| //===-- X86/X86MCCodeEmitter.cpp - Convert X86 code to machine code -------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the X86MCCodeEmitter class. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "x86-emitter" |
| #include "X86.h" |
| #include "X86InstrInfo.h" |
| #include "X86FixupKinds.h" |
| #include "llvm/MC/MCCodeEmitter.h" |
| #include "llvm/MC/MCExpr.h" |
| #include "llvm/MC/MCInst.h" |
| #include "llvm/Support/raw_ostream.h" |
| using namespace llvm; |
| |
| namespace { |
| class X86MCCodeEmitter : public MCCodeEmitter { |
| X86MCCodeEmitter(const X86MCCodeEmitter &); // DO NOT IMPLEMENT |
| void operator=(const X86MCCodeEmitter &); // DO NOT IMPLEMENT |
| const TargetMachine &TM; |
| const TargetInstrInfo &TII; |
| MCContext &Ctx; |
| bool Is64BitMode; |
| public: |
| X86MCCodeEmitter(TargetMachine &tm, MCContext &ctx, bool is64Bit) |
| : TM(tm), TII(*TM.getInstrInfo()), Ctx(ctx) { |
| Is64BitMode = is64Bit; |
| } |
| |
| ~X86MCCodeEmitter() {} |
| |
| unsigned getNumFixupKinds() const { |
| return 4; |
| } |
| |
| const MCFixupKindInfo &getFixupKindInfo(MCFixupKind Kind) const { |
| const static MCFixupKindInfo Infos[] = { |
| { "reloc_pcrel_4byte", 0, 4 * 8, MCFixupKindInfo::FKF_IsPCRel }, |
| { "reloc_pcrel_1byte", 0, 1 * 8, MCFixupKindInfo::FKF_IsPCRel }, |
| { "reloc_riprel_4byte", 0, 4 * 8, MCFixupKindInfo::FKF_IsPCRel }, |
| { "reloc_riprel_4byte_movq_load", 0, 4 * 8, MCFixupKindInfo::FKF_IsPCRel } |
| }; |
| |
| if (Kind < FirstTargetFixupKind) |
| return MCCodeEmitter::getFixupKindInfo(Kind); |
| |
| assert(unsigned(Kind - FirstTargetFixupKind) < getNumFixupKinds() && |
| "Invalid kind!"); |
| return Infos[Kind - FirstTargetFixupKind]; |
| } |
| |
| static unsigned GetX86RegNum(const MCOperand &MO) { |
| return X86RegisterInfo::getX86RegNum(MO.getReg()); |
| } |
| |
| void EmitByte(unsigned char C, unsigned &CurByte, raw_ostream &OS) const { |
| OS << (char)C; |
| ++CurByte; |
| } |
| |
| void EmitConstant(uint64_t Val, unsigned Size, unsigned &CurByte, |
| raw_ostream &OS) const { |
| // Output the constant in little endian byte order. |
| for (unsigned i = 0; i != Size; ++i) { |
| EmitByte(Val & 255, CurByte, OS); |
| Val >>= 8; |
| } |
| } |
| |
| void EmitImmediate(const MCOperand &Disp, |
| unsigned ImmSize, MCFixupKind FixupKind, |
| unsigned &CurByte, raw_ostream &OS, |
| SmallVectorImpl<MCFixup> &Fixups, |
| int ImmOffset = 0) const; |
| |
| inline static unsigned char ModRMByte(unsigned Mod, unsigned RegOpcode, |
| unsigned RM) { |
| assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!"); |
| return RM | (RegOpcode << 3) | (Mod << 6); |
| } |
| |
| void EmitRegModRMByte(const MCOperand &ModRMReg, unsigned RegOpcodeFld, |
| unsigned &CurByte, raw_ostream &OS) const { |
| EmitByte(ModRMByte(3, RegOpcodeFld, GetX86RegNum(ModRMReg)), CurByte, OS); |
| } |
| |
| void EmitSIBByte(unsigned SS, unsigned Index, unsigned Base, |
| unsigned &CurByte, raw_ostream &OS) const { |
| // SIB byte is in the same format as the ModRMByte. |
| EmitByte(ModRMByte(SS, Index, Base), CurByte, OS); |
| } |
| |
| |
| void EmitMemModRMByte(const MCInst &MI, unsigned Op, |
| unsigned RegOpcodeField, |
| unsigned TSFlags, unsigned &CurByte, raw_ostream &OS, |
| SmallVectorImpl<MCFixup> &Fixups) const; |
| |
| void EncodeInstruction(const MCInst &MI, raw_ostream &OS, |
| SmallVectorImpl<MCFixup> &Fixups) const; |
| |
| }; |
| |
| } // end anonymous namespace |
| |
| |
| MCCodeEmitter *llvm::createX86_32MCCodeEmitter(const Target &, |
| TargetMachine &TM, |
| MCContext &Ctx) { |
| return new X86MCCodeEmitter(TM, Ctx, false); |
| } |
| |
| MCCodeEmitter *llvm::createX86_64MCCodeEmitter(const Target &, |
| TargetMachine &TM, |
| MCContext &Ctx) { |
| return new X86MCCodeEmitter(TM, Ctx, true); |
| } |
| |
| |
| /// isDisp8 - Return true if this signed displacement fits in a 8-bit |
| /// sign-extended field. |
| static bool isDisp8(int Value) { |
| return Value == (signed char)Value; |
| } |
| |
| /// getImmFixupKind - Return the appropriate fixup kind to use for an immediate |
| /// in an instruction with the specified TSFlags. |
| static MCFixupKind getImmFixupKind(unsigned TSFlags) { |
| unsigned Size = X86II::getSizeOfImm(TSFlags); |
| bool isPCRel = X86II::isImmPCRel(TSFlags); |
| |
| switch (Size) { |
| default: assert(0 && "Unknown immediate size"); |
| case 1: return isPCRel ? MCFixupKind(X86::reloc_pcrel_1byte) : FK_Data_1; |
| case 4: return isPCRel ? MCFixupKind(X86::reloc_pcrel_4byte) : FK_Data_4; |
| case 2: assert(!isPCRel); return FK_Data_2; |
| case 8: assert(!isPCRel); return FK_Data_8; |
| } |
| } |
| |
| |
| void X86MCCodeEmitter:: |
| EmitImmediate(const MCOperand &DispOp, unsigned Size, MCFixupKind FixupKind, |
| unsigned &CurByte, raw_ostream &OS, |
| SmallVectorImpl<MCFixup> &Fixups, int ImmOffset) const { |
| // If this is a simple integer displacement that doesn't require a relocation, |
| // emit it now. |
| if (DispOp.isImm()) { |
| // FIXME: is this right for pc-rel encoding?? Probably need to emit this as |
| // a fixup if so. |
| EmitConstant(DispOp.getImm()+ImmOffset, Size, CurByte, OS); |
| return; |
| } |
| |
| // If we have an immoffset, add it to the expression. |
| const MCExpr *Expr = DispOp.getExpr(); |
| |
| // If the fixup is pc-relative, we need to bias the value to be relative to |
| // the start of the field, not the end of the field. |
| if (FixupKind == MCFixupKind(X86::reloc_pcrel_4byte) || |
| FixupKind == MCFixupKind(X86::reloc_riprel_4byte) || |
| FixupKind == MCFixupKind(X86::reloc_riprel_4byte_movq_load)) |
| ImmOffset -= 4; |
| if (FixupKind == MCFixupKind(X86::reloc_pcrel_1byte)) |
| ImmOffset -= 1; |
| |
| if (ImmOffset) |
| Expr = MCBinaryExpr::CreateAdd(Expr, MCConstantExpr::Create(ImmOffset, Ctx), |
| Ctx); |
| |
| // Emit a symbolic constant as a fixup and 4 zeros. |
| Fixups.push_back(MCFixup::Create(CurByte, Expr, FixupKind)); |
| EmitConstant(0, Size, CurByte, OS); |
| } |
| |
| |
| void X86MCCodeEmitter::EmitMemModRMByte(const MCInst &MI, unsigned Op, |
| unsigned RegOpcodeField, |
| unsigned TSFlags, unsigned &CurByte, |
| raw_ostream &OS, |
| SmallVectorImpl<MCFixup> &Fixups) const{ |
| const MCOperand &Disp = MI.getOperand(Op+3); |
| const MCOperand &Base = MI.getOperand(Op); |
| const MCOperand &Scale = MI.getOperand(Op+1); |
| const MCOperand &IndexReg = MI.getOperand(Op+2); |
| unsigned BaseReg = Base.getReg(); |
| |
| // Handle %rip relative addressing. |
| if (BaseReg == X86::RIP) { // [disp32+RIP] in X86-64 mode |
| assert(IndexReg.getReg() == 0 && Is64BitMode && |
| "Invalid rip-relative address"); |
| EmitByte(ModRMByte(0, RegOpcodeField, 5), CurByte, OS); |
| |
| unsigned FixupKind = X86::reloc_riprel_4byte; |
| |
| // movq loads are handled with a special relocation form which allows the |
| // linker to eliminate some loads for GOT references which end up in the |
| // same linkage unit. |
| if (MI.getOpcode() == X86::MOV64rm || |
| MI.getOpcode() == X86::MOV64rm_TC) |
| FixupKind = X86::reloc_riprel_4byte_movq_load; |
| |
| // rip-relative addressing is actually relative to the *next* instruction. |
| // Since an immediate can follow the mod/rm byte for an instruction, this |
| // means that we need to bias the immediate field of the instruction with |
| // the size of the immediate field. If we have this case, add it into the |
| // expression to emit. |
| int ImmSize = X86II::hasImm(TSFlags) ? X86II::getSizeOfImm(TSFlags) : 0; |
| |
| EmitImmediate(Disp, 4, MCFixupKind(FixupKind), |
| CurByte, OS, Fixups, -ImmSize); |
| return; |
| } |
| |
| unsigned BaseRegNo = BaseReg ? GetX86RegNum(Base) : -1U; |
| |
| // Determine whether a SIB byte is needed. |
| // If no BaseReg, issue a RIP relative instruction only if the MCE can |
| // resolve addresses on-the-fly, otherwise use SIB (Intel Manual 2A, table |
| // 2-7) and absolute references. |
| |
| if (// The SIB byte must be used if there is an index register. |
| IndexReg.getReg() == 0 && |
| // The SIB byte must be used if the base is ESP/RSP/R12, all of which |
| // encode to an R/M value of 4, which indicates that a SIB byte is |
| // present. |
| BaseRegNo != N86::ESP && |
| // If there is no base register and we're in 64-bit mode, we need a SIB |
| // byte to emit an addr that is just 'disp32' (the non-RIP relative form). |
| (!Is64BitMode || BaseReg != 0)) { |
| |
| if (BaseReg == 0) { // [disp32] in X86-32 mode |
| EmitByte(ModRMByte(0, RegOpcodeField, 5), CurByte, OS); |
| EmitImmediate(Disp, 4, FK_Data_4, CurByte, OS, Fixups); |
| return; |
| } |
| |
| // If the base is not EBP/ESP and there is no displacement, use simple |
| // indirect register encoding, this handles addresses like [EAX]. The |
| // encoding for [EBP] with no displacement means [disp32] so we handle it |
| // by emitting a displacement of 0 below. |
| if (Disp.isImm() && Disp.getImm() == 0 && BaseRegNo != N86::EBP) { |
| EmitByte(ModRMByte(0, RegOpcodeField, BaseRegNo), CurByte, OS); |
| return; |
| } |
| |
| // Otherwise, if the displacement fits in a byte, encode as [REG+disp8]. |
| if (Disp.isImm() && isDisp8(Disp.getImm())) { |
| EmitByte(ModRMByte(1, RegOpcodeField, BaseRegNo), CurByte, OS); |
| EmitImmediate(Disp, 1, FK_Data_1, CurByte, OS, Fixups); |
| return; |
| } |
| |
| // Otherwise, emit the most general non-SIB encoding: [REG+disp32] |
| EmitByte(ModRMByte(2, RegOpcodeField, BaseRegNo), CurByte, OS); |
| EmitImmediate(Disp, 4, FK_Data_4, CurByte, OS, Fixups); |
| return; |
| } |
| |
| // We need a SIB byte, so start by outputting the ModR/M byte first |
| assert(IndexReg.getReg() != X86::ESP && |
| IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!"); |
| |
| bool ForceDisp32 = false; |
| bool ForceDisp8 = false; |
| if (BaseReg == 0) { |
| // If there is no base register, we emit the special case SIB byte with |
| // MOD=0, BASE=5, to JUST get the index, scale, and displacement. |
| EmitByte(ModRMByte(0, RegOpcodeField, 4), CurByte, OS); |
| ForceDisp32 = true; |
| } else if (!Disp.isImm()) { |
| // Emit the normal disp32 encoding. |
| EmitByte(ModRMByte(2, RegOpcodeField, 4), CurByte, OS); |
| ForceDisp32 = true; |
| } else if (Disp.getImm() == 0 && |
| // Base reg can't be anything that ends up with '5' as the base |
| // reg, it is the magic [*] nomenclature that indicates no base. |
| BaseRegNo != N86::EBP) { |
| // Emit no displacement ModR/M byte |
| EmitByte(ModRMByte(0, RegOpcodeField, 4), CurByte, OS); |
| } else if (isDisp8(Disp.getImm())) { |
| // Emit the disp8 encoding. |
| EmitByte(ModRMByte(1, RegOpcodeField, 4), CurByte, OS); |
| ForceDisp8 = true; // Make sure to force 8 bit disp if Base=EBP |
| } else { |
| // Emit the normal disp32 encoding. |
| EmitByte(ModRMByte(2, RegOpcodeField, 4), CurByte, OS); |
| } |
| |
| // Calculate what the SS field value should be... |
| static const unsigned SSTable[] = { ~0, 0, 1, ~0, 2, ~0, ~0, ~0, 3 }; |
| unsigned SS = SSTable[Scale.getImm()]; |
| |
| if (BaseReg == 0) { |
| // Handle the SIB byte for the case where there is no base, see Intel |
| // Manual 2A, table 2-7. The displacement has already been output. |
| unsigned IndexRegNo; |
| if (IndexReg.getReg()) |
| IndexRegNo = GetX86RegNum(IndexReg); |
| else // Examples: [ESP+1*<noreg>+4] or [scaled idx]+disp32 (MOD=0,BASE=5) |
| IndexRegNo = 4; |
| EmitSIBByte(SS, IndexRegNo, 5, CurByte, OS); |
| } else { |
| unsigned IndexRegNo; |
| if (IndexReg.getReg()) |
| IndexRegNo = GetX86RegNum(IndexReg); |
| else |
| IndexRegNo = 4; // For example [ESP+1*<noreg>+4] |
| EmitSIBByte(SS, IndexRegNo, GetX86RegNum(Base), CurByte, OS); |
| } |
| |
| // Do we need to output a displacement? |
| if (ForceDisp8) |
| EmitImmediate(Disp, 1, FK_Data_1, CurByte, OS, Fixups); |
| else if (ForceDisp32 || Disp.getImm() != 0) |
| EmitImmediate(Disp, 4, FK_Data_4, CurByte, OS, Fixups); |
| } |
| |
| /// DetermineREXPrefix - Determine if the MCInst has to be encoded with a X86-64 |
| /// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand |
| /// size, and 3) use of X86-64 extended registers. |
| static unsigned DetermineREXPrefix(const MCInst &MI, unsigned TSFlags, |
| const TargetInstrDesc &Desc) { |
| // Pseudo instructions never have a rex byte. |
| if ((TSFlags & X86II::FormMask) == X86II::Pseudo) |
| return 0; |
| |
| unsigned REX = 0; |
| if (TSFlags & X86II::REX_W) |
| REX |= 1 << 3; |
| |
| if (MI.getNumOperands() == 0) return REX; |
| |
| unsigned NumOps = MI.getNumOperands(); |
| // FIXME: MCInst should explicitize the two-addrness. |
| bool isTwoAddr = NumOps > 1 && |
| Desc.getOperandConstraint(1, TOI::TIED_TO) != -1; |
| |
| // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix. |
| unsigned i = isTwoAddr ? 1 : 0; |
| for (; i != NumOps; ++i) { |
| const MCOperand &MO = MI.getOperand(i); |
| if (!MO.isReg()) continue; |
| unsigned Reg = MO.getReg(); |
| if (!X86InstrInfo::isX86_64NonExtLowByteReg(Reg)) continue; |
| // FIXME: The caller of DetermineREXPrefix slaps this prefix onto anything |
| // that returns non-zero. |
| REX |= 0x40; |
| break; |
| } |
| |
| switch (TSFlags & X86II::FormMask) { |
| case X86II::MRMInitReg: assert(0 && "FIXME: Remove this!"); |
| case X86II::MRMSrcReg: |
| if (MI.getOperand(0).isReg() && |
| X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0).getReg())) |
| REX |= 1 << 2; |
| i = isTwoAddr ? 2 : 1; |
| for (; i != NumOps; ++i) { |
| const MCOperand &MO = MI.getOperand(i); |
| if (MO.isReg() && X86InstrInfo::isX86_64ExtendedReg(MO.getReg())) |
| REX |= 1 << 0; |
| } |
| break; |
| case X86II::MRMSrcMem: { |
| if (MI.getOperand(0).isReg() && |
| X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0).getReg())) |
| REX |= 1 << 2; |
| unsigned Bit = 0; |
| i = isTwoAddr ? 2 : 1; |
| for (; i != NumOps; ++i) { |
| const MCOperand &MO = MI.getOperand(i); |
| if (MO.isReg()) { |
| if (X86InstrInfo::isX86_64ExtendedReg(MO.getReg())) |
| REX |= 1 << Bit; |
| Bit++; |
| } |
| } |
| break; |
| } |
| case X86II::MRM0m: case X86II::MRM1m: |
| case X86II::MRM2m: case X86II::MRM3m: |
| case X86II::MRM4m: case X86II::MRM5m: |
| case X86II::MRM6m: case X86II::MRM7m: |
| case X86II::MRMDestMem: { |
| unsigned e = (isTwoAddr ? X86AddrNumOperands+1 : X86AddrNumOperands); |
| i = isTwoAddr ? 1 : 0; |
| if (NumOps > e && MI.getOperand(e).isReg() && |
| X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(e).getReg())) |
| REX |= 1 << 2; |
| unsigned Bit = 0; |
| for (; i != e; ++i) { |
| const MCOperand &MO = MI.getOperand(i); |
| if (MO.isReg()) { |
| if (X86InstrInfo::isX86_64ExtendedReg(MO.getReg())) |
| REX |= 1 << Bit; |
| Bit++; |
| } |
| } |
| break; |
| } |
| default: |
| if (MI.getOperand(0).isReg() && |
| X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0).getReg())) |
| REX |= 1 << 0; |
| i = isTwoAddr ? 2 : 1; |
| for (unsigned e = NumOps; i != e; ++i) { |
| const MCOperand &MO = MI.getOperand(i); |
| if (MO.isReg() && X86InstrInfo::isX86_64ExtendedReg(MO.getReg())) |
| REX |= 1 << 2; |
| } |
| break; |
| } |
| return REX; |
| } |
| |
| void X86MCCodeEmitter:: |
| EncodeInstruction(const MCInst &MI, raw_ostream &OS, |
| SmallVectorImpl<MCFixup> &Fixups) const { |
| unsigned Opcode = MI.getOpcode(); |
| const TargetInstrDesc &Desc = TII.get(Opcode); |
| unsigned TSFlags = Desc.TSFlags; |
| |
| // Keep track of the current byte being emitted. |
| unsigned CurByte = 0; |
| |
| // FIXME: We should emit the prefixes in exactly the same order as GAS does, |
| // in order to provide diffability. |
| |
| // Emit the lock opcode prefix as needed. |
| if (TSFlags & X86II::LOCK) |
| EmitByte(0xF0, CurByte, OS); |
| |
| // Emit segment override opcode prefix as needed. |
| switch (TSFlags & X86II::SegOvrMask) { |
| default: assert(0 && "Invalid segment!"); |
| case 0: break; // No segment override! |
| case X86II::FS: |
| EmitByte(0x64, CurByte, OS); |
| break; |
| case X86II::GS: |
| EmitByte(0x65, CurByte, OS); |
| break; |
| } |
| |
| // Emit the repeat opcode prefix as needed. |
| if ((TSFlags & X86II::Op0Mask) == X86II::REP) |
| EmitByte(0xF3, CurByte, OS); |
| |
| // Emit the operand size opcode prefix as needed. |
| if (TSFlags & X86II::OpSize) |
| EmitByte(0x66, CurByte, OS); |
| |
| // Emit the address size opcode prefix as needed. |
| if (TSFlags & X86II::AdSize) |
| EmitByte(0x67, CurByte, OS); |
| |
| bool Need0FPrefix = false; |
| switch (TSFlags & X86II::Op0Mask) { |
| default: assert(0 && "Invalid prefix!"); |
| case 0: break; // No prefix! |
| case X86II::REP: break; // already handled. |
| case X86II::TB: // Two-byte opcode prefix |
| case X86II::T8: // 0F 38 |
| case X86II::TA: // 0F 3A |
| Need0FPrefix = true; |
| break; |
| case X86II::TF: // F2 0F 38 |
| EmitByte(0xF2, CurByte, OS); |
| Need0FPrefix = true; |
| break; |
| case X86II::XS: // F3 0F |
| EmitByte(0xF3, CurByte, OS); |
| Need0FPrefix = true; |
| break; |
| case X86II::XD: // F2 0F |
| EmitByte(0xF2, CurByte, OS); |
| Need0FPrefix = true; |
| break; |
| case X86II::D8: EmitByte(0xD8, CurByte, OS); break; |
| case X86II::D9: EmitByte(0xD9, CurByte, OS); break; |
| case X86II::DA: EmitByte(0xDA, CurByte, OS); break; |
| case X86II::DB: EmitByte(0xDB, CurByte, OS); break; |
| case X86II::DC: EmitByte(0xDC, CurByte, OS); break; |
| case X86II::DD: EmitByte(0xDD, CurByte, OS); break; |
| case X86II::DE: EmitByte(0xDE, CurByte, OS); break; |
| case X86II::DF: EmitByte(0xDF, CurByte, OS); break; |
| } |
| |
| // Handle REX prefix. |
| // FIXME: Can this come before F2 etc to simplify emission? |
| if (Is64BitMode) { |
| if (unsigned REX = DetermineREXPrefix(MI, TSFlags, Desc)) |
| EmitByte(0x40 | REX, CurByte, OS); |
| } |
| |
| // 0x0F escape code must be emitted just before the opcode. |
| if (Need0FPrefix) |
| EmitByte(0x0F, CurByte, OS); |
| |
| // FIXME: Pull this up into previous switch if REX can be moved earlier. |
| switch (TSFlags & X86II::Op0Mask) { |
| case X86II::TF: // F2 0F 38 |
| case X86II::T8: // 0F 38 |
| EmitByte(0x38, CurByte, OS); |
| break; |
| case X86II::TA: // 0F 3A |
| EmitByte(0x3A, CurByte, OS); |
| break; |
| } |
| |
| // If this is a two-address instruction, skip one of the register operands. |
| unsigned NumOps = Desc.getNumOperands(); |
| unsigned CurOp = 0; |
| if (NumOps > 1 && Desc.getOperandConstraint(1, TOI::TIED_TO) != -1) |
| ++CurOp; |
| else if (NumOps > 2 && Desc.getOperandConstraint(NumOps-1, TOI::TIED_TO)== 0) |
| // Skip the last source operand that is tied_to the dest reg. e.g. LXADD32 |
| --NumOps; |
| |
| unsigned char BaseOpcode = X86II::getBaseOpcodeFor(TSFlags); |
| switch (TSFlags & X86II::FormMask) { |
| case X86II::MRMInitReg: |
| assert(0 && "FIXME: Remove this form when the JIT moves to MCCodeEmitter!"); |
| default: errs() << "FORM: " << (TSFlags & X86II::FormMask) << "\n"; |
| assert(0 && "Unknown FormMask value in X86MCCodeEmitter!"); |
| case X86II::Pseudo: return; // Pseudo instructions encode to nothing. |
| case X86II::RawFrm: |
| EmitByte(BaseOpcode, CurByte, OS); |
| break; |
| |
| case X86II::AddRegFrm: |
| EmitByte(BaseOpcode + GetX86RegNum(MI.getOperand(CurOp++)), CurByte, OS); |
| break; |
| |
| case X86II::MRMDestReg: |
| EmitByte(BaseOpcode, CurByte, OS); |
| EmitRegModRMByte(MI.getOperand(CurOp), |
| GetX86RegNum(MI.getOperand(CurOp+1)), CurByte, OS); |
| CurOp += 2; |
| break; |
| |
| case X86II::MRMDestMem: |
| EmitByte(BaseOpcode, CurByte, OS); |
| EmitMemModRMByte(MI, CurOp, |
| GetX86RegNum(MI.getOperand(CurOp + X86AddrNumOperands)), |
| TSFlags, CurByte, OS, Fixups); |
| CurOp += X86AddrNumOperands + 1; |
| break; |
| |
| case X86II::MRMSrcReg: |
| EmitByte(BaseOpcode, CurByte, OS); |
| EmitRegModRMByte(MI.getOperand(CurOp+1), GetX86RegNum(MI.getOperand(CurOp)), |
| CurByte, OS); |
| CurOp += 2; |
| break; |
| |
| case X86II::MRMSrcMem: { |
| EmitByte(BaseOpcode, CurByte, OS); |
| |
| // FIXME: Maybe lea should have its own form? This is a horrible hack. |
| int AddrOperands; |
| if (Opcode == X86::LEA64r || Opcode == X86::LEA64_32r || |
| Opcode == X86::LEA16r || Opcode == X86::LEA32r) |
| AddrOperands = X86AddrNumOperands - 1; // No segment register |
| else |
| AddrOperands = X86AddrNumOperands; |
| |
| EmitMemModRMByte(MI, CurOp+1, GetX86RegNum(MI.getOperand(CurOp)), |
| TSFlags, CurByte, OS, Fixups); |
| CurOp += AddrOperands + 1; |
| break; |
| } |
| |
| case X86II::MRM0r: case X86II::MRM1r: |
| case X86II::MRM2r: case X86II::MRM3r: |
| case X86II::MRM4r: case X86II::MRM5r: |
| case X86II::MRM6r: case X86II::MRM7r: |
| EmitByte(BaseOpcode, CurByte, OS); |
| EmitRegModRMByte(MI.getOperand(CurOp++), |
| (TSFlags & X86II::FormMask)-X86II::MRM0r, |
| CurByte, OS); |
| break; |
| case X86II::MRM0m: case X86II::MRM1m: |
| case X86II::MRM2m: case X86II::MRM3m: |
| case X86II::MRM4m: case X86II::MRM5m: |
| case X86II::MRM6m: case X86II::MRM7m: |
| EmitByte(BaseOpcode, CurByte, OS); |
| EmitMemModRMByte(MI, CurOp, (TSFlags & X86II::FormMask)-X86II::MRM0m, |
| TSFlags, CurByte, OS, Fixups); |
| CurOp += X86AddrNumOperands; |
| break; |
| case X86II::MRM_C1: |
| EmitByte(BaseOpcode, CurByte, OS); |
| EmitByte(0xC1, CurByte, OS); |
| break; |
| case X86II::MRM_C2: |
| EmitByte(BaseOpcode, CurByte, OS); |
| EmitByte(0xC2, CurByte, OS); |
| break; |
| case X86II::MRM_C3: |
| EmitByte(BaseOpcode, CurByte, OS); |
| EmitByte(0xC3, CurByte, OS); |
| break; |
| case X86II::MRM_C4: |
| EmitByte(BaseOpcode, CurByte, OS); |
| EmitByte(0xC4, CurByte, OS); |
| break; |
| case X86II::MRM_C8: |
| EmitByte(BaseOpcode, CurByte, OS); |
| EmitByte(0xC8, CurByte, OS); |
| break; |
| case X86II::MRM_C9: |
| EmitByte(BaseOpcode, CurByte, OS); |
| EmitByte(0xC9, CurByte, OS); |
| break; |
| case X86II::MRM_E8: |
| EmitByte(BaseOpcode, CurByte, OS); |
| EmitByte(0xE8, CurByte, OS); |
| break; |
| case X86II::MRM_F0: |
| EmitByte(BaseOpcode, CurByte, OS); |
| EmitByte(0xF0, CurByte, OS); |
| break; |
| case X86II::MRM_F8: |
| EmitByte(BaseOpcode, CurByte, OS); |
| EmitByte(0xF8, CurByte, OS); |
| break; |
| case X86II::MRM_F9: |
| EmitByte(BaseOpcode, CurByte, OS); |
| EmitByte(0xF9, CurByte, OS); |
| break; |
| } |
| |
| // If there is a remaining operand, it must be a trailing immediate. Emit it |
| // according to the right size for the instruction. |
| if (CurOp != NumOps) |
| EmitImmediate(MI.getOperand(CurOp++), |
| X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags), |
| CurByte, OS, Fixups); |
| |
| #ifndef NDEBUG |
| // FIXME: Verify. |
| if (/*!Desc.isVariadic() &&*/ CurOp != NumOps) { |
| errs() << "Cannot encode all operands of: "; |
| MI.dump(); |
| errs() << '\n'; |
| abort(); |
| } |
| #endif |
| } |