| //===- ValueEnumerator.cpp - Number values and types for bitcode writer ---===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the ValueEnumerator class. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "ValueEnumerator.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/IR/Argument.h" |
| #include "llvm/IR/Attributes.h" |
| #include "llvm/IR/BasicBlock.h" |
| #include "llvm/IR/Constant.h" |
| #include "llvm/IR/DebugInfoMetadata.h" |
| #include "llvm/IR/DerivedTypes.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/GlobalAlias.h" |
| #include "llvm/IR/GlobalIFunc.h" |
| #include "llvm/IR/GlobalObject.h" |
| #include "llvm/IR/GlobalValue.h" |
| #include "llvm/IR/GlobalVariable.h" |
| #include "llvm/IR/Instruction.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/Metadata.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/IR/Type.h" |
| #include "llvm/IR/Use.h" |
| #include "llvm/IR/UseListOrder.h" |
| #include "llvm/IR/User.h" |
| #include "llvm/IR/Value.h" |
| #include "llvm/IR/ValueSymbolTable.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/Compiler.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include <algorithm> |
| #include <cassert> |
| #include <cstddef> |
| #include <iterator> |
| #include <tuple> |
| #include <utility> |
| #include <vector> |
| |
| using namespace llvm; |
| |
| namespace { |
| |
| struct OrderMap { |
| DenseMap<const Value *, std::pair<unsigned, bool>> IDs; |
| unsigned LastGlobalConstantID = 0; |
| unsigned LastGlobalValueID = 0; |
| |
| OrderMap() = default; |
| |
| bool isGlobalConstant(unsigned ID) const { |
| return ID <= LastGlobalConstantID; |
| } |
| |
| bool isGlobalValue(unsigned ID) const { |
| return ID <= LastGlobalValueID && !isGlobalConstant(ID); |
| } |
| |
| unsigned size() const { return IDs.size(); } |
| std::pair<unsigned, bool> &operator[](const Value *V) { return IDs[V]; } |
| |
| std::pair<unsigned, bool> lookup(const Value *V) const { |
| return IDs.lookup(V); |
| } |
| |
| void index(const Value *V) { |
| // Explicitly sequence get-size and insert-value operations to avoid UB. |
| unsigned ID = IDs.size() + 1; |
| IDs[V].first = ID; |
| } |
| }; |
| |
| } // end anonymous namespace |
| |
| static void orderValue(const Value *V, OrderMap &OM) { |
| if (OM.lookup(V).first) |
| return; |
| |
| if (const Constant *C = dyn_cast<Constant>(V)) |
| if (C->getNumOperands() && !isa<GlobalValue>(C)) |
| for (const Value *Op : C->operands()) |
| if (!isa<BasicBlock>(Op) && !isa<GlobalValue>(Op)) |
| orderValue(Op, OM); |
| |
| // Note: we cannot cache this lookup above, since inserting into the map |
| // changes the map's size, and thus affects the other IDs. |
| OM.index(V); |
| } |
| |
| static OrderMap orderModule(const Module &M) { |
| // This needs to match the order used by ValueEnumerator::ValueEnumerator() |
| // and ValueEnumerator::incorporateFunction(). |
| OrderMap OM; |
| |
| // In the reader, initializers of GlobalValues are set *after* all the |
| // globals have been read. Rather than awkwardly modeling this behaviour |
| // directly in predictValueUseListOrderImpl(), just assign IDs to |
| // initializers of GlobalValues before GlobalValues themselves to model this |
| // implicitly. |
| for (const GlobalVariable &G : M.globals()) |
| if (G.hasInitializer()) |
| if (!isa<GlobalValue>(G.getInitializer())) |
| orderValue(G.getInitializer(), OM); |
| for (const GlobalAlias &A : M.aliases()) |
| if (!isa<GlobalValue>(A.getAliasee())) |
| orderValue(A.getAliasee(), OM); |
| for (const GlobalIFunc &I : M.ifuncs()) |
| if (!isa<GlobalValue>(I.getResolver())) |
| orderValue(I.getResolver(), OM); |
| for (const Function &F : M) { |
| for (const Use &U : F.operands()) |
| if (!isa<GlobalValue>(U.get())) |
| orderValue(U.get(), OM); |
| } |
| OM.LastGlobalConstantID = OM.size(); |
| |
| // Initializers of GlobalValues are processed in |
| // BitcodeReader::ResolveGlobalAndAliasInits(). Match the order there rather |
| // than ValueEnumerator, and match the code in predictValueUseListOrderImpl() |
| // by giving IDs in reverse order. |
| // |
| // Since GlobalValues never reference each other directly (just through |
| // initializers), their relative IDs only matter for determining order of |
| // uses in their initializers. |
| for (const Function &F : M) |
| orderValue(&F, OM); |
| for (const GlobalAlias &A : M.aliases()) |
| orderValue(&A, OM); |
| for (const GlobalIFunc &I : M.ifuncs()) |
| orderValue(&I, OM); |
| for (const GlobalVariable &G : M.globals()) |
| orderValue(&G, OM); |
| OM.LastGlobalValueID = OM.size(); |
| |
| for (const Function &F : M) { |
| if (F.isDeclaration()) |
| continue; |
| // Here we need to match the union of ValueEnumerator::incorporateFunction() |
| // and WriteFunction(). Basic blocks are implicitly declared before |
| // anything else (by declaring their size). |
| for (const BasicBlock &BB : F) |
| orderValue(&BB, OM); |
| for (const Argument &A : F.args()) |
| orderValue(&A, OM); |
| for (const BasicBlock &BB : F) |
| for (const Instruction &I : BB) |
| for (const Value *Op : I.operands()) |
| if ((isa<Constant>(*Op) && !isa<GlobalValue>(*Op)) || |
| isa<InlineAsm>(*Op)) |
| orderValue(Op, OM); |
| for (const BasicBlock &BB : F) |
| for (const Instruction &I : BB) |
| orderValue(&I, OM); |
| } |
| return OM; |
| } |
| |
| static void predictValueUseListOrderImpl(const Value *V, const Function *F, |
| unsigned ID, const OrderMap &OM, |
| UseListOrderStack &Stack) { |
| // Predict use-list order for this one. |
| using Entry = std::pair<const Use *, unsigned>; |
| SmallVector<Entry, 64> List; |
| for (const Use &U : V->uses()) |
| // Check if this user will be serialized. |
| if (OM.lookup(U.getUser()).first) |
| List.push_back(std::make_pair(&U, List.size())); |
| |
| if (List.size() < 2) |
| // We may have lost some users. |
| return; |
| |
| bool IsGlobalValue = OM.isGlobalValue(ID); |
| llvm::sort(List.begin(), List.end(), [&](const Entry &L, const Entry &R) { |
| const Use *LU = L.first; |
| const Use *RU = R.first; |
| if (LU == RU) |
| return false; |
| |
| auto LID = OM.lookup(LU->getUser()).first; |
| auto RID = OM.lookup(RU->getUser()).first; |
| |
| // Global values are processed in reverse order. |
| // |
| // Moreover, initializers of GlobalValues are set *after* all the globals |
| // have been read (despite having earlier IDs). Rather than awkwardly |
| // modeling this behaviour here, orderModule() has assigned IDs to |
| // initializers of GlobalValues before GlobalValues themselves. |
| if (OM.isGlobalValue(LID) && OM.isGlobalValue(RID)) |
| return LID < RID; |
| |
| // If ID is 4, then expect: 7 6 5 1 2 3. |
| if (LID < RID) { |
| if (RID <= ID) |
| if (!IsGlobalValue) // GlobalValue uses don't get reversed. |
| return true; |
| return false; |
| } |
| if (RID < LID) { |
| if (LID <= ID) |
| if (!IsGlobalValue) // GlobalValue uses don't get reversed. |
| return false; |
| return true; |
| } |
| |
| // LID and RID are equal, so we have different operands of the same user. |
| // Assume operands are added in order for all instructions. |
| if (LID <= ID) |
| if (!IsGlobalValue) // GlobalValue uses don't get reversed. |
| return LU->getOperandNo() < RU->getOperandNo(); |
| return LU->getOperandNo() > RU->getOperandNo(); |
| }); |
| |
| if (std::is_sorted( |
| List.begin(), List.end(), |
| [](const Entry &L, const Entry &R) { return L.second < R.second; })) |
| // Order is already correct. |
| return; |
| |
| // Store the shuffle. |
| Stack.emplace_back(V, F, List.size()); |
| assert(List.size() == Stack.back().Shuffle.size() && "Wrong size"); |
| for (size_t I = 0, E = List.size(); I != E; ++I) |
| Stack.back().Shuffle[I] = List[I].second; |
| } |
| |
| static void predictValueUseListOrder(const Value *V, const Function *F, |
| OrderMap &OM, UseListOrderStack &Stack) { |
| auto &IDPair = OM[V]; |
| assert(IDPair.first && "Unmapped value"); |
| if (IDPair.second) |
| // Already predicted. |
| return; |
| |
| // Do the actual prediction. |
| IDPair.second = true; |
| if (!V->use_empty() && std::next(V->use_begin()) != V->use_end()) |
| predictValueUseListOrderImpl(V, F, IDPair.first, OM, Stack); |
| |
| // Recursive descent into constants. |
| if (const Constant *C = dyn_cast<Constant>(V)) |
| if (C->getNumOperands()) // Visit GlobalValues. |
| for (const Value *Op : C->operands()) |
| if (isa<Constant>(Op)) // Visit GlobalValues. |
| predictValueUseListOrder(Op, F, OM, Stack); |
| } |
| |
| static UseListOrderStack predictUseListOrder(const Module &M) { |
| OrderMap OM = orderModule(M); |
| |
| // Use-list orders need to be serialized after all the users have been added |
| // to a value, or else the shuffles will be incomplete. Store them per |
| // function in a stack. |
| // |
| // Aside from function order, the order of values doesn't matter much here. |
| UseListOrderStack Stack; |
| |
| // We want to visit the functions backward now so we can list function-local |
| // constants in the last Function they're used in. Module-level constants |
| // have already been visited above. |
| for (auto I = M.rbegin(), E = M.rend(); I != E; ++I) { |
| const Function &F = *I; |
| if (F.isDeclaration()) |
| continue; |
| for (const BasicBlock &BB : F) |
| predictValueUseListOrder(&BB, &F, OM, Stack); |
| for (const Argument &A : F.args()) |
| predictValueUseListOrder(&A, &F, OM, Stack); |
| for (const BasicBlock &BB : F) |
| for (const Instruction &I : BB) |
| for (const Value *Op : I.operands()) |
| if (isa<Constant>(*Op) || isa<InlineAsm>(*Op)) // Visit GlobalValues. |
| predictValueUseListOrder(Op, &F, OM, Stack); |
| for (const BasicBlock &BB : F) |
| for (const Instruction &I : BB) |
| predictValueUseListOrder(&I, &F, OM, Stack); |
| } |
| |
| // Visit globals last, since the module-level use-list block will be seen |
| // before the function bodies are processed. |
| for (const GlobalVariable &G : M.globals()) |
| predictValueUseListOrder(&G, nullptr, OM, Stack); |
| for (const Function &F : M) |
| predictValueUseListOrder(&F, nullptr, OM, Stack); |
| for (const GlobalAlias &A : M.aliases()) |
| predictValueUseListOrder(&A, nullptr, OM, Stack); |
| for (const GlobalIFunc &I : M.ifuncs()) |
| predictValueUseListOrder(&I, nullptr, OM, Stack); |
| for (const GlobalVariable &G : M.globals()) |
| if (G.hasInitializer()) |
| predictValueUseListOrder(G.getInitializer(), nullptr, OM, Stack); |
| for (const GlobalAlias &A : M.aliases()) |
| predictValueUseListOrder(A.getAliasee(), nullptr, OM, Stack); |
| for (const GlobalIFunc &I : M.ifuncs()) |
| predictValueUseListOrder(I.getResolver(), nullptr, OM, Stack); |
| for (const Function &F : M) { |
| for (const Use &U : F.operands()) |
| predictValueUseListOrder(U.get(), nullptr, OM, Stack); |
| } |
| |
| return Stack; |
| } |
| |
| static bool isIntOrIntVectorValue(const std::pair<const Value*, unsigned> &V) { |
| return V.first->getType()->isIntOrIntVectorTy(); |
| } |
| |
| ValueEnumerator::ValueEnumerator(const Module &M, |
| bool ShouldPreserveUseListOrder) |
| : ShouldPreserveUseListOrder(ShouldPreserveUseListOrder) { |
| if (ShouldPreserveUseListOrder) |
| UseListOrders = predictUseListOrder(M); |
| |
| // Enumerate the global variables. |
| for (const GlobalVariable &GV : M.globals()) |
| EnumerateValue(&GV); |
| |
| // Enumerate the functions. |
| for (const Function & F : M) { |
| EnumerateValue(&F); |
| EnumerateAttributes(F.getAttributes()); |
| } |
| |
| // Enumerate the aliases. |
| for (const GlobalAlias &GA : M.aliases()) |
| EnumerateValue(&GA); |
| |
| // Enumerate the ifuncs. |
| for (const GlobalIFunc &GIF : M.ifuncs()) |
| EnumerateValue(&GIF); |
| |
| // Remember what is the cutoff between globalvalue's and other constants. |
| unsigned FirstConstant = Values.size(); |
| |
| // Enumerate the global variable initializers and attributes. |
| for (const GlobalVariable &GV : M.globals()) { |
| if (GV.hasInitializer()) |
| EnumerateValue(GV.getInitializer()); |
| if (GV.hasAttributes()) |
| EnumerateAttributes(GV.getAttributesAsList(AttributeList::FunctionIndex)); |
| } |
| |
| // Enumerate the aliasees. |
| for (const GlobalAlias &GA : M.aliases()) |
| EnumerateValue(GA.getAliasee()); |
| |
| // Enumerate the ifunc resolvers. |
| for (const GlobalIFunc &GIF : M.ifuncs()) |
| EnumerateValue(GIF.getResolver()); |
| |
| // Enumerate any optional Function data. |
| for (const Function &F : M) |
| for (const Use &U : F.operands()) |
| EnumerateValue(U.get()); |
| |
| // Enumerate the metadata type. |
| // |
| // TODO: Move this to ValueEnumerator::EnumerateOperandType() once bitcode |
| // only encodes the metadata type when it's used as a value. |
| EnumerateType(Type::getMetadataTy(M.getContext())); |
| |
| // Insert constants and metadata that are named at module level into the slot |
| // pool so that the module symbol table can refer to them... |
| EnumerateValueSymbolTable(M.getValueSymbolTable()); |
| EnumerateNamedMetadata(M); |
| |
| SmallVector<std::pair<unsigned, MDNode *>, 8> MDs; |
| for (const GlobalVariable &GV : M.globals()) { |
| MDs.clear(); |
| GV.getAllMetadata(MDs); |
| for (const auto &I : MDs) |
| // FIXME: Pass GV to EnumerateMetadata and arrange for the bitcode writer |
| // to write metadata to the global variable's own metadata block |
| // (PR28134). |
| EnumerateMetadata(nullptr, I.second); |
| } |
| |
| // Enumerate types used by function bodies and argument lists. |
| for (const Function &F : M) { |
| for (const Argument &A : F.args()) |
| EnumerateType(A.getType()); |
| |
| // Enumerate metadata attached to this function. |
| MDs.clear(); |
| F.getAllMetadata(MDs); |
| for (const auto &I : MDs) |
| EnumerateMetadata(F.isDeclaration() ? nullptr : &F, I.second); |
| |
| for (const BasicBlock &BB : F) |
| for (const Instruction &I : BB) { |
| for (const Use &Op : I.operands()) { |
| auto *MD = dyn_cast<MetadataAsValue>(&Op); |
| if (!MD) { |
| EnumerateOperandType(Op); |
| continue; |
| } |
| |
| // Local metadata is enumerated during function-incorporation. |
| if (isa<LocalAsMetadata>(MD->getMetadata())) |
| continue; |
| |
| EnumerateMetadata(&F, MD->getMetadata()); |
| } |
| EnumerateType(I.getType()); |
| if (const CallInst *CI = dyn_cast<CallInst>(&I)) |
| EnumerateAttributes(CI->getAttributes()); |
| else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) |
| EnumerateAttributes(II->getAttributes()); |
| |
| // Enumerate metadata attached with this instruction. |
| MDs.clear(); |
| I.getAllMetadataOtherThanDebugLoc(MDs); |
| for (unsigned i = 0, e = MDs.size(); i != e; ++i) |
| EnumerateMetadata(&F, MDs[i].second); |
| |
| // Don't enumerate the location directly -- it has a special record |
| // type -- but enumerate its operands. |
| if (DILocation *L = I.getDebugLoc()) |
| for (const Metadata *Op : L->operands()) |
| EnumerateMetadata(&F, Op); |
| } |
| } |
| |
| // Optimize constant ordering. |
| OptimizeConstants(FirstConstant, Values.size()); |
| |
| // Organize metadata ordering. |
| organizeMetadata(); |
| } |
| |
| unsigned ValueEnumerator::getInstructionID(const Instruction *Inst) const { |
| InstructionMapType::const_iterator I = InstructionMap.find(Inst); |
| assert(I != InstructionMap.end() && "Instruction is not mapped!"); |
| return I->second; |
| } |
| |
| unsigned ValueEnumerator::getComdatID(const Comdat *C) const { |
| unsigned ComdatID = Comdats.idFor(C); |
| assert(ComdatID && "Comdat not found!"); |
| return ComdatID; |
| } |
| |
| void ValueEnumerator::setInstructionID(const Instruction *I) { |
| InstructionMap[I] = InstructionCount++; |
| } |
| |
| unsigned ValueEnumerator::getValueID(const Value *V) const { |
| if (auto *MD = dyn_cast<MetadataAsValue>(V)) |
| return getMetadataID(MD->getMetadata()); |
| |
| ValueMapType::const_iterator I = ValueMap.find(V); |
| assert(I != ValueMap.end() && "Value not in slotcalculator!"); |
| return I->second-1; |
| } |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| LLVM_DUMP_METHOD void ValueEnumerator::dump() const { |
| print(dbgs(), ValueMap, "Default"); |
| dbgs() << '\n'; |
| print(dbgs(), MetadataMap, "MetaData"); |
| dbgs() << '\n'; |
| } |
| #endif |
| |
| void ValueEnumerator::print(raw_ostream &OS, const ValueMapType &Map, |
| const char *Name) const { |
| OS << "Map Name: " << Name << "\n"; |
| OS << "Size: " << Map.size() << "\n"; |
| for (ValueMapType::const_iterator I = Map.begin(), |
| E = Map.end(); I != E; ++I) { |
| const Value *V = I->first; |
| if (V->hasName()) |
| OS << "Value: " << V->getName(); |
| else |
| OS << "Value: [null]\n"; |
| V->print(errs()); |
| errs() << '\n'; |
| |
| OS << " Uses(" << std::distance(V->use_begin(),V->use_end()) << "):"; |
| for (const Use &U : V->uses()) { |
| if (&U != &*V->use_begin()) |
| OS << ","; |
| if(U->hasName()) |
| OS << " " << U->getName(); |
| else |
| OS << " [null]"; |
| |
| } |
| OS << "\n\n"; |
| } |
| } |
| |
| void ValueEnumerator::print(raw_ostream &OS, const MetadataMapType &Map, |
| const char *Name) const { |
| OS << "Map Name: " << Name << "\n"; |
| OS << "Size: " << Map.size() << "\n"; |
| for (auto I = Map.begin(), E = Map.end(); I != E; ++I) { |
| const Metadata *MD = I->first; |
| OS << "Metadata: slot = " << I->second.ID << "\n"; |
| OS << "Metadata: function = " << I->second.F << "\n"; |
| MD->print(OS); |
| OS << "\n"; |
| } |
| } |
| |
| /// OptimizeConstants - Reorder constant pool for denser encoding. |
| void ValueEnumerator::OptimizeConstants(unsigned CstStart, unsigned CstEnd) { |
| if (CstStart == CstEnd || CstStart+1 == CstEnd) return; |
| |
| if (ShouldPreserveUseListOrder) |
| // Optimizing constants makes the use-list order difficult to predict. |
| // Disable it for now when trying to preserve the order. |
| return; |
| |
| std::stable_sort(Values.begin() + CstStart, Values.begin() + CstEnd, |
| [this](const std::pair<const Value *, unsigned> &LHS, |
| const std::pair<const Value *, unsigned> &RHS) { |
| // Sort by plane. |
| if (LHS.first->getType() != RHS.first->getType()) |
| return getTypeID(LHS.first->getType()) < getTypeID(RHS.first->getType()); |
| // Then by frequency. |
| return LHS.second > RHS.second; |
| }); |
| |
| // Ensure that integer and vector of integer constants are at the start of the |
| // constant pool. This is important so that GEP structure indices come before |
| // gep constant exprs. |
| std::stable_partition(Values.begin() + CstStart, Values.begin() + CstEnd, |
| isIntOrIntVectorValue); |
| |
| // Rebuild the modified portion of ValueMap. |
| for (; CstStart != CstEnd; ++CstStart) |
| ValueMap[Values[CstStart].first] = CstStart+1; |
| } |
| |
| /// EnumerateValueSymbolTable - Insert all of the values in the specified symbol |
| /// table into the values table. |
| void ValueEnumerator::EnumerateValueSymbolTable(const ValueSymbolTable &VST) { |
| for (ValueSymbolTable::const_iterator VI = VST.begin(), VE = VST.end(); |
| VI != VE; ++VI) |
| EnumerateValue(VI->getValue()); |
| } |
| |
| /// Insert all of the values referenced by named metadata in the specified |
| /// module. |
| void ValueEnumerator::EnumerateNamedMetadata(const Module &M) { |
| for (const auto &I : M.named_metadata()) |
| EnumerateNamedMDNode(&I); |
| } |
| |
| void ValueEnumerator::EnumerateNamedMDNode(const NamedMDNode *MD) { |
| for (unsigned i = 0, e = MD->getNumOperands(); i != e; ++i) |
| EnumerateMetadata(nullptr, MD->getOperand(i)); |
| } |
| |
| unsigned ValueEnumerator::getMetadataFunctionID(const Function *F) const { |
| return F ? getValueID(F) + 1 : 0; |
| } |
| |
| void ValueEnumerator::EnumerateMetadata(const Function *F, const Metadata *MD) { |
| EnumerateMetadata(getMetadataFunctionID(F), MD); |
| } |
| |
| void ValueEnumerator::EnumerateFunctionLocalMetadata( |
| const Function &F, const LocalAsMetadata *Local) { |
| EnumerateFunctionLocalMetadata(getMetadataFunctionID(&F), Local); |
| } |
| |
| void ValueEnumerator::dropFunctionFromMetadata( |
| MetadataMapType::value_type &FirstMD) { |
| SmallVector<const MDNode *, 64> Worklist; |
| auto push = [&Worklist](MetadataMapType::value_type &MD) { |
| auto &Entry = MD.second; |
| |
| // Nothing to do if this metadata isn't tagged. |
| if (!Entry.F) |
| return; |
| |
| // Drop the function tag. |
| Entry.F = 0; |
| |
| // If this is has an ID and is an MDNode, then its operands have entries as |
| // well. We need to drop the function from them too. |
| if (Entry.ID) |
| if (auto *N = dyn_cast<MDNode>(MD.first)) |
| Worklist.push_back(N); |
| }; |
| push(FirstMD); |
| while (!Worklist.empty()) |
| for (const Metadata *Op : Worklist.pop_back_val()->operands()) { |
| if (!Op) |
| continue; |
| auto MD = MetadataMap.find(Op); |
| if (MD != MetadataMap.end()) |
| push(*MD); |
| } |
| } |
| |
| void ValueEnumerator::EnumerateMetadata(unsigned F, const Metadata *MD) { |
| // It's vital for reader efficiency that uniqued subgraphs are done in |
| // post-order; it's expensive when their operands have forward references. |
| // If a distinct node is referenced from a uniqued node, it'll be delayed |
| // until the uniqued subgraph has been completely traversed. |
| SmallVector<const MDNode *, 32> DelayedDistinctNodes; |
| |
| // Start by enumerating MD, and then work through its transitive operands in |
| // post-order. This requires a depth-first search. |
| SmallVector<std::pair<const MDNode *, MDNode::op_iterator>, 32> Worklist; |
| if (const MDNode *N = enumerateMetadataImpl(F, MD)) |
| Worklist.push_back(std::make_pair(N, N->op_begin())); |
| |
| while (!Worklist.empty()) { |
| const MDNode *N = Worklist.back().first; |
| |
| // Enumerate operands until we hit a new node. We need to traverse these |
| // nodes' operands before visiting the rest of N's operands. |
| MDNode::op_iterator I = std::find_if( |
| Worklist.back().second, N->op_end(), |
| [&](const Metadata *MD) { return enumerateMetadataImpl(F, MD); }); |
| if (I != N->op_end()) { |
| auto *Op = cast<MDNode>(*I); |
| Worklist.back().second = ++I; |
| |
| // Delay traversing Op if it's a distinct node and N is uniqued. |
| if (Op->isDistinct() && !N->isDistinct()) |
| DelayedDistinctNodes.push_back(Op); |
| else |
| Worklist.push_back(std::make_pair(Op, Op->op_begin())); |
| continue; |
| } |
| |
| // All the operands have been visited. Now assign an ID. |
| Worklist.pop_back(); |
| MDs.push_back(N); |
| MetadataMap[N].ID = MDs.size(); |
| |
| // Flush out any delayed distinct nodes; these are all the distinct nodes |
| // that are leaves in last uniqued subgraph. |
| if (Worklist.empty() || Worklist.back().first->isDistinct()) { |
| for (const MDNode *N : DelayedDistinctNodes) |
| Worklist.push_back(std::make_pair(N, N->op_begin())); |
| DelayedDistinctNodes.clear(); |
| } |
| } |
| } |
| |
| const MDNode *ValueEnumerator::enumerateMetadataImpl(unsigned F, const Metadata *MD) { |
| if (!MD) |
| return nullptr; |
| |
| assert( |
| (isa<MDNode>(MD) || isa<MDString>(MD) || isa<ConstantAsMetadata>(MD)) && |
| "Invalid metadata kind"); |
| |
| auto Insertion = MetadataMap.insert(std::make_pair(MD, MDIndex(F))); |
| MDIndex &Entry = Insertion.first->second; |
| if (!Insertion.second) { |
| // Already mapped. If F doesn't match the function tag, drop it. |
| if (Entry.hasDifferentFunction(F)) |
| dropFunctionFromMetadata(*Insertion.first); |
| return nullptr; |
| } |
| |
| // Don't assign IDs to metadata nodes. |
| if (auto *N = dyn_cast<MDNode>(MD)) |
| return N; |
| |
| // Save the metadata. |
| MDs.push_back(MD); |
| Entry.ID = MDs.size(); |
| |
| // Enumerate the constant, if any. |
| if (auto *C = dyn_cast<ConstantAsMetadata>(MD)) |
| EnumerateValue(C->getValue()); |
| |
| return nullptr; |
| } |
| |
| /// EnumerateFunctionLocalMetadataa - Incorporate function-local metadata |
| /// information reachable from the metadata. |
| void ValueEnumerator::EnumerateFunctionLocalMetadata( |
| unsigned F, const LocalAsMetadata *Local) { |
| assert(F && "Expected a function"); |
| |
| // Check to see if it's already in! |
| MDIndex &Index = MetadataMap[Local]; |
| if (Index.ID) { |
| assert(Index.F == F && "Expected the same function"); |
| return; |
| } |
| |
| MDs.push_back(Local); |
| Index.F = F; |
| Index.ID = MDs.size(); |
| |
| EnumerateValue(Local->getValue()); |
| } |
| |
| static unsigned getMetadataTypeOrder(const Metadata *MD) { |
| // Strings are emitted in bulk and must come first. |
| if (isa<MDString>(MD)) |
| return 0; |
| |
| // ConstantAsMetadata doesn't reference anything. We may as well shuffle it |
| // to the front since we can detect it. |
| auto *N = dyn_cast<MDNode>(MD); |
| if (!N) |
| return 1; |
| |
| // The reader is fast forward references for distinct node operands, but slow |
| // when uniqued operands are unresolved. |
| return N->isDistinct() ? 2 : 3; |
| } |
| |
| void ValueEnumerator::organizeMetadata() { |
| assert(MetadataMap.size() == MDs.size() && |
| "Metadata map and vector out of sync"); |
| |
| if (MDs.empty()) |
| return; |
| |
| // Copy out the index information from MetadataMap in order to choose a new |
| // order. |
| SmallVector<MDIndex, 64> Order; |
| Order.reserve(MetadataMap.size()); |
| for (const Metadata *MD : MDs) |
| Order.push_back(MetadataMap.lookup(MD)); |
| |
| // Partition: |
| // - by function, then |
| // - by isa<MDString> |
| // and then sort by the original/current ID. Since the IDs are guaranteed to |
| // be unique, the result of std::sort will be deterministic. There's no need |
| // for std::stable_sort. |
| llvm::sort(Order.begin(), Order.end(), [this](MDIndex LHS, MDIndex RHS) { |
| return std::make_tuple(LHS.F, getMetadataTypeOrder(LHS.get(MDs)), LHS.ID) < |
| std::make_tuple(RHS.F, getMetadataTypeOrder(RHS.get(MDs)), RHS.ID); |
| }); |
| |
| // Rebuild MDs, index the metadata ranges for each function in FunctionMDs, |
| // and fix up MetadataMap. |
| std::vector<const Metadata *> OldMDs = std::move(MDs); |
| MDs.reserve(OldMDs.size()); |
| for (unsigned I = 0, E = Order.size(); I != E && !Order[I].F; ++I) { |
| auto *MD = Order[I].get(OldMDs); |
| MDs.push_back(MD); |
| MetadataMap[MD].ID = I + 1; |
| if (isa<MDString>(MD)) |
| ++NumMDStrings; |
| } |
| |
| // Return early if there's nothing for the functions. |
| if (MDs.size() == Order.size()) |
| return; |
| |
| // Build the function metadata ranges. |
| MDRange R; |
| FunctionMDs.reserve(OldMDs.size()); |
| unsigned PrevF = 0; |
| for (unsigned I = MDs.size(), E = Order.size(), ID = MDs.size(); I != E; |
| ++I) { |
| unsigned F = Order[I].F; |
| if (!PrevF) { |
| PrevF = F; |
| } else if (PrevF != F) { |
| R.Last = FunctionMDs.size(); |
| std::swap(R, FunctionMDInfo[PrevF]); |
| R.First = FunctionMDs.size(); |
| |
| ID = MDs.size(); |
| PrevF = F; |
| } |
| |
| auto *MD = Order[I].get(OldMDs); |
| FunctionMDs.push_back(MD); |
| MetadataMap[MD].ID = ++ID; |
| if (isa<MDString>(MD)) |
| ++R.NumStrings; |
| } |
| R.Last = FunctionMDs.size(); |
| FunctionMDInfo[PrevF] = R; |
| } |
| |
| void ValueEnumerator::incorporateFunctionMetadata(const Function &F) { |
| NumModuleMDs = MDs.size(); |
| |
| auto R = FunctionMDInfo.lookup(getValueID(&F) + 1); |
| NumMDStrings = R.NumStrings; |
| MDs.insert(MDs.end(), FunctionMDs.begin() + R.First, |
| FunctionMDs.begin() + R.Last); |
| } |
| |
| void ValueEnumerator::EnumerateValue(const Value *V) { |
| assert(!V->getType()->isVoidTy() && "Can't insert void values!"); |
| assert(!isa<MetadataAsValue>(V) && "EnumerateValue doesn't handle Metadata!"); |
| |
| // Check to see if it's already in! |
| unsigned &ValueID = ValueMap[V]; |
| if (ValueID) { |
| // Increment use count. |
| Values[ValueID-1].second++; |
| return; |
| } |
| |
| if (auto *GO = dyn_cast<GlobalObject>(V)) |
| if (const Comdat *C = GO->getComdat()) |
| Comdats.insert(C); |
| |
| // Enumerate the type of this value. |
| EnumerateType(V->getType()); |
| |
| if (const Constant *C = dyn_cast<Constant>(V)) { |
| if (isa<GlobalValue>(C)) { |
| // Initializers for globals are handled explicitly elsewhere. |
| } else if (C->getNumOperands()) { |
| // If a constant has operands, enumerate them. This makes sure that if a |
| // constant has uses (for example an array of const ints), that they are |
| // inserted also. |
| |
| // We prefer to enumerate them with values before we enumerate the user |
| // itself. This makes it more likely that we can avoid forward references |
| // in the reader. We know that there can be no cycles in the constants |
| // graph that don't go through a global variable. |
| for (User::const_op_iterator I = C->op_begin(), E = C->op_end(); |
| I != E; ++I) |
| if (!isa<BasicBlock>(*I)) // Don't enumerate BB operand to BlockAddress. |
| EnumerateValue(*I); |
| |
| // Finally, add the value. Doing this could make the ValueID reference be |
| // dangling, don't reuse it. |
| Values.push_back(std::make_pair(V, 1U)); |
| ValueMap[V] = Values.size(); |
| return; |
| } |
| } |
| |
| // Add the value. |
| Values.push_back(std::make_pair(V, 1U)); |
| ValueID = Values.size(); |
| } |
| |
| |
| void ValueEnumerator::EnumerateType(Type *Ty) { |
| unsigned *TypeID = &TypeMap[Ty]; |
| |
| // We've already seen this type. |
| if (*TypeID) |
| return; |
| |
| // If it is a non-anonymous struct, mark the type as being visited so that we |
| // don't recursively visit it. This is safe because we allow forward |
| // references of these in the bitcode reader. |
| if (StructType *STy = dyn_cast<StructType>(Ty)) |
| if (!STy->isLiteral()) |
| *TypeID = ~0U; |
| |
| // Enumerate all of the subtypes before we enumerate this type. This ensures |
| // that the type will be enumerated in an order that can be directly built. |
| for (Type *SubTy : Ty->subtypes()) |
| EnumerateType(SubTy); |
| |
| // Refresh the TypeID pointer in case the table rehashed. |
| TypeID = &TypeMap[Ty]; |
| |
| // Check to see if we got the pointer another way. This can happen when |
| // enumerating recursive types that hit the base case deeper than they start. |
| // |
| // If this is actually a struct that we are treating as forward ref'able, |
| // then emit the definition now that all of its contents are available. |
| if (*TypeID && *TypeID != ~0U) |
| return; |
| |
| // Add this type now that its contents are all happily enumerated. |
| Types.push_back(Ty); |
| |
| *TypeID = Types.size(); |
| } |
| |
| // Enumerate the types for the specified value. If the value is a constant, |
| // walk through it, enumerating the types of the constant. |
| void ValueEnumerator::EnumerateOperandType(const Value *V) { |
| EnumerateType(V->getType()); |
| |
| assert(!isa<MetadataAsValue>(V) && "Unexpected metadata operand"); |
| |
| const Constant *C = dyn_cast<Constant>(V); |
| if (!C) |
| return; |
| |
| // If this constant is already enumerated, ignore it, we know its type must |
| // be enumerated. |
| if (ValueMap.count(C)) |
| return; |
| |
| // This constant may have operands, make sure to enumerate the types in |
| // them. |
| for (const Value *Op : C->operands()) { |
| // Don't enumerate basic blocks here, this happens as operands to |
| // blockaddress. |
| if (isa<BasicBlock>(Op)) |
| continue; |
| |
| EnumerateOperandType(Op); |
| } |
| } |
| |
| void ValueEnumerator::EnumerateAttributes(AttributeList PAL) { |
| if (PAL.isEmpty()) return; // null is always 0. |
| |
| // Do a lookup. |
| unsigned &Entry = AttributeListMap[PAL]; |
| if (Entry == 0) { |
| // Never saw this before, add it. |
| AttributeLists.push_back(PAL); |
| Entry = AttributeLists.size(); |
| } |
| |
| // Do lookups for all attribute groups. |
| for (unsigned i = PAL.index_begin(), e = PAL.index_end(); i != e; ++i) { |
| AttributeSet AS = PAL.getAttributes(i); |
| if (!AS.hasAttributes()) |
| continue; |
| IndexAndAttrSet Pair = {i, AS}; |
| unsigned &Entry = AttributeGroupMap[Pair]; |
| if (Entry == 0) { |
| AttributeGroups.push_back(Pair); |
| Entry = AttributeGroups.size(); |
| } |
| } |
| } |
| |
| void ValueEnumerator::incorporateFunction(const Function &F) { |
| InstructionCount = 0; |
| NumModuleValues = Values.size(); |
| |
| // Add global metadata to the function block. This doesn't include |
| // LocalAsMetadata. |
| incorporateFunctionMetadata(F); |
| |
| // Adding function arguments to the value table. |
| for (const auto &I : F.args()) |
| EnumerateValue(&I); |
| |
| FirstFuncConstantID = Values.size(); |
| |
| // Add all function-level constants to the value table. |
| for (const BasicBlock &BB : F) { |
| for (const Instruction &I : BB) |
| for (const Use &OI : I.operands()) { |
| if ((isa<Constant>(OI) && !isa<GlobalValue>(OI)) || isa<InlineAsm>(OI)) |
| EnumerateValue(OI); |
| } |
| BasicBlocks.push_back(&BB); |
| ValueMap[&BB] = BasicBlocks.size(); |
| } |
| |
| // Optimize the constant layout. |
| OptimizeConstants(FirstFuncConstantID, Values.size()); |
| |
| // Add the function's parameter attributes so they are available for use in |
| // the function's instruction. |
| EnumerateAttributes(F.getAttributes()); |
| |
| FirstInstID = Values.size(); |
| |
| SmallVector<LocalAsMetadata *, 8> FnLocalMDVector; |
| // Add all of the instructions. |
| for (const BasicBlock &BB : F) { |
| for (const Instruction &I : BB) { |
| for (const Use &OI : I.operands()) { |
| if (auto *MD = dyn_cast<MetadataAsValue>(&OI)) |
| if (auto *Local = dyn_cast<LocalAsMetadata>(MD->getMetadata())) |
| // Enumerate metadata after the instructions they might refer to. |
| FnLocalMDVector.push_back(Local); |
| } |
| |
| if (!I.getType()->isVoidTy()) |
| EnumerateValue(&I); |
| } |
| } |
| |
| // Add all of the function-local metadata. |
| for (unsigned i = 0, e = FnLocalMDVector.size(); i != e; ++i) { |
| // At this point, every local values have been incorporated, we shouldn't |
| // have a metadata operand that references a value that hasn't been seen. |
| assert(ValueMap.count(FnLocalMDVector[i]->getValue()) && |
| "Missing value for metadata operand"); |
| EnumerateFunctionLocalMetadata(F, FnLocalMDVector[i]); |
| } |
| } |
| |
| void ValueEnumerator::purgeFunction() { |
| /// Remove purged values from the ValueMap. |
| for (unsigned i = NumModuleValues, e = Values.size(); i != e; ++i) |
| ValueMap.erase(Values[i].first); |
| for (unsigned i = NumModuleMDs, e = MDs.size(); i != e; ++i) |
| MetadataMap.erase(MDs[i]); |
| for (unsigned i = 0, e = BasicBlocks.size(); i != e; ++i) |
| ValueMap.erase(BasicBlocks[i]); |
| |
| Values.resize(NumModuleValues); |
| MDs.resize(NumModuleMDs); |
| BasicBlocks.clear(); |
| NumMDStrings = 0; |
| } |
| |
| static void IncorporateFunctionInfoGlobalBBIDs(const Function *F, |
| DenseMap<const BasicBlock*, unsigned> &IDMap) { |
| unsigned Counter = 0; |
| for (const BasicBlock &BB : *F) |
| IDMap[&BB] = ++Counter; |
| } |
| |
| /// getGlobalBasicBlockID - This returns the function-specific ID for the |
| /// specified basic block. This is relatively expensive information, so it |
| /// should only be used by rare constructs such as address-of-label. |
| unsigned ValueEnumerator::getGlobalBasicBlockID(const BasicBlock *BB) const { |
| unsigned &Idx = GlobalBasicBlockIDs[BB]; |
| if (Idx != 0) |
| return Idx-1; |
| |
| IncorporateFunctionInfoGlobalBBIDs(BB->getParent(), GlobalBasicBlockIDs); |
| return getGlobalBasicBlockID(BB); |
| } |
| |
| uint64_t ValueEnumerator::computeBitsRequiredForTypeIndicies() const { |
| return Log2_32_Ceil(getTypes().size() + 1); |
| } |