| //=-- InstrProf.cpp - Instrumented profiling format support -----------------=// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file contains support for clang's instrumentation based PGO and |
| // coverage. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/ProfileData/InstrProf.h" |
| #include "llvm/ADT/StringExtras.h" |
| #include "llvm/ADT/Triple.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/GlobalVariable.h" |
| #include "llvm/IR/MDBuilder.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/Support/Compression.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/LEB128.h" |
| #include "llvm/Support/ManagedStatic.h" |
| #include "llvm/Support/Path.h" |
| |
| using namespace llvm; |
| |
| static cl::opt<bool> StaticFuncFullModulePrefix( |
| "static-func-full-module-prefix", cl::init(false), |
| cl::desc("Use full module build paths in the profile counter names for " |
| "static functions.")); |
| |
| namespace { |
| std::string getInstrProfErrString(instrprof_error Err) { |
| switch (Err) { |
| case instrprof_error::success: |
| return "Success"; |
| case instrprof_error::eof: |
| return "End of File"; |
| case instrprof_error::unrecognized_format: |
| return "Unrecognized instrumentation profile encoding format"; |
| case instrprof_error::bad_magic: |
| return "Invalid instrumentation profile data (bad magic)"; |
| case instrprof_error::bad_header: |
| return "Invalid instrumentation profile data (file header is corrupt)"; |
| case instrprof_error::unsupported_version: |
| return "Unsupported instrumentation profile format version"; |
| case instrprof_error::unsupported_hash_type: |
| return "Unsupported instrumentation profile hash type"; |
| case instrprof_error::too_large: |
| return "Too much profile data"; |
| case instrprof_error::truncated: |
| return "Truncated profile data"; |
| case instrprof_error::malformed: |
| return "Malformed instrumentation profile data"; |
| case instrprof_error::unknown_function: |
| return "No profile data available for function"; |
| case instrprof_error::hash_mismatch: |
| return "Function control flow change detected (hash mismatch)"; |
| case instrprof_error::count_mismatch: |
| return "Function basic block count change detected (counter mismatch)"; |
| case instrprof_error::counter_overflow: |
| return "Counter overflow"; |
| case instrprof_error::value_site_count_mismatch: |
| return "Function value site count change detected (counter mismatch)"; |
| case instrprof_error::compress_failed: |
| return "Failed to compress data (zlib)"; |
| case instrprof_error::uncompress_failed: |
| return "Failed to uncompress data (zlib)"; |
| case instrprof_error::empty_raw_profile: |
| return "Empty raw profile file"; |
| } |
| llvm_unreachable("A value of instrprof_error has no message."); |
| } |
| |
| // FIXME: This class is only here to support the transition to llvm::Error. It |
| // will be removed once this transition is complete. Clients should prefer to |
| // deal with the Error value directly, rather than converting to error_code. |
| class InstrProfErrorCategoryType : public std::error_category { |
| const char *name() const noexcept override { return "llvm.instrprof"; } |
| std::string message(int IE) const override { |
| return getInstrProfErrString(static_cast<instrprof_error>(IE)); |
| } |
| }; |
| } // end anonymous namespace |
| |
| static ManagedStatic<InstrProfErrorCategoryType> ErrorCategory; |
| |
| const std::error_category &llvm::instrprof_category() { |
| return *ErrorCategory; |
| } |
| |
| namespace llvm { |
| |
| void SoftInstrProfErrors::addError(instrprof_error IE) { |
| if (IE == instrprof_error::success) |
| return; |
| |
| if (FirstError == instrprof_error::success) |
| FirstError = IE; |
| |
| switch (IE) { |
| case instrprof_error::hash_mismatch: |
| ++NumHashMismatches; |
| break; |
| case instrprof_error::count_mismatch: |
| ++NumCountMismatches; |
| break; |
| case instrprof_error::counter_overflow: |
| ++NumCounterOverflows; |
| break; |
| case instrprof_error::value_site_count_mismatch: |
| ++NumValueSiteCountMismatches; |
| break; |
| default: |
| llvm_unreachable("Not a soft error"); |
| } |
| } |
| |
| std::string InstrProfError::message() const { |
| return getInstrProfErrString(Err); |
| } |
| |
| char InstrProfError::ID = 0; |
| |
| std::string getPGOFuncName(StringRef RawFuncName, |
| GlobalValue::LinkageTypes Linkage, |
| StringRef FileName, |
| uint64_t Version LLVM_ATTRIBUTE_UNUSED) { |
| return GlobalValue::getGlobalIdentifier(RawFuncName, Linkage, FileName); |
| } |
| |
| // Return the PGOFuncName. This function has some special handling when called |
| // in LTO optimization. The following only applies when calling in LTO passes |
| // (when \c InLTO is true): LTO's internalization privatizes many global linkage |
| // symbols. This happens after value profile annotation, but those internal |
| // linkage functions should not have a source prefix. |
| // Additionally, for ThinLTO mode, exported internal functions are promoted |
| // and renamed. We need to ensure that the original internal PGO name is |
| // used when computing the GUID that is compared against the profiled GUIDs. |
| // To differentiate compiler generated internal symbols from original ones, |
| // PGOFuncName meta data are created and attached to the original internal |
| // symbols in the value profile annotation step |
| // (PGOUseFunc::annotateIndirectCallSites). If a symbol does not have the meta |
| // data, its original linkage must be non-internal. |
| std::string getPGOFuncName(const Function &F, bool InLTO, uint64_t Version) { |
| if (!InLTO) { |
| StringRef FileName = (StaticFuncFullModulePrefix |
| ? F.getParent()->getName() |
| : sys::path::filename(F.getParent()->getName())); |
| return getPGOFuncName(F.getName(), F.getLinkage(), FileName, Version); |
| } |
| |
| // In LTO mode (when InLTO is true), first check if there is a meta data. |
| if (MDNode *MD = getPGOFuncNameMetadata(F)) { |
| StringRef S = cast<MDString>(MD->getOperand(0))->getString(); |
| return S.str(); |
| } |
| |
| // If there is no meta data, the function must be a global before the value |
| // profile annotation pass. Its current linkage may be internal if it is |
| // internalized in LTO mode. |
| return getPGOFuncName(F.getName(), GlobalValue::ExternalLinkage, ""); |
| } |
| |
| StringRef getFuncNameWithoutPrefix(StringRef PGOFuncName, StringRef FileName) { |
| if (FileName.empty()) |
| return PGOFuncName; |
| // Drop the file name including ':'. See also getPGOFuncName. |
| if (PGOFuncName.startswith(FileName)) |
| PGOFuncName = PGOFuncName.drop_front(FileName.size() + 1); |
| return PGOFuncName; |
| } |
| |
| // \p FuncName is the string used as profile lookup key for the function. A |
| // symbol is created to hold the name. Return the legalized symbol name. |
| std::string getPGOFuncNameVarName(StringRef FuncName, |
| GlobalValue::LinkageTypes Linkage) { |
| std::string VarName = getInstrProfNameVarPrefix(); |
| VarName += FuncName; |
| |
| if (!GlobalValue::isLocalLinkage(Linkage)) |
| return VarName; |
| |
| // Now fix up illegal chars in local VarName that may upset the assembler. |
| const char *InvalidChars = "-:<>/\"'"; |
| size_t found = VarName.find_first_of(InvalidChars); |
| while (found != std::string::npos) { |
| VarName[found] = '_'; |
| found = VarName.find_first_of(InvalidChars, found + 1); |
| } |
| return VarName; |
| } |
| |
| GlobalVariable *createPGOFuncNameVar(Module &M, |
| GlobalValue::LinkageTypes Linkage, |
| StringRef PGOFuncName) { |
| |
| // We generally want to match the function's linkage, but available_externally |
| // and extern_weak both have the wrong semantics, and anything that doesn't |
| // need to link across compilation units doesn't need to be visible at all. |
| if (Linkage == GlobalValue::ExternalWeakLinkage) |
| Linkage = GlobalValue::LinkOnceAnyLinkage; |
| else if (Linkage == GlobalValue::AvailableExternallyLinkage) |
| Linkage = GlobalValue::LinkOnceODRLinkage; |
| else if (Linkage == GlobalValue::InternalLinkage || |
| Linkage == GlobalValue::ExternalLinkage) |
| Linkage = GlobalValue::PrivateLinkage; |
| |
| auto *Value = |
| ConstantDataArray::getString(M.getContext(), PGOFuncName, false); |
| auto FuncNameVar = |
| new GlobalVariable(M, Value->getType(), true, Linkage, Value, |
| getPGOFuncNameVarName(PGOFuncName, Linkage)); |
| |
| // Hide the symbol so that we correctly get a copy for each executable. |
| if (!GlobalValue::isLocalLinkage(FuncNameVar->getLinkage())) |
| FuncNameVar->setVisibility(GlobalValue::HiddenVisibility); |
| |
| return FuncNameVar; |
| } |
| |
| GlobalVariable *createPGOFuncNameVar(Function &F, StringRef PGOFuncName) { |
| return createPGOFuncNameVar(*F.getParent(), F.getLinkage(), PGOFuncName); |
| } |
| |
| void InstrProfSymtab::create(Module &M, bool InLTO) { |
| for (Function &F : M) { |
| // Function may not have a name: like using asm("") to overwrite the name. |
| // Ignore in this case. |
| if (!F.hasName()) |
| continue; |
| const std::string &PGOFuncName = getPGOFuncName(F, InLTO); |
| addFuncName(PGOFuncName); |
| MD5FuncMap.emplace_back(Function::getGUID(PGOFuncName), &F); |
| } |
| |
| finalizeSymtab(); |
| } |
| |
| Error collectPGOFuncNameStrings(const std::vector<std::string> &NameStrs, |
| bool doCompression, std::string &Result) { |
| assert(NameStrs.size() && "No name data to emit"); |
| |
| uint8_t Header[16], *P = Header; |
| std::string UncompressedNameStrings = |
| join(NameStrs.begin(), NameStrs.end(), getInstrProfNameSeparator()); |
| |
| assert(StringRef(UncompressedNameStrings) |
| .count(getInstrProfNameSeparator()) == (NameStrs.size() - 1) && |
| "PGO name is invalid (contains separator token)"); |
| |
| unsigned EncLen = encodeULEB128(UncompressedNameStrings.length(), P); |
| P += EncLen; |
| |
| auto WriteStringToResult = [&](size_t CompressedLen, StringRef InputStr) { |
| EncLen = encodeULEB128(CompressedLen, P); |
| P += EncLen; |
| char *HeaderStr = reinterpret_cast<char *>(&Header[0]); |
| unsigned HeaderLen = P - &Header[0]; |
| Result.append(HeaderStr, HeaderLen); |
| Result += InputStr; |
| return Error::success(); |
| }; |
| |
| if (!doCompression) { |
| return WriteStringToResult(0, UncompressedNameStrings); |
| } |
| |
| SmallString<128> CompressedNameStrings; |
| zlib::Status Success = |
| zlib::compress(StringRef(UncompressedNameStrings), CompressedNameStrings, |
| zlib::BestSizeCompression); |
| |
| if (Success != zlib::StatusOK) |
| return make_error<InstrProfError>(instrprof_error::compress_failed); |
| |
| return WriteStringToResult(CompressedNameStrings.size(), |
| CompressedNameStrings); |
| } |
| |
| StringRef getPGOFuncNameVarInitializer(GlobalVariable *NameVar) { |
| auto *Arr = cast<ConstantDataArray>(NameVar->getInitializer()); |
| StringRef NameStr = |
| Arr->isCString() ? Arr->getAsCString() : Arr->getAsString(); |
| return NameStr; |
| } |
| |
| Error collectPGOFuncNameStrings(const std::vector<GlobalVariable *> &NameVars, |
| std::string &Result, bool doCompression) { |
| std::vector<std::string> NameStrs; |
| for (auto *NameVar : NameVars) { |
| NameStrs.push_back(getPGOFuncNameVarInitializer(NameVar)); |
| } |
| return collectPGOFuncNameStrings( |
| NameStrs, zlib::isAvailable() && doCompression, Result); |
| } |
| |
| Error readPGOFuncNameStrings(StringRef NameStrings, InstrProfSymtab &Symtab) { |
| const uint8_t *P = reinterpret_cast<const uint8_t *>(NameStrings.data()); |
| const uint8_t *EndP = reinterpret_cast<const uint8_t *>(NameStrings.data() + |
| NameStrings.size()); |
| while (P < EndP) { |
| uint32_t N; |
| uint64_t UncompressedSize = decodeULEB128(P, &N); |
| P += N; |
| uint64_t CompressedSize = decodeULEB128(P, &N); |
| P += N; |
| bool isCompressed = (CompressedSize != 0); |
| SmallString<128> UncompressedNameStrings; |
| StringRef NameStrings; |
| if (isCompressed) { |
| StringRef CompressedNameStrings(reinterpret_cast<const char *>(P), |
| CompressedSize); |
| if (zlib::uncompress(CompressedNameStrings, UncompressedNameStrings, |
| UncompressedSize) != zlib::StatusOK) |
| return make_error<InstrProfError>(instrprof_error::uncompress_failed); |
| P += CompressedSize; |
| NameStrings = StringRef(UncompressedNameStrings.data(), |
| UncompressedNameStrings.size()); |
| } else { |
| NameStrings = |
| StringRef(reinterpret_cast<const char *>(P), UncompressedSize); |
| P += UncompressedSize; |
| } |
| // Now parse the name strings. |
| SmallVector<StringRef, 0> Names; |
| NameStrings.split(Names, getInstrProfNameSeparator()); |
| for (StringRef &Name : Names) |
| Symtab.addFuncName(Name); |
| |
| while (P < EndP && *P == 0) |
| P++; |
| } |
| Symtab.finalizeSymtab(); |
| return Error::success(); |
| } |
| |
| void InstrProfValueSiteRecord::merge(SoftInstrProfErrors &SIPE, |
| InstrProfValueSiteRecord &Input, |
| uint64_t Weight) { |
| this->sortByTargetValues(); |
| Input.sortByTargetValues(); |
| auto I = ValueData.begin(); |
| auto IE = ValueData.end(); |
| for (auto J = Input.ValueData.begin(), JE = Input.ValueData.end(); J != JE; |
| ++J) { |
| while (I != IE && I->Value < J->Value) |
| ++I; |
| if (I != IE && I->Value == J->Value) { |
| bool Overflowed; |
| I->Count = SaturatingMultiplyAdd(J->Count, Weight, I->Count, &Overflowed); |
| if (Overflowed) |
| SIPE.addError(instrprof_error::counter_overflow); |
| ++I; |
| continue; |
| } |
| ValueData.insert(I, *J); |
| } |
| } |
| |
| void InstrProfValueSiteRecord::scale(SoftInstrProfErrors &SIPE, |
| uint64_t Weight) { |
| for (auto I = ValueData.begin(), IE = ValueData.end(); I != IE; ++I) { |
| bool Overflowed; |
| I->Count = SaturatingMultiply(I->Count, Weight, &Overflowed); |
| if (Overflowed) |
| SIPE.addError(instrprof_error::counter_overflow); |
| } |
| } |
| |
| // Merge Value Profile data from Src record to this record for ValueKind. |
| // Scale merged value counts by \p Weight. |
| void InstrProfRecord::mergeValueProfData(uint32_t ValueKind, |
| InstrProfRecord &Src, |
| uint64_t Weight) { |
| uint32_t ThisNumValueSites = getNumValueSites(ValueKind); |
| uint32_t OtherNumValueSites = Src.getNumValueSites(ValueKind); |
| if (ThisNumValueSites != OtherNumValueSites) { |
| SIPE.addError(instrprof_error::value_site_count_mismatch); |
| return; |
| } |
| std::vector<InstrProfValueSiteRecord> &ThisSiteRecords = |
| getValueSitesForKind(ValueKind); |
| std::vector<InstrProfValueSiteRecord> &OtherSiteRecords = |
| Src.getValueSitesForKind(ValueKind); |
| for (uint32_t I = 0; I < ThisNumValueSites; I++) |
| ThisSiteRecords[I].merge(SIPE, OtherSiteRecords[I], Weight); |
| } |
| |
| void InstrProfRecord::merge(InstrProfRecord &Other, uint64_t Weight) { |
| // If the number of counters doesn't match we either have bad data |
| // or a hash collision. |
| if (Counts.size() != Other.Counts.size()) { |
| SIPE.addError(instrprof_error::count_mismatch); |
| return; |
| } |
| |
| for (size_t I = 0, E = Other.Counts.size(); I < E; ++I) { |
| bool Overflowed; |
| Counts[I] = |
| SaturatingMultiplyAdd(Other.Counts[I], Weight, Counts[I], &Overflowed); |
| if (Overflowed) |
| SIPE.addError(instrprof_error::counter_overflow); |
| } |
| |
| for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind) |
| mergeValueProfData(Kind, Other, Weight); |
| } |
| |
| void InstrProfRecord::scaleValueProfData(uint32_t ValueKind, uint64_t Weight) { |
| uint32_t ThisNumValueSites = getNumValueSites(ValueKind); |
| std::vector<InstrProfValueSiteRecord> &ThisSiteRecords = |
| getValueSitesForKind(ValueKind); |
| for (uint32_t I = 0; I < ThisNumValueSites; I++) |
| ThisSiteRecords[I].scale(SIPE, Weight); |
| } |
| |
| void InstrProfRecord::scale(uint64_t Weight) { |
| for (auto &Count : this->Counts) { |
| bool Overflowed; |
| Count = SaturatingMultiply(Count, Weight, &Overflowed); |
| if (Overflowed) |
| SIPE.addError(instrprof_error::counter_overflow); |
| } |
| for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind) |
| scaleValueProfData(Kind, Weight); |
| } |
| |
| // Map indirect call target name hash to name string. |
| uint64_t InstrProfRecord::remapValue(uint64_t Value, uint32_t ValueKind, |
| ValueMapType *ValueMap) { |
| if (!ValueMap) |
| return Value; |
| switch (ValueKind) { |
| case IPVK_IndirectCallTarget: { |
| auto Result = |
| std::lower_bound(ValueMap->begin(), ValueMap->end(), Value, |
| [](const std::pair<uint64_t, uint64_t> &LHS, |
| uint64_t RHS) { return LHS.first < RHS; }); |
| // Raw function pointer collected by value profiler may be from |
| // external functions that are not instrumented. They won't have |
| // mapping data to be used by the deserializer. Force the value to |
| // be 0 in this case. |
| if (Result != ValueMap->end() && Result->first == Value) |
| Value = (uint64_t)Result->second; |
| else |
| Value = 0; |
| break; |
| } |
| } |
| return Value; |
| } |
| |
| void InstrProfRecord::addValueData(uint32_t ValueKind, uint32_t Site, |
| InstrProfValueData *VData, uint32_t N, |
| ValueMapType *ValueMap) { |
| for (uint32_t I = 0; I < N; I++) { |
| VData[I].Value = remapValue(VData[I].Value, ValueKind, ValueMap); |
| } |
| std::vector<InstrProfValueSiteRecord> &ValueSites = |
| getValueSitesForKind(ValueKind); |
| if (N == 0) |
| ValueSites.emplace_back(); |
| else |
| ValueSites.emplace_back(VData, VData + N); |
| } |
| |
| #define INSTR_PROF_COMMON_API_IMPL |
| #include "llvm/ProfileData/InstrProfData.inc" |
| |
| /*! |
| * \brief ValueProfRecordClosure Interface implementation for InstrProfRecord |
| * class. These C wrappers are used as adaptors so that C++ code can be |
| * invoked as callbacks. |
| */ |
| uint32_t getNumValueKindsInstrProf(const void *Record) { |
| return reinterpret_cast<const InstrProfRecord *>(Record)->getNumValueKinds(); |
| } |
| |
| uint32_t getNumValueSitesInstrProf(const void *Record, uint32_t VKind) { |
| return reinterpret_cast<const InstrProfRecord *>(Record) |
| ->getNumValueSites(VKind); |
| } |
| |
| uint32_t getNumValueDataInstrProf(const void *Record, uint32_t VKind) { |
| return reinterpret_cast<const InstrProfRecord *>(Record) |
| ->getNumValueData(VKind); |
| } |
| |
| uint32_t getNumValueDataForSiteInstrProf(const void *R, uint32_t VK, |
| uint32_t S) { |
| return reinterpret_cast<const InstrProfRecord *>(R) |
| ->getNumValueDataForSite(VK, S); |
| } |
| |
| void getValueForSiteInstrProf(const void *R, InstrProfValueData *Dst, |
| uint32_t K, uint32_t S) { |
| reinterpret_cast<const InstrProfRecord *>(R)->getValueForSite(Dst, K, S); |
| } |
| |
| ValueProfData *allocValueProfDataInstrProf(size_t TotalSizeInBytes) { |
| ValueProfData *VD = |
| (ValueProfData *)(new (::operator new(TotalSizeInBytes)) ValueProfData()); |
| memset(VD, 0, TotalSizeInBytes); |
| return VD; |
| } |
| |
| static ValueProfRecordClosure InstrProfRecordClosure = { |
| nullptr, |
| getNumValueKindsInstrProf, |
| getNumValueSitesInstrProf, |
| getNumValueDataInstrProf, |
| getNumValueDataForSiteInstrProf, |
| nullptr, |
| getValueForSiteInstrProf, |
| allocValueProfDataInstrProf}; |
| |
| // Wrapper implementation using the closure mechanism. |
| uint32_t ValueProfData::getSize(const InstrProfRecord &Record) { |
| InstrProfRecordClosure.Record = &Record; |
| return getValueProfDataSize(&InstrProfRecordClosure); |
| } |
| |
| // Wrapper implementation using the closure mechanism. |
| std::unique_ptr<ValueProfData> |
| ValueProfData::serializeFrom(const InstrProfRecord &Record) { |
| InstrProfRecordClosure.Record = &Record; |
| |
| std::unique_ptr<ValueProfData> VPD( |
| serializeValueProfDataFrom(&InstrProfRecordClosure, nullptr)); |
| return VPD; |
| } |
| |
| void ValueProfRecord::deserializeTo(InstrProfRecord &Record, |
| InstrProfRecord::ValueMapType *VMap) { |
| Record.reserveSites(Kind, NumValueSites); |
| |
| InstrProfValueData *ValueData = getValueProfRecordValueData(this); |
| for (uint64_t VSite = 0; VSite < NumValueSites; ++VSite) { |
| uint8_t ValueDataCount = this->SiteCountArray[VSite]; |
| Record.addValueData(Kind, VSite, ValueData, ValueDataCount, VMap); |
| ValueData += ValueDataCount; |
| } |
| } |
| |
| // For writing/serializing, Old is the host endianness, and New is |
| // byte order intended on disk. For Reading/deserialization, Old |
| // is the on-disk source endianness, and New is the host endianness. |
| void ValueProfRecord::swapBytes(support::endianness Old, |
| support::endianness New) { |
| using namespace support; |
| if (Old == New) |
| return; |
| |
| if (getHostEndianness() != Old) { |
| sys::swapByteOrder<uint32_t>(NumValueSites); |
| sys::swapByteOrder<uint32_t>(Kind); |
| } |
| uint32_t ND = getValueProfRecordNumValueData(this); |
| InstrProfValueData *VD = getValueProfRecordValueData(this); |
| |
| // No need to swap byte array: SiteCountArrray. |
| for (uint32_t I = 0; I < ND; I++) { |
| sys::swapByteOrder<uint64_t>(VD[I].Value); |
| sys::swapByteOrder<uint64_t>(VD[I].Count); |
| } |
| if (getHostEndianness() == Old) { |
| sys::swapByteOrder<uint32_t>(NumValueSites); |
| sys::swapByteOrder<uint32_t>(Kind); |
| } |
| } |
| |
| void ValueProfData::deserializeTo(InstrProfRecord &Record, |
| InstrProfRecord::ValueMapType *VMap) { |
| if (NumValueKinds == 0) |
| return; |
| |
| ValueProfRecord *VR = getFirstValueProfRecord(this); |
| for (uint32_t K = 0; K < NumValueKinds; K++) { |
| VR->deserializeTo(Record, VMap); |
| VR = getValueProfRecordNext(VR); |
| } |
| } |
| |
| template <class T> |
| static T swapToHostOrder(const unsigned char *&D, support::endianness Orig) { |
| using namespace support; |
| if (Orig == little) |
| return endian::readNext<T, little, unaligned>(D); |
| else |
| return endian::readNext<T, big, unaligned>(D); |
| } |
| |
| static std::unique_ptr<ValueProfData> allocValueProfData(uint32_t TotalSize) { |
| return std::unique_ptr<ValueProfData>(new (::operator new(TotalSize)) |
| ValueProfData()); |
| } |
| |
| Error ValueProfData::checkIntegrity() { |
| if (NumValueKinds > IPVK_Last + 1) |
| return make_error<InstrProfError>(instrprof_error::malformed); |
| // Total size needs to be mulltiple of quadword size. |
| if (TotalSize % sizeof(uint64_t)) |
| return make_error<InstrProfError>(instrprof_error::malformed); |
| |
| ValueProfRecord *VR = getFirstValueProfRecord(this); |
| for (uint32_t K = 0; K < this->NumValueKinds; K++) { |
| if (VR->Kind > IPVK_Last) |
| return make_error<InstrProfError>(instrprof_error::malformed); |
| VR = getValueProfRecordNext(VR); |
| if ((char *)VR - (char *)this > (ptrdiff_t)TotalSize) |
| return make_error<InstrProfError>(instrprof_error::malformed); |
| } |
| return Error::success(); |
| } |
| |
| Expected<std::unique_ptr<ValueProfData>> |
| ValueProfData::getValueProfData(const unsigned char *D, |
| const unsigned char *const BufferEnd, |
| support::endianness Endianness) { |
| using namespace support; |
| if (D + sizeof(ValueProfData) > BufferEnd) |
| return make_error<InstrProfError>(instrprof_error::truncated); |
| |
| const unsigned char *Header = D; |
| uint32_t TotalSize = swapToHostOrder<uint32_t>(Header, Endianness); |
| if (D + TotalSize > BufferEnd) |
| return make_error<InstrProfError>(instrprof_error::too_large); |
| |
| std::unique_ptr<ValueProfData> VPD = allocValueProfData(TotalSize); |
| memcpy(VPD.get(), D, TotalSize); |
| // Byte swap. |
| VPD->swapBytesToHost(Endianness); |
| |
| Error E = VPD->checkIntegrity(); |
| if (E) |
| return std::move(E); |
| |
| return std::move(VPD); |
| } |
| |
| void ValueProfData::swapBytesToHost(support::endianness Endianness) { |
| using namespace support; |
| if (Endianness == getHostEndianness()) |
| return; |
| |
| sys::swapByteOrder<uint32_t>(TotalSize); |
| sys::swapByteOrder<uint32_t>(NumValueKinds); |
| |
| ValueProfRecord *VR = getFirstValueProfRecord(this); |
| for (uint32_t K = 0; K < NumValueKinds; K++) { |
| VR->swapBytes(Endianness, getHostEndianness()); |
| VR = getValueProfRecordNext(VR); |
| } |
| } |
| |
| void ValueProfData::swapBytesFromHost(support::endianness Endianness) { |
| using namespace support; |
| if (Endianness == getHostEndianness()) |
| return; |
| |
| ValueProfRecord *VR = getFirstValueProfRecord(this); |
| for (uint32_t K = 0; K < NumValueKinds; K++) { |
| ValueProfRecord *NVR = getValueProfRecordNext(VR); |
| VR->swapBytes(getHostEndianness(), Endianness); |
| VR = NVR; |
| } |
| sys::swapByteOrder<uint32_t>(TotalSize); |
| sys::swapByteOrder<uint32_t>(NumValueKinds); |
| } |
| |
| void annotateValueSite(Module &M, Instruction &Inst, |
| const InstrProfRecord &InstrProfR, |
| InstrProfValueKind ValueKind, uint32_t SiteIdx, |
| uint32_t MaxMDCount) { |
| uint32_t NV = InstrProfR.getNumValueDataForSite(ValueKind, SiteIdx); |
| if (!NV) |
| return; |
| |
| uint64_t Sum = 0; |
| std::unique_ptr<InstrProfValueData[]> VD = |
| InstrProfR.getValueForSite(ValueKind, SiteIdx, &Sum); |
| |
| ArrayRef<InstrProfValueData> VDs(VD.get(), NV); |
| annotateValueSite(M, Inst, VDs, Sum, ValueKind, MaxMDCount); |
| } |
| |
| void annotateValueSite(Module &M, Instruction &Inst, |
| ArrayRef<InstrProfValueData> VDs, |
| uint64_t Sum, InstrProfValueKind ValueKind, |
| uint32_t MaxMDCount) { |
| LLVMContext &Ctx = M.getContext(); |
| MDBuilder MDHelper(Ctx); |
| SmallVector<Metadata *, 3> Vals; |
| // Tag |
| Vals.push_back(MDHelper.createString("VP")); |
| // Value Kind |
| Vals.push_back(MDHelper.createConstant( |
| ConstantInt::get(Type::getInt32Ty(Ctx), ValueKind))); |
| // Total Count |
| Vals.push_back( |
| MDHelper.createConstant(ConstantInt::get(Type::getInt64Ty(Ctx), Sum))); |
| |
| // Value Profile Data |
| uint32_t MDCount = MaxMDCount; |
| for (auto &VD : VDs) { |
| Vals.push_back(MDHelper.createConstant( |
| ConstantInt::get(Type::getInt64Ty(Ctx), VD.Value))); |
| Vals.push_back(MDHelper.createConstant( |
| ConstantInt::get(Type::getInt64Ty(Ctx), VD.Count))); |
| if (--MDCount == 0) |
| break; |
| } |
| Inst.setMetadata(LLVMContext::MD_prof, MDNode::get(Ctx, Vals)); |
| } |
| |
| bool getValueProfDataFromInst(const Instruction &Inst, |
| InstrProfValueKind ValueKind, |
| uint32_t MaxNumValueData, |
| InstrProfValueData ValueData[], |
| uint32_t &ActualNumValueData, uint64_t &TotalC) { |
| MDNode *MD = Inst.getMetadata(LLVMContext::MD_prof); |
| if (!MD) |
| return false; |
| |
| unsigned NOps = MD->getNumOperands(); |
| |
| if (NOps < 5) |
| return false; |
| |
| // Operand 0 is a string tag "VP": |
| MDString *Tag = cast<MDString>(MD->getOperand(0)); |
| if (!Tag) |
| return false; |
| |
| if (!Tag->getString().equals("VP")) |
| return false; |
| |
| // Now check kind: |
| ConstantInt *KindInt = mdconst::dyn_extract<ConstantInt>(MD->getOperand(1)); |
| if (!KindInt) |
| return false; |
| if (KindInt->getZExtValue() != ValueKind) |
| return false; |
| |
| // Get total count |
| ConstantInt *TotalCInt = mdconst::dyn_extract<ConstantInt>(MD->getOperand(2)); |
| if (!TotalCInt) |
| return false; |
| TotalC = TotalCInt->getZExtValue(); |
| |
| ActualNumValueData = 0; |
| |
| for (unsigned I = 3; I < NOps; I += 2) { |
| if (ActualNumValueData >= MaxNumValueData) |
| break; |
| ConstantInt *Value = mdconst::dyn_extract<ConstantInt>(MD->getOperand(I)); |
| ConstantInt *Count = |
| mdconst::dyn_extract<ConstantInt>(MD->getOperand(I + 1)); |
| if (!Value || !Count) |
| return false; |
| ValueData[ActualNumValueData].Value = Value->getZExtValue(); |
| ValueData[ActualNumValueData].Count = Count->getZExtValue(); |
| ActualNumValueData++; |
| } |
| return true; |
| } |
| |
| MDNode *getPGOFuncNameMetadata(const Function &F) { |
| return F.getMetadata(getPGOFuncNameMetadataName()); |
| } |
| |
| void createPGOFuncNameMetadata(Function &F, StringRef PGOFuncName) { |
| // Only for internal linkage functions. |
| if (PGOFuncName == F.getName()) |
| return; |
| // Don't create duplicated meta-data. |
| if (getPGOFuncNameMetadata(F)) |
| return; |
| LLVMContext &C = F.getContext(); |
| MDNode *N = MDNode::get(C, MDString::get(C, PGOFuncName)); |
| F.setMetadata(getPGOFuncNameMetadataName(), N); |
| } |
| |
| bool needsComdatForCounter(const Function &F, const Module &M) { |
| if (F.hasComdat()) |
| return true; |
| |
| Triple TT(M.getTargetTriple()); |
| if (!TT.isOSBinFormatELF()) |
| return false; |
| |
| // See createPGOFuncNameVar for more details. To avoid link errors, profile |
| // counters for function with available_externally linkage needs to be changed |
| // to linkonce linkage. On ELF based systems, this leads to weak symbols to be |
| // created. Without using comdat, duplicate entries won't be removed by the |
| // linker leading to increased data segement size and raw profile size. Even |
| // worse, since the referenced counter from profile per-function data object |
| // will be resolved to the common strong definition, the profile counts for |
| // available_externally functions will end up being duplicated in raw profile |
| // data. This can result in distorted profile as the counts of those dups |
| // will be accumulated by the profile merger. |
| GlobalValue::LinkageTypes Linkage = F.getLinkage(); |
| if (Linkage != GlobalValue::ExternalWeakLinkage && |
| Linkage != GlobalValue::AvailableExternallyLinkage) |
| return false; |
| |
| return true; |
| } |
| } // end namespace llvm |