| //===-- PPCCTRLoops.cpp - Identify and generate CTR loops -----------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This pass identifies loops where we can generate the PPC branch instructions |
| // that decrement and test the count register (CTR) (bdnz and friends). |
| // |
| // The pattern that defines the induction variable can changed depending on |
| // prior optimizations. For example, the IndVarSimplify phase run by 'opt' |
| // normalizes induction variables, and the Loop Strength Reduction pass |
| // run by 'llc' may also make changes to the induction variable. |
| // |
| // Criteria for CTR loops: |
| // - Countable loops (w/ ind. var for a trip count) |
| // - Try inner-most loops first |
| // - No nested CTR loops. |
| // - No function calls in loops. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Transforms/Scalar.h" |
| #include "PPC.h" |
| #include "PPCTargetMachine.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/Analysis/LoopInfo.h" |
| #include "llvm/Analysis/ScalarEvolutionExpander.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/DerivedTypes.h" |
| #include "llvm/IR/Dominators.h" |
| #include "llvm/IR/InlineAsm.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/IntrinsicInst.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/IR/ValueHandle.h" |
| #include "llvm/PassSupport.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Target/TargetLibraryInfo.h" |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
| #include "llvm/Transforms/Utils/Local.h" |
| #include "llvm/Transforms/Utils/LoopUtils.h" |
| |
| #ifndef NDEBUG |
| #include "llvm/CodeGen/MachineDominators.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineFunctionPass.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #endif |
| |
| #include <algorithm> |
| #include <vector> |
| |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "ctrloops" |
| |
| #ifndef NDEBUG |
| static cl::opt<int> CTRLoopLimit("ppc-max-ctrloop", cl::Hidden, cl::init(-1)); |
| #endif |
| |
| STATISTIC(NumCTRLoops, "Number of loops converted to CTR loops"); |
| |
| namespace llvm { |
| void initializePPCCTRLoopsPass(PassRegistry&); |
| #ifndef NDEBUG |
| void initializePPCCTRLoopsVerifyPass(PassRegistry&); |
| #endif |
| } |
| |
| namespace { |
| struct PPCCTRLoops : public FunctionPass { |
| |
| #ifndef NDEBUG |
| static int Counter; |
| #endif |
| |
| public: |
| static char ID; |
| |
| PPCCTRLoops() : FunctionPass(ID), TM(nullptr) { |
| initializePPCCTRLoopsPass(*PassRegistry::getPassRegistry()); |
| } |
| PPCCTRLoops(PPCTargetMachine &TM) : FunctionPass(ID), TM(&TM) { |
| initializePPCCTRLoopsPass(*PassRegistry::getPassRegistry()); |
| } |
| |
| bool runOnFunction(Function &F) override; |
| |
| void getAnalysisUsage(AnalysisUsage &AU) const override { |
| AU.addRequired<LoopInfo>(); |
| AU.addPreserved<LoopInfo>(); |
| AU.addRequired<DominatorTreeWrapperPass>(); |
| AU.addPreserved<DominatorTreeWrapperPass>(); |
| AU.addRequired<ScalarEvolution>(); |
| } |
| |
| private: |
| bool mightUseCTR(const Triple &TT, BasicBlock *BB); |
| bool convertToCTRLoop(Loop *L); |
| |
| private: |
| PPCTargetMachine *TM; |
| LoopInfo *LI; |
| ScalarEvolution *SE; |
| const DataLayout *DL; |
| DominatorTree *DT; |
| const TargetLibraryInfo *LibInfo; |
| }; |
| |
| char PPCCTRLoops::ID = 0; |
| #ifndef NDEBUG |
| int PPCCTRLoops::Counter = 0; |
| #endif |
| |
| #ifndef NDEBUG |
| struct PPCCTRLoopsVerify : public MachineFunctionPass { |
| public: |
| static char ID; |
| |
| PPCCTRLoopsVerify() : MachineFunctionPass(ID) { |
| initializePPCCTRLoopsVerifyPass(*PassRegistry::getPassRegistry()); |
| } |
| |
| void getAnalysisUsage(AnalysisUsage &AU) const override { |
| AU.addRequired<MachineDominatorTree>(); |
| MachineFunctionPass::getAnalysisUsage(AU); |
| } |
| |
| bool runOnMachineFunction(MachineFunction &MF) override; |
| |
| private: |
| MachineDominatorTree *MDT; |
| }; |
| |
| char PPCCTRLoopsVerify::ID = 0; |
| #endif // NDEBUG |
| } // end anonymous namespace |
| |
| INITIALIZE_PASS_BEGIN(PPCCTRLoops, "ppc-ctr-loops", "PowerPC CTR Loops", |
| false, false) |
| INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) |
| INITIALIZE_PASS_DEPENDENCY(LoopInfo) |
| INITIALIZE_PASS_DEPENDENCY(ScalarEvolution) |
| INITIALIZE_PASS_END(PPCCTRLoops, "ppc-ctr-loops", "PowerPC CTR Loops", |
| false, false) |
| |
| FunctionPass *llvm::createPPCCTRLoops(PPCTargetMachine &TM) { |
| return new PPCCTRLoops(TM); |
| } |
| |
| #ifndef NDEBUG |
| INITIALIZE_PASS_BEGIN(PPCCTRLoopsVerify, "ppc-ctr-loops-verify", |
| "PowerPC CTR Loops Verify", false, false) |
| INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) |
| INITIALIZE_PASS_END(PPCCTRLoopsVerify, "ppc-ctr-loops-verify", |
| "PowerPC CTR Loops Verify", false, false) |
| |
| FunctionPass *llvm::createPPCCTRLoopsVerify() { |
| return new PPCCTRLoopsVerify(); |
| } |
| #endif // NDEBUG |
| |
| bool PPCCTRLoops::runOnFunction(Function &F) { |
| LI = &getAnalysis<LoopInfo>(); |
| SE = &getAnalysis<ScalarEvolution>(); |
| DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); |
| DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>(); |
| DL = DLP ? &DLP->getDataLayout() : nullptr; |
| LibInfo = getAnalysisIfAvailable<TargetLibraryInfo>(); |
| |
| bool MadeChange = false; |
| |
| for (LoopInfo::iterator I = LI->begin(), E = LI->end(); |
| I != E; ++I) { |
| Loop *L = *I; |
| if (!L->getParentLoop()) |
| MadeChange |= convertToCTRLoop(L); |
| } |
| |
| return MadeChange; |
| } |
| |
| static bool isLargeIntegerTy(bool Is32Bit, Type *Ty) { |
| if (IntegerType *ITy = dyn_cast<IntegerType>(Ty)) |
| return ITy->getBitWidth() > (Is32Bit ? 32U : 64U); |
| |
| return false; |
| } |
| |
| bool PPCCTRLoops::mightUseCTR(const Triple &TT, BasicBlock *BB) { |
| for (BasicBlock::iterator J = BB->begin(), JE = BB->end(); |
| J != JE; ++J) { |
| if (CallInst *CI = dyn_cast<CallInst>(J)) { |
| if (InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue())) { |
| // Inline ASM is okay, unless it clobbers the ctr register. |
| InlineAsm::ConstraintInfoVector CIV = IA->ParseConstraints(); |
| for (unsigned i = 0, ie = CIV.size(); i < ie; ++i) { |
| InlineAsm::ConstraintInfo &C = CIV[i]; |
| if (C.Type != InlineAsm::isInput) |
| for (unsigned j = 0, je = C.Codes.size(); j < je; ++j) |
| if (StringRef(C.Codes[j]).equals_lower("{ctr}")) |
| return true; |
| } |
| |
| continue; |
| } |
| |
| if (!TM) |
| return true; |
| const TargetLowering *TLI = TM->getTargetLowering(); |
| |
| if (Function *F = CI->getCalledFunction()) { |
| // Most intrinsics don't become function calls, but some might. |
| // sin, cos, exp and log are always calls. |
| unsigned Opcode; |
| if (F->getIntrinsicID() != Intrinsic::not_intrinsic) { |
| switch (F->getIntrinsicID()) { |
| default: continue; |
| |
| // VisualStudio defines setjmp as _setjmp |
| #if defined(_MSC_VER) && defined(setjmp) && \ |
| !defined(setjmp_undefined_for_msvc) |
| # pragma push_macro("setjmp") |
| # undef setjmp |
| # define setjmp_undefined_for_msvc |
| #endif |
| |
| case Intrinsic::setjmp: |
| |
| #if defined(_MSC_VER) && defined(setjmp_undefined_for_msvc) |
| // let's return it to _setjmp state |
| # pragma pop_macro("setjmp") |
| # undef setjmp_undefined_for_msvc |
| #endif |
| |
| case Intrinsic::longjmp: |
| |
| // Exclude eh_sjlj_setjmp; we don't need to exclude eh_sjlj_longjmp |
| // because, although it does clobber the counter register, the |
| // control can't then return to inside the loop unless there is also |
| // an eh_sjlj_setjmp. |
| case Intrinsic::eh_sjlj_setjmp: |
| |
| case Intrinsic::memcpy: |
| case Intrinsic::memmove: |
| case Intrinsic::memset: |
| case Intrinsic::powi: |
| case Intrinsic::log: |
| case Intrinsic::log2: |
| case Intrinsic::log10: |
| case Intrinsic::exp: |
| case Intrinsic::exp2: |
| case Intrinsic::pow: |
| case Intrinsic::sin: |
| case Intrinsic::cos: |
| return true; |
| case Intrinsic::copysign: |
| if (CI->getArgOperand(0)->getType()->getScalarType()-> |
| isPPC_FP128Ty()) |
| return true; |
| else |
| continue; // ISD::FCOPYSIGN is never a library call. |
| case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; |
| case Intrinsic::floor: Opcode = ISD::FFLOOR; break; |
| case Intrinsic::ceil: Opcode = ISD::FCEIL; break; |
| case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; |
| case Intrinsic::rint: Opcode = ISD::FRINT; break; |
| case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; |
| case Intrinsic::round: Opcode = ISD::FROUND; break; |
| } |
| } |
| |
| // PowerPC does not use [US]DIVREM or other library calls for |
| // operations on regular types which are not otherwise library calls |
| // (i.e. soft float or atomics). If adapting for targets that do, |
| // additional care is required here. |
| |
| LibFunc::Func Func; |
| if (!F->hasLocalLinkage() && F->hasName() && LibInfo && |
| LibInfo->getLibFunc(F->getName(), Func) && |
| LibInfo->hasOptimizedCodeGen(Func)) { |
| // Non-read-only functions are never treated as intrinsics. |
| if (!CI->onlyReadsMemory()) |
| return true; |
| |
| // Conversion happens only for FP calls. |
| if (!CI->getArgOperand(0)->getType()->isFloatingPointTy()) |
| return true; |
| |
| switch (Func) { |
| default: return true; |
| case LibFunc::copysign: |
| case LibFunc::copysignf: |
| continue; // ISD::FCOPYSIGN is never a library call. |
| case LibFunc::copysignl: |
| return true; |
| case LibFunc::fabs: |
| case LibFunc::fabsf: |
| case LibFunc::fabsl: |
| continue; // ISD::FABS is never a library call. |
| case LibFunc::sqrt: |
| case LibFunc::sqrtf: |
| case LibFunc::sqrtl: |
| Opcode = ISD::FSQRT; break; |
| case LibFunc::floor: |
| case LibFunc::floorf: |
| case LibFunc::floorl: |
| Opcode = ISD::FFLOOR; break; |
| case LibFunc::nearbyint: |
| case LibFunc::nearbyintf: |
| case LibFunc::nearbyintl: |
| Opcode = ISD::FNEARBYINT; break; |
| case LibFunc::ceil: |
| case LibFunc::ceilf: |
| case LibFunc::ceill: |
| Opcode = ISD::FCEIL; break; |
| case LibFunc::rint: |
| case LibFunc::rintf: |
| case LibFunc::rintl: |
| Opcode = ISD::FRINT; break; |
| case LibFunc::round: |
| case LibFunc::roundf: |
| case LibFunc::roundl: |
| Opcode = ISD::FROUND; break; |
| case LibFunc::trunc: |
| case LibFunc::truncf: |
| case LibFunc::truncl: |
| Opcode = ISD::FTRUNC; break; |
| } |
| |
| MVT VTy = |
| TLI->getSimpleValueType(CI->getArgOperand(0)->getType(), true); |
| if (VTy == MVT::Other) |
| return true; |
| |
| if (TLI->isOperationLegalOrCustom(Opcode, VTy)) |
| continue; |
| else if (VTy.isVector() && |
| TLI->isOperationLegalOrCustom(Opcode, VTy.getScalarType())) |
| continue; |
| |
| return true; |
| } |
| } |
| |
| return true; |
| } else if (isa<BinaryOperator>(J) && |
| J->getType()->getScalarType()->isPPC_FP128Ty()) { |
| // Most operations on ppc_f128 values become calls. |
| return true; |
| } else if (isa<UIToFPInst>(J) || isa<SIToFPInst>(J) || |
| isa<FPToUIInst>(J) || isa<FPToSIInst>(J)) { |
| CastInst *CI = cast<CastInst>(J); |
| if (CI->getSrcTy()->getScalarType()->isPPC_FP128Ty() || |
| CI->getDestTy()->getScalarType()->isPPC_FP128Ty() || |
| isLargeIntegerTy(TT.isArch32Bit(), CI->getSrcTy()->getScalarType()) || |
| isLargeIntegerTy(TT.isArch32Bit(), CI->getDestTy()->getScalarType())) |
| return true; |
| } else if (isLargeIntegerTy(TT.isArch32Bit(), |
| J->getType()->getScalarType()) && |
| (J->getOpcode() == Instruction::UDiv || |
| J->getOpcode() == Instruction::SDiv || |
| J->getOpcode() == Instruction::URem || |
| J->getOpcode() == Instruction::SRem)) { |
| return true; |
| } else if (TT.isArch32Bit() && |
| isLargeIntegerTy(false, J->getType()->getScalarType()) && |
| (J->getOpcode() == Instruction::Shl || |
| J->getOpcode() == Instruction::AShr || |
| J->getOpcode() == Instruction::LShr)) { |
| // Only on PPC32, for 128-bit integers (specifically not 64-bit |
| // integers), these might be runtime calls. |
| return true; |
| } else if (isa<IndirectBrInst>(J) || isa<InvokeInst>(J)) { |
| // On PowerPC, indirect jumps use the counter register. |
| return true; |
| } else if (SwitchInst *SI = dyn_cast<SwitchInst>(J)) { |
| if (!TM) |
| return true; |
| const TargetLowering *TLI = TM->getTargetLowering(); |
| |
| if (TLI->supportJumpTables() && |
| SI->getNumCases()+1 >= (unsigned) TLI->getMinimumJumpTableEntries()) |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| bool PPCCTRLoops::convertToCTRLoop(Loop *L) { |
| bool MadeChange = false; |
| |
| Triple TT = Triple(L->getHeader()->getParent()->getParent()-> |
| getTargetTriple()); |
| if (!TT.isArch32Bit() && !TT.isArch64Bit()) |
| return MadeChange; // Unknown arch. type. |
| |
| // Process nested loops first. |
| for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) { |
| MadeChange |= convertToCTRLoop(*I); |
| } |
| |
| // If a nested loop has been converted, then we can't convert this loop. |
| if (MadeChange) |
| return MadeChange; |
| |
| #ifndef NDEBUG |
| // Stop trying after reaching the limit (if any). |
| int Limit = CTRLoopLimit; |
| if (Limit >= 0) { |
| if (Counter >= CTRLoopLimit) |
| return false; |
| Counter++; |
| } |
| #endif |
| |
| // We don't want to spill/restore the counter register, and so we don't |
| // want to use the counter register if the loop contains calls. |
| for (Loop::block_iterator I = L->block_begin(), IE = L->block_end(); |
| I != IE; ++I) |
| if (mightUseCTR(TT, *I)) |
| return MadeChange; |
| |
| SmallVector<BasicBlock*, 4> ExitingBlocks; |
| L->getExitingBlocks(ExitingBlocks); |
| |
| BasicBlock *CountedExitBlock = nullptr; |
| const SCEV *ExitCount = nullptr; |
| BranchInst *CountedExitBranch = nullptr; |
| for (SmallVectorImpl<BasicBlock *>::iterator I = ExitingBlocks.begin(), |
| IE = ExitingBlocks.end(); I != IE; ++I) { |
| const SCEV *EC = SE->getExitCount(L, *I); |
| DEBUG(dbgs() << "Exit Count for " << *L << " from block " << |
| (*I)->getName() << ": " << *EC << "\n"); |
| if (isa<SCEVCouldNotCompute>(EC)) |
| continue; |
| if (const SCEVConstant *ConstEC = dyn_cast<SCEVConstant>(EC)) { |
| if (ConstEC->getValue()->isZero()) |
| continue; |
| } else if (!SE->isLoopInvariant(EC, L)) |
| continue; |
| |
| if (SE->getTypeSizeInBits(EC->getType()) > (TT.isArch64Bit() ? 64 : 32)) |
| continue; |
| |
| // We now have a loop-invariant count of loop iterations (which is not the |
| // constant zero) for which we know that this loop will not exit via this |
| // exisiting block. |
| |
| // We need to make sure that this block will run on every loop iteration. |
| // For this to be true, we must dominate all blocks with backedges. Such |
| // blocks are in-loop predecessors to the header block. |
| bool NotAlways = false; |
| for (pred_iterator PI = pred_begin(L->getHeader()), |
| PIE = pred_end(L->getHeader()); PI != PIE; ++PI) { |
| if (!L->contains(*PI)) |
| continue; |
| |
| if (!DT->dominates(*I, *PI)) { |
| NotAlways = true; |
| break; |
| } |
| } |
| |
| if (NotAlways) |
| continue; |
| |
| // Make sure this blocks ends with a conditional branch. |
| Instruction *TI = (*I)->getTerminator(); |
| if (!TI) |
| continue; |
| |
| if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { |
| if (!BI->isConditional()) |
| continue; |
| |
| CountedExitBranch = BI; |
| } else |
| continue; |
| |
| // Note that this block may not be the loop latch block, even if the loop |
| // has a latch block. |
| CountedExitBlock = *I; |
| ExitCount = EC; |
| break; |
| } |
| |
| if (!CountedExitBlock) |
| return MadeChange; |
| |
| BasicBlock *Preheader = L->getLoopPreheader(); |
| |
| // If we don't have a preheader, then insert one. If we already have a |
| // preheader, then we can use it (except if the preheader contains a use of |
| // the CTR register because some such uses might be reordered by the |
| // selection DAG after the mtctr instruction). |
| if (!Preheader || mightUseCTR(TT, Preheader)) |
| Preheader = InsertPreheaderForLoop(L, this); |
| if (!Preheader) |
| return MadeChange; |
| |
| DEBUG(dbgs() << "Preheader for exit count: " << Preheader->getName() << "\n"); |
| |
| // Insert the count into the preheader and replace the condition used by the |
| // selected branch. |
| MadeChange = true; |
| |
| SCEVExpander SCEVE(*SE, "loopcnt"); |
| LLVMContext &C = SE->getContext(); |
| Type *CountType = TT.isArch64Bit() ? Type::getInt64Ty(C) : |
| Type::getInt32Ty(C); |
| if (!ExitCount->getType()->isPointerTy() && |
| ExitCount->getType() != CountType) |
| ExitCount = SE->getZeroExtendExpr(ExitCount, CountType); |
| ExitCount = SE->getAddExpr(ExitCount, |
| SE->getConstant(CountType, 1)); |
| Value *ECValue = SCEVE.expandCodeFor(ExitCount, CountType, |
| Preheader->getTerminator()); |
| |
| IRBuilder<> CountBuilder(Preheader->getTerminator()); |
| Module *M = Preheader->getParent()->getParent(); |
| Value *MTCTRFunc = Intrinsic::getDeclaration(M, Intrinsic::ppc_mtctr, |
| CountType); |
| CountBuilder.CreateCall(MTCTRFunc, ECValue); |
| |
| IRBuilder<> CondBuilder(CountedExitBranch); |
| Value *DecFunc = |
| Intrinsic::getDeclaration(M, Intrinsic::ppc_is_decremented_ctr_nonzero); |
| Value *NewCond = CondBuilder.CreateCall(DecFunc); |
| Value *OldCond = CountedExitBranch->getCondition(); |
| CountedExitBranch->setCondition(NewCond); |
| |
| // The false branch must exit the loop. |
| if (!L->contains(CountedExitBranch->getSuccessor(0))) |
| CountedExitBranch->swapSuccessors(); |
| |
| // The old condition may be dead now, and may have even created a dead PHI |
| // (the original induction variable). |
| RecursivelyDeleteTriviallyDeadInstructions(OldCond); |
| DeleteDeadPHIs(CountedExitBlock); |
| |
| ++NumCTRLoops; |
| return MadeChange; |
| } |
| |
| #ifndef NDEBUG |
| static bool clobbersCTR(const MachineInstr *MI) { |
| for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { |
| const MachineOperand &MO = MI->getOperand(i); |
| if (MO.isReg()) { |
| if (MO.isDef() && (MO.getReg() == PPC::CTR || MO.getReg() == PPC::CTR8)) |
| return true; |
| } else if (MO.isRegMask()) { |
| if (MO.clobbersPhysReg(PPC::CTR) || MO.clobbersPhysReg(PPC::CTR8)) |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| static bool verifyCTRBranch(MachineBasicBlock *MBB, |
| MachineBasicBlock::iterator I) { |
| MachineBasicBlock::iterator BI = I; |
| SmallSet<MachineBasicBlock *, 16> Visited; |
| SmallVector<MachineBasicBlock *, 8> Preds; |
| bool CheckPreds; |
| |
| if (I == MBB->begin()) { |
| Visited.insert(MBB); |
| goto queue_preds; |
| } else |
| --I; |
| |
| check_block: |
| Visited.insert(MBB); |
| if (I == MBB->end()) |
| goto queue_preds; |
| |
| CheckPreds = true; |
| for (MachineBasicBlock::iterator IE = MBB->begin();; --I) { |
| unsigned Opc = I->getOpcode(); |
| if (Opc == PPC::MTCTRloop || Opc == PPC::MTCTR8loop) { |
| CheckPreds = false; |
| break; |
| } |
| |
| if (I != BI && clobbersCTR(I)) { |
| DEBUG(dbgs() << "BB#" << MBB->getNumber() << " (" << |
| MBB->getFullName() << ") instruction " << *I << |
| " clobbers CTR, invalidating " << "BB#" << |
| BI->getParent()->getNumber() << " (" << |
| BI->getParent()->getFullName() << ") instruction " << |
| *BI << "\n"); |
| return false; |
| } |
| |
| if (I == IE) |
| break; |
| } |
| |
| if (!CheckPreds && Preds.empty()) |
| return true; |
| |
| if (CheckPreds) { |
| queue_preds: |
| if (MachineFunction::iterator(MBB) == MBB->getParent()->begin()) { |
| DEBUG(dbgs() << "Unable to find a MTCTR instruction for BB#" << |
| BI->getParent()->getNumber() << " (" << |
| BI->getParent()->getFullName() << ") instruction " << |
| *BI << "\n"); |
| return false; |
| } |
| |
| for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(), |
| PIE = MBB->pred_end(); PI != PIE; ++PI) |
| Preds.push_back(*PI); |
| } |
| |
| do { |
| MBB = Preds.pop_back_val(); |
| if (!Visited.count(MBB)) { |
| I = MBB->getLastNonDebugInstr(); |
| goto check_block; |
| } |
| } while (!Preds.empty()); |
| |
| return true; |
| } |
| |
| bool PPCCTRLoopsVerify::runOnMachineFunction(MachineFunction &MF) { |
| MDT = &getAnalysis<MachineDominatorTree>(); |
| |
| // Verify that all bdnz/bdz instructions are dominated by a loop mtctr before |
| // any other instructions that might clobber the ctr register. |
| for (MachineFunction::iterator I = MF.begin(), IE = MF.end(); |
| I != IE; ++I) { |
| MachineBasicBlock *MBB = I; |
| if (!MDT->isReachableFromEntry(MBB)) |
| continue; |
| |
| for (MachineBasicBlock::iterator MII = MBB->getFirstTerminator(), |
| MIIE = MBB->end(); MII != MIIE; ++MII) { |
| unsigned Opc = MII->getOpcode(); |
| if (Opc == PPC::BDNZ8 || Opc == PPC::BDNZ || |
| Opc == PPC::BDZ8 || Opc == PPC::BDZ) |
| if (!verifyCTRBranch(MBB, MII)) |
| llvm_unreachable("Invalid PPC CTR loop!"); |
| } |
| } |
| |
| return false; |
| } |
| #endif // NDEBUG |
| |