| //===-- TargetLoweringBase.cpp - Implement the TargetLoweringBase class ---===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This implements the TargetLoweringBase class. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Target/TargetLowering.h" |
| #include "llvm/ADT/BitVector.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/StringExtras.h" |
| #include "llvm/ADT/Triple.h" |
| #include "llvm/CodeGen/Analysis.h" |
| #include "llvm/CodeGen/MachineFrameInfo.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineInstrBuilder.h" |
| #include "llvm/CodeGen/MachineJumpTableInfo.h" |
| #include "llvm/CodeGen/StackMaps.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/IR/DerivedTypes.h" |
| #include "llvm/IR/GlobalVariable.h" |
| #include "llvm/IR/Mangler.h" |
| #include "llvm/MC/MCAsmInfo.h" |
| #include "llvm/MC/MCContext.h" |
| #include "llvm/MC/MCExpr.h" |
| #include "llvm/Support/BranchProbability.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Target/TargetLoweringObjectFile.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "llvm/Target/TargetRegisterInfo.h" |
| #include "llvm/Target/TargetSubtargetInfo.h" |
| #include <cctype> |
| using namespace llvm; |
| |
| static cl::opt<bool> JumpIsExpensiveOverride( |
| "jump-is-expensive", cl::init(false), |
| cl::desc("Do not create extra branches to split comparison logic."), |
| cl::Hidden); |
| |
| static cl::opt<unsigned> MinimumJumpTableEntries |
| ("min-jump-table-entries", cl::init(4), cl::Hidden, |
| cl::desc("Set minimum number of entries to use a jump table.")); |
| |
| static cl::opt<unsigned> MaximumJumpTableSize |
| ("max-jump-table-size", cl::init(0), cl::Hidden, |
| cl::desc("Set maximum size of jump tables; zero for no limit.")); |
| |
| // Although this default value is arbitrary, it is not random. It is assumed |
| // that a condition that evaluates the same way by a higher percentage than this |
| // is best represented as control flow. Therefore, the default value N should be |
| // set such that the win from N% correct executions is greater than the loss |
| // from (100 - N)% mispredicted executions for the majority of intended targets. |
| static cl::opt<int> MinPercentageForPredictableBranch( |
| "min-predictable-branch", cl::init(99), |
| cl::desc("Minimum percentage (0-100) that a condition must be either true " |
| "or false to assume that the condition is predictable"), |
| cl::Hidden); |
| |
| /// InitLibcallNames - Set default libcall names. |
| /// |
| static void InitLibcallNames(const char **Names, const Triple &TT) { |
| Names[RTLIB::SHL_I16] = "__ashlhi3"; |
| Names[RTLIB::SHL_I32] = "__ashlsi3"; |
| Names[RTLIB::SHL_I64] = "__ashldi3"; |
| Names[RTLIB::SHL_I128] = "__ashlti3"; |
| Names[RTLIB::SRL_I16] = "__lshrhi3"; |
| Names[RTLIB::SRL_I32] = "__lshrsi3"; |
| Names[RTLIB::SRL_I64] = "__lshrdi3"; |
| Names[RTLIB::SRL_I128] = "__lshrti3"; |
| Names[RTLIB::SRA_I16] = "__ashrhi3"; |
| Names[RTLIB::SRA_I32] = "__ashrsi3"; |
| Names[RTLIB::SRA_I64] = "__ashrdi3"; |
| Names[RTLIB::SRA_I128] = "__ashrti3"; |
| Names[RTLIB::MUL_I8] = "__mulqi3"; |
| Names[RTLIB::MUL_I16] = "__mulhi3"; |
| Names[RTLIB::MUL_I32] = "__mulsi3"; |
| Names[RTLIB::MUL_I64] = "__muldi3"; |
| Names[RTLIB::MUL_I128] = "__multi3"; |
| Names[RTLIB::MULO_I32] = "__mulosi4"; |
| Names[RTLIB::MULO_I64] = "__mulodi4"; |
| Names[RTLIB::MULO_I128] = "__muloti4"; |
| Names[RTLIB::SDIV_I8] = "__divqi3"; |
| Names[RTLIB::SDIV_I16] = "__divhi3"; |
| Names[RTLIB::SDIV_I32] = "__divsi3"; |
| Names[RTLIB::SDIV_I64] = "__divdi3"; |
| Names[RTLIB::SDIV_I128] = "__divti3"; |
| Names[RTLIB::UDIV_I8] = "__udivqi3"; |
| Names[RTLIB::UDIV_I16] = "__udivhi3"; |
| Names[RTLIB::UDIV_I32] = "__udivsi3"; |
| Names[RTLIB::UDIV_I64] = "__udivdi3"; |
| Names[RTLIB::UDIV_I128] = "__udivti3"; |
| Names[RTLIB::SREM_I8] = "__modqi3"; |
| Names[RTLIB::SREM_I16] = "__modhi3"; |
| Names[RTLIB::SREM_I32] = "__modsi3"; |
| Names[RTLIB::SREM_I64] = "__moddi3"; |
| Names[RTLIB::SREM_I128] = "__modti3"; |
| Names[RTLIB::UREM_I8] = "__umodqi3"; |
| Names[RTLIB::UREM_I16] = "__umodhi3"; |
| Names[RTLIB::UREM_I32] = "__umodsi3"; |
| Names[RTLIB::UREM_I64] = "__umoddi3"; |
| Names[RTLIB::UREM_I128] = "__umodti3"; |
| |
| Names[RTLIB::NEG_I32] = "__negsi2"; |
| Names[RTLIB::NEG_I64] = "__negdi2"; |
| Names[RTLIB::ADD_F32] = "__addsf3"; |
| Names[RTLIB::ADD_F64] = "__adddf3"; |
| Names[RTLIB::ADD_F80] = "__addxf3"; |
| Names[RTLIB::ADD_F128] = "__addtf3"; |
| Names[RTLIB::ADD_PPCF128] = "__gcc_qadd"; |
| Names[RTLIB::SUB_F32] = "__subsf3"; |
| Names[RTLIB::SUB_F64] = "__subdf3"; |
| Names[RTLIB::SUB_F80] = "__subxf3"; |
| Names[RTLIB::SUB_F128] = "__subtf3"; |
| Names[RTLIB::SUB_PPCF128] = "__gcc_qsub"; |
| Names[RTLIB::MUL_F32] = "__mulsf3"; |
| Names[RTLIB::MUL_F64] = "__muldf3"; |
| Names[RTLIB::MUL_F80] = "__mulxf3"; |
| Names[RTLIB::MUL_F128] = "__multf3"; |
| Names[RTLIB::MUL_PPCF128] = "__gcc_qmul"; |
| Names[RTLIB::DIV_F32] = "__divsf3"; |
| Names[RTLIB::DIV_F64] = "__divdf3"; |
| Names[RTLIB::DIV_F80] = "__divxf3"; |
| Names[RTLIB::DIV_F128] = "__divtf3"; |
| Names[RTLIB::DIV_PPCF128] = "__gcc_qdiv"; |
| Names[RTLIB::REM_F32] = "fmodf"; |
| Names[RTLIB::REM_F64] = "fmod"; |
| Names[RTLIB::REM_F80] = "fmodl"; |
| Names[RTLIB::REM_F128] = "fmodl"; |
| Names[RTLIB::REM_PPCF128] = "fmodl"; |
| Names[RTLIB::FMA_F32] = "fmaf"; |
| Names[RTLIB::FMA_F64] = "fma"; |
| Names[RTLIB::FMA_F80] = "fmal"; |
| Names[RTLIB::FMA_F128] = "fmal"; |
| Names[RTLIB::FMA_PPCF128] = "fmal"; |
| Names[RTLIB::POWI_F32] = "__powisf2"; |
| Names[RTLIB::POWI_F64] = "__powidf2"; |
| Names[RTLIB::POWI_F80] = "__powixf2"; |
| Names[RTLIB::POWI_F128] = "__powitf2"; |
| Names[RTLIB::POWI_PPCF128] = "__powitf2"; |
| Names[RTLIB::SQRT_F32] = "sqrtf"; |
| Names[RTLIB::SQRT_F64] = "sqrt"; |
| Names[RTLIB::SQRT_F80] = "sqrtl"; |
| Names[RTLIB::SQRT_F128] = "sqrtl"; |
| Names[RTLIB::SQRT_PPCF128] = "sqrtl"; |
| Names[RTLIB::LOG_F32] = "logf"; |
| Names[RTLIB::LOG_F64] = "log"; |
| Names[RTLIB::LOG_F80] = "logl"; |
| Names[RTLIB::LOG_F128] = "logl"; |
| Names[RTLIB::LOG_PPCF128] = "logl"; |
| Names[RTLIB::LOG2_F32] = "log2f"; |
| Names[RTLIB::LOG2_F64] = "log2"; |
| Names[RTLIB::LOG2_F80] = "log2l"; |
| Names[RTLIB::LOG2_F128] = "log2l"; |
| Names[RTLIB::LOG2_PPCF128] = "log2l"; |
| Names[RTLIB::LOG10_F32] = "log10f"; |
| Names[RTLIB::LOG10_F64] = "log10"; |
| Names[RTLIB::LOG10_F80] = "log10l"; |
| Names[RTLIB::LOG10_F128] = "log10l"; |
| Names[RTLIB::LOG10_PPCF128] = "log10l"; |
| Names[RTLIB::EXP_F32] = "expf"; |
| Names[RTLIB::EXP_F64] = "exp"; |
| Names[RTLIB::EXP_F80] = "expl"; |
| Names[RTLIB::EXP_F128] = "expl"; |
| Names[RTLIB::EXP_PPCF128] = "expl"; |
| Names[RTLIB::EXP2_F32] = "exp2f"; |
| Names[RTLIB::EXP2_F64] = "exp2"; |
| Names[RTLIB::EXP2_F80] = "exp2l"; |
| Names[RTLIB::EXP2_F128] = "exp2l"; |
| Names[RTLIB::EXP2_PPCF128] = "exp2l"; |
| Names[RTLIB::SIN_F32] = "sinf"; |
| Names[RTLIB::SIN_F64] = "sin"; |
| Names[RTLIB::SIN_F80] = "sinl"; |
| Names[RTLIB::SIN_F128] = "sinl"; |
| Names[RTLIB::SIN_PPCF128] = "sinl"; |
| Names[RTLIB::COS_F32] = "cosf"; |
| Names[RTLIB::COS_F64] = "cos"; |
| Names[RTLIB::COS_F80] = "cosl"; |
| Names[RTLIB::COS_F128] = "cosl"; |
| Names[RTLIB::COS_PPCF128] = "cosl"; |
| Names[RTLIB::POW_F32] = "powf"; |
| Names[RTLIB::POW_F64] = "pow"; |
| Names[RTLIB::POW_F80] = "powl"; |
| Names[RTLIB::POW_F128] = "powl"; |
| Names[RTLIB::POW_PPCF128] = "powl"; |
| Names[RTLIB::CEIL_F32] = "ceilf"; |
| Names[RTLIB::CEIL_F64] = "ceil"; |
| Names[RTLIB::CEIL_F80] = "ceill"; |
| Names[RTLIB::CEIL_F128] = "ceill"; |
| Names[RTLIB::CEIL_PPCF128] = "ceill"; |
| Names[RTLIB::TRUNC_F32] = "truncf"; |
| Names[RTLIB::TRUNC_F64] = "trunc"; |
| Names[RTLIB::TRUNC_F80] = "truncl"; |
| Names[RTLIB::TRUNC_F128] = "truncl"; |
| Names[RTLIB::TRUNC_PPCF128] = "truncl"; |
| Names[RTLIB::RINT_F32] = "rintf"; |
| Names[RTLIB::RINT_F64] = "rint"; |
| Names[RTLIB::RINT_F80] = "rintl"; |
| Names[RTLIB::RINT_F128] = "rintl"; |
| Names[RTLIB::RINT_PPCF128] = "rintl"; |
| Names[RTLIB::NEARBYINT_F32] = "nearbyintf"; |
| Names[RTLIB::NEARBYINT_F64] = "nearbyint"; |
| Names[RTLIB::NEARBYINT_F80] = "nearbyintl"; |
| Names[RTLIB::NEARBYINT_F128] = "nearbyintl"; |
| Names[RTLIB::NEARBYINT_PPCF128] = "nearbyintl"; |
| Names[RTLIB::ROUND_F32] = "roundf"; |
| Names[RTLIB::ROUND_F64] = "round"; |
| Names[RTLIB::ROUND_F80] = "roundl"; |
| Names[RTLIB::ROUND_F128] = "roundl"; |
| Names[RTLIB::ROUND_PPCF128] = "roundl"; |
| Names[RTLIB::FLOOR_F32] = "floorf"; |
| Names[RTLIB::FLOOR_F64] = "floor"; |
| Names[RTLIB::FLOOR_F80] = "floorl"; |
| Names[RTLIB::FLOOR_F128] = "floorl"; |
| Names[RTLIB::FLOOR_PPCF128] = "floorl"; |
| Names[RTLIB::FMIN_F32] = "fminf"; |
| Names[RTLIB::FMIN_F64] = "fmin"; |
| Names[RTLIB::FMIN_F80] = "fminl"; |
| Names[RTLIB::FMIN_F128] = "fminl"; |
| Names[RTLIB::FMIN_PPCF128] = "fminl"; |
| Names[RTLIB::FMAX_F32] = "fmaxf"; |
| Names[RTLIB::FMAX_F64] = "fmax"; |
| Names[RTLIB::FMAX_F80] = "fmaxl"; |
| Names[RTLIB::FMAX_F128] = "fmaxl"; |
| Names[RTLIB::FMAX_PPCF128] = "fmaxl"; |
| Names[RTLIB::ROUND_F32] = "roundf"; |
| Names[RTLIB::ROUND_F64] = "round"; |
| Names[RTLIB::ROUND_F80] = "roundl"; |
| Names[RTLIB::ROUND_F128] = "roundl"; |
| Names[RTLIB::ROUND_PPCF128] = "roundl"; |
| Names[RTLIB::COPYSIGN_F32] = "copysignf"; |
| Names[RTLIB::COPYSIGN_F64] = "copysign"; |
| Names[RTLIB::COPYSIGN_F80] = "copysignl"; |
| Names[RTLIB::COPYSIGN_F128] = "copysignl"; |
| Names[RTLIB::COPYSIGN_PPCF128] = "copysignl"; |
| Names[RTLIB::FPEXT_F32_PPCF128] = "__gcc_stoq"; |
| Names[RTLIB::FPEXT_F64_PPCF128] = "__gcc_dtoq"; |
| Names[RTLIB::FPEXT_F64_F128] = "__extenddftf2"; |
| Names[RTLIB::FPEXT_F32_F128] = "__extendsftf2"; |
| Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2"; |
| if (TT.isOSDarwin()) { |
| // For f16/f32 conversions, Darwin uses the standard naming scheme, instead |
| // of the gnueabi-style __gnu_*_ieee. |
| // FIXME: What about other targets? |
| Names[RTLIB::FPEXT_F16_F32] = "__extendhfsf2"; |
| Names[RTLIB::FPROUND_F32_F16] = "__truncsfhf2"; |
| } else { |
| Names[RTLIB::FPEXT_F16_F32] = "__gnu_h2f_ieee"; |
| Names[RTLIB::FPROUND_F32_F16] = "__gnu_f2h_ieee"; |
| } |
| Names[RTLIB::FPROUND_F64_F16] = "__truncdfhf2"; |
| Names[RTLIB::FPROUND_F80_F16] = "__truncxfhf2"; |
| Names[RTLIB::FPROUND_F128_F16] = "__trunctfhf2"; |
| Names[RTLIB::FPROUND_PPCF128_F16] = "__trunctfhf2"; |
| Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2"; |
| Names[RTLIB::FPROUND_F80_F32] = "__truncxfsf2"; |
| Names[RTLIB::FPROUND_F128_F32] = "__trunctfsf2"; |
| Names[RTLIB::FPROUND_PPCF128_F32] = "__gcc_qtos"; |
| Names[RTLIB::FPROUND_F80_F64] = "__truncxfdf2"; |
| Names[RTLIB::FPROUND_F128_F64] = "__trunctfdf2"; |
| Names[RTLIB::FPROUND_PPCF128_F64] = "__gcc_qtod"; |
| Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi"; |
| Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi"; |
| Names[RTLIB::FPTOSINT_F32_I128] = "__fixsfti"; |
| Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi"; |
| Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi"; |
| Names[RTLIB::FPTOSINT_F64_I128] = "__fixdfti"; |
| Names[RTLIB::FPTOSINT_F80_I32] = "__fixxfsi"; |
| Names[RTLIB::FPTOSINT_F80_I64] = "__fixxfdi"; |
| Names[RTLIB::FPTOSINT_F80_I128] = "__fixxfti"; |
| Names[RTLIB::FPTOSINT_F128_I32] = "__fixtfsi"; |
| Names[RTLIB::FPTOSINT_F128_I64] = "__fixtfdi"; |
| Names[RTLIB::FPTOSINT_F128_I128] = "__fixtfti"; |
| Names[RTLIB::FPTOSINT_PPCF128_I32] = "__gcc_qtou"; |
| Names[RTLIB::FPTOSINT_PPCF128_I64] = "__fixtfdi"; |
| Names[RTLIB::FPTOSINT_PPCF128_I128] = "__fixtfti"; |
| Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi"; |
| Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi"; |
| Names[RTLIB::FPTOUINT_F32_I128] = "__fixunssfti"; |
| Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi"; |
| Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi"; |
| Names[RTLIB::FPTOUINT_F64_I128] = "__fixunsdfti"; |
| Names[RTLIB::FPTOUINT_F80_I32] = "__fixunsxfsi"; |
| Names[RTLIB::FPTOUINT_F80_I64] = "__fixunsxfdi"; |
| Names[RTLIB::FPTOUINT_F80_I128] = "__fixunsxfti"; |
| Names[RTLIB::FPTOUINT_F128_I32] = "__fixunstfsi"; |
| Names[RTLIB::FPTOUINT_F128_I64] = "__fixunstfdi"; |
| Names[RTLIB::FPTOUINT_F128_I128] = "__fixunstfti"; |
| Names[RTLIB::FPTOUINT_PPCF128_I32] = "__fixunstfsi"; |
| Names[RTLIB::FPTOUINT_PPCF128_I64] = "__fixunstfdi"; |
| Names[RTLIB::FPTOUINT_PPCF128_I128] = "__fixunstfti"; |
| Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf"; |
| Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf"; |
| Names[RTLIB::SINTTOFP_I32_F80] = "__floatsixf"; |
| Names[RTLIB::SINTTOFP_I32_F128] = "__floatsitf"; |
| Names[RTLIB::SINTTOFP_I32_PPCF128] = "__gcc_itoq"; |
| Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf"; |
| Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf"; |
| Names[RTLIB::SINTTOFP_I64_F80] = "__floatdixf"; |
| Names[RTLIB::SINTTOFP_I64_F128] = "__floatditf"; |
| Names[RTLIB::SINTTOFP_I64_PPCF128] = "__floatditf"; |
| Names[RTLIB::SINTTOFP_I128_F32] = "__floattisf"; |
| Names[RTLIB::SINTTOFP_I128_F64] = "__floattidf"; |
| Names[RTLIB::SINTTOFP_I128_F80] = "__floattixf"; |
| Names[RTLIB::SINTTOFP_I128_F128] = "__floattitf"; |
| Names[RTLIB::SINTTOFP_I128_PPCF128] = "__floattitf"; |
| Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf"; |
| Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf"; |
| Names[RTLIB::UINTTOFP_I32_F80] = "__floatunsixf"; |
| Names[RTLIB::UINTTOFP_I32_F128] = "__floatunsitf"; |
| Names[RTLIB::UINTTOFP_I32_PPCF128] = "__gcc_utoq"; |
| Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf"; |
| Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf"; |
| Names[RTLIB::UINTTOFP_I64_F80] = "__floatundixf"; |
| Names[RTLIB::UINTTOFP_I64_F128] = "__floatunditf"; |
| Names[RTLIB::UINTTOFP_I64_PPCF128] = "__floatunditf"; |
| Names[RTLIB::UINTTOFP_I128_F32] = "__floatuntisf"; |
| Names[RTLIB::UINTTOFP_I128_F64] = "__floatuntidf"; |
| Names[RTLIB::UINTTOFP_I128_F80] = "__floatuntixf"; |
| Names[RTLIB::UINTTOFP_I128_F128] = "__floatuntitf"; |
| Names[RTLIB::UINTTOFP_I128_PPCF128] = "__floatuntitf"; |
| Names[RTLIB::OEQ_F32] = "__eqsf2"; |
| Names[RTLIB::OEQ_F64] = "__eqdf2"; |
| Names[RTLIB::OEQ_F128] = "__eqtf2"; |
| Names[RTLIB::OEQ_PPCF128] = "__gcc_qeq"; |
| Names[RTLIB::UNE_F32] = "__nesf2"; |
| Names[RTLIB::UNE_F64] = "__nedf2"; |
| Names[RTLIB::UNE_F128] = "__netf2"; |
| Names[RTLIB::UNE_PPCF128] = "__gcc_qne"; |
| Names[RTLIB::OGE_F32] = "__gesf2"; |
| Names[RTLIB::OGE_F64] = "__gedf2"; |
| Names[RTLIB::OGE_F128] = "__getf2"; |
| Names[RTLIB::OGE_PPCF128] = "__gcc_qge"; |
| Names[RTLIB::OLT_F32] = "__ltsf2"; |
| Names[RTLIB::OLT_F64] = "__ltdf2"; |
| Names[RTLIB::OLT_F128] = "__lttf2"; |
| Names[RTLIB::OLT_PPCF128] = "__gcc_qlt"; |
| Names[RTLIB::OLE_F32] = "__lesf2"; |
| Names[RTLIB::OLE_F64] = "__ledf2"; |
| Names[RTLIB::OLE_F128] = "__letf2"; |
| Names[RTLIB::OLE_PPCF128] = "__gcc_qle"; |
| Names[RTLIB::OGT_F32] = "__gtsf2"; |
| Names[RTLIB::OGT_F64] = "__gtdf2"; |
| Names[RTLIB::OGT_F128] = "__gttf2"; |
| Names[RTLIB::OGT_PPCF128] = "__gcc_qgt"; |
| Names[RTLIB::UO_F32] = "__unordsf2"; |
| Names[RTLIB::UO_F64] = "__unorddf2"; |
| Names[RTLIB::UO_F128] = "__unordtf2"; |
| Names[RTLIB::UO_PPCF128] = "__gcc_qunord"; |
| Names[RTLIB::O_F32] = "__unordsf2"; |
| Names[RTLIB::O_F64] = "__unorddf2"; |
| Names[RTLIB::O_F128] = "__unordtf2"; |
| Names[RTLIB::O_PPCF128] = "__gcc_qunord"; |
| Names[RTLIB::MEMCPY] = "memcpy"; |
| Names[RTLIB::MEMMOVE] = "memmove"; |
| Names[RTLIB::MEMSET] = "memset"; |
| Names[RTLIB::MEMCPY_ELEMENT_ATOMIC_1] = "__llvm_memcpy_element_atomic_1"; |
| Names[RTLIB::MEMCPY_ELEMENT_ATOMIC_2] = "__llvm_memcpy_element_atomic_2"; |
| Names[RTLIB::MEMCPY_ELEMENT_ATOMIC_4] = "__llvm_memcpy_element_atomic_4"; |
| Names[RTLIB::MEMCPY_ELEMENT_ATOMIC_8] = "__llvm_memcpy_element_atomic_8"; |
| Names[RTLIB::MEMCPY_ELEMENT_ATOMIC_16] = "__llvm_memcpy_element_atomic_16"; |
| Names[RTLIB::UNWIND_RESUME] = "_Unwind_Resume"; |
| Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_1] = "__sync_val_compare_and_swap_1"; |
| Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_2] = "__sync_val_compare_and_swap_2"; |
| Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_4] = "__sync_val_compare_and_swap_4"; |
| Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_8] = "__sync_val_compare_and_swap_8"; |
| Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_16] = "__sync_val_compare_and_swap_16"; |
| Names[RTLIB::SYNC_LOCK_TEST_AND_SET_1] = "__sync_lock_test_and_set_1"; |
| Names[RTLIB::SYNC_LOCK_TEST_AND_SET_2] = "__sync_lock_test_and_set_2"; |
| Names[RTLIB::SYNC_LOCK_TEST_AND_SET_4] = "__sync_lock_test_and_set_4"; |
| Names[RTLIB::SYNC_LOCK_TEST_AND_SET_8] = "__sync_lock_test_and_set_8"; |
| Names[RTLIB::SYNC_LOCK_TEST_AND_SET_16] = "__sync_lock_test_and_set_16"; |
| Names[RTLIB::SYNC_FETCH_AND_ADD_1] = "__sync_fetch_and_add_1"; |
| Names[RTLIB::SYNC_FETCH_AND_ADD_2] = "__sync_fetch_and_add_2"; |
| Names[RTLIB::SYNC_FETCH_AND_ADD_4] = "__sync_fetch_and_add_4"; |
| Names[RTLIB::SYNC_FETCH_AND_ADD_8] = "__sync_fetch_and_add_8"; |
| Names[RTLIB::SYNC_FETCH_AND_ADD_16] = "__sync_fetch_and_add_16"; |
| Names[RTLIB::SYNC_FETCH_AND_SUB_1] = "__sync_fetch_and_sub_1"; |
| Names[RTLIB::SYNC_FETCH_AND_SUB_2] = "__sync_fetch_and_sub_2"; |
| Names[RTLIB::SYNC_FETCH_AND_SUB_4] = "__sync_fetch_and_sub_4"; |
| Names[RTLIB::SYNC_FETCH_AND_SUB_8] = "__sync_fetch_and_sub_8"; |
| Names[RTLIB::SYNC_FETCH_AND_SUB_16] = "__sync_fetch_and_sub_16"; |
| Names[RTLIB::SYNC_FETCH_AND_AND_1] = "__sync_fetch_and_and_1"; |
| Names[RTLIB::SYNC_FETCH_AND_AND_2] = "__sync_fetch_and_and_2"; |
| Names[RTLIB::SYNC_FETCH_AND_AND_4] = "__sync_fetch_and_and_4"; |
| Names[RTLIB::SYNC_FETCH_AND_AND_8] = "__sync_fetch_and_and_8"; |
| Names[RTLIB::SYNC_FETCH_AND_AND_16] = "__sync_fetch_and_and_16"; |
| Names[RTLIB::SYNC_FETCH_AND_OR_1] = "__sync_fetch_and_or_1"; |
| Names[RTLIB::SYNC_FETCH_AND_OR_2] = "__sync_fetch_and_or_2"; |
| Names[RTLIB::SYNC_FETCH_AND_OR_4] = "__sync_fetch_and_or_4"; |
| Names[RTLIB::SYNC_FETCH_AND_OR_8] = "__sync_fetch_and_or_8"; |
| Names[RTLIB::SYNC_FETCH_AND_OR_16] = "__sync_fetch_and_or_16"; |
| Names[RTLIB::SYNC_FETCH_AND_XOR_1] = "__sync_fetch_and_xor_1"; |
| Names[RTLIB::SYNC_FETCH_AND_XOR_2] = "__sync_fetch_and_xor_2"; |
| Names[RTLIB::SYNC_FETCH_AND_XOR_4] = "__sync_fetch_and_xor_4"; |
| Names[RTLIB::SYNC_FETCH_AND_XOR_8] = "__sync_fetch_and_xor_8"; |
| Names[RTLIB::SYNC_FETCH_AND_XOR_16] = "__sync_fetch_and_xor_16"; |
| Names[RTLIB::SYNC_FETCH_AND_NAND_1] = "__sync_fetch_and_nand_1"; |
| Names[RTLIB::SYNC_FETCH_AND_NAND_2] = "__sync_fetch_and_nand_2"; |
| Names[RTLIB::SYNC_FETCH_AND_NAND_4] = "__sync_fetch_and_nand_4"; |
| Names[RTLIB::SYNC_FETCH_AND_NAND_8] = "__sync_fetch_and_nand_8"; |
| Names[RTLIB::SYNC_FETCH_AND_NAND_16] = "__sync_fetch_and_nand_16"; |
| Names[RTLIB::SYNC_FETCH_AND_MAX_1] = "__sync_fetch_and_max_1"; |
| Names[RTLIB::SYNC_FETCH_AND_MAX_2] = "__sync_fetch_and_max_2"; |
| Names[RTLIB::SYNC_FETCH_AND_MAX_4] = "__sync_fetch_and_max_4"; |
| Names[RTLIB::SYNC_FETCH_AND_MAX_8] = "__sync_fetch_and_max_8"; |
| Names[RTLIB::SYNC_FETCH_AND_MAX_16] = "__sync_fetch_and_max_16"; |
| Names[RTLIB::SYNC_FETCH_AND_UMAX_1] = "__sync_fetch_and_umax_1"; |
| Names[RTLIB::SYNC_FETCH_AND_UMAX_2] = "__sync_fetch_and_umax_2"; |
| Names[RTLIB::SYNC_FETCH_AND_UMAX_4] = "__sync_fetch_and_umax_4"; |
| Names[RTLIB::SYNC_FETCH_AND_UMAX_8] = "__sync_fetch_and_umax_8"; |
| Names[RTLIB::SYNC_FETCH_AND_UMAX_16] = "__sync_fetch_and_umax_16"; |
| Names[RTLIB::SYNC_FETCH_AND_MIN_1] = "__sync_fetch_and_min_1"; |
| Names[RTLIB::SYNC_FETCH_AND_MIN_2] = "__sync_fetch_and_min_2"; |
| Names[RTLIB::SYNC_FETCH_AND_MIN_4] = "__sync_fetch_and_min_4"; |
| Names[RTLIB::SYNC_FETCH_AND_MIN_8] = "__sync_fetch_and_min_8"; |
| Names[RTLIB::SYNC_FETCH_AND_MIN_16] = "__sync_fetch_and_min_16"; |
| Names[RTLIB::SYNC_FETCH_AND_UMIN_1] = "__sync_fetch_and_umin_1"; |
| Names[RTLIB::SYNC_FETCH_AND_UMIN_2] = "__sync_fetch_and_umin_2"; |
| Names[RTLIB::SYNC_FETCH_AND_UMIN_4] = "__sync_fetch_and_umin_4"; |
| Names[RTLIB::SYNC_FETCH_AND_UMIN_8] = "__sync_fetch_and_umin_8"; |
| Names[RTLIB::SYNC_FETCH_AND_UMIN_16] = "__sync_fetch_and_umin_16"; |
| |
| Names[RTLIB::ATOMIC_LOAD] = "__atomic_load"; |
| Names[RTLIB::ATOMIC_LOAD_1] = "__atomic_load_1"; |
| Names[RTLIB::ATOMIC_LOAD_2] = "__atomic_load_2"; |
| Names[RTLIB::ATOMIC_LOAD_4] = "__atomic_load_4"; |
| Names[RTLIB::ATOMIC_LOAD_8] = "__atomic_load_8"; |
| Names[RTLIB::ATOMIC_LOAD_16] = "__atomic_load_16"; |
| |
| Names[RTLIB::ATOMIC_STORE] = "__atomic_store"; |
| Names[RTLIB::ATOMIC_STORE_1] = "__atomic_store_1"; |
| Names[RTLIB::ATOMIC_STORE_2] = "__atomic_store_2"; |
| Names[RTLIB::ATOMIC_STORE_4] = "__atomic_store_4"; |
| Names[RTLIB::ATOMIC_STORE_8] = "__atomic_store_8"; |
| Names[RTLIB::ATOMIC_STORE_16] = "__atomic_store_16"; |
| |
| Names[RTLIB::ATOMIC_EXCHANGE] = "__atomic_exchange"; |
| Names[RTLIB::ATOMIC_EXCHANGE_1] = "__atomic_exchange_1"; |
| Names[RTLIB::ATOMIC_EXCHANGE_2] = "__atomic_exchange_2"; |
| Names[RTLIB::ATOMIC_EXCHANGE_4] = "__atomic_exchange_4"; |
| Names[RTLIB::ATOMIC_EXCHANGE_8] = "__atomic_exchange_8"; |
| Names[RTLIB::ATOMIC_EXCHANGE_16] = "__atomic_exchange_16"; |
| |
| Names[RTLIB::ATOMIC_COMPARE_EXCHANGE] = "__atomic_compare_exchange"; |
| Names[RTLIB::ATOMIC_COMPARE_EXCHANGE_1] = "__atomic_compare_exchange_1"; |
| Names[RTLIB::ATOMIC_COMPARE_EXCHANGE_2] = "__atomic_compare_exchange_2"; |
| Names[RTLIB::ATOMIC_COMPARE_EXCHANGE_4] = "__atomic_compare_exchange_4"; |
| Names[RTLIB::ATOMIC_COMPARE_EXCHANGE_8] = "__atomic_compare_exchange_8"; |
| Names[RTLIB::ATOMIC_COMPARE_EXCHANGE_16] = "__atomic_compare_exchange_16"; |
| |
| Names[RTLIB::ATOMIC_FETCH_ADD_1] = "__atomic_fetch_add_1"; |
| Names[RTLIB::ATOMIC_FETCH_ADD_2] = "__atomic_fetch_add_2"; |
| Names[RTLIB::ATOMIC_FETCH_ADD_4] = "__atomic_fetch_add_4"; |
| Names[RTLIB::ATOMIC_FETCH_ADD_8] = "__atomic_fetch_add_8"; |
| Names[RTLIB::ATOMIC_FETCH_ADD_16] = "__atomic_fetch_add_16"; |
| Names[RTLIB::ATOMIC_FETCH_SUB_1] = "__atomic_fetch_sub_1"; |
| Names[RTLIB::ATOMIC_FETCH_SUB_2] = "__atomic_fetch_sub_2"; |
| Names[RTLIB::ATOMIC_FETCH_SUB_4] = "__atomic_fetch_sub_4"; |
| Names[RTLIB::ATOMIC_FETCH_SUB_8] = "__atomic_fetch_sub_8"; |
| Names[RTLIB::ATOMIC_FETCH_SUB_16] = "__atomic_fetch_sub_16"; |
| Names[RTLIB::ATOMIC_FETCH_AND_1] = "__atomic_fetch_and_1"; |
| Names[RTLIB::ATOMIC_FETCH_AND_2] = "__atomic_fetch_and_2"; |
| Names[RTLIB::ATOMIC_FETCH_AND_4] = "__atomic_fetch_and_4"; |
| Names[RTLIB::ATOMIC_FETCH_AND_8] = "__atomic_fetch_and_8"; |
| Names[RTLIB::ATOMIC_FETCH_AND_16] = "__atomic_fetch_and_16"; |
| Names[RTLIB::ATOMIC_FETCH_OR_1] = "__atomic_fetch_or_1"; |
| Names[RTLIB::ATOMIC_FETCH_OR_2] = "__atomic_fetch_or_2"; |
| Names[RTLIB::ATOMIC_FETCH_OR_4] = "__atomic_fetch_or_4"; |
| Names[RTLIB::ATOMIC_FETCH_OR_8] = "__atomic_fetch_or_8"; |
| Names[RTLIB::ATOMIC_FETCH_OR_16] = "__atomic_fetch_or_16"; |
| Names[RTLIB::ATOMIC_FETCH_XOR_1] = "__atomic_fetch_xor_1"; |
| Names[RTLIB::ATOMIC_FETCH_XOR_2] = "__atomic_fetch_xor_2"; |
| Names[RTLIB::ATOMIC_FETCH_XOR_4] = "__atomic_fetch_xor_4"; |
| Names[RTLIB::ATOMIC_FETCH_XOR_8] = "__atomic_fetch_xor_8"; |
| Names[RTLIB::ATOMIC_FETCH_XOR_16] = "__atomic_fetch_xor_16"; |
| Names[RTLIB::ATOMIC_FETCH_NAND_1] = "__atomic_fetch_nand_1"; |
| Names[RTLIB::ATOMIC_FETCH_NAND_2] = "__atomic_fetch_nand_2"; |
| Names[RTLIB::ATOMIC_FETCH_NAND_4] = "__atomic_fetch_nand_4"; |
| Names[RTLIB::ATOMIC_FETCH_NAND_8] = "__atomic_fetch_nand_8"; |
| Names[RTLIB::ATOMIC_FETCH_NAND_16] = "__atomic_fetch_nand_16"; |
| |
| if (TT.isGNUEnvironment()) { |
| Names[RTLIB::SINCOS_F32] = "sincosf"; |
| Names[RTLIB::SINCOS_F64] = "sincos"; |
| Names[RTLIB::SINCOS_F80] = "sincosl"; |
| Names[RTLIB::SINCOS_F128] = "sincosl"; |
| Names[RTLIB::SINCOS_PPCF128] = "sincosl"; |
| } |
| |
| if (!TT.isOSOpenBSD()) { |
| Names[RTLIB::STACKPROTECTOR_CHECK_FAIL] = "__stack_chk_fail"; |
| } |
| |
| Names[RTLIB::DEOPTIMIZE] = "__llvm_deoptimize"; |
| } |
| |
| /// Set default libcall CallingConvs. |
| static void InitLibcallCallingConvs(CallingConv::ID *CCs) { |
| for (int LC = 0; LC < RTLIB::UNKNOWN_LIBCALL; ++LC) |
| CCs[LC] = CallingConv::C; |
| } |
| |
| /// getFPEXT - Return the FPEXT_*_* value for the given types, or |
| /// UNKNOWN_LIBCALL if there is none. |
| RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) { |
| if (OpVT == MVT::f16) { |
| if (RetVT == MVT::f32) |
| return FPEXT_F16_F32; |
| } else if (OpVT == MVT::f32) { |
| if (RetVT == MVT::f64) |
| return FPEXT_F32_F64; |
| if (RetVT == MVT::f128) |
| return FPEXT_F32_F128; |
| if (RetVT == MVT::ppcf128) |
| return FPEXT_F32_PPCF128; |
| } else if (OpVT == MVT::f64) { |
| if (RetVT == MVT::f128) |
| return FPEXT_F64_F128; |
| else if (RetVT == MVT::ppcf128) |
| return FPEXT_F64_PPCF128; |
| } |
| |
| return UNKNOWN_LIBCALL; |
| } |
| |
| /// getFPROUND - Return the FPROUND_*_* value for the given types, or |
| /// UNKNOWN_LIBCALL if there is none. |
| RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) { |
| if (RetVT == MVT::f16) { |
| if (OpVT == MVT::f32) |
| return FPROUND_F32_F16; |
| if (OpVT == MVT::f64) |
| return FPROUND_F64_F16; |
| if (OpVT == MVT::f80) |
| return FPROUND_F80_F16; |
| if (OpVT == MVT::f128) |
| return FPROUND_F128_F16; |
| if (OpVT == MVT::ppcf128) |
| return FPROUND_PPCF128_F16; |
| } else if (RetVT == MVT::f32) { |
| if (OpVT == MVT::f64) |
| return FPROUND_F64_F32; |
| if (OpVT == MVT::f80) |
| return FPROUND_F80_F32; |
| if (OpVT == MVT::f128) |
| return FPROUND_F128_F32; |
| if (OpVT == MVT::ppcf128) |
| return FPROUND_PPCF128_F32; |
| } else if (RetVT == MVT::f64) { |
| if (OpVT == MVT::f80) |
| return FPROUND_F80_F64; |
| if (OpVT == MVT::f128) |
| return FPROUND_F128_F64; |
| if (OpVT == MVT::ppcf128) |
| return FPROUND_PPCF128_F64; |
| } |
| |
| return UNKNOWN_LIBCALL; |
| } |
| |
| /// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or |
| /// UNKNOWN_LIBCALL if there is none. |
| RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) { |
| if (OpVT == MVT::f32) { |
| if (RetVT == MVT::i32) |
| return FPTOSINT_F32_I32; |
| if (RetVT == MVT::i64) |
| return FPTOSINT_F32_I64; |
| if (RetVT == MVT::i128) |
| return FPTOSINT_F32_I128; |
| } else if (OpVT == MVT::f64) { |
| if (RetVT == MVT::i32) |
| return FPTOSINT_F64_I32; |
| if (RetVT == MVT::i64) |
| return FPTOSINT_F64_I64; |
| if (RetVT == MVT::i128) |
| return FPTOSINT_F64_I128; |
| } else if (OpVT == MVT::f80) { |
| if (RetVT == MVT::i32) |
| return FPTOSINT_F80_I32; |
| if (RetVT == MVT::i64) |
| return FPTOSINT_F80_I64; |
| if (RetVT == MVT::i128) |
| return FPTOSINT_F80_I128; |
| } else if (OpVT == MVT::f128) { |
| if (RetVT == MVT::i32) |
| return FPTOSINT_F128_I32; |
| if (RetVT == MVT::i64) |
| return FPTOSINT_F128_I64; |
| if (RetVT == MVT::i128) |
| return FPTOSINT_F128_I128; |
| } else if (OpVT == MVT::ppcf128) { |
| if (RetVT == MVT::i32) |
| return FPTOSINT_PPCF128_I32; |
| if (RetVT == MVT::i64) |
| return FPTOSINT_PPCF128_I64; |
| if (RetVT == MVT::i128) |
| return FPTOSINT_PPCF128_I128; |
| } |
| return UNKNOWN_LIBCALL; |
| } |
| |
| /// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or |
| /// UNKNOWN_LIBCALL if there is none. |
| RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) { |
| if (OpVT == MVT::f32) { |
| if (RetVT == MVT::i32) |
| return FPTOUINT_F32_I32; |
| if (RetVT == MVT::i64) |
| return FPTOUINT_F32_I64; |
| if (RetVT == MVT::i128) |
| return FPTOUINT_F32_I128; |
| } else if (OpVT == MVT::f64) { |
| if (RetVT == MVT::i32) |
| return FPTOUINT_F64_I32; |
| if (RetVT == MVT::i64) |
| return FPTOUINT_F64_I64; |
| if (RetVT == MVT::i128) |
| return FPTOUINT_F64_I128; |
| } else if (OpVT == MVT::f80) { |
| if (RetVT == MVT::i32) |
| return FPTOUINT_F80_I32; |
| if (RetVT == MVT::i64) |
| return FPTOUINT_F80_I64; |
| if (RetVT == MVT::i128) |
| return FPTOUINT_F80_I128; |
| } else if (OpVT == MVT::f128) { |
| if (RetVT == MVT::i32) |
| return FPTOUINT_F128_I32; |
| if (RetVT == MVT::i64) |
| return FPTOUINT_F128_I64; |
| if (RetVT == MVT::i128) |
| return FPTOUINT_F128_I128; |
| } else if (OpVT == MVT::ppcf128) { |
| if (RetVT == MVT::i32) |
| return FPTOUINT_PPCF128_I32; |
| if (RetVT == MVT::i64) |
| return FPTOUINT_PPCF128_I64; |
| if (RetVT == MVT::i128) |
| return FPTOUINT_PPCF128_I128; |
| } |
| return UNKNOWN_LIBCALL; |
| } |
| |
| /// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or |
| /// UNKNOWN_LIBCALL if there is none. |
| RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) { |
| if (OpVT == MVT::i32) { |
| if (RetVT == MVT::f32) |
| return SINTTOFP_I32_F32; |
| if (RetVT == MVT::f64) |
| return SINTTOFP_I32_F64; |
| if (RetVT == MVT::f80) |
| return SINTTOFP_I32_F80; |
| if (RetVT == MVT::f128) |
| return SINTTOFP_I32_F128; |
| if (RetVT == MVT::ppcf128) |
| return SINTTOFP_I32_PPCF128; |
| } else if (OpVT == MVT::i64) { |
| if (RetVT == MVT::f32) |
| return SINTTOFP_I64_F32; |
| if (RetVT == MVT::f64) |
| return SINTTOFP_I64_F64; |
| if (RetVT == MVT::f80) |
| return SINTTOFP_I64_F80; |
| if (RetVT == MVT::f128) |
| return SINTTOFP_I64_F128; |
| if (RetVT == MVT::ppcf128) |
| return SINTTOFP_I64_PPCF128; |
| } else if (OpVT == MVT::i128) { |
| if (RetVT == MVT::f32) |
| return SINTTOFP_I128_F32; |
| if (RetVT == MVT::f64) |
| return SINTTOFP_I128_F64; |
| if (RetVT == MVT::f80) |
| return SINTTOFP_I128_F80; |
| if (RetVT == MVT::f128) |
| return SINTTOFP_I128_F128; |
| if (RetVT == MVT::ppcf128) |
| return SINTTOFP_I128_PPCF128; |
| } |
| return UNKNOWN_LIBCALL; |
| } |
| |
| /// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or |
| /// UNKNOWN_LIBCALL if there is none. |
| RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) { |
| if (OpVT == MVT::i32) { |
| if (RetVT == MVT::f32) |
| return UINTTOFP_I32_F32; |
| if (RetVT == MVT::f64) |
| return UINTTOFP_I32_F64; |
| if (RetVT == MVT::f80) |
| return UINTTOFP_I32_F80; |
| if (RetVT == MVT::f128) |
| return UINTTOFP_I32_F128; |
| if (RetVT == MVT::ppcf128) |
| return UINTTOFP_I32_PPCF128; |
| } else if (OpVT == MVT::i64) { |
| if (RetVT == MVT::f32) |
| return UINTTOFP_I64_F32; |
| if (RetVT == MVT::f64) |
| return UINTTOFP_I64_F64; |
| if (RetVT == MVT::f80) |
| return UINTTOFP_I64_F80; |
| if (RetVT == MVT::f128) |
| return UINTTOFP_I64_F128; |
| if (RetVT == MVT::ppcf128) |
| return UINTTOFP_I64_PPCF128; |
| } else if (OpVT == MVT::i128) { |
| if (RetVT == MVT::f32) |
| return UINTTOFP_I128_F32; |
| if (RetVT == MVT::f64) |
| return UINTTOFP_I128_F64; |
| if (RetVT == MVT::f80) |
| return UINTTOFP_I128_F80; |
| if (RetVT == MVT::f128) |
| return UINTTOFP_I128_F128; |
| if (RetVT == MVT::ppcf128) |
| return UINTTOFP_I128_PPCF128; |
| } |
| return UNKNOWN_LIBCALL; |
| } |
| |
| RTLIB::Libcall RTLIB::getSYNC(unsigned Opc, MVT VT) { |
| #define OP_TO_LIBCALL(Name, Enum) \ |
| case Name: \ |
| switch (VT.SimpleTy) { \ |
| default: \ |
| return UNKNOWN_LIBCALL; \ |
| case MVT::i8: \ |
| return Enum##_1; \ |
| case MVT::i16: \ |
| return Enum##_2; \ |
| case MVT::i32: \ |
| return Enum##_4; \ |
| case MVT::i64: \ |
| return Enum##_8; \ |
| case MVT::i128: \ |
| return Enum##_16; \ |
| } |
| |
| switch (Opc) { |
| OP_TO_LIBCALL(ISD::ATOMIC_SWAP, SYNC_LOCK_TEST_AND_SET) |
| OP_TO_LIBCALL(ISD::ATOMIC_CMP_SWAP, SYNC_VAL_COMPARE_AND_SWAP) |
| OP_TO_LIBCALL(ISD::ATOMIC_LOAD_ADD, SYNC_FETCH_AND_ADD) |
| OP_TO_LIBCALL(ISD::ATOMIC_LOAD_SUB, SYNC_FETCH_AND_SUB) |
| OP_TO_LIBCALL(ISD::ATOMIC_LOAD_AND, SYNC_FETCH_AND_AND) |
| OP_TO_LIBCALL(ISD::ATOMIC_LOAD_OR, SYNC_FETCH_AND_OR) |
| OP_TO_LIBCALL(ISD::ATOMIC_LOAD_XOR, SYNC_FETCH_AND_XOR) |
| OP_TO_LIBCALL(ISD::ATOMIC_LOAD_NAND, SYNC_FETCH_AND_NAND) |
| OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MAX, SYNC_FETCH_AND_MAX) |
| OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMAX, SYNC_FETCH_AND_UMAX) |
| OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MIN, SYNC_FETCH_AND_MIN) |
| OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMIN, SYNC_FETCH_AND_UMIN) |
| } |
| |
| #undef OP_TO_LIBCALL |
| |
| return UNKNOWN_LIBCALL; |
| } |
| |
| RTLIB::Libcall RTLIB::getMEMCPY_ELEMENT_ATOMIC(uint64_t ElementSize) { |
| switch (ElementSize) { |
| case 1: |
| return MEMCPY_ELEMENT_ATOMIC_1; |
| case 2: |
| return MEMCPY_ELEMENT_ATOMIC_2; |
| case 4: |
| return MEMCPY_ELEMENT_ATOMIC_4; |
| case 8: |
| return MEMCPY_ELEMENT_ATOMIC_8; |
| case 16: |
| return MEMCPY_ELEMENT_ATOMIC_16; |
| default: |
| return UNKNOWN_LIBCALL; |
| } |
| |
| } |
| |
| /// InitCmpLibcallCCs - Set default comparison libcall CC. |
| /// |
| static void InitCmpLibcallCCs(ISD::CondCode *CCs) { |
| memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL); |
| CCs[RTLIB::OEQ_F32] = ISD::SETEQ; |
| CCs[RTLIB::OEQ_F64] = ISD::SETEQ; |
| CCs[RTLIB::OEQ_F128] = ISD::SETEQ; |
| CCs[RTLIB::OEQ_PPCF128] = ISD::SETEQ; |
| CCs[RTLIB::UNE_F32] = ISD::SETNE; |
| CCs[RTLIB::UNE_F64] = ISD::SETNE; |
| CCs[RTLIB::UNE_F128] = ISD::SETNE; |
| CCs[RTLIB::UNE_PPCF128] = ISD::SETNE; |
| CCs[RTLIB::OGE_F32] = ISD::SETGE; |
| CCs[RTLIB::OGE_F64] = ISD::SETGE; |
| CCs[RTLIB::OGE_F128] = ISD::SETGE; |
| CCs[RTLIB::OGE_PPCF128] = ISD::SETGE; |
| CCs[RTLIB::OLT_F32] = ISD::SETLT; |
| CCs[RTLIB::OLT_F64] = ISD::SETLT; |
| CCs[RTLIB::OLT_F128] = ISD::SETLT; |
| CCs[RTLIB::OLT_PPCF128] = ISD::SETLT; |
| CCs[RTLIB::OLE_F32] = ISD::SETLE; |
| CCs[RTLIB::OLE_F64] = ISD::SETLE; |
| CCs[RTLIB::OLE_F128] = ISD::SETLE; |
| CCs[RTLIB::OLE_PPCF128] = ISD::SETLE; |
| CCs[RTLIB::OGT_F32] = ISD::SETGT; |
| CCs[RTLIB::OGT_F64] = ISD::SETGT; |
| CCs[RTLIB::OGT_F128] = ISD::SETGT; |
| CCs[RTLIB::OGT_PPCF128] = ISD::SETGT; |
| CCs[RTLIB::UO_F32] = ISD::SETNE; |
| CCs[RTLIB::UO_F64] = ISD::SETNE; |
| CCs[RTLIB::UO_F128] = ISD::SETNE; |
| CCs[RTLIB::UO_PPCF128] = ISD::SETNE; |
| CCs[RTLIB::O_F32] = ISD::SETEQ; |
| CCs[RTLIB::O_F64] = ISD::SETEQ; |
| CCs[RTLIB::O_F128] = ISD::SETEQ; |
| CCs[RTLIB::O_PPCF128] = ISD::SETEQ; |
| } |
| |
| /// NOTE: The TargetMachine owns TLOF. |
| TargetLoweringBase::TargetLoweringBase(const TargetMachine &tm) : TM(tm) { |
| initActions(); |
| |
| // Perform these initializations only once. |
| MaxStoresPerMemset = MaxStoresPerMemcpy = MaxStoresPerMemmove = 8; |
| MaxStoresPerMemsetOptSize = MaxStoresPerMemcpyOptSize |
| = MaxStoresPerMemmoveOptSize = 4; |
| UseUnderscoreSetJmp = false; |
| UseUnderscoreLongJmp = false; |
| HasMultipleConditionRegisters = false; |
| HasExtractBitsInsn = false; |
| JumpIsExpensive = JumpIsExpensiveOverride; |
| PredictableSelectIsExpensive = false; |
| EnableExtLdPromotion = false; |
| HasFloatingPointExceptions = true; |
| StackPointerRegisterToSaveRestore = 0; |
| BooleanContents = UndefinedBooleanContent; |
| BooleanFloatContents = UndefinedBooleanContent; |
| BooleanVectorContents = UndefinedBooleanContent; |
| SchedPreferenceInfo = Sched::ILP; |
| JumpBufSize = 0; |
| JumpBufAlignment = 0; |
| MinFunctionAlignment = 0; |
| PrefFunctionAlignment = 0; |
| PrefLoopAlignment = 0; |
| GatherAllAliasesMaxDepth = 18; |
| MinStackArgumentAlignment = 1; |
| // TODO: the default will be switched to 0 in the next commit, along |
| // with the Target-specific changes necessary. |
| MaxAtomicSizeInBitsSupported = 1024; |
| |
| MinCmpXchgSizeInBits = 0; |
| |
| std::fill(std::begin(LibcallRoutineNames), std::end(LibcallRoutineNames), nullptr); |
| |
| InitLibcallNames(LibcallRoutineNames, TM.getTargetTriple()); |
| InitCmpLibcallCCs(CmpLibcallCCs); |
| InitLibcallCallingConvs(LibcallCallingConvs); |
| } |
| |
| void TargetLoweringBase::initActions() { |
| // All operations default to being supported. |
| memset(OpActions, 0, sizeof(OpActions)); |
| memset(LoadExtActions, 0, sizeof(LoadExtActions)); |
| memset(TruncStoreActions, 0, sizeof(TruncStoreActions)); |
| memset(IndexedModeActions, 0, sizeof(IndexedModeActions)); |
| memset(CondCodeActions, 0, sizeof(CondCodeActions)); |
| std::fill(std::begin(RegClassForVT), std::end(RegClassForVT), nullptr); |
| std::fill(std::begin(TargetDAGCombineArray), |
| std::end(TargetDAGCombineArray), 0); |
| |
| // Set default actions for various operations. |
| for (MVT VT : MVT::all_valuetypes()) { |
| // Default all indexed load / store to expand. |
| for (unsigned IM = (unsigned)ISD::PRE_INC; |
| IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) { |
| setIndexedLoadAction(IM, VT, Expand); |
| setIndexedStoreAction(IM, VT, Expand); |
| } |
| |
| // Most backends expect to see the node which just returns the value loaded. |
| setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, VT, Expand); |
| |
| // These operations default to expand. |
| setOperationAction(ISD::FGETSIGN, VT, Expand); |
| setOperationAction(ISD::CONCAT_VECTORS, VT, Expand); |
| setOperationAction(ISD::FMINNUM, VT, Expand); |
| setOperationAction(ISD::FMAXNUM, VT, Expand); |
| setOperationAction(ISD::FMINNAN, VT, Expand); |
| setOperationAction(ISD::FMAXNAN, VT, Expand); |
| setOperationAction(ISD::FMAD, VT, Expand); |
| setOperationAction(ISD::SMIN, VT, Expand); |
| setOperationAction(ISD::SMAX, VT, Expand); |
| setOperationAction(ISD::UMIN, VT, Expand); |
| setOperationAction(ISD::UMAX, VT, Expand); |
| setOperationAction(ISD::ABS, VT, Expand); |
| |
| // Overflow operations default to expand |
| setOperationAction(ISD::SADDO, VT, Expand); |
| setOperationAction(ISD::SSUBO, VT, Expand); |
| setOperationAction(ISD::UADDO, VT, Expand); |
| setOperationAction(ISD::USUBO, VT, Expand); |
| setOperationAction(ISD::SMULO, VT, Expand); |
| setOperationAction(ISD::UMULO, VT, Expand); |
| |
| // These default to Expand so they will be expanded to CTLZ/CTTZ by default. |
| setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand); |
| setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand); |
| |
| setOperationAction(ISD::BITREVERSE, VT, Expand); |
| |
| // These library functions default to expand. |
| setOperationAction(ISD::FROUND, VT, Expand); |
| |
| // These operations default to expand for vector types. |
| if (VT.isVector()) { |
| setOperationAction(ISD::FCOPYSIGN, VT, Expand); |
| setOperationAction(ISD::ANY_EXTEND_VECTOR_INREG, VT, Expand); |
| setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Expand); |
| setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Expand); |
| } |
| |
| // For most targets @llvm.get.dynamic.area.offset just returns 0. |
| setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, VT, Expand); |
| } |
| |
| // Most targets ignore the @llvm.prefetch intrinsic. |
| setOperationAction(ISD::PREFETCH, MVT::Other, Expand); |
| |
| // Most targets also ignore the @llvm.readcyclecounter intrinsic. |
| setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Expand); |
| |
| // ConstantFP nodes default to expand. Targets can either change this to |
| // Legal, in which case all fp constants are legal, or use isFPImmLegal() |
| // to optimize expansions for certain constants. |
| setOperationAction(ISD::ConstantFP, MVT::f16, Expand); |
| setOperationAction(ISD::ConstantFP, MVT::f32, Expand); |
| setOperationAction(ISD::ConstantFP, MVT::f64, Expand); |
| setOperationAction(ISD::ConstantFP, MVT::f80, Expand); |
| setOperationAction(ISD::ConstantFP, MVT::f128, Expand); |
| |
| // These library functions default to expand. |
| for (MVT VT : {MVT::f32, MVT::f64, MVT::f128}) { |
| setOperationAction(ISD::FLOG , VT, Expand); |
| setOperationAction(ISD::FLOG2, VT, Expand); |
| setOperationAction(ISD::FLOG10, VT, Expand); |
| setOperationAction(ISD::FEXP , VT, Expand); |
| setOperationAction(ISD::FEXP2, VT, Expand); |
| setOperationAction(ISD::FFLOOR, VT, Expand); |
| setOperationAction(ISD::FNEARBYINT, VT, Expand); |
| setOperationAction(ISD::FCEIL, VT, Expand); |
| setOperationAction(ISD::FRINT, VT, Expand); |
| setOperationAction(ISD::FTRUNC, VT, Expand); |
| setOperationAction(ISD::FROUND, VT, Expand); |
| } |
| |
| // Default ISD::TRAP to expand (which turns it into abort). |
| setOperationAction(ISD::TRAP, MVT::Other, Expand); |
| |
| // On most systems, DEBUGTRAP and TRAP have no difference. The "Expand" |
| // here is to inform DAG Legalizer to replace DEBUGTRAP with TRAP. |
| // |
| setOperationAction(ISD::DEBUGTRAP, MVT::Other, Expand); |
| } |
| |
| MVT TargetLoweringBase::getScalarShiftAmountTy(const DataLayout &DL, |
| EVT) const { |
| return MVT::getIntegerVT(8 * DL.getPointerSize(0)); |
| } |
| |
| EVT TargetLoweringBase::getShiftAmountTy(EVT LHSTy, |
| const DataLayout &DL) const { |
| assert(LHSTy.isInteger() && "Shift amount is not an integer type!"); |
| if (LHSTy.isVector()) |
| return LHSTy; |
| return getScalarShiftAmountTy(DL, LHSTy); |
| } |
| |
| bool TargetLoweringBase::canOpTrap(unsigned Op, EVT VT) const { |
| assert(isTypeLegal(VT)); |
| switch (Op) { |
| default: |
| return false; |
| case ISD::SDIV: |
| case ISD::UDIV: |
| case ISD::SREM: |
| case ISD::UREM: |
| return true; |
| } |
| } |
| |
| void TargetLoweringBase::setJumpIsExpensive(bool isExpensive) { |
| // If the command-line option was specified, ignore this request. |
| if (!JumpIsExpensiveOverride.getNumOccurrences()) |
| JumpIsExpensive = isExpensive; |
| } |
| |
| TargetLoweringBase::LegalizeKind |
| TargetLoweringBase::getTypeConversion(LLVMContext &Context, EVT VT) const { |
| // If this is a simple type, use the ComputeRegisterProp mechanism. |
| if (VT.isSimple()) { |
| MVT SVT = VT.getSimpleVT(); |
| assert((unsigned)SVT.SimpleTy < array_lengthof(TransformToType)); |
| MVT NVT = TransformToType[SVT.SimpleTy]; |
| LegalizeTypeAction LA = ValueTypeActions.getTypeAction(SVT); |
| |
| assert((LA == TypeLegal || LA == TypeSoftenFloat || |
| ValueTypeActions.getTypeAction(NVT) != TypePromoteInteger) && |
| "Promote may not follow Expand or Promote"); |
| |
| if (LA == TypeSplitVector) |
| return LegalizeKind(LA, |
| EVT::getVectorVT(Context, SVT.getVectorElementType(), |
| SVT.getVectorNumElements() / 2)); |
| if (LA == TypeScalarizeVector) |
| return LegalizeKind(LA, SVT.getVectorElementType()); |
| return LegalizeKind(LA, NVT); |
| } |
| |
| // Handle Extended Scalar Types. |
| if (!VT.isVector()) { |
| assert(VT.isInteger() && "Float types must be simple"); |
| unsigned BitSize = VT.getSizeInBits(); |
| // First promote to a power-of-two size, then expand if necessary. |
| if (BitSize < 8 || !isPowerOf2_32(BitSize)) { |
| EVT NVT = VT.getRoundIntegerType(Context); |
| assert(NVT != VT && "Unable to round integer VT"); |
| LegalizeKind NextStep = getTypeConversion(Context, NVT); |
| // Avoid multi-step promotion. |
| if (NextStep.first == TypePromoteInteger) |
| return NextStep; |
| // Return rounded integer type. |
| return LegalizeKind(TypePromoteInteger, NVT); |
| } |
| |
| return LegalizeKind(TypeExpandInteger, |
| EVT::getIntegerVT(Context, VT.getSizeInBits() / 2)); |
| } |
| |
| // Handle vector types. |
| unsigned NumElts = VT.getVectorNumElements(); |
| EVT EltVT = VT.getVectorElementType(); |
| |
| // Vectors with only one element are always scalarized. |
| if (NumElts == 1) |
| return LegalizeKind(TypeScalarizeVector, EltVT); |
| |
| // Try to widen vector elements until the element type is a power of two and |
| // promote it to a legal type later on, for example: |
| // <3 x i8> -> <4 x i8> -> <4 x i32> |
| if (EltVT.isInteger()) { |
| // Vectors with a number of elements that is not a power of two are always |
| // widened, for example <3 x i8> -> <4 x i8>. |
| if (!VT.isPow2VectorType()) { |
| NumElts = (unsigned)NextPowerOf2(NumElts); |
| EVT NVT = EVT::getVectorVT(Context, EltVT, NumElts); |
| return LegalizeKind(TypeWidenVector, NVT); |
| } |
| |
| // Examine the element type. |
| LegalizeKind LK = getTypeConversion(Context, EltVT); |
| |
| // If type is to be expanded, split the vector. |
| // <4 x i140> -> <2 x i140> |
| if (LK.first == TypeExpandInteger) |
| return LegalizeKind(TypeSplitVector, |
| EVT::getVectorVT(Context, EltVT, NumElts / 2)); |
| |
| // Promote the integer element types until a legal vector type is found |
| // or until the element integer type is too big. If a legal type was not |
| // found, fallback to the usual mechanism of widening/splitting the |
| // vector. |
| EVT OldEltVT = EltVT; |
| while (1) { |
| // Increase the bitwidth of the element to the next pow-of-two |
| // (which is greater than 8 bits). |
| EltVT = EVT::getIntegerVT(Context, 1 + EltVT.getSizeInBits()) |
| .getRoundIntegerType(Context); |
| |
| // Stop trying when getting a non-simple element type. |
| // Note that vector elements may be greater than legal vector element |
| // types. Example: X86 XMM registers hold 64bit element on 32bit |
| // systems. |
| if (!EltVT.isSimple()) |
| break; |
| |
| // Build a new vector type and check if it is legal. |
| MVT NVT = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts); |
| // Found a legal promoted vector type. |
| if (NVT != MVT() && ValueTypeActions.getTypeAction(NVT) == TypeLegal) |
| return LegalizeKind(TypePromoteInteger, |
| EVT::getVectorVT(Context, EltVT, NumElts)); |
| } |
| |
| // Reset the type to the unexpanded type if we did not find a legal vector |
| // type with a promoted vector element type. |
| EltVT = OldEltVT; |
| } |
| |
| // Try to widen the vector until a legal type is found. |
| // If there is no wider legal type, split the vector. |
| while (1) { |
| // Round up to the next power of 2. |
| NumElts = (unsigned)NextPowerOf2(NumElts); |
| |
| // If there is no simple vector type with this many elements then there |
| // cannot be a larger legal vector type. Note that this assumes that |
| // there are no skipped intermediate vector types in the simple types. |
| if (!EltVT.isSimple()) |
| break; |
| MVT LargerVector = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts); |
| if (LargerVector == MVT()) |
| break; |
| |
| // If this type is legal then widen the vector. |
| if (ValueTypeActions.getTypeAction(LargerVector) == TypeLegal) |
| return LegalizeKind(TypeWidenVector, LargerVector); |
| } |
| |
| // Widen odd vectors to next power of two. |
| if (!VT.isPow2VectorType()) { |
| EVT NVT = VT.getPow2VectorType(Context); |
| return LegalizeKind(TypeWidenVector, NVT); |
| } |
| |
| // Vectors with illegal element types are expanded. |
| EVT NVT = EVT::getVectorVT(Context, EltVT, VT.getVectorNumElements() / 2); |
| return LegalizeKind(TypeSplitVector, NVT); |
| } |
| |
| static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT, |
| unsigned &NumIntermediates, |
| MVT &RegisterVT, |
| TargetLoweringBase *TLI) { |
| // Figure out the right, legal destination reg to copy into. |
| unsigned NumElts = VT.getVectorNumElements(); |
| MVT EltTy = VT.getVectorElementType(); |
| |
| unsigned NumVectorRegs = 1; |
| |
| // FIXME: We don't support non-power-of-2-sized vectors for now. Ideally we |
| // could break down into LHS/RHS like LegalizeDAG does. |
| if (!isPowerOf2_32(NumElts)) { |
| NumVectorRegs = NumElts; |
| NumElts = 1; |
| } |
| |
| // Divide the input until we get to a supported size. This will always |
| // end with a scalar if the target doesn't support vectors. |
| while (NumElts > 1 && !TLI->isTypeLegal(MVT::getVectorVT(EltTy, NumElts))) { |
| NumElts >>= 1; |
| NumVectorRegs <<= 1; |
| } |
| |
| NumIntermediates = NumVectorRegs; |
| |
| MVT NewVT = MVT::getVectorVT(EltTy, NumElts); |
| if (!TLI->isTypeLegal(NewVT)) |
| NewVT = EltTy; |
| IntermediateVT = NewVT; |
| |
| unsigned NewVTSize = NewVT.getSizeInBits(); |
| |
| // Convert sizes such as i33 to i64. |
| if (!isPowerOf2_32(NewVTSize)) |
| NewVTSize = NextPowerOf2(NewVTSize); |
| |
| MVT DestVT = TLI->getRegisterType(NewVT); |
| RegisterVT = DestVT; |
| if (EVT(DestVT).bitsLT(NewVT)) // Value is expanded, e.g. i64 -> i16. |
| return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits()); |
| |
| // Otherwise, promotion or legal types use the same number of registers as |
| // the vector decimated to the appropriate level. |
| return NumVectorRegs; |
| } |
| |
| /// isLegalRC - Return true if the value types that can be represented by the |
| /// specified register class are all legal. |
| bool TargetLoweringBase::isLegalRC(const TargetRegisterClass *RC) const { |
| for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end(); |
| I != E; ++I) { |
| if (isTypeLegal(*I)) |
| return true; |
| } |
| return false; |
| } |
| |
| /// Replace/modify any TargetFrameIndex operands with a targte-dependent |
| /// sequence of memory operands that is recognized by PrologEpilogInserter. |
| MachineBasicBlock * |
| TargetLoweringBase::emitPatchPoint(MachineInstr &InitialMI, |
| MachineBasicBlock *MBB) const { |
| MachineInstr *MI = &InitialMI; |
| MachineFunction &MF = *MI->getParent()->getParent(); |
| MachineFrameInfo &MFI = MF.getFrameInfo(); |
| |
| // We're handling multiple types of operands here: |
| // PATCHPOINT MetaArgs - live-in, read only, direct |
| // STATEPOINT Deopt Spill - live-through, read only, indirect |
| // STATEPOINT Deopt Alloca - live-through, read only, direct |
| // (We're currently conservative and mark the deopt slots read/write in |
| // practice.) |
| // STATEPOINT GC Spill - live-through, read/write, indirect |
| // STATEPOINT GC Alloca - live-through, read/write, direct |
| // The live-in vs live-through is handled already (the live through ones are |
| // all stack slots), but we need to handle the different type of stackmap |
| // operands and memory effects here. |
| |
| // MI changes inside this loop as we grow operands. |
| for(unsigned OperIdx = 0; OperIdx != MI->getNumOperands(); ++OperIdx) { |
| MachineOperand &MO = MI->getOperand(OperIdx); |
| if (!MO.isFI()) |
| continue; |
| |
| // foldMemoryOperand builds a new MI after replacing a single FI operand |
| // with the canonical set of five x86 addressing-mode operands. |
| int FI = MO.getIndex(); |
| MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), MI->getDesc()); |
| |
| // Copy operands before the frame-index. |
| for (unsigned i = 0; i < OperIdx; ++i) |
| MIB.add(MI->getOperand(i)); |
| // Add frame index operands recognized by stackmaps.cpp |
| if (MFI.isStatepointSpillSlotObjectIndex(FI)) { |
| // indirect-mem-ref tag, size, #FI, offset. |
| // Used for spills inserted by StatepointLowering. This codepath is not |
| // used for patchpoints/stackmaps at all, for these spilling is done via |
| // foldMemoryOperand callback only. |
| assert(MI->getOpcode() == TargetOpcode::STATEPOINT && "sanity"); |
| MIB.addImm(StackMaps::IndirectMemRefOp); |
| MIB.addImm(MFI.getObjectSize(FI)); |
| MIB.add(MI->getOperand(OperIdx)); |
| MIB.addImm(0); |
| } else { |
| // direct-mem-ref tag, #FI, offset. |
| // Used by patchpoint, and direct alloca arguments to statepoints |
| MIB.addImm(StackMaps::DirectMemRefOp); |
| MIB.add(MI->getOperand(OperIdx)); |
| MIB.addImm(0); |
| } |
| // Copy the operands after the frame index. |
| for (unsigned i = OperIdx + 1; i != MI->getNumOperands(); ++i) |
| MIB.add(MI->getOperand(i)); |
| |
| // Inherit previous memory operands. |
| MIB->setMemRefs(MI->memoperands_begin(), MI->memoperands_end()); |
| assert(MIB->mayLoad() && "Folded a stackmap use to a non-load!"); |
| |
| // Add a new memory operand for this FI. |
| assert(MFI.getObjectOffset(FI) != -1); |
| |
| auto Flags = MachineMemOperand::MOLoad; |
| if (MI->getOpcode() == TargetOpcode::STATEPOINT) { |
| Flags |= MachineMemOperand::MOStore; |
| Flags |= MachineMemOperand::MOVolatile; |
| } |
| MachineMemOperand *MMO = MF.getMachineMemOperand( |
| MachinePointerInfo::getFixedStack(MF, FI), Flags, |
| MF.getDataLayout().getPointerSize(), MFI.getObjectAlignment(FI)); |
| MIB->addMemOperand(MF, MMO); |
| |
| // Replace the instruction and update the operand index. |
| MBB->insert(MachineBasicBlock::iterator(MI), MIB); |
| OperIdx += (MIB->getNumOperands() - MI->getNumOperands()) - 1; |
| MI->eraseFromParent(); |
| MI = MIB; |
| } |
| return MBB; |
| } |
| |
| /// findRepresentativeClass - Return the largest legal super-reg register class |
| /// of the register class for the specified type and its associated "cost". |
| // This function is in TargetLowering because it uses RegClassForVT which would |
| // need to be moved to TargetRegisterInfo and would necessitate moving |
| // isTypeLegal over as well - a massive change that would just require |
| // TargetLowering having a TargetRegisterInfo class member that it would use. |
| std::pair<const TargetRegisterClass *, uint8_t> |
| TargetLoweringBase::findRepresentativeClass(const TargetRegisterInfo *TRI, |
| MVT VT) const { |
| const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy]; |
| if (!RC) |
| return std::make_pair(RC, 0); |
| |
| // Compute the set of all super-register classes. |
| BitVector SuperRegRC(TRI->getNumRegClasses()); |
| for (SuperRegClassIterator RCI(RC, TRI); RCI.isValid(); ++RCI) |
| SuperRegRC.setBitsInMask(RCI.getMask()); |
| |
| // Find the first legal register class with the largest spill size. |
| const TargetRegisterClass *BestRC = RC; |
| for (int i = SuperRegRC.find_first(); i >= 0; i = SuperRegRC.find_next(i)) { |
| const TargetRegisterClass *SuperRC = TRI->getRegClass(i); |
| // We want the largest possible spill size. |
| if (TRI->getSpillSize(*SuperRC) <= TRI->getSpillSize(*BestRC)) |
| continue; |
| if (!isLegalRC(SuperRC)) |
| continue; |
| BestRC = SuperRC; |
| } |
| return std::make_pair(BestRC, 1); |
| } |
| |
| /// computeRegisterProperties - Once all of the register classes are added, |
| /// this allows us to compute derived properties we expose. |
| void TargetLoweringBase::computeRegisterProperties( |
| const TargetRegisterInfo *TRI) { |
| static_assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE, |
| "Too many value types for ValueTypeActions to hold!"); |
| |
| // Everything defaults to needing one register. |
| for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) { |
| NumRegistersForVT[i] = 1; |
| RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i; |
| } |
| // ...except isVoid, which doesn't need any registers. |
| NumRegistersForVT[MVT::isVoid] = 0; |
| |
| // Find the largest integer register class. |
| unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE; |
| for (; RegClassForVT[LargestIntReg] == nullptr; --LargestIntReg) |
| assert(LargestIntReg != MVT::i1 && "No integer registers defined!"); |
| |
| // Every integer value type larger than this largest register takes twice as |
| // many registers to represent as the previous ValueType. |
| for (unsigned ExpandedReg = LargestIntReg + 1; |
| ExpandedReg <= MVT::LAST_INTEGER_VALUETYPE; ++ExpandedReg) { |
| NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1]; |
| RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg; |
| TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1); |
| ValueTypeActions.setTypeAction((MVT::SimpleValueType)ExpandedReg, |
| TypeExpandInteger); |
| } |
| |
| // Inspect all of the ValueType's smaller than the largest integer |
| // register to see which ones need promotion. |
| unsigned LegalIntReg = LargestIntReg; |
| for (unsigned IntReg = LargestIntReg - 1; |
| IntReg >= (unsigned)MVT::i1; --IntReg) { |
| MVT IVT = (MVT::SimpleValueType)IntReg; |
| if (isTypeLegal(IVT)) { |
| LegalIntReg = IntReg; |
| } else { |
| RegisterTypeForVT[IntReg] = TransformToType[IntReg] = |
| (const MVT::SimpleValueType)LegalIntReg; |
| ValueTypeActions.setTypeAction(IVT, TypePromoteInteger); |
| } |
| } |
| |
| // ppcf128 type is really two f64's. |
| if (!isTypeLegal(MVT::ppcf128)) { |
| if (isTypeLegal(MVT::f64)) { |
| NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64]; |
| RegisterTypeForVT[MVT::ppcf128] = MVT::f64; |
| TransformToType[MVT::ppcf128] = MVT::f64; |
| ValueTypeActions.setTypeAction(MVT::ppcf128, TypeExpandFloat); |
| } else { |
| NumRegistersForVT[MVT::ppcf128] = NumRegistersForVT[MVT::i128]; |
| RegisterTypeForVT[MVT::ppcf128] = RegisterTypeForVT[MVT::i128]; |
| TransformToType[MVT::ppcf128] = MVT::i128; |
| ValueTypeActions.setTypeAction(MVT::ppcf128, TypeSoftenFloat); |
| } |
| } |
| |
| // Decide how to handle f128. If the target does not have native f128 support, |
| // expand it to i128 and we will be generating soft float library calls. |
| if (!isTypeLegal(MVT::f128)) { |
| NumRegistersForVT[MVT::f128] = NumRegistersForVT[MVT::i128]; |
| RegisterTypeForVT[MVT::f128] = RegisterTypeForVT[MVT::i128]; |
| TransformToType[MVT::f128] = MVT::i128; |
| ValueTypeActions.setTypeAction(MVT::f128, TypeSoftenFloat); |
| } |
| |
| // Decide how to handle f64. If the target does not have native f64 support, |
| // expand it to i64 and we will be generating soft float library calls. |
| if (!isTypeLegal(MVT::f64)) { |
| NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64]; |
| RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64]; |
| TransformToType[MVT::f64] = MVT::i64; |
| ValueTypeActions.setTypeAction(MVT::f64, TypeSoftenFloat); |
| } |
| |
| // Decide how to handle f32. If the target does not have native f32 support, |
| // expand it to i32 and we will be generating soft float library calls. |
| if (!isTypeLegal(MVT::f32)) { |
| NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32]; |
| RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32]; |
| TransformToType[MVT::f32] = MVT::i32; |
| ValueTypeActions.setTypeAction(MVT::f32, TypeSoftenFloat); |
| } |
| |
| // Decide how to handle f16. If the target does not have native f16 support, |
| // promote it to f32, because there are no f16 library calls (except for |
| // conversions). |
| if (!isTypeLegal(MVT::f16)) { |
| NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::f32]; |
| RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::f32]; |
| TransformToType[MVT::f16] = MVT::f32; |
| ValueTypeActions.setTypeAction(MVT::f16, TypePromoteFloat); |
| } |
| |
| // Loop over all of the vector value types to see which need transformations. |
| for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE; |
| i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) { |
| MVT VT = (MVT::SimpleValueType) i; |
| if (isTypeLegal(VT)) |
| continue; |
| |
| MVT EltVT = VT.getVectorElementType(); |
| unsigned NElts = VT.getVectorNumElements(); |
| bool IsLegalWiderType = false; |
| LegalizeTypeAction PreferredAction = getPreferredVectorAction(VT); |
| switch (PreferredAction) { |
| case TypePromoteInteger: { |
| // Try to promote the elements of integer vectors. If no legal |
| // promotion was found, fall through to the widen-vector method. |
| for (unsigned nVT = i + 1; nVT <= MVT::LAST_INTEGER_VECTOR_VALUETYPE; ++nVT) { |
| MVT SVT = (MVT::SimpleValueType) nVT; |
| // Promote vectors of integers to vectors with the same number |
| // of elements, with a wider element type. |
| if (SVT.getScalarSizeInBits() > EltVT.getSizeInBits() && |
| SVT.getVectorNumElements() == NElts && isTypeLegal(SVT)) { |
| TransformToType[i] = SVT; |
| RegisterTypeForVT[i] = SVT; |
| NumRegistersForVT[i] = 1; |
| ValueTypeActions.setTypeAction(VT, TypePromoteInteger); |
| IsLegalWiderType = true; |
| break; |
| } |
| } |
| if (IsLegalWiderType) |
| break; |
| } |
| case TypeWidenVector: { |
| // Try to widen the vector. |
| for (unsigned nVT = i + 1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) { |
| MVT SVT = (MVT::SimpleValueType) nVT; |
| if (SVT.getVectorElementType() == EltVT |
| && SVT.getVectorNumElements() > NElts && isTypeLegal(SVT)) { |
| TransformToType[i] = SVT; |
| RegisterTypeForVT[i] = SVT; |
| NumRegistersForVT[i] = 1; |
| ValueTypeActions.setTypeAction(VT, TypeWidenVector); |
| IsLegalWiderType = true; |
| break; |
| } |
| } |
| if (IsLegalWiderType) |
| break; |
| } |
| case TypeSplitVector: |
| case TypeScalarizeVector: { |
| MVT IntermediateVT; |
| MVT RegisterVT; |
| unsigned NumIntermediates; |
| NumRegistersForVT[i] = getVectorTypeBreakdownMVT(VT, IntermediateVT, |
| NumIntermediates, RegisterVT, this); |
| RegisterTypeForVT[i] = RegisterVT; |
| |
| MVT NVT = VT.getPow2VectorType(); |
| if (NVT == VT) { |
| // Type is already a power of 2. The default action is to split. |
| TransformToType[i] = MVT::Other; |
| if (PreferredAction == TypeScalarizeVector) |
| ValueTypeActions.setTypeAction(VT, TypeScalarizeVector); |
| else if (PreferredAction == TypeSplitVector) |
| ValueTypeActions.setTypeAction(VT, TypeSplitVector); |
| else |
| // Set type action according to the number of elements. |
| ValueTypeActions.setTypeAction(VT, NElts == 1 ? TypeScalarizeVector |
| : TypeSplitVector); |
| } else { |
| TransformToType[i] = NVT; |
| ValueTypeActions.setTypeAction(VT, TypeWidenVector); |
| } |
| break; |
| } |
| default: |
| llvm_unreachable("Unknown vector legalization action!"); |
| } |
| } |
| |
| // Determine the 'representative' register class for each value type. |
| // An representative register class is the largest (meaning one which is |
| // not a sub-register class / subreg register class) legal register class for |
| // a group of value types. For example, on i386, i8, i16, and i32 |
| // representative would be GR32; while on x86_64 it's GR64. |
| for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) { |
| const TargetRegisterClass* RRC; |
| uint8_t Cost; |
| std::tie(RRC, Cost) = findRepresentativeClass(TRI, (MVT::SimpleValueType)i); |
| RepRegClassForVT[i] = RRC; |
| RepRegClassCostForVT[i] = Cost; |
| } |
| } |
| |
| EVT TargetLoweringBase::getSetCCResultType(const DataLayout &DL, LLVMContext &, |
| EVT VT) const { |
| assert(!VT.isVector() && "No default SetCC type for vectors!"); |
| return getPointerTy(DL).SimpleTy; |
| } |
| |
| MVT::SimpleValueType TargetLoweringBase::getCmpLibcallReturnType() const { |
| return MVT::i32; // return the default value |
| } |
| |
| /// getVectorTypeBreakdown - Vector types are broken down into some number of |
| /// legal first class types. For example, MVT::v8f32 maps to 2 MVT::v4f32 |
| /// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack. |
| /// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86. |
| /// |
| /// This method returns the number of registers needed, and the VT for each |
| /// register. It also returns the VT and quantity of the intermediate values |
| /// before they are promoted/expanded. |
| /// |
| unsigned TargetLoweringBase::getVectorTypeBreakdown(LLVMContext &Context, EVT VT, |
| EVT &IntermediateVT, |
| unsigned &NumIntermediates, |
| MVT &RegisterVT) const { |
| unsigned NumElts = VT.getVectorNumElements(); |
| |
| // If there is a wider vector type with the same element type as this one, |
| // or a promoted vector type that has the same number of elements which |
| // are wider, then we should convert to that legal vector type. |
| // This handles things like <2 x float> -> <4 x float> and |
| // <4 x i1> -> <4 x i32>. |
| LegalizeTypeAction TA = getTypeAction(Context, VT); |
| if (NumElts != 1 && (TA == TypeWidenVector || TA == TypePromoteInteger)) { |
| EVT RegisterEVT = getTypeToTransformTo(Context, VT); |
| if (isTypeLegal(RegisterEVT)) { |
| IntermediateVT = RegisterEVT; |
| RegisterVT = RegisterEVT.getSimpleVT(); |
| NumIntermediates = 1; |
| return 1; |
| } |
| } |
| |
| // Figure out the right, legal destination reg to copy into. |
| EVT EltTy = VT.getVectorElementType(); |
| |
| unsigned NumVectorRegs = 1; |
| |
| // FIXME: We don't support non-power-of-2-sized vectors for now. Ideally we |
| // could break down into LHS/RHS like LegalizeDAG does. |
| if (!isPowerOf2_32(NumElts)) { |
| NumVectorRegs = NumElts; |
| NumElts = 1; |
| } |
| |
| // Divide the input until we get to a supported size. This will always |
| // end with a scalar if the target doesn't support vectors. |
| while (NumElts > 1 && !isTypeLegal( |
| EVT::getVectorVT(Context, EltTy, NumElts))) { |
| NumElts >>= 1; |
| NumVectorRegs <<= 1; |
| } |
| |
| NumIntermediates = NumVectorRegs; |
| |
| EVT NewVT = EVT::getVectorVT(Context, EltTy, NumElts); |
| if (!isTypeLegal(NewVT)) |
| NewVT = EltTy; |
| IntermediateVT = NewVT; |
| |
| MVT DestVT = getRegisterType(Context, NewVT); |
| RegisterVT = DestVT; |
| unsigned NewVTSize = NewVT.getSizeInBits(); |
| |
| // Convert sizes such as i33 to i64. |
| if (!isPowerOf2_32(NewVTSize)) |
| NewVTSize = NextPowerOf2(NewVTSize); |
| |
| if (EVT(DestVT).bitsLT(NewVT)) // Value is expanded, e.g. i64 -> i16. |
| return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits()); |
| |
| // Otherwise, promotion or legal types use the same number of registers as |
| // the vector decimated to the appropriate level. |
| return NumVectorRegs; |
| } |
| |
| /// Get the EVTs and ArgFlags collections that represent the legalized return |
| /// type of the given function. This does not require a DAG or a return value, |
| /// and is suitable for use before any DAGs for the function are constructed. |
| /// TODO: Move this out of TargetLowering.cpp. |
| void llvm::GetReturnInfo(Type *ReturnType, AttributeList attr, |
| SmallVectorImpl<ISD::OutputArg> &Outs, |
| const TargetLowering &TLI, const DataLayout &DL) { |
| SmallVector<EVT, 4> ValueVTs; |
| ComputeValueVTs(TLI, DL, ReturnType, ValueVTs); |
| unsigned NumValues = ValueVTs.size(); |
| if (NumValues == 0) return; |
| |
| for (unsigned j = 0, f = NumValues; j != f; ++j) { |
| EVT VT = ValueVTs[j]; |
| ISD::NodeType ExtendKind = ISD::ANY_EXTEND; |
| |
| if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt)) |
| ExtendKind = ISD::SIGN_EXTEND; |
| else if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt)) |
| ExtendKind = ISD::ZERO_EXTEND; |
| |
| // FIXME: C calling convention requires the return type to be promoted to |
| // at least 32-bit. But this is not necessary for non-C calling |
| // conventions. The frontend should mark functions whose return values |
| // require promoting with signext or zeroext attributes. |
| if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) { |
| MVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32); |
| if (VT.bitsLT(MinVT)) |
| VT = MinVT; |
| } |
| |
| unsigned NumParts = TLI.getNumRegisters(ReturnType->getContext(), VT); |
| MVT PartVT = TLI.getRegisterType(ReturnType->getContext(), VT); |
| |
| // 'inreg' on function refers to return value |
| ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); |
| if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::InReg)) |
| Flags.setInReg(); |
| |
| // Propagate extension type if any |
| if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt)) |
| Flags.setSExt(); |
| else if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt)) |
| Flags.setZExt(); |
| |
| for (unsigned i = 0; i < NumParts; ++i) |
| Outs.push_back(ISD::OutputArg(Flags, PartVT, VT, /*isFixed=*/true, 0, 0)); |
| } |
| } |
| |
| /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate |
| /// function arguments in the caller parameter area. This is the actual |
| /// alignment, not its logarithm. |
| unsigned TargetLoweringBase::getByValTypeAlignment(Type *Ty, |
| const DataLayout &DL) const { |
| return DL.getABITypeAlignment(Ty); |
| } |
| |
| bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context, |
| const DataLayout &DL, EVT VT, |
| unsigned AddrSpace, |
| unsigned Alignment, |
| bool *Fast) const { |
| // Check if the specified alignment is sufficient based on the data layout. |
| // TODO: While using the data layout works in practice, a better solution |
| // would be to implement this check directly (make this a virtual function). |
| // For example, the ABI alignment may change based on software platform while |
| // this function should only be affected by hardware implementation. |
| Type *Ty = VT.getTypeForEVT(Context); |
| if (Alignment >= DL.getABITypeAlignment(Ty)) { |
| // Assume that an access that meets the ABI-specified alignment is fast. |
| if (Fast != nullptr) |
| *Fast = true; |
| return true; |
| } |
| |
| // This is a misaligned access. |
| return allowsMisalignedMemoryAccesses(VT, AddrSpace, Alignment, Fast); |
| } |
| |
| BranchProbability TargetLoweringBase::getPredictableBranchThreshold() const { |
| return BranchProbability(MinPercentageForPredictableBranch, 100); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // TargetTransformInfo Helpers |
| //===----------------------------------------------------------------------===// |
| |
| int TargetLoweringBase::InstructionOpcodeToISD(unsigned Opcode) const { |
| enum InstructionOpcodes { |
| #define HANDLE_INST(NUM, OPCODE, CLASS) OPCODE = NUM, |
| #define LAST_OTHER_INST(NUM) InstructionOpcodesCount = NUM |
| #include "llvm/IR/Instruction.def" |
| }; |
| switch (static_cast<InstructionOpcodes>(Opcode)) { |
| case Ret: return 0; |
| case Br: return 0; |
| case Switch: return 0; |
| case IndirectBr: return 0; |
| case Invoke: return 0; |
| case Resume: return 0; |
| case Unreachable: return 0; |
| case CleanupRet: return 0; |
| case CatchRet: return 0; |
| case CatchPad: return 0; |
| case CatchSwitch: return 0; |
| case CleanupPad: return 0; |
| case Add: return ISD::ADD; |
| case FAdd: return ISD::FADD; |
| case Sub: return ISD::SUB; |
| case FSub: return ISD::FSUB; |
| case Mul: return ISD::MUL; |
| case FMul: return ISD::FMUL; |
| case UDiv: return ISD::UDIV; |
| case SDiv: return ISD::SDIV; |
| case FDiv: return ISD::FDIV; |
| case URem: return ISD::UREM; |
| case SRem: return ISD::SREM; |
| case FRem: return ISD::FREM; |
| case Shl: return ISD::SHL; |
| case LShr: return ISD::SRL; |
| case AShr: return ISD::SRA; |
| case And: return ISD::AND; |
| case Or: return ISD::OR; |
| case Xor: return ISD::XOR; |
| case Alloca: return 0; |
| case Load: return ISD::LOAD; |
| case Store: return ISD::STORE; |
| case GetElementPtr: return 0; |
| case Fence: return 0; |
| case AtomicCmpXchg: return 0; |
| case AtomicRMW: return 0; |
| case Trunc: return ISD::TRUNCATE; |
| case ZExt: return ISD::ZERO_EXTEND; |
| case SExt: return ISD::SIGN_EXTEND; |
| case FPToUI: return ISD::FP_TO_UINT; |
| case FPToSI: return ISD::FP_TO_SINT; |
| case UIToFP: return ISD::UINT_TO_FP; |
| case SIToFP: return ISD::SINT_TO_FP; |
| case FPTrunc: return ISD::FP_ROUND; |
| case FPExt: return ISD::FP_EXTEND; |
| case PtrToInt: return ISD::BITCAST; |
| case IntToPtr: return ISD::BITCAST; |
| case BitCast: return ISD::BITCAST; |
| case AddrSpaceCast: return ISD::ADDRSPACECAST; |
| case ICmp: return ISD::SETCC; |
| case FCmp: return ISD::SETCC; |
| case PHI: return 0; |
| case Call: return 0; |
| case Select: return ISD::SELECT; |
| case UserOp1: return 0; |
| case UserOp2: return 0; |
| case VAArg: return 0; |
| case ExtractElement: return ISD::EXTRACT_VECTOR_ELT; |
| case InsertElement: return ISD::INSERT_VECTOR_ELT; |
| case ShuffleVector: return ISD::VECTOR_SHUFFLE; |
| case ExtractValue: return ISD::MERGE_VALUES; |
| case InsertValue: return ISD::MERGE_VALUES; |
| case LandingPad: return 0; |
| } |
| |
| llvm_unreachable("Unknown instruction type encountered!"); |
| } |
| |
| std::pair<int, MVT> |
| TargetLoweringBase::getTypeLegalizationCost(const DataLayout &DL, |
| Type *Ty) const { |
| LLVMContext &C = Ty->getContext(); |
| EVT MTy = getValueType(DL, Ty); |
| |
| int Cost = 1; |
| // We keep legalizing the type until we find a legal kind. We assume that |
| // the only operation that costs anything is the split. After splitting |
| // we need to handle two types. |
| while (true) { |
| LegalizeKind LK = getTypeConversion(C, MTy); |
| |
| if (LK.first == TypeLegal) |
| return std::make_pair(Cost, MTy.getSimpleVT()); |
| |
| if (LK.first == TypeSplitVector || LK.first == TypeExpandInteger) |
| Cost *= 2; |
| |
| // Do not loop with f128 type. |
| if (MTy == LK.second) |
| return std::make_pair(Cost, MTy.getSimpleVT()); |
| |
| // Keep legalizing the type. |
| MTy = LK.second; |
| } |
| } |
| |
| Value *TargetLoweringBase::getDefaultSafeStackPointerLocation(IRBuilder<> &IRB, |
| bool UseTLS) const { |
| // compiler-rt provides a variable with a magic name. Targets that do not |
| // link with compiler-rt may also provide such a variable. |
| Module *M = IRB.GetInsertBlock()->getParent()->getParent(); |
| const char *UnsafeStackPtrVar = "__safestack_unsafe_stack_ptr"; |
| auto UnsafeStackPtr = |
| dyn_cast_or_null<GlobalVariable>(M->getNamedValue(UnsafeStackPtrVar)); |
| |
| Type *StackPtrTy = Type::getInt8PtrTy(M->getContext()); |
| |
| if (!UnsafeStackPtr) { |
| auto TLSModel = UseTLS ? |
| GlobalValue::InitialExecTLSModel : |
| GlobalValue::NotThreadLocal; |
| // The global variable is not defined yet, define it ourselves. |
| // We use the initial-exec TLS model because we do not support the |
| // variable living anywhere other than in the main executable. |
| UnsafeStackPtr = new GlobalVariable( |
| *M, StackPtrTy, false, GlobalValue::ExternalLinkage, nullptr, |
| UnsafeStackPtrVar, nullptr, TLSModel); |
| } else { |
| // The variable exists, check its type and attributes. |
| if (UnsafeStackPtr->getValueType() != StackPtrTy) |
| report_fatal_error(Twine(UnsafeStackPtrVar) + " must have void* type"); |
| if (UseTLS != UnsafeStackPtr->isThreadLocal()) |
| report_fatal_error(Twine(UnsafeStackPtrVar) + " must " + |
| (UseTLS ? "" : "not ") + "be thread-local"); |
| } |
| return UnsafeStackPtr; |
| } |
| |
| Value *TargetLoweringBase::getSafeStackPointerLocation(IRBuilder<> &IRB) const { |
| if (!TM.getTargetTriple().isAndroid()) |
| return getDefaultSafeStackPointerLocation(IRB, true); |
| |
| // Android provides a libc function to retrieve the address of the current |
| // thread's unsafe stack pointer. |
| Module *M = IRB.GetInsertBlock()->getParent()->getParent(); |
| Type *StackPtrTy = Type::getInt8PtrTy(M->getContext()); |
| Value *Fn = M->getOrInsertFunction("__safestack_pointer_address", |
| StackPtrTy->getPointerTo(0)); |
| return IRB.CreateCall(Fn); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Loop Strength Reduction hooks |
| //===----------------------------------------------------------------------===// |
| |
| /// isLegalAddressingMode - Return true if the addressing mode represented |
| /// by AM is legal for this target, for a load/store of the specified type. |
| bool TargetLoweringBase::isLegalAddressingMode(const DataLayout &DL, |
| const AddrMode &AM, Type *Ty, |
| unsigned AS) const { |
| // The default implementation of this implements a conservative RISCy, r+r and |
| // r+i addr mode. |
| |
| // Allows a sign-extended 16-bit immediate field. |
| if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1) |
| return false; |
| |
| // No global is ever allowed as a base. |
| if (AM.BaseGV) |
| return false; |
| |
| // Only support r+r, |
| switch (AM.Scale) { |
| case 0: // "r+i" or just "i", depending on HasBaseReg. |
| break; |
| case 1: |
| if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed. |
| return false; |
| // Otherwise we have r+r or r+i. |
| break; |
| case 2: |
| if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed. |
| return false; |
| // Allow 2*r as r+r. |
| break; |
| default: // Don't allow n * r |
| return false; |
| } |
| |
| return true; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Stack Protector |
| //===----------------------------------------------------------------------===// |
| |
| // For OpenBSD return its special guard variable. Otherwise return nullptr, |
| // so that SelectionDAG handle SSP. |
| Value *TargetLoweringBase::getIRStackGuard(IRBuilder<> &IRB) const { |
| if (getTargetMachine().getTargetTriple().isOSOpenBSD()) { |
| Module &M = *IRB.GetInsertBlock()->getParent()->getParent(); |
| PointerType *PtrTy = Type::getInt8PtrTy(M.getContext()); |
| return M.getOrInsertGlobal("__guard_local", PtrTy); |
| } |
| return nullptr; |
| } |
| |
| // Currently only support "standard" __stack_chk_guard. |
| // TODO: add LOAD_STACK_GUARD support. |
| void TargetLoweringBase::insertSSPDeclarations(Module &M) const { |
| M.getOrInsertGlobal("__stack_chk_guard", Type::getInt8PtrTy(M.getContext())); |
| } |
| |
| // Currently only support "standard" __stack_chk_guard. |
| // TODO: add LOAD_STACK_GUARD support. |
| Value *TargetLoweringBase::getSDagStackGuard(const Module &M) const { |
| return M.getGlobalVariable("__stack_chk_guard", true); |
| } |
| |
| Value *TargetLoweringBase::getSSPStackGuardCheck(const Module &M) const { |
| return nullptr; |
| } |
| |
| unsigned TargetLoweringBase::getMinimumJumpTableEntries() const { |
| return MinimumJumpTableEntries; |
| } |
| |
| void TargetLoweringBase::setMinimumJumpTableEntries(unsigned Val) { |
| MinimumJumpTableEntries = Val; |
| } |
| |
| unsigned TargetLoweringBase::getMaximumJumpTableSize() const { |
| return MaximumJumpTableSize; |
| } |
| |
| void TargetLoweringBase::setMaximumJumpTableSize(unsigned Val) { |
| MaximumJumpTableSize = Val; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Reciprocal Estimates |
| //===----------------------------------------------------------------------===// |
| |
| /// Get the reciprocal estimate attribute string for a function that will |
| /// override the target defaults. |
| static StringRef getRecipEstimateForFunc(MachineFunction &MF) { |
| const Function *F = MF.getFunction(); |
| return F->getFnAttribute("reciprocal-estimates").getValueAsString(); |
| } |
| |
| /// Construct a string for the given reciprocal operation of the given type. |
| /// This string should match the corresponding option to the front-end's |
| /// "-mrecip" flag assuming those strings have been passed through in an |
| /// attribute string. For example, "vec-divf" for a division of a vXf32. |
| static std::string getReciprocalOpName(bool IsSqrt, EVT VT) { |
| std::string Name = VT.isVector() ? "vec-" : ""; |
| |
| Name += IsSqrt ? "sqrt" : "div"; |
| |
| // TODO: Handle "half" or other float types? |
| if (VT.getScalarType() == MVT::f64) { |
| Name += "d"; |
| } else { |
| assert(VT.getScalarType() == MVT::f32 && |
| "Unexpected FP type for reciprocal estimate"); |
| Name += "f"; |
| } |
| |
| return Name; |
| } |
| |
| /// Return the character position and value (a single numeric character) of a |
| /// customized refinement operation in the input string if it exists. Return |
| /// false if there is no customized refinement step count. |
| static bool parseRefinementStep(StringRef In, size_t &Position, |
| uint8_t &Value) { |
| const char RefStepToken = ':'; |
| Position = In.find(RefStepToken); |
| if (Position == StringRef::npos) |
| return false; |
| |
| StringRef RefStepString = In.substr(Position + 1); |
| // Allow exactly one numeric character for the additional refinement |
| // step parameter. |
| if (RefStepString.size() == 1) { |
| char RefStepChar = RefStepString[0]; |
| if (RefStepChar >= '0' && RefStepChar <= '9') { |
| Value = RefStepChar - '0'; |
| return true; |
| } |
| } |
| report_fatal_error("Invalid refinement step for -recip."); |
| } |
| |
| /// For the input attribute string, return one of the ReciprocalEstimate enum |
| /// status values (enabled, disabled, or not specified) for this operation on |
| /// the specified data type. |
| static int getOpEnabled(bool IsSqrt, EVT VT, StringRef Override) { |
| if (Override.empty()) |
| return TargetLoweringBase::ReciprocalEstimate::Unspecified; |
| |
| SmallVector<StringRef, 4> OverrideVector; |
| SplitString(Override, OverrideVector, ","); |
| unsigned NumArgs = OverrideVector.size(); |
| |
| // Check if "all", "none", or "default" was specified. |
| if (NumArgs == 1) { |
| // Look for an optional setting of the number of refinement steps needed |
| // for this type of reciprocal operation. |
| size_t RefPos; |
| uint8_t RefSteps; |
| if (parseRefinementStep(Override, RefPos, RefSteps)) { |
| // Split the string for further processing. |
| Override = Override.substr(0, RefPos); |
| } |
| |
| // All reciprocal types are enabled. |
| if (Override == "all") |
| return TargetLoweringBase::ReciprocalEstimate::Enabled; |
| |
| // All reciprocal types are disabled. |
| if (Override == "none") |
| return TargetLoweringBase::ReciprocalEstimate::Disabled; |
| |
| // Target defaults for enablement are used. |
| if (Override == "default") |
| return TargetLoweringBase::ReciprocalEstimate::Unspecified; |
| } |
| |
| // The attribute string may omit the size suffix ('f'/'d'). |
| std::string VTName = getReciprocalOpName(IsSqrt, VT); |
| std::string VTNameNoSize = VTName; |
| VTNameNoSize.pop_back(); |
| static const char DisabledPrefix = '!'; |
| |
| for (StringRef RecipType : OverrideVector) { |
| size_t RefPos; |
| uint8_t RefSteps; |
| if (parseRefinementStep(RecipType, RefPos, RefSteps)) |
| RecipType = RecipType.substr(0, RefPos); |
| |
| // Ignore the disablement token for string matching. |
| bool IsDisabled = RecipType[0] == DisabledPrefix; |
| if (IsDisabled) |
| RecipType = RecipType.substr(1); |
| |
| if (RecipType.equals(VTName) || RecipType.equals(VTNameNoSize)) |
| return IsDisabled ? TargetLoweringBase::ReciprocalEstimate::Disabled |
| : TargetLoweringBase::ReciprocalEstimate::Enabled; |
| } |
| |
| return TargetLoweringBase::ReciprocalEstimate::Unspecified; |
| } |
| |
| /// For the input attribute string, return the customized refinement step count |
| /// for this operation on the specified data type. If the step count does not |
| /// exist, return the ReciprocalEstimate enum value for unspecified. |
| static int getOpRefinementSteps(bool IsSqrt, EVT VT, StringRef Override) { |
| if (Override.empty()) |
| return TargetLoweringBase::ReciprocalEstimate::Unspecified; |
| |
| SmallVector<StringRef, 4> OverrideVector; |
| SplitString(Override, OverrideVector, ","); |
| unsigned NumArgs = OverrideVector.size(); |
| |
| // Check if "all", "default", or "none" was specified. |
| if (NumArgs == 1) { |
| // Look for an optional setting of the number of refinement steps needed |
| // for this type of reciprocal operation. |
| size_t RefPos; |
| uint8_t RefSteps; |
| if (!parseRefinementStep(Override, RefPos, RefSteps)) |
| return TargetLoweringBase::ReciprocalEstimate::Unspecified; |
| |
| // Split the string for further processing. |
| Override = Override.substr(0, RefPos); |
| assert(Override != "none" && |
| "Disabled reciprocals, but specifed refinement steps?"); |
| |
| // If this is a general override, return the specified number of steps. |
| if (Override == "all" || Override == "default") |
| return RefSteps; |
| } |
| |
| // The attribute string may omit the size suffix ('f'/'d'). |
| std::string VTName = getReciprocalOpName(IsSqrt, VT); |
| std::string VTNameNoSize = VTName; |
| VTNameNoSize.pop_back(); |
| |
| for (StringRef RecipType : OverrideVector) { |
| size_t RefPos; |
| uint8_t RefSteps; |
| if (!parseRefinementStep(RecipType, RefPos, RefSteps)) |
| continue; |
| |
| RecipType = RecipType.substr(0, RefPos); |
| if (RecipType.equals(VTName) || RecipType.equals(VTNameNoSize)) |
| return RefSteps; |
| } |
| |
| return TargetLoweringBase::ReciprocalEstimate::Unspecified; |
| } |
| |
| int TargetLoweringBase::getRecipEstimateSqrtEnabled(EVT VT, |
| MachineFunction &MF) const { |
| return getOpEnabled(true, VT, getRecipEstimateForFunc(MF)); |
| } |
| |
| int TargetLoweringBase::getRecipEstimateDivEnabled(EVT VT, |
| MachineFunction &MF) const { |
| return getOpEnabled(false, VT, getRecipEstimateForFunc(MF)); |
| } |
| |
| int TargetLoweringBase::getSqrtRefinementSteps(EVT VT, |
| MachineFunction &MF) const { |
| return getOpRefinementSteps(true, VT, getRecipEstimateForFunc(MF)); |
| } |
| |
| int TargetLoweringBase::getDivRefinementSteps(EVT VT, |
| MachineFunction &MF) const { |
| return getOpRefinementSteps(false, VT, getRecipEstimateForFunc(MF)); |
| } |