| //===-- AArch6464FastISel.cpp - AArch64 FastISel implementation -----------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines the AArch64-specific support for the FastISel class. Some |
| // of the target-specific code is generated by tablegen in the file |
| // AArch64GenFastISel.inc, which is #included here. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "AArch64.h" |
| #include "AArch64TargetMachine.h" |
| #include "AArch64Subtarget.h" |
| #include "MCTargetDesc/AArch64AddressingModes.h" |
| #include "llvm/CodeGen/CallingConvLower.h" |
| #include "llvm/CodeGen/FastISel.h" |
| #include "llvm/CodeGen/FunctionLoweringInfo.h" |
| #include "llvm/CodeGen/MachineConstantPool.h" |
| #include "llvm/CodeGen/MachineFrameInfo.h" |
| #include "llvm/CodeGen/MachineInstrBuilder.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/IR/CallingConv.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/IR/DerivedTypes.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/GetElementPtrTypeIterator.h" |
| #include "llvm/IR/GlobalAlias.h" |
| #include "llvm/IR/GlobalVariable.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/IntrinsicInst.h" |
| #include "llvm/IR/Operator.h" |
| #include "llvm/Support/CommandLine.h" |
| using namespace llvm; |
| |
| namespace { |
| |
| class AArch64FastISel : public FastISel { |
| |
| class Address { |
| public: |
| typedef enum { |
| RegBase, |
| FrameIndexBase |
| } BaseKind; |
| |
| private: |
| BaseKind Kind; |
| union { |
| unsigned Reg; |
| int FI; |
| } Base; |
| int64_t Offset; |
| |
| public: |
| Address() : Kind(RegBase), Offset(0) { Base.Reg = 0; } |
| void setKind(BaseKind K) { Kind = K; } |
| BaseKind getKind() const { return Kind; } |
| bool isRegBase() const { return Kind == RegBase; } |
| bool isFIBase() const { return Kind == FrameIndexBase; } |
| void setReg(unsigned Reg) { |
| assert(isRegBase() && "Invalid base register access!"); |
| Base.Reg = Reg; |
| } |
| unsigned getReg() const { |
| assert(isRegBase() && "Invalid base register access!"); |
| return Base.Reg; |
| } |
| void setFI(unsigned FI) { |
| assert(isFIBase() && "Invalid base frame index access!"); |
| Base.FI = FI; |
| } |
| unsigned getFI() const { |
| assert(isFIBase() && "Invalid base frame index access!"); |
| return Base.FI; |
| } |
| void setOffset(int64_t O) { Offset = O; } |
| int64_t getOffset() { return Offset; } |
| |
| bool isValid() { return isFIBase() || (isRegBase() && getReg() != 0); } |
| }; |
| |
| /// Subtarget - Keep a pointer to the AArch64Subtarget around so that we can |
| /// make the right decision when generating code for different targets. |
| const AArch64Subtarget *Subtarget; |
| LLVMContext *Context; |
| |
| private: |
| // Selection routines. |
| bool SelectLoad(const Instruction *I); |
| bool SelectStore(const Instruction *I); |
| bool SelectBranch(const Instruction *I); |
| bool SelectIndirectBr(const Instruction *I); |
| bool SelectCmp(const Instruction *I); |
| bool SelectSelect(const Instruction *I); |
| bool SelectFPExt(const Instruction *I); |
| bool SelectFPTrunc(const Instruction *I); |
| bool SelectFPToInt(const Instruction *I, bool Signed); |
| bool SelectIntToFP(const Instruction *I, bool Signed); |
| bool SelectRem(const Instruction *I, unsigned ISDOpcode); |
| bool SelectCall(const Instruction *I, const char *IntrMemName); |
| bool SelectIntrinsicCall(const IntrinsicInst &I); |
| bool SelectRet(const Instruction *I); |
| bool SelectTrunc(const Instruction *I); |
| bool SelectIntExt(const Instruction *I); |
| bool SelectMul(const Instruction *I); |
| |
| // Utility helper routines. |
| bool isTypeLegal(Type *Ty, MVT &VT); |
| bool isLoadStoreTypeLegal(Type *Ty, MVT &VT); |
| bool ComputeAddress(const Value *Obj, Address &Addr); |
| bool SimplifyAddress(Address &Addr, MVT VT, int64_t ScaleFactor, |
| bool UseUnscaled); |
| void AddLoadStoreOperands(Address &Addr, const MachineInstrBuilder &MIB, |
| unsigned Flags, bool UseUnscaled); |
| bool IsMemCpySmall(uint64_t Len, unsigned Alignment); |
| bool TryEmitSmallMemCpy(Address Dest, Address Src, uint64_t Len, |
| unsigned Alignment); |
| // Emit functions. |
| bool EmitCmp(Value *Src1Value, Value *Src2Value, bool isZExt); |
| bool EmitLoad(MVT VT, unsigned &ResultReg, Address Addr, |
| bool UseUnscaled = false); |
| bool EmitStore(MVT VT, unsigned SrcReg, Address Addr, |
| bool UseUnscaled = false); |
| unsigned EmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, bool isZExt); |
| unsigned Emiti1Ext(unsigned SrcReg, MVT DestVT, bool isZExt); |
| |
| unsigned AArch64MaterializeFP(const ConstantFP *CFP, MVT VT); |
| unsigned AArch64MaterializeGV(const GlobalValue *GV); |
| |
| // Call handling routines. |
| private: |
| CCAssignFn *CCAssignFnForCall(CallingConv::ID CC) const; |
| bool ProcessCallArgs(SmallVectorImpl<Value *> &Args, |
| SmallVectorImpl<unsigned> &ArgRegs, |
| SmallVectorImpl<MVT> &ArgVTs, |
| SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags, |
| SmallVectorImpl<unsigned> &RegArgs, CallingConv::ID CC, |
| unsigned &NumBytes); |
| bool FinishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs, |
| const Instruction *I, CallingConv::ID CC, unsigned &NumBytes); |
| |
| public: |
| // Backend specific FastISel code. |
| unsigned TargetMaterializeAlloca(const AllocaInst *AI) override; |
| unsigned TargetMaterializeConstant(const Constant *C) override; |
| |
| explicit AArch64FastISel(FunctionLoweringInfo &funcInfo, |
| const TargetLibraryInfo *libInfo) |
| : FastISel(funcInfo, libInfo) { |
| Subtarget = &TM.getSubtarget<AArch64Subtarget>(); |
| Context = &funcInfo.Fn->getContext(); |
| } |
| |
| bool TargetSelectInstruction(const Instruction *I) override; |
| |
| #include "AArch64GenFastISel.inc" |
| }; |
| |
| } // end anonymous namespace |
| |
| #include "AArch64GenCallingConv.inc" |
| |
| CCAssignFn *AArch64FastISel::CCAssignFnForCall(CallingConv::ID CC) const { |
| if (CC == CallingConv::WebKit_JS) |
| return CC_AArch64_WebKit_JS; |
| return Subtarget->isTargetDarwin() ? CC_AArch64_DarwinPCS : CC_AArch64_AAPCS; |
| } |
| |
| unsigned AArch64FastISel::TargetMaterializeAlloca(const AllocaInst *AI) { |
| assert(TLI.getValueType(AI->getType(), true) == MVT::i64 && |
| "Alloca should always return a pointer."); |
| |
| // Don't handle dynamic allocas. |
| if (!FuncInfo.StaticAllocaMap.count(AI)) |
| return 0; |
| |
| DenseMap<const AllocaInst *, int>::iterator SI = |
| FuncInfo.StaticAllocaMap.find(AI); |
| |
| if (SI != FuncInfo.StaticAllocaMap.end()) { |
| unsigned ResultReg = createResultReg(&AArch64::GPR64RegClass); |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::ADDXri), |
| ResultReg) |
| .addFrameIndex(SI->second) |
| .addImm(0) |
| .addImm(0); |
| return ResultReg; |
| } |
| |
| return 0; |
| } |
| |
| unsigned AArch64FastISel::AArch64MaterializeFP(const ConstantFP *CFP, MVT VT) { |
| if (VT != MVT::f32 && VT != MVT::f64) |
| return 0; |
| |
| const APFloat Val = CFP->getValueAPF(); |
| bool is64bit = (VT == MVT::f64); |
| |
| // This checks to see if we can use FMOV instructions to materialize |
| // a constant, otherwise we have to materialize via the constant pool. |
| if (TLI.isFPImmLegal(Val, VT)) { |
| int Imm; |
| unsigned Opc; |
| if (is64bit) { |
| Imm = AArch64_AM::getFP64Imm(Val); |
| Opc = AArch64::FMOVDi; |
| } else { |
| Imm = AArch64_AM::getFP32Imm(Val); |
| Opc = AArch64::FMOVSi; |
| } |
| unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT)); |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg) |
| .addImm(Imm); |
| return ResultReg; |
| } |
| |
| // Materialize via constant pool. MachineConstantPool wants an explicit |
| // alignment. |
| unsigned Align = DL.getPrefTypeAlignment(CFP->getType()); |
| if (Align == 0) |
| Align = DL.getTypeAllocSize(CFP->getType()); |
| |
| unsigned Idx = MCP.getConstantPoolIndex(cast<Constant>(CFP), Align); |
| unsigned ADRPReg = createResultReg(&AArch64::GPR64commonRegClass); |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::ADRP), |
| ADRPReg).addConstantPoolIndex(Idx, 0, AArch64II::MO_PAGE); |
| |
| unsigned Opc = is64bit ? AArch64::LDRDui : AArch64::LDRSui; |
| unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT)); |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg) |
| .addReg(ADRPReg) |
| .addConstantPoolIndex(Idx, 0, AArch64II::MO_PAGEOFF | AArch64II::MO_NC); |
| return ResultReg; |
| } |
| |
| unsigned AArch64FastISel::AArch64MaterializeGV(const GlobalValue *GV) { |
| // We can't handle thread-local variables quickly yet. |
| if (GV->isThreadLocal()) |
| return 0; |
| |
| // MachO still uses GOT for large code-model accesses, but ELF requires |
| // movz/movk sequences, which FastISel doesn't handle yet. |
| if (TM.getCodeModel() != CodeModel::Small && !Subtarget->isTargetMachO()) |
| return 0; |
| |
| unsigned char OpFlags = Subtarget->ClassifyGlobalReference(GV, TM); |
| |
| EVT DestEVT = TLI.getValueType(GV->getType(), true); |
| if (!DestEVT.isSimple()) |
| return 0; |
| |
| unsigned ADRPReg = createResultReg(&AArch64::GPR64commonRegClass); |
| unsigned ResultReg; |
| |
| if (OpFlags & AArch64II::MO_GOT) { |
| // ADRP + LDRX |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::ADRP), |
| ADRPReg) |
| .addGlobalAddress(GV, 0, AArch64II::MO_GOT | AArch64II::MO_PAGE); |
| |
| ResultReg = createResultReg(&AArch64::GPR64RegClass); |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::LDRXui), |
| ResultReg) |
| .addReg(ADRPReg) |
| .addGlobalAddress(GV, 0, AArch64II::MO_GOT | AArch64II::MO_PAGEOFF | |
| AArch64II::MO_NC); |
| } else { |
| // ADRP + ADDX |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::ADRP), |
| ADRPReg).addGlobalAddress(GV, 0, AArch64II::MO_PAGE); |
| |
| ResultReg = createResultReg(&AArch64::GPR64spRegClass); |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::ADDXri), |
| ResultReg) |
| .addReg(ADRPReg) |
| .addGlobalAddress(GV, 0, AArch64II::MO_PAGEOFF | AArch64II::MO_NC) |
| .addImm(0); |
| } |
| return ResultReg; |
| } |
| |
| unsigned AArch64FastISel::TargetMaterializeConstant(const Constant *C) { |
| EVT CEVT = TLI.getValueType(C->getType(), true); |
| |
| // Only handle simple types. |
| if (!CEVT.isSimple()) |
| return 0; |
| MVT VT = CEVT.getSimpleVT(); |
| |
| // FIXME: Handle ConstantInt. |
| if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) |
| return AArch64MaterializeFP(CFP, VT); |
| else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) |
| return AArch64MaterializeGV(GV); |
| |
| return 0; |
| } |
| |
| // Computes the address to get to an object. |
| bool AArch64FastISel::ComputeAddress(const Value *Obj, Address &Addr) { |
| const User *U = nullptr; |
| unsigned Opcode = Instruction::UserOp1; |
| if (const Instruction *I = dyn_cast<Instruction>(Obj)) { |
| // Don't walk into other basic blocks unless the object is an alloca from |
| // another block, otherwise it may not have a virtual register assigned. |
| if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) || |
| FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) { |
| Opcode = I->getOpcode(); |
| U = I; |
| } |
| } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) { |
| Opcode = C->getOpcode(); |
| U = C; |
| } |
| |
| if (const PointerType *Ty = dyn_cast<PointerType>(Obj->getType())) |
| if (Ty->getAddressSpace() > 255) |
| // Fast instruction selection doesn't support the special |
| // address spaces. |
| return false; |
| |
| switch (Opcode) { |
| default: |
| break; |
| case Instruction::BitCast: { |
| // Look through bitcasts. |
| return ComputeAddress(U->getOperand(0), Addr); |
| } |
| case Instruction::IntToPtr: { |
| // Look past no-op inttoptrs. |
| if (TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy()) |
| return ComputeAddress(U->getOperand(0), Addr); |
| break; |
| } |
| case Instruction::PtrToInt: { |
| // Look past no-op ptrtoints. |
| if (TLI.getValueType(U->getType()) == TLI.getPointerTy()) |
| return ComputeAddress(U->getOperand(0), Addr); |
| break; |
| } |
| case Instruction::GetElementPtr: { |
| Address SavedAddr = Addr; |
| uint64_t TmpOffset = Addr.getOffset(); |
| |
| // Iterate through the GEP folding the constants into offsets where |
| // we can. |
| gep_type_iterator GTI = gep_type_begin(U); |
| for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end(); i != e; |
| ++i, ++GTI) { |
| const Value *Op = *i; |
| if (StructType *STy = dyn_cast<StructType>(*GTI)) { |
| const StructLayout *SL = DL.getStructLayout(STy); |
| unsigned Idx = cast<ConstantInt>(Op)->getZExtValue(); |
| TmpOffset += SL->getElementOffset(Idx); |
| } else { |
| uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType()); |
| for (;;) { |
| if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) { |
| // Constant-offset addressing. |
| TmpOffset += CI->getSExtValue() * S; |
| break; |
| } |
| if (canFoldAddIntoGEP(U, Op)) { |
| // A compatible add with a constant operand. Fold the constant. |
| ConstantInt *CI = |
| cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1)); |
| TmpOffset += CI->getSExtValue() * S; |
| // Iterate on the other operand. |
| Op = cast<AddOperator>(Op)->getOperand(0); |
| continue; |
| } |
| // Unsupported |
| goto unsupported_gep; |
| } |
| } |
| } |
| |
| // Try to grab the base operand now. |
| Addr.setOffset(TmpOffset); |
| if (ComputeAddress(U->getOperand(0), Addr)) |
| return true; |
| |
| // We failed, restore everything and try the other options. |
| Addr = SavedAddr; |
| |
| unsupported_gep: |
| break; |
| } |
| case Instruction::Alloca: { |
| const AllocaInst *AI = cast<AllocaInst>(Obj); |
| DenseMap<const AllocaInst *, int>::iterator SI = |
| FuncInfo.StaticAllocaMap.find(AI); |
| if (SI != FuncInfo.StaticAllocaMap.end()) { |
| Addr.setKind(Address::FrameIndexBase); |
| Addr.setFI(SI->second); |
| return true; |
| } |
| break; |
| } |
| } |
| |
| // Try to get this in a register if nothing else has worked. |
| if (!Addr.isValid()) |
| Addr.setReg(getRegForValue(Obj)); |
| return Addr.isValid(); |
| } |
| |
| bool AArch64FastISel::isTypeLegal(Type *Ty, MVT &VT) { |
| EVT evt = TLI.getValueType(Ty, true); |
| |
| // Only handle simple types. |
| if (evt == MVT::Other || !evt.isSimple()) |
| return false; |
| VT = evt.getSimpleVT(); |
| |
| // This is a legal type, but it's not something we handle in fast-isel. |
| if (VT == MVT::f128) |
| return false; |
| |
| // Handle all other legal types, i.e. a register that will directly hold this |
| // value. |
| return TLI.isTypeLegal(VT); |
| } |
| |
| bool AArch64FastISel::isLoadStoreTypeLegal(Type *Ty, MVT &VT) { |
| if (isTypeLegal(Ty, VT)) |
| return true; |
| |
| // If this is a type than can be sign or zero-extended to a basic operation |
| // go ahead and accept it now. For stores, this reflects truncation. |
| if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16) |
| return true; |
| |
| return false; |
| } |
| |
| bool AArch64FastISel::SimplifyAddress(Address &Addr, MVT VT, |
| int64_t ScaleFactor, bool UseUnscaled) { |
| bool needsLowering = false; |
| int64_t Offset = Addr.getOffset(); |
| switch (VT.SimpleTy) { |
| default: |
| return false; |
| case MVT::i1: |
| case MVT::i8: |
| case MVT::i16: |
| case MVT::i32: |
| case MVT::i64: |
| case MVT::f32: |
| case MVT::f64: |
| if (!UseUnscaled) |
| // Using scaled, 12-bit, unsigned immediate offsets. |
| needsLowering = ((Offset & 0xfff) != Offset); |
| else |
| // Using unscaled, 9-bit, signed immediate offsets. |
| needsLowering = (Offset > 256 || Offset < -256); |
| break; |
| } |
| |
| //If this is a stack pointer and the offset needs to be simplified then put |
| // the alloca address into a register, set the base type back to register and |
| // continue. This should almost never happen. |
| if (needsLowering && Addr.getKind() == Address::FrameIndexBase) { |
| unsigned ResultReg = createResultReg(&AArch64::GPR64RegClass); |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::ADDXri), |
| ResultReg) |
| .addFrameIndex(Addr.getFI()) |
| .addImm(0) |
| .addImm(0); |
| Addr.setKind(Address::RegBase); |
| Addr.setReg(ResultReg); |
| } |
| |
| // Since the offset is too large for the load/store instruction get the |
| // reg+offset into a register. |
| if (needsLowering) { |
| uint64_t UnscaledOffset = Addr.getOffset() * ScaleFactor; |
| unsigned ResultReg = FastEmit_ri_(MVT::i64, ISD::ADD, Addr.getReg(), false, |
| UnscaledOffset, MVT::i64); |
| if (ResultReg == 0) |
| return false; |
| Addr.setReg(ResultReg); |
| Addr.setOffset(0); |
| } |
| return true; |
| } |
| |
| void AArch64FastISel::AddLoadStoreOperands(Address &Addr, |
| const MachineInstrBuilder &MIB, |
| unsigned Flags, bool UseUnscaled) { |
| int64_t Offset = Addr.getOffset(); |
| // Frame base works a bit differently. Handle it separately. |
| if (Addr.getKind() == Address::FrameIndexBase) { |
| int FI = Addr.getFI(); |
| // FIXME: We shouldn't be using getObjectSize/getObjectAlignment. The size |
| // and alignment should be based on the VT. |
| MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand( |
| MachinePointerInfo::getFixedStack(FI, Offset), Flags, |
| MFI.getObjectSize(FI), MFI.getObjectAlignment(FI)); |
| // Now add the rest of the operands. |
| MIB.addFrameIndex(FI).addImm(Offset).addMemOperand(MMO); |
| } else { |
| // Now add the rest of the operands. |
| MIB.addReg(Addr.getReg()); |
| MIB.addImm(Offset); |
| } |
| } |
| |
| bool AArch64FastISel::EmitLoad(MVT VT, unsigned &ResultReg, Address Addr, |
| bool UseUnscaled) { |
| // Negative offsets require unscaled, 9-bit, signed immediate offsets. |
| // Otherwise, we try using scaled, 12-bit, unsigned immediate offsets. |
| if (!UseUnscaled && Addr.getOffset() < 0) |
| UseUnscaled = true; |
| |
| unsigned Opc; |
| const TargetRegisterClass *RC; |
| bool VTIsi1 = false; |
| int64_t ScaleFactor = 0; |
| switch (VT.SimpleTy) { |
| default: |
| return false; |
| case MVT::i1: |
| VTIsi1 = true; |
| // Intentional fall-through. |
| case MVT::i8: |
| Opc = UseUnscaled ? AArch64::LDURBBi : AArch64::LDRBBui; |
| RC = &AArch64::GPR32RegClass; |
| ScaleFactor = 1; |
| break; |
| case MVT::i16: |
| Opc = UseUnscaled ? AArch64::LDURHHi : AArch64::LDRHHui; |
| RC = &AArch64::GPR32RegClass; |
| ScaleFactor = 2; |
| break; |
| case MVT::i32: |
| Opc = UseUnscaled ? AArch64::LDURWi : AArch64::LDRWui; |
| RC = &AArch64::GPR32RegClass; |
| ScaleFactor = 4; |
| break; |
| case MVT::i64: |
| Opc = UseUnscaled ? AArch64::LDURXi : AArch64::LDRXui; |
| RC = &AArch64::GPR64RegClass; |
| ScaleFactor = 8; |
| break; |
| case MVT::f32: |
| Opc = UseUnscaled ? AArch64::LDURSi : AArch64::LDRSui; |
| RC = TLI.getRegClassFor(VT); |
| ScaleFactor = 4; |
| break; |
| case MVT::f64: |
| Opc = UseUnscaled ? AArch64::LDURDi : AArch64::LDRDui; |
| RC = TLI.getRegClassFor(VT); |
| ScaleFactor = 8; |
| break; |
| } |
| // Scale the offset. |
| if (!UseUnscaled) { |
| int64_t Offset = Addr.getOffset(); |
| if (Offset & (ScaleFactor - 1)) |
| // Retry using an unscaled, 9-bit, signed immediate offset. |
| return EmitLoad(VT, ResultReg, Addr, /*UseUnscaled*/ true); |
| |
| Addr.setOffset(Offset / ScaleFactor); |
| } |
| |
| // Simplify this down to something we can handle. |
| if (!SimplifyAddress(Addr, VT, UseUnscaled ? 1 : ScaleFactor, UseUnscaled)) |
| return false; |
| |
| // Create the base instruction, then add the operands. |
| ResultReg = createResultReg(RC); |
| MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, |
| TII.get(Opc), ResultReg); |
| AddLoadStoreOperands(Addr, MIB, MachineMemOperand::MOLoad, UseUnscaled); |
| |
| // Loading an i1 requires special handling. |
| if (VTIsi1) { |
| MRI.constrainRegClass(ResultReg, &AArch64::GPR32RegClass); |
| unsigned ANDReg = createResultReg(&AArch64::GPR32spRegClass); |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::ANDWri), |
| ANDReg) |
| .addReg(ResultReg) |
| .addImm(AArch64_AM::encodeLogicalImmediate(1, 32)); |
| ResultReg = ANDReg; |
| } |
| return true; |
| } |
| |
| bool AArch64FastISel::SelectLoad(const Instruction *I) { |
| MVT VT; |
| // Verify we have a legal type before going any further. Currently, we handle |
| // simple types that will directly fit in a register (i32/f32/i64/f64) or |
| // those that can be sign or zero-extended to a basic operation (i1/i8/i16). |
| if (!isLoadStoreTypeLegal(I->getType(), VT) || cast<LoadInst>(I)->isAtomic()) |
| return false; |
| |
| // See if we can handle this address. |
| Address Addr; |
| if (!ComputeAddress(I->getOperand(0), Addr)) |
| return false; |
| |
| unsigned ResultReg; |
| if (!EmitLoad(VT, ResultReg, Addr)) |
| return false; |
| |
| UpdateValueMap(I, ResultReg); |
| return true; |
| } |
| |
| bool AArch64FastISel::EmitStore(MVT VT, unsigned SrcReg, Address Addr, |
| bool UseUnscaled) { |
| // Negative offsets require unscaled, 9-bit, signed immediate offsets. |
| // Otherwise, we try using scaled, 12-bit, unsigned immediate offsets. |
| if (!UseUnscaled && Addr.getOffset() < 0) |
| UseUnscaled = true; |
| |
| unsigned StrOpc; |
| bool VTIsi1 = false; |
| int64_t ScaleFactor = 0; |
| // Using scaled, 12-bit, unsigned immediate offsets. |
| switch (VT.SimpleTy) { |
| default: |
| return false; |
| case MVT::i1: |
| VTIsi1 = true; |
| case MVT::i8: |
| StrOpc = UseUnscaled ? AArch64::STURBBi : AArch64::STRBBui; |
| ScaleFactor = 1; |
| break; |
| case MVT::i16: |
| StrOpc = UseUnscaled ? AArch64::STURHHi : AArch64::STRHHui; |
| ScaleFactor = 2; |
| break; |
| case MVT::i32: |
| StrOpc = UseUnscaled ? AArch64::STURWi : AArch64::STRWui; |
| ScaleFactor = 4; |
| break; |
| case MVT::i64: |
| StrOpc = UseUnscaled ? AArch64::STURXi : AArch64::STRXui; |
| ScaleFactor = 8; |
| break; |
| case MVT::f32: |
| StrOpc = UseUnscaled ? AArch64::STURSi : AArch64::STRSui; |
| ScaleFactor = 4; |
| break; |
| case MVT::f64: |
| StrOpc = UseUnscaled ? AArch64::STURDi : AArch64::STRDui; |
| ScaleFactor = 8; |
| break; |
| } |
| // Scale the offset. |
| if (!UseUnscaled) { |
| int64_t Offset = Addr.getOffset(); |
| if (Offset & (ScaleFactor - 1)) |
| // Retry using an unscaled, 9-bit, signed immediate offset. |
| return EmitStore(VT, SrcReg, Addr, /*UseUnscaled*/ true); |
| |
| Addr.setOffset(Offset / ScaleFactor); |
| } |
| |
| // Simplify this down to something we can handle. |
| if (!SimplifyAddress(Addr, VT, UseUnscaled ? 1 : ScaleFactor, UseUnscaled)) |
| return false; |
| |
| // Storing an i1 requires special handling. |
| if (VTIsi1) { |
| MRI.constrainRegClass(SrcReg, &AArch64::GPR32RegClass); |
| unsigned ANDReg = createResultReg(&AArch64::GPR32spRegClass); |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::ANDWri), |
| ANDReg) |
| .addReg(SrcReg) |
| .addImm(AArch64_AM::encodeLogicalImmediate(1, 32)); |
| SrcReg = ANDReg; |
| } |
| // Create the base instruction, then add the operands. |
| MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, |
| TII.get(StrOpc)).addReg(SrcReg); |
| AddLoadStoreOperands(Addr, MIB, MachineMemOperand::MOStore, UseUnscaled); |
| return true; |
| } |
| |
| bool AArch64FastISel::SelectStore(const Instruction *I) { |
| MVT VT; |
| Value *Op0 = I->getOperand(0); |
| // Verify we have a legal type before going any further. Currently, we handle |
| // simple types that will directly fit in a register (i32/f32/i64/f64) or |
| // those that can be sign or zero-extended to a basic operation (i1/i8/i16). |
| if (!isLoadStoreTypeLegal(Op0->getType(), VT) || |
| cast<StoreInst>(I)->isAtomic()) |
| return false; |
| |
| // Get the value to be stored into a register. |
| unsigned SrcReg = getRegForValue(Op0); |
| if (SrcReg == 0) |
| return false; |
| |
| // See if we can handle this address. |
| Address Addr; |
| if (!ComputeAddress(I->getOperand(1), Addr)) |
| return false; |
| |
| if (!EmitStore(VT, SrcReg, Addr)) |
| return false; |
| return true; |
| } |
| |
| static AArch64CC::CondCode getCompareCC(CmpInst::Predicate Pred) { |
| switch (Pred) { |
| case CmpInst::FCMP_ONE: |
| case CmpInst::FCMP_UEQ: |
| default: |
| // AL is our "false" for now. The other two need more compares. |
| return AArch64CC::AL; |
| case CmpInst::ICMP_EQ: |
| case CmpInst::FCMP_OEQ: |
| return AArch64CC::EQ; |
| case CmpInst::ICMP_SGT: |
| case CmpInst::FCMP_OGT: |
| return AArch64CC::GT; |
| case CmpInst::ICMP_SGE: |
| case CmpInst::FCMP_OGE: |
| return AArch64CC::GE; |
| case CmpInst::ICMP_UGT: |
| case CmpInst::FCMP_UGT: |
| return AArch64CC::HI; |
| case CmpInst::FCMP_OLT: |
| return AArch64CC::MI; |
| case CmpInst::ICMP_ULE: |
| case CmpInst::FCMP_OLE: |
| return AArch64CC::LS; |
| case CmpInst::FCMP_ORD: |
| return AArch64CC::VC; |
| case CmpInst::FCMP_UNO: |
| return AArch64CC::VS; |
| case CmpInst::FCMP_UGE: |
| return AArch64CC::PL; |
| case CmpInst::ICMP_SLT: |
| case CmpInst::FCMP_ULT: |
| return AArch64CC::LT; |
| case CmpInst::ICMP_SLE: |
| case CmpInst::FCMP_ULE: |
| return AArch64CC::LE; |
| case CmpInst::FCMP_UNE: |
| case CmpInst::ICMP_NE: |
| return AArch64CC::NE; |
| case CmpInst::ICMP_UGE: |
| return AArch64CC::HS; |
| case CmpInst::ICMP_ULT: |
| return AArch64CC::LO; |
| } |
| } |
| |
| bool AArch64FastISel::SelectBranch(const Instruction *I) { |
| const BranchInst *BI = cast<BranchInst>(I); |
| MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)]; |
| MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)]; |
| |
| if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) { |
| if (CI->hasOneUse() && (CI->getParent() == I->getParent())) { |
| // We may not handle every CC for now. |
| AArch64CC::CondCode CC = getCompareCC(CI->getPredicate()); |
| if (CC == AArch64CC::AL) |
| return false; |
| |
| // Emit the cmp. |
| if (!EmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned())) |
| return false; |
| |
| // Emit the branch. |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::Bcc)) |
| .addImm(CC) |
| .addMBB(TBB); |
| FuncInfo.MBB->addSuccessor(TBB); |
| |
| FastEmitBranch(FBB, DbgLoc); |
| return true; |
| } |
| } else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) { |
| MVT SrcVT; |
| if (TI->hasOneUse() && TI->getParent() == I->getParent() && |
| (isLoadStoreTypeLegal(TI->getOperand(0)->getType(), SrcVT))) { |
| unsigned CondReg = getRegForValue(TI->getOperand(0)); |
| if (CondReg == 0) |
| return false; |
| |
| // Issue an extract_subreg to get the lower 32-bits. |
| if (SrcVT == MVT::i64) |
| CondReg = FastEmitInst_extractsubreg(MVT::i32, CondReg, /*Kill=*/true, |
| AArch64::sub_32); |
| |
| MRI.constrainRegClass(CondReg, &AArch64::GPR32RegClass); |
| unsigned ANDReg = createResultReg(&AArch64::GPR32spRegClass); |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, |
| TII.get(AArch64::ANDWri), ANDReg) |
| .addReg(CondReg) |
| .addImm(AArch64_AM::encodeLogicalImmediate(1, 32)); |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, |
| TII.get(AArch64::SUBSWri)) |
| .addReg(ANDReg) |
| .addReg(ANDReg) |
| .addImm(0) |
| .addImm(0); |
| |
| unsigned CC = AArch64CC::NE; |
| if (FuncInfo.MBB->isLayoutSuccessor(TBB)) { |
| std::swap(TBB, FBB); |
| CC = AArch64CC::EQ; |
| } |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::Bcc)) |
| .addImm(CC) |
| .addMBB(TBB); |
| FuncInfo.MBB->addSuccessor(TBB); |
| FastEmitBranch(FBB, DbgLoc); |
| return true; |
| } |
| } else if (const ConstantInt *CI = |
| dyn_cast<ConstantInt>(BI->getCondition())) { |
| uint64_t Imm = CI->getZExtValue(); |
| MachineBasicBlock *Target = (Imm == 0) ? FBB : TBB; |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::B)) |
| .addMBB(Target); |
| FuncInfo.MBB->addSuccessor(Target); |
| return true; |
| } |
| |
| unsigned CondReg = getRegForValue(BI->getCondition()); |
| if (CondReg == 0) |
| return false; |
| |
| // We've been divorced from our compare! Our block was split, and |
| // now our compare lives in a predecessor block. We musn't |
| // re-compare here, as the children of the compare aren't guaranteed |
| // live across the block boundary (we *could* check for this). |
| // Regardless, the compare has been done in the predecessor block, |
| // and it left a value for us in a virtual register. Ergo, we test |
| // the one-bit value left in the virtual register. |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::SUBSWri), |
| AArch64::WZR) |
| .addReg(CondReg) |
| .addImm(0) |
| .addImm(0); |
| |
| unsigned CC = AArch64CC::NE; |
| if (FuncInfo.MBB->isLayoutSuccessor(TBB)) { |
| std::swap(TBB, FBB); |
| CC = AArch64CC::EQ; |
| } |
| |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::Bcc)) |
| .addImm(CC) |
| .addMBB(TBB); |
| FuncInfo.MBB->addSuccessor(TBB); |
| FastEmitBranch(FBB, DbgLoc); |
| return true; |
| } |
| |
| bool AArch64FastISel::SelectIndirectBr(const Instruction *I) { |
| const IndirectBrInst *BI = cast<IndirectBrInst>(I); |
| unsigned AddrReg = getRegForValue(BI->getOperand(0)); |
| if (AddrReg == 0) |
| return false; |
| |
| // Emit the indirect branch. |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::BR)) |
| .addReg(AddrReg); |
| |
| // Make sure the CFG is up-to-date. |
| for (unsigned i = 0, e = BI->getNumSuccessors(); i != e; ++i) |
| FuncInfo.MBB->addSuccessor(FuncInfo.MBBMap[BI->getSuccessor(i)]); |
| |
| return true; |
| } |
| |
| bool AArch64FastISel::EmitCmp(Value *Src1Value, Value *Src2Value, bool isZExt) { |
| Type *Ty = Src1Value->getType(); |
| EVT SrcEVT = TLI.getValueType(Ty, true); |
| if (!SrcEVT.isSimple()) |
| return false; |
| MVT SrcVT = SrcEVT.getSimpleVT(); |
| |
| // Check to see if the 2nd operand is a constant that we can encode directly |
| // in the compare. |
| uint64_t Imm; |
| bool UseImm = false; |
| bool isNegativeImm = false; |
| if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(Src2Value)) { |
| if (SrcVT == MVT::i64 || SrcVT == MVT::i32 || SrcVT == MVT::i16 || |
| SrcVT == MVT::i8 || SrcVT == MVT::i1) { |
| const APInt &CIVal = ConstInt->getValue(); |
| |
| Imm = (isZExt) ? CIVal.getZExtValue() : CIVal.getSExtValue(); |
| if (CIVal.isNegative()) { |
| isNegativeImm = true; |
| Imm = -Imm; |
| } |
| // FIXME: We can handle more immediates using shifts. |
| UseImm = ((Imm & 0xfff) == Imm); |
| } |
| } else if (const ConstantFP *ConstFP = dyn_cast<ConstantFP>(Src2Value)) { |
| if (SrcVT == MVT::f32 || SrcVT == MVT::f64) |
| if (ConstFP->isZero() && !ConstFP->isNegative()) |
| UseImm = true; |
| } |
| |
| unsigned ZReg; |
| unsigned CmpOpc; |
| bool isICmp = true; |
| bool needsExt = false; |
| switch (SrcVT.SimpleTy) { |
| default: |
| return false; |
| case MVT::i1: |
| case MVT::i8: |
| case MVT::i16: |
| needsExt = true; |
| // Intentional fall-through. |
| case MVT::i32: |
| ZReg = AArch64::WZR; |
| if (UseImm) |
| CmpOpc = isNegativeImm ? AArch64::ADDSWri : AArch64::SUBSWri; |
| else |
| CmpOpc = AArch64::SUBSWrr; |
| break; |
| case MVT::i64: |
| ZReg = AArch64::XZR; |
| if (UseImm) |
| CmpOpc = isNegativeImm ? AArch64::ADDSXri : AArch64::SUBSXri; |
| else |
| CmpOpc = AArch64::SUBSXrr; |
| break; |
| case MVT::f32: |
| isICmp = false; |
| CmpOpc = UseImm ? AArch64::FCMPSri : AArch64::FCMPSrr; |
| break; |
| case MVT::f64: |
| isICmp = false; |
| CmpOpc = UseImm ? AArch64::FCMPDri : AArch64::FCMPDrr; |
| break; |
| } |
| |
| unsigned SrcReg1 = getRegForValue(Src1Value); |
| if (SrcReg1 == 0) |
| return false; |
| |
| unsigned SrcReg2; |
| if (!UseImm) { |
| SrcReg2 = getRegForValue(Src2Value); |
| if (SrcReg2 == 0) |
| return false; |
| } |
| |
| // We have i1, i8, or i16, we need to either zero extend or sign extend. |
| if (needsExt) { |
| SrcReg1 = EmitIntExt(SrcVT, SrcReg1, MVT::i32, isZExt); |
| if (SrcReg1 == 0) |
| return false; |
| if (!UseImm) { |
| SrcReg2 = EmitIntExt(SrcVT, SrcReg2, MVT::i32, isZExt); |
| if (SrcReg2 == 0) |
| return false; |
| } |
| } |
| |
| if (isICmp) { |
| if (UseImm) |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CmpOpc)) |
| .addReg(ZReg) |
| .addReg(SrcReg1) |
| .addImm(Imm) |
| .addImm(0); |
| else |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CmpOpc)) |
| .addReg(ZReg) |
| .addReg(SrcReg1) |
| .addReg(SrcReg2); |
| } else { |
| if (UseImm) |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CmpOpc)) |
| .addReg(SrcReg1); |
| else |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CmpOpc)) |
| .addReg(SrcReg1) |
| .addReg(SrcReg2); |
| } |
| return true; |
| } |
| |
| bool AArch64FastISel::SelectCmp(const Instruction *I) { |
| const CmpInst *CI = cast<CmpInst>(I); |
| |
| // We may not handle every CC for now. |
| AArch64CC::CondCode CC = getCompareCC(CI->getPredicate()); |
| if (CC == AArch64CC::AL) |
| return false; |
| |
| // Emit the cmp. |
| if (!EmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned())) |
| return false; |
| |
| // Now set a register based on the comparison. |
| AArch64CC::CondCode invertedCC = getInvertedCondCode(CC); |
| unsigned ResultReg = createResultReg(&AArch64::GPR32RegClass); |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::CSINCWr), |
| ResultReg) |
| .addReg(AArch64::WZR) |
| .addReg(AArch64::WZR) |
| .addImm(invertedCC); |
| |
| UpdateValueMap(I, ResultReg); |
| return true; |
| } |
| |
| bool AArch64FastISel::SelectSelect(const Instruction *I) { |
| const SelectInst *SI = cast<SelectInst>(I); |
| |
| EVT DestEVT = TLI.getValueType(SI->getType(), true); |
| if (!DestEVT.isSimple()) |
| return false; |
| |
| MVT DestVT = DestEVT.getSimpleVT(); |
| if (DestVT != MVT::i32 && DestVT != MVT::i64 && DestVT != MVT::f32 && |
| DestVT != MVT::f64) |
| return false; |
| |
| unsigned CondReg = getRegForValue(SI->getCondition()); |
| if (CondReg == 0) |
| return false; |
| unsigned TrueReg = getRegForValue(SI->getTrueValue()); |
| if (TrueReg == 0) |
| return false; |
| unsigned FalseReg = getRegForValue(SI->getFalseValue()); |
| if (FalseReg == 0) |
| return false; |
| |
| |
| MRI.constrainRegClass(CondReg, &AArch64::GPR32RegClass); |
| unsigned ANDReg = createResultReg(&AArch64::GPR32spRegClass); |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::ANDWri), |
| ANDReg) |
| .addReg(CondReg) |
| .addImm(AArch64_AM::encodeLogicalImmediate(1, 32)); |
| |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::SUBSWri)) |
| .addReg(ANDReg) |
| .addReg(ANDReg) |
| .addImm(0) |
| .addImm(0); |
| |
| unsigned SelectOpc; |
| switch (DestVT.SimpleTy) { |
| default: |
| return false; |
| case MVT::i32: |
| SelectOpc = AArch64::CSELWr; |
| break; |
| case MVT::i64: |
| SelectOpc = AArch64::CSELXr; |
| break; |
| case MVT::f32: |
| SelectOpc = AArch64::FCSELSrrr; |
| break; |
| case MVT::f64: |
| SelectOpc = AArch64::FCSELDrrr; |
| break; |
| } |
| |
| unsigned ResultReg = createResultReg(TLI.getRegClassFor(DestVT)); |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SelectOpc), |
| ResultReg) |
| .addReg(TrueReg) |
| .addReg(FalseReg) |
| .addImm(AArch64CC::NE); |
| |
| UpdateValueMap(I, ResultReg); |
| return true; |
| } |
| |
| bool AArch64FastISel::SelectFPExt(const Instruction *I) { |
| Value *V = I->getOperand(0); |
| if (!I->getType()->isDoubleTy() || !V->getType()->isFloatTy()) |
| return false; |
| |
| unsigned Op = getRegForValue(V); |
| if (Op == 0) |
| return false; |
| |
| unsigned ResultReg = createResultReg(&AArch64::FPR64RegClass); |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::FCVTDSr), |
| ResultReg).addReg(Op); |
| UpdateValueMap(I, ResultReg); |
| return true; |
| } |
| |
| bool AArch64FastISel::SelectFPTrunc(const Instruction *I) { |
| Value *V = I->getOperand(0); |
| if (!I->getType()->isFloatTy() || !V->getType()->isDoubleTy()) |
| return false; |
| |
| unsigned Op = getRegForValue(V); |
| if (Op == 0) |
| return false; |
| |
| unsigned ResultReg = createResultReg(&AArch64::FPR32RegClass); |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::FCVTSDr), |
| ResultReg).addReg(Op); |
| UpdateValueMap(I, ResultReg); |
| return true; |
| } |
| |
| // FPToUI and FPToSI |
| bool AArch64FastISel::SelectFPToInt(const Instruction *I, bool Signed) { |
| MVT DestVT; |
| if (!isTypeLegal(I->getType(), DestVT) || DestVT.isVector()) |
| return false; |
| |
| unsigned SrcReg = getRegForValue(I->getOperand(0)); |
| if (SrcReg == 0) |
| return false; |
| |
| EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType(), true); |
| if (SrcVT == MVT::f128) |
| return false; |
| |
| unsigned Opc; |
| if (SrcVT == MVT::f64) { |
| if (Signed) |
| Opc = (DestVT == MVT::i32) ? AArch64::FCVTZSUWDr : AArch64::FCVTZSUXDr; |
| else |
| Opc = (DestVT == MVT::i32) ? AArch64::FCVTZUUWDr : AArch64::FCVTZUUXDr; |
| } else { |
| if (Signed) |
| Opc = (DestVT == MVT::i32) ? AArch64::FCVTZSUWSr : AArch64::FCVTZSUXSr; |
| else |
| Opc = (DestVT == MVT::i32) ? AArch64::FCVTZUUWSr : AArch64::FCVTZUUXSr; |
| } |
| unsigned ResultReg = createResultReg( |
| DestVT == MVT::i32 ? &AArch64::GPR32RegClass : &AArch64::GPR64RegClass); |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg) |
| .addReg(SrcReg); |
| UpdateValueMap(I, ResultReg); |
| return true; |
| } |
| |
| bool AArch64FastISel::SelectIntToFP(const Instruction *I, bool Signed) { |
| MVT DestVT; |
| if (!isTypeLegal(I->getType(), DestVT) || DestVT.isVector()) |
| return false; |
| assert ((DestVT == MVT::f32 || DestVT == MVT::f64) && |
| "Unexpected value type."); |
| |
| unsigned SrcReg = getRegForValue(I->getOperand(0)); |
| if (SrcReg == 0) |
| return false; |
| |
| EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType(), true); |
| |
| // Handle sign-extension. |
| if (SrcVT == MVT::i16 || SrcVT == MVT::i8 || SrcVT == MVT::i1) { |
| SrcReg = |
| EmitIntExt(SrcVT.getSimpleVT(), SrcReg, MVT::i32, /*isZExt*/ !Signed); |
| if (SrcReg == 0) |
| return false; |
| } |
| |
| MRI.constrainRegClass(SrcReg, SrcVT == MVT::i64 ? &AArch64::GPR64RegClass |
| : &AArch64::GPR32RegClass); |
| |
| unsigned Opc; |
| if (SrcVT == MVT::i64) { |
| if (Signed) |
| Opc = (DestVT == MVT::f32) ? AArch64::SCVTFUXSri : AArch64::SCVTFUXDri; |
| else |
| Opc = (DestVT == MVT::f32) ? AArch64::UCVTFUXSri : AArch64::UCVTFUXDri; |
| } else { |
| if (Signed) |
| Opc = (DestVT == MVT::f32) ? AArch64::SCVTFUWSri : AArch64::SCVTFUWDri; |
| else |
| Opc = (DestVT == MVT::f32) ? AArch64::UCVTFUWSri : AArch64::UCVTFUWDri; |
| } |
| |
| unsigned ResultReg = createResultReg(TLI.getRegClassFor(DestVT)); |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg) |
| .addReg(SrcReg); |
| UpdateValueMap(I, ResultReg); |
| return true; |
| } |
| |
| bool AArch64FastISel::ProcessCallArgs( |
| SmallVectorImpl<Value *> &Args, SmallVectorImpl<unsigned> &ArgRegs, |
| SmallVectorImpl<MVT> &ArgVTs, SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags, |
| SmallVectorImpl<unsigned> &RegArgs, CallingConv::ID CC, |
| unsigned &NumBytes) { |
| SmallVector<CCValAssign, 16> ArgLocs; |
| CCState CCInfo(CC, false, *FuncInfo.MF, TM, ArgLocs, *Context); |
| CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, CCAssignFnForCall(CC)); |
| |
| // Get a count of how many bytes are to be pushed on the stack. |
| NumBytes = CCInfo.getNextStackOffset(); |
| |
| // Issue CALLSEQ_START |
| unsigned AdjStackDown = TII.getCallFrameSetupOpcode(); |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackDown)) |
| .addImm(NumBytes); |
| |
| // Process the args. |
| for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { |
| CCValAssign &VA = ArgLocs[i]; |
| unsigned Arg = ArgRegs[VA.getValNo()]; |
| MVT ArgVT = ArgVTs[VA.getValNo()]; |
| |
| // Handle arg promotion: SExt, ZExt, AExt. |
| switch (VA.getLocInfo()) { |
| case CCValAssign::Full: |
| break; |
| case CCValAssign::SExt: { |
| MVT DestVT = VA.getLocVT(); |
| MVT SrcVT = ArgVT; |
| Arg = EmitIntExt(SrcVT, Arg, DestVT, /*isZExt*/ false); |
| if (Arg == 0) |
| return false; |
| break; |
| } |
| case CCValAssign::AExt: |
| // Intentional fall-through. |
| case CCValAssign::ZExt: { |
| MVT DestVT = VA.getLocVT(); |
| MVT SrcVT = ArgVT; |
| Arg = EmitIntExt(SrcVT, Arg, DestVT, /*isZExt*/ true); |
| if (Arg == 0) |
| return false; |
| break; |
| } |
| default: |
| llvm_unreachable("Unknown arg promotion!"); |
| } |
| |
| // Now copy/store arg to correct locations. |
| if (VA.isRegLoc() && !VA.needsCustom()) { |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, |
| TII.get(TargetOpcode::COPY), VA.getLocReg()).addReg(Arg); |
| RegArgs.push_back(VA.getLocReg()); |
| } else if (VA.needsCustom()) { |
| // FIXME: Handle custom args. |
| return false; |
| } else { |
| assert(VA.isMemLoc() && "Assuming store on stack."); |
| |
| // Need to store on the stack. |
| unsigned ArgSize = (ArgVT.getSizeInBits() + 7) / 8; |
| |
| unsigned BEAlign = 0; |
| if (ArgSize < 8 && !Subtarget->isLittleEndian()) |
| BEAlign = 8 - ArgSize; |
| |
| Address Addr; |
| Addr.setKind(Address::RegBase); |
| Addr.setReg(AArch64::SP); |
| Addr.setOffset(VA.getLocMemOffset() + BEAlign); |
| |
| if (!EmitStore(ArgVT, Arg, Addr)) |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| bool AArch64FastISel::FinishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs, |
| const Instruction *I, CallingConv::ID CC, |
| unsigned &NumBytes) { |
| // Issue CALLSEQ_END |
| unsigned AdjStackUp = TII.getCallFrameDestroyOpcode(); |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackUp)) |
| .addImm(NumBytes) |
| .addImm(0); |
| |
| // Now the return value. |
| if (RetVT != MVT::isVoid) { |
| SmallVector<CCValAssign, 16> RVLocs; |
| CCState CCInfo(CC, false, *FuncInfo.MF, TM, RVLocs, *Context); |
| CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC)); |
| |
| // Only handle a single return value. |
| if (RVLocs.size() != 1) |
| return false; |
| |
| // Copy all of the result registers out of their specified physreg. |
| MVT CopyVT = RVLocs[0].getValVT(); |
| unsigned ResultReg = createResultReg(TLI.getRegClassFor(CopyVT)); |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, |
| TII.get(TargetOpcode::COPY), |
| ResultReg).addReg(RVLocs[0].getLocReg()); |
| UsedRegs.push_back(RVLocs[0].getLocReg()); |
| |
| // Finally update the result. |
| UpdateValueMap(I, ResultReg); |
| } |
| |
| return true; |
| } |
| |
| bool AArch64FastISel::SelectCall(const Instruction *I, |
| const char *IntrMemName = nullptr) { |
| const CallInst *CI = cast<CallInst>(I); |
| const Value *Callee = CI->getCalledValue(); |
| |
| // Don't handle inline asm or intrinsics. |
| if (isa<InlineAsm>(Callee)) |
| return false; |
| |
| // Only handle global variable Callees. |
| const GlobalValue *GV = dyn_cast<GlobalValue>(Callee); |
| if (!GV) |
| return false; |
| |
| // Check the calling convention. |
| ImmutableCallSite CS(CI); |
| CallingConv::ID CC = CS.getCallingConv(); |
| |
| // Let SDISel handle vararg functions. |
| PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); |
| FunctionType *FTy = cast<FunctionType>(PT->getElementType()); |
| if (FTy->isVarArg()) |
| return false; |
| |
| // Handle *simple* calls for now. |
| MVT RetVT; |
| Type *RetTy = I->getType(); |
| if (RetTy->isVoidTy()) |
| RetVT = MVT::isVoid; |
| else if (!isTypeLegal(RetTy, RetVT)) |
| return false; |
| |
| // Set up the argument vectors. |
| SmallVector<Value *, 8> Args; |
| SmallVector<unsigned, 8> ArgRegs; |
| SmallVector<MVT, 8> ArgVTs; |
| SmallVector<ISD::ArgFlagsTy, 8> ArgFlags; |
| Args.reserve(CS.arg_size()); |
| ArgRegs.reserve(CS.arg_size()); |
| ArgVTs.reserve(CS.arg_size()); |
| ArgFlags.reserve(CS.arg_size()); |
| |
| for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); |
| i != e; ++i) { |
| // If we're lowering a memory intrinsic instead of a regular call, skip the |
| // last two arguments, which shouldn't be passed to the underlying function. |
| if (IntrMemName && e - i <= 2) |
| break; |
| |
| unsigned Arg = getRegForValue(*i); |
| if (Arg == 0) |
| return false; |
| |
| ISD::ArgFlagsTy Flags; |
| unsigned AttrInd = i - CS.arg_begin() + 1; |
| if (CS.paramHasAttr(AttrInd, Attribute::SExt)) |
| Flags.setSExt(); |
| if (CS.paramHasAttr(AttrInd, Attribute::ZExt)) |
| Flags.setZExt(); |
| |
| // FIXME: Only handle *easy* calls for now. |
| if (CS.paramHasAttr(AttrInd, Attribute::InReg) || |
| CS.paramHasAttr(AttrInd, Attribute::StructRet) || |
| CS.paramHasAttr(AttrInd, Attribute::Nest) || |
| CS.paramHasAttr(AttrInd, Attribute::ByVal)) |
| return false; |
| |
| MVT ArgVT; |
| Type *ArgTy = (*i)->getType(); |
| if (!isTypeLegal(ArgTy, ArgVT) && |
| !(ArgVT == MVT::i1 || ArgVT == MVT::i8 || ArgVT == MVT::i16)) |
| return false; |
| |
| // We don't handle vector parameters yet. |
| if (ArgVT.isVector() || ArgVT.getSizeInBits() > 64) |
| return false; |
| |
| unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); |
| Flags.setOrigAlign(OriginalAlignment); |
| |
| Args.push_back(*i); |
| ArgRegs.push_back(Arg); |
| ArgVTs.push_back(ArgVT); |
| ArgFlags.push_back(Flags); |
| } |
| |
| // Handle the arguments now that we've gotten them. |
| SmallVector<unsigned, 4> RegArgs; |
| unsigned NumBytes; |
| if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags, RegArgs, CC, NumBytes)) |
| return false; |
| |
| // Issue the call. |
| MachineInstrBuilder MIB; |
| MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::BL)); |
| if (!IntrMemName) |
| MIB.addGlobalAddress(GV, 0, 0); |
| else |
| MIB.addExternalSymbol(IntrMemName, 0); |
| |
| // Add implicit physical register uses to the call. |
| for (unsigned i = 0, e = RegArgs.size(); i != e; ++i) |
| MIB.addReg(RegArgs[i], RegState::Implicit); |
| |
| // Add a register mask with the call-preserved registers. |
| // Proper defs for return values will be added by setPhysRegsDeadExcept(). |
| MIB.addRegMask(TRI.getCallPreservedMask(CS.getCallingConv())); |
| |
| // Finish off the call including any return values. |
| SmallVector<unsigned, 4> UsedRegs; |
| if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes)) |
| return false; |
| |
| // Set all unused physreg defs as dead. |
| static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI); |
| |
| return true; |
| } |
| |
| bool AArch64FastISel::IsMemCpySmall(uint64_t Len, unsigned Alignment) { |
| if (Alignment) |
| return Len / Alignment <= 4; |
| else |
| return Len < 32; |
| } |
| |
| bool AArch64FastISel::TryEmitSmallMemCpy(Address Dest, Address Src, |
| uint64_t Len, unsigned Alignment) { |
| // Make sure we don't bloat code by inlining very large memcpy's. |
| if (!IsMemCpySmall(Len, Alignment)) |
| return false; |
| |
| int64_t UnscaledOffset = 0; |
| Address OrigDest = Dest; |
| Address OrigSrc = Src; |
| |
| while (Len) { |
| MVT VT; |
| if (!Alignment || Alignment >= 8) { |
| if (Len >= 8) |
| VT = MVT::i64; |
| else if (Len >= 4) |
| VT = MVT::i32; |
| else if (Len >= 2) |
| VT = MVT::i16; |
| else { |
| VT = MVT::i8; |
| } |
| } else { |
| // Bound based on alignment. |
| if (Len >= 4 && Alignment == 4) |
| VT = MVT::i32; |
| else if (Len >= 2 && Alignment == 2) |
| VT = MVT::i16; |
| else { |
| VT = MVT::i8; |
| } |
| } |
| |
| bool RV; |
| unsigned ResultReg; |
| RV = EmitLoad(VT, ResultReg, Src); |
| if (!RV) |
| return false; |
| |
| RV = EmitStore(VT, ResultReg, Dest); |
| if (!RV) |
| return false; |
| |
| int64_t Size = VT.getSizeInBits() / 8; |
| Len -= Size; |
| UnscaledOffset += Size; |
| |
| // We need to recompute the unscaled offset for each iteration. |
| Dest.setOffset(OrigDest.getOffset() + UnscaledOffset); |
| Src.setOffset(OrigSrc.getOffset() + UnscaledOffset); |
| } |
| |
| return true; |
| } |
| |
| bool AArch64FastISel::SelectIntrinsicCall(const IntrinsicInst &I) { |
| // FIXME: Handle more intrinsics. |
| switch (I.getIntrinsicID()) { |
| default: |
| return false; |
| case Intrinsic::memcpy: |
| case Intrinsic::memmove: { |
| const MemTransferInst &MTI = cast<MemTransferInst>(I); |
| // Don't handle volatile. |
| if (MTI.isVolatile()) |
| return false; |
| |
| // Disable inlining for memmove before calls to ComputeAddress. Otherwise, |
| // we would emit dead code because we don't currently handle memmoves. |
| bool isMemCpy = (I.getIntrinsicID() == Intrinsic::memcpy); |
| if (isa<ConstantInt>(MTI.getLength()) && isMemCpy) { |
| // Small memcpy's are common enough that we want to do them without a call |
| // if possible. |
| uint64_t Len = cast<ConstantInt>(MTI.getLength())->getZExtValue(); |
| unsigned Alignment = MTI.getAlignment(); |
| if (IsMemCpySmall(Len, Alignment)) { |
| Address Dest, Src; |
| if (!ComputeAddress(MTI.getRawDest(), Dest) || |
| !ComputeAddress(MTI.getRawSource(), Src)) |
| return false; |
| if (TryEmitSmallMemCpy(Dest, Src, Len, Alignment)) |
| return true; |
| } |
| } |
| |
| if (!MTI.getLength()->getType()->isIntegerTy(64)) |
| return false; |
| |
| if (MTI.getSourceAddressSpace() > 255 || MTI.getDestAddressSpace() > 255) |
| // Fast instruction selection doesn't support the special |
| // address spaces. |
| return false; |
| |
| const char *IntrMemName = isa<MemCpyInst>(I) ? "memcpy" : "memmove"; |
| return SelectCall(&I, IntrMemName); |
| } |
| case Intrinsic::memset: { |
| const MemSetInst &MSI = cast<MemSetInst>(I); |
| // Don't handle volatile. |
| if (MSI.isVolatile()) |
| return false; |
| |
| if (!MSI.getLength()->getType()->isIntegerTy(64)) |
| return false; |
| |
| if (MSI.getDestAddressSpace() > 255) |
| // Fast instruction selection doesn't support the special |
| // address spaces. |
| return false; |
| |
| return SelectCall(&I, "memset"); |
| } |
| case Intrinsic::trap: { |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::BRK)) |
| .addImm(1); |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| bool AArch64FastISel::SelectRet(const Instruction *I) { |
| const ReturnInst *Ret = cast<ReturnInst>(I); |
| const Function &F = *I->getParent()->getParent(); |
| |
| if (!FuncInfo.CanLowerReturn) |
| return false; |
| |
| if (F.isVarArg()) |
| return false; |
| |
| // Build a list of return value registers. |
| SmallVector<unsigned, 4> RetRegs; |
| |
| if (Ret->getNumOperands() > 0) { |
| CallingConv::ID CC = F.getCallingConv(); |
| SmallVector<ISD::OutputArg, 4> Outs; |
| GetReturnInfo(F.getReturnType(), F.getAttributes(), Outs, TLI); |
| |
| // Analyze operands of the call, assigning locations to each operand. |
| SmallVector<CCValAssign, 16> ValLocs; |
| CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, TM, ValLocs, |
| I->getContext()); |
| CCAssignFn *RetCC = CC == CallingConv::WebKit_JS ? RetCC_AArch64_WebKit_JS |
| : RetCC_AArch64_AAPCS; |
| CCInfo.AnalyzeReturn(Outs, RetCC); |
| |
| // Only handle a single return value for now. |
| if (ValLocs.size() != 1) |
| return false; |
| |
| CCValAssign &VA = ValLocs[0]; |
| const Value *RV = Ret->getOperand(0); |
| |
| // Don't bother handling odd stuff for now. |
| if (VA.getLocInfo() != CCValAssign::Full) |
| return false; |
| // Only handle register returns for now. |
| if (!VA.isRegLoc()) |
| return false; |
| unsigned Reg = getRegForValue(RV); |
| if (Reg == 0) |
| return false; |
| |
| unsigned SrcReg = Reg + VA.getValNo(); |
| unsigned DestReg = VA.getLocReg(); |
| // Avoid a cross-class copy. This is very unlikely. |
| if (!MRI.getRegClass(SrcReg)->contains(DestReg)) |
| return false; |
| |
| EVT RVEVT = TLI.getValueType(RV->getType()); |
| if (!RVEVT.isSimple()) |
| return false; |
| |
| // Vectors (of > 1 lane) in big endian need tricky handling. |
| if (RVEVT.isVector() && RVEVT.getVectorNumElements() > 1) |
| return false; |
| |
| MVT RVVT = RVEVT.getSimpleVT(); |
| if (RVVT == MVT::f128) |
| return false; |
| MVT DestVT = VA.getValVT(); |
| // Special handling for extended integers. |
| if (RVVT != DestVT) { |
| if (RVVT != MVT::i1 && RVVT != MVT::i8 && RVVT != MVT::i16) |
| return false; |
| |
| if (!Outs[0].Flags.isZExt() && !Outs[0].Flags.isSExt()) |
| return false; |
| |
| bool isZExt = Outs[0].Flags.isZExt(); |
| SrcReg = EmitIntExt(RVVT, SrcReg, DestVT, isZExt); |
| if (SrcReg == 0) |
| return false; |
| } |
| |
| // Make the copy. |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, |
| TII.get(TargetOpcode::COPY), DestReg).addReg(SrcReg); |
| |
| // Add register to return instruction. |
| RetRegs.push_back(VA.getLocReg()); |
| } |
| |
| MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, |
| TII.get(AArch64::RET_ReallyLR)); |
| for (unsigned i = 0, e = RetRegs.size(); i != e; ++i) |
| MIB.addReg(RetRegs[i], RegState::Implicit); |
| return true; |
| } |
| |
| bool AArch64FastISel::SelectTrunc(const Instruction *I) { |
| Type *DestTy = I->getType(); |
| Value *Op = I->getOperand(0); |
| Type *SrcTy = Op->getType(); |
| |
| EVT SrcEVT = TLI.getValueType(SrcTy, true); |
| EVT DestEVT = TLI.getValueType(DestTy, true); |
| if (!SrcEVT.isSimple()) |
| return false; |
| if (!DestEVT.isSimple()) |
| return false; |
| |
| MVT SrcVT = SrcEVT.getSimpleVT(); |
| MVT DestVT = DestEVT.getSimpleVT(); |
| |
| if (SrcVT != MVT::i64 && SrcVT != MVT::i32 && SrcVT != MVT::i16 && |
| SrcVT != MVT::i8) |
| return false; |
| if (DestVT != MVT::i32 && DestVT != MVT::i16 && DestVT != MVT::i8 && |
| DestVT != MVT::i1) |
| return false; |
| |
| unsigned SrcReg = getRegForValue(Op); |
| if (!SrcReg) |
| return false; |
| |
| // If we're truncating from i64 to a smaller non-legal type then generate an |
| // AND. Otherwise, we know the high bits are undefined and a truncate doesn't |
| // generate any code. |
| if (SrcVT == MVT::i64) { |
| uint64_t Mask = 0; |
| switch (DestVT.SimpleTy) { |
| default: |
| // Trunc i64 to i32 is handled by the target-independent fast-isel. |
| return false; |
| case MVT::i1: |
| Mask = 0x1; |
| break; |
| case MVT::i8: |
| Mask = 0xff; |
| break; |
| case MVT::i16: |
| Mask = 0xffff; |
| break; |
| } |
| // Issue an extract_subreg to get the lower 32-bits. |
| unsigned Reg32 = FastEmitInst_extractsubreg(MVT::i32, SrcReg, /*Kill=*/true, |
| AArch64::sub_32); |
| MRI.constrainRegClass(Reg32, &AArch64::GPR32RegClass); |
| // Create the AND instruction which performs the actual truncation. |
| unsigned ANDReg = createResultReg(&AArch64::GPR32spRegClass); |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::ANDWri), |
| ANDReg) |
| .addReg(Reg32) |
| .addImm(AArch64_AM::encodeLogicalImmediate(Mask, 32)); |
| SrcReg = ANDReg; |
| } |
| |
| UpdateValueMap(I, SrcReg); |
| return true; |
| } |
| |
| unsigned AArch64FastISel::Emiti1Ext(unsigned SrcReg, MVT DestVT, bool isZExt) { |
| assert((DestVT == MVT::i8 || DestVT == MVT::i16 || DestVT == MVT::i32 || |
| DestVT == MVT::i64) && |
| "Unexpected value type."); |
| // Handle i8 and i16 as i32. |
| if (DestVT == MVT::i8 || DestVT == MVT::i16) |
| DestVT = MVT::i32; |
| |
| if (isZExt) { |
| MRI.constrainRegClass(SrcReg, &AArch64::GPR32RegClass); |
| unsigned ResultReg = createResultReg(&AArch64::GPR32spRegClass); |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::ANDWri), |
| ResultReg) |
| .addReg(SrcReg) |
| .addImm(AArch64_AM::encodeLogicalImmediate(1, 32)); |
| |
| if (DestVT == MVT::i64) { |
| // We're ZExt i1 to i64. The ANDWri Wd, Ws, #1 implicitly clears the |
| // upper 32 bits. Emit a SUBREG_TO_REG to extend from Wd to Xd. |
| unsigned Reg64 = MRI.createVirtualRegister(&AArch64::GPR64RegClass); |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, |
| TII.get(AArch64::SUBREG_TO_REG), Reg64) |
| .addImm(0) |
| .addReg(ResultReg) |
| .addImm(AArch64::sub_32); |
| ResultReg = Reg64; |
| } |
| return ResultReg; |
| } else { |
| if (DestVT == MVT::i64) { |
| // FIXME: We're SExt i1 to i64. |
| return 0; |
| } |
| unsigned ResultReg = createResultReg(&AArch64::GPR32RegClass); |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::SBFMWri), |
| ResultReg) |
| .addReg(SrcReg) |
| .addImm(0) |
| .addImm(0); |
| return ResultReg; |
| } |
| } |
| |
| unsigned AArch64FastISel::EmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, |
| bool isZExt) { |
| assert(DestVT != MVT::i1 && "ZeroExt/SignExt an i1?"); |
| |
| // FastISel does not have plumbing to deal with extensions where the SrcVT or |
| // DestVT are odd things, so test to make sure that they are both types we can |
| // handle (i1/i8/i16/i32 for SrcVT and i8/i16/i32/i64 for DestVT), otherwise |
| // bail out to SelectionDAG. |
| if (((DestVT != MVT::i8) && (DestVT != MVT::i16) && |
| (DestVT != MVT::i32) && (DestVT != MVT::i64)) || |
| ((SrcVT != MVT::i1) && (SrcVT != MVT::i8) && |
| (SrcVT != MVT::i16) && (SrcVT != MVT::i32))) |
| return 0; |
| |
| unsigned Opc; |
| unsigned Imm = 0; |
| |
| switch (SrcVT.SimpleTy) { |
| default: |
| return 0; |
| case MVT::i1: |
| return Emiti1Ext(SrcReg, DestVT, isZExt); |
| case MVT::i8: |
| if (DestVT == MVT::i64) |
| Opc = isZExt ? AArch64::UBFMXri : AArch64::SBFMXri; |
| else |
| Opc = isZExt ? AArch64::UBFMWri : AArch64::SBFMWri; |
| Imm = 7; |
| break; |
| case MVT::i16: |
| if (DestVT == MVT::i64) |
| Opc = isZExt ? AArch64::UBFMXri : AArch64::SBFMXri; |
| else |
| Opc = isZExt ? AArch64::UBFMWri : AArch64::SBFMWri; |
| Imm = 15; |
| break; |
| case MVT::i32: |
| assert(DestVT == MVT::i64 && "IntExt i32 to i32?!?"); |
| Opc = isZExt ? AArch64::UBFMXri : AArch64::SBFMXri; |
| Imm = 31; |
| break; |
| } |
| |
| // Handle i8 and i16 as i32. |
| if (DestVT == MVT::i8 || DestVT == MVT::i16) |
| DestVT = MVT::i32; |
| else if (DestVT == MVT::i64) { |
| unsigned Src64 = MRI.createVirtualRegister(&AArch64::GPR64RegClass); |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, |
| TII.get(AArch64::SUBREG_TO_REG), Src64) |
| .addImm(0) |
| .addReg(SrcReg) |
| .addImm(AArch64::sub_32); |
| SrcReg = Src64; |
| } |
| |
| unsigned ResultReg = createResultReg(TLI.getRegClassFor(DestVT)); |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg) |
| .addReg(SrcReg) |
| .addImm(0) |
| .addImm(Imm); |
| |
| return ResultReg; |
| } |
| |
| bool AArch64FastISel::SelectIntExt(const Instruction *I) { |
| // On ARM, in general, integer casts don't involve legal types; this code |
| // handles promotable integers. The high bits for a type smaller than |
| // the register size are assumed to be undefined. |
| Type *DestTy = I->getType(); |
| Value *Src = I->getOperand(0); |
| Type *SrcTy = Src->getType(); |
| |
| bool isZExt = isa<ZExtInst>(I); |
| unsigned SrcReg = getRegForValue(Src); |
| if (!SrcReg) |
| return false; |
| |
| EVT SrcEVT = TLI.getValueType(SrcTy, true); |
| EVT DestEVT = TLI.getValueType(DestTy, true); |
| if (!SrcEVT.isSimple()) |
| return false; |
| if (!DestEVT.isSimple()) |
| return false; |
| |
| MVT SrcVT = SrcEVT.getSimpleVT(); |
| MVT DestVT = DestEVT.getSimpleVT(); |
| unsigned ResultReg = EmitIntExt(SrcVT, SrcReg, DestVT, isZExt); |
| if (ResultReg == 0) |
| return false; |
| UpdateValueMap(I, ResultReg); |
| return true; |
| } |
| |
| bool AArch64FastISel::SelectRem(const Instruction *I, unsigned ISDOpcode) { |
| EVT DestEVT = TLI.getValueType(I->getType(), true); |
| if (!DestEVT.isSimple()) |
| return false; |
| |
| MVT DestVT = DestEVT.getSimpleVT(); |
| if (DestVT != MVT::i64 && DestVT != MVT::i32) |
| return false; |
| |
| unsigned DivOpc; |
| bool is64bit = (DestVT == MVT::i64); |
| switch (ISDOpcode) { |
| default: |
| return false; |
| case ISD::SREM: |
| DivOpc = is64bit ? AArch64::SDIVXr : AArch64::SDIVWr; |
| break; |
| case ISD::UREM: |
| DivOpc = is64bit ? AArch64::UDIVXr : AArch64::UDIVWr; |
| break; |
| } |
| unsigned MSubOpc = is64bit ? AArch64::MSUBXrrr : AArch64::MSUBWrrr; |
| unsigned Src0Reg = getRegForValue(I->getOperand(0)); |
| if (!Src0Reg) |
| return false; |
| |
| unsigned Src1Reg = getRegForValue(I->getOperand(1)); |
| if (!Src1Reg) |
| return false; |
| |
| unsigned QuotReg = createResultReg(TLI.getRegClassFor(DestVT)); |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(DivOpc), QuotReg) |
| .addReg(Src0Reg) |
| .addReg(Src1Reg); |
| // The remainder is computed as numerator - (quotient * denominator) using the |
| // MSUB instruction. |
| unsigned ResultReg = createResultReg(TLI.getRegClassFor(DestVT)); |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MSubOpc), ResultReg) |
| .addReg(QuotReg) |
| .addReg(Src1Reg) |
| .addReg(Src0Reg); |
| UpdateValueMap(I, ResultReg); |
| return true; |
| } |
| |
| bool AArch64FastISel::SelectMul(const Instruction *I) { |
| EVT SrcEVT = TLI.getValueType(I->getOperand(0)->getType(), true); |
| if (!SrcEVT.isSimple()) |
| return false; |
| MVT SrcVT = SrcEVT.getSimpleVT(); |
| |
| // Must be simple value type. Don't handle vectors. |
| if (SrcVT != MVT::i64 && SrcVT != MVT::i32 && SrcVT != MVT::i16 && |
| SrcVT != MVT::i8) |
| return false; |
| |
| unsigned Opc; |
| unsigned ZReg; |
| switch (SrcVT.SimpleTy) { |
| default: |
| return false; |
| case MVT::i8: |
| case MVT::i16: |
| case MVT::i32: |
| ZReg = AArch64::WZR; |
| Opc = AArch64::MADDWrrr; |
| SrcVT = MVT::i32; |
| break; |
| case MVT::i64: |
| ZReg = AArch64::XZR; |
| Opc = AArch64::MADDXrrr; |
| break; |
| } |
| |
| unsigned Src0Reg = getRegForValue(I->getOperand(0)); |
| if (!Src0Reg) |
| return false; |
| |
| unsigned Src1Reg = getRegForValue(I->getOperand(1)); |
| if (!Src1Reg) |
| return false; |
| |
| // Create the base instruction, then add the operands. |
| unsigned ResultReg = createResultReg(TLI.getRegClassFor(SrcVT)); |
| BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg) |
| .addReg(Src0Reg) |
| .addReg(Src1Reg) |
| .addReg(ZReg); |
| UpdateValueMap(I, ResultReg); |
| return true; |
| } |
| |
| bool AArch64FastISel::TargetSelectInstruction(const Instruction *I) { |
| switch (I->getOpcode()) { |
| default: |
| break; |
| case Instruction::Load: |
| return SelectLoad(I); |
| case Instruction::Store: |
| return SelectStore(I); |
| case Instruction::Br: |
| return SelectBranch(I); |
| case Instruction::IndirectBr: |
| return SelectIndirectBr(I); |
| case Instruction::FCmp: |
| case Instruction::ICmp: |
| return SelectCmp(I); |
| case Instruction::Select: |
| return SelectSelect(I); |
| case Instruction::FPExt: |
| return SelectFPExt(I); |
| case Instruction::FPTrunc: |
| return SelectFPTrunc(I); |
| case Instruction::FPToSI: |
| return SelectFPToInt(I, /*Signed=*/true); |
| case Instruction::FPToUI: |
| return SelectFPToInt(I, /*Signed=*/false); |
| case Instruction::SIToFP: |
| return SelectIntToFP(I, /*Signed=*/true); |
| case Instruction::UIToFP: |
| return SelectIntToFP(I, /*Signed=*/false); |
| case Instruction::SRem: |
| return SelectRem(I, ISD::SREM); |
| case Instruction::URem: |
| return SelectRem(I, ISD::UREM); |
| case Instruction::Call: |
| if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) |
| return SelectIntrinsicCall(*II); |
| return SelectCall(I); |
| case Instruction::Ret: |
| return SelectRet(I); |
| case Instruction::Trunc: |
| return SelectTrunc(I); |
| case Instruction::ZExt: |
| case Instruction::SExt: |
| return SelectIntExt(I); |
| case Instruction::Mul: |
| // FIXME: This really should be handled by the target-independent selector. |
| return SelectMul(I); |
| } |
| return false; |
| // Silence warnings. |
| (void)&CC_AArch64_DarwinPCS_VarArg; |
| } |
| |
| namespace llvm { |
| llvm::FastISel *AArch64::createFastISel(FunctionLoweringInfo &funcInfo, |
| const TargetLibraryInfo *libInfo) { |
| return new AArch64FastISel(funcInfo, libInfo); |
| } |
| } |