| //===- LazyCallGraph.cpp - Analysis of a Module's call graph --------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Analysis/LazyCallGraph.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/IR/CallSite.h" |
| #include "llvm/IR/InstVisitor.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/PassManager.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/raw_ostream.h" |
| |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "lcg" |
| |
| static void findCallees( |
| SmallVectorImpl<Constant *> &Worklist, SmallPtrSetImpl<Constant *> &Visited, |
| SmallVectorImpl<PointerUnion<Function *, LazyCallGraph::Node *>> &Callees, |
| DenseMap<Function *, size_t> &CalleeIndexMap) { |
| while (!Worklist.empty()) { |
| Constant *C = Worklist.pop_back_val(); |
| |
| if (Function *F = dyn_cast<Function>(C)) { |
| // Note that we consider *any* function with a definition to be a viable |
| // edge. Even if the function's definition is subject to replacement by |
| // some other module (say, a weak definition) there may still be |
| // optimizations which essentially speculate based on the definition and |
| // a way to check that the specific definition is in fact the one being |
| // used. For example, this could be done by moving the weak definition to |
| // a strong (internal) definition and making the weak definition be an |
| // alias. Then a test of the address of the weak function against the new |
| // strong definition's address would be an effective way to determine the |
| // safety of optimizing a direct call edge. |
| if (!F->isDeclaration() && |
| CalleeIndexMap.insert(std::make_pair(F, Callees.size())).second) { |
| DEBUG(dbgs() << " Added callable function: " << F->getName() |
| << "\n"); |
| Callees.push_back(F); |
| } |
| continue; |
| } |
| |
| for (Value *Op : C->operand_values()) |
| if (Visited.insert(cast<Constant>(Op))) |
| Worklist.push_back(cast<Constant>(Op)); |
| } |
| } |
| |
| LazyCallGraph::Node::Node(LazyCallGraph &G, Function &F) |
| : G(&G), F(F), DFSNumber(0), LowLink(0) { |
| DEBUG(dbgs() << " Adding functions called by '" << F.getName() |
| << "' to the graph.\n"); |
| |
| SmallVector<Constant *, 16> Worklist; |
| SmallPtrSet<Constant *, 16> Visited; |
| // Find all the potential callees in this function. First walk the |
| // instructions and add every operand which is a constant to the worklist. |
| for (BasicBlock &BB : F) |
| for (Instruction &I : BB) |
| for (Value *Op : I.operand_values()) |
| if (Constant *C = dyn_cast<Constant>(Op)) |
| if (Visited.insert(C)) |
| Worklist.push_back(C); |
| |
| // We've collected all the constant (and thus potentially function or |
| // function containing) operands to all of the instructions in the function. |
| // Process them (recursively) collecting every function found. |
| findCallees(Worklist, Visited, Callees, CalleeIndexMap); |
| } |
| |
| void LazyCallGraph::Node::insertEdgeInternal(Function &Callee) { |
| if (Node *N = G->lookup(Callee)) |
| return insertEdgeInternal(*N); |
| |
| CalleeIndexMap.insert(std::make_pair(&Callee, Callees.size())); |
| Callees.push_back(&Callee); |
| } |
| |
| void LazyCallGraph::Node::insertEdgeInternal(Node &CalleeN) { |
| CalleeIndexMap.insert(std::make_pair(&CalleeN.getFunction(), Callees.size())); |
| Callees.push_back(&CalleeN); |
| } |
| |
| void LazyCallGraph::Node::removeEdgeInternal(Function &Callee) { |
| auto IndexMapI = CalleeIndexMap.find(&Callee); |
| assert(IndexMapI != CalleeIndexMap.end() && |
| "Callee not in the callee set for this caller?"); |
| |
| Callees[IndexMapI->second] = nullptr; |
| CalleeIndexMap.erase(IndexMapI); |
| } |
| |
| LazyCallGraph::LazyCallGraph(Module &M) : NextDFSNumber(0) { |
| DEBUG(dbgs() << "Building CG for module: " << M.getModuleIdentifier() |
| << "\n"); |
| for (Function &F : M) |
| if (!F.isDeclaration() && !F.hasLocalLinkage()) |
| if (EntryIndexMap.insert(std::make_pair(&F, EntryNodes.size())).second) { |
| DEBUG(dbgs() << " Adding '" << F.getName() |
| << "' to entry set of the graph.\n"); |
| EntryNodes.push_back(&F); |
| } |
| |
| // Now add entry nodes for functions reachable via initializers to globals. |
| SmallVector<Constant *, 16> Worklist; |
| SmallPtrSet<Constant *, 16> Visited; |
| for (GlobalVariable &GV : M.globals()) |
| if (GV.hasInitializer()) |
| if (Visited.insert(GV.getInitializer())) |
| Worklist.push_back(GV.getInitializer()); |
| |
| DEBUG(dbgs() << " Adding functions referenced by global initializers to the " |
| "entry set.\n"); |
| findCallees(Worklist, Visited, EntryNodes, EntryIndexMap); |
| |
| for (auto &Entry : EntryNodes) { |
| assert(!Entry.isNull() && |
| "We can't have removed edges before we finish the constructor!"); |
| if (Function *F = Entry.dyn_cast<Function *>()) |
| SCCEntryNodes.push_back(F); |
| else |
| SCCEntryNodes.push_back(&Entry.get<Node *>()->getFunction()); |
| } |
| } |
| |
| LazyCallGraph::LazyCallGraph(LazyCallGraph &&G) |
| : BPA(std::move(G.BPA)), NodeMap(std::move(G.NodeMap)), |
| EntryNodes(std::move(G.EntryNodes)), |
| EntryIndexMap(std::move(G.EntryIndexMap)), SCCBPA(std::move(G.SCCBPA)), |
| SCCMap(std::move(G.SCCMap)), LeafSCCs(std::move(G.LeafSCCs)), |
| DFSStack(std::move(G.DFSStack)), |
| SCCEntryNodes(std::move(G.SCCEntryNodes)), |
| NextDFSNumber(G.NextDFSNumber) { |
| updateGraphPtrs(); |
| } |
| |
| LazyCallGraph &LazyCallGraph::operator=(LazyCallGraph &&G) { |
| BPA = std::move(G.BPA); |
| NodeMap = std::move(G.NodeMap); |
| EntryNodes = std::move(G.EntryNodes); |
| EntryIndexMap = std::move(G.EntryIndexMap); |
| SCCBPA = std::move(G.SCCBPA); |
| SCCMap = std::move(G.SCCMap); |
| LeafSCCs = std::move(G.LeafSCCs); |
| DFSStack = std::move(G.DFSStack); |
| SCCEntryNodes = std::move(G.SCCEntryNodes); |
| NextDFSNumber = G.NextDFSNumber; |
| updateGraphPtrs(); |
| return *this; |
| } |
| |
| void LazyCallGraph::SCC::insert(Node &N) { |
| N.DFSNumber = N.LowLink = -1; |
| Nodes.push_back(&N); |
| G->SCCMap[&N] = this; |
| } |
| |
| bool LazyCallGraph::SCC::isDescendantOf(const SCC &C) const { |
| // Walk up the parents of this SCC and verify that we eventually find C. |
| SmallVector<const SCC *, 4> AncestorWorklist; |
| AncestorWorklist.push_back(this); |
| do { |
| const SCC *AncestorC = AncestorWorklist.pop_back_val(); |
| if (AncestorC->isChildOf(C)) |
| return true; |
| for (const SCC *ParentC : AncestorC->ParentSCCs) |
| AncestorWorklist.push_back(ParentC); |
| } while (!AncestorWorklist.empty()); |
| |
| return false; |
| } |
| |
| void LazyCallGraph::SCC::insertIntraSCCEdge(Node &CallerN, Node &CalleeN) { |
| // First insert it into the caller. |
| CallerN.insertEdgeInternal(CalleeN); |
| |
| assert(G->SCCMap.lookup(&CallerN) == this && "Caller must be in this SCC."); |
| assert(G->SCCMap.lookup(&CalleeN) == this && "Callee must be in this SCC."); |
| |
| // Nothing changes about this SCC or any other. |
| } |
| |
| void LazyCallGraph::SCC::insertOutgoingEdge(Node &CallerN, Node &CalleeN) { |
| // First insert it into the caller. |
| CallerN.insertEdgeInternal(CalleeN); |
| |
| assert(G->SCCMap.lookup(&CallerN) == this && "Caller must be in this SCC."); |
| |
| SCC &CalleeC = *G->SCCMap.lookup(&CalleeN); |
| assert(&CalleeC != this && "Callee must not be in this SCC."); |
| assert(CalleeC.isDescendantOf(*this) && |
| "Callee must be a descendant of the Caller."); |
| |
| // The only change required is to add this SCC to the parent set of the callee. |
| CalleeC.ParentSCCs.insert(this); |
| } |
| |
| SmallVector<LazyCallGraph::SCC *, 1> |
| LazyCallGraph::SCC::insertIncomingEdge(Node &CallerN, Node &CalleeN) { |
| // First insert it into the caller. |
| CallerN.insertEdgeInternal(CalleeN); |
| |
| assert(G->SCCMap.lookup(&CalleeN) == this && "Callee must be in this SCC."); |
| |
| SCC &CallerC = *G->SCCMap.lookup(&CallerN); |
| assert(&CallerC != this && "Caller must not be in this SCC."); |
| assert(CallerC.isDescendantOf(*this) && |
| "Caller must be a descendant of the Callee."); |
| |
| // The algorithm we use for merging SCCs based on the cycle introduced here |
| // is to walk the SCC inverted DAG formed by the parent SCC sets. The inverse |
| // graph has the same cycle properties as the actual DAG of the SCCs, and |
| // when forming SCCs lazily by a DFS, the bottom of the graph won't exist in |
| // many cases which should prune the search space. |
| // |
| // FIXME: We can get this pruning behavior even after the incremental SCC |
| // formation by leaving behind (conservative) DFS numberings in the nodes, |
| // and pruning the search with them. These would need to be cleverly updated |
| // during the removal of intra-SCC edges, but could be preserved |
| // conservatively. |
| |
| // The set of SCCs that are connected to the caller, and thus will |
| // participate in the merged connected component. |
| SmallPtrSet<SCC *, 8> ConnectedSCCs; |
| ConnectedSCCs.insert(this); |
| ConnectedSCCs.insert(&CallerC); |
| |
| // We build up a DFS stack of the parents chains. |
| SmallVector<std::pair<SCC *, SCC::parent_iterator>, 8> DFSSCCs; |
| SmallPtrSet<SCC *, 8> VisitedSCCs; |
| int ConnectedDepth = -1; |
| SCC *C = this; |
| parent_iterator I = parent_begin(), E = parent_end(); |
| for (;;) { |
| while (I != E) { |
| SCC &ParentSCC = *I++; |
| |
| // If we have already processed this parent SCC, skip it, and remember |
| // whether it was connected so we don't have to check the rest of the |
| // stack. This also handles when we reach a child of the 'this' SCC (the |
| // callee) which terminates the search. |
| if (ConnectedSCCs.count(&ParentSCC)) { |
| ConnectedDepth = std::max<int>(ConnectedDepth, DFSSCCs.size()); |
| continue; |
| } |
| if (VisitedSCCs.count(&ParentSCC)) |
| continue; |
| |
| // We fully explore the depth-first space, adding nodes to the connected |
| // set only as we pop them off, so "recurse" by rotating to the parent. |
| DFSSCCs.push_back(std::make_pair(C, I)); |
| C = &ParentSCC; |
| I = ParentSCC.parent_begin(); |
| E = ParentSCC.parent_end(); |
| } |
| |
| // If we've found a connection anywhere below this point on the stack (and |
| // thus up the parent graph from the caller), the current node needs to be |
| // added to the connected set now that we've processed all of its parents. |
| if ((int)DFSSCCs.size() == ConnectedDepth) { |
| --ConnectedDepth; // We're finished with this connection. |
| ConnectedSCCs.insert(C); |
| } else { |
| // Otherwise remember that its parents don't ever connect. |
| assert(ConnectedDepth < (int)DFSSCCs.size() && |
| "Cannot have a connected depth greater than the DFS depth!"); |
| VisitedSCCs.insert(C); |
| } |
| |
| if (DFSSCCs.empty()) |
| break; // We've walked all the parents of the caller transitively. |
| |
| // Pop off the prior node and position to unwind the depth first recursion. |
| std::tie(C, I) = DFSSCCs.pop_back_val(); |
| E = C->parent_end(); |
| } |
| |
| // Now that we have identified all of the SCCs which need to be merged into |
| // a connected set with the inserted edge, merge all of them into this SCC. |
| // FIXME: This operation currently creates ordering stability problems |
| // because we don't use stably ordered containers for the parent SCCs or the |
| // connected SCCs. |
| unsigned NewNodeBeginIdx = Nodes.size(); |
| for (SCC *C : ConnectedSCCs) { |
| if (C == this) |
| continue; |
| for (SCC *ParentC : C->ParentSCCs) |
| if (!ConnectedSCCs.count(ParentC)) |
| ParentSCCs.insert(ParentC); |
| C->ParentSCCs.clear(); |
| |
| for (Node *N : *C) { |
| for (Node &ChildN : *N) { |
| SCC &ChildC = *G->SCCMap.lookup(&ChildN); |
| if (&ChildC != C) |
| ChildC.ParentSCCs.erase(C); |
| } |
| G->SCCMap[N] = this; |
| Nodes.push_back(N); |
| } |
| C->Nodes.clear(); |
| } |
| for (auto I = Nodes.begin() + NewNodeBeginIdx, E = Nodes.end(); I != E; ++I) |
| for (Node &ChildN : **I) { |
| SCC &ChildC = *G->SCCMap.lookup(&ChildN); |
| if (&ChildC != this) |
| ChildC.ParentSCCs.insert(this); |
| } |
| |
| // We return the list of SCCs which were merged so that callers can |
| // invalidate any data they have associated with those SCCs. Note that these |
| // SCCs are no longer in an interesting state (they are totally empty) but |
| // the pointers will remain stable for the life of the graph itself. |
| return SmallVector<SCC *, 1>(ConnectedSCCs.begin(), ConnectedSCCs.end()); |
| } |
| |
| void LazyCallGraph::SCC::removeInterSCCEdge(Node &CallerN, Node &CalleeN) { |
| // First remove it from the node. |
| CallerN.removeEdgeInternal(CalleeN.getFunction()); |
| |
| assert(G->SCCMap.lookup(&CallerN) == this && |
| "The caller must be a member of this SCC."); |
| |
| SCC &CalleeC = *G->SCCMap.lookup(&CalleeN); |
| assert(&CalleeC != this && |
| "This API only supports the rmoval of inter-SCC edges."); |
| |
| assert(std::find(G->LeafSCCs.begin(), G->LeafSCCs.end(), this) == |
| G->LeafSCCs.end() && |
| "Cannot have a leaf SCC caller with a different SCC callee."); |
| |
| bool HasOtherCallToCalleeC = false; |
| bool HasOtherCallOutsideSCC = false; |
| for (Node *N : *this) { |
| for (Node &OtherCalleeN : *N) { |
| SCC &OtherCalleeC = *G->SCCMap.lookup(&OtherCalleeN); |
| if (&OtherCalleeC == &CalleeC) { |
| HasOtherCallToCalleeC = true; |
| break; |
| } |
| if (&OtherCalleeC != this) |
| HasOtherCallOutsideSCC = true; |
| } |
| if (HasOtherCallToCalleeC) |
| break; |
| } |
| // Because the SCCs form a DAG, deleting such an edge cannot change the set |
| // of SCCs in the graph. However, it may cut an edge of the SCC DAG, making |
| // the caller no longer a parent of the callee. Walk the other call edges |
| // in the caller to tell. |
| if (!HasOtherCallToCalleeC) { |
| bool Removed = CalleeC.ParentSCCs.erase(this); |
| (void)Removed; |
| assert(Removed && |
| "Did not find the caller SCC in the callee SCC's parent list!"); |
| |
| // It may orphan an SCC if it is the last edge reaching it, but that does |
| // not violate any invariants of the graph. |
| if (CalleeC.ParentSCCs.empty()) |
| DEBUG(dbgs() << "LCG: Update removing " << CallerN.getFunction().getName() |
| << " -> " << CalleeN.getFunction().getName() |
| << " edge orphaned the callee's SCC!\n"); |
| } |
| |
| // It may make the Caller SCC a leaf SCC. |
| if (!HasOtherCallOutsideSCC) |
| G->LeafSCCs.push_back(this); |
| } |
| |
| void LazyCallGraph::SCC::internalDFS( |
| SmallVectorImpl<std::pair<Node *, Node::iterator>> &DFSStack, |
| SmallVectorImpl<Node *> &PendingSCCStack, Node *N, |
| SmallVectorImpl<SCC *> &ResultSCCs) { |
| Node::iterator I = N->begin(); |
| N->LowLink = N->DFSNumber = 1; |
| int NextDFSNumber = 2; |
| for (;;) { |
| assert(N->DFSNumber != 0 && "We should always assign a DFS number " |
| "before processing a node."); |
| |
| // We simulate recursion by popping out of the nested loop and continuing. |
| Node::iterator E = N->end(); |
| while (I != E) { |
| Node &ChildN = *I; |
| if (SCC *ChildSCC = G->SCCMap.lookup(&ChildN)) { |
| // Check if we have reached a node in the new (known connected) set of |
| // this SCC. If so, the entire stack is necessarily in that set and we |
| // can re-start. |
| if (ChildSCC == this) { |
| insert(*N); |
| while (!PendingSCCStack.empty()) |
| insert(*PendingSCCStack.pop_back_val()); |
| while (!DFSStack.empty()) |
| insert(*DFSStack.pop_back_val().first); |
| return; |
| } |
| |
| // If this child isn't currently in this SCC, no need to process it. |
| // However, we do need to remove this SCC from its SCC's parent set. |
| ChildSCC->ParentSCCs.erase(this); |
| ++I; |
| continue; |
| } |
| |
| if (ChildN.DFSNumber == 0) { |
| // Mark that we should start at this child when next this node is the |
| // top of the stack. We don't start at the next child to ensure this |
| // child's lowlink is reflected. |
| DFSStack.push_back(std::make_pair(N, I)); |
| |
| // Continue, resetting to the child node. |
| ChildN.LowLink = ChildN.DFSNumber = NextDFSNumber++; |
| N = &ChildN; |
| I = ChildN.begin(); |
| E = ChildN.end(); |
| continue; |
| } |
| |
| // Track the lowest link of the children, if any are still in the stack. |
| // Any child not on the stack will have a LowLink of -1. |
| assert(ChildN.LowLink != 0 && |
| "Low-link must not be zero with a non-zero DFS number."); |
| if (ChildN.LowLink >= 0 && ChildN.LowLink < N->LowLink) |
| N->LowLink = ChildN.LowLink; |
| ++I; |
| } |
| |
| if (N->LowLink == N->DFSNumber) { |
| ResultSCCs.push_back(G->formSCC(N, PendingSCCStack)); |
| if (DFSStack.empty()) |
| return; |
| } else { |
| // At this point we know that N cannot ever be an SCC root. Its low-link |
| // is not its dfs-number, and we've processed all of its children. It is |
| // just sitting here waiting until some node further down the stack gets |
| // low-link == dfs-number and pops it off as well. Move it to the pending |
| // stack which is pulled into the next SCC to be formed. |
| PendingSCCStack.push_back(N); |
| |
| assert(!DFSStack.empty() && "We shouldn't have an empty stack!"); |
| } |
| |
| N = DFSStack.back().first; |
| I = DFSStack.back().second; |
| DFSStack.pop_back(); |
| } |
| } |
| |
| SmallVector<LazyCallGraph::SCC *, 1> |
| LazyCallGraph::SCC::removeIntraSCCEdge(Node &CallerN, |
| Node &CalleeN) { |
| // First remove it from the node. |
| CallerN.removeEdgeInternal(CalleeN.getFunction()); |
| |
| // We return a list of the resulting *new* SCCs in postorder. |
| SmallVector<SCC *, 1> ResultSCCs; |
| |
| // Direct recursion doesn't impact the SCC graph at all. |
| if (&CallerN == &CalleeN) |
| return ResultSCCs; |
| |
| // The worklist is every node in the original SCC. |
| SmallVector<Node *, 1> Worklist; |
| Worklist.swap(Nodes); |
| for (Node *N : Worklist) { |
| // The nodes formerly in this SCC are no longer in any SCC. |
| N->DFSNumber = 0; |
| N->LowLink = 0; |
| G->SCCMap.erase(N); |
| } |
| assert(Worklist.size() > 1 && "We have to have at least two nodes to have an " |
| "edge between them that is within the SCC."); |
| |
| // The callee can already reach every node in this SCC (by definition). It is |
| // the only node we know will stay inside this SCC. Everything which |
| // transitively reaches Callee will also remain in the SCC. To model this we |
| // incrementally add any chain of nodes which reaches something in the new |
| // node set to the new node set. This short circuits one side of the Tarjan's |
| // walk. |
| insert(CalleeN); |
| |
| // We're going to do a full mini-Tarjan's walk using a local stack here. |
| SmallVector<std::pair<Node *, Node::iterator>, 4> DFSStack; |
| SmallVector<Node *, 4> PendingSCCStack; |
| do { |
| Node *N = Worklist.pop_back_val(); |
| if (N->DFSNumber == 0) |
| internalDFS(DFSStack, PendingSCCStack, N, ResultSCCs); |
| |
| assert(DFSStack.empty() && "Didn't flush the entire DFS stack!"); |
| assert(PendingSCCStack.empty() && "Didn't flush all pending SCC nodes!"); |
| } while (!Worklist.empty()); |
| |
| // Now we need to reconnect the current SCC to the graph. |
| bool IsLeafSCC = true; |
| for (Node *N : Nodes) { |
| for (Node &ChildN : *N) { |
| SCC &ChildSCC = *G->SCCMap.lookup(&ChildN); |
| if (&ChildSCC == this) |
| continue; |
| ChildSCC.ParentSCCs.insert(this); |
| IsLeafSCC = false; |
| } |
| } |
| #ifndef NDEBUG |
| if (!ResultSCCs.empty()) |
| assert(!IsLeafSCC && "This SCC cannot be a leaf as we have split out new " |
| "SCCs by removing this edge."); |
| if (!std::any_of(G->LeafSCCs.begin(), G->LeafSCCs.end(), |
| [&](SCC *C) { return C == this; })) |
| assert(!IsLeafSCC && "This SCC cannot be a leaf as it already had child " |
| "SCCs before we removed this edge."); |
| #endif |
| // If this SCC stopped being a leaf through this edge removal, remove it from |
| // the leaf SCC list. |
| if (!IsLeafSCC && !ResultSCCs.empty()) |
| G->LeafSCCs.erase(std::remove(G->LeafSCCs.begin(), G->LeafSCCs.end(), this), |
| G->LeafSCCs.end()); |
| |
| // Return the new list of SCCs. |
| return ResultSCCs; |
| } |
| |
| void LazyCallGraph::insertEdge(Node &CallerN, Function &Callee) { |
| assert(SCCMap.empty() && DFSStack.empty() && |
| "This method cannot be called after SCCs have been formed!"); |
| |
| return CallerN.insertEdgeInternal(Callee); |
| } |
| |
| void LazyCallGraph::removeEdge(Node &CallerN, Function &Callee) { |
| assert(SCCMap.empty() && DFSStack.empty() && |
| "This method cannot be called after SCCs have been formed!"); |
| |
| return CallerN.removeEdgeInternal(Callee); |
| } |
| |
| LazyCallGraph::Node &LazyCallGraph::insertInto(Function &F, Node *&MappedN) { |
| return *new (MappedN = BPA.Allocate()) Node(*this, F); |
| } |
| |
| void LazyCallGraph::updateGraphPtrs() { |
| // Process all nodes updating the graph pointers. |
| { |
| SmallVector<Node *, 16> Worklist; |
| for (auto &Entry : EntryNodes) |
| if (Node *EntryN = Entry.dyn_cast<Node *>()) |
| Worklist.push_back(EntryN); |
| |
| while (!Worklist.empty()) { |
| Node *N = Worklist.pop_back_val(); |
| N->G = this; |
| for (auto &Callee : N->Callees) |
| if (!Callee.isNull()) |
| if (Node *CalleeN = Callee.dyn_cast<Node *>()) |
| Worklist.push_back(CalleeN); |
| } |
| } |
| |
| // Process all SCCs updating the graph pointers. |
| { |
| SmallVector<SCC *, 16> Worklist(LeafSCCs.begin(), LeafSCCs.end()); |
| |
| while (!Worklist.empty()) { |
| SCC *C = Worklist.pop_back_val(); |
| C->G = this; |
| Worklist.insert(Worklist.end(), C->ParentSCCs.begin(), |
| C->ParentSCCs.end()); |
| } |
| } |
| } |
| |
| LazyCallGraph::SCC *LazyCallGraph::formSCC(Node *RootN, |
| SmallVectorImpl<Node *> &NodeStack) { |
| // The tail of the stack is the new SCC. Allocate the SCC and pop the stack |
| // into it. |
| SCC *NewSCC = new (SCCBPA.Allocate()) SCC(*this); |
| |
| while (!NodeStack.empty() && NodeStack.back()->DFSNumber > RootN->DFSNumber) { |
| assert(NodeStack.back()->LowLink >= RootN->LowLink && |
| "We cannot have a low link in an SCC lower than its root on the " |
| "stack!"); |
| NewSCC->insert(*NodeStack.pop_back_val()); |
| } |
| NewSCC->insert(*RootN); |
| |
| // A final pass over all edges in the SCC (this remains linear as we only |
| // do this once when we build the SCC) to connect it to the parent sets of |
| // its children. |
| bool IsLeafSCC = true; |
| for (Node *SCCN : NewSCC->Nodes) |
| for (Node &SCCChildN : *SCCN) { |
| SCC &ChildSCC = *SCCMap.lookup(&SCCChildN); |
| if (&ChildSCC == NewSCC) |
| continue; |
| ChildSCC.ParentSCCs.insert(NewSCC); |
| IsLeafSCC = false; |
| } |
| |
| // For the SCCs where we fine no child SCCs, add them to the leaf list. |
| if (IsLeafSCC) |
| LeafSCCs.push_back(NewSCC); |
| |
| return NewSCC; |
| } |
| |
| LazyCallGraph::SCC *LazyCallGraph::getNextSCCInPostOrder() { |
| Node *N; |
| Node::iterator I; |
| if (!DFSStack.empty()) { |
| N = DFSStack.back().first; |
| I = DFSStack.back().second; |
| DFSStack.pop_back(); |
| } else { |
| // If we've handled all candidate entry nodes to the SCC forest, we're done. |
| do { |
| if (SCCEntryNodes.empty()) |
| return nullptr; |
| |
| N = &get(*SCCEntryNodes.pop_back_val()); |
| } while (N->DFSNumber != 0); |
| I = N->begin(); |
| N->LowLink = N->DFSNumber = 1; |
| NextDFSNumber = 2; |
| } |
| |
| for (;;) { |
| assert(N->DFSNumber != 0 && "We should always assign a DFS number " |
| "before placing a node onto the stack."); |
| |
| Node::iterator E = N->end(); |
| while (I != E) { |
| Node &ChildN = *I; |
| if (ChildN.DFSNumber == 0) { |
| // Mark that we should start at this child when next this node is the |
| // top of the stack. We don't start at the next child to ensure this |
| // child's lowlink is reflected. |
| DFSStack.push_back(std::make_pair(N, N->begin())); |
| |
| // Recurse onto this node via a tail call. |
| assert(!SCCMap.count(&ChildN) && |
| "Found a node with 0 DFS number but already in an SCC!"); |
| ChildN.LowLink = ChildN.DFSNumber = NextDFSNumber++; |
| N = &ChildN; |
| I = ChildN.begin(); |
| E = ChildN.end(); |
| continue; |
| } |
| |
| // Track the lowest link of the children, if any are still in the stack. |
| assert(ChildN.LowLink != 0 && |
| "Low-link must not be zero with a non-zero DFS number."); |
| if (ChildN.LowLink >= 0 && ChildN.LowLink < N->LowLink) |
| N->LowLink = ChildN.LowLink; |
| ++I; |
| } |
| |
| if (N->LowLink == N->DFSNumber) |
| // Form the new SCC out of the top of the DFS stack. |
| return formSCC(N, PendingSCCStack); |
| |
| // At this point we know that N cannot ever be an SCC root. Its low-link |
| // is not its dfs-number, and we've processed all of its children. It is |
| // just sitting here waiting until some node further down the stack gets |
| // low-link == dfs-number and pops it off as well. Move it to the pending |
| // stack which is pulled into the next SCC to be formed. |
| PendingSCCStack.push_back(N); |
| |
| assert(!DFSStack.empty() && "We never found a viable root!"); |
| N = DFSStack.back().first; |
| I = DFSStack.back().second; |
| DFSStack.pop_back(); |
| } |
| } |
| |
| char LazyCallGraphAnalysis::PassID; |
| |
| LazyCallGraphPrinterPass::LazyCallGraphPrinterPass(raw_ostream &OS) : OS(OS) {} |
| |
| static void printNodes(raw_ostream &OS, LazyCallGraph::Node &N, |
| SmallPtrSetImpl<LazyCallGraph::Node *> &Printed) { |
| // Recurse depth first through the nodes. |
| for (LazyCallGraph::Node &ChildN : N) |
| if (Printed.insert(&ChildN)) |
| printNodes(OS, ChildN, Printed); |
| |
| OS << " Call edges in function: " << N.getFunction().getName() << "\n"; |
| for (LazyCallGraph::iterator I = N.begin(), E = N.end(); I != E; ++I) |
| OS << " -> " << I->getFunction().getName() << "\n"; |
| |
| OS << "\n"; |
| } |
| |
| static void printSCC(raw_ostream &OS, LazyCallGraph::SCC &SCC) { |
| ptrdiff_t SCCSize = std::distance(SCC.begin(), SCC.end()); |
| OS << " SCC with " << SCCSize << " functions:\n"; |
| |
| for (LazyCallGraph::Node *N : SCC) |
| OS << " " << N->getFunction().getName() << "\n"; |
| |
| OS << "\n"; |
| } |
| |
| PreservedAnalyses LazyCallGraphPrinterPass::run(Module *M, |
| ModuleAnalysisManager *AM) { |
| LazyCallGraph &G = AM->getResult<LazyCallGraphAnalysis>(M); |
| |
| OS << "Printing the call graph for module: " << M->getModuleIdentifier() |
| << "\n\n"; |
| |
| SmallPtrSet<LazyCallGraph::Node *, 16> Printed; |
| for (LazyCallGraph::Node &N : G) |
| if (Printed.insert(&N)) |
| printNodes(OS, N, Printed); |
| |
| for (LazyCallGraph::SCC &SCC : G.postorder_sccs()) |
| printSCC(OS, SCC); |
| |
| return PreservedAnalyses::all(); |
| |
| } |