| //===- MergeICmps.cpp - Optimize chains of integer comparisons ------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This pass turns chains of integer comparisons into memcmp (the memcmp is |
| // later typically inlined as a chain of efficient hardware comparisons). This |
| // typically benefits c++ member or nonmember operator==(). |
| // |
| // The basic idea is to replace a larger chain of integer comparisons loaded |
| // from contiguous memory locations into a smaller chain of such integer |
| // comparisons. Benefits are double: |
| // - There are less jumps, and therefore less opportunities for mispredictions |
| // and I-cache misses. |
| // - Code size is smaller, both because jumps are removed and because the |
| // encoding of a 2*n byte compare is smaller than that of two n-byte |
| // compares. |
| |
| //===----------------------------------------------------------------------===// |
| |
| #include <algorithm> |
| #include <numeric> |
| #include <utility> |
| #include <vector> |
| #include "llvm/Analysis/Loads.h" |
| #include "llvm/Analysis/TargetLibraryInfo.h" |
| #include "llvm/Analysis/TargetTransformInfo.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/IRBuilder.h" |
| #include "llvm/Pass.h" |
| #include "llvm/Transforms/Scalar.h" |
| #include "llvm/Transforms/Utils/BuildLibCalls.h" |
| |
| using namespace llvm; |
| |
| namespace { |
| |
| #define DEBUG_TYPE "mergeicmps" |
| |
| // A BCE atom. |
| struct BCEAtom { |
| BCEAtom() : GEP(nullptr), LoadI(nullptr), Offset() {} |
| |
| const Value *Base() const { return GEP ? GEP->getPointerOperand() : nullptr; } |
| |
| bool operator<(const BCEAtom &O) const { |
| assert(Base() && "invalid atom"); |
| assert(O.Base() && "invalid atom"); |
| // Just ordering by (Base(), Offset) is sufficient. However because this |
| // means that the ordering will depend on the addresses of the base |
| // values, which are not reproducible from run to run. To guarantee |
| // stability, we use the names of the values if they exist; we sort by: |
| // (Base.getName(), Base(), Offset). |
| const int NameCmp = Base()->getName().compare(O.Base()->getName()); |
| if (NameCmp == 0) { |
| if (Base() == O.Base()) { |
| return Offset.slt(O.Offset); |
| } |
| return Base() < O.Base(); |
| } |
| return NameCmp < 0; |
| } |
| |
| GetElementPtrInst *GEP; |
| LoadInst *LoadI; |
| APInt Offset; |
| }; |
| |
| // If this value is a load from a constant offset w.r.t. a base address, and |
| // there are no other users of the load or address, returns the base address and |
| // the offset. |
| BCEAtom visitICmpLoadOperand(Value *const Val) { |
| BCEAtom Result; |
| if (auto *const LoadI = dyn_cast<LoadInst>(Val)) { |
| DEBUG(dbgs() << "load\n"); |
| if (LoadI->isUsedOutsideOfBlock(LoadI->getParent())) { |
| DEBUG(dbgs() << "used outside of block\n"); |
| return {}; |
| } |
| if (LoadI->isVolatile()) { |
| DEBUG(dbgs() << "volatile\n"); |
| return {}; |
| } |
| Value *const Addr = LoadI->getOperand(0); |
| if (auto *const GEP = dyn_cast<GetElementPtrInst>(Addr)) { |
| DEBUG(dbgs() << "GEP\n"); |
| if (LoadI->isUsedOutsideOfBlock(LoadI->getParent())) { |
| DEBUG(dbgs() << "used outside of block\n"); |
| return {}; |
| } |
| const auto &DL = GEP->getModule()->getDataLayout(); |
| if (!isDereferenceablePointer(GEP, DL)) { |
| DEBUG(dbgs() << "not dereferenceable\n"); |
| // We need to make sure that we can do comparison in any order, so we |
| // require memory to be unconditionnally dereferencable. |
| return {}; |
| } |
| Result.Offset = APInt(DL.getPointerTypeSizeInBits(GEP->getType()), 0); |
| if (GEP->accumulateConstantOffset(DL, Result.Offset)) { |
| Result.GEP = GEP; |
| Result.LoadI = LoadI; |
| } |
| } |
| } |
| return Result; |
| } |
| |
| // A basic block with a comparison between two BCE atoms. |
| // The block might do extra work besides the atom comparison, in which case |
| // doesOtherWork() returns true. Under some conditions, the block can be |
| // split into the atom comparison part and the "other work" part |
| // (see canSplit()). |
| // Note: the terminology is misleading: the comparison is symmetric, so there |
| // is no real {l/r}hs. What we want though is to have the same base on the |
| // left (resp. right), so that we can detect consecutive loads. To ensure this |
| // we put the smallest atom on the left. |
| class BCECmpBlock { |
| public: |
| BCECmpBlock() {} |
| |
| BCECmpBlock(BCEAtom L, BCEAtom R, int SizeBits) |
| : Lhs_(L), Rhs_(R), SizeBits_(SizeBits) { |
| if (Rhs_ < Lhs_) std::swap(Rhs_, Lhs_); |
| } |
| |
| bool IsValid() const { |
| return Lhs_.Base() != nullptr && Rhs_.Base() != nullptr; |
| } |
| |
| // Assert the block is consistent: If valid, it should also have |
| // non-null members besides Lhs_ and Rhs_. |
| void AssertConsistent() const { |
| if (IsValid()) { |
| assert(BB); |
| assert(CmpI); |
| assert(BranchI); |
| } |
| } |
| |
| const BCEAtom &Lhs() const { return Lhs_; } |
| const BCEAtom &Rhs() const { return Rhs_; } |
| int SizeBits() const { return SizeBits_; } |
| |
| // Returns true if the block does other works besides comparison. |
| bool doesOtherWork() const; |
| |
| // Returns true if the non-BCE-cmp instructions can be separated from BCE-cmp |
| // instructions in the block. |
| bool canSplit() const; |
| |
| // Return true if this all the relevant instructions in the BCE-cmp-block can |
| // be sunk below this instruction. By doing this, we know we can separate the |
| // BCE-cmp-block instructions from the non-BCE-cmp-block instructions in the |
| // block. |
| bool canSinkBCECmpInst(const Instruction *, DenseSet<Instruction *> &) const; |
| |
| // We can separate the BCE-cmp-block instructions and the non-BCE-cmp-block |
| // instructions. Split the old block and move all non-BCE-cmp-insts into the |
| // new parent block. |
| void split(BasicBlock *NewParent) const; |
| |
| // The basic block where this comparison happens. |
| BasicBlock *BB = nullptr; |
| // The ICMP for this comparison. |
| ICmpInst *CmpI = nullptr; |
| // The terminating branch. |
| BranchInst *BranchI = nullptr; |
| // The block requires splitting. |
| bool RequireSplit = false; |
| |
| private: |
| BCEAtom Lhs_; |
| BCEAtom Rhs_; |
| int SizeBits_ = 0; |
| }; |
| |
| bool BCECmpBlock::canSinkBCECmpInst(const Instruction *Inst, |
| DenseSet<Instruction *> &BlockInsts) const { |
| // If this instruction has side effects and its in middle of the BCE cmp block |
| // instructions, then bail for now. |
| // TODO: use alias analysis to tell whether there is real interference. |
| if (Inst->mayHaveSideEffects()) |
| return false; |
| // Make sure this instruction does not use any of the BCE cmp block |
| // instructions as operand. |
| for (auto BI : BlockInsts) { |
| if (is_contained(Inst->operands(), BI)) |
| return false; |
| } |
| return true; |
| } |
| |
| void BCECmpBlock::split(BasicBlock *NewParent) const { |
| DenseSet<Instruction *> BlockInsts( |
| {Lhs_.GEP, Rhs_.GEP, Lhs_.LoadI, Rhs_.LoadI, CmpI, BranchI}); |
| llvm::SmallVector<Instruction *, 4> OtherInsts; |
| for (Instruction &Inst : *BB) { |
| if (BlockInsts.count(&Inst)) |
| continue; |
| assert(canSinkBCECmpInst(&Inst, BlockInsts) && "Split unsplittable block"); |
| // This is a non-BCE-cmp-block instruction. And it can be separated |
| // from the BCE-cmp-block instruction. |
| OtherInsts.push_back(&Inst); |
| } |
| |
| // Do the actual spliting. |
| for (Instruction *Inst : reverse(OtherInsts)) { |
| Inst->moveBefore(&*NewParent->begin()); |
| } |
| } |
| |
| bool BCECmpBlock::canSplit() const { |
| DenseSet<Instruction *> BlockInsts( |
| {Lhs_.GEP, Rhs_.GEP, Lhs_.LoadI, Rhs_.LoadI, CmpI, BranchI}); |
| for (Instruction &Inst : *BB) { |
| if (!BlockInsts.count(&Inst)) { |
| if (!canSinkBCECmpInst(&Inst, BlockInsts)) |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| bool BCECmpBlock::doesOtherWork() const { |
| AssertConsistent(); |
| // All the instructions we care about in the BCE cmp block. |
| DenseSet<Instruction *> BlockInsts( |
| {Lhs_.GEP, Rhs_.GEP, Lhs_.LoadI, Rhs_.LoadI, CmpI, BranchI}); |
| // TODO(courbet): Can we allow some other things ? This is very conservative. |
| // We might be able to get away with anything does not have any side |
| // effects outside of the basic block. |
| // Note: The GEPs and/or loads are not necessarily in the same block. |
| for (const Instruction &Inst : *BB) { |
| if (!BlockInsts.count(&Inst)) |
| return true; |
| } |
| return false; |
| } |
| |
| // Visit the given comparison. If this is a comparison between two valid |
| // BCE atoms, returns the comparison. |
| BCECmpBlock visitICmp(const ICmpInst *const CmpI, |
| const ICmpInst::Predicate ExpectedPredicate) { |
| // The comparison can only be used once: |
| // - For intermediate blocks, as a branch condition. |
| // - For the final block, as an incoming value for the Phi. |
| // If there are any other uses of the comparison, we cannot merge it with |
| // other comparisons as we would create an orphan use of the value. |
| if (!CmpI->hasOneUse()) { |
| DEBUG(dbgs() << "cmp has several uses\n"); |
| return {}; |
| } |
| if (CmpI->getPredicate() == ExpectedPredicate) { |
| DEBUG(dbgs() << "cmp " |
| << (ExpectedPredicate == ICmpInst::ICMP_EQ ? "eq" : "ne") |
| << "\n"); |
| auto Lhs = visitICmpLoadOperand(CmpI->getOperand(0)); |
| if (!Lhs.Base()) return {}; |
| auto Rhs = visitICmpLoadOperand(CmpI->getOperand(1)); |
| if (!Rhs.Base()) return {}; |
| return BCECmpBlock(std::move(Lhs), std::move(Rhs), |
| CmpI->getOperand(0)->getType()->getScalarSizeInBits()); |
| } |
| return {}; |
| } |
| |
| // Visit the given comparison block. If this is a comparison between two valid |
| // BCE atoms, returns the comparison. |
| BCECmpBlock visitCmpBlock(Value *const Val, BasicBlock *const Block, |
| const BasicBlock *const PhiBlock) { |
| if (Block->empty()) return {}; |
| auto *const BranchI = dyn_cast<BranchInst>(Block->getTerminator()); |
| if (!BranchI) return {}; |
| DEBUG(dbgs() << "branch\n"); |
| if (BranchI->isUnconditional()) { |
| // In this case, we expect an incoming value which is the result of the |
| // comparison. This is the last link in the chain of comparisons (note |
| // that this does not mean that this is the last incoming value, blocks |
| // can be reordered). |
| auto *const CmpI = dyn_cast<ICmpInst>(Val); |
| if (!CmpI) return {}; |
| DEBUG(dbgs() << "icmp\n"); |
| auto Result = visitICmp(CmpI, ICmpInst::ICMP_EQ); |
| Result.CmpI = CmpI; |
| Result.BranchI = BranchI; |
| return Result; |
| } else { |
| // In this case, we expect a constant incoming value (the comparison is |
| // chained). |
| const auto *const Const = dyn_cast<ConstantInt>(Val); |
| DEBUG(dbgs() << "const\n"); |
| if (!Const->isZero()) return {}; |
| DEBUG(dbgs() << "false\n"); |
| auto *const CmpI = dyn_cast<ICmpInst>(BranchI->getCondition()); |
| if (!CmpI) return {}; |
| DEBUG(dbgs() << "icmp\n"); |
| assert(BranchI->getNumSuccessors() == 2 && "expecting a cond branch"); |
| BasicBlock *const FalseBlock = BranchI->getSuccessor(1); |
| auto Result = visitICmp( |
| CmpI, FalseBlock == PhiBlock ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE); |
| Result.CmpI = CmpI; |
| Result.BranchI = BranchI; |
| return Result; |
| } |
| return {}; |
| } |
| |
| static inline void enqueueBlock(std::vector<BCECmpBlock> &Comparisons, |
| BCECmpBlock &Comparison) { |
| DEBUG(dbgs() << "Block '" << Comparison.BB->getName() << "': Found cmp of " |
| << Comparison.SizeBits() << " bits between " |
| << Comparison.Lhs().Base() << " + " << Comparison.Lhs().Offset |
| << " and " << Comparison.Rhs().Base() << " + " |
| << Comparison.Rhs().Offset << "\n"); |
| DEBUG(dbgs() << "\n"); |
| Comparisons.push_back(Comparison); |
| } |
| |
| // A chain of comparisons. |
| class BCECmpChain { |
| public: |
| BCECmpChain(const std::vector<BasicBlock *> &Blocks, PHINode &Phi); |
| |
| int size() const { return Comparisons_.size(); } |
| |
| #ifdef MERGEICMPS_DOT_ON |
| void dump() const; |
| #endif // MERGEICMPS_DOT_ON |
| |
| bool simplify(const TargetLibraryInfo *const TLI); |
| |
| private: |
| static bool IsContiguous(const BCECmpBlock &First, |
| const BCECmpBlock &Second) { |
| return First.Lhs().Base() == Second.Lhs().Base() && |
| First.Rhs().Base() == Second.Rhs().Base() && |
| First.Lhs().Offset + First.SizeBits() / 8 == Second.Lhs().Offset && |
| First.Rhs().Offset + First.SizeBits() / 8 == Second.Rhs().Offset; |
| } |
| |
| // Merges the given comparison blocks into one memcmp block and update |
| // branches. Comparisons are assumed to be continguous. If NextBBInChain is |
| // null, the merged block will link to the phi block. |
| void mergeComparisons(ArrayRef<BCECmpBlock> Comparisons, |
| BasicBlock *const NextBBInChain, PHINode &Phi, |
| const TargetLibraryInfo *const TLI); |
| |
| PHINode &Phi_; |
| std::vector<BCECmpBlock> Comparisons_; |
| // The original entry block (before sorting); |
| BasicBlock *EntryBlock_; |
| }; |
| |
| BCECmpChain::BCECmpChain(const std::vector<BasicBlock *> &Blocks, PHINode &Phi) |
| : Phi_(Phi) { |
| assert(!Blocks.empty() && "a chain should have at least one block"); |
| // Now look inside blocks to check for BCE comparisons. |
| std::vector<BCECmpBlock> Comparisons; |
| for (size_t BlockIdx = 0; BlockIdx < Blocks.size(); ++BlockIdx) { |
| BasicBlock *const Block = Blocks[BlockIdx]; |
| assert(Block && "invalid block"); |
| BCECmpBlock Comparison = visitCmpBlock(Phi.getIncomingValueForBlock(Block), |
| Block, Phi.getParent()); |
| Comparison.BB = Block; |
| if (!Comparison.IsValid()) { |
| DEBUG(dbgs() << "chain with invalid BCECmpBlock, no merge.\n"); |
| return; |
| } |
| if (Comparison.doesOtherWork()) { |
| DEBUG(dbgs() << "block '" << Comparison.BB->getName() |
| << "' does extra work besides compare\n"); |
| if (Comparisons.empty()) { |
| // This is the initial block in the chain, in case this block does other |
| // work, we can try to split the block and move the irrelevant |
| // instructions to the predecessor. |
| // |
| // If this is not the initial block in the chain, splitting it wont |
| // work. |
| // |
| // As once split, there will still be instructions before the BCE cmp |
| // instructions that do other work in program order, i.e. within the |
| // chain before sorting. Unless we can abort the chain at this point |
| // and start anew. |
| // |
| // NOTE: we only handle block with single predecessor for now. |
| if (Comparison.canSplit()) { |
| DEBUG(dbgs() << "Split initial block '" << Comparison.BB->getName() |
| << "' that does extra work besides compare\n"); |
| Comparison.RequireSplit = true; |
| enqueueBlock(Comparisons, Comparison); |
| } else { |
| DEBUG(dbgs() << "ignoring initial block '" << Comparison.BB->getName() |
| << "' that does extra work besides compare\n"); |
| } |
| continue; |
| } |
| // TODO(courbet): Right now we abort the whole chain. We could be |
| // merging only the blocks that don't do other work and resume the |
| // chain from there. For example: |
| // if (a[0] == b[0]) { // bb1 |
| // if (a[1] == b[1]) { // bb2 |
| // some_value = 3; //bb3 |
| // if (a[2] == b[2]) { //bb3 |
| // do a ton of stuff //bb4 |
| // } |
| // } |
| // } |
| // |
| // This is: |
| // |
| // bb1 --eq--> bb2 --eq--> bb3* -eq--> bb4 --+ |
| // \ \ \ \ |
| // ne ne ne \ |
| // \ \ \ v |
| // +------------+-----------+----------> bb_phi |
| // |
| // We can only merge the first two comparisons, because bb3* does |
| // "other work" (setting some_value to 3). |
| // We could still merge bb1 and bb2 though. |
| return; |
| } |
| enqueueBlock(Comparisons, Comparison); |
| } |
| |
| // It is possible we have no suitable comparison to merge. |
| if (Comparisons.empty()) { |
| DEBUG(dbgs() << "chain with no BCE basic blocks, no merge\n"); |
| return; |
| } |
| EntryBlock_ = Comparisons[0].BB; |
| Comparisons_ = std::move(Comparisons); |
| #ifdef MERGEICMPS_DOT_ON |
| errs() << "BEFORE REORDERING:\n\n"; |
| dump(); |
| #endif // MERGEICMPS_DOT_ON |
| // Reorder blocks by LHS. We can do that without changing the |
| // semantics because we are only accessing dereferencable memory. |
| llvm::sort(Comparisons_.begin(), Comparisons_.end(), |
| [](const BCECmpBlock &a, const BCECmpBlock &b) { |
| return a.Lhs() < b.Lhs(); |
| }); |
| #ifdef MERGEICMPS_DOT_ON |
| errs() << "AFTER REORDERING:\n\n"; |
| dump(); |
| #endif // MERGEICMPS_DOT_ON |
| } |
| |
| #ifdef MERGEICMPS_DOT_ON |
| void BCECmpChain::dump() const { |
| errs() << "digraph dag {\n"; |
| errs() << " graph [bgcolor=transparent];\n"; |
| errs() << " node [color=black,style=filled,fillcolor=lightyellow];\n"; |
| errs() << " edge [color=black];\n"; |
| for (size_t I = 0; I < Comparisons_.size(); ++I) { |
| const auto &Comparison = Comparisons_[I]; |
| errs() << " \"" << I << "\" [label=\"%" |
| << Comparison.Lhs().Base()->getName() << " + " |
| << Comparison.Lhs().Offset << " == %" |
| << Comparison.Rhs().Base()->getName() << " + " |
| << Comparison.Rhs().Offset << " (" << (Comparison.SizeBits() / 8) |
| << " bytes)\"];\n"; |
| const Value *const Val = Phi_.getIncomingValueForBlock(Comparison.BB); |
| if (I > 0) errs() << " \"" << (I - 1) << "\" -> \"" << I << "\";\n"; |
| errs() << " \"" << I << "\" -> \"Phi\" [label=\"" << *Val << "\"];\n"; |
| } |
| errs() << " \"Phi\" [label=\"Phi\"];\n"; |
| errs() << "}\n\n"; |
| } |
| #endif // MERGEICMPS_DOT_ON |
| |
| bool BCECmpChain::simplify(const TargetLibraryInfo *const TLI) { |
| // First pass to check if there is at least one merge. If not, we don't do |
| // anything and we keep analysis passes intact. |
| { |
| bool AtLeastOneMerged = false; |
| for (size_t I = 1; I < Comparisons_.size(); ++I) { |
| if (IsContiguous(Comparisons_[I - 1], Comparisons_[I])) { |
| AtLeastOneMerged = true; |
| break; |
| } |
| } |
| if (!AtLeastOneMerged) return false; |
| } |
| |
| // Remove phi references to comparison blocks, they will be rebuilt as we |
| // merge the blocks. |
| for (const auto &Comparison : Comparisons_) { |
| Phi_.removeIncomingValue(Comparison.BB, false); |
| } |
| |
| // If entry block is part of the chain, we need to make the first block |
| // of the chain the new entry block of the function. |
| BasicBlock *Entry = &Comparisons_[0].BB->getParent()->getEntryBlock(); |
| for (size_t I = 1; I < Comparisons_.size(); ++I) { |
| if (Entry == Comparisons_[I].BB) { |
| BasicBlock *NEntryBB = BasicBlock::Create(Entry->getContext(), "", |
| Entry->getParent(), Entry); |
| BranchInst::Create(Entry, NEntryBB); |
| break; |
| } |
| } |
| |
| // Point the predecessors of the chain to the first comparison block (which is |
| // the new entry point) and update the entry block of the chain. |
| if (EntryBlock_ != Comparisons_[0].BB) { |
| EntryBlock_->replaceAllUsesWith(Comparisons_[0].BB); |
| EntryBlock_ = Comparisons_[0].BB; |
| } |
| |
| // Effectively merge blocks. |
| int NumMerged = 1; |
| for (size_t I = 1; I < Comparisons_.size(); ++I) { |
| if (IsContiguous(Comparisons_[I - 1], Comparisons_[I])) { |
| ++NumMerged; |
| } else { |
| // Merge all previous comparisons and start a new merge block. |
| mergeComparisons( |
| makeArrayRef(Comparisons_).slice(I - NumMerged, NumMerged), |
| Comparisons_[I].BB, Phi_, TLI); |
| NumMerged = 1; |
| } |
| } |
| mergeComparisons(makeArrayRef(Comparisons_) |
| .slice(Comparisons_.size() - NumMerged, NumMerged), |
| nullptr, Phi_, TLI); |
| |
| return true; |
| } |
| |
| void BCECmpChain::mergeComparisons(ArrayRef<BCECmpBlock> Comparisons, |
| BasicBlock *const NextBBInChain, |
| PHINode &Phi, |
| const TargetLibraryInfo *const TLI) { |
| assert(!Comparisons.empty()); |
| const auto &FirstComparison = *Comparisons.begin(); |
| BasicBlock *const BB = FirstComparison.BB; |
| LLVMContext &Context = BB->getContext(); |
| |
| if (Comparisons.size() >= 2) { |
| // If there is one block that requires splitting, we do it now, i.e. |
| // just before we know we will collapse the chain. The instructions |
| // can be executed before any of the instructions in the chain. |
| auto C = std::find_if(Comparisons.begin(), Comparisons.end(), |
| [](const BCECmpBlock &B) { return B.RequireSplit; }); |
| if (C != Comparisons.end()) |
| C->split(EntryBlock_); |
| |
| DEBUG(dbgs() << "Merging " << Comparisons.size() << " comparisons\n"); |
| const auto TotalSize = |
| std::accumulate(Comparisons.begin(), Comparisons.end(), 0, |
| [](int Size, const BCECmpBlock &C) { |
| return Size + C.SizeBits(); |
| }) / |
| 8; |
| |
| // Incoming edges do not need to be updated, and both GEPs are already |
| // computing the right address, we just need to: |
| // - replace the two loads and the icmp with the memcmp |
| // - update the branch |
| // - update the incoming values in the phi. |
| FirstComparison.BranchI->eraseFromParent(); |
| FirstComparison.CmpI->eraseFromParent(); |
| FirstComparison.Lhs().LoadI->eraseFromParent(); |
| FirstComparison.Rhs().LoadI->eraseFromParent(); |
| |
| IRBuilder<> Builder(BB); |
| const auto &DL = Phi.getModule()->getDataLayout(); |
| Value *const MemCmpCall = emitMemCmp( |
| FirstComparison.Lhs().GEP, FirstComparison.Rhs().GEP, |
| ConstantInt::get(DL.getIntPtrType(Context), TotalSize), |
| Builder, DL, TLI); |
| Value *const MemCmpIsZero = Builder.CreateICmpEQ( |
| MemCmpCall, ConstantInt::get(Type::getInt32Ty(Context), 0)); |
| |
| // Add a branch to the next basic block in the chain. |
| if (NextBBInChain) { |
| Builder.CreateCondBr(MemCmpIsZero, NextBBInChain, Phi.getParent()); |
| Phi.addIncoming(ConstantInt::getFalse(Context), BB); |
| } else { |
| Builder.CreateBr(Phi.getParent()); |
| Phi.addIncoming(MemCmpIsZero, BB); |
| } |
| |
| // Delete merged blocks. |
| for (size_t I = 1; I < Comparisons.size(); ++I) { |
| BasicBlock *CBB = Comparisons[I].BB; |
| CBB->replaceAllUsesWith(BB); |
| CBB->eraseFromParent(); |
| } |
| } else { |
| assert(Comparisons.size() == 1); |
| // There are no blocks to merge, but we still need to update the branches. |
| DEBUG(dbgs() << "Only one comparison, updating branches\n"); |
| if (NextBBInChain) { |
| if (FirstComparison.BranchI->isConditional()) { |
| DEBUG(dbgs() << "conditional -> conditional\n"); |
| // Just update the "true" target, the "false" target should already be |
| // the phi block. |
| assert(FirstComparison.BranchI->getSuccessor(1) == Phi.getParent()); |
| FirstComparison.BranchI->setSuccessor(0, NextBBInChain); |
| Phi.addIncoming(ConstantInt::getFalse(Context), BB); |
| } else { |
| DEBUG(dbgs() << "unconditional -> conditional\n"); |
| // Replace the unconditional branch by a conditional one. |
| FirstComparison.BranchI->eraseFromParent(); |
| IRBuilder<> Builder(BB); |
| Builder.CreateCondBr(FirstComparison.CmpI, NextBBInChain, |
| Phi.getParent()); |
| Phi.addIncoming(FirstComparison.CmpI, BB); |
| } |
| } else { |
| if (FirstComparison.BranchI->isConditional()) { |
| DEBUG(dbgs() << "conditional -> unconditional\n"); |
| // Replace the conditional branch by an unconditional one. |
| FirstComparison.BranchI->eraseFromParent(); |
| IRBuilder<> Builder(BB); |
| Builder.CreateBr(Phi.getParent()); |
| Phi.addIncoming(FirstComparison.CmpI, BB); |
| } else { |
| DEBUG(dbgs() << "unconditional -> unconditional\n"); |
| Phi.addIncoming(FirstComparison.CmpI, BB); |
| } |
| } |
| } |
| } |
| |
| std::vector<BasicBlock *> getOrderedBlocks(PHINode &Phi, |
| BasicBlock *const LastBlock, |
| int NumBlocks) { |
| // Walk up from the last block to find other blocks. |
| std::vector<BasicBlock *> Blocks(NumBlocks); |
| assert(LastBlock && "invalid last block"); |
| BasicBlock *CurBlock = LastBlock; |
| for (int BlockIndex = NumBlocks - 1; BlockIndex > 0; --BlockIndex) { |
| if (CurBlock->hasAddressTaken()) { |
| // Somebody is jumping to the block through an address, all bets are |
| // off. |
| DEBUG(dbgs() << "skip: block " << BlockIndex |
| << " has its address taken\n"); |
| return {}; |
| } |
| Blocks[BlockIndex] = CurBlock; |
| auto *SinglePredecessor = CurBlock->getSinglePredecessor(); |
| if (!SinglePredecessor) { |
| // The block has two or more predecessors. |
| DEBUG(dbgs() << "skip: block " << BlockIndex |
| << " has two or more predecessors\n"); |
| return {}; |
| } |
| if (Phi.getBasicBlockIndex(SinglePredecessor) < 0) { |
| // The block does not link back to the phi. |
| DEBUG(dbgs() << "skip: block " << BlockIndex |
| << " does not link back to the phi\n"); |
| return {}; |
| } |
| CurBlock = SinglePredecessor; |
| } |
| Blocks[0] = CurBlock; |
| return Blocks; |
| } |
| |
| bool processPhi(PHINode &Phi, const TargetLibraryInfo *const TLI) { |
| DEBUG(dbgs() << "processPhi()\n"); |
| if (Phi.getNumIncomingValues() <= 1) { |
| DEBUG(dbgs() << "skip: only one incoming value in phi\n"); |
| return false; |
| } |
| // We are looking for something that has the following structure: |
| // bb1 --eq--> bb2 --eq--> bb3 --eq--> bb4 --+ |
| // \ \ \ \ |
| // ne ne ne \ |
| // \ \ \ v |
| // +------------+-----------+----------> bb_phi |
| // |
| // - The last basic block (bb4 here) must branch unconditionally to bb_phi. |
| // It's the only block that contributes a non-constant value to the Phi. |
| // - All other blocks (b1, b2, b3) must have exactly two successors, one of |
| // them being the phi block. |
| // - All intermediate blocks (bb2, bb3) must have only one predecessor. |
| // - Blocks cannot do other work besides the comparison, see doesOtherWork() |
| |
| // The blocks are not necessarily ordered in the phi, so we start from the |
| // last block and reconstruct the order. |
| BasicBlock *LastBlock = nullptr; |
| for (unsigned I = 0; I < Phi.getNumIncomingValues(); ++I) { |
| if (isa<ConstantInt>(Phi.getIncomingValue(I))) continue; |
| if (LastBlock) { |
| // There are several non-constant values. |
| DEBUG(dbgs() << "skip: several non-constant values\n"); |
| return false; |
| } |
| if (!isa<ICmpInst>(Phi.getIncomingValue(I)) || |
| cast<ICmpInst>(Phi.getIncomingValue(I))->getParent() != |
| Phi.getIncomingBlock(I)) { |
| // Non-constant incoming value is not from a cmp instruction or not |
| // produced by the last block. We could end up processing the value |
| // producing block more than once. |
| // |
| // This is an uncommon case, so we bail. |
| DEBUG( |
| dbgs() |
| << "skip: non-constant value not from cmp or not from last block.\n"); |
| return false; |
| } |
| LastBlock = Phi.getIncomingBlock(I); |
| } |
| if (!LastBlock) { |
| // There is no non-constant block. |
| DEBUG(dbgs() << "skip: no non-constant block\n"); |
| return false; |
| } |
| if (LastBlock->getSingleSuccessor() != Phi.getParent()) { |
| DEBUG(dbgs() << "skip: last block non-phi successor\n"); |
| return false; |
| } |
| |
| const auto Blocks = |
| getOrderedBlocks(Phi, LastBlock, Phi.getNumIncomingValues()); |
| if (Blocks.empty()) return false; |
| BCECmpChain CmpChain(Blocks, Phi); |
| |
| if (CmpChain.size() < 2) { |
| DEBUG(dbgs() << "skip: only one compare block\n"); |
| return false; |
| } |
| |
| return CmpChain.simplify(TLI); |
| } |
| |
| class MergeICmps : public FunctionPass { |
| public: |
| static char ID; |
| |
| MergeICmps() : FunctionPass(ID) { |
| initializeMergeICmpsPass(*PassRegistry::getPassRegistry()); |
| } |
| |
| bool runOnFunction(Function &F) override { |
| if (skipFunction(F)) return false; |
| const auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); |
| const auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); |
| auto PA = runImpl(F, &TLI, &TTI); |
| return !PA.areAllPreserved(); |
| } |
| |
| private: |
| void getAnalysisUsage(AnalysisUsage &AU) const override { |
| AU.addRequired<TargetLibraryInfoWrapperPass>(); |
| AU.addRequired<TargetTransformInfoWrapperPass>(); |
| } |
| |
| PreservedAnalyses runImpl(Function &F, const TargetLibraryInfo *TLI, |
| const TargetTransformInfo *TTI); |
| }; |
| |
| PreservedAnalyses MergeICmps::runImpl(Function &F, const TargetLibraryInfo *TLI, |
| const TargetTransformInfo *TTI) { |
| DEBUG(dbgs() << "MergeICmpsPass: " << F.getName() << "\n"); |
| |
| // We only try merging comparisons if the target wants to expand memcmp later. |
| // The rationale is to avoid turning small chains into memcmp calls. |
| if (!TTI->enableMemCmpExpansion(true)) return PreservedAnalyses::all(); |
| |
| bool MadeChange = false; |
| |
| for (auto BBIt = ++F.begin(); BBIt != F.end(); ++BBIt) { |
| // A Phi operation is always first in a basic block. |
| if (auto *const Phi = dyn_cast<PHINode>(&*BBIt->begin())) |
| MadeChange |= processPhi(*Phi, TLI); |
| } |
| |
| if (MadeChange) return PreservedAnalyses::none(); |
| return PreservedAnalyses::all(); |
| } |
| |
| } // namespace |
| |
| char MergeICmps::ID = 0; |
| INITIALIZE_PASS_BEGIN(MergeICmps, "mergeicmps", |
| "Merge contiguous icmps into a memcmp", false, false) |
| INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) |
| INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) |
| INITIALIZE_PASS_END(MergeICmps, "mergeicmps", |
| "Merge contiguous icmps into a memcmp", false, false) |
| |
| Pass *llvm::createMergeICmpsPass() { return new MergeICmps(); } |