| //===-- AMDGPUTargetMachine.cpp - TargetMachine for hw codegen targets-----===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| /// \file |
| /// \brief The AMDGPU target machine contains all of the hardware specific |
| /// information needed to emit code for R600 and SI GPUs. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "AMDGPUTargetMachine.h" |
| #include "AMDGPU.h" |
| #include "AMDGPUAliasAnalysis.h" |
| #include "AMDGPUCallLowering.h" |
| #include "AMDGPUInstructionSelector.h" |
| #include "AMDGPULegalizerInfo.h" |
| #ifdef LLVM_BUILD_GLOBAL_ISEL |
| #include "AMDGPURegisterBankInfo.h" |
| #endif |
| #include "AMDGPUTargetObjectFile.h" |
| #include "AMDGPUTargetTransformInfo.h" |
| #include "GCNIterativeScheduler.h" |
| #include "GCNSchedStrategy.h" |
| #include "R600MachineScheduler.h" |
| #include "SIMachineScheduler.h" |
| #include "llvm/CodeGen/GlobalISel/InstructionSelect.h" |
| #include "llvm/CodeGen/GlobalISel/IRTranslator.h" |
| #include "llvm/CodeGen/GlobalISel/Legalizer.h" |
| #include "llvm/CodeGen/GlobalISel/RegBankSelect.h" |
| #include "llvm/CodeGen/Passes.h" |
| #include "llvm/CodeGen/TargetPassConfig.h" |
| #include "llvm/Support/TargetRegistry.h" |
| #include "llvm/Transforms/IPO.h" |
| #include "llvm/Transforms/IPO/AlwaysInliner.h" |
| #include "llvm/Transforms/IPO/PassManagerBuilder.h" |
| #include "llvm/Transforms/Scalar.h" |
| #include "llvm/Transforms/Scalar/GVN.h" |
| #include "llvm/Transforms/Vectorize.h" |
| #include "llvm/IR/Attributes.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/LegacyPassManager.h" |
| #include "llvm/Pass.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Compiler.h" |
| #include "llvm/Target/TargetLoweringObjectFile.h" |
| #include <memory> |
| |
| using namespace llvm; |
| |
| static cl::opt<bool> EnableR600StructurizeCFG( |
| "r600-ir-structurize", |
| cl::desc("Use StructurizeCFG IR pass"), |
| cl::init(true)); |
| |
| static cl::opt<bool> EnableSROA( |
| "amdgpu-sroa", |
| cl::desc("Run SROA after promote alloca pass"), |
| cl::ReallyHidden, |
| cl::init(true)); |
| |
| static cl::opt<bool> |
| EnableEarlyIfConversion("amdgpu-early-ifcvt", cl::Hidden, |
| cl::desc("Run early if-conversion"), |
| cl::init(false)); |
| |
| static cl::opt<bool> EnableR600IfConvert( |
| "r600-if-convert", |
| cl::desc("Use if conversion pass"), |
| cl::ReallyHidden, |
| cl::init(true)); |
| |
| // Option to disable vectorizer for tests. |
| static cl::opt<bool> EnableLoadStoreVectorizer( |
| "amdgpu-load-store-vectorizer", |
| cl::desc("Enable load store vectorizer"), |
| cl::init(true), |
| cl::Hidden); |
| |
| // Option to to control global loads scalarization |
| static cl::opt<bool> ScalarizeGlobal( |
| "amdgpu-scalarize-global-loads", |
| cl::desc("Enable global load scalarization"), |
| cl::init(false), |
| cl::Hidden); |
| |
| // Option to run internalize pass. |
| static cl::opt<bool> InternalizeSymbols( |
| "amdgpu-internalize-symbols", |
| cl::desc("Enable elimination of non-kernel functions and unused globals"), |
| cl::init(false), |
| cl::Hidden); |
| |
| // Option to inline all early. |
| static cl::opt<bool> EarlyInlineAll( |
| "amdgpu-early-inline-all", |
| cl::desc("Inline all functions early"), |
| cl::init(false), |
| cl::Hidden); |
| |
| static cl::opt<bool> EnableSDWAPeephole( |
| "amdgpu-sdwa-peephole", |
| cl::desc("Enable SDWA peepholer"), |
| cl::init(true)); |
| |
| // Enable address space based alias analysis |
| static cl::opt<bool> EnableAMDGPUAliasAnalysis("enable-amdgpu-aa", cl::Hidden, |
| cl::desc("Enable AMDGPU Alias Analysis"), |
| cl::init(true)); |
| |
| // Option to enable new waitcnt insertion pass. |
| static cl::opt<bool> EnableSIInsertWaitcntsPass( |
| "enable-si-insert-waitcnts", |
| cl::desc("Use new waitcnt insertion pass"), |
| cl::init(false)); |
| |
| // Option to run late CFG structurizer |
| static cl::opt<bool> LateCFGStructurize( |
| "amdgpu-late-structurize", |
| cl::desc("Enable late CFG structurization"), |
| cl::init(false), |
| cl::Hidden); |
| |
| extern "C" void LLVMInitializeAMDGPUTarget() { |
| // Register the target |
| RegisterTargetMachine<R600TargetMachine> X(getTheAMDGPUTarget()); |
| RegisterTargetMachine<GCNTargetMachine> Y(getTheGCNTarget()); |
| |
| PassRegistry *PR = PassRegistry::getPassRegistry(); |
| initializeSILowerI1CopiesPass(*PR); |
| initializeSIFixSGPRCopiesPass(*PR); |
| initializeSIFixVGPRCopiesPass(*PR); |
| initializeSIFoldOperandsPass(*PR); |
| initializeSIPeepholeSDWAPass(*PR); |
| initializeSIShrinkInstructionsPass(*PR); |
| initializeSIFixControlFlowLiveIntervalsPass(*PR); |
| initializeSILoadStoreOptimizerPass(*PR); |
| initializeAMDGPUAnnotateKernelFeaturesPass(*PR); |
| initializeAMDGPUAnnotateUniformValuesPass(*PR); |
| initializeAMDGPULowerIntrinsicsPass(*PR); |
| initializeAMDGPUPromoteAllocaPass(*PR); |
| initializeAMDGPUCodeGenPreparePass(*PR); |
| initializeAMDGPUUnifyMetadataPass(*PR); |
| initializeSIAnnotateControlFlowPass(*PR); |
| initializeSIInsertWaitsPass(*PR); |
| initializeSIInsertWaitcntsPass(*PR); |
| initializeSIWholeQuadModePass(*PR); |
| initializeSILowerControlFlowPass(*PR); |
| initializeSIInsertSkipsPass(*PR); |
| initializeSIDebuggerInsertNopsPass(*PR); |
| initializeSIOptimizeExecMaskingPass(*PR); |
| initializeAMDGPUUnifyDivergentExitNodesPass(*PR); |
| initializeAMDGPUAAWrapperPassPass(*PR); |
| } |
| |
| static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) { |
| return llvm::make_unique<AMDGPUTargetObjectFile>(); |
| } |
| |
| static ScheduleDAGInstrs *createR600MachineScheduler(MachineSchedContext *C) { |
| return new ScheduleDAGMILive(C, llvm::make_unique<R600SchedStrategy>()); |
| } |
| |
| static ScheduleDAGInstrs *createSIMachineScheduler(MachineSchedContext *C) { |
| return new SIScheduleDAGMI(C); |
| } |
| |
| static ScheduleDAGInstrs * |
| createGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) { |
| ScheduleDAGMILive *DAG = |
| new GCNScheduleDAGMILive(C, make_unique<GCNMaxOccupancySchedStrategy>(C)); |
| DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); |
| DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); |
| return DAG; |
| } |
| |
| static ScheduleDAGInstrs * |
| createIterativeGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) { |
| auto DAG = new GCNIterativeScheduler(C, |
| GCNIterativeScheduler::SCHEDULE_LEGACYMAXOCCUPANCY); |
| DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); |
| DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); |
| return DAG; |
| } |
| |
| static ScheduleDAGInstrs *createMinRegScheduler(MachineSchedContext *C) { |
| return new GCNIterativeScheduler(C, |
| GCNIterativeScheduler::SCHEDULE_MINREGFORCED); |
| } |
| |
| static MachineSchedRegistry |
| R600SchedRegistry("r600", "Run R600's custom scheduler", |
| createR600MachineScheduler); |
| |
| static MachineSchedRegistry |
| SISchedRegistry("si", "Run SI's custom scheduler", |
| createSIMachineScheduler); |
| |
| static MachineSchedRegistry |
| GCNMaxOccupancySchedRegistry("gcn-max-occupancy", |
| "Run GCN scheduler to maximize occupancy", |
| createGCNMaxOccupancyMachineScheduler); |
| |
| static MachineSchedRegistry |
| IterativeGCNMaxOccupancySchedRegistry("gcn-max-occupancy-experimental", |
| "Run GCN scheduler to maximize occupancy (experimental)", |
| createIterativeGCNMaxOccupancyMachineScheduler); |
| |
| static MachineSchedRegistry |
| GCNMinRegSchedRegistry("gcn-minreg", |
| "Run GCN iterative scheduler for minimal register usage (experimental)", |
| createMinRegScheduler); |
| |
| static StringRef computeDataLayout(const Triple &TT) { |
| if (TT.getArch() == Triple::r600) { |
| // 32-bit pointers. |
| return "e-p:32:32-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128" |
| "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64"; |
| } |
| |
| // 32-bit private, local, and region pointers. 64-bit global, constant and |
| // flat. |
| if (TT.getEnvironmentName() == "amdgiz" || |
| TT.getEnvironmentName() == "amdgizcl") |
| return "e-p:64:64-p1:64:64-p2:64:64-p3:32:32-p4:32:32-p5:32:32" |
| "-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128" |
| "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64-A5"; |
| return "e-p:32:32-p1:64:64-p2:64:64-p3:32:32-p4:64:64-p5:32:32" |
| "-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128" |
| "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64"; |
| } |
| |
| LLVM_READNONE |
| static StringRef getGPUOrDefault(const Triple &TT, StringRef GPU) { |
| if (!GPU.empty()) |
| return GPU; |
| |
| // HSA only supports CI+, so change the default GPU to a CI for HSA. |
| if (TT.getArch() == Triple::amdgcn) |
| return (TT.getOS() == Triple::AMDHSA) ? "kaveri" : "tahiti"; |
| |
| return "r600"; |
| } |
| |
| static Reloc::Model getEffectiveRelocModel(Optional<Reloc::Model> RM) { |
| // The AMDGPU toolchain only supports generating shared objects, so we |
| // must always use PIC. |
| return Reloc::PIC_; |
| } |
| |
| AMDGPUTargetMachine::AMDGPUTargetMachine(const Target &T, const Triple &TT, |
| StringRef CPU, StringRef FS, |
| TargetOptions Options, |
| Optional<Reloc::Model> RM, |
| CodeModel::Model CM, |
| CodeGenOpt::Level OptLevel) |
| : LLVMTargetMachine(T, computeDataLayout(TT), TT, getGPUOrDefault(TT, CPU), |
| FS, Options, getEffectiveRelocModel(RM), CM, OptLevel), |
| TLOF(createTLOF(getTargetTriple())) { |
| AS = AMDGPU::getAMDGPUAS(TT); |
| initAsmInfo(); |
| } |
| |
| AMDGPUTargetMachine::~AMDGPUTargetMachine() = default; |
| |
| StringRef AMDGPUTargetMachine::getGPUName(const Function &F) const { |
| Attribute GPUAttr = F.getFnAttribute("target-cpu"); |
| return GPUAttr.hasAttribute(Attribute::None) ? |
| getTargetCPU() : GPUAttr.getValueAsString(); |
| } |
| |
| StringRef AMDGPUTargetMachine::getFeatureString(const Function &F) const { |
| Attribute FSAttr = F.getFnAttribute("target-features"); |
| |
| return FSAttr.hasAttribute(Attribute::None) ? |
| getTargetFeatureString() : |
| FSAttr.getValueAsString(); |
| } |
| |
| static ImmutablePass *createAMDGPUExternalAAWrapperPass() { |
| return createExternalAAWrapperPass([](Pass &P, Function &, AAResults &AAR) { |
| if (auto *WrapperPass = P.getAnalysisIfAvailable<AMDGPUAAWrapperPass>()) |
| AAR.addAAResult(WrapperPass->getResult()); |
| }); |
| } |
| |
| void AMDGPUTargetMachine::adjustPassManager(PassManagerBuilder &Builder) { |
| Builder.DivergentTarget = true; |
| |
| bool Internalize = InternalizeSymbols && |
| (getOptLevel() > CodeGenOpt::None) && |
| (getTargetTriple().getArch() == Triple::amdgcn); |
| bool EarlyInline = EarlyInlineAll && |
| (getOptLevel() > CodeGenOpt::None); |
| bool AMDGPUAA = EnableAMDGPUAliasAnalysis && getOptLevel() > CodeGenOpt::None; |
| |
| Builder.addExtension( |
| PassManagerBuilder::EP_ModuleOptimizerEarly, |
| [Internalize, EarlyInline, AMDGPUAA](const PassManagerBuilder &, |
| legacy::PassManagerBase &PM) { |
| if (AMDGPUAA) { |
| PM.add(createAMDGPUAAWrapperPass()); |
| PM.add(createAMDGPUExternalAAWrapperPass()); |
| } |
| PM.add(createAMDGPUUnifyMetadataPass()); |
| if (Internalize) { |
| PM.add(createInternalizePass([=](const GlobalValue &GV) -> bool { |
| if (const Function *F = dyn_cast<Function>(&GV)) { |
| if (F->isDeclaration()) |
| return true; |
| switch (F->getCallingConv()) { |
| default: |
| return false; |
| case CallingConv::AMDGPU_VS: |
| case CallingConv::AMDGPU_HS: |
| case CallingConv::AMDGPU_GS: |
| case CallingConv::AMDGPU_PS: |
| case CallingConv::AMDGPU_CS: |
| case CallingConv::AMDGPU_KERNEL: |
| case CallingConv::SPIR_KERNEL: |
| return true; |
| } |
| } |
| return !GV.use_empty(); |
| })); |
| PM.add(createGlobalDCEPass()); |
| } |
| if (EarlyInline) |
| PM.add(createAMDGPUAlwaysInlinePass(false)); |
| }); |
| |
| Builder.addExtension( |
| PassManagerBuilder::EP_EarlyAsPossible, |
| [AMDGPUAA](const PassManagerBuilder &, legacy::PassManagerBase &PM) { |
| if (AMDGPUAA) { |
| PM.add(createAMDGPUAAWrapperPass()); |
| PM.add(createAMDGPUExternalAAWrapperPass()); |
| } |
| }); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // R600 Target Machine (R600 -> Cayman) |
| //===----------------------------------------------------------------------===// |
| |
| R600TargetMachine::R600TargetMachine(const Target &T, const Triple &TT, |
| StringRef CPU, StringRef FS, |
| TargetOptions Options, |
| Optional<Reloc::Model> RM, |
| CodeModel::Model CM, CodeGenOpt::Level OL) |
| : AMDGPUTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) { |
| setRequiresStructuredCFG(true); |
| } |
| |
| const R600Subtarget *R600TargetMachine::getSubtargetImpl( |
| const Function &F) const { |
| StringRef GPU = getGPUName(F); |
| StringRef FS = getFeatureString(F); |
| |
| SmallString<128> SubtargetKey(GPU); |
| SubtargetKey.append(FS); |
| |
| auto &I = SubtargetMap[SubtargetKey]; |
| if (!I) { |
| // This needs to be done before we create a new subtarget since any |
| // creation will depend on the TM and the code generation flags on the |
| // function that reside in TargetOptions. |
| resetTargetOptions(F); |
| I = llvm::make_unique<R600Subtarget>(TargetTriple, GPU, FS, *this); |
| } |
| |
| return I.get(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // GCN Target Machine (SI+) |
| //===----------------------------------------------------------------------===// |
| |
| #ifdef LLVM_BUILD_GLOBAL_ISEL |
| namespace { |
| |
| struct SIGISelActualAccessor : public GISelAccessor { |
| std::unique_ptr<AMDGPUCallLowering> CallLoweringInfo; |
| std::unique_ptr<InstructionSelector> InstSelector; |
| std::unique_ptr<LegalizerInfo> Legalizer; |
| std::unique_ptr<RegisterBankInfo> RegBankInfo; |
| const AMDGPUCallLowering *getCallLowering() const override { |
| return CallLoweringInfo.get(); |
| } |
| const InstructionSelector *getInstructionSelector() const override { |
| return InstSelector.get(); |
| } |
| const LegalizerInfo *getLegalizerInfo() const override { |
| return Legalizer.get(); |
| } |
| const RegisterBankInfo *getRegBankInfo() const override { |
| return RegBankInfo.get(); |
| } |
| }; |
| |
| } // end anonymous namespace |
| #endif |
| |
| GCNTargetMachine::GCNTargetMachine(const Target &T, const Triple &TT, |
| StringRef CPU, StringRef FS, |
| TargetOptions Options, |
| Optional<Reloc::Model> RM, |
| CodeModel::Model CM, CodeGenOpt::Level OL) |
| : AMDGPUTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) {} |
| |
| const SISubtarget *GCNTargetMachine::getSubtargetImpl(const Function &F) const { |
| StringRef GPU = getGPUName(F); |
| StringRef FS = getFeatureString(F); |
| |
| SmallString<128> SubtargetKey(GPU); |
| SubtargetKey.append(FS); |
| |
| auto &I = SubtargetMap[SubtargetKey]; |
| if (!I) { |
| // This needs to be done before we create a new subtarget since any |
| // creation will depend on the TM and the code generation flags on the |
| // function that reside in TargetOptions. |
| resetTargetOptions(F); |
| I = llvm::make_unique<SISubtarget>(TargetTriple, GPU, FS, *this); |
| |
| #ifndef LLVM_BUILD_GLOBAL_ISEL |
| GISelAccessor *GISel = new GISelAccessor(); |
| #else |
| SIGISelActualAccessor *GISel = new SIGISelActualAccessor(); |
| GISel->CallLoweringInfo.reset( |
| new AMDGPUCallLowering(*I->getTargetLowering())); |
| GISel->Legalizer.reset(new AMDGPULegalizerInfo()); |
| |
| GISel->RegBankInfo.reset(new AMDGPURegisterBankInfo(*I->getRegisterInfo())); |
| GISel->InstSelector.reset(new AMDGPUInstructionSelector(*I, |
| *static_cast<AMDGPURegisterBankInfo*>(GISel->RegBankInfo.get()))); |
| #endif |
| |
| I->setGISelAccessor(*GISel); |
| } |
| |
| I->setScalarizeGlobalBehavior(ScalarizeGlobal); |
| |
| return I.get(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // AMDGPU Pass Setup |
| //===----------------------------------------------------------------------===// |
| |
| namespace { |
| |
| class AMDGPUPassConfig : public TargetPassConfig { |
| public: |
| AMDGPUPassConfig(TargetMachine *TM, PassManagerBase &PM) |
| : TargetPassConfig(TM, PM) { |
| // Exceptions and StackMaps are not supported, so these passes will never do |
| // anything. |
| disablePass(&StackMapLivenessID); |
| disablePass(&FuncletLayoutID); |
| } |
| |
| AMDGPUTargetMachine &getAMDGPUTargetMachine() const { |
| return getTM<AMDGPUTargetMachine>(); |
| } |
| |
| ScheduleDAGInstrs * |
| createMachineScheduler(MachineSchedContext *C) const override { |
| ScheduleDAGMILive *DAG = createGenericSchedLive(C); |
| DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); |
| DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); |
| return DAG; |
| } |
| |
| void addEarlyCSEOrGVNPass(); |
| void addStraightLineScalarOptimizationPasses(); |
| void addIRPasses() override; |
| void addCodeGenPrepare() override; |
| bool addPreISel() override; |
| bool addInstSelector() override; |
| bool addGCPasses() override; |
| }; |
| |
| class R600PassConfig final : public AMDGPUPassConfig { |
| public: |
| R600PassConfig(TargetMachine *TM, PassManagerBase &PM) |
| : AMDGPUPassConfig(TM, PM) {} |
| |
| ScheduleDAGInstrs *createMachineScheduler( |
| MachineSchedContext *C) const override { |
| return createR600MachineScheduler(C); |
| } |
| |
| bool addPreISel() override; |
| void addPreRegAlloc() override; |
| void addPreSched2() override; |
| void addPreEmitPass() override; |
| }; |
| |
| class GCNPassConfig final : public AMDGPUPassConfig { |
| public: |
| GCNPassConfig(TargetMachine *TM, PassManagerBase &PM) |
| : AMDGPUPassConfig(TM, PM) {} |
| |
| GCNTargetMachine &getGCNTargetMachine() const { |
| return getTM<GCNTargetMachine>(); |
| } |
| |
| ScheduleDAGInstrs * |
| createMachineScheduler(MachineSchedContext *C) const override; |
| |
| bool addPreISel() override; |
| void addMachineSSAOptimization() override; |
| bool addILPOpts() override; |
| bool addInstSelector() override; |
| #ifdef LLVM_BUILD_GLOBAL_ISEL |
| bool addIRTranslator() override; |
| bool addLegalizeMachineIR() override; |
| bool addRegBankSelect() override; |
| bool addGlobalInstructionSelect() override; |
| #endif |
| void addFastRegAlloc(FunctionPass *RegAllocPass) override; |
| void addOptimizedRegAlloc(FunctionPass *RegAllocPass) override; |
| void addPreRegAlloc() override; |
| void addPostRegAlloc() override; |
| void addPreSched2() override; |
| void addPreEmitPass() override; |
| }; |
| |
| } // end anonymous namespace |
| |
| TargetIRAnalysis AMDGPUTargetMachine::getTargetIRAnalysis() { |
| return TargetIRAnalysis([this](const Function &F) { |
| return TargetTransformInfo(AMDGPUTTIImpl(this, F)); |
| }); |
| } |
| |
| void AMDGPUPassConfig::addEarlyCSEOrGVNPass() { |
| if (getOptLevel() == CodeGenOpt::Aggressive) |
| addPass(createGVNPass()); |
| else |
| addPass(createEarlyCSEPass()); |
| } |
| |
| void AMDGPUPassConfig::addStraightLineScalarOptimizationPasses() { |
| addPass(createSeparateConstOffsetFromGEPPass()); |
| addPass(createSpeculativeExecutionPass()); |
| // ReassociateGEPs exposes more opportunites for SLSR. See |
| // the example in reassociate-geps-and-slsr.ll. |
| addPass(createStraightLineStrengthReducePass()); |
| // SeparateConstOffsetFromGEP and SLSR creates common expressions which GVN or |
| // EarlyCSE can reuse. |
| addEarlyCSEOrGVNPass(); |
| // Run NaryReassociate after EarlyCSE/GVN to be more effective. |
| addPass(createNaryReassociatePass()); |
| // NaryReassociate on GEPs creates redundant common expressions, so run |
| // EarlyCSE after it. |
| addPass(createEarlyCSEPass()); |
| } |
| |
| void AMDGPUPassConfig::addIRPasses() { |
| const AMDGPUTargetMachine &TM = getAMDGPUTargetMachine(); |
| |
| // There is no reason to run these. |
| disablePass(&StackMapLivenessID); |
| disablePass(&FuncletLayoutID); |
| disablePass(&PatchableFunctionID); |
| |
| addPass(createAMDGPULowerIntrinsicsPass()); |
| |
| // Function calls are not supported, so make sure we inline everything. |
| addPass(createAMDGPUAlwaysInlinePass()); |
| addPass(createAlwaysInlinerLegacyPass()); |
| // We need to add the barrier noop pass, otherwise adding the function |
| // inlining pass will cause all of the PassConfigs passes to be run |
| // one function at a time, which means if we have a nodule with two |
| // functions, then we will generate code for the first function |
| // without ever running any passes on the second. |
| addPass(createBarrierNoopPass()); |
| |
| if (TM.getTargetTriple().getArch() == Triple::amdgcn) { |
| // TODO: May want to move later or split into an early and late one. |
| |
| addPass(createAMDGPUCodeGenPreparePass()); |
| } |
| |
| // Handle uses of OpenCL image2d_t, image3d_t and sampler_t arguments. |
| addPass(createAMDGPUOpenCLImageTypeLoweringPass()); |
| |
| if (TM.getOptLevel() > CodeGenOpt::None) { |
| addPass(createInferAddressSpacesPass()); |
| addPass(createAMDGPUPromoteAlloca()); |
| |
| if (EnableSROA) |
| addPass(createSROAPass()); |
| |
| addStraightLineScalarOptimizationPasses(); |
| |
| if (EnableAMDGPUAliasAnalysis) { |
| addPass(createAMDGPUAAWrapperPass()); |
| addPass(createExternalAAWrapperPass([](Pass &P, Function &, |
| AAResults &AAR) { |
| if (auto *WrapperPass = P.getAnalysisIfAvailable<AMDGPUAAWrapperPass>()) |
| AAR.addAAResult(WrapperPass->getResult()); |
| })); |
| } |
| } |
| |
| TargetPassConfig::addIRPasses(); |
| |
| // EarlyCSE is not always strong enough to clean up what LSR produces. For |
| // example, GVN can combine |
| // |
| // %0 = add %a, %b |
| // %1 = add %b, %a |
| // |
| // and |
| // |
| // %0 = shl nsw %a, 2 |
| // %1 = shl %a, 2 |
| // |
| // but EarlyCSE can do neither of them. |
| if (getOptLevel() != CodeGenOpt::None) |
| addEarlyCSEOrGVNPass(); |
| } |
| |
| void AMDGPUPassConfig::addCodeGenPrepare() { |
| TargetPassConfig::addCodeGenPrepare(); |
| |
| if (EnableLoadStoreVectorizer) |
| addPass(createLoadStoreVectorizerPass()); |
| } |
| |
| bool AMDGPUPassConfig::addPreISel() { |
| addPass(createFlattenCFGPass()); |
| return false; |
| } |
| |
| bool AMDGPUPassConfig::addInstSelector() { |
| addPass(createAMDGPUISelDag(getAMDGPUTargetMachine(), getOptLevel())); |
| return false; |
| } |
| |
| bool AMDGPUPassConfig::addGCPasses() { |
| // Do nothing. GC is not supported. |
| return false; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // R600 Pass Setup |
| //===----------------------------------------------------------------------===// |
| |
| bool R600PassConfig::addPreISel() { |
| AMDGPUPassConfig::addPreISel(); |
| |
| if (EnableR600StructurizeCFG) |
| addPass(createStructurizeCFGPass()); |
| return false; |
| } |
| |
| void R600PassConfig::addPreRegAlloc() { |
| addPass(createR600VectorRegMerger()); |
| } |
| |
| void R600PassConfig::addPreSched2() { |
| addPass(createR600EmitClauseMarkers(), false); |
| if (EnableR600IfConvert) |
| addPass(&IfConverterID, false); |
| addPass(createR600ClauseMergePass(), false); |
| } |
| |
| void R600PassConfig::addPreEmitPass() { |
| addPass(createAMDGPUCFGStructurizerPass(), false); |
| addPass(createR600ExpandSpecialInstrsPass(), false); |
| addPass(&FinalizeMachineBundlesID, false); |
| addPass(createR600Packetizer(), false); |
| addPass(createR600ControlFlowFinalizer(), false); |
| } |
| |
| TargetPassConfig *R600TargetMachine::createPassConfig(PassManagerBase &PM) { |
| return new R600PassConfig(this, PM); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // GCN Pass Setup |
| //===----------------------------------------------------------------------===// |
| |
| ScheduleDAGInstrs *GCNPassConfig::createMachineScheduler( |
| MachineSchedContext *C) const { |
| const SISubtarget &ST = C->MF->getSubtarget<SISubtarget>(); |
| if (ST.enableSIScheduler()) |
| return createSIMachineScheduler(C); |
| return createGCNMaxOccupancyMachineScheduler(C); |
| } |
| |
| bool GCNPassConfig::addPreISel() { |
| AMDGPUPassConfig::addPreISel(); |
| |
| // FIXME: We need to run a pass to propagate the attributes when calls are |
| // supported. |
| addPass(createAMDGPUAnnotateKernelFeaturesPass()); |
| |
| // Merge divergent exit nodes. StructurizeCFG won't recognize the multi-exit |
| // regions formed by them. |
| addPass(&AMDGPUUnifyDivergentExitNodesID); |
| if (!LateCFGStructurize) { |
| addPass(createStructurizeCFGPass(true)); // true -> SkipUniformRegions |
| } |
| addPass(createSinkingPass()); |
| addPass(createSITypeRewriter()); |
| addPass(createAMDGPUAnnotateUniformValues()); |
| if (!LateCFGStructurize) { |
| addPass(createSIAnnotateControlFlowPass()); |
| } |
| |
| return false; |
| } |
| |
| void GCNPassConfig::addMachineSSAOptimization() { |
| TargetPassConfig::addMachineSSAOptimization(); |
| |
| // We want to fold operands after PeepholeOptimizer has run (or as part of |
| // it), because it will eliminate extra copies making it easier to fold the |
| // real source operand. We want to eliminate dead instructions after, so that |
| // we see fewer uses of the copies. We then need to clean up the dead |
| // instructions leftover after the operands are folded as well. |
| // |
| // XXX - Can we get away without running DeadMachineInstructionElim again? |
| addPass(&SIFoldOperandsID); |
| addPass(&DeadMachineInstructionElimID); |
| addPass(&SILoadStoreOptimizerID); |
| addPass(createSIShrinkInstructionsPass()); |
| if (EnableSDWAPeephole) { |
| addPass(&SIPeepholeSDWAID); |
| addPass(&DeadMachineInstructionElimID); |
| } |
| } |
| |
| bool GCNPassConfig::addILPOpts() { |
| if (EnableEarlyIfConversion) |
| addPass(&EarlyIfConverterID); |
| |
| TargetPassConfig::addILPOpts(); |
| return false; |
| } |
| |
| bool GCNPassConfig::addInstSelector() { |
| AMDGPUPassConfig::addInstSelector(); |
| addPass(createSILowerI1CopiesPass()); |
| addPass(&SIFixSGPRCopiesID); |
| return false; |
| } |
| |
| #ifdef LLVM_BUILD_GLOBAL_ISEL |
| bool GCNPassConfig::addIRTranslator() { |
| addPass(new IRTranslator()); |
| return false; |
| } |
| |
| bool GCNPassConfig::addLegalizeMachineIR() { |
| addPass(new Legalizer()); |
| return false; |
| } |
| |
| bool GCNPassConfig::addRegBankSelect() { |
| addPass(new RegBankSelect()); |
| return false; |
| } |
| |
| bool GCNPassConfig::addGlobalInstructionSelect() { |
| addPass(new InstructionSelect()); |
| return false; |
| } |
| |
| #endif |
| |
| void GCNPassConfig::addPreRegAlloc() { |
| if (LateCFGStructurize) { |
| addPass(createAMDGPUMachineCFGStructurizerPass()); |
| } |
| addPass(createSIWholeQuadModePass()); |
| } |
| |
| void GCNPassConfig::addFastRegAlloc(FunctionPass *RegAllocPass) { |
| // FIXME: We have to disable the verifier here because of PHIElimination + |
| // TwoAddressInstructions disabling it. |
| |
| // This must be run immediately after phi elimination and before |
| // TwoAddressInstructions, otherwise the processing of the tied operand of |
| // SI_ELSE will introduce a copy of the tied operand source after the else. |
| insertPass(&PHIEliminationID, &SILowerControlFlowID, false); |
| |
| TargetPassConfig::addFastRegAlloc(RegAllocPass); |
| } |
| |
| void GCNPassConfig::addOptimizedRegAlloc(FunctionPass *RegAllocPass) { |
| // This needs to be run directly before register allocation because earlier |
| // passes might recompute live intervals. |
| insertPass(&MachineSchedulerID, &SIFixControlFlowLiveIntervalsID); |
| |
| // This must be run immediately after phi elimination and before |
| // TwoAddressInstructions, otherwise the processing of the tied operand of |
| // SI_ELSE will introduce a copy of the tied operand source after the else. |
| insertPass(&PHIEliminationID, &SILowerControlFlowID, false); |
| |
| TargetPassConfig::addOptimizedRegAlloc(RegAllocPass); |
| } |
| |
| void GCNPassConfig::addPostRegAlloc() { |
| addPass(&SIFixVGPRCopiesID); |
| addPass(&SIOptimizeExecMaskingID); |
| TargetPassConfig::addPostRegAlloc(); |
| } |
| |
| void GCNPassConfig::addPreSched2() { |
| } |
| |
| void GCNPassConfig::addPreEmitPass() { |
| // The hazard recognizer that runs as part of the post-ra scheduler does not |
| // guarantee to be able handle all hazards correctly. This is because if there |
| // are multiple scheduling regions in a basic block, the regions are scheduled |
| // bottom up, so when we begin to schedule a region we don't know what |
| // instructions were emitted directly before it. |
| // |
| // Here we add a stand-alone hazard recognizer pass which can handle all |
| // cases. |
| addPass(&PostRAHazardRecognizerID); |
| |
| if (EnableSIInsertWaitcntsPass) |
| addPass(createSIInsertWaitcntsPass()); |
| else |
| addPass(createSIInsertWaitsPass()); |
| addPass(createSIShrinkInstructionsPass()); |
| addPass(&SIInsertSkipsPassID); |
| addPass(createSIDebuggerInsertNopsPass()); |
| addPass(&BranchRelaxationPassID); |
| } |
| |
| TargetPassConfig *GCNTargetMachine::createPassConfig(PassManagerBase &PM) { |
| return new GCNPassConfig(this, PM); |
| } |
| |