| //===- LexicalScopes.cpp - Collecting lexical scope info ------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements LexicalScopes analysis. |
| // |
| // This pass collects lexical scope information and maps machine instructions |
| // to respective lexical scopes. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/CodeGen/LexicalScopes.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineInstr.h" |
| #include "llvm/IR/DebugInfo.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/FormattedStream.h" |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "lexicalscopes" |
| |
| /// reset - Reset the instance so that it's prepared for another function. |
| void LexicalScopes::reset() { |
| MF = nullptr; |
| CurrentFnLexicalScope = nullptr; |
| LexicalScopeMap.clear(); |
| AbstractScopeMap.clear(); |
| InlinedLexicalScopeMap.clear(); |
| AbstractScopesList.clear(); |
| } |
| |
| /// initialize - Scan machine function and constuct lexical scope nest. |
| void LexicalScopes::initialize(const MachineFunction &Fn) { |
| reset(); |
| MF = &Fn; |
| SmallVector<InsnRange, 4> MIRanges; |
| DenseMap<const MachineInstr *, LexicalScope *> MI2ScopeMap; |
| extractLexicalScopes(MIRanges, MI2ScopeMap); |
| if (CurrentFnLexicalScope) { |
| constructScopeNest(CurrentFnLexicalScope); |
| assignInstructionRanges(MIRanges, MI2ScopeMap); |
| } |
| } |
| |
| /// extractLexicalScopes - Extract instruction ranges for each lexical scopes |
| /// for the given machine function. |
| void LexicalScopes::extractLexicalScopes( |
| SmallVectorImpl<InsnRange> &MIRanges, |
| DenseMap<const MachineInstr *, LexicalScope *> &MI2ScopeMap) { |
| |
| // Scan each instruction and create scopes. First build working set of scopes. |
| for (const auto &MBB : *MF) { |
| const MachineInstr *RangeBeginMI = nullptr; |
| const MachineInstr *PrevMI = nullptr; |
| DebugLoc PrevDL; |
| for (const auto &MInsn : MBB) { |
| // Check if instruction has valid location information. |
| const DebugLoc MIDL = MInsn.getDebugLoc(); |
| if (MIDL.isUnknown()) { |
| PrevMI = &MInsn; |
| continue; |
| } |
| |
| // If scope has not changed then skip this instruction. |
| if (MIDL == PrevDL) { |
| PrevMI = &MInsn; |
| continue; |
| } |
| |
| // Ignore DBG_VALUE. It does not contribute to any instruction in output. |
| if (MInsn.isDebugValue()) |
| continue; |
| |
| if (RangeBeginMI) { |
| // If we have already seen a beginning of an instruction range and |
| // current instruction scope does not match scope of first instruction |
| // in this range then create a new instruction range. |
| InsnRange R(RangeBeginMI, PrevMI); |
| MI2ScopeMap[RangeBeginMI] = getOrCreateLexicalScope(PrevDL); |
| MIRanges.push_back(R); |
| } |
| |
| // This is a beginning of a new instruction range. |
| RangeBeginMI = &MInsn; |
| |
| // Reset previous markers. |
| PrevMI = &MInsn; |
| PrevDL = MIDL; |
| } |
| |
| // Create last instruction range. |
| if (RangeBeginMI && PrevMI && !PrevDL.isUnknown()) { |
| InsnRange R(RangeBeginMI, PrevMI); |
| MIRanges.push_back(R); |
| MI2ScopeMap[RangeBeginMI] = getOrCreateLexicalScope(PrevDL); |
| } |
| } |
| } |
| |
| LexicalScope *LexicalScopes::findInlinedScope(DebugLoc DL) { |
| MDNode *Scope = nullptr; |
| MDNode *IA = nullptr; |
| DL.getScopeAndInlinedAt(Scope, IA, MF->getFunction()->getContext()); |
| auto I = InlinedLexicalScopeMap.find(std::make_pair(Scope, IA)); |
| return I != InlinedLexicalScopeMap.end() ? &I->second : nullptr; |
| } |
| |
| /// findLexicalScope - Find lexical scope, either regular or inlined, for the |
| /// given DebugLoc. Return NULL if not found. |
| LexicalScope *LexicalScopes::findLexicalScope(DebugLoc DL) { |
| MDNode *Scope = nullptr; |
| MDNode *IA = nullptr; |
| DL.getScopeAndInlinedAt(Scope, IA, MF->getFunction()->getContext()); |
| if (!Scope) |
| return nullptr; |
| |
| // The scope that we were created with could have an extra file - which |
| // isn't what we care about in this case. |
| DIDescriptor D = DIDescriptor(Scope); |
| if (D.isLexicalBlockFile()) |
| Scope = DILexicalBlockFile(Scope).getScope(); |
| |
| if (IA) { |
| auto I = InlinedLexicalScopeMap.find(std::make_pair(Scope, IA)); |
| return I != InlinedLexicalScopeMap.end() ? &I->second : nullptr; |
| } |
| return findLexicalScope(Scope); |
| } |
| |
| /// getOrCreateLexicalScope - Find lexical scope for the given DebugLoc. If |
| /// not available then create new lexical scope. |
| LexicalScope *LexicalScopes::getOrCreateLexicalScope(DebugLoc DL) { |
| MDNode *Scope = nullptr; |
| MDNode *InlinedAt = nullptr; |
| DL.getScopeAndInlinedAt(Scope, InlinedAt, MF->getFunction()->getContext()); |
| |
| if (InlinedAt) { |
| // Create an abstract scope for inlined function. |
| getOrCreateAbstractScope(Scope); |
| // Create an inlined scope for inlined function. |
| return getOrCreateInlinedScope(Scope, InlinedAt); |
| } |
| |
| return getOrCreateRegularScope(Scope); |
| } |
| |
| /// getOrCreateRegularScope - Find or create a regular lexical scope. |
| LexicalScope *LexicalScopes::getOrCreateRegularScope(MDNode *Scope) { |
| DIDescriptor D = DIDescriptor(Scope); |
| if (D.isLexicalBlockFile()) { |
| Scope = DILexicalBlockFile(Scope).getScope(); |
| D = DIDescriptor(Scope); |
| } |
| |
| auto I = LexicalScopeMap.find(Scope); |
| if (I != LexicalScopeMap.end()) |
| return &I->second; |
| |
| LexicalScope *Parent = nullptr; |
| if (D.isLexicalBlock()) |
| Parent = getOrCreateLexicalScope(DebugLoc::getFromDILexicalBlock(Scope)); |
| // FIXME: Use forward_as_tuple instead of make_tuple, once MSVC2012 |
| // compatibility is no longer required. |
| I = LexicalScopeMap.emplace(std::piecewise_construct, std::make_tuple(Scope), |
| std::make_tuple(Parent, DIDescriptor(Scope), |
| nullptr, false)).first; |
| |
| if (!Parent && DIDescriptor(Scope).isSubprogram() && |
| DISubprogram(Scope).describes(MF->getFunction())) |
| CurrentFnLexicalScope = &I->second; |
| |
| return &I->second; |
| } |
| |
| /// getOrCreateInlinedScope - Find or create an inlined lexical scope. |
| LexicalScope *LexicalScopes::getOrCreateInlinedScope(MDNode *ScopeNode, |
| MDNode *InlinedAt) { |
| std::pair<const MDNode*, const MDNode*> P(ScopeNode, InlinedAt); |
| auto I = InlinedLexicalScopeMap.find(P); |
| if (I != InlinedLexicalScopeMap.end()) |
| return &I->second; |
| |
| LexicalScope *Parent; |
| DILexicalBlock Scope(ScopeNode); |
| if (Scope.isSubprogram()) |
| Parent = getOrCreateLexicalScope(DebugLoc::getFromDILocation(InlinedAt)); |
| else |
| Parent = getOrCreateInlinedScope(Scope.getContext(), InlinedAt); |
| |
| // FIXME: Use forward_as_tuple instead of make_tuple, once MSVC2012 |
| // compatibility is no longer required. |
| I = InlinedLexicalScopeMap.emplace(std::piecewise_construct, |
| std::make_tuple(P), |
| std::make_tuple(Parent, Scope, InlinedAt, |
| false)).first; |
| return &I->second; |
| } |
| |
| /// getOrCreateAbstractScope - Find or create an abstract lexical scope. |
| LexicalScope *LexicalScopes::getOrCreateAbstractScope(const MDNode *N) { |
| assert(N && "Invalid Scope encoding!"); |
| |
| DIDescriptor Scope(N); |
| if (Scope.isLexicalBlockFile()) |
| Scope = DILexicalBlockFile(Scope).getScope(); |
| auto I = AbstractScopeMap.find(Scope); |
| if (I != AbstractScopeMap.end()) |
| return &I->second; |
| |
| LexicalScope *Parent = nullptr; |
| if (Scope.isLexicalBlock()) { |
| DILexicalBlock DB(Scope); |
| DIDescriptor ParentDesc = DB.getContext(); |
| Parent = getOrCreateAbstractScope(ParentDesc); |
| } |
| I = AbstractScopeMap.emplace(std::piecewise_construct, |
| std::forward_as_tuple(Scope), |
| std::forward_as_tuple(Parent, Scope, |
| nullptr, true)).first; |
| if (Scope.isSubprogram()) |
| AbstractScopesList.push_back(&I->second); |
| return &I->second; |
| } |
| |
| /// constructScopeNest |
| void LexicalScopes::constructScopeNest(LexicalScope *Scope) { |
| assert(Scope && "Unable to calculate scope dominance graph!"); |
| SmallVector<LexicalScope *, 4> WorkStack; |
| WorkStack.push_back(Scope); |
| unsigned Counter = 0; |
| while (!WorkStack.empty()) { |
| LexicalScope *WS = WorkStack.back(); |
| const SmallVectorImpl<LexicalScope *> &Children = WS->getChildren(); |
| bool visitedChildren = false; |
| for (SmallVectorImpl<LexicalScope *>::const_iterator SI = Children.begin(), |
| SE = Children.end(); |
| SI != SE; ++SI) { |
| LexicalScope *ChildScope = *SI; |
| if (!ChildScope->getDFSOut()) { |
| WorkStack.push_back(ChildScope); |
| visitedChildren = true; |
| ChildScope->setDFSIn(++Counter); |
| break; |
| } |
| } |
| if (!visitedChildren) { |
| WorkStack.pop_back(); |
| WS->setDFSOut(++Counter); |
| } |
| } |
| } |
| |
| /// assignInstructionRanges - Find ranges of instructions covered by each |
| /// lexical scope. |
| void LexicalScopes::assignInstructionRanges( |
| SmallVectorImpl<InsnRange> &MIRanges, |
| DenseMap<const MachineInstr *, LexicalScope *> &MI2ScopeMap) { |
| |
| LexicalScope *PrevLexicalScope = nullptr; |
| for (SmallVectorImpl<InsnRange>::const_iterator RI = MIRanges.begin(), |
| RE = MIRanges.end(); |
| RI != RE; ++RI) { |
| const InsnRange &R = *RI; |
| LexicalScope *S = MI2ScopeMap.lookup(R.first); |
| assert(S && "Lost LexicalScope for a machine instruction!"); |
| if (PrevLexicalScope && !PrevLexicalScope->dominates(S)) |
| PrevLexicalScope->closeInsnRange(S); |
| S->openInsnRange(R.first); |
| S->extendInsnRange(R.second); |
| PrevLexicalScope = S; |
| } |
| |
| if (PrevLexicalScope) |
| PrevLexicalScope->closeInsnRange(); |
| } |
| |
| /// getMachineBasicBlocks - Populate given set using machine basic blocks which |
| /// have machine instructions that belong to lexical scope identified by |
| /// DebugLoc. |
| void LexicalScopes::getMachineBasicBlocks( |
| DebugLoc DL, SmallPtrSet<const MachineBasicBlock *, 4> &MBBs) { |
| MBBs.clear(); |
| LexicalScope *Scope = getOrCreateLexicalScope(DL); |
| if (!Scope) |
| return; |
| |
| if (Scope == CurrentFnLexicalScope) { |
| for (const auto &MBB : *MF) |
| MBBs.insert(&MBB); |
| return; |
| } |
| |
| SmallVectorImpl<InsnRange> &InsnRanges = Scope->getRanges(); |
| for (SmallVectorImpl<InsnRange>::iterator I = InsnRanges.begin(), |
| E = InsnRanges.end(); |
| I != E; ++I) { |
| InsnRange &R = *I; |
| MBBs.insert(R.first->getParent()); |
| } |
| } |
| |
| /// dominates - Return true if DebugLoc's lexical scope dominates at least one |
| /// machine instruction's lexical scope in a given machine basic block. |
| bool LexicalScopes::dominates(DebugLoc DL, MachineBasicBlock *MBB) { |
| LexicalScope *Scope = getOrCreateLexicalScope(DL); |
| if (!Scope) |
| return false; |
| |
| // Current function scope covers all basic blocks in the function. |
| if (Scope == CurrentFnLexicalScope && MBB->getParent() == MF) |
| return true; |
| |
| bool Result = false; |
| for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E; |
| ++I) { |
| DebugLoc IDL = I->getDebugLoc(); |
| if (IDL.isUnknown()) |
| continue; |
| if (LexicalScope *IScope = getOrCreateLexicalScope(IDL)) |
| if (Scope->dominates(IScope)) |
| return true; |
| } |
| return Result; |
| } |
| |
| /// dump - Print data structures. |
| void LexicalScope::dump(unsigned Indent) const { |
| #ifndef NDEBUG |
| raw_ostream &err = dbgs(); |
| err.indent(Indent); |
| err << "DFSIn: " << DFSIn << " DFSOut: " << DFSOut << "\n"; |
| const MDNode *N = Desc; |
| err.indent(Indent); |
| N->dump(); |
| if (AbstractScope) |
| err << std::string(Indent, ' ') << "Abstract Scope\n"; |
| |
| if (!Children.empty()) |
| err << std::string(Indent + 2, ' ') << "Children ...\n"; |
| for (unsigned i = 0, e = Children.size(); i != e; ++i) |
| if (Children[i] != this) |
| Children[i]->dump(Indent + 2); |
| #endif |
| } |