| //===-- X86FloatingPoint.cpp - FP_REG_KILL inserter -----------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines the pass which inserts FP_REG_KILL instructions. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "x86-codegen" |
| #include "X86.h" |
| #include "X86InstrInfo.h" |
| #include "X86Subtarget.h" |
| #include "llvm/Instructions.h" |
| #include "llvm/CodeGen/MachineFunctionPass.h" |
| #include "llvm/CodeGen/MachineInstrBuilder.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/Passes.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/CFG.h" |
| #include "llvm/ADT/Statistic.h" |
| using namespace llvm; |
| |
| STATISTIC(NumFPKill, "Number of FP_REG_KILL instructions added"); |
| |
| namespace { |
| struct FPRegKiller : public MachineFunctionPass { |
| static char ID; |
| FPRegKiller() : MachineFunctionPass(&ID) {} |
| |
| virtual void getAnalysisUsage(AnalysisUsage &AU) const { |
| AU.setPreservesCFG(); |
| AU.addPreservedID(MachineLoopInfoID); |
| AU.addPreservedID(MachineDominatorsID); |
| MachineFunctionPass::getAnalysisUsage(AU); |
| } |
| |
| virtual bool runOnMachineFunction(MachineFunction &MF); |
| |
| virtual const char *getPassName() const { return "X86 FP_REG_KILL inserter"; } |
| }; |
| char FPRegKiller::ID = 0; |
| } |
| |
| FunctionPass *llvm::createX87FPRegKillInserterPass() { return new FPRegKiller(); } |
| |
| bool FPRegKiller::runOnMachineFunction(MachineFunction &MF) { |
| // If we are emitting FP stack code, scan the basic block to determine if this |
| // block defines any FP values. If so, put an FP_REG_KILL instruction before |
| // the terminator of the block. |
| |
| // Note that FP stack instructions are used in all modes for long double, |
| // so we always need to do this check. |
| // Also note that it's possible for an FP stack register to be live across |
| // an instruction that produces multiple basic blocks (SSE CMOV) so we |
| // must check all the generated basic blocks. |
| |
| // Scan all of the machine instructions in these MBBs, checking for FP |
| // stores. (RFP32 and RFP64 will not exist in SSE mode, but RFP80 might.) |
| |
| // Fast-path: If nothing is using the x87 registers, we don't need to do |
| // any scanning. |
| MachineRegisterInfo &MRI = MF.getRegInfo(); |
| if (MRI.getRegClassVirtRegs(X86::RFP80RegisterClass).empty() && |
| MRI.getRegClassVirtRegs(X86::RFP64RegisterClass).empty() && |
| MRI.getRegClassVirtRegs(X86::RFP32RegisterClass).empty()) |
| return false; |
| |
| bool Changed = false; |
| const X86Subtarget &Subtarget = MF.getTarget().getSubtarget<X86Subtarget>(); |
| MachineFunction::iterator MBBI = MF.begin(); |
| MachineFunction::iterator EndMBB = MF.end(); |
| for (; MBBI != EndMBB; ++MBBI) { |
| MachineBasicBlock *MBB = MBBI; |
| |
| // If this block returns, ignore it. We don't want to insert an FP_REG_KILL |
| // before the return. |
| if (!MBB->empty()) { |
| MachineBasicBlock::iterator EndI = MBB->end(); |
| --EndI; |
| if (EndI->getDesc().isReturn()) |
| continue; |
| } |
| |
| bool ContainsFPCode = false; |
| for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); |
| !ContainsFPCode && I != E; ++I) { |
| if (I->getNumOperands() != 0 && I->getOperand(0).isReg()) { |
| const TargetRegisterClass *clas; |
| for (unsigned op = 0, e = I->getNumOperands(); op != e; ++op) { |
| if (I->getOperand(op).isReg() && I->getOperand(op).isDef() && |
| TargetRegisterInfo::isVirtualRegister(I->getOperand(op).getReg()) && |
| ((clas = MRI.getRegClass(I->getOperand(op).getReg())) == |
| X86::RFP32RegisterClass || |
| clas == X86::RFP64RegisterClass || |
| clas == X86::RFP80RegisterClass)) { |
| ContainsFPCode = true; |
| break; |
| } |
| } |
| } |
| } |
| // Check PHI nodes in successor blocks. These PHI's will be lowered to have |
| // a copy of the input value in this block. In SSE mode, we only care about |
| // 80-bit values. |
| if (!ContainsFPCode) { |
| // Final check, check LLVM BB's that are successors to the LLVM BB |
| // corresponding to BB for FP PHI nodes. |
| const BasicBlock *LLVMBB = MBB->getBasicBlock(); |
| const PHINode *PN; |
| for (succ_const_iterator SI = succ_begin(LLVMBB), E = succ_end(LLVMBB); |
| !ContainsFPCode && SI != E; ++SI) { |
| for (BasicBlock::const_iterator II = SI->begin(); |
| (PN = dyn_cast<PHINode>(II)); ++II) { |
| if (PN->getType()==Type::getX86_FP80Ty(LLVMBB->getContext()) || |
| (!Subtarget.hasSSE1() && PN->getType()->isFloatingPointTy()) || |
| (!Subtarget.hasSSE2() && |
| PN->getType()==Type::getDoubleTy(LLVMBB->getContext()))) { |
| ContainsFPCode = true; |
| break; |
| } |
| } |
| } |
| } |
| // Finally, if we found any FP code, emit the FP_REG_KILL instruction. |
| if (ContainsFPCode) { |
| BuildMI(*MBB, MBBI->getFirstTerminator(), DebugLoc(), |
| MF.getTarget().getInstrInfo()->get(X86::FP_REG_KILL)); |
| ++NumFPKill; |
| Changed = true; |
| } |
| } |
| |
| return Changed; |
| } |