD, &TLI, LookupAliasAnalysis, |
| LookupAssumptionCache, LookupDomTree); |
| if (!MadeChange) |
| return PreservedAnalyses::all(); |
| |
| PreservedAnalyses PA; |
| PA.preserveSet<CFGAnalyses>(); |
| PA.preserve<GlobalsAA>(); |
| PA.preserve<MemoryDependenceAnalysis>(); |
| return PA; |
| } |
| |
| bool MemCpyOptPass::runImpl( |
| Function &F, MemoryDependenceResults *MD_, TargetLibraryInfo *TLI_, |
| std::function<AliasAnalysis &()> LookupAliasAnalysis_, |
| std::function<AssumptionCache &()> LookupAssumptionCache_, |
| std::function<DominatorTree &()> LookupDomTree_) { |
| bool MadeChange = false; |
| MD = MD_; |
| TLI = TLI_; |
| LookupAliasAnalysis = std::move(LookupAliasAnalysis_); |
| LookupAssumptionCache = std::move(LookupAssumptionCache_); |
| LookupDomTree = std::move(LookupDomTree_); |
| |
| // If we don't have at least memset and memcpy, there is little point of doing |
| // anything here. These are required by a freestanding implementation, so if |
| // even they are disabled, there is no point in trying hard. |
| if (!TLI->has(LibFunc_memset) || !TLI->has(LibFunc_memcpy)) |
| return false; |
| |
| while (true) { |
| if (!iterateOnFunction(F)) |
| break; |
| MadeChange = true; |
| } |
| |
| MD = nullptr; |
| return MadeChange; |
| } |
| |
| /// This is the main transformation entry point for a function. |
| bool MemCpyOptLegacyPass::runOnFunction(Function &F) { |
| if (skipFunction(F)) |
| return false; |
| |
| auto *MD = &getAnalysis<MemoryDependenceWrapperPass>().getMemDep(); |
| auto *TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); |
| |
| auto LookupAliasAnalysis = [this]() -> AliasAnalysis & { |
| return getAnalysis<AAResultsWrapperPass>().getAAResults(); |
| }; |
| auto LookupAssumptionCache = [this, &F]() -> AssumptionCache & { |
| return getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); |
| }; |
| auto LookupDomTree = [this]() -> DominatorTree & { |
| return getAnalysis<DominatorTreeWrapperPass>().getDomTree(); |
| }; |
| |
| return Impl.runImpl(F, MD, TLI, LookupAliasAnalysis, LookupAssumptionCache, |
| LookupDomTree); |
| } |