| //=- AArch64PromoteConstant.cpp --- Promote constant to global for AArch64 -==// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the AArch64PromoteConstant pass which promotes constants |
| // to global variables when this is likely to be more efficient. Currently only |
| // types related to constant vector (i.e., constant vector, array of constant |
| // vectors, constant structure with a constant vector field, etc.) are promoted |
| // to global variables. Constant vectors are likely to be lowered in target |
| // constant pool during instruction selection already; therefore, the access |
| // will remain the same (memory load), but the structure types are not split |
| // into different constant pool accesses for each field. A bonus side effect is |
| // that created globals may be merged by the global merge pass. |
| // |
| // FIXME: This pass may be useful for other targets too. |
| //===----------------------------------------------------------------------===// |
| |
| #include "AArch64.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/SmallSet.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/Dominators.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/GlobalVariable.h" |
| #include "llvm/IR/InlineAsm.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/IntrinsicInst.h" |
| #include "llvm/IR/IRBuilder.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/Pass.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Debug.h" |
| |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "aarch64-promote-const" |
| |
| // Stress testing mode - disable heuristics. |
| static cl::opt<bool> Stress("aarch64-stress-promote-const", cl::Hidden, |
| cl::desc("Promote all vector constants")); |
| |
| STATISTIC(NumPromoted, "Number of promoted constants"); |
| STATISTIC(NumPromotedUses, "Number of promoted constants uses"); |
| |
| //===----------------------------------------------------------------------===// |
| // AArch64PromoteConstant |
| //===----------------------------------------------------------------------===// |
| |
| namespace { |
| /// Promotes interesting constant into global variables. |
| /// The motivating example is: |
| /// static const uint16_t TableA[32] = { |
| /// 41944, 40330, 38837, 37450, 36158, 34953, 33826, 32768, |
| /// 31776, 30841, 29960, 29128, 28340, 27595, 26887, 26215, |
| /// 25576, 24967, 24386, 23832, 23302, 22796, 22311, 21846, |
| /// 21400, 20972, 20561, 20165, 19785, 19419, 19066, 18725, |
| /// }; |
| /// |
| /// uint8x16x4_t LoadStatic(void) { |
| /// uint8x16x4_t ret; |
| /// ret.val[0] = vld1q_u16(TableA + 0); |
| /// ret.val[1] = vld1q_u16(TableA + 8); |
| /// ret.val[2] = vld1q_u16(TableA + 16); |
| /// ret.val[3] = vld1q_u16(TableA + 24); |
| /// return ret; |
| /// } |
| /// |
| /// The constants in this example are folded into the uses. Thus, 4 different |
| /// constants are created. |
| /// |
| /// As their type is vector the cheapest way to create them is to load them |
| /// for the memory. |
| /// |
| /// Therefore the final assembly final has 4 different loads. With this pass |
| /// enabled, only one load is issued for the constants. |
| class AArch64PromoteConstant : public ModulePass { |
| |
| public: |
| static char ID; |
| AArch64PromoteConstant() : ModulePass(ID) {} |
| |
| const char *getPassName() const override { return "AArch64 Promote Constant"; } |
| |
| /// Iterate over the functions and promote the interesting constants into |
| /// global variables with module scope. |
| bool runOnModule(Module &M) override { |
| DEBUG(dbgs() << getPassName() << '\n'); |
| bool Changed = false; |
| for (auto &MF : M) { |
| Changed |= runOnFunction(MF); |
| } |
| return Changed; |
| } |
| |
| private: |
| /// Look for interesting constants used within the given function. |
| /// Promote them into global variables, load these global variables within |
| /// the related function, so that the number of inserted load is minimal. |
| bool runOnFunction(Function &F); |
| |
| // This transformation requires dominator info |
| void getAnalysisUsage(AnalysisUsage &AU) const override { |
| AU.setPreservesCFG(); |
| AU.addRequired<DominatorTreeWrapperPass>(); |
| AU.addPreserved<DominatorTreeWrapperPass>(); |
| } |
| |
| /// Type to store a list of User. |
| typedef SmallVector<Value::user_iterator, 4> Users; |
| /// Map an insertion point to all the uses it dominates. |
| typedef DenseMap<Instruction *, Users> InsertionPoints; |
| /// Map a function to the required insertion point of load for a |
| /// global variable. |
| typedef DenseMap<Function *, InsertionPoints> InsertionPointsPerFunc; |
| |
| /// Find the closest point that dominates the given Use. |
| Instruction *findInsertionPoint(Value::user_iterator &Use); |
| |
| /// Check if the given insertion point is dominated by an existing |
| /// insertion point. |
| /// If true, the given use is added to the list of dominated uses for |
| /// the related existing point. |
| /// \param NewPt the insertion point to be checked |
| /// \param UseIt the use to be added into the list of dominated uses |
| /// \param InsertPts existing insertion points |
| /// \pre NewPt and all instruction in InsertPts belong to the same function |
| /// \return true if one of the insertion point in InsertPts dominates NewPt, |
| /// false otherwise |
| bool isDominated(Instruction *NewPt, Value::user_iterator &UseIt, |
| InsertionPoints &InsertPts); |
| |
| /// Check if the given insertion point can be merged with an existing |
| /// insertion point in a common dominator. |
| /// If true, the given use is added to the list of the created insertion |
| /// point. |
| /// \param NewPt the insertion point to be checked |
| /// \param UseIt the use to be added into the list of dominated uses |
| /// \param InsertPts existing insertion points |
| /// \pre NewPt and all instruction in InsertPts belong to the same function |
| /// \pre isDominated returns false for the exact same parameters. |
| /// \return true if it exists an insertion point in InsertPts that could |
| /// have been merged with NewPt in a common dominator, |
| /// false otherwise |
| bool tryAndMerge(Instruction *NewPt, Value::user_iterator &UseIt, |
| InsertionPoints &InsertPts); |
| |
| /// Compute the minimal insertion points to dominates all the interesting |
| /// uses of value. |
| /// Insertion points are group per function and each insertion point |
| /// contains a list of all the uses it dominates within the related function |
| /// \param Val constant to be examined |
| /// \param[out] InsPtsPerFunc output storage of the analysis |
| void computeInsertionPoints(Constant *Val, |
| InsertionPointsPerFunc &InsPtsPerFunc); |
| |
| /// Insert a definition of a new global variable at each point contained in |
| /// InsPtsPerFunc and update the related uses (also contained in |
| /// InsPtsPerFunc). |
| bool insertDefinitions(Constant *Cst, InsertionPointsPerFunc &InsPtsPerFunc); |
| |
| /// Compute the minimal insertion points to dominate all the interesting |
| /// uses of Val and insert a definition of a new global variable |
| /// at these points. |
| /// Also update the uses of Val accordingly. |
| /// Currently a use of Val is considered interesting if: |
| /// - Val is not UndefValue |
| /// - Val is not zeroinitialized |
| /// - Replacing Val per a load of a global variable is valid. |
| /// \see shouldConvert for more details |
| bool computeAndInsertDefinitions(Constant *Val); |
| |
| /// Promote the given constant into a global variable if it is expected to |
| /// be profitable. |
| /// \return true if Cst has been promoted |
| bool promoteConstant(Constant *Cst); |
| |
| /// Transfer the list of dominated uses of IPI to NewPt in InsertPts. |
| /// Append UseIt to this list and delete the entry of IPI in InsertPts. |
| static void appendAndTransferDominatedUses(Instruction *NewPt, |
| Value::user_iterator &UseIt, |
| InsertionPoints::iterator &IPI, |
| InsertionPoints &InsertPts) { |
| // Record the dominated use. |
| IPI->second.push_back(UseIt); |
| // Transfer the dominated uses of IPI to NewPt |
| // Inserting into the DenseMap may invalidate existing iterator. |
| // Keep a copy of the key to find the iterator to erase. |
| Instruction *OldInstr = IPI->first; |
| InsertPts.insert(InsertionPoints::value_type(NewPt, IPI->second)); |
| // Erase IPI. |
| IPI = InsertPts.find(OldInstr); |
| InsertPts.erase(IPI); |
| } |
| }; |
| } // end anonymous namespace |
| |
| char AArch64PromoteConstant::ID = 0; |
| |
| namespace llvm { |
| void initializeAArch64PromoteConstantPass(PassRegistry &); |
| } |
| |
| INITIALIZE_PASS_BEGIN(AArch64PromoteConstant, "aarch64-promote-const", |
| "AArch64 Promote Constant Pass", false, false) |
| INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) |
| INITIALIZE_PASS_END(AArch64PromoteConstant, "aarch64-promote-const", |
| "AArch64 Promote Constant Pass", false, false) |
| |
| ModulePass *llvm::createAArch64PromoteConstantPass() { |
| return new AArch64PromoteConstant(); |
| } |
| |
| /// Check if the given type uses a vector type. |
| static bool isConstantUsingVectorTy(const Type *CstTy) { |
| if (CstTy->isVectorTy()) |
| return true; |
| if (CstTy->isStructTy()) { |
| for (unsigned EltIdx = 0, EndEltIdx = CstTy->getStructNumElements(); |
| EltIdx < EndEltIdx; ++EltIdx) |
| if (isConstantUsingVectorTy(CstTy->getStructElementType(EltIdx))) |
| return true; |
| } else if (CstTy->isArrayTy()) |
| return isConstantUsingVectorTy(CstTy->getArrayElementType()); |
| return false; |
| } |
| |
| /// Check if the given use (Instruction + OpIdx) of Cst should be converted into |
| /// a load of a global variable initialized with Cst. |
| /// A use should be converted if it is legal to do so. |
| /// For instance, it is not legal to turn the mask operand of a shuffle vector |
| /// into a load of a global variable. |
| static bool shouldConvertUse(const Constant *Cst, const Instruction *Instr, |
| unsigned OpIdx) { |
| // shufflevector instruction expects a const for the mask argument, i.e., the |
| // third argument. Do not promote this use in that case. |
| if (isa<const ShuffleVectorInst>(Instr) && OpIdx == 2) |
| return false; |
| |
| // extractvalue instruction expects a const idx. |
| if (isa<const ExtractValueInst>(Instr) && OpIdx > 0) |
| return false; |
| |
| // extractvalue instruction expects a const idx. |
| if (isa<const InsertValueInst>(Instr) && OpIdx > 1) |
| return false; |
| |
| if (isa<const AllocaInst>(Instr) && OpIdx > 0) |
| return false; |
| |
| // Alignment argument must be constant. |
| if (isa<const LoadInst>(Instr) && OpIdx > 0) |
| return false; |
| |
| // Alignment argument must be constant. |
| if (isa<const StoreInst>(Instr) && OpIdx > 1) |
| return false; |
| |
| // Index must be constant. |
| if (isa<const GetElementPtrInst>(Instr) && OpIdx > 0) |
| return false; |
| |
| // Personality function and filters must be constant. |
| // Give up on that instruction. |
| if (isa<const LandingPadInst>(Instr)) |
| return false; |
| |
| // Switch instruction expects constants to compare to. |
| if (isa<const SwitchInst>(Instr)) |
| return false; |
| |
| // Expected address must be a constant. |
| if (isa<const IndirectBrInst>(Instr)) |
| return false; |
| |
| // Do not mess with intrinsics. |
| if (isa<const IntrinsicInst>(Instr)) |
| return false; |
| |
| // Do not mess with inline asm. |
| const CallInst *CI = dyn_cast<const CallInst>(Instr); |
| if (CI && isa<const InlineAsm>(CI->getCalledValue())) |
| return false; |
| |
| return true; |
| } |
| |
| /// Check if the given Cst should be converted into |
| /// a load of a global variable initialized with Cst. |
| /// A constant should be converted if it is likely that the materialization of |
| /// the constant will be tricky. Thus, we give up on zero or undef values. |
| /// |
| /// \todo Currently, accept only vector related types. |
| /// Also we give up on all simple vector type to keep the existing |
| /// behavior. Otherwise, we should push here all the check of the lowering of |
| /// BUILD_VECTOR. By giving up, we lose the potential benefit of merging |
| /// constant via global merge and the fact that the same constant is stored |
| /// only once with this method (versus, as many function that uses the constant |
| /// for the regular approach, even for float). |
| /// Again, the simplest solution would be to promote every |
| /// constant and rematerialize them when they are actually cheap to create. |
| static bool shouldConvert(const Constant *Cst) { |
| if (isa<const UndefValue>(Cst)) |
| return false; |
| |
| // FIXME: In some cases, it may be interesting to promote in memory |
| // a zero initialized constant. |
| // E.g., when the type of Cst require more instructions than the |
| // adrp/add/load sequence or when this sequence can be shared by several |
| // instances of Cst. |
| // Ideally, we could promote this into a global and rematerialize the constant |
| // when it was a bad idea. |
| if (Cst->isZeroValue()) |
| return false; |
| |
| if (Stress) |
| return true; |
| |
| // FIXME: see function \todo |
| if (Cst->getType()->isVectorTy()) |
| return false; |
| return isConstantUsingVectorTy(Cst->getType()); |
| } |
| |
| Instruction * |
| AArch64PromoteConstant::findInsertionPoint(Value::user_iterator &Use) { |
| // If this user is a phi, the insertion point is in the related |
| // incoming basic block. |
| PHINode *PhiInst = dyn_cast<PHINode>(*Use); |
| Instruction *InsertionPoint; |
| if (PhiInst) |
| InsertionPoint = |
| PhiInst->getIncomingBlock(Use.getOperandNo())->getTerminator(); |
| else |
| InsertionPoint = dyn_cast<Instruction>(*Use); |
| assert(InsertionPoint && "User is not an instruction!"); |
| return InsertionPoint; |
| } |
| |
| bool AArch64PromoteConstant::isDominated(Instruction *NewPt, |
| Value::user_iterator &UseIt, |
| InsertionPoints &InsertPts) { |
| |
| DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>( |
| *NewPt->getParent()->getParent()).getDomTree(); |
| |
| // Traverse all the existing insertion points and check if one is dominating |
| // NewPt. If it is, remember that. |
| for (auto &IPI : InsertPts) { |
| if (NewPt == IPI.first || DT.dominates(IPI.first, NewPt) || |
| // When IPI.first is a terminator instruction, DT may think that |
| // the result is defined on the edge. |
| // Here we are testing the insertion point, not the definition. |
| (IPI.first->getParent() != NewPt->getParent() && |
| DT.dominates(IPI.first->getParent(), NewPt->getParent()))) { |
| // No need to insert this point. Just record the dominated use. |
| DEBUG(dbgs() << "Insertion point dominated by:\n"); |
| DEBUG(IPI.first->print(dbgs())); |
| DEBUG(dbgs() << '\n'); |
| IPI.second.push_back(UseIt); |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| bool AArch64PromoteConstant::tryAndMerge(Instruction *NewPt, |
| Value::user_iterator &UseIt, |
| InsertionPoints &InsertPts) { |
| DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>( |
| *NewPt->getParent()->getParent()).getDomTree(); |
| BasicBlock *NewBB = NewPt->getParent(); |
| |
| // Traverse all the existing insertion point and check if one is dominated by |
| // NewPt and thus useless or can be combined with NewPt into a common |
| // dominator. |
| for (InsertionPoints::iterator IPI = InsertPts.begin(), |
| EndIPI = InsertPts.end(); |
| IPI != EndIPI; ++IPI) { |
| BasicBlock *CurBB = IPI->first->getParent(); |
| if (NewBB == CurBB) { |
| // Instructions are in the same block. |
| // By construction, NewPt is dominating the other. |
| // Indeed, isDominated returned false with the exact same arguments. |
| DEBUG(dbgs() << "Merge insertion point with:\n"); |
| DEBUG(IPI->first->print(dbgs())); |
| DEBUG(dbgs() << "\nat considered insertion point.\n"); |
| appendAndTransferDominatedUses(NewPt, UseIt, IPI, InsertPts); |
| return true; |
| } |
| |
| // Look for a common dominator |
| BasicBlock *CommonDominator = DT.findNearestCommonDominator(NewBB, CurBB); |
| // If none exists, we cannot merge these two points. |
| if (!CommonDominator) |
| continue; |
| |
| if (CommonDominator != NewBB) { |
| // By construction, the CommonDominator cannot be CurBB. |
| assert(CommonDominator != CurBB && |
| "Instruction has not been rejected during isDominated check!"); |
| // Take the last instruction of the CommonDominator as insertion point |
| NewPt = CommonDominator->getTerminator(); |
| } |
| // else, CommonDominator is the block of NewBB, hence NewBB is the last |
| // possible insertion point in that block. |
| DEBUG(dbgs() << "Merge insertion point with:\n"); |
| DEBUG(IPI->first->print(dbgs())); |
| DEBUG(dbgs() << '\n'); |
| DEBUG(NewPt->print(dbgs())); |
| DEBUG(dbgs() << '\n'); |
| appendAndTransferDominatedUses(NewPt, UseIt, IPI, InsertPts); |
| return true; |
| } |
| return false; |
| } |
| |
| void AArch64PromoteConstant::computeInsertionPoints( |
| Constant *Val, InsertionPointsPerFunc &InsPtsPerFunc) { |
| DEBUG(dbgs() << "** Compute insertion points **\n"); |
| for (Value::user_iterator UseIt = Val->user_begin(), |
| EndUseIt = Val->user_end(); |
| UseIt != EndUseIt; ++UseIt) { |
| // If the user is not an Instruction, we cannot modify it. |
| if (!isa<Instruction>(*UseIt)) |
| continue; |
| |
| // Filter out uses that should not be converted. |
| if (!shouldConvertUse(Val, cast<Instruction>(*UseIt), UseIt.getOperandNo())) |
| continue; |
| |
| DEBUG(dbgs() << "Considered use, opidx " << UseIt.getOperandNo() << ":\n"); |
| DEBUG((*UseIt)->print(dbgs())); |
| DEBUG(dbgs() << '\n'); |
| |
| Instruction *InsertionPoint = findInsertionPoint(UseIt); |
| |
| DEBUG(dbgs() << "Considered insertion point:\n"); |
| DEBUG(InsertionPoint->print(dbgs())); |
| DEBUG(dbgs() << '\n'); |
| |
| // Check if the current insertion point is useless, i.e., it is dominated |
| // by another one. |
| InsertionPoints &InsertPts = |
| InsPtsPerFunc[InsertionPoint->getParent()->getParent()]; |
| if (isDominated(InsertionPoint, UseIt, InsertPts)) |
| continue; |
| // This insertion point is useful, check if we can merge some insertion |
| // point in a common dominator or if NewPt dominates an existing one. |
| if (tryAndMerge(InsertionPoint, UseIt, InsertPts)) |
| continue; |
| |
| DEBUG(dbgs() << "Keep considered insertion point\n"); |
| |
| // It is definitely useful by its own |
| InsertPts[InsertionPoint].push_back(UseIt); |
| } |
| } |
| |
| bool AArch64PromoteConstant::insertDefinitions( |
| Constant *Cst, InsertionPointsPerFunc &InsPtsPerFunc) { |
| // We will create one global variable per Module. |
| DenseMap<Module *, GlobalVariable *> ModuleToMergedGV; |
| bool HasChanged = false; |
| |
| // Traverse all insertion points in all the function. |
| for (InsertionPointsPerFunc::iterator FctToInstPtsIt = InsPtsPerFunc.begin(), |
| EndIt = InsPtsPerFunc.end(); |
| FctToInstPtsIt != EndIt; ++FctToInstPtsIt) { |
| InsertionPoints &InsertPts = FctToInstPtsIt->second; |
| // Do more checking for debug purposes. |
| #ifndef NDEBUG |
| DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>( |
| *FctToInstPtsIt->first).getDomTree(); |
| #endif |
| GlobalVariable *PromotedGV; |
| assert(!InsertPts.empty() && "Empty uses does not need a definition"); |
| |
| Module *M = FctToInstPtsIt->first->getParent(); |
| DenseMap<Module *, GlobalVariable *>::iterator MapIt = |
| ModuleToMergedGV.find(M); |
| if (MapIt == ModuleToMergedGV.end()) { |
| PromotedGV = new GlobalVariable( |
| *M, Cst->getType(), true, GlobalValue::InternalLinkage, nullptr, |
| "_PromotedConst", nullptr, GlobalVariable::NotThreadLocal); |
| PromotedGV->setInitializer(Cst); |
| ModuleToMergedGV[M] = PromotedGV; |
| DEBUG(dbgs() << "Global replacement: "); |
| DEBUG(PromotedGV->print(dbgs())); |
| DEBUG(dbgs() << '\n'); |
| ++NumPromoted; |
| HasChanged = true; |
| } else { |
| PromotedGV = MapIt->second; |
| } |
| |
| for (InsertionPoints::iterator IPI = InsertPts.begin(), |
| EndIPI = InsertPts.end(); |
| IPI != EndIPI; ++IPI) { |
| // Create the load of the global variable. |
| IRBuilder<> Builder(IPI->first->getParent(), IPI->first); |
| LoadInst *LoadedCst = Builder.CreateLoad(PromotedGV); |
| DEBUG(dbgs() << "**********\n"); |
| DEBUG(dbgs() << "New def: "); |
| DEBUG(LoadedCst->print(dbgs())); |
| DEBUG(dbgs() << '\n'); |
| |
| // Update the dominated uses. |
| Users &DominatedUsers = IPI->second; |
| for (Value::user_iterator Use : DominatedUsers) { |
| #ifndef NDEBUG |
| assert((DT.dominates(LoadedCst, cast<Instruction>(*Use)) || |
| (isa<PHINode>(*Use) && |
| DT.dominates(LoadedCst, findInsertionPoint(Use)))) && |
| "Inserted definition does not dominate all its uses!"); |
| #endif |
| DEBUG(dbgs() << "Use to update " << Use.getOperandNo() << ":"); |
| DEBUG(Use->print(dbgs())); |
| DEBUG(dbgs() << '\n'); |
| Use->setOperand(Use.getOperandNo(), LoadedCst); |
| ++NumPromotedUses; |
| } |
| } |
| } |
| return HasChanged; |
| } |
| |
| bool AArch64PromoteConstant::computeAndInsertDefinitions(Constant *Val) { |
| InsertionPointsPerFunc InsertPtsPerFunc; |
| computeInsertionPoints(Val, InsertPtsPerFunc); |
| return insertDefinitions(Val, InsertPtsPerFunc); |
| } |
| |
| bool AArch64PromoteConstant::promoteConstant(Constant *Cst) { |
| assert(Cst && "Given variable is not a valid constant."); |
| |
| if (!shouldConvert(Cst)) |
| return false; |
| |
| DEBUG(dbgs() << "******************************\n"); |
| DEBUG(dbgs() << "Candidate constant: "); |
| DEBUG(Cst->print(dbgs())); |
| DEBUG(dbgs() << '\n'); |
| |
| return computeAndInsertDefinitions(Cst); |
| } |
| |
| bool AArch64PromoteConstant::runOnFunction(Function &F) { |
| // Look for instructions using constant vector. Promote that constant to a |
| // global variable. Create as few loads of this variable as possible and |
| // update the uses accordingly. |
| bool LocalChange = false; |
| SmallSet<Constant *, 8> AlreadyChecked; |
| |
| for (auto &MBB : F) { |
| for (auto &MI : MBB) { |
| // Traverse the operand, looking for constant vectors. Replace them by a |
| // load of a global variable of constant vector type. |
| for (unsigned OpIdx = 0, EndOpIdx = MI.getNumOperands(); |
| OpIdx != EndOpIdx; ++OpIdx) { |
| Constant *Cst = dyn_cast<Constant>(MI.getOperand(OpIdx)); |
| // There is no point in promoting global values as they are already |
| // global. Do not promote constant expressions either, as they may |
| // require some code expansion. |
| if (Cst && !isa<GlobalValue>(Cst) && !isa<ConstantExpr>(Cst) && |
| AlreadyChecked.insert(Cst)) |
| LocalChange |= promoteConstant(Cst); |
| } |
| } |
| } |
| return LocalChange; |
| } |