| //===- InstCombineInternal.h - InstCombine pass internals -------*- C++ -*-===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| /// \file |
| /// |
| /// This file provides internal interfaces used to implement the InstCombine. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #ifndef LLVM_LIB_TRANSFORMS_INSTCOMBINE_INSTCOMBINEINTERNAL_H |
| #define LLVM_LIB_TRANSFORMS_INSTCOMBINE_INSTCOMBINEINTERNAL_H |
| |
| #include "llvm/ADT/ArrayRef.h" |
| #include "llvm/Analysis/AliasAnalysis.h" |
| #include "llvm/Analysis/InstructionSimplify.h" |
| #include "llvm/Analysis/TargetFolder.h" |
| #include "llvm/Analysis/ValueTracking.h" |
| #include "llvm/IR/Argument.h" |
| #include "llvm/IR/BasicBlock.h" |
| #include "llvm/IR/Constant.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/DerivedTypes.h" |
| #include "llvm/IR/IRBuilder.h" |
| #include "llvm/IR/InstVisitor.h" |
| #include "llvm/IR/InstrTypes.h" |
| #include "llvm/IR/Instruction.h" |
| #include "llvm/IR/IntrinsicInst.h" |
| #include "llvm/IR/Intrinsics.h" |
| #include "llvm/IR/PatternMatch.h" |
| #include "llvm/IR/Use.h" |
| #include "llvm/IR/Value.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/Compiler.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/KnownBits.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Transforms/InstCombine/InstCombineWorklist.h" |
| #include "llvm/Transforms/Utils/Local.h" |
| #include <cassert> |
| #include <cstdint> |
| |
| #define DEBUG_TYPE "instcombine" |
| |
| using namespace llvm::PatternMatch; |
| |
| namespace llvm { |
| |
| class APInt; |
| class AssumptionCache; |
| class DataLayout; |
| class DominatorTree; |
| class GEPOperator; |
| class GlobalVariable; |
| class LoopInfo; |
| class OptimizationRemarkEmitter; |
| class TargetLibraryInfo; |
| class User; |
| |
| /// Assign a complexity or rank value to LLVM Values. This is used to reduce |
| /// the amount of pattern matching needed for compares and commutative |
| /// instructions. For example, if we have: |
| /// icmp ugt X, Constant |
| /// or |
| /// xor (add X, Constant), cast Z |
| /// |
| /// We do not have to consider the commuted variants of these patterns because |
| /// canonicalization based on complexity guarantees the above ordering. |
| /// |
| /// This routine maps IR values to various complexity ranks: |
| /// 0 -> undef |
| /// 1 -> Constants |
| /// 2 -> Other non-instructions |
| /// 3 -> Arguments |
| /// 4 -> Cast and (f)neg/not instructions |
| /// 5 -> Other instructions |
| static inline unsigned getComplexity(Value *V) { |
| if (isa<Instruction>(V)) { |
| if (isa<CastInst>(V) || match(V, m_Neg(m_Value())) || |
| match(V, m_Not(m_Value())) || match(V, m_FNeg(m_Value()))) |
| return 4; |
| return 5; |
| } |
| if (isa<Argument>(V)) |
| return 3; |
| return isa<Constant>(V) ? (isa<UndefValue>(V) ? 0 : 1) : 2; |
| } |
| |
| /// Predicate canonicalization reduces the number of patterns that need to be |
| /// matched by other transforms. For example, we may swap the operands of a |
| /// conditional branch or select to create a compare with a canonical (inverted) |
| /// predicate which is then more likely to be matched with other values. |
| static inline bool isCanonicalPredicate(CmpInst::Predicate Pred) { |
| switch (Pred) { |
| case CmpInst::ICMP_NE: |
| case CmpInst::ICMP_ULE: |
| case CmpInst::ICMP_SLE: |
| case CmpInst::ICMP_UGE: |
| case CmpInst::ICMP_SGE: |
| // TODO: There are 16 FCMP predicates. Should others be (not) canonical? |
| case CmpInst::FCMP_ONE: |
| case CmpInst::FCMP_OLE: |
| case CmpInst::FCMP_OGE: |
| return false; |
| default: |
| return true; |
| } |
| } |
| |
| /// Return the source operand of a potentially bitcasted value while optionally |
| /// checking if it has one use. If there is no bitcast or the one use check is |
| /// not met, return the input value itself. |
| static inline Value *peekThroughBitcast(Value *V, bool OneUseOnly = false) { |
| if (auto *BitCast = dyn_cast<BitCastInst>(V)) |
| if (!OneUseOnly || BitCast->hasOneUse()) |
| return BitCast->getOperand(0); |
| |
| // V is not a bitcast or V has more than one use and OneUseOnly is true. |
| return V; |
| } |
| |
| /// Add one to a Constant |
| static inline Constant *AddOne(Constant *C) { |
| return ConstantExpr::getAdd(C, ConstantInt::get(C->getType(), 1)); |
| } |
| |
| /// Subtract one from a Constant |
| static inline Constant *SubOne(Constant *C) { |
| return ConstantExpr::getSub(C, ConstantInt::get(C->getType(), 1)); |
| } |
| |
| /// Return true if the specified value is free to invert (apply ~ to). |
| /// This happens in cases where the ~ can be eliminated. If WillInvertAllUses |
| /// is true, work under the assumption that the caller intends to remove all |
| /// uses of V and only keep uses of ~V. |
| static inline bool IsFreeToInvert(Value *V, bool WillInvertAllUses) { |
| // ~(~(X)) -> X. |
| if (match(V, m_Not(m_Value()))) |
| return true; |
| |
| // Constants can be considered to be not'ed values. |
| if (isa<ConstantInt>(V)) |
| return true; |
| |
| // A vector of constant integers can be inverted easily. |
| if (V->getType()->isVectorTy() && isa<Constant>(V)) { |
| unsigned NumElts = V->getType()->getVectorNumElements(); |
| for (unsigned i = 0; i != NumElts; ++i) { |
| Constant *Elt = cast<Constant>(V)->getAggregateElement(i); |
| if (!Elt) |
| return false; |
| |
| if (isa<UndefValue>(Elt)) |
| continue; |
| |
| if (!isa<ConstantInt>(Elt)) |
| return false; |
| } |
| return true; |
| } |
| |
| // Compares can be inverted if all of their uses are being modified to use the |
| // ~V. |
| if (isa<CmpInst>(V)) |
| return WillInvertAllUses; |
| |
| // If `V` is of the form `A + Constant` then `-1 - V` can be folded into `(-1 |
| // - Constant) - A` if we are willing to invert all of the uses. |
| if (BinaryOperator *BO = dyn_cast<BinaryOperator>(V)) |
| if (BO->getOpcode() == Instruction::Add || |
| BO->getOpcode() == Instruction::Sub) |
| if (isa<Constant>(BO->getOperand(0)) || isa<Constant>(BO->getOperand(1))) |
| return WillInvertAllUses; |
| |
| // Selects with invertible operands are freely invertible |
| if (match(V, m_Select(m_Value(), m_Not(m_Value()), m_Not(m_Value())))) |
| return WillInvertAllUses; |
| |
| return false; |
| } |
| |
| /// Specific patterns of overflow check idioms that we match. |
| enum OverflowCheckFlavor { |
| OCF_UNSIGNED_ADD, |
| OCF_SIGNED_ADD, |
| OCF_UNSIGNED_SUB, |
| OCF_SIGNED_SUB, |
| OCF_UNSIGNED_MUL, |
| OCF_SIGNED_MUL, |
| |
| OCF_INVALID |
| }; |
| |
| /// Returns the OverflowCheckFlavor corresponding to a overflow_with_op |
| /// intrinsic. |
| static inline OverflowCheckFlavor |
| IntrinsicIDToOverflowCheckFlavor(unsigned ID) { |
| switch (ID) { |
| default: |
| return OCF_INVALID; |
| case Intrinsic::uadd_with_overflow: |
| return OCF_UNSIGNED_ADD; |
| case Intrinsic::sadd_with_overflow: |
| return OCF_SIGNED_ADD; |
| case Intrinsic::usub_with_overflow: |
| return OCF_UNSIGNED_SUB; |
| case Intrinsic::ssub_with_overflow: |
| return OCF_SIGNED_SUB; |
| case Intrinsic::umul_with_overflow: |
| return OCF_UNSIGNED_MUL; |
| case Intrinsic::smul_with_overflow: |
| return OCF_SIGNED_MUL; |
| } |
| } |
| |
| /// Some binary operators require special handling to avoid poison and undefined |
| /// behavior. If a constant vector has undef elements, replace those undefs with |
| /// identity constants if possible because those are always safe to execute. |
| /// If no identity constant exists, replace undef with some other safe constant. |
| static inline Constant *getSafeVectorConstantForBinop( |
| BinaryOperator::BinaryOps Opcode, Constant *In, bool IsRHSConstant) { |
| assert(In->getType()->isVectorTy() && "Not expecting scalars here"); |
| |
| Type *EltTy = In->getType()->getVectorElementType(); |
| auto *SafeC = ConstantExpr::getBinOpIdentity(Opcode, EltTy, IsRHSConstant); |
| if (!SafeC) { |
| // TODO: Should this be available as a constant utility function? It is |
| // similar to getBinOpAbsorber(). |
| if (IsRHSConstant) { |
| switch (Opcode) { |
| case Instruction::SRem: // X % 1 = 0 |
| case Instruction::URem: // X %u 1 = 0 |
| SafeC = ConstantInt::get(EltTy, 1); |
| break; |
| case Instruction::FRem: // X % 1.0 (doesn't simplify, but it is safe) |
| SafeC = ConstantFP::get(EltTy, 1.0); |
| break; |
| default: |
| llvm_unreachable("Only rem opcodes have no identity constant for RHS"); |
| } |
| } else { |
| switch (Opcode) { |
| case Instruction::Shl: // 0 << X = 0 |
| case Instruction::LShr: // 0 >>u X = 0 |
| case Instruction::AShr: // 0 >> X = 0 |
| case Instruction::SDiv: // 0 / X = 0 |
| case Instruction::UDiv: // 0 /u X = 0 |
| case Instruction::SRem: // 0 % X = 0 |
| case Instruction::URem: // 0 %u X = 0 |
| case Instruction::Sub: // 0 - X (doesn't simplify, but it is safe) |
| case Instruction::FSub: // 0.0 - X (doesn't simplify, but it is safe) |
| case Instruction::FDiv: // 0.0 / X (doesn't simplify, but it is safe) |
| case Instruction::FRem: // 0.0 % X = 0 |
| SafeC = Constant::getNullValue(EltTy); |
| break; |
| default: |
| llvm_unreachable("Expected to find identity constant for opcode"); |
| } |
| } |
| } |
| assert(SafeC && "Must have safe constant for binop"); |
| unsigned NumElts = In->getType()->getVectorNumElements(); |
| SmallVector<Constant *, 16> Out(NumElts); |
| for (unsigned i = 0; i != NumElts; ++i) { |
| Constant *C = In->getAggregateElement(i); |
| Out[i] = isa<UndefValue>(C) ? SafeC : C; |
| } |
| return ConstantVector::get(Out); |
| } |
| |
| /// The core instruction combiner logic. |
| /// |
| /// This class provides both the logic to recursively visit instructions and |
| /// combine them. |
| class LLVM_LIBRARY_VISIBILITY InstCombiner |
| : public InstVisitor<InstCombiner, Instruction *> { |
| // FIXME: These members shouldn't be public. |
| public: |
| /// A worklist of the instructions that need to be simplified. |
| InstCombineWorklist &Worklist; |
| |
| /// An IRBuilder that automatically inserts new instructions into the |
| /// worklist. |
| using BuilderTy = IRBuilder<TargetFolder, IRBuilderCallbackInserter>; |
| BuilderTy &Builder; |
| |
| private: |
| // Mode in which we are running the combiner. |
| const bool MinimizeSize; |
| |
| /// Enable combines that trigger rarely but are costly in compiletime. |
| const bool ExpensiveCombines; |
| |
| AliasAnalysis *AA; |
| |
| // Required analyses. |
| AssumptionCache &AC; |
| TargetLibraryInfo &TLI; |
| DominatorTree &DT; |
| const DataLayout &DL; |
| const SimplifyQuery SQ; |
| OptimizationRemarkEmitter &ORE; |
| |
| // Optional analyses. When non-null, these can both be used to do better |
| // combining and will be updated to reflect any changes. |
| LoopInfo *LI; |
| |
| bool MadeIRChange = false; |
| |
| public: |
| InstCombiner(InstCombineWorklist &Worklist, BuilderTy &Builder, |
| bool MinimizeSize, bool ExpensiveCombines, AliasAnalysis *AA, |
| AssumptionCache &AC, TargetLibraryInfo &TLI, DominatorTree &DT, |
| OptimizationRemarkEmitter &ORE, const DataLayout &DL, |
| LoopInfo *LI) |
| : Worklist(Worklist), Builder(Builder), MinimizeSize(MinimizeSize), |
| ExpensiveCombines(ExpensiveCombines), AA(AA), AC(AC), TLI(TLI), DT(DT), |
| DL(DL), SQ(DL, &TLI, &DT, &AC), ORE(ORE), LI(LI) {} |
| |
| /// Run the combiner over the entire worklist until it is empty. |
| /// |
| /// \returns true if the IR is changed. |
| bool run(); |
| |
| AssumptionCache &getAssumptionCache() const { return AC; } |
| |
| const DataLayout &getDataLayout() const { return DL; } |
| |
| DominatorTree &getDominatorTree() const { return DT; } |
| |
| LoopInfo *getLoopInfo() const { return LI; } |
| |
| TargetLibraryInfo &getTargetLibraryInfo() const { return TLI; } |
| |
| // Visitation implementation - Implement instruction combining for different |
| // instruction types. The semantics are as follows: |
| // Return Value: |
| // null - No change was made |
| // I - Change was made, I is still valid, I may be dead though |
| // otherwise - Change was made, replace I with returned instruction |
| // |
| Instruction *visitAdd(BinaryOperator &I); |
| Instruction *visitFAdd(BinaryOperator &I); |
| Value *OptimizePointerDifference(Value *LHS, Value *RHS, Type *Ty); |
| Instruction *visitSub(BinaryOperator &I); |
| Instruction *visitFSub(BinaryOperator &I); |
| Instruction *visitMul(BinaryOperator &I); |
| Instruction *visitFMul(BinaryOperator &I); |
| Instruction *visitURem(BinaryOperator &I); |
| Instruction *visitSRem(BinaryOperator &I); |
| Instruction *visitFRem(BinaryOperator &I); |
| bool simplifyDivRemOfSelectWithZeroOp(BinaryOperator &I); |
| Instruction *commonRemTransforms(BinaryOperator &I); |
| Instruction *commonIRemTransforms(BinaryOperator &I); |
| Instruction *commonDivTransforms(BinaryOperator &I); |
| Instruction *commonIDivTransforms(BinaryOperator &I); |
| Instruction *visitUDiv(BinaryOperator &I); |
| Instruction *visitSDiv(BinaryOperator &I); |
| Instruction *visitFDiv(BinaryOperator &I); |
| Value *simplifyRangeCheck(ICmpInst *Cmp0, ICmpInst *Cmp1, bool Inverted); |
| Instruction *visitAnd(BinaryOperator &I); |
| Instruction *visitOr(BinaryOperator &I); |
| Instruction *visitXor(BinaryOperator &I); |
| Instruction *visitShl(BinaryOperator &I); |
| Instruction *visitAShr(BinaryOperator &I); |
| Instruction *visitLShr(BinaryOperator &I); |
| Instruction *commonShiftTransforms(BinaryOperator &I); |
| Instruction *visitFCmpInst(FCmpInst &I); |
| Instruction *visitICmpInst(ICmpInst &I); |
| Instruction *FoldShiftByConstant(Value *Op0, Constant *Op1, |
| BinaryOperator &I); |
| Instruction *commonCastTransforms(CastInst &CI); |
| Instruction *commonPointerCastTransforms(CastInst &CI); |
| Instruction *visitTrunc(TruncInst &CI); |
| Instruction *visitZExt(ZExtInst &CI); |
| Instruction *visitSExt(SExtInst &CI); |
| Instruction *visitFPTrunc(FPTruncInst &CI); |
| Instruction *visitFPExt(CastInst &CI); |
| Instruction *visitFPToUI(FPToUIInst &FI); |
| Instruction *visitFPToSI(FPToSIInst &FI); |
| Instruction *visitUIToFP(CastInst &CI); |
| Instruction *visitSIToFP(CastInst &CI); |
| Instruction *visitPtrToInt(PtrToIntInst &CI); |
| Instruction *visitIntToPtr(IntToPtrInst &CI); |
| Instruction *visitBitCast(BitCastInst &CI); |
| Instruction *visitAddrSpaceCast(AddrSpaceCastInst &CI); |
| Instruction *FoldItoFPtoI(Instruction &FI); |
| Instruction *visitSelectInst(SelectInst &SI); |
| Instruction *visitCallInst(CallInst &CI); |
| Instruction *visitInvokeInst(InvokeInst &II); |
| Instruction *visitCallBrInst(CallBrInst &CBI); |
| |
| Instruction *SliceUpIllegalIntegerPHI(PHINode &PN); |
| Instruction *visitPHINode(PHINode &PN); |
| Instruction *visitGetElementPtrInst(GetElementPtrInst &GEP); |
| Instruction *visitAllocaInst(AllocaInst &AI); |
| Instruction *visitAllocSite(Instruction &FI); |
| Instruction *visitFree(CallInst &FI); |
| Instruction *visitLoadInst(LoadInst &LI); |
| Instruction *visitStoreInst(StoreInst &SI); |
| Instruction *visitAtomicRMWInst(AtomicRMWInst &SI); |
| Instruction *visitBranchInst(BranchInst &BI); |
| Instruction *visitFenceInst(FenceInst &FI); |
| Instruction *visitSwitchInst(SwitchInst &SI); |
| Instruction *visitReturnInst(ReturnInst &RI); |
| Instruction *visitInsertValueInst(InsertValueInst &IV); |
| Instruction *visitInsertElementInst(InsertElementInst &IE); |
| Instruction *visitExtractElementInst(ExtractElementInst &EI); |
| Instruction *visitShuffleVectorInst(ShuffleVectorInst &SVI); |
| Instruction *visitExtractValueInst(ExtractValueInst &EV); |
| Instruction *visitLandingPadInst(LandingPadInst &LI); |
| Instruction *visitVAStartInst(VAStartInst &I); |
| Instruction *visitVACopyInst(VACopyInst &I); |
| |
| /// Specify what to return for unhandled instructions. |
| Instruction *visitInstruction(Instruction &I) { return nullptr; } |
| |
| /// True when DB dominates all uses of DI except UI. |
| /// UI must be in the same block as DI. |
| /// The routine checks that the DI parent and DB are different. |
| bool dominatesAllUses(const Instruction *DI, const Instruction *UI, |
| const BasicBlock *DB) const; |
| |
| /// Try to replace select with select operand SIOpd in SI-ICmp sequence. |
| bool replacedSelectWithOperand(SelectInst *SI, const ICmpInst *Icmp, |
| const unsigned SIOpd); |
| |
| /// Try to replace instruction \p I with value \p V which are pointers |
| /// in different address space. |
| /// \return true if successful. |
| bool replacePointer(Instruction &I, Value *V); |
| |
| private: |
| bool shouldChangeType(unsigned FromBitWidth, unsigned ToBitWidth) const; |
| bool shouldChangeType(Type *From, Type *To) const; |
| Value *dyn_castNegVal(Value *V) const; |
| Type *FindElementAtOffset(PointerType *PtrTy, int64_t Offset, |
| SmallVectorImpl<Value *> &NewIndices); |
| |
| /// Classify whether a cast is worth optimizing. |
| /// |
| /// This is a helper to decide whether the simplification of |
| /// logic(cast(A), cast(B)) to cast(logic(A, B)) should be performed. |
| /// |
| /// \param CI The cast we are interested in. |
| /// |
| /// \return true if this cast actually results in any code being generated and |
| /// if it cannot already be eliminated by some other transformation. |
| bool shouldOptimizeCast(CastInst *CI); |
| |
| /// Try to optimize a sequence of instructions checking if an operation |
| /// on LHS and RHS overflows. |
| /// |
| /// If this overflow check is done via one of the overflow check intrinsics, |
| /// then CtxI has to be the call instruction calling that intrinsic. If this |
| /// overflow check is done by arithmetic followed by a compare, then CtxI has |
| /// to be the arithmetic instruction. |
| /// |
| /// If a simplification is possible, stores the simplified result of the |
| /// operation in OperationResult and result of the overflow check in |
| /// OverflowResult, and return true. If no simplification is possible, |
| /// returns false. |
| bool OptimizeOverflowCheck(OverflowCheckFlavor OCF, Value *LHS, Value *RHS, |
| Instruction &CtxI, Value *&OperationResult, |
| Constant *&OverflowResult); |
| |
| Instruction *visitCallBase(CallBase &Call); |
| Instruction *tryOptimizeCall(CallInst *CI); |
| bool transformConstExprCastCall(CallBase &Call); |
| Instruction *transformCallThroughTrampoline(CallBase &Call, |
| IntrinsicInst &Tramp); |
| |
| /// Transform (zext icmp) to bitwise / integer operations in order to |
| /// eliminate it. |
| /// |
| /// \param ICI The icmp of the (zext icmp) pair we are interested in. |
| /// \parem CI The zext of the (zext icmp) pair we are interested in. |
| /// \param DoTransform Pass false to just test whether the given (zext icmp) |
| /// would be transformed. Pass true to actually perform the transformation. |
| /// |
| /// \return null if the transformation cannot be performed. If the |
| /// transformation can be performed the new instruction that replaces the |
| /// (zext icmp) pair will be returned (if \p DoTransform is false the |
| /// unmodified \p ICI will be returned in this case). |
| Instruction *transformZExtICmp(ICmpInst *ICI, ZExtInst &CI, |
| bool DoTransform = true); |
| |
| Instruction *transformSExtICmp(ICmpInst *ICI, Instruction &CI); |
| |
| bool willNotOverflowSignedAdd(const Value *LHS, const Value *RHS, |
| const Instruction &CxtI) const { |
| return computeOverflowForSignedAdd(LHS, RHS, &CxtI) == |
| OverflowResult::NeverOverflows; |
| } |
| |
| bool willNotOverflowUnsignedAdd(const Value *LHS, const Value *RHS, |
| const Instruction &CxtI) const { |
| return computeOverflowForUnsignedAdd(LHS, RHS, &CxtI) == |
| OverflowResult::NeverOverflows; |
| } |
| |
| bool willNotOverflowAdd(const Value *LHS, const Value *RHS, |
| const Instruction &CxtI, bool IsSigned) const { |
| return IsSigned ? willNotOverflowSignedAdd(LHS, RHS, CxtI) |
| : willNotOverflowUnsignedAdd(LHS, RHS, CxtI); |
| } |
| |
| bool willNotOverflowSignedSub(const Value *LHS, const Value *RHS, |
| const Instruction &CxtI) const { |
| return computeOverflowForSignedSub(LHS, RHS, &CxtI) == |
| OverflowResult::NeverOverflows; |
| } |
| |
| bool willNotOverflowUnsignedSub(const Value *LHS, const Value *RHS, |
| const Instruction &CxtI) const { |
| return computeOverflowForUnsignedSub(LHS, RHS, &CxtI) == |
| OverflowResult::NeverOverflows; |
| } |
| |
| bool willNotOverflowSub(const Value *LHS, const Value *RHS, |
| const Instruction &CxtI, bool IsSigned) const { |
| return IsSigned ? willNotOverflowSignedSub(LHS, RHS, CxtI) |
| : willNotOverflowUnsignedSub(LHS, RHS, CxtI); |
| } |
| |
| bool willNotOverflowSignedMul(const Value *LHS, const Value *RHS, |
| const Instruction &CxtI) const { |
| return computeOverflowForSignedMul(LHS, RHS, &CxtI) == |
| OverflowResult::NeverOverflows; |
| } |
| |
| bool willNotOverflowUnsignedMul(const Value *LHS, const Value *RHS, |
| const Instruction &CxtI) const { |
| return computeOverflowForUnsignedMul(LHS, RHS, &CxtI) == |
| OverflowResult::NeverOverflows; |
| } |
| |
| bool willNotOverflowMul(const Value *LHS, const Value *RHS, |
| const Instruction &CxtI, bool IsSigned) const { |
| return IsSigned ? willNotOverflowSignedMul(LHS, RHS, CxtI) |
| : willNotOverflowUnsignedMul(LHS, RHS, CxtI); |
| } |
| |
| bool willNotOverflow(BinaryOperator::BinaryOps Opcode, const Value *LHS, |
| const Value *RHS, const Instruction &CxtI, |
| bool IsSigned) const { |
| switch (Opcode) { |
| case Instruction::Add: return willNotOverflowAdd(LHS, RHS, CxtI, IsSigned); |
| case Instruction::Sub: return willNotOverflowSub(LHS, RHS, CxtI, IsSigned); |
| case Instruction::Mul: return willNotOverflowMul(LHS, RHS, CxtI, IsSigned); |
| default: llvm_unreachable("Unexpected opcode for overflow query"); |
| } |
| } |
| |
| Value *EmitGEPOffset(User *GEP); |
| Instruction *scalarizePHI(ExtractElementInst &EI, PHINode *PN); |
| Instruction *foldCastedBitwiseLogic(BinaryOperator &I); |
| Instruction *narrowBinOp(TruncInst &Trunc); |
| Instruction *narrowMaskedBinOp(BinaryOperator &And); |
| Instruction *narrowMathIfNoOverflow(BinaryOperator &I); |
| Instruction *narrowRotate(TruncInst &Trunc); |
| Instruction *optimizeBitCastFromPhi(CastInst &CI, PHINode *PN); |
| |
| /// Determine if a pair of casts can be replaced by a single cast. |
| /// |
| /// \param CI1 The first of a pair of casts. |
| /// \param CI2 The second of a pair of casts. |
| /// |
| /// \return 0 if the cast pair cannot be eliminated, otherwise returns an |
| /// Instruction::CastOps value for a cast that can replace the pair, casting |
| /// CI1->getSrcTy() to CI2->getDstTy(). |
| /// |
| /// \see CastInst::isEliminableCastPair |
| Instruction::CastOps isEliminableCastPair(const CastInst *CI1, |
| const CastInst *CI2); |
| |
| Value *foldAndOfICmps(ICmpInst *LHS, ICmpInst *RHS, Instruction &CxtI); |
| Value *foldOrOfICmps(ICmpInst *LHS, ICmpInst *RHS, Instruction &CxtI); |
| Value *foldXorOfICmps(ICmpInst *LHS, ICmpInst *RHS); |
| |
| /// Optimize (fcmp)&(fcmp) or (fcmp)|(fcmp). |
| /// NOTE: Unlike most of instcombine, this returns a Value which should |
| /// already be inserted into the function. |
| Value *foldLogicOfFCmps(FCmpInst *LHS, FCmpInst *RHS, bool IsAnd); |
| |
| Value *foldAndOrOfICmpsOfAndWithPow2(ICmpInst *LHS, ICmpInst *RHS, |
| bool JoinedByAnd, Instruction &CxtI); |
| Value *matchSelectFromAndOr(Value *A, Value *B, Value *C, Value *D); |
| Value *getSelectCondition(Value *A, Value *B); |
| |
| public: |
| /// Inserts an instruction \p New before instruction \p Old |
| /// |
| /// Also adds the new instruction to the worklist and returns \p New so that |
| /// it is suitable for use as the return from the visitation patterns. |
| Instruction *InsertNewInstBefore(Instruction *New, Instruction &Old) { |
| assert(New && !New->getParent() && |
| "New instruction already inserted into a basic block!"); |
| BasicBlock *BB = Old.getParent(); |
| BB->getInstList().insert(Old.getIterator(), New); // Insert inst |
| Worklist.Add(New); |
| return New; |
| } |
| |
| /// Same as InsertNewInstBefore, but also sets the debug loc. |
| Instruction *InsertNewInstWith(Instruction *New, Instruction &Old) { |
| New->setDebugLoc(Old.getDebugLoc()); |
| return InsertNewInstBefore(New, Old); |
| } |
| |
| /// A combiner-aware RAUW-like routine. |
| /// |
| /// This method is to be used when an instruction is found to be dead, |
| /// replaceable with another preexisting expression. Here we add all uses of |
| /// I to the worklist, replace all uses of I with the new value, then return |
| /// I, so that the inst combiner will know that I was modified. |
| Instruction *replaceInstUsesWith(Instruction &I, Value *V) { |
| // If there are no uses to replace, then we return nullptr to indicate that |
| // no changes were made to the program. |
| if (I.use_empty()) return nullptr; |
| |
| Worklist.AddUsersToWorkList(I); // Add all modified instrs to worklist. |
| |
| // If we are replacing the instruction with itself, this must be in a |
| // segment of unreachable code, so just clobber the instruction. |
| if (&I == V) |
| V = UndefValue::get(I.getType()); |
| |
| LLVM_DEBUG(dbgs() << "IC: Replacing " << I << "\n" |
| << " with " << *V << '\n'); |
| |
| I.replaceAllUsesWith(V); |
| return &I; |
| } |
| |
| /// Creates a result tuple for an overflow intrinsic \p II with a given |
| /// \p Result and a constant \p Overflow value. |
| Instruction *CreateOverflowTuple(IntrinsicInst *II, Value *Result, |
| Constant *Overflow) { |
| Constant *V[] = {UndefValue::get(Result->getType()), Overflow}; |
| StructType *ST = cast<StructType>(II->getType()); |
| Constant *Struct = ConstantStruct::get(ST, V); |
| return InsertValueInst::Create(Struct, Result, 0); |
| } |
| |
| /// Combiner aware instruction erasure. |
| /// |
| /// When dealing with an instruction that has side effects or produces a void |
| /// value, we can't rely on DCE to delete the instruction. Instead, visit |
| /// methods should return the value returned by this function. |
| Instruction *eraseInstFromFunction(Instruction &I) { |
| LLVM_DEBUG(dbgs() << "IC: ERASE " << I << '\n'); |
| assert(I.use_empty() && "Cannot erase instruction that is used!"); |
| salvageDebugInfo(I); |
| |
| // Make sure that we reprocess all operands now that we reduced their |
| // use counts. |
| if (I.getNumOperands() < 8) { |
| for (Use &Operand : I.operands()) |
| if (auto *Inst = dyn_cast<Instruction>(Operand)) |
| Worklist.Add(Inst); |
| } |
| Worklist.Remove(&I); |
| I.eraseFromParent(); |
| MadeIRChange = true; |
| return nullptr; // Don't do anything with FI |
| } |
| |
| void computeKnownBits(const Value *V, KnownBits &Known, |
| unsigned Depth, const Instruction *CxtI) const { |
| llvm::computeKnownBits(V, Known, DL, Depth, &AC, CxtI, &DT); |
| } |
| |
| KnownBits computeKnownBits(const Value *V, unsigned Depth, |
| const Instruction *CxtI) const { |
| return llvm::computeKnownBits(V, DL, Depth, &AC, CxtI, &DT); |
| } |
| |
| bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero = false, |
| unsigned Depth = 0, |
| const Instruction *CxtI = nullptr) { |
| return llvm::isKnownToBeAPowerOfTwo(V, DL, OrZero, Depth, &AC, CxtI, &DT); |
| } |
| |
| bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth = 0, |
| const Instruction *CxtI = nullptr) const { |
| return llvm::MaskedValueIsZero(V, Mask, DL, Depth, &AC, CxtI, &DT); |
| } |
| |
| unsigned ComputeNumSignBits(const Value *Op, unsigned Depth = 0, |
| const Instruction *CxtI = nullptr) const { |
| return llvm::ComputeNumSignBits(Op, DL, Depth, &AC, CxtI, &DT); |
| } |
| |
| OverflowResult computeOverflowForUnsignedMul(const Value *LHS, |
| const Value *RHS, |
| const Instruction *CxtI) const { |
| return llvm::computeOverflowForUnsignedMul(LHS, RHS, DL, &AC, CxtI, &DT); |
| } |
| |
| OverflowResult computeOverflowForSignedMul(const Value *LHS, |
| const Value *RHS, |
| const Instruction *CxtI) const { |
| return llvm::computeOverflowForSignedMul(LHS, RHS, DL, &AC, CxtI, &DT); |
| } |
| |
| OverflowResult computeOverflowForUnsignedAdd(const Value *LHS, |
| const Value *RHS, |
| const Instruction *CxtI) const { |
| return llvm::computeOverflowForUnsignedAdd(LHS, RHS, DL, &AC, CxtI, &DT); |
| } |
| |
| OverflowResult computeOverflowForSignedAdd(const Value *LHS, |
| const Value *RHS, |
| const Instruction *CxtI) const { |
| return llvm::computeOverflowForSignedAdd(LHS, RHS, DL, &AC, CxtI, &DT); |
| } |
| |
| OverflowResult computeOverflowForUnsignedSub(const Value *LHS, |
| const Value *RHS, |
| const Instruction *CxtI) const { |
| return llvm::computeOverflowForUnsignedSub(LHS, RHS, DL, &AC, CxtI, &DT); |
| } |
| |
| OverflowResult computeOverflowForSignedSub(const Value *LHS, const Value *RHS, |
| const Instruction *CxtI) const { |
| return llvm::computeOverflowForSignedSub(LHS, RHS, DL, &AC, CxtI, &DT); |
| } |
| |
| /// Maximum size of array considered when transforming. |
| uint64_t MaxArraySizeForCombine; |
| |
| private: |
| /// Performs a few simplifications for operators which are associative |
| /// or commutative. |
| bool SimplifyAssociativeOrCommutative(BinaryOperator &I); |
| |
| /// Tries to simplify binary operations which some other binary |
| /// operation distributes over. |
| /// |
| /// It does this by either by factorizing out common terms (eg "(A*B)+(A*C)" |
| /// -> "A*(B+C)") or expanding out if this results in simplifications (eg: "A |
| /// & (B | C) -> (A&B) | (A&C)" if this is a win). Returns the simplified |
| /// value, or null if it didn't simplify. |
| Value *SimplifyUsingDistributiveLaws(BinaryOperator &I); |
| |
| /// Tries to simplify add operations using the definition of remainder. |
| /// |
| /// The definition of remainder is X % C = X - (X / C ) * C. The add |
| /// expression X % C0 + (( X / C0 ) % C1) * C0 can be simplified to |
| /// X % (C0 * C1) |
| Value *SimplifyAddWithRemainder(BinaryOperator &I); |
| |
| // Binary Op helper for select operations where the expression can be |
| // efficiently reorganized. |
| Value *SimplifySelectsFeedingBinaryOp(BinaryOperator &I, Value *LHS, |
| Value *RHS); |
| |
| /// This tries to simplify binary operations by factorizing out common terms |
| /// (e. g. "(A*B)+(A*C)" -> "A*(B+C)"). |
| Value *tryFactorization(BinaryOperator &, Instruction::BinaryOps, Value *, |
| Value *, Value *, Value *); |
| |
| /// Match a select chain which produces one of three values based on whether |
| /// the LHS is less than, equal to, or greater than RHS respectively. |
| /// Return true if we matched a three way compare idiom. The LHS, RHS, Less, |
| /// Equal and Greater values are saved in the matching process and returned to |
| /// the caller. |
| bool matchThreeWayIntCompare(SelectInst *SI, Value *&LHS, Value *&RHS, |
| ConstantInt *&Less, ConstantInt *&Equal, |
| ConstantInt *&Greater); |
| |
| /// Attempts to replace V with a simpler value based on the demanded |
| /// bits. |
| Value *SimplifyDemandedUseBits(Value *V, APInt DemandedMask, KnownBits &Known, |
| unsigned Depth, Instruction *CxtI); |
| bool SimplifyDemandedBits(Instruction *I, unsigned Op, |
| const APInt &DemandedMask, KnownBits &Known, |
| unsigned Depth = 0); |
| |
| /// Helper routine of SimplifyDemandedUseBits. It computes KnownZero/KnownOne |
| /// bits. It also tries to handle simplifications that can be done based on |
| /// DemandedMask, but without modifying the Instruction. |
| Value *SimplifyMultipleUseDemandedBits(Instruction *I, |
| const APInt &DemandedMask, |
| KnownBits &Known, |
| unsigned Depth, Instruction *CxtI); |
| |
| /// Helper routine of SimplifyDemandedUseBits. It tries to simplify demanded |
| /// bit for "r1 = shr x, c1; r2 = shl r1, c2" instruction sequence. |
| Value *simplifyShrShlDemandedBits( |
| Instruction *Shr, const APInt &ShrOp1, Instruction *Shl, |
| const APInt &ShlOp1, const APInt &DemandedMask, KnownBits &Known); |
| |
| /// Tries to simplify operands to an integer instruction based on its |
| /// demanded bits. |
| bool SimplifyDemandedInstructionBits(Instruction &Inst); |
| |
| Value *simplifyAMDGCNMemoryIntrinsicDemanded(IntrinsicInst *II, |
| APInt DemandedElts, |
| int DmaskIdx = -1); |
| |
| Value *SimplifyDemandedVectorElts(Value *V, APInt DemandedElts, |
| APInt &UndefElts, unsigned Depth = 0); |
| |
| /// Canonicalize the position of binops relative to shufflevector. |
| Instruction *foldVectorBinop(BinaryOperator &Inst); |
| |
| /// Given a binary operator, cast instruction, or select which has a PHI node |
| /// as operand #0, see if we can fold the instruction into the PHI (which is |
| /// only possible if all operands to the PHI are constants). |
| Instruction *foldOpIntoPhi(Instruction &I, PHINode *PN); |
| |
| /// Given an instruction with a select as one operand and a constant as the |
| /// other operand, try to fold the binary operator into the select arguments. |
| /// This also works for Cast instructions, which obviously do not have a |
| /// second operand. |
| Instruction *FoldOpIntoSelect(Instruction &Op, SelectInst *SI); |
| |
| /// This is a convenience wrapper function for the above two functions. |
| Instruction *foldBinOpIntoSelectOrPhi(BinaryOperator &I); |
| |
| Instruction *foldAddWithConstant(BinaryOperator &Add); |
| |
| /// Try to rotate an operation below a PHI node, using PHI nodes for |
| /// its operands. |
| Instruction *FoldPHIArgOpIntoPHI(PHINode &PN); |
| Instruction *FoldPHIArgBinOpIntoPHI(PHINode &PN); |
| Instruction *FoldPHIArgGEPIntoPHI(PHINode &PN); |
| Instruction *FoldPHIArgLoadIntoPHI(PHINode &PN); |
| Instruction *FoldPHIArgZextsIntoPHI(PHINode &PN); |
| |
| /// If an integer typed PHI has only one use which is an IntToPtr operation, |
| /// replace the PHI with an existing pointer typed PHI if it exists. Otherwise |
| /// insert a new pointer typed PHI and replace the original one. |
| Instruction *FoldIntegerTypedPHI(PHINode &PN); |
| |
| /// Helper function for FoldPHIArgXIntoPHI() to set debug location for the |
| /// folded operation. |
| void PHIArgMergedDebugLoc(Instruction *Inst, PHINode &PN); |
| |
| Instruction *foldGEPICmp(GEPOperator *GEPLHS, Value *RHS, |
| ICmpInst::Predicate Cond, Instruction &I); |
| Instruction *foldAllocaCmp(ICmpInst &ICI, const AllocaInst *Alloca, |
| const Value *Other); |
| Instruction *foldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP, |
| GlobalVariable *GV, CmpInst &ICI, |
| ConstantInt *AndCst = nullptr); |
| Instruction *foldFCmpIntToFPConst(FCmpInst &I, Instruction *LHSI, |
| Constant *RHSC); |
| Instruction *foldICmpAddOpConst(Value *X, const APInt &C, |
| ICmpInst::Predicate Pred); |
| Instruction *foldICmpWithCastAndCast(ICmpInst &ICI); |
| |
| Instruction *foldICmpUsingKnownBits(ICmpInst &Cmp); |
| Instruction *foldICmpWithDominatingICmp(ICmpInst &Cmp); |
| Instruction *foldICmpWithConstant(ICmpInst &Cmp); |
| Instruction *foldICmpInstWithConstant(ICmpInst &Cmp); |
| Instruction *foldICmpInstWithConstantNotInt(ICmpInst &Cmp); |
| Instruction *foldICmpBinOp(ICmpInst &Cmp); |
| Instruction *foldICmpEquality(ICmpInst &Cmp); |
| Instruction *foldICmpWithZero(ICmpInst &Cmp); |
| |
| Instruction *foldICmpSelectConstant(ICmpInst &Cmp, SelectInst *Select, |
| ConstantInt *C); |
| Instruction *foldICmpTruncConstant(ICmpInst &Cmp, TruncInst *Trunc, |
| const APInt &C); |
| Instruction *foldICmpAndConstant(ICmpInst &Cmp, BinaryOperator *And, |
| const APInt &C); |
| Instruction *foldICmpXorConstant(ICmpInst &Cmp, BinaryOperator *Xor, |
| const APInt &C); |
| Instruction *foldICmpOrConstant(ICmpInst &Cmp, BinaryOperator *Or, |
| const APInt &C); |
| Instruction *foldICmpMulConstant(ICmpInst &Cmp, BinaryOperator *Mul, |
| const APInt &C); |
| Instruction *foldICmpShlConstant(ICmpInst &Cmp, BinaryOperator *Shl, |
| const APInt &C); |
| Instruction *foldICmpShrConstant(ICmpInst &Cmp, BinaryOperator *Shr, |
| const APInt &C); |
| Instruction *foldICmpUDivConstant(ICmpInst &Cmp, BinaryOperator *UDiv, |
| const APInt &C); |
| Instruction *foldICmpDivConstant(ICmpInst &Cmp, BinaryOperator *Div, |
| const APInt &C); |
| Instruction *foldICmpSubConstant(ICmpInst &Cmp, BinaryOperator *Sub, |
| const APInt &C); |
| Instruction *foldICmpAddConstant(ICmpInst &Cmp, BinaryOperator *Add, |
| const APInt &C); |
| Instruction *foldICmpAndConstConst(ICmpInst &Cmp, BinaryOperator *And, |
| const APInt &C1); |
| Instruction *foldICmpAndShift(ICmpInst &Cmp, BinaryOperator *And, |
| const APInt &C1, const APInt &C2); |
| Instruction *foldICmpShrConstConst(ICmpInst &I, Value *ShAmt, const APInt &C1, |
| const APInt &C2); |
| Instruction *foldICmpShlConstConst(ICmpInst &I, Value *ShAmt, const APInt &C1, |
| const APInt &C2); |
| |
| Instruction *foldICmpBinOpEqualityWithConstant(ICmpInst &Cmp, |
| BinaryOperator *BO, |
| const APInt &C); |
| Instruction *foldICmpIntrinsicWithConstant(ICmpInst &ICI, IntrinsicInst *II, |
| const APInt &C); |
| Instruction *foldICmpEqIntrinsicWithConstant(ICmpInst &ICI, IntrinsicInst *II, |
| const APInt &C); |
| |
| // Helpers of visitSelectInst(). |
| Instruction *foldSelectExtConst(SelectInst &Sel); |
| Instruction *foldSelectOpOp(SelectInst &SI, Instruction *TI, Instruction *FI); |
| Instruction *foldSelectIntoOp(SelectInst &SI, Value *, Value *); |
| Instruction *foldSPFofSPF(Instruction *Inner, SelectPatternFlavor SPF1, |
| Value *A, Value *B, Instruction &Outer, |
| SelectPatternFlavor SPF2, Value *C); |
| Instruction *foldSelectInstWithICmp(SelectInst &SI, ICmpInst *ICI); |
| |
| Instruction *OptAndOp(BinaryOperator *Op, ConstantInt *OpRHS, |
| ConstantInt *AndRHS, BinaryOperator &TheAnd); |
| |
| Value *insertRangeTest(Value *V, const APInt &Lo, const APInt &Hi, |
| bool isSigned, bool Inside); |
| Instruction *PromoteCastOfAllocation(BitCastInst &CI, AllocaInst &AI); |
| bool mergeStoreIntoSuccessor(StoreInst &SI); |
| |
| /// Given an 'or' instruction, check to see if it is part of a bswap idiom. |
| /// If so, return the equivalent bswap intrinsic. |
| Instruction *matchBSwap(BinaryOperator &Or); |
| |
| Instruction *SimplifyAnyMemTransfer(AnyMemTransferInst *MI); |
| Instruction *SimplifyAnyMemSet(AnyMemSetInst *MI); |
| |
| Value *EvaluateInDifferentType(Value *V, Type *Ty, bool isSigned); |
| |
| /// Returns a value X such that Val = X * Scale, or null if none. |
| /// |
| /// If the multiplication is known not to overflow then NoSignedWrap is set. |
| Value *Descale(Value *Val, APInt Scale, bool &NoSignedWrap); |
| }; |
| |
| } // end namespace llvm |
| |
| #undef DEBUG_TYPE |
| |
| #endif // LLVM_LIB_TRANSFORMS_INSTCOMBINE_INSTCOMBINEINTERNAL_H |