| //===-- X86Subtarget.cpp - X86 Subtarget Information ------------*- C++ -*-===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the X86 specific subclass of TargetSubtarget. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "subtarget" |
| #include "X86Subtarget.h" |
| #include "X86InstrInfo.h" |
| #include "X86GenSubtarget.inc" |
| #include "llvm/GlobalValue.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/System/Host.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "llvm/Target/TargetOptions.h" |
| #include "llvm/ADT/SmallVector.h" |
| using namespace llvm; |
| |
| #if defined(_MSC_VER) |
| #include <intrin.h> |
| #endif |
| |
| /// ClassifyBlockAddressReference - Classify a blockaddress reference for the |
| /// current subtarget according to how we should reference it in a non-pcrel |
| /// context. |
| unsigned char X86Subtarget:: |
| ClassifyBlockAddressReference() const { |
| if (isPICStyleGOT()) // 32-bit ELF targets. |
| return X86II::MO_GOTOFF; |
| |
| if (isPICStyleStubPIC()) // Darwin/32 in PIC mode. |
| return X86II::MO_PIC_BASE_OFFSET; |
| |
| // Direct static reference to label. |
| return X86II::MO_NO_FLAG; |
| } |
| |
| /// ClassifyGlobalReference - Classify a global variable reference for the |
| /// current subtarget according to how we should reference it in a non-pcrel |
| /// context. |
| unsigned char X86Subtarget:: |
| ClassifyGlobalReference(const GlobalValue *GV, const TargetMachine &TM) const { |
| // DLLImport only exists on windows, it is implemented as a load from a |
| // DLLIMPORT stub. |
| if (GV->hasDLLImportLinkage()) |
| return X86II::MO_DLLIMPORT; |
| |
| // Materializable GVs (in JIT lazy compilation mode) do not require an |
| // extra load from stub. |
| bool isDecl = GV->isDeclaration() && !GV->isMaterializable(); |
| |
| // X86-64 in PIC mode. |
| if (isPICStyleRIPRel()) { |
| // Large model never uses stubs. |
| if (TM.getCodeModel() == CodeModel::Large) |
| return X86II::MO_NO_FLAG; |
| |
| if (isTargetDarwin()) { |
| // If symbol visibility is hidden, the extra load is not needed if |
| // target is x86-64 or the symbol is definitely defined in the current |
| // translation unit. |
| if (GV->hasDefaultVisibility() && |
| (isDecl || GV->isWeakForLinker())) |
| return X86II::MO_GOTPCREL; |
| } else { |
| assert(isTargetELF() && "Unknown rip-relative target"); |
| |
| // Extra load is needed for all externally visible. |
| if (!GV->hasLocalLinkage() && GV->hasDefaultVisibility()) |
| return X86II::MO_GOTPCREL; |
| } |
| |
| return X86II::MO_NO_FLAG; |
| } |
| |
| if (isPICStyleGOT()) { // 32-bit ELF targets. |
| // Extra load is needed for all externally visible. |
| if (GV->hasLocalLinkage() || GV->hasHiddenVisibility()) |
| return X86II::MO_GOTOFF; |
| return X86II::MO_GOT; |
| } |
| |
| if (isPICStyleStubPIC()) { // Darwin/32 in PIC mode. |
| // Determine whether we have a stub reference and/or whether the reference |
| // is relative to the PIC base or not. |
| |
| // If this is a strong reference to a definition, it is definitely not |
| // through a stub. |
| if (!isDecl && !GV->isWeakForLinker()) |
| return X86II::MO_PIC_BASE_OFFSET; |
| |
| // Unless we have a symbol with hidden visibility, we have to go through a |
| // normal $non_lazy_ptr stub because this symbol might be resolved late. |
| if (!GV->hasHiddenVisibility()) // Non-hidden $non_lazy_ptr reference. |
| return X86II::MO_DARWIN_NONLAZY_PIC_BASE; |
| |
| // If symbol visibility is hidden, we have a stub for common symbol |
| // references and external declarations. |
| if (isDecl || GV->hasCommonLinkage()) { |
| // Hidden $non_lazy_ptr reference. |
| return X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE; |
| } |
| |
| // Otherwise, no stub. |
| return X86II::MO_PIC_BASE_OFFSET; |
| } |
| |
| if (isPICStyleStubNoDynamic()) { // Darwin/32 in -mdynamic-no-pic mode. |
| // Determine whether we have a stub reference. |
| |
| // If this is a strong reference to a definition, it is definitely not |
| // through a stub. |
| if (!isDecl && !GV->isWeakForLinker()) |
| return X86II::MO_NO_FLAG; |
| |
| // Unless we have a symbol with hidden visibility, we have to go through a |
| // normal $non_lazy_ptr stub because this symbol might be resolved late. |
| if (!GV->hasHiddenVisibility()) // Non-hidden $non_lazy_ptr reference. |
| return X86II::MO_DARWIN_NONLAZY; |
| |
| // Otherwise, no stub. |
| return X86II::MO_NO_FLAG; |
| } |
| |
| // Direct static reference to global. |
| return X86II::MO_NO_FLAG; |
| } |
| |
| |
| /// getBZeroEntry - This function returns the name of a function which has an |
| /// interface like the non-standard bzero function, if such a function exists on |
| /// the current subtarget and it is considered prefereable over memset with zero |
| /// passed as the second argument. Otherwise it returns null. |
| const char *X86Subtarget::getBZeroEntry() const { |
| // Darwin 10 has a __bzero entry point for this purpose. |
| if (getDarwinVers() >= 10) |
| return "__bzero"; |
| |
| return 0; |
| } |
| |
| /// IsLegalToCallImmediateAddr - Return true if the subtarget allows calls |
| /// to immediate address. |
| bool X86Subtarget::IsLegalToCallImmediateAddr(const TargetMachine &TM) const { |
| if (Is64Bit) |
| return false; |
| return isTargetELF() || TM.getRelocationModel() == Reloc::Static; |
| } |
| |
| /// getSpecialAddressLatency - For targets where it is beneficial to |
| /// backschedule instructions that compute addresses, return a value |
| /// indicating the number of scheduling cycles of backscheduling that |
| /// should be attempted. |
| unsigned X86Subtarget::getSpecialAddressLatency() const { |
| // For x86 out-of-order targets, back-schedule address computations so |
| // that loads and stores aren't blocked. |
| // This value was chosen arbitrarily. |
| return 200; |
| } |
| |
| /// GetCpuIDAndInfo - Execute the specified cpuid and return the 4 values in the |
| /// specified arguments. If we can't run cpuid on the host, return true. |
| static bool GetCpuIDAndInfo(unsigned value, unsigned *rEAX, |
| unsigned *rEBX, unsigned *rECX, unsigned *rEDX) { |
| #if defined(__x86_64__) || defined(_M_AMD64) || defined (_M_X64) |
| #if defined(__GNUC__) |
| // gcc doesn't know cpuid would clobber ebx/rbx. Preseve it manually. |
| asm ("movq\t%%rbx, %%rsi\n\t" |
| "cpuid\n\t" |
| "xchgq\t%%rbx, %%rsi\n\t" |
| : "=a" (*rEAX), |
| "=S" (*rEBX), |
| "=c" (*rECX), |
| "=d" (*rEDX) |
| : "a" (value)); |
| return false; |
| #elif defined(_MSC_VER) |
| int registers[4]; |
| __cpuid(registers, value); |
| *rEAX = registers[0]; |
| *rEBX = registers[1]; |
| *rECX = registers[2]; |
| *rEDX = registers[3]; |
| return false; |
| #endif |
| #elif defined(i386) || defined(__i386__) || defined(__x86__) || defined(_M_IX86) |
| #if defined(__GNUC__) |
| asm ("movl\t%%ebx, %%esi\n\t" |
| "cpuid\n\t" |
| "xchgl\t%%ebx, %%esi\n\t" |
| : "=a" (*rEAX), |
| "=S" (*rEBX), |
| "=c" (*rECX), |
| "=d" (*rEDX) |
| : "a" (value)); |
| return false; |
| #elif defined(_MSC_VER) |
| __asm { |
| mov eax,value |
| cpuid |
| mov esi,rEAX |
| mov dword ptr [esi],eax |
| mov esi,rEBX |
| mov dword ptr [esi],ebx |
| mov esi,rECX |
| mov dword ptr [esi],ecx |
| mov esi,rEDX |
| mov dword ptr [esi],edx |
| } |
| return false; |
| #endif |
| #endif |
| return true; |
| } |
| |
| static void DetectFamilyModel(unsigned EAX, unsigned &Family, unsigned &Model) { |
| Family = (EAX >> 8) & 0xf; // Bits 8 - 11 |
| Model = (EAX >> 4) & 0xf; // Bits 4 - 7 |
| if (Family == 6 || Family == 0xf) { |
| if (Family == 0xf) |
| // Examine extended family ID if family ID is F. |
| Family += (EAX >> 20) & 0xff; // Bits 20 - 27 |
| // Examine extended model ID if family ID is 6 or F. |
| Model += ((EAX >> 16) & 0xf) << 4; // Bits 16 - 19 |
| } |
| } |
| |
| void X86Subtarget::AutoDetectSubtargetFeatures() { |
| unsigned EAX = 0, EBX = 0, ECX = 0, EDX = 0; |
| union { |
| unsigned u[3]; |
| char c[12]; |
| } text; |
| |
| if (GetCpuIDAndInfo(0, &EAX, text.u+0, text.u+2, text.u+1)) |
| return; |
| |
| GetCpuIDAndInfo(0x1, &EAX, &EBX, &ECX, &EDX); |
| |
| if ((EDX >> 15) & 1) HasCMov = true; |
| if ((EDX >> 23) & 1) X86SSELevel = MMX; |
| if ((EDX >> 25) & 1) X86SSELevel = SSE1; |
| if ((EDX >> 26) & 1) X86SSELevel = SSE2; |
| if (ECX & 0x1) X86SSELevel = SSE3; |
| if ((ECX >> 9) & 1) X86SSELevel = SSSE3; |
| if ((ECX >> 19) & 1) X86SSELevel = SSE41; |
| if ((ECX >> 20) & 1) X86SSELevel = SSE42; |
| |
| bool IsIntel = memcmp(text.c, "GenuineIntel", 12) == 0; |
| bool IsAMD = !IsIntel && memcmp(text.c, "AuthenticAMD", 12) == 0; |
| |
| HasFMA3 = IsIntel && ((ECX >> 12) & 0x1); |
| HasAVX = ((ECX >> 28) & 0x1); |
| HasAES = IsIntel && ((ECX >> 25) & 0x1); |
| |
| if (IsIntel || IsAMD) { |
| // Determine if bit test memory instructions are slow. |
| unsigned Family = 0; |
| unsigned Model = 0; |
| DetectFamilyModel(EAX, Family, Model); |
| IsBTMemSlow = IsAMD || (Family == 6 && Model >= 13); |
| // If it's Nehalem, unaligned memory access is fast. |
| if (Family == 15 && Model == 26) |
| IsUAMemFast = true; |
| |
| GetCpuIDAndInfo(0x80000001, &EAX, &EBX, &ECX, &EDX); |
| HasX86_64 = (EDX >> 29) & 0x1; |
| HasSSE4A = IsAMD && ((ECX >> 6) & 0x1); |
| HasFMA4 = IsAMD && ((ECX >> 16) & 0x1); |
| } |
| } |
| |
| X86Subtarget::X86Subtarget(const std::string &TT, const std::string &FS, |
| bool is64Bit) |
| : PICStyle(PICStyles::None) |
| , X86SSELevel(NoMMXSSE) |
| , X863DNowLevel(NoThreeDNow) |
| , HasCMov(false) |
| , HasX86_64(false) |
| , HasSSE4A(false) |
| , HasAVX(false) |
| , HasAES(false) |
| , HasFMA3(false) |
| , HasFMA4(false) |
| , IsBTMemSlow(false) |
| , IsUAMemFast(false) |
| , HasVectorUAMem(false) |
| , DarwinVers(0) |
| , stackAlignment(8) |
| // FIXME: this is a known good value for Yonah. How about others? |
| , MaxInlineSizeThreshold(128) |
| , Is64Bit(is64Bit) |
| , TargetType(isELF) { // Default to ELF unless otherwise specified. |
| |
| // default to hard float ABI |
| if (FloatABIType == FloatABI::Default) |
| FloatABIType = FloatABI::Hard; |
| |
| // Determine default and user specified characteristics |
| if (!FS.empty()) { |
| // If feature string is not empty, parse features string. |
| std::string CPU = sys::getHostCPUName(); |
| ParseSubtargetFeatures(FS, CPU); |
| // All X86-64 CPUs also have SSE2, however user might request no SSE via |
| // -mattr, so don't force SSELevel here. |
| } else { |
| // Otherwise, use CPUID to auto-detect feature set. |
| AutoDetectSubtargetFeatures(); |
| // Make sure SSE2 is enabled; it is available on all X86-64 CPUs. |
| if (Is64Bit && X86SSELevel < SSE2) |
| X86SSELevel = SSE2; |
| } |
| |
| // If requesting codegen for X86-64, make sure that 64-bit features |
| // are enabled. |
| if (Is64Bit) { |
| HasX86_64 = true; |
| |
| // All 64-bit cpus have cmov support. |
| HasCMov = true; |
| } |
| |
| |
| DEBUG(dbgs() << "Subtarget features: SSELevel " << X86SSELevel |
| << ", 3DNowLevel " << X863DNowLevel |
| << ", 64bit " << HasX86_64 << "\n"); |
| assert((!Is64Bit || HasX86_64) && |
| "64-bit code requested on a subtarget that doesn't support it!"); |
| |
| // Set the boolean corresponding to the current target triple, or the default |
| // if one cannot be determined, to true. |
| if (TT.length() > 5) { |
| size_t Pos; |
| if ((Pos = TT.find("-darwin")) != std::string::npos) { |
| TargetType = isDarwin; |
| |
| // Compute the darwin version number. |
| if (isdigit(TT[Pos+7])) |
| DarwinVers = atoi(&TT[Pos+7]); |
| else |
| DarwinVers = 8; // Minimum supported darwin is Tiger. |
| } else if (TT.find("linux") != std::string::npos) { |
| // Linux doesn't imply ELF, but we don't currently support anything else. |
| TargetType = isELF; |
| } else if (TT.find("cygwin") != std::string::npos) { |
| TargetType = isCygwin; |
| } else if (TT.find("mingw") != std::string::npos) { |
| TargetType = isMingw; |
| } else if (TT.find("win32") != std::string::npos) { |
| TargetType = isWindows; |
| } else if (TT.find("windows") != std::string::npos) { |
| TargetType = isWindows; |
| } else if (TT.find("-cl") != std::string::npos) { |
| TargetType = isDarwin; |
| DarwinVers = 9; |
| } |
| } |
| |
| // Stack alignment is 16 bytes on Darwin (both 32 and 64 bit) and for all 64 |
| // bit targets. |
| if (TargetType == isDarwin || Is64Bit) |
| stackAlignment = 16; |
| |
| if (StackAlignment) |
| stackAlignment = StackAlignment; |
| } |