| //===-- HexagonInstrInfo.cpp - Hexagon Instruction Information ------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file contains the Hexagon implementation of the TargetInstrInfo class. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "HexagonInstrInfo.h" |
| #include "Hexagon.h" |
| #include "HexagonRegisterInfo.h" |
| #include "HexagonSubtarget.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/CodeGen/DFAPacketizer.h" |
| #include "llvm/CodeGen/MachineFrameInfo.h" |
| #include "llvm/CodeGen/MachineInstrBuilder.h" |
| #include "llvm/CodeGen/MachineMemOperand.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/PseudoSourceValue.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Support/raw_ostream.h" |
| |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "hexagon-instrinfo" |
| |
| #define GET_INSTRINFO_CTOR_DTOR |
| #define GET_INSTRMAP_INFO |
| #include "HexagonGenInstrInfo.inc" |
| #include "HexagonGenDFAPacketizer.inc" |
| |
| /// |
| /// Constants for Hexagon instructions. |
| /// |
| const int Hexagon_MEMW_OFFSET_MAX = 4095; |
| const int Hexagon_MEMW_OFFSET_MIN = -4096; |
| const int Hexagon_MEMD_OFFSET_MAX = 8191; |
| const int Hexagon_MEMD_OFFSET_MIN = -8192; |
| const int Hexagon_MEMH_OFFSET_MAX = 2047; |
| const int Hexagon_MEMH_OFFSET_MIN = -2048; |
| const int Hexagon_MEMB_OFFSET_MAX = 1023; |
| const int Hexagon_MEMB_OFFSET_MIN = -1024; |
| const int Hexagon_ADDI_OFFSET_MAX = 32767; |
| const int Hexagon_ADDI_OFFSET_MIN = -32768; |
| const int Hexagon_MEMD_AUTOINC_MAX = 56; |
| const int Hexagon_MEMD_AUTOINC_MIN = -64; |
| const int Hexagon_MEMW_AUTOINC_MAX = 28; |
| const int Hexagon_MEMW_AUTOINC_MIN = -32; |
| const int Hexagon_MEMH_AUTOINC_MAX = 14; |
| const int Hexagon_MEMH_AUTOINC_MIN = -16; |
| const int Hexagon_MEMB_AUTOINC_MAX = 7; |
| const int Hexagon_MEMB_AUTOINC_MIN = -8; |
| |
| // Pin the vtable to this file. |
| void HexagonInstrInfo::anchor() {} |
| |
| HexagonInstrInfo::HexagonInstrInfo(HexagonSubtarget &ST) |
| : HexagonGenInstrInfo(Hexagon::ADJCALLSTACKDOWN, Hexagon::ADJCALLSTACKUP), |
| RI(ST), Subtarget(ST) { |
| } |
| |
| |
| /// isLoadFromStackSlot - If the specified machine instruction is a direct |
| /// load from a stack slot, return the virtual or physical register number of |
| /// the destination along with the FrameIndex of the loaded stack slot. If |
| /// not, return 0. This predicate must return 0 if the instruction has |
| /// any side effects other than loading from the stack slot. |
| unsigned HexagonInstrInfo::isLoadFromStackSlot(const MachineInstr *MI, |
| int &FrameIndex) const { |
| |
| |
| switch (MI->getOpcode()) { |
| default: break; |
| case Hexagon::LDriw: |
| case Hexagon::LDrid: |
| case Hexagon::LDrih: |
| case Hexagon::LDrib: |
| case Hexagon::LDriub: |
| if (MI->getOperand(2).isFI() && |
| MI->getOperand(1).isImm() && (MI->getOperand(1).getImm() == 0)) { |
| FrameIndex = MI->getOperand(2).getIndex(); |
| return MI->getOperand(0).getReg(); |
| } |
| break; |
| } |
| return 0; |
| } |
| |
| |
| /// isStoreToStackSlot - If the specified machine instruction is a direct |
| /// store to a stack slot, return the virtual or physical register number of |
| /// the source reg along with the FrameIndex of the loaded stack slot. If |
| /// not, return 0. This predicate must return 0 if the instruction has |
| /// any side effects other than storing to the stack slot. |
| unsigned HexagonInstrInfo::isStoreToStackSlot(const MachineInstr *MI, |
| int &FrameIndex) const { |
| switch (MI->getOpcode()) { |
| default: break; |
| case Hexagon::STriw: |
| case Hexagon::STrid: |
| case Hexagon::STrih: |
| case Hexagon::STrib: |
| if (MI->getOperand(2).isFI() && |
| MI->getOperand(1).isImm() && (MI->getOperand(1).getImm() == 0)) { |
| FrameIndex = MI->getOperand(0).getIndex(); |
| return MI->getOperand(2).getReg(); |
| } |
| break; |
| } |
| return 0; |
| } |
| |
| |
| unsigned |
| HexagonInstrInfo::InsertBranch(MachineBasicBlock &MBB,MachineBasicBlock *TBB, |
| MachineBasicBlock *FBB, |
| const SmallVectorImpl<MachineOperand> &Cond, |
| DebugLoc DL) const{ |
| |
| int BOpc = Hexagon::JMP; |
| int BccOpc = Hexagon::JMP_t; |
| |
| assert(TBB && "InsertBranch must not be told to insert a fallthrough"); |
| |
| int regPos = 0; |
| // Check if ReverseBranchCondition has asked to reverse this branch |
| // If we want to reverse the branch an odd number of times, we want |
| // JMP_f. |
| if (!Cond.empty() && Cond[0].isImm() && Cond[0].getImm() == 0) { |
| BccOpc = Hexagon::JMP_f; |
| regPos = 1; |
| } |
| |
| if (!FBB) { |
| if (Cond.empty()) { |
| // Due to a bug in TailMerging/CFG Optimization, we need to add a |
| // special case handling of a predicated jump followed by an |
| // unconditional jump. If not, Tail Merging and CFG Optimization go |
| // into an infinite loop. |
| MachineBasicBlock *NewTBB, *NewFBB; |
| SmallVector<MachineOperand, 4> Cond; |
| MachineInstr *Term = MBB.getFirstTerminator(); |
| if (isPredicated(Term) && !AnalyzeBranch(MBB, NewTBB, NewFBB, Cond, |
| false)) { |
| MachineBasicBlock *NextBB = |
| std::next(MachineFunction::iterator(&MBB)); |
| if (NewTBB == NextBB) { |
| ReverseBranchCondition(Cond); |
| RemoveBranch(MBB); |
| return InsertBranch(MBB, TBB, nullptr, Cond, DL); |
| } |
| } |
| BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB); |
| } else { |
| BuildMI(&MBB, DL, |
| get(BccOpc)).addReg(Cond[regPos].getReg()).addMBB(TBB); |
| } |
| return 1; |
| } |
| |
| BuildMI(&MBB, DL, get(BccOpc)).addReg(Cond[regPos].getReg()).addMBB(TBB); |
| BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB); |
| |
| return 2; |
| } |
| |
| |
| bool HexagonInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB, |
| MachineBasicBlock *&TBB, |
| MachineBasicBlock *&FBB, |
| SmallVectorImpl<MachineOperand> &Cond, |
| bool AllowModify) const { |
| TBB = nullptr; |
| FBB = nullptr; |
| |
| // If the block has no terminators, it just falls into the block after it. |
| MachineBasicBlock::instr_iterator I = MBB.instr_end(); |
| if (I == MBB.instr_begin()) |
| return false; |
| |
| // A basic block may looks like this: |
| // |
| // [ insn |
| // EH_LABEL |
| // insn |
| // insn |
| // insn |
| // EH_LABEL |
| // insn ] |
| // |
| // It has two succs but does not have a terminator |
| // Don't know how to handle it. |
| do { |
| --I; |
| if (I->isEHLabel()) |
| return true; |
| } while (I != MBB.instr_begin()); |
| |
| I = MBB.instr_end(); |
| --I; |
| |
| while (I->isDebugValue()) { |
| if (I == MBB.instr_begin()) |
| return false; |
| --I; |
| } |
| |
| // Delete the JMP if it's equivalent to a fall-through. |
| if (AllowModify && I->getOpcode() == Hexagon::JMP && |
| MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) { |
| DEBUG(dbgs()<< "\nErasing the jump to successor block\n";); |
| I->eraseFromParent(); |
| I = MBB.instr_end(); |
| if (I == MBB.instr_begin()) |
| return false; |
| --I; |
| } |
| if (!isUnpredicatedTerminator(I)) |
| return false; |
| |
| // Get the last instruction in the block. |
| MachineInstr *LastInst = I; |
| MachineInstr *SecondLastInst = nullptr; |
| // Find one more terminator if present. |
| do { |
| if (&*I != LastInst && !I->isBundle() && isUnpredicatedTerminator(I)) { |
| if (!SecondLastInst) |
| SecondLastInst = I; |
| else |
| // This is a third branch. |
| return true; |
| } |
| if (I == MBB.instr_begin()) |
| break; |
| --I; |
| } while(I); |
| |
| int LastOpcode = LastInst->getOpcode(); |
| |
| bool LastOpcodeHasJMP_c = PredOpcodeHasJMP_c(LastOpcode); |
| bool LastOpcodeHasNot = PredOpcodeHasNot(LastOpcode); |
| |
| // If there is only one terminator instruction, process it. |
| if (LastInst && !SecondLastInst) { |
| if (LastOpcode == Hexagon::JMP) { |
| TBB = LastInst->getOperand(0).getMBB(); |
| return false; |
| } |
| if (LastOpcode == Hexagon::ENDLOOP0) { |
| TBB = LastInst->getOperand(0).getMBB(); |
| Cond.push_back(LastInst->getOperand(0)); |
| return false; |
| } |
| if (LastOpcodeHasJMP_c) { |
| TBB = LastInst->getOperand(1).getMBB(); |
| if (LastOpcodeHasNot) { |
| Cond.push_back(MachineOperand::CreateImm(0)); |
| } |
| Cond.push_back(LastInst->getOperand(0)); |
| return false; |
| } |
| // Otherwise, don't know what this is. |
| return true; |
| } |
| |
| int SecLastOpcode = SecondLastInst->getOpcode(); |
| |
| bool SecLastOpcodeHasJMP_c = PredOpcodeHasJMP_c(SecLastOpcode); |
| bool SecLastOpcodeHasNot = PredOpcodeHasNot(SecLastOpcode); |
| if (SecLastOpcodeHasJMP_c && (LastOpcode == Hexagon::JMP)) { |
| TBB = SecondLastInst->getOperand(1).getMBB(); |
| if (SecLastOpcodeHasNot) |
| Cond.push_back(MachineOperand::CreateImm(0)); |
| Cond.push_back(SecondLastInst->getOperand(0)); |
| FBB = LastInst->getOperand(0).getMBB(); |
| return false; |
| } |
| |
| // If the block ends with two Hexagon:JMPs, handle it. The second one is not |
| // executed, so remove it. |
| if (SecLastOpcode == Hexagon::JMP && LastOpcode == Hexagon::JMP) { |
| TBB = SecondLastInst->getOperand(0).getMBB(); |
| I = LastInst; |
| if (AllowModify) |
| I->eraseFromParent(); |
| return false; |
| } |
| |
| // If the block ends with an ENDLOOP, and JMP, handle it. |
| if (SecLastOpcode == Hexagon::ENDLOOP0 && |
| LastOpcode == Hexagon::JMP) { |
| TBB = SecondLastInst->getOperand(0).getMBB(); |
| Cond.push_back(SecondLastInst->getOperand(0)); |
| FBB = LastInst->getOperand(0).getMBB(); |
| return false; |
| } |
| |
| // Otherwise, can't handle this. |
| return true; |
| } |
| |
| |
| unsigned HexagonInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const { |
| int BOpc = Hexagon::JMP; |
| int BccOpc = Hexagon::JMP_t; |
| int BccOpcNot = Hexagon::JMP_f; |
| |
| MachineBasicBlock::iterator I = MBB.end(); |
| if (I == MBB.begin()) return 0; |
| --I; |
| if (I->getOpcode() != BOpc && I->getOpcode() != BccOpc && |
| I->getOpcode() != BccOpcNot) |
| return 0; |
| |
| // Remove the branch. |
| I->eraseFromParent(); |
| |
| I = MBB.end(); |
| |
| if (I == MBB.begin()) return 1; |
| --I; |
| if (I->getOpcode() != BccOpc && I->getOpcode() != BccOpcNot) |
| return 1; |
| |
| // Remove the branch. |
| I->eraseFromParent(); |
| return 2; |
| } |
| |
| |
| /// \brief For a comparison instruction, return the source registers in |
| /// \p SrcReg and \p SrcReg2 if having two register operands, and the value it |
| /// compares against in CmpValue. Return true if the comparison instruction |
| /// can be analyzed. |
| bool HexagonInstrInfo::analyzeCompare(const MachineInstr *MI, |
| unsigned &SrcReg, unsigned &SrcReg2, |
| int &Mask, int &Value) const { |
| unsigned Opc = MI->getOpcode(); |
| |
| // Set mask and the first source register. |
| switch (Opc) { |
| case Hexagon::CMPEHexagon4rr: |
| case Hexagon::CMPEQri: |
| case Hexagon::CMPEQrr: |
| case Hexagon::CMPGT64rr: |
| case Hexagon::CMPGTU64rr: |
| case Hexagon::CMPGTUri: |
| case Hexagon::CMPGTUrr: |
| case Hexagon::CMPGTri: |
| case Hexagon::CMPGTrr: |
| SrcReg = MI->getOperand(1).getReg(); |
| Mask = ~0; |
| break; |
| case Hexagon::CMPbEQri_V4: |
| case Hexagon::CMPbEQrr_sbsb_V4: |
| case Hexagon::CMPbEQrr_ubub_V4: |
| case Hexagon::CMPbGTUri_V4: |
| case Hexagon::CMPbGTUrr_V4: |
| case Hexagon::CMPbGTrr_V4: |
| SrcReg = MI->getOperand(1).getReg(); |
| Mask = 0xFF; |
| break; |
| case Hexagon::CMPhEQri_V4: |
| case Hexagon::CMPhEQrr_shl_V4: |
| case Hexagon::CMPhEQrr_xor_V4: |
| case Hexagon::CMPhGTUri_V4: |
| case Hexagon::CMPhGTUrr_V4: |
| case Hexagon::CMPhGTrr_shl_V4: |
| SrcReg = MI->getOperand(1).getReg(); |
| Mask = 0xFFFF; |
| break; |
| } |
| |
| // Set the value/second source register. |
| switch (Opc) { |
| case Hexagon::CMPEHexagon4rr: |
| case Hexagon::CMPEQrr: |
| case Hexagon::CMPGT64rr: |
| case Hexagon::CMPGTU64rr: |
| case Hexagon::CMPGTUrr: |
| case Hexagon::CMPGTrr: |
| case Hexagon::CMPbEQrr_sbsb_V4: |
| case Hexagon::CMPbEQrr_ubub_V4: |
| case Hexagon::CMPbGTUrr_V4: |
| case Hexagon::CMPbGTrr_V4: |
| case Hexagon::CMPhEQrr_shl_V4: |
| case Hexagon::CMPhEQrr_xor_V4: |
| case Hexagon::CMPhGTUrr_V4: |
| case Hexagon::CMPhGTrr_shl_V4: |
| SrcReg2 = MI->getOperand(2).getReg(); |
| return true; |
| |
| case Hexagon::CMPEQri: |
| case Hexagon::CMPGTUri: |
| case Hexagon::CMPGTri: |
| case Hexagon::CMPbEQri_V4: |
| case Hexagon::CMPbGTUri_V4: |
| case Hexagon::CMPhEQri_V4: |
| case Hexagon::CMPhGTUri_V4: |
| SrcReg2 = 0; |
| Value = MI->getOperand(2).getImm(); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| |
| void HexagonInstrInfo::copyPhysReg(MachineBasicBlock &MBB, |
| MachineBasicBlock::iterator I, DebugLoc DL, |
| unsigned DestReg, unsigned SrcReg, |
| bool KillSrc) const { |
| if (Hexagon::IntRegsRegClass.contains(SrcReg, DestReg)) { |
| BuildMI(MBB, I, DL, get(Hexagon::TFR), DestReg).addReg(SrcReg); |
| return; |
| } |
| if (Hexagon::DoubleRegsRegClass.contains(SrcReg, DestReg)) { |
| BuildMI(MBB, I, DL, get(Hexagon::TFR64), DestReg).addReg(SrcReg); |
| return; |
| } |
| if (Hexagon::PredRegsRegClass.contains(SrcReg, DestReg)) { |
| // Map Pd = Ps to Pd = or(Ps, Ps). |
| BuildMI(MBB, I, DL, get(Hexagon::OR_pp), |
| DestReg).addReg(SrcReg).addReg(SrcReg); |
| return; |
| } |
| if (Hexagon::DoubleRegsRegClass.contains(DestReg) && |
| Hexagon::IntRegsRegClass.contains(SrcReg)) { |
| // We can have an overlap between single and double reg: r1:0 = r0. |
| if(SrcReg == RI.getSubReg(DestReg, Hexagon::subreg_loreg)) { |
| // r1:0 = r0 |
| BuildMI(MBB, I, DL, get(Hexagon::TFRI), (RI.getSubReg(DestReg, |
| Hexagon::subreg_hireg))).addImm(0); |
| } else { |
| // r1:0 = r1 or no overlap. |
| BuildMI(MBB, I, DL, get(Hexagon::TFR), (RI.getSubReg(DestReg, |
| Hexagon::subreg_loreg))).addReg(SrcReg); |
| BuildMI(MBB, I, DL, get(Hexagon::TFRI), (RI.getSubReg(DestReg, |
| Hexagon::subreg_hireg))).addImm(0); |
| } |
| return; |
| } |
| if (Hexagon::CRRegsRegClass.contains(DestReg) && |
| Hexagon::IntRegsRegClass.contains(SrcReg)) { |
| BuildMI(MBB, I, DL, get(Hexagon::TFCR), DestReg).addReg(SrcReg); |
| return; |
| } |
| if (Hexagon::PredRegsRegClass.contains(SrcReg) && |
| Hexagon::IntRegsRegClass.contains(DestReg)) { |
| BuildMI(MBB, I, DL, get(Hexagon::TFR_RsPd), DestReg). |
| addReg(SrcReg, getKillRegState(KillSrc)); |
| return; |
| } |
| if (Hexagon::IntRegsRegClass.contains(SrcReg) && |
| Hexagon::PredRegsRegClass.contains(DestReg)) { |
| BuildMI(MBB, I, DL, get(Hexagon::TFR_PdRs), DestReg). |
| addReg(SrcReg, getKillRegState(KillSrc)); |
| return; |
| } |
| |
| llvm_unreachable("Unimplemented"); |
| } |
| |
| |
| void HexagonInstrInfo:: |
| storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, |
| unsigned SrcReg, bool isKill, int FI, |
| const TargetRegisterClass *RC, |
| const TargetRegisterInfo *TRI) const { |
| |
| DebugLoc DL = MBB.findDebugLoc(I); |
| MachineFunction &MF = *MBB.getParent(); |
| MachineFrameInfo &MFI = *MF.getFrameInfo(); |
| unsigned Align = MFI.getObjectAlignment(FI); |
| |
| MachineMemOperand *MMO = |
| MF.getMachineMemOperand( |
| MachinePointerInfo(PseudoSourceValue::getFixedStack(FI)), |
| MachineMemOperand::MOStore, |
| MFI.getObjectSize(FI), |
| Align); |
| |
| if (Hexagon::IntRegsRegClass.hasSubClassEq(RC)) { |
| BuildMI(MBB, I, DL, get(Hexagon::STriw)) |
| .addFrameIndex(FI).addImm(0) |
| .addReg(SrcReg, getKillRegState(isKill)).addMemOperand(MMO); |
| } else if (Hexagon::DoubleRegsRegClass.hasSubClassEq(RC)) { |
| BuildMI(MBB, I, DL, get(Hexagon::STrid)) |
| .addFrameIndex(FI).addImm(0) |
| .addReg(SrcReg, getKillRegState(isKill)).addMemOperand(MMO); |
| } else if (Hexagon::PredRegsRegClass.hasSubClassEq(RC)) { |
| BuildMI(MBB, I, DL, get(Hexagon::STriw_pred)) |
| .addFrameIndex(FI).addImm(0) |
| .addReg(SrcReg, getKillRegState(isKill)).addMemOperand(MMO); |
| } else { |
| llvm_unreachable("Unimplemented"); |
| } |
| } |
| |
| |
| void HexagonInstrInfo::storeRegToAddr( |
| MachineFunction &MF, unsigned SrcReg, |
| bool isKill, |
| SmallVectorImpl<MachineOperand> &Addr, |
| const TargetRegisterClass *RC, |
| SmallVectorImpl<MachineInstr*> &NewMIs) const |
| { |
| llvm_unreachable("Unimplemented"); |
| } |
| |
| |
| void HexagonInstrInfo:: |
| loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, |
| unsigned DestReg, int FI, |
| const TargetRegisterClass *RC, |
| const TargetRegisterInfo *TRI) const { |
| DebugLoc DL = MBB.findDebugLoc(I); |
| MachineFunction &MF = *MBB.getParent(); |
| MachineFrameInfo &MFI = *MF.getFrameInfo(); |
| unsigned Align = MFI.getObjectAlignment(FI); |
| |
| MachineMemOperand *MMO = |
| MF.getMachineMemOperand( |
| MachinePointerInfo(PseudoSourceValue::getFixedStack(FI)), |
| MachineMemOperand::MOLoad, |
| MFI.getObjectSize(FI), |
| Align); |
| if (RC == &Hexagon::IntRegsRegClass) { |
| BuildMI(MBB, I, DL, get(Hexagon::LDriw), DestReg) |
| .addFrameIndex(FI).addImm(0).addMemOperand(MMO); |
| } else if (RC == &Hexagon::DoubleRegsRegClass) { |
| BuildMI(MBB, I, DL, get(Hexagon::LDrid), DestReg) |
| .addFrameIndex(FI).addImm(0).addMemOperand(MMO); |
| } else if (RC == &Hexagon::PredRegsRegClass) { |
| BuildMI(MBB, I, DL, get(Hexagon::LDriw_pred), DestReg) |
| .addFrameIndex(FI).addImm(0).addMemOperand(MMO); |
| } else { |
| llvm_unreachable("Can't store this register to stack slot"); |
| } |
| } |
| |
| |
| void HexagonInstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg, |
| SmallVectorImpl<MachineOperand> &Addr, |
| const TargetRegisterClass *RC, |
| SmallVectorImpl<MachineInstr*> &NewMIs) const { |
| llvm_unreachable("Unimplemented"); |
| } |
| |
| |
| MachineInstr *HexagonInstrInfo::foldMemoryOperandImpl(MachineFunction &MF, |
| MachineInstr* MI, |
| const SmallVectorImpl<unsigned> &Ops, |
| int FI) const { |
| // Hexagon_TODO: Implement. |
| return nullptr; |
| } |
| |
| unsigned HexagonInstrInfo::createVR(MachineFunction* MF, MVT VT) const { |
| |
| MachineRegisterInfo &RegInfo = MF->getRegInfo(); |
| const TargetRegisterClass *TRC; |
| if (VT == MVT::i1) { |
| TRC = &Hexagon::PredRegsRegClass; |
| } else if (VT == MVT::i32 || VT == MVT::f32) { |
| TRC = &Hexagon::IntRegsRegClass; |
| } else if (VT == MVT::i64 || VT == MVT::f64) { |
| TRC = &Hexagon::DoubleRegsRegClass; |
| } else { |
| llvm_unreachable("Cannot handle this register class"); |
| } |
| |
| unsigned NewReg = RegInfo.createVirtualRegister(TRC); |
| return NewReg; |
| } |
| |
| bool HexagonInstrInfo::isExtendable(const MachineInstr *MI) const { |
| // Constant extenders are allowed only for V4 and above. |
| if (!Subtarget.hasV4TOps()) |
| return false; |
| |
| const MCInstrDesc &MID = MI->getDesc(); |
| const uint64_t F = MID.TSFlags; |
| if ((F >> HexagonII::ExtendablePos) & HexagonII::ExtendableMask) |
| return true; |
| |
| // TODO: This is largely obsolete now. Will need to be removed |
| // in consecutive patches. |
| switch(MI->getOpcode()) { |
| // TFR_FI Remains a special case. |
| case Hexagon::TFR_FI: |
| return true; |
| default: |
| return false; |
| } |
| return false; |
| } |
| |
| // This returns true in two cases: |
| // - The OP code itself indicates that this is an extended instruction. |
| // - One of MOs has been marked with HMOTF_ConstExtended flag. |
| bool HexagonInstrInfo::isExtended(const MachineInstr *MI) const { |
| // First check if this is permanently extended op code. |
| const uint64_t F = MI->getDesc().TSFlags; |
| if ((F >> HexagonII::ExtendedPos) & HexagonII::ExtendedMask) |
| return true; |
| // Use MO operand flags to determine if one of MI's operands |
| // has HMOTF_ConstExtended flag set. |
| for (MachineInstr::const_mop_iterator I = MI->operands_begin(), |
| E = MI->operands_end(); I != E; ++I) { |
| if (I->getTargetFlags() && HexagonII::HMOTF_ConstExtended) |
| return true; |
| } |
| return false; |
| } |
| |
| bool HexagonInstrInfo::isBranch (const MachineInstr *MI) const { |
| return MI->getDesc().isBranch(); |
| } |
| |
| bool HexagonInstrInfo::isNewValueInst(const MachineInstr *MI) const { |
| if (isNewValueJump(MI)) |
| return true; |
| |
| if (isNewValueStore(MI)) |
| return true; |
| |
| return false; |
| } |
| |
| bool HexagonInstrInfo::isSaveCalleeSavedRegsCall(const MachineInstr *MI) const { |
| return MI->getOpcode() == Hexagon::SAVE_REGISTERS_CALL_V4; |
| } |
| |
| bool HexagonInstrInfo::isPredicable(MachineInstr *MI) const { |
| bool isPred = MI->getDesc().isPredicable(); |
| |
| if (!isPred) |
| return false; |
| |
| const int Opc = MI->getOpcode(); |
| |
| switch(Opc) { |
| case Hexagon::TFRI: |
| return isInt<12>(MI->getOperand(1).getImm()); |
| |
| case Hexagon::STrid: |
| case Hexagon::STrid_indexed: |
| return isShiftedUInt<6,3>(MI->getOperand(1).getImm()); |
| |
| case Hexagon::STriw: |
| case Hexagon::STriw_indexed: |
| case Hexagon::STriw_nv_V4: |
| return isShiftedUInt<6,2>(MI->getOperand(1).getImm()); |
| |
| case Hexagon::STrih: |
| case Hexagon::STrih_indexed: |
| case Hexagon::STrih_nv_V4: |
| return isShiftedUInt<6,1>(MI->getOperand(1).getImm()); |
| |
| case Hexagon::STrib: |
| case Hexagon::STrib_indexed: |
| case Hexagon::STrib_nv_V4: |
| return isUInt<6>(MI->getOperand(1).getImm()); |
| |
| case Hexagon::LDrid: |
| case Hexagon::LDrid_indexed: |
| return isShiftedUInt<6,3>(MI->getOperand(2).getImm()); |
| |
| case Hexagon::LDriw: |
| case Hexagon::LDriw_indexed: |
| return isShiftedUInt<6,2>(MI->getOperand(2).getImm()); |
| |
| case Hexagon::LDrih: |
| case Hexagon::LDriuh: |
| case Hexagon::LDrih_indexed: |
| case Hexagon::LDriuh_indexed: |
| return isShiftedUInt<6,1>(MI->getOperand(2).getImm()); |
| |
| case Hexagon::LDrib: |
| case Hexagon::LDriub: |
| case Hexagon::LDrib_indexed: |
| case Hexagon::LDriub_indexed: |
| return isUInt<6>(MI->getOperand(2).getImm()); |
| |
| case Hexagon::POST_LDrid: |
| return isShiftedInt<4,3>(MI->getOperand(3).getImm()); |
| |
| case Hexagon::POST_LDriw: |
| return isShiftedInt<4,2>(MI->getOperand(3).getImm()); |
| |
| case Hexagon::POST_LDrih: |
| case Hexagon::POST_LDriuh: |
| return isShiftedInt<4,1>(MI->getOperand(3).getImm()); |
| |
| case Hexagon::POST_LDrib: |
| case Hexagon::POST_LDriub: |
| return isInt<4>(MI->getOperand(3).getImm()); |
| |
| case Hexagon::STrib_imm_V4: |
| case Hexagon::STrih_imm_V4: |
| case Hexagon::STriw_imm_V4: |
| return (isUInt<6>(MI->getOperand(1).getImm()) && |
| isInt<6>(MI->getOperand(2).getImm())); |
| |
| case Hexagon::ADD_ri: |
| return isInt<8>(MI->getOperand(2).getImm()); |
| |
| case Hexagon::ASLH: |
| case Hexagon::ASRH: |
| case Hexagon::SXTB: |
| case Hexagon::SXTH: |
| case Hexagon::ZXTB: |
| case Hexagon::ZXTH: |
| return Subtarget.hasV4TOps(); |
| } |
| |
| return true; |
| } |
| |
| // This function performs the following inversiones: |
| // |
| // cPt ---> cNotPt |
| // cNotPt ---> cPt |
| // |
| unsigned HexagonInstrInfo::getInvertedPredicatedOpcode(const int Opc) const { |
| int InvPredOpcode; |
| InvPredOpcode = isPredicatedTrue(Opc) ? Hexagon::getFalsePredOpcode(Opc) |
| : Hexagon::getTruePredOpcode(Opc); |
| if (InvPredOpcode >= 0) // Valid instruction with the inverted predicate. |
| return InvPredOpcode; |
| |
| switch(Opc) { |
| default: llvm_unreachable("Unexpected predicated instruction"); |
| case Hexagon::COMBINE_rr_cPt: |
| return Hexagon::COMBINE_rr_cNotPt; |
| case Hexagon::COMBINE_rr_cNotPt: |
| return Hexagon::COMBINE_rr_cPt; |
| |
| // Dealloc_return. |
| case Hexagon::DEALLOC_RET_cPt_V4: |
| return Hexagon::DEALLOC_RET_cNotPt_V4; |
| case Hexagon::DEALLOC_RET_cNotPt_V4: |
| return Hexagon::DEALLOC_RET_cPt_V4; |
| } |
| } |
| |
| // New Value Store instructions. |
| bool HexagonInstrInfo::isNewValueStore(const MachineInstr *MI) const { |
| const uint64_t F = MI->getDesc().TSFlags; |
| |
| return ((F >> HexagonII::NVStorePos) & HexagonII::NVStoreMask); |
| } |
| |
| bool HexagonInstrInfo::isNewValueStore(unsigned Opcode) const { |
| const uint64_t F = get(Opcode).TSFlags; |
| |
| return ((F >> HexagonII::NVStorePos) & HexagonII::NVStoreMask); |
| } |
| |
| int HexagonInstrInfo:: |
| getMatchingCondBranchOpcode(int Opc, bool invertPredicate) const { |
| enum Hexagon::PredSense inPredSense; |
| inPredSense = invertPredicate ? Hexagon::PredSense_false : |
| Hexagon::PredSense_true; |
| int CondOpcode = Hexagon::getPredOpcode(Opc, inPredSense); |
| if (CondOpcode >= 0) // Valid Conditional opcode/instruction |
| return CondOpcode; |
| |
| // This switch case will be removed once all the instructions have been |
| // modified to use relation maps. |
| switch(Opc) { |
| case Hexagon::TFRI_f: |
| return !invertPredicate ? Hexagon::TFRI_cPt_f : |
| Hexagon::TFRI_cNotPt_f; |
| case Hexagon::COMBINE_rr: |
| return !invertPredicate ? Hexagon::COMBINE_rr_cPt : |
| Hexagon::COMBINE_rr_cNotPt; |
| |
| // Word. |
| case Hexagon::STriw_f: |
| return !invertPredicate ? Hexagon::STriw_cPt : |
| Hexagon::STriw_cNotPt; |
| case Hexagon::STriw_indexed_f: |
| return !invertPredicate ? Hexagon::STriw_indexed_cPt : |
| Hexagon::STriw_indexed_cNotPt; |
| |
| // DEALLOC_RETURN. |
| case Hexagon::DEALLOC_RET_V4: |
| return !invertPredicate ? Hexagon::DEALLOC_RET_cPt_V4 : |
| Hexagon::DEALLOC_RET_cNotPt_V4; |
| } |
| llvm_unreachable("Unexpected predicable instruction"); |
| } |
| |
| |
| bool HexagonInstrInfo:: |
| PredicateInstruction(MachineInstr *MI, |
| const SmallVectorImpl<MachineOperand> &Cond) const { |
| int Opc = MI->getOpcode(); |
| assert (isPredicable(MI) && "Expected predicable instruction"); |
| bool invertJump = (!Cond.empty() && Cond[0].isImm() && |
| (Cond[0].getImm() == 0)); |
| |
| // This will change MI's opcode to its predicate version. |
| // However, its operand list is still the old one, i.e. the |
| // non-predicate one. |
| MI->setDesc(get(getMatchingCondBranchOpcode(Opc, invertJump))); |
| |
| int oper = -1; |
| unsigned int GAIdx = 0; |
| |
| // Indicates whether the current MI has a GlobalAddress operand |
| bool hasGAOpnd = false; |
| std::vector<MachineOperand> tmpOpnds; |
| |
| // Indicates whether we need to shift operands to right. |
| bool needShift = true; |
| |
| // The predicate is ALWAYS the FIRST input operand !!! |
| if (MI->getNumOperands() == 0) { |
| // The non-predicate version of MI does not take any operands, |
| // i.e. no outs and no ins. In this condition, the predicate |
| // operand will be directly placed at Operands[0]. No operand |
| // shift is needed. |
| // Example: BARRIER |
| needShift = false; |
| oper = -1; |
| } |
| else if ( MI->getOperand(MI->getNumOperands()-1).isReg() |
| && MI->getOperand(MI->getNumOperands()-1).isDef() |
| && !MI->getOperand(MI->getNumOperands()-1).isImplicit()) { |
| // The non-predicate version of MI does not have any input operands. |
| // In this condition, we extend the length of Operands[] by one and |
| // copy the original last operand to the newly allocated slot. |
| // At this moment, it is just a place holder. Later, we will put |
| // predicate operand directly into it. No operand shift is needed. |
| // Example: r0=BARRIER (this is a faked insn used here for illustration) |
| MI->addOperand(MI->getOperand(MI->getNumOperands()-1)); |
| needShift = false; |
| oper = MI->getNumOperands() - 2; |
| } |
| else { |
| // We need to right shift all input operands by one. Duplicate the |
| // last operand into the newly allocated slot. |
| MI->addOperand(MI->getOperand(MI->getNumOperands()-1)); |
| } |
| |
| if (needShift) |
| { |
| // Operands[ MI->getNumOperands() - 2 ] has been copied into |
| // Operands[ MI->getNumOperands() - 1 ], so we start from |
| // Operands[ MI->getNumOperands() - 3 ]. |
| // oper is a signed int. |
| // It is ok if "MI->getNumOperands()-3" is -3, -2, or -1. |
| for (oper = MI->getNumOperands() - 3; oper >= 0; --oper) |
| { |
| MachineOperand &MO = MI->getOperand(oper); |
| |
| // Opnd[0] Opnd[1] Opnd[2] Opnd[3] Opnd[4] Opnd[5] Opnd[6] Opnd[7] |
| // <Def0> <Def1> <Use0> <Use1> <ImpDef0> <ImpDef1> <ImpUse0> <ImpUse1> |
| // /\~ |
| // /||\~ |
| // || |
| // Predicate Operand here |
| if (MO.isReg() && !MO.isUse() && !MO.isImplicit()) { |
| break; |
| } |
| if (MO.isReg()) { |
| MI->getOperand(oper+1).ChangeToRegister(MO.getReg(), MO.isDef(), |
| MO.isImplicit(), MO.isKill(), |
| MO.isDead(), MO.isUndef(), |
| MO.isDebug()); |
| } |
| else if (MO.isImm()) { |
| MI->getOperand(oper+1).ChangeToImmediate(MO.getImm()); |
| } |
| else if (MO.isGlobal()) { |
| // MI can not have more than one GlobalAddress operand. |
| assert(hasGAOpnd == false && "MI can only have one GlobalAddress opnd"); |
| |
| // There is no member function called "ChangeToGlobalAddress" in the |
| // MachineOperand class (not like "ChangeToRegister" and |
| // "ChangeToImmediate"). So we have to remove them from Operands[] list |
| // first, and then add them back after we have inserted the predicate |
| // operand. tmpOpnds[] is to remember these operands before we remove |
| // them. |
| tmpOpnds.push_back(MO); |
| |
| // Operands[oper] is a GlobalAddress operand; |
| // Operands[oper+1] has been copied into Operands[oper+2]; |
| hasGAOpnd = true; |
| GAIdx = oper; |
| continue; |
| } |
| else { |
| assert(false && "Unexpected operand type"); |
| } |
| } |
| } |
| |
| int regPos = invertJump ? 1 : 0; |
| MachineOperand PredMO = Cond[regPos]; |
| |
| // [oper] now points to the last explicit Def. Predicate operand must be |
| // located at [oper+1]. See diagram above. |
| // This assumes that the predicate is always the first operand, |
| // i.e. Operands[0+numResults], in the set of inputs |
| // It is better to have an assert here to check this. But I don't know how |
| // to write this assert because findFirstPredOperandIdx() would return -1 |
| if (oper < -1) oper = -1; |
| |
| MI->getOperand(oper+1).ChangeToRegister(PredMO.getReg(), PredMO.isDef(), |
| PredMO.isImplicit(), false, |
| PredMO.isDead(), PredMO.isUndef(), |
| PredMO.isDebug()); |
| |
| MachineRegisterInfo &RegInfo = MI->getParent()->getParent()->getRegInfo(); |
| RegInfo.clearKillFlags(PredMO.getReg()); |
| |
| if (hasGAOpnd) |
| { |
| unsigned int i; |
| |
| // Operands[GAIdx] is the original GlobalAddress operand, which is |
| // already copied into tmpOpnds[0]. |
| // Operands[GAIdx] now stores a copy of Operands[GAIdx-1] |
| // Operands[GAIdx+1] has already been copied into Operands[GAIdx+2], |
| // so we start from [GAIdx+2] |
| for (i = GAIdx + 2; i < MI->getNumOperands(); ++i) |
| tmpOpnds.push_back(MI->getOperand(i)); |
| |
| // Remove all operands in range [ (GAIdx+1) ... (MI->getNumOperands()-1) ] |
| // It is very important that we always remove from the end of Operands[] |
| // MI->getNumOperands() is at least 2 if program goes to here. |
| for (i = MI->getNumOperands() - 1; i > GAIdx; --i) |
| MI->RemoveOperand(i); |
| |
| for (i = 0; i < tmpOpnds.size(); ++i) |
| MI->addOperand(tmpOpnds[i]); |
| } |
| |
| return true; |
| } |
| |
| |
| bool |
| HexagonInstrInfo:: |
| isProfitableToIfCvt(MachineBasicBlock &MBB, |
| unsigned NumCycles, |
| unsigned ExtraPredCycles, |
| const BranchProbability &Probability) const { |
| return true; |
| } |
| |
| |
| bool |
| HexagonInstrInfo:: |
| isProfitableToIfCvt(MachineBasicBlock &TMBB, |
| unsigned NumTCycles, |
| unsigned ExtraTCycles, |
| MachineBasicBlock &FMBB, |
| unsigned NumFCycles, |
| unsigned ExtraFCycles, |
| const BranchProbability &Probability) const { |
| return true; |
| } |
| |
| // Returns true if an instruction is predicated irrespective of the predicate |
| // sense. For example, all of the following will return true. |
| // if (p0) R1 = add(R2, R3) |
| // if (!p0) R1 = add(R2, R3) |
| // if (p0.new) R1 = add(R2, R3) |
| // if (!p0.new) R1 = add(R2, R3) |
| bool HexagonInstrInfo::isPredicated(const MachineInstr *MI) const { |
| const uint64_t F = MI->getDesc().TSFlags; |
| |
| return ((F >> HexagonII::PredicatedPos) & HexagonII::PredicatedMask); |
| } |
| |
| bool HexagonInstrInfo::isPredicated(unsigned Opcode) const { |
| const uint64_t F = get(Opcode).TSFlags; |
| |
| return ((F >> HexagonII::PredicatedPos) & HexagonII::PredicatedMask); |
| } |
| |
| bool HexagonInstrInfo::isPredicatedTrue(const MachineInstr *MI) const { |
| const uint64_t F = MI->getDesc().TSFlags; |
| |
| assert(isPredicated(MI)); |
| return (!((F >> HexagonII::PredicatedFalsePos) & |
| HexagonII::PredicatedFalseMask)); |
| } |
| |
| bool HexagonInstrInfo::isPredicatedTrue(unsigned Opcode) const { |
| const uint64_t F = get(Opcode).TSFlags; |
| |
| // Make sure that the instruction is predicated. |
| assert((F>> HexagonII::PredicatedPos) & HexagonII::PredicatedMask); |
| return (!((F >> HexagonII::PredicatedFalsePos) & |
| HexagonII::PredicatedFalseMask)); |
| } |
| |
| bool HexagonInstrInfo::isPredicatedNew(const MachineInstr *MI) const { |
| const uint64_t F = MI->getDesc().TSFlags; |
| |
| assert(isPredicated(MI)); |
| return ((F >> HexagonII::PredicatedNewPos) & HexagonII::PredicatedNewMask); |
| } |
| |
| bool HexagonInstrInfo::isPredicatedNew(unsigned Opcode) const { |
| const uint64_t F = get(Opcode).TSFlags; |
| |
| assert(isPredicated(Opcode)); |
| return ((F >> HexagonII::PredicatedNewPos) & HexagonII::PredicatedNewMask); |
| } |
| |
| // Returns true, if a ST insn can be promoted to a new-value store. |
| bool HexagonInstrInfo::mayBeNewStore(const MachineInstr *MI) const { |
| const HexagonRegisterInfo& QRI = getRegisterInfo(); |
| const uint64_t F = MI->getDesc().TSFlags; |
| |
| return ((F >> HexagonII::mayNVStorePos) & |
| HexagonII::mayNVStoreMask & |
| QRI.Subtarget.hasV4TOps()); |
| } |
| |
| bool |
| HexagonInstrInfo::DefinesPredicate(MachineInstr *MI, |
| std::vector<MachineOperand> &Pred) const { |
| for (unsigned oper = 0; oper < MI->getNumOperands(); ++oper) { |
| MachineOperand MO = MI->getOperand(oper); |
| if (MO.isReg() && MO.isDef()) { |
| const TargetRegisterClass* RC = RI.getMinimalPhysRegClass(MO.getReg()); |
| if (RC == &Hexagon::PredRegsRegClass) { |
| Pred.push_back(MO); |
| return true; |
| } |
| } |
| } |
| return false; |
| } |
| |
| |
| bool |
| HexagonInstrInfo:: |
| SubsumesPredicate(const SmallVectorImpl<MachineOperand> &Pred1, |
| const SmallVectorImpl<MachineOperand> &Pred2) const { |
| // TODO: Fix this |
| return false; |
| } |
| |
| |
| // |
| // We indicate that we want to reverse the branch by |
| // inserting a 0 at the beginning of the Cond vector. |
| // |
| bool HexagonInstrInfo:: |
| ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const { |
| if (!Cond.empty() && Cond[0].isImm() && Cond[0].getImm() == 0) { |
| Cond.erase(Cond.begin()); |
| } else { |
| Cond.insert(Cond.begin(), MachineOperand::CreateImm(0)); |
| } |
| return false; |
| } |
| |
| |
| bool HexagonInstrInfo:: |
| isProfitableToDupForIfCvt(MachineBasicBlock &MBB,unsigned NumInstrs, |
| const BranchProbability &Probability) const { |
| return (NumInstrs <= 4); |
| } |
| |
| bool HexagonInstrInfo::isDeallocRet(const MachineInstr *MI) const { |
| switch (MI->getOpcode()) { |
| default: return false; |
| case Hexagon::DEALLOC_RET_V4 : |
| case Hexagon::DEALLOC_RET_cPt_V4 : |
| case Hexagon::DEALLOC_RET_cNotPt_V4 : |
| case Hexagon::DEALLOC_RET_cdnPnt_V4 : |
| case Hexagon::DEALLOC_RET_cNotdnPnt_V4 : |
| case Hexagon::DEALLOC_RET_cdnPt_V4 : |
| case Hexagon::DEALLOC_RET_cNotdnPt_V4 : |
| return true; |
| } |
| } |
| |
| |
| bool HexagonInstrInfo:: |
| isValidOffset(const int Opcode, const int Offset) const { |
| // This function is to check whether the "Offset" is in the correct range of |
| // the given "Opcode". If "Offset" is not in the correct range, "ADD_ri" is |
| // inserted to calculate the final address. Due to this reason, the function |
| // assumes that the "Offset" has correct alignment. |
| // We used to assert if the offset was not properly aligned, however, |
| // there are cases where a misaligned pointer recast can cause this |
| // problem, and we need to allow for it. The front end warns of such |
| // misaligns with respect to load size. |
| |
| switch(Opcode) { |
| |
| case Hexagon::LDriw: |
| case Hexagon::LDriw_indexed: |
| case Hexagon::LDriw_f: |
| case Hexagon::STriw_indexed: |
| case Hexagon::STriw: |
| case Hexagon::STriw_f: |
| return (Offset >= Hexagon_MEMW_OFFSET_MIN) && |
| (Offset <= Hexagon_MEMW_OFFSET_MAX); |
| |
| case Hexagon::LDrid: |
| case Hexagon::LDrid_indexed: |
| case Hexagon::LDrid_f: |
| case Hexagon::STrid: |
| case Hexagon::STrid_indexed: |
| case Hexagon::STrid_f: |
| return (Offset >= Hexagon_MEMD_OFFSET_MIN) && |
| (Offset <= Hexagon_MEMD_OFFSET_MAX); |
| |
| case Hexagon::LDrih: |
| case Hexagon::LDriuh: |
| case Hexagon::STrih: |
| return (Offset >= Hexagon_MEMH_OFFSET_MIN) && |
| (Offset <= Hexagon_MEMH_OFFSET_MAX); |
| |
| case Hexagon::LDrib: |
| case Hexagon::STrib: |
| case Hexagon::LDriub: |
| return (Offset >= Hexagon_MEMB_OFFSET_MIN) && |
| (Offset <= Hexagon_MEMB_OFFSET_MAX); |
| |
| case Hexagon::ADD_ri: |
| case Hexagon::TFR_FI: |
| return (Offset >= Hexagon_ADDI_OFFSET_MIN) && |
| (Offset <= Hexagon_ADDI_OFFSET_MAX); |
| |
| case Hexagon::MemOPw_ADDi_V4 : |
| case Hexagon::MemOPw_SUBi_V4 : |
| case Hexagon::MemOPw_ADDr_V4 : |
| case Hexagon::MemOPw_SUBr_V4 : |
| case Hexagon::MemOPw_ANDr_V4 : |
| case Hexagon::MemOPw_ORr_V4 : |
| return (0 <= Offset && Offset <= 255); |
| |
| case Hexagon::MemOPh_ADDi_V4 : |
| case Hexagon::MemOPh_SUBi_V4 : |
| case Hexagon::MemOPh_ADDr_V4 : |
| case Hexagon::MemOPh_SUBr_V4 : |
| case Hexagon::MemOPh_ANDr_V4 : |
| case Hexagon::MemOPh_ORr_V4 : |
| return (0 <= Offset && Offset <= 127); |
| |
| case Hexagon::MemOPb_ADDi_V4 : |
| case Hexagon::MemOPb_SUBi_V4 : |
| case Hexagon::MemOPb_ADDr_V4 : |
| case Hexagon::MemOPb_SUBr_V4 : |
| case Hexagon::MemOPb_ANDr_V4 : |
| case Hexagon::MemOPb_ORr_V4 : |
| return (0 <= Offset && Offset <= 63); |
| |
| // LDri_pred and STriw_pred are pseudo operations, so it has to take offset of |
| // any size. Later pass knows how to handle it. |
| case Hexagon::STriw_pred: |
| case Hexagon::LDriw_pred: |
| return true; |
| |
| case Hexagon::LOOP0_i: |
| return isUInt<10>(Offset); |
| |
| // INLINEASM is very special. |
| case Hexagon::INLINEASM: |
| return true; |
| } |
| |
| llvm_unreachable("No offset range is defined for this opcode. " |
| "Please define it in the above switch statement!"); |
| } |
| |
| |
| // |
| // Check if the Offset is a valid auto-inc imm by Load/Store Type. |
| // |
| bool HexagonInstrInfo:: |
| isValidAutoIncImm(const EVT VT, const int Offset) const { |
| |
| if (VT == MVT::i64) { |
| return (Offset >= Hexagon_MEMD_AUTOINC_MIN && |
| Offset <= Hexagon_MEMD_AUTOINC_MAX && |
| (Offset & 0x7) == 0); |
| } |
| if (VT == MVT::i32) { |
| return (Offset >= Hexagon_MEMW_AUTOINC_MIN && |
| Offset <= Hexagon_MEMW_AUTOINC_MAX && |
| (Offset & 0x3) == 0); |
| } |
| if (VT == MVT::i16) { |
| return (Offset >= Hexagon_MEMH_AUTOINC_MIN && |
| Offset <= Hexagon_MEMH_AUTOINC_MAX && |
| (Offset & 0x1) == 0); |
| } |
| if (VT == MVT::i8) { |
| return (Offset >= Hexagon_MEMB_AUTOINC_MIN && |
| Offset <= Hexagon_MEMB_AUTOINC_MAX); |
| } |
| llvm_unreachable("Not an auto-inc opc!"); |
| } |
| |
| |
| bool HexagonInstrInfo:: |
| isMemOp(const MachineInstr *MI) const { |
| // return MI->getDesc().mayLoad() && MI->getDesc().mayStore(); |
| |
| switch (MI->getOpcode()) |
| { |
| default: return false; |
| case Hexagon::MemOPw_ADDi_V4 : |
| case Hexagon::MemOPw_SUBi_V4 : |
| case Hexagon::MemOPw_ADDr_V4 : |
| case Hexagon::MemOPw_SUBr_V4 : |
| case Hexagon::MemOPw_ANDr_V4 : |
| case Hexagon::MemOPw_ORr_V4 : |
| case Hexagon::MemOPh_ADDi_V4 : |
| case Hexagon::MemOPh_SUBi_V4 : |
| case Hexagon::MemOPh_ADDr_V4 : |
| case Hexagon::MemOPh_SUBr_V4 : |
| case Hexagon::MemOPh_ANDr_V4 : |
| case Hexagon::MemOPh_ORr_V4 : |
| case Hexagon::MemOPb_ADDi_V4 : |
| case Hexagon::MemOPb_SUBi_V4 : |
| case Hexagon::MemOPb_ADDr_V4 : |
| case Hexagon::MemOPb_SUBr_V4 : |
| case Hexagon::MemOPb_ANDr_V4 : |
| case Hexagon::MemOPb_ORr_V4 : |
| case Hexagon::MemOPb_SETBITi_V4: |
| case Hexagon::MemOPh_SETBITi_V4: |
| case Hexagon::MemOPw_SETBITi_V4: |
| case Hexagon::MemOPb_CLRBITi_V4: |
| case Hexagon::MemOPh_CLRBITi_V4: |
| case Hexagon::MemOPw_CLRBITi_V4: |
| return true; |
| } |
| return false; |
| } |
| |
| |
| bool HexagonInstrInfo:: |
| isSpillPredRegOp(const MachineInstr *MI) const { |
| switch (MI->getOpcode()) { |
| default: return false; |
| case Hexagon::STriw_pred : |
| case Hexagon::LDriw_pred : |
| return true; |
| } |
| } |
| |
| bool HexagonInstrInfo::isNewValueJumpCandidate(const MachineInstr *MI) const { |
| switch (MI->getOpcode()) { |
| default: return false; |
| case Hexagon::CMPEQrr: |
| case Hexagon::CMPEQri: |
| case Hexagon::CMPGTrr: |
| case Hexagon::CMPGTri: |
| case Hexagon::CMPGTUrr: |
| case Hexagon::CMPGTUri: |
| return true; |
| } |
| } |
| |
| bool HexagonInstrInfo:: |
| isConditionalTransfer (const MachineInstr *MI) const { |
| switch (MI->getOpcode()) { |
| default: return false; |
| case Hexagon::TFR_cPt: |
| case Hexagon::TFR_cNotPt: |
| case Hexagon::TFRI_cPt: |
| case Hexagon::TFRI_cNotPt: |
| case Hexagon::TFR_cdnPt: |
| case Hexagon::TFR_cdnNotPt: |
| case Hexagon::TFRI_cdnPt: |
| case Hexagon::TFRI_cdnNotPt: |
| return true; |
| } |
| } |
| |
| bool HexagonInstrInfo::isConditionalALU32 (const MachineInstr* MI) const { |
| const HexagonRegisterInfo& QRI = getRegisterInfo(); |
| switch (MI->getOpcode()) |
| { |
| default: return false; |
| case Hexagon::ADD_ri_cPt: |
| case Hexagon::ADD_ri_cNotPt: |
| case Hexagon::ADD_rr_cPt: |
| case Hexagon::ADD_rr_cNotPt: |
| case Hexagon::XOR_rr_cPt: |
| case Hexagon::XOR_rr_cNotPt: |
| case Hexagon::AND_rr_cPt: |
| case Hexagon::AND_rr_cNotPt: |
| case Hexagon::OR_rr_cPt: |
| case Hexagon::OR_rr_cNotPt: |
| case Hexagon::SUB_rr_cPt: |
| case Hexagon::SUB_rr_cNotPt: |
| case Hexagon::COMBINE_rr_cPt: |
| case Hexagon::COMBINE_rr_cNotPt: |
| return true; |
| case Hexagon::ASLH_cPt_V4: |
| case Hexagon::ASLH_cNotPt_V4: |
| case Hexagon::ASRH_cPt_V4: |
| case Hexagon::ASRH_cNotPt_V4: |
| case Hexagon::SXTB_cPt_V4: |
| case Hexagon::SXTB_cNotPt_V4: |
| case Hexagon::SXTH_cPt_V4: |
| case Hexagon::SXTH_cNotPt_V4: |
| case Hexagon::ZXTB_cPt_V4: |
| case Hexagon::ZXTB_cNotPt_V4: |
| case Hexagon::ZXTH_cPt_V4: |
| case Hexagon::ZXTH_cNotPt_V4: |
| return QRI.Subtarget.hasV4TOps(); |
| } |
| } |
| |
| bool HexagonInstrInfo:: |
| isConditionalLoad (const MachineInstr* MI) const { |
| const HexagonRegisterInfo& QRI = getRegisterInfo(); |
| switch (MI->getOpcode()) |
| { |
| default: return false; |
| case Hexagon::LDrid_cPt : |
| case Hexagon::LDrid_cNotPt : |
| case Hexagon::LDrid_indexed_cPt : |
| case Hexagon::LDrid_indexed_cNotPt : |
| case Hexagon::LDriw_cPt : |
| case Hexagon::LDriw_cNotPt : |
| case Hexagon::LDriw_indexed_cPt : |
| case Hexagon::LDriw_indexed_cNotPt : |
| case Hexagon::LDrih_cPt : |
| case Hexagon::LDrih_cNotPt : |
| case Hexagon::LDrih_indexed_cPt : |
| case Hexagon::LDrih_indexed_cNotPt : |
| case Hexagon::LDrib_cPt : |
| case Hexagon::LDrib_cNotPt : |
| case Hexagon::LDrib_indexed_cPt : |
| case Hexagon::LDrib_indexed_cNotPt : |
| case Hexagon::LDriuh_cPt : |
| case Hexagon::LDriuh_cNotPt : |
| case Hexagon::LDriuh_indexed_cPt : |
| case Hexagon::LDriuh_indexed_cNotPt : |
| case Hexagon::LDriub_cPt : |
| case Hexagon::LDriub_cNotPt : |
| case Hexagon::LDriub_indexed_cPt : |
| case Hexagon::LDriub_indexed_cNotPt : |
| return true; |
| case Hexagon::POST_LDrid_cPt : |
| case Hexagon::POST_LDrid_cNotPt : |
| case Hexagon::POST_LDriw_cPt : |
| case Hexagon::POST_LDriw_cNotPt : |
| case Hexagon::POST_LDrih_cPt : |
| case Hexagon::POST_LDrih_cNotPt : |
| case Hexagon::POST_LDrib_cPt : |
| case Hexagon::POST_LDrib_cNotPt : |
| case Hexagon::POST_LDriuh_cPt : |
| case Hexagon::POST_LDriuh_cNotPt : |
| case Hexagon::POST_LDriub_cPt : |
| case Hexagon::POST_LDriub_cNotPt : |
| return QRI.Subtarget.hasV4TOps(); |
| case Hexagon::LDrid_indexed_shl_cPt_V4 : |
| case Hexagon::LDrid_indexed_shl_cNotPt_V4 : |
| case Hexagon::LDrib_indexed_shl_cPt_V4 : |
| case Hexagon::LDrib_indexed_shl_cNotPt_V4 : |
| case Hexagon::LDriub_indexed_shl_cPt_V4 : |
| case Hexagon::LDriub_indexed_shl_cNotPt_V4 : |
| case Hexagon::LDrih_indexed_shl_cPt_V4 : |
| case Hexagon::LDrih_indexed_shl_cNotPt_V4 : |
| case Hexagon::LDriuh_indexed_shl_cPt_V4 : |
| case Hexagon::LDriuh_indexed_shl_cNotPt_V4 : |
| case Hexagon::LDriw_indexed_shl_cPt_V4 : |
| case Hexagon::LDriw_indexed_shl_cNotPt_V4 : |
| return QRI.Subtarget.hasV4TOps(); |
| } |
| } |
| |
| // Returns true if an instruction is a conditional store. |
| // |
| // Note: It doesn't include conditional new-value stores as they can't be |
| // converted to .new predicate. |
| // |
| // p.new NV store [ if(p0.new)memw(R0+#0)=R2.new ] |
| // ^ ^ |
| // / \ (not OK. it will cause new-value store to be |
| // / X conditional on p0.new while R2 producer is |
| // / \ on p0) |
| // / \. |
| // p.new store p.old NV store |
| // [if(p0.new)memw(R0+#0)=R2] [if(p0)memw(R0+#0)=R2.new] |
| // ^ ^ |
| // \ / |
| // \ / |
| // \ / |
| // p.old store |
| // [if (p0)memw(R0+#0)=R2] |
| // |
| // The above diagram shows the steps involoved in the conversion of a predicated |
| // store instruction to its .new predicated new-value form. |
| // |
| // The following set of instructions further explains the scenario where |
| // conditional new-value store becomes invalid when promoted to .new predicate |
| // form. |
| // |
| // { 1) if (p0) r0 = add(r1, r2) |
| // 2) p0 = cmp.eq(r3, #0) } |
| // |
| // 3) if (p0) memb(r1+#0) = r0 --> this instruction can't be grouped with |
| // the first two instructions because in instr 1, r0 is conditional on old value |
| // of p0 but its use in instr 3 is conditional on p0 modified by instr 2 which |
| // is not valid for new-value stores. |
| bool HexagonInstrInfo:: |
| isConditionalStore (const MachineInstr* MI) const { |
| const HexagonRegisterInfo& QRI = getRegisterInfo(); |
| switch (MI->getOpcode()) |
| { |
| default: return false; |
| case Hexagon::STrib_imm_cPt_V4 : |
| case Hexagon::STrib_imm_cNotPt_V4 : |
| case Hexagon::STrib_indexed_shl_cPt_V4 : |
| case Hexagon::STrib_indexed_shl_cNotPt_V4 : |
| case Hexagon::STrib_cPt : |
| case Hexagon::STrib_cNotPt : |
| case Hexagon::POST_STbri_cPt : |
| case Hexagon::POST_STbri_cNotPt : |
| case Hexagon::STrid_indexed_cPt : |
| case Hexagon::STrid_indexed_cNotPt : |
| case Hexagon::STrid_indexed_shl_cPt_V4 : |
| case Hexagon::POST_STdri_cPt : |
| case Hexagon::POST_STdri_cNotPt : |
| case Hexagon::STrih_cPt : |
| case Hexagon::STrih_cNotPt : |
| case Hexagon::STrih_indexed_cPt : |
| case Hexagon::STrih_indexed_cNotPt : |
| case Hexagon::STrih_imm_cPt_V4 : |
| case Hexagon::STrih_imm_cNotPt_V4 : |
| case Hexagon::STrih_indexed_shl_cPt_V4 : |
| case Hexagon::STrih_indexed_shl_cNotPt_V4 : |
| case Hexagon::POST_SThri_cPt : |
| case Hexagon::POST_SThri_cNotPt : |
| case Hexagon::STriw_cPt : |
| case Hexagon::STriw_cNotPt : |
| case Hexagon::STriw_indexed_cPt : |
| case Hexagon::STriw_indexed_cNotPt : |
| case Hexagon::STriw_imm_cPt_V4 : |
| case Hexagon::STriw_imm_cNotPt_V4 : |
| case Hexagon::STriw_indexed_shl_cPt_V4 : |
| case Hexagon::STriw_indexed_shl_cNotPt_V4 : |
| case Hexagon::POST_STwri_cPt : |
| case Hexagon::POST_STwri_cNotPt : |
| return QRI.Subtarget.hasV4TOps(); |
| |
| // V4 global address store before promoting to dot new. |
| case Hexagon::STd_GP_cPt_V4 : |
| case Hexagon::STd_GP_cNotPt_V4 : |
| case Hexagon::STb_GP_cPt_V4 : |
| case Hexagon::STb_GP_cNotPt_V4 : |
| case Hexagon::STh_GP_cPt_V4 : |
| case Hexagon::STh_GP_cNotPt_V4 : |
| case Hexagon::STw_GP_cPt_V4 : |
| case Hexagon::STw_GP_cNotPt_V4 : |
| return QRI.Subtarget.hasV4TOps(); |
| |
| // Predicated new value stores (i.e. if (p0) memw(..)=r0.new) are excluded |
| // from the "Conditional Store" list. Because a predicated new value store |
| // would NOT be promoted to a double dot new store. See diagram below: |
| // This function returns yes for those stores that are predicated but not |
| // yet promoted to predicate dot new instructions. |
| // |
| // +---------------------+ |
| // /-----| if (p0) memw(..)=r0 |---------\~ |
| // || +---------------------+ || |
| // promote || /\ /\ || promote |
| // || /||\ /||\ || |
| // \||/ demote || \||/ |
| // \/ || || \/ |
| // +-------------------------+ || +-------------------------+ |
| // | if (p0.new) memw(..)=r0 | || | if (p0) memw(..)=r0.new | |
| // +-------------------------+ || +-------------------------+ |
| // || || || |
| // || demote \||/ |
| // promote || \/ NOT possible |
| // || || /\~ |
| // \||/ || /||\~ |
| // \/ || || |
| // +-----------------------------+ |
| // | if (p0.new) memw(..)=r0.new | |
| // +-----------------------------+ |
| // Double Dot New Store |
| // |
| } |
| } |
| |
| |
| bool HexagonInstrInfo::isNewValueJump(const MachineInstr *MI) const { |
| if (isNewValue(MI) && isBranch(MI)) |
| return true; |
| return false; |
| } |
| |
| bool HexagonInstrInfo::isPostIncrement (const MachineInstr* MI) const { |
| return (getAddrMode(MI) == HexagonII::PostInc); |
| } |
| |
| bool HexagonInstrInfo::isNewValue(const MachineInstr* MI) const { |
| const uint64_t F = MI->getDesc().TSFlags; |
| return ((F >> HexagonII::NewValuePos) & HexagonII::NewValueMask); |
| } |
| |
| // Returns true, if any one of the operands is a dot new |
| // insn, whether it is predicated dot new or register dot new. |
| bool HexagonInstrInfo::isDotNewInst (const MachineInstr* MI) const { |
| return (isNewValueInst(MI) || |
| (isPredicated(MI) && isPredicatedNew(MI))); |
| } |
| |
| // Returns the most basic instruction for the .new predicated instructions and |
| // new-value stores. |
| // For example, all of the following instructions will be converted back to the |
| // same instruction: |
| // 1) if (p0.new) memw(R0+#0) = R1.new ---> |
| // 2) if (p0) memw(R0+#0)= R1.new -------> if (p0) memw(R0+#0) = R1 |
| // 3) if (p0.new) memw(R0+#0) = R1 ---> |
| // |
| |
| int HexagonInstrInfo::GetDotOldOp(const int opc) const { |
| int NewOp = opc; |
| if (isPredicated(NewOp) && isPredicatedNew(NewOp)) { // Get predicate old form |
| NewOp = Hexagon::getPredOldOpcode(NewOp); |
| assert(NewOp >= 0 && |
| "Couldn't change predicate new instruction to its old form."); |
| } |
| |
| if (isNewValueStore(NewOp)) { // Convert into non-new-value format |
| NewOp = Hexagon::getNonNVStore(NewOp); |
| assert(NewOp >= 0 && "Couldn't change new-value store to its old form."); |
| } |
| return NewOp; |
| } |
| |
| // Return the new value instruction for a given store. |
| int HexagonInstrInfo::GetDotNewOp(const MachineInstr* MI) const { |
| int NVOpcode = Hexagon::getNewValueOpcode(MI->getOpcode()); |
| if (NVOpcode >= 0) // Valid new-value store instruction. |
| return NVOpcode; |
| |
| switch (MI->getOpcode()) { |
| default: llvm_unreachable("Unknown .new type"); |
| // store new value byte |
| case Hexagon::STrib_shl_V4: |
| return Hexagon::STrib_shl_nv_V4; |
| |
| case Hexagon::STrih_shl_V4: |
| return Hexagon::STrih_shl_nv_V4; |
| |
| case Hexagon::STriw_f: |
| return Hexagon::STriw_nv_V4; |
| |
| case Hexagon::STriw_indexed_f: |
| return Hexagon::STriw_indexed_nv_V4; |
| |
| case Hexagon::STriw_shl_V4: |
| return Hexagon::STriw_shl_nv_V4; |
| |
| } |
| return 0; |
| } |
| |
| // Return .new predicate version for an instruction. |
| int HexagonInstrInfo::GetDotNewPredOp(MachineInstr *MI, |
| const MachineBranchProbabilityInfo |
| *MBPI) const { |
| |
| int NewOpcode = Hexagon::getPredNewOpcode(MI->getOpcode()); |
| if (NewOpcode >= 0) // Valid predicate new instruction |
| return NewOpcode; |
| |
| switch (MI->getOpcode()) { |
| default: llvm_unreachable("Unknown .new type"); |
| // Condtional Jumps |
| case Hexagon::JMP_t: |
| case Hexagon::JMP_f: |
| return getDotNewPredJumpOp(MI, MBPI); |
| |
| case Hexagon::JMPR_t: |
| return Hexagon::JMPR_tnew_tV3; |
| |
| case Hexagon::JMPR_f: |
| return Hexagon::JMPR_fnew_tV3; |
| |
| case Hexagon::JMPret_t: |
| return Hexagon::JMPret_tnew_tV3; |
| |
| case Hexagon::JMPret_f: |
| return Hexagon::JMPret_fnew_tV3; |
| |
| |
| // Conditional combine |
| case Hexagon::COMBINE_rr_cPt : |
| return Hexagon::COMBINE_rr_cdnPt; |
| case Hexagon::COMBINE_rr_cNotPt : |
| return Hexagon::COMBINE_rr_cdnNotPt; |
| } |
| } |
| |
| |
| unsigned HexagonInstrInfo::getAddrMode(const MachineInstr* MI) const { |
| const uint64_t F = MI->getDesc().TSFlags; |
| |
| return((F >> HexagonII::AddrModePos) & HexagonII::AddrModeMask); |
| } |
| |
| /// immediateExtend - Changes the instruction in place to one using an immediate |
| /// extender. |
| void HexagonInstrInfo::immediateExtend(MachineInstr *MI) const { |
| assert((isExtendable(MI)||isConstExtended(MI)) && |
| "Instruction must be extendable"); |
| // Find which operand is extendable. |
| short ExtOpNum = getCExtOpNum(MI); |
| MachineOperand &MO = MI->getOperand(ExtOpNum); |
| // This needs to be something we understand. |
| assert((MO.isMBB() || MO.isImm()) && |
| "Branch with unknown extendable field type"); |
| // Mark given operand as extended. |
| MO.addTargetFlag(HexagonII::HMOTF_ConstExtended); |
| } |
| |
| DFAPacketizer *HexagonInstrInfo:: |
| CreateTargetScheduleState(const TargetMachine *TM, |
| const ScheduleDAG *DAG) const { |
| const InstrItineraryData *II = TM->getInstrItineraryData(); |
| return TM->getSubtarget<HexagonGenSubtargetInfo>().createDFAPacketizer(II); |
| } |
| |
| bool HexagonInstrInfo::isSchedulingBoundary(const MachineInstr *MI, |
| const MachineBasicBlock *MBB, |
| const MachineFunction &MF) const { |
| // Debug info is never a scheduling boundary. It's necessary to be explicit |
| // due to the special treatment of IT instructions below, otherwise a |
| // dbg_value followed by an IT will result in the IT instruction being |
| // considered a scheduling hazard, which is wrong. It should be the actual |
| // instruction preceding the dbg_value instruction(s), just like it is |
| // when debug info is not present. |
| if (MI->isDebugValue()) |
| return false; |
| |
| // Terminators and labels can't be scheduled around. |
| if (MI->getDesc().isTerminator() || MI->isPosition() || MI->isInlineAsm()) |
| return true; |
| |
| return false; |
| } |
| |
| bool HexagonInstrInfo::isConstExtended(MachineInstr *MI) const { |
| |
| // Constant extenders are allowed only for V4 and above. |
| if (!Subtarget.hasV4TOps()) |
| return false; |
| |
| const uint64_t F = MI->getDesc().TSFlags; |
| unsigned isExtended = (F >> HexagonII::ExtendedPos) & HexagonII::ExtendedMask; |
| if (isExtended) // Instruction must be extended. |
| return true; |
| |
| unsigned isExtendable = (F >> HexagonII::ExtendablePos) |
| & HexagonII::ExtendableMask; |
| if (!isExtendable) |
| return false; |
| |
| short ExtOpNum = getCExtOpNum(MI); |
| const MachineOperand &MO = MI->getOperand(ExtOpNum); |
| // Use MO operand flags to determine if MO |
| // has the HMOTF_ConstExtended flag set. |
| if (MO.getTargetFlags() && HexagonII::HMOTF_ConstExtended) |
| return true; |
| // If this is a Machine BB address we are talking about, and it is |
| // not marked as extended, say so. |
| if (MO.isMBB()) |
| return false; |
| |
| // We could be using an instruction with an extendable immediate and shoehorn |
| // a global address into it. If it is a global address it will be constant |
| // extended. We do this for COMBINE. |
| // We currently only handle isGlobal() because it is the only kind of |
| // object we are going to end up with here for now. |
| // In the future we probably should add isSymbol(), etc. |
| if (MO.isGlobal() || MO.isSymbol()) |
| return true; |
| |
| // If the extendable operand is not 'Immediate' type, the instruction should |
| // have 'isExtended' flag set. |
| assert(MO.isImm() && "Extendable operand must be Immediate type"); |
| |
| int MinValue = getMinValue(MI); |
| int MaxValue = getMaxValue(MI); |
| int ImmValue = MO.getImm(); |
| |
| return (ImmValue < MinValue || ImmValue > MaxValue); |
| } |
| |
| // Returns the opcode to use when converting MI, which is a conditional jump, |
| // into a conditional instruction which uses the .new value of the predicate. |
| // We also use branch probabilities to add a hint to the jump. |
| int |
| HexagonInstrInfo::getDotNewPredJumpOp(MachineInstr *MI, |
| const |
| MachineBranchProbabilityInfo *MBPI) const { |
| |
| // We assume that block can have at most two successors. |
| bool taken = false; |
| MachineBasicBlock *Src = MI->getParent(); |
| MachineOperand *BrTarget = &MI->getOperand(1); |
| MachineBasicBlock *Dst = BrTarget->getMBB(); |
| |
| const BranchProbability Prediction = MBPI->getEdgeProbability(Src, Dst); |
| if (Prediction >= BranchProbability(1,2)) |
| taken = true; |
| |
| switch (MI->getOpcode()) { |
| case Hexagon::JMP_t: |
| return taken ? Hexagon::JMP_tnew_t : Hexagon::JMP_tnew_nt; |
| case Hexagon::JMP_f: |
| return taken ? Hexagon::JMP_fnew_t : Hexagon::JMP_fnew_nt; |
| |
| default: |
| llvm_unreachable("Unexpected jump instruction."); |
| } |
| } |
| // Returns true if a particular operand is extendable for an instruction. |
| bool HexagonInstrInfo::isOperandExtended(const MachineInstr *MI, |
| unsigned short OperandNum) const { |
| // Constant extenders are allowed only for V4 and above. |
| if (!Subtarget.hasV4TOps()) |
| return false; |
| |
| const uint64_t F = MI->getDesc().TSFlags; |
| |
| return ((F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask) |
| == OperandNum; |
| } |
| |
| // Returns Operand Index for the constant extended instruction. |
| unsigned short HexagonInstrInfo::getCExtOpNum(const MachineInstr *MI) const { |
| const uint64_t F = MI->getDesc().TSFlags; |
| return ((F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask); |
| } |
| |
| // Returns the min value that doesn't need to be extended. |
| int HexagonInstrInfo::getMinValue(const MachineInstr *MI) const { |
| const uint64_t F = MI->getDesc().TSFlags; |
| unsigned isSigned = (F >> HexagonII::ExtentSignedPos) |
| & HexagonII::ExtentSignedMask; |
| unsigned bits = (F >> HexagonII::ExtentBitsPos) |
| & HexagonII::ExtentBitsMask; |
| |
| if (isSigned) // if value is signed |
| return -1 << (bits - 1); |
| else |
| return 0; |
| } |
| |
| // Returns the max value that doesn't need to be extended. |
| int HexagonInstrInfo::getMaxValue(const MachineInstr *MI) const { |
| const uint64_t F = MI->getDesc().TSFlags; |
| unsigned isSigned = (F >> HexagonII::ExtentSignedPos) |
| & HexagonII::ExtentSignedMask; |
| unsigned bits = (F >> HexagonII::ExtentBitsPos) |
| & HexagonII::ExtentBitsMask; |
| |
| if (isSigned) // if value is signed |
| return ~(-1 << (bits - 1)); |
| else |
| return ~(-1 << bits); |
| } |
| |
| // Returns true if an instruction can be converted into a non-extended |
| // equivalent instruction. |
| bool HexagonInstrInfo::NonExtEquivalentExists (const MachineInstr *MI) const { |
| |
| short NonExtOpcode; |
| // Check if the instruction has a register form that uses register in place |
| // of the extended operand, if so return that as the non-extended form. |
| if (Hexagon::getRegForm(MI->getOpcode()) >= 0) |
| return true; |
| |
| if (MI->getDesc().mayLoad() || MI->getDesc().mayStore()) { |
| // Check addressing mode and retrieve non-ext equivalent instruction. |
| |
| switch (getAddrMode(MI)) { |
| case HexagonII::Absolute : |
| // Load/store with absolute addressing mode can be converted into |
| // base+offset mode. |
| NonExtOpcode = Hexagon::getBasedWithImmOffset(MI->getOpcode()); |
| break; |
| case HexagonII::BaseImmOffset : |
| // Load/store with base+offset addressing mode can be converted into |
| // base+register offset addressing mode. However left shift operand should |
| // be set to 0. |
| NonExtOpcode = Hexagon::getBaseWithRegOffset(MI->getOpcode()); |
| break; |
| default: |
| return false; |
| } |
| if (NonExtOpcode < 0) |
| return false; |
| return true; |
| } |
| return false; |
| } |
| |
| // Returns opcode of the non-extended equivalent instruction. |
| short HexagonInstrInfo::getNonExtOpcode (const MachineInstr *MI) const { |
| |
| // Check if the instruction has a register form that uses register in place |
| // of the extended operand, if so return that as the non-extended form. |
| short NonExtOpcode = Hexagon::getRegForm(MI->getOpcode()); |
| if (NonExtOpcode >= 0) |
| return NonExtOpcode; |
| |
| if (MI->getDesc().mayLoad() || MI->getDesc().mayStore()) { |
| // Check addressing mode and retrieve non-ext equivalent instruction. |
| switch (getAddrMode(MI)) { |
| case HexagonII::Absolute : |
| return Hexagon::getBasedWithImmOffset(MI->getOpcode()); |
| case HexagonII::BaseImmOffset : |
| return Hexagon::getBaseWithRegOffset(MI->getOpcode()); |
| default: |
| return -1; |
| } |
| } |
| return -1; |
| } |
| |
| bool HexagonInstrInfo::PredOpcodeHasJMP_c(Opcode_t Opcode) const { |
| return (Opcode == Hexagon::JMP_t) || |
| (Opcode == Hexagon::JMP_f) || |
| (Opcode == Hexagon::JMP_tnew_t) || |
| (Opcode == Hexagon::JMP_fnew_t) || |
| (Opcode == Hexagon::JMP_tnew_nt) || |
| (Opcode == Hexagon::JMP_fnew_nt); |
| } |
| |
| bool HexagonInstrInfo::PredOpcodeHasNot(Opcode_t Opcode) const { |
| return (Opcode == Hexagon::JMP_f) || |
| (Opcode == Hexagon::JMP_fnew_t) || |
| (Opcode == Hexagon::JMP_fnew_nt); |
| } |