| //===-- SystemZISelDAGToDAG.cpp - A dag to dag inst selector for SystemZ --===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines an instruction selector for the SystemZ target. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "SystemZTargetMachine.h" |
| #include "llvm/Analysis/AliasAnalysis.h" |
| #include "llvm/CodeGen/SelectionDAGISel.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/raw_ostream.h" |
| |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "systemz-isel" |
| |
| namespace { |
| // Used to build addressing modes. |
| struct SystemZAddressingMode { |
| // The shape of the address. |
| enum AddrForm { |
| // base+displacement |
| FormBD, |
| |
| // base+displacement+index for load and store operands |
| FormBDXNormal, |
| |
| // base+displacement+index for load address operands |
| FormBDXLA, |
| |
| // base+displacement+index+ADJDYNALLOC |
| FormBDXDynAlloc |
| }; |
| AddrForm Form; |
| |
| // The type of displacement. The enum names here correspond directly |
| // to the definitions in SystemZOperand.td. We could split them into |
| // flags -- single/pair, 128-bit, etc. -- but it hardly seems worth it. |
| enum DispRange { |
| Disp12Only, |
| Disp12Pair, |
| Disp20Only, |
| Disp20Only128, |
| Disp20Pair |
| }; |
| DispRange DR; |
| |
| // The parts of the address. The address is equivalent to: |
| // |
| // Base + Disp + Index + (IncludesDynAlloc ? ADJDYNALLOC : 0) |
| SDValue Base; |
| int64_t Disp; |
| SDValue Index; |
| bool IncludesDynAlloc; |
| |
| SystemZAddressingMode(AddrForm form, DispRange dr) |
| : Form(form), DR(dr), Base(), Disp(0), Index(), |
| IncludesDynAlloc(false) {} |
| |
| // True if the address can have an index register. |
| bool hasIndexField() { return Form != FormBD; } |
| |
| // True if the address can (and must) include ADJDYNALLOC. |
| bool isDynAlloc() { return Form == FormBDXDynAlloc; } |
| |
| void dump() { |
| errs() << "SystemZAddressingMode " << this << '\n'; |
| |
| errs() << " Base "; |
| if (Base.getNode()) |
| Base.getNode()->dump(); |
| else |
| errs() << "null\n"; |
| |
| if (hasIndexField()) { |
| errs() << " Index "; |
| if (Index.getNode()) |
| Index.getNode()->dump(); |
| else |
| errs() << "null\n"; |
| } |
| |
| errs() << " Disp " << Disp; |
| if (IncludesDynAlloc) |
| errs() << " + ADJDYNALLOC"; |
| errs() << '\n'; |
| } |
| }; |
| |
| // Return a mask with Count low bits set. |
| static uint64_t allOnes(unsigned int Count) { |
| return Count == 0 ? 0 : (uint64_t(1) << (Count - 1) << 1) - 1; |
| } |
| |
| // Represents operands 2 to 5 of the ROTATE AND ... SELECTED BITS operation |
| // given by Opcode. The operands are: Input (R2), Start (I3), End (I4) and |
| // Rotate (I5). The combined operand value is effectively: |
| // |
| // (or (rotl Input, Rotate), ~Mask) |
| // |
| // for RNSBG and: |
| // |
| // (and (rotl Input, Rotate), Mask) |
| // |
| // otherwise. The output value has BitSize bits, although Input may be |
| // narrower (in which case the upper bits are don't care). |
| struct RxSBGOperands { |
| RxSBGOperands(unsigned Op, SDValue N) |
| : Opcode(Op), BitSize(N.getValueType().getSizeInBits()), |
| Mask(allOnes(BitSize)), Input(N), Start(64 - BitSize), End(63), |
| Rotate(0) {} |
| |
| unsigned Opcode; |
| unsigned BitSize; |
| uint64_t Mask; |
| SDValue Input; |
| unsigned Start; |
| unsigned End; |
| unsigned Rotate; |
| }; |
| |
| class SystemZDAGToDAGISel : public SelectionDAGISel { |
| const SystemZTargetLowering &Lowering; |
| const SystemZSubtarget &Subtarget; |
| |
| // Used by SystemZOperands.td to create integer constants. |
| inline SDValue getImm(const SDNode *Node, uint64_t Imm) const { |
| return CurDAG->getTargetConstant(Imm, Node->getValueType(0)); |
| } |
| |
| const SystemZTargetMachine &getTargetMachine() const { |
| return static_cast<const SystemZTargetMachine &>(TM); |
| } |
| |
| const SystemZInstrInfo *getInstrInfo() const { |
| return getTargetMachine().getInstrInfo(); |
| } |
| |
| // Try to fold more of the base or index of AM into AM, where IsBase |
| // selects between the base and index. |
| bool expandAddress(SystemZAddressingMode &AM, bool IsBase) const; |
| |
| // Try to describe N in AM, returning true on success. |
| bool selectAddress(SDValue N, SystemZAddressingMode &AM) const; |
| |
| // Extract individual target operands from matched address AM. |
| void getAddressOperands(const SystemZAddressingMode &AM, EVT VT, |
| SDValue &Base, SDValue &Disp) const; |
| void getAddressOperands(const SystemZAddressingMode &AM, EVT VT, |
| SDValue &Base, SDValue &Disp, SDValue &Index) const; |
| |
| // Try to match Addr as a FormBD address with displacement type DR. |
| // Return true on success, storing the base and displacement in |
| // Base and Disp respectively. |
| bool selectBDAddr(SystemZAddressingMode::DispRange DR, SDValue Addr, |
| SDValue &Base, SDValue &Disp) const; |
| |
| // Try to match Addr as a FormBDX address with displacement type DR. |
| // Return true on success and if the result had no index. Store the |
| // base and displacement in Base and Disp respectively. |
| bool selectMVIAddr(SystemZAddressingMode::DispRange DR, SDValue Addr, |
| SDValue &Base, SDValue &Disp) const; |
| |
| // Try to match Addr as a FormBDX* address of form Form with |
| // displacement type DR. Return true on success, storing the base, |
| // displacement and index in Base, Disp and Index respectively. |
| bool selectBDXAddr(SystemZAddressingMode::AddrForm Form, |
| SystemZAddressingMode::DispRange DR, SDValue Addr, |
| SDValue &Base, SDValue &Disp, SDValue &Index) const; |
| |
| // PC-relative address matching routines used by SystemZOperands.td. |
| bool selectPCRelAddress(SDValue Addr, SDValue &Target) const { |
| if (SystemZISD::isPCREL(Addr.getOpcode())) { |
| Target = Addr.getOperand(0); |
| return true; |
| } |
| return false; |
| } |
| |
| // BD matching routines used by SystemZOperands.td. |
| bool selectBDAddr12Only(SDValue Addr, SDValue &Base, SDValue &Disp) const { |
| return selectBDAddr(SystemZAddressingMode::Disp12Only, Addr, Base, Disp); |
| } |
| bool selectBDAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp) const { |
| return selectBDAddr(SystemZAddressingMode::Disp12Pair, Addr, Base, Disp); |
| } |
| bool selectBDAddr20Only(SDValue Addr, SDValue &Base, SDValue &Disp) const { |
| return selectBDAddr(SystemZAddressingMode::Disp20Only, Addr, Base, Disp); |
| } |
| bool selectBDAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp) const { |
| return selectBDAddr(SystemZAddressingMode::Disp20Pair, Addr, Base, Disp); |
| } |
| |
| // MVI matching routines used by SystemZOperands.td. |
| bool selectMVIAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp) const { |
| return selectMVIAddr(SystemZAddressingMode::Disp12Pair, Addr, Base, Disp); |
| } |
| bool selectMVIAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp) const { |
| return selectMVIAddr(SystemZAddressingMode::Disp20Pair, Addr, Base, Disp); |
| } |
| |
| // BDX matching routines used by SystemZOperands.td. |
| bool selectBDXAddr12Only(SDValue Addr, SDValue &Base, SDValue &Disp, |
| SDValue &Index) const { |
| return selectBDXAddr(SystemZAddressingMode::FormBDXNormal, |
| SystemZAddressingMode::Disp12Only, |
| Addr, Base, Disp, Index); |
| } |
| bool selectBDXAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp, |
| SDValue &Index) const { |
| return selectBDXAddr(SystemZAddressingMode::FormBDXNormal, |
| SystemZAddressingMode::Disp12Pair, |
| Addr, Base, Disp, Index); |
| } |
| bool selectDynAlloc12Only(SDValue Addr, SDValue &Base, SDValue &Disp, |
| SDValue &Index) const { |
| return selectBDXAddr(SystemZAddressingMode::FormBDXDynAlloc, |
| SystemZAddressingMode::Disp12Only, |
| Addr, Base, Disp, Index); |
| } |
| bool selectBDXAddr20Only(SDValue Addr, SDValue &Base, SDValue &Disp, |
| SDValue &Index) const { |
| return selectBDXAddr(SystemZAddressingMode::FormBDXNormal, |
| SystemZAddressingMode::Disp20Only, |
| Addr, Base, Disp, Index); |
| } |
| bool selectBDXAddr20Only128(SDValue Addr, SDValue &Base, SDValue &Disp, |
| SDValue &Index) const { |
| return selectBDXAddr(SystemZAddressingMode::FormBDXNormal, |
| SystemZAddressingMode::Disp20Only128, |
| Addr, Base, Disp, Index); |
| } |
| bool selectBDXAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp, |
| SDValue &Index) const { |
| return selectBDXAddr(SystemZAddressingMode::FormBDXNormal, |
| SystemZAddressingMode::Disp20Pair, |
| Addr, Base, Disp, Index); |
| } |
| bool selectLAAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp, |
| SDValue &Index) const { |
| return selectBDXAddr(SystemZAddressingMode::FormBDXLA, |
| SystemZAddressingMode::Disp12Pair, |
| Addr, Base, Disp, Index); |
| } |
| bool selectLAAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp, |
| SDValue &Index) const { |
| return selectBDXAddr(SystemZAddressingMode::FormBDXLA, |
| SystemZAddressingMode::Disp20Pair, |
| Addr, Base, Disp, Index); |
| } |
| |
| // Check whether (or Op (and X InsertMask)) is effectively an insertion |
| // of X into bits InsertMask of some Y != Op. Return true if so and |
| // set Op to that Y. |
| bool detectOrAndInsertion(SDValue &Op, uint64_t InsertMask) const; |
| |
| // Try to update RxSBG so that only the bits of RxSBG.Input in Mask are used. |
| // Return true on success. |
| bool refineRxSBGMask(RxSBGOperands &RxSBG, uint64_t Mask) const; |
| |
| // Try to fold some of RxSBG.Input into other fields of RxSBG. |
| // Return true on success. |
| bool expandRxSBG(RxSBGOperands &RxSBG) const; |
| |
| // Return an undefined value of type VT. |
| SDValue getUNDEF(SDLoc DL, EVT VT) const; |
| |
| // Convert N to VT, if it isn't already. |
| SDValue convertTo(SDLoc DL, EVT VT, SDValue N) const; |
| |
| // Try to implement AND or shift node N using RISBG with the zero flag set. |
| // Return the selected node on success, otherwise return null. |
| SDNode *tryRISBGZero(SDNode *N); |
| |
| // Try to use RISBG or Opcode to implement OR or XOR node N. |
| // Return the selected node on success, otherwise return null. |
| SDNode *tryRxSBG(SDNode *N, unsigned Opcode); |
| |
| // If Op0 is null, then Node is a constant that can be loaded using: |
| // |
| // (Opcode UpperVal LowerVal) |
| // |
| // If Op0 is nonnull, then Node can be implemented using: |
| // |
| // (Opcode (Opcode Op0 UpperVal) LowerVal) |
| SDNode *splitLargeImmediate(unsigned Opcode, SDNode *Node, SDValue Op0, |
| uint64_t UpperVal, uint64_t LowerVal); |
| |
| // Return true if Load and Store are loads and stores of the same size |
| // and are guaranteed not to overlap. Such operations can be implemented |
| // using block (SS-format) instructions. |
| // |
| // Partial overlap would lead to incorrect code, since the block operations |
| // are logically bytewise, even though they have a fast path for the |
| // non-overlapping case. We also need to avoid full overlap (i.e. two |
| // addresses that might be equal at run time) because although that case |
| // would be handled correctly, it might be implemented by millicode. |
| bool canUseBlockOperation(StoreSDNode *Store, LoadSDNode *Load) const; |
| |
| // N is a (store (load Y), X) pattern. Return true if it can use an MVC |
| // from Y to X. |
| bool storeLoadCanUseMVC(SDNode *N) const; |
| |
| // N is a (store (op (load A[0]), (load A[1])), X) pattern. Return true |
| // if A[1 - I] == X and if N can use a block operation like NC from A[I] |
| // to X. |
| bool storeLoadCanUseBlockBinary(SDNode *N, unsigned I) const; |
| |
| public: |
| SystemZDAGToDAGISel(SystemZTargetMachine &TM, CodeGenOpt::Level OptLevel) |
| : SelectionDAGISel(TM, OptLevel), |
| Lowering(*TM.getTargetLowering()), |
| Subtarget(*TM.getSubtargetImpl()) { } |
| |
| // Override MachineFunctionPass. |
| const char *getPassName() const override { |
| return "SystemZ DAG->DAG Pattern Instruction Selection"; |
| } |
| |
| // Override SelectionDAGISel. |
| SDNode *Select(SDNode *Node) override; |
| bool SelectInlineAsmMemoryOperand(const SDValue &Op, char ConstraintCode, |
| std::vector<SDValue> &OutOps) override; |
| |
| // Include the pieces autogenerated from the target description. |
| #include "SystemZGenDAGISel.inc" |
| }; |
| } // end anonymous namespace |
| |
| FunctionPass *llvm::createSystemZISelDag(SystemZTargetMachine &TM, |
| CodeGenOpt::Level OptLevel) { |
| return new SystemZDAGToDAGISel(TM, OptLevel); |
| } |
| |
| // Return true if Val should be selected as a displacement for an address |
| // with range DR. Here we're interested in the range of both the instruction |
| // described by DR and of any pairing instruction. |
| static bool selectDisp(SystemZAddressingMode::DispRange DR, int64_t Val) { |
| switch (DR) { |
| case SystemZAddressingMode::Disp12Only: |
| return isUInt<12>(Val); |
| |
| case SystemZAddressingMode::Disp12Pair: |
| case SystemZAddressingMode::Disp20Only: |
| case SystemZAddressingMode::Disp20Pair: |
| return isInt<20>(Val); |
| |
| case SystemZAddressingMode::Disp20Only128: |
| return isInt<20>(Val) && isInt<20>(Val + 8); |
| } |
| llvm_unreachable("Unhandled displacement range"); |
| } |
| |
| // Change the base or index in AM to Value, where IsBase selects |
| // between the base and index. |
| static void changeComponent(SystemZAddressingMode &AM, bool IsBase, |
| SDValue Value) { |
| if (IsBase) |
| AM.Base = Value; |
| else |
| AM.Index = Value; |
| } |
| |
| // The base or index of AM is equivalent to Value + ADJDYNALLOC, |
| // where IsBase selects between the base and index. Try to fold the |
| // ADJDYNALLOC into AM. |
| static bool expandAdjDynAlloc(SystemZAddressingMode &AM, bool IsBase, |
| SDValue Value) { |
| if (AM.isDynAlloc() && !AM.IncludesDynAlloc) { |
| changeComponent(AM, IsBase, Value); |
| AM.IncludesDynAlloc = true; |
| return true; |
| } |
| return false; |
| } |
| |
| // The base of AM is equivalent to Base + Index. Try to use Index as |
| // the index register. |
| static bool expandIndex(SystemZAddressingMode &AM, SDValue Base, |
| SDValue Index) { |
| if (AM.hasIndexField() && !AM.Index.getNode()) { |
| AM.Base = Base; |
| AM.Index = Index; |
| return true; |
| } |
| return false; |
| } |
| |
| // The base or index of AM is equivalent to Op0 + Op1, where IsBase selects |
| // between the base and index. Try to fold Op1 into AM's displacement. |
| static bool expandDisp(SystemZAddressingMode &AM, bool IsBase, |
| SDValue Op0, uint64_t Op1) { |
| // First try adjusting the displacement. |
| int64_t TestDisp = AM.Disp + Op1; |
| if (selectDisp(AM.DR, TestDisp)) { |
| changeComponent(AM, IsBase, Op0); |
| AM.Disp = TestDisp; |
| return true; |
| } |
| |
| // We could consider forcing the displacement into a register and |
| // using it as an index, but it would need to be carefully tuned. |
| return false; |
| } |
| |
| bool SystemZDAGToDAGISel::expandAddress(SystemZAddressingMode &AM, |
| bool IsBase) const { |
| SDValue N = IsBase ? AM.Base : AM.Index; |
| unsigned Opcode = N.getOpcode(); |
| if (Opcode == ISD::TRUNCATE) { |
| N = N.getOperand(0); |
| Opcode = N.getOpcode(); |
| } |
| if (Opcode == ISD::ADD || CurDAG->isBaseWithConstantOffset(N)) { |
| SDValue Op0 = N.getOperand(0); |
| SDValue Op1 = N.getOperand(1); |
| |
| unsigned Op0Code = Op0->getOpcode(); |
| unsigned Op1Code = Op1->getOpcode(); |
| |
| if (Op0Code == SystemZISD::ADJDYNALLOC) |
| return expandAdjDynAlloc(AM, IsBase, Op1); |
| if (Op1Code == SystemZISD::ADJDYNALLOC) |
| return expandAdjDynAlloc(AM, IsBase, Op0); |
| |
| if (Op0Code == ISD::Constant) |
| return expandDisp(AM, IsBase, Op1, |
| cast<ConstantSDNode>(Op0)->getSExtValue()); |
| if (Op1Code == ISD::Constant) |
| return expandDisp(AM, IsBase, Op0, |
| cast<ConstantSDNode>(Op1)->getSExtValue()); |
| |
| if (IsBase && expandIndex(AM, Op0, Op1)) |
| return true; |
| } |
| if (Opcode == SystemZISD::PCREL_OFFSET) { |
| SDValue Full = N.getOperand(0); |
| SDValue Base = N.getOperand(1); |
| SDValue Anchor = Base.getOperand(0); |
| uint64_t Offset = (cast<GlobalAddressSDNode>(Full)->getOffset() - |
| cast<GlobalAddressSDNode>(Anchor)->getOffset()); |
| return expandDisp(AM, IsBase, Base, Offset); |
| } |
| return false; |
| } |
| |
| // Return true if an instruction with displacement range DR should be |
| // used for displacement value Val. selectDisp(DR, Val) must already hold. |
| static bool isValidDisp(SystemZAddressingMode::DispRange DR, int64_t Val) { |
| assert(selectDisp(DR, Val) && "Invalid displacement"); |
| switch (DR) { |
| case SystemZAddressingMode::Disp12Only: |
| case SystemZAddressingMode::Disp20Only: |
| case SystemZAddressingMode::Disp20Only128: |
| return true; |
| |
| case SystemZAddressingMode::Disp12Pair: |
| // Use the other instruction if the displacement is too large. |
| return isUInt<12>(Val); |
| |
| case SystemZAddressingMode::Disp20Pair: |
| // Use the other instruction if the displacement is small enough. |
| return !isUInt<12>(Val); |
| } |
| llvm_unreachable("Unhandled displacement range"); |
| } |
| |
| // Return true if Base + Disp + Index should be performed by LA(Y). |
| static bool shouldUseLA(SDNode *Base, int64_t Disp, SDNode *Index) { |
| // Don't use LA(Y) for constants. |
| if (!Base) |
| return false; |
| |
| // Always use LA(Y) for frame addresses, since we know that the destination |
| // register is almost always (perhaps always) going to be different from |
| // the frame register. |
| if (Base->getOpcode() == ISD::FrameIndex) |
| return true; |
| |
| if (Disp) { |
| // Always use LA(Y) if there is a base, displacement and index. |
| if (Index) |
| return true; |
| |
| // Always use LA if the displacement is small enough. It should always |
| // be no worse than AGHI (and better if it avoids a move). |
| if (isUInt<12>(Disp)) |
| return true; |
| |
| // For similar reasons, always use LAY if the constant is too big for AGHI. |
| // LAY should be no worse than AGFI. |
| if (!isInt<16>(Disp)) |
| return true; |
| } else { |
| // Don't use LA for plain registers. |
| if (!Index) |
| return false; |
| |
| // Don't use LA for plain addition if the index operand is only used |
| // once. It should be a natural two-operand addition in that case. |
| if (Index->hasOneUse()) |
| return false; |
| |
| // Prefer addition if the second operation is sign-extended, in the |
| // hope of using AGF. |
| unsigned IndexOpcode = Index->getOpcode(); |
| if (IndexOpcode == ISD::SIGN_EXTEND || |
| IndexOpcode == ISD::SIGN_EXTEND_INREG) |
| return false; |
| } |
| |
| // Don't use LA for two-operand addition if either operand is only |
| // used once. The addition instructions are better in that case. |
| if (Base->hasOneUse()) |
| return false; |
| |
| return true; |
| } |
| |
| // Return true if Addr is suitable for AM, updating AM if so. |
| bool SystemZDAGToDAGISel::selectAddress(SDValue Addr, |
| SystemZAddressingMode &AM) const { |
| // Start out assuming that the address will need to be loaded separately, |
| // then try to extend it as much as we can. |
| AM.Base = Addr; |
| |
| // First try treating the address as a constant. |
| if (Addr.getOpcode() == ISD::Constant && |
| expandDisp(AM, true, SDValue(), |
| cast<ConstantSDNode>(Addr)->getSExtValue())) |
| ; |
| else |
| // Otherwise try expanding each component. |
| while (expandAddress(AM, true) || |
| (AM.Index.getNode() && expandAddress(AM, false))) |
| continue; |
| |
| // Reject cases where it isn't profitable to use LA(Y). |
| if (AM.Form == SystemZAddressingMode::FormBDXLA && |
| !shouldUseLA(AM.Base.getNode(), AM.Disp, AM.Index.getNode())) |
| return false; |
| |
| // Reject cases where the other instruction in a pair should be used. |
| if (!isValidDisp(AM.DR, AM.Disp)) |
| return false; |
| |
| // Make sure that ADJDYNALLOC is included where necessary. |
| if (AM.isDynAlloc() && !AM.IncludesDynAlloc) |
| return false; |
| |
| DEBUG(AM.dump()); |
| return true; |
| } |
| |
| // Insert a node into the DAG at least before Pos. This will reposition |
| // the node as needed, and will assign it a node ID that is <= Pos's ID. |
| // Note that this does *not* preserve the uniqueness of node IDs! |
| // The selection DAG must no longer depend on their uniqueness when this |
| // function is used. |
| static void insertDAGNode(SelectionDAG *DAG, SDNode *Pos, SDValue N) { |
| if (N.getNode()->getNodeId() == -1 || |
| N.getNode()->getNodeId() > Pos->getNodeId()) { |
| DAG->RepositionNode(Pos, N.getNode()); |
| N.getNode()->setNodeId(Pos->getNodeId()); |
| } |
| } |
| |
| void SystemZDAGToDAGISel::getAddressOperands(const SystemZAddressingMode &AM, |
| EVT VT, SDValue &Base, |
| SDValue &Disp) const { |
| Base = AM.Base; |
| if (!Base.getNode()) |
| // Register 0 means "no base". This is mostly useful for shifts. |
| Base = CurDAG->getRegister(0, VT); |
| else if (Base.getOpcode() == ISD::FrameIndex) { |
| // Lower a FrameIndex to a TargetFrameIndex. |
| int64_t FrameIndex = cast<FrameIndexSDNode>(Base)->getIndex(); |
| Base = CurDAG->getTargetFrameIndex(FrameIndex, VT); |
| } else if (Base.getValueType() != VT) { |
| // Truncate values from i64 to i32, for shifts. |
| assert(VT == MVT::i32 && Base.getValueType() == MVT::i64 && |
| "Unexpected truncation"); |
| SDLoc DL(Base); |
| SDValue Trunc = CurDAG->getNode(ISD::TRUNCATE, DL, VT, Base); |
| insertDAGNode(CurDAG, Base.getNode(), Trunc); |
| Base = Trunc; |
| } |
| |
| // Lower the displacement to a TargetConstant. |
| Disp = CurDAG->getTargetConstant(AM.Disp, VT); |
| } |
| |
| void SystemZDAGToDAGISel::getAddressOperands(const SystemZAddressingMode &AM, |
| EVT VT, SDValue &Base, |
| SDValue &Disp, |
| SDValue &Index) const { |
| getAddressOperands(AM, VT, Base, Disp); |
| |
| Index = AM.Index; |
| if (!Index.getNode()) |
| // Register 0 means "no index". |
| Index = CurDAG->getRegister(0, VT); |
| } |
| |
| bool SystemZDAGToDAGISel::selectBDAddr(SystemZAddressingMode::DispRange DR, |
| SDValue Addr, SDValue &Base, |
| SDValue &Disp) const { |
| SystemZAddressingMode AM(SystemZAddressingMode::FormBD, DR); |
| if (!selectAddress(Addr, AM)) |
| return false; |
| |
| getAddressOperands(AM, Addr.getValueType(), Base, Disp); |
| return true; |
| } |
| |
| bool SystemZDAGToDAGISel::selectMVIAddr(SystemZAddressingMode::DispRange DR, |
| SDValue Addr, SDValue &Base, |
| SDValue &Disp) const { |
| SystemZAddressingMode AM(SystemZAddressingMode::FormBDXNormal, DR); |
| if (!selectAddress(Addr, AM) || AM.Index.getNode()) |
| return false; |
| |
| getAddressOperands(AM, Addr.getValueType(), Base, Disp); |
| return true; |
| } |
| |
| bool SystemZDAGToDAGISel::selectBDXAddr(SystemZAddressingMode::AddrForm Form, |
| SystemZAddressingMode::DispRange DR, |
| SDValue Addr, SDValue &Base, |
| SDValue &Disp, SDValue &Index) const { |
| SystemZAddressingMode AM(Form, DR); |
| if (!selectAddress(Addr, AM)) |
| return false; |
| |
| getAddressOperands(AM, Addr.getValueType(), Base, Disp, Index); |
| return true; |
| } |
| |
| bool SystemZDAGToDAGISel::detectOrAndInsertion(SDValue &Op, |
| uint64_t InsertMask) const { |
| // We're only interested in cases where the insertion is into some operand |
| // of Op, rather than into Op itself. The only useful case is an AND. |
| if (Op.getOpcode() != ISD::AND) |
| return false; |
| |
| // We need a constant mask. |
| auto *MaskNode = dyn_cast<ConstantSDNode>(Op.getOperand(1).getNode()); |
| if (!MaskNode) |
| return false; |
| |
| // It's not an insertion of Op.getOperand(0) if the two masks overlap. |
| uint64_t AndMask = MaskNode->getZExtValue(); |
| if (InsertMask & AndMask) |
| return false; |
| |
| // It's only an insertion if all bits are covered or are known to be zero. |
| // The inner check covers all cases but is more expensive. |
| uint64_t Used = allOnes(Op.getValueType().getSizeInBits()); |
| if (Used != (AndMask | InsertMask)) { |
| APInt KnownZero, KnownOne; |
| CurDAG->computeKnownBits(Op.getOperand(0), KnownZero, KnownOne); |
| if (Used != (AndMask | InsertMask | KnownZero.getZExtValue())) |
| return false; |
| } |
| |
| Op = Op.getOperand(0); |
| return true; |
| } |
| |
| bool SystemZDAGToDAGISel::refineRxSBGMask(RxSBGOperands &RxSBG, |
| uint64_t Mask) const { |
| const SystemZInstrInfo *TII = getInstrInfo(); |
| if (RxSBG.Rotate != 0) |
| Mask = (Mask << RxSBG.Rotate) | (Mask >> (64 - RxSBG.Rotate)); |
| Mask &= RxSBG.Mask; |
| if (TII->isRxSBGMask(Mask, RxSBG.BitSize, RxSBG.Start, RxSBG.End)) { |
| RxSBG.Mask = Mask; |
| return true; |
| } |
| return false; |
| } |
| |
| // Return true if any bits of (RxSBG.Input & Mask) are significant. |
| static bool maskMatters(RxSBGOperands &RxSBG, uint64_t Mask) { |
| // Rotate the mask in the same way as RxSBG.Input is rotated. |
| if (RxSBG.Rotate != 0) |
| Mask = ((Mask << RxSBG.Rotate) | (Mask >> (64 - RxSBG.Rotate))); |
| return (Mask & RxSBG.Mask) != 0; |
| } |
| |
| bool SystemZDAGToDAGISel::expandRxSBG(RxSBGOperands &RxSBG) const { |
| SDValue N = RxSBG.Input; |
| unsigned Opcode = N.getOpcode(); |
| switch (Opcode) { |
| case ISD::AND: { |
| if (RxSBG.Opcode == SystemZ::RNSBG) |
| return false; |
| |
| auto *MaskNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode()); |
| if (!MaskNode) |
| return false; |
| |
| SDValue Input = N.getOperand(0); |
| uint64_t Mask = MaskNode->getZExtValue(); |
| if (!refineRxSBGMask(RxSBG, Mask)) { |
| // If some bits of Input are already known zeros, those bits will have |
| // been removed from the mask. See if adding them back in makes the |
| // mask suitable. |
| APInt KnownZero, KnownOne; |
| CurDAG->computeKnownBits(Input, KnownZero, KnownOne); |
| Mask |= KnownZero.getZExtValue(); |
| if (!refineRxSBGMask(RxSBG, Mask)) |
| return false; |
| } |
| RxSBG.Input = Input; |
| return true; |
| } |
| |
| case ISD::OR: { |
| if (RxSBG.Opcode != SystemZ::RNSBG) |
| return false; |
| |
| auto *MaskNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode()); |
| if (!MaskNode) |
| return false; |
| |
| SDValue Input = N.getOperand(0); |
| uint64_t Mask = ~MaskNode->getZExtValue(); |
| if (!refineRxSBGMask(RxSBG, Mask)) { |
| // If some bits of Input are already known ones, those bits will have |
| // been removed from the mask. See if adding them back in makes the |
| // mask suitable. |
| APInt KnownZero, KnownOne; |
| CurDAG->computeKnownBits(Input, KnownZero, KnownOne); |
| Mask &= ~KnownOne.getZExtValue(); |
| if (!refineRxSBGMask(RxSBG, Mask)) |
| return false; |
| } |
| RxSBG.Input = Input; |
| return true; |
| } |
| |
| case ISD::ROTL: { |
| // Any 64-bit rotate left can be merged into the RxSBG. |
| if (RxSBG.BitSize != 64 || N.getValueType() != MVT::i64) |
| return false; |
| auto *CountNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode()); |
| if (!CountNode) |
| return false; |
| |
| RxSBG.Rotate = (RxSBG.Rotate + CountNode->getZExtValue()) & 63; |
| RxSBG.Input = N.getOperand(0); |
| return true; |
| } |
| |
| case ISD::ANY_EXTEND: |
| // Bits above the extended operand are don't-care. |
| RxSBG.Input = N.getOperand(0); |
| return true; |
| |
| case ISD::ZERO_EXTEND: |
| if (RxSBG.Opcode != SystemZ::RNSBG) { |
| // Restrict the mask to the extended operand. |
| unsigned InnerBitSize = N.getOperand(0).getValueType().getSizeInBits(); |
| if (!refineRxSBGMask(RxSBG, allOnes(InnerBitSize))) |
| return false; |
| |
| RxSBG.Input = N.getOperand(0); |
| return true; |
| } |
| // Fall through. |
| |
| case ISD::SIGN_EXTEND: { |
| // Check that the extension bits are don't-care (i.e. are masked out |
| // by the final mask). |
| unsigned InnerBitSize = N.getOperand(0).getValueType().getSizeInBits(); |
| if (maskMatters(RxSBG, allOnes(RxSBG.BitSize) - allOnes(InnerBitSize))) |
| return false; |
| |
| RxSBG.Input = N.getOperand(0); |
| return true; |
| } |
| |
| case ISD::SHL: { |
| auto *CountNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode()); |
| if (!CountNode) |
| return false; |
| |
| uint64_t Count = CountNode->getZExtValue(); |
| unsigned BitSize = N.getValueType().getSizeInBits(); |
| if (Count < 1 || Count >= BitSize) |
| return false; |
| |
| if (RxSBG.Opcode == SystemZ::RNSBG) { |
| // Treat (shl X, count) as (rotl X, size-count) as long as the bottom |
| // count bits from RxSBG.Input are ignored. |
| if (maskMatters(RxSBG, allOnes(Count))) |
| return false; |
| } else { |
| // Treat (shl X, count) as (and (rotl X, count), ~0<<count). |
| if (!refineRxSBGMask(RxSBG, allOnes(BitSize - Count) << Count)) |
| return false; |
| } |
| |
| RxSBG.Rotate = (RxSBG.Rotate + Count) & 63; |
| RxSBG.Input = N.getOperand(0); |
| return true; |
| } |
| |
| case ISD::SRL: |
| case ISD::SRA: { |
| auto *CountNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode()); |
| if (!CountNode) |
| return false; |
| |
| uint64_t Count = CountNode->getZExtValue(); |
| unsigned BitSize = N.getValueType().getSizeInBits(); |
| if (Count < 1 || Count >= BitSize) |
| return false; |
| |
| if (RxSBG.Opcode == SystemZ::RNSBG || Opcode == ISD::SRA) { |
| // Treat (srl|sra X, count) as (rotl X, size-count) as long as the top |
| // count bits from RxSBG.Input are ignored. |
| if (maskMatters(RxSBG, allOnes(Count) << (BitSize - Count))) |
| return false; |
| } else { |
| // Treat (srl X, count), mask) as (and (rotl X, size-count), ~0>>count), |
| // which is similar to SLL above. |
| if (!refineRxSBGMask(RxSBG, allOnes(BitSize - Count))) |
| return false; |
| } |
| |
| RxSBG.Rotate = (RxSBG.Rotate - Count) & 63; |
| RxSBG.Input = N.getOperand(0); |
| return true; |
| } |
| default: |
| return false; |
| } |
| } |
| |
| SDValue SystemZDAGToDAGISel::getUNDEF(SDLoc DL, EVT VT) const { |
| SDNode *N = CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, VT); |
| return SDValue(N, 0); |
| } |
| |
| SDValue SystemZDAGToDAGISel::convertTo(SDLoc DL, EVT VT, SDValue N) const { |
| if (N.getValueType() == MVT::i32 && VT == MVT::i64) |
| return CurDAG->getTargetInsertSubreg(SystemZ::subreg_l32, |
| DL, VT, getUNDEF(DL, MVT::i64), N); |
| if (N.getValueType() == MVT::i64 && VT == MVT::i32) |
| return CurDAG->getTargetExtractSubreg(SystemZ::subreg_l32, DL, VT, N); |
| assert(N.getValueType() == VT && "Unexpected value types"); |
| return N; |
| } |
| |
| SDNode *SystemZDAGToDAGISel::tryRISBGZero(SDNode *N) { |
| EVT VT = N->getValueType(0); |
| RxSBGOperands RISBG(SystemZ::RISBG, SDValue(N, 0)); |
| unsigned Count = 0; |
| while (expandRxSBG(RISBG)) |
| if (RISBG.Input.getOpcode() != ISD::ANY_EXTEND) |
| Count += 1; |
| if (Count == 0) |
| return nullptr; |
| if (Count == 1) { |
| // Prefer to use normal shift instructions over RISBG, since they can handle |
| // all cases and are sometimes shorter. |
| if (N->getOpcode() != ISD::AND) |
| return nullptr; |
| |
| // Prefer register extensions like LLC over RISBG. Also prefer to start |
| // out with normal ANDs if one instruction would be enough. We can convert |
| // these ANDs into an RISBG later if a three-address instruction is useful. |
| if (VT == MVT::i32 || |
| RISBG.Mask == 0xff || |
| RISBG.Mask == 0xffff || |
| SystemZ::isImmLF(~RISBG.Mask) || |
| SystemZ::isImmHF(~RISBG.Mask)) { |
| // Force the new mask into the DAG, since it may include known-one bits. |
| auto *MaskN = cast<ConstantSDNode>(N->getOperand(1).getNode()); |
| if (MaskN->getZExtValue() != RISBG.Mask) { |
| SDValue NewMask = CurDAG->getConstant(RISBG.Mask, VT); |
| N = CurDAG->UpdateNodeOperands(N, N->getOperand(0), NewMask); |
| return SelectCode(N); |
| } |
| return nullptr; |
| } |
| } |
| |
| unsigned Opcode = SystemZ::RISBG; |
| EVT OpcodeVT = MVT::i64; |
| if (VT == MVT::i32 && Subtarget.hasHighWord()) { |
| Opcode = SystemZ::RISBMux; |
| OpcodeVT = MVT::i32; |
| RISBG.Start &= 31; |
| RISBG.End &= 31; |
| } |
| SDValue Ops[5] = { |
| getUNDEF(SDLoc(N), OpcodeVT), |
| convertTo(SDLoc(N), OpcodeVT, RISBG.Input), |
| CurDAG->getTargetConstant(RISBG.Start, MVT::i32), |
| CurDAG->getTargetConstant(RISBG.End | 128, MVT::i32), |
| CurDAG->getTargetConstant(RISBG.Rotate, MVT::i32) |
| }; |
| N = CurDAG->getMachineNode(Opcode, SDLoc(N), OpcodeVT, Ops); |
| return convertTo(SDLoc(N), VT, SDValue(N, 0)).getNode(); |
| } |
| |
| SDNode *SystemZDAGToDAGISel::tryRxSBG(SDNode *N, unsigned Opcode) { |
| // Try treating each operand of N as the second operand of the RxSBG |
| // and see which goes deepest. |
| RxSBGOperands RxSBG[] = { |
| RxSBGOperands(Opcode, N->getOperand(0)), |
| RxSBGOperands(Opcode, N->getOperand(1)) |
| }; |
| unsigned Count[] = { 0, 0 }; |
| for (unsigned I = 0; I < 2; ++I) |
| while (expandRxSBG(RxSBG[I])) |
| if (RxSBG[I].Input.getOpcode() != ISD::ANY_EXTEND) |
| Count[I] += 1; |
| |
| // Do nothing if neither operand is suitable. |
| if (Count[0] == 0 && Count[1] == 0) |
| return nullptr; |
| |
| // Pick the deepest second operand. |
| unsigned I = Count[0] > Count[1] ? 0 : 1; |
| SDValue Op0 = N->getOperand(I ^ 1); |
| |
| // Prefer IC for character insertions from memory. |
| if (Opcode == SystemZ::ROSBG && (RxSBG[I].Mask & 0xff) == 0) |
| if (auto *Load = dyn_cast<LoadSDNode>(Op0.getNode())) |
| if (Load->getMemoryVT() == MVT::i8) |
| return nullptr; |
| |
| // See whether we can avoid an AND in the first operand by converting |
| // ROSBG to RISBG. |
| if (Opcode == SystemZ::ROSBG && detectOrAndInsertion(Op0, RxSBG[I].Mask)) |
| Opcode = SystemZ::RISBG; |
| |
| EVT VT = N->getValueType(0); |
| SDValue Ops[5] = { |
| convertTo(SDLoc(N), MVT::i64, Op0), |
| convertTo(SDLoc(N), MVT::i64, RxSBG[I].Input), |
| CurDAG->getTargetConstant(RxSBG[I].Start, MVT::i32), |
| CurDAG->getTargetConstant(RxSBG[I].End, MVT::i32), |
| CurDAG->getTargetConstant(RxSBG[I].Rotate, MVT::i32) |
| }; |
| N = CurDAG->getMachineNode(Opcode, SDLoc(N), MVT::i64, Ops); |
| return convertTo(SDLoc(N), VT, SDValue(N, 0)).getNode(); |
| } |
| |
| SDNode *SystemZDAGToDAGISel::splitLargeImmediate(unsigned Opcode, SDNode *Node, |
| SDValue Op0, uint64_t UpperVal, |
| uint64_t LowerVal) { |
| EVT VT = Node->getValueType(0); |
| SDLoc DL(Node); |
| SDValue Upper = CurDAG->getConstant(UpperVal, VT); |
| if (Op0.getNode()) |
| Upper = CurDAG->getNode(Opcode, DL, VT, Op0, Upper); |
| Upper = SDValue(Select(Upper.getNode()), 0); |
| |
| SDValue Lower = CurDAG->getConstant(LowerVal, VT); |
| SDValue Or = CurDAG->getNode(Opcode, DL, VT, Upper, Lower); |
| return Or.getNode(); |
| } |
| |
| bool SystemZDAGToDAGISel::canUseBlockOperation(StoreSDNode *Store, |
| LoadSDNode *Load) const { |
| // Check that the two memory operands have the same size. |
| if (Load->getMemoryVT() != Store->getMemoryVT()) |
| return false; |
| |
| // Volatility stops an access from being decomposed. |
| if (Load->isVolatile() || Store->isVolatile()) |
| return false; |
| |
| // There's no chance of overlap if the load is invariant. |
| if (Load->isInvariant()) |
| return true; |
| |
| // Otherwise we need to check whether there's an alias. |
| const Value *V1 = Load->getMemOperand()->getValue(); |
| const Value *V2 = Store->getMemOperand()->getValue(); |
| if (!V1 || !V2) |
| return false; |
| |
| // Reject equality. |
| uint64_t Size = Load->getMemoryVT().getStoreSize(); |
| int64_t End1 = Load->getSrcValueOffset() + Size; |
| int64_t End2 = Store->getSrcValueOffset() + Size; |
| if (V1 == V2 && End1 == End2) |
| return false; |
| |
| return !AA->alias(AliasAnalysis::Location(V1, End1, Load->getTBAAInfo()), |
| AliasAnalysis::Location(V2, End2, Store->getTBAAInfo())); |
| } |
| |
| bool SystemZDAGToDAGISel::storeLoadCanUseMVC(SDNode *N) const { |
| auto *Store = cast<StoreSDNode>(N); |
| auto *Load = cast<LoadSDNode>(Store->getValue()); |
| |
| // Prefer not to use MVC if either address can use ... RELATIVE LONG |
| // instructions. |
| uint64_t Size = Load->getMemoryVT().getStoreSize(); |
| if (Size > 1 && Size <= 8) { |
| // Prefer LHRL, LRL and LGRL. |
| if (SystemZISD::isPCREL(Load->getBasePtr().getOpcode())) |
| return false; |
| // Prefer STHRL, STRL and STGRL. |
| if (SystemZISD::isPCREL(Store->getBasePtr().getOpcode())) |
| return false; |
| } |
| |
| return canUseBlockOperation(Store, Load); |
| } |
| |
| bool SystemZDAGToDAGISel::storeLoadCanUseBlockBinary(SDNode *N, |
| unsigned I) const { |
| auto *StoreA = cast<StoreSDNode>(N); |
| auto *LoadA = cast<LoadSDNode>(StoreA->getValue().getOperand(1 - I)); |
| auto *LoadB = cast<LoadSDNode>(StoreA->getValue().getOperand(I)); |
| return !LoadA->isVolatile() && canUseBlockOperation(StoreA, LoadB); |
| } |
| |
| SDNode *SystemZDAGToDAGISel::Select(SDNode *Node) { |
| // Dump information about the Node being selected |
| DEBUG(errs() << "Selecting: "; Node->dump(CurDAG); errs() << "\n"); |
| |
| // If we have a custom node, we already have selected! |
| if (Node->isMachineOpcode()) { |
| DEBUG(errs() << "== "; Node->dump(CurDAG); errs() << "\n"); |
| Node->setNodeId(-1); |
| return nullptr; |
| } |
| |
| unsigned Opcode = Node->getOpcode(); |
| SDNode *ResNode = nullptr; |
| switch (Opcode) { |
| case ISD::OR: |
| if (Node->getOperand(1).getOpcode() != ISD::Constant) |
| ResNode = tryRxSBG(Node, SystemZ::ROSBG); |
| goto or_xor; |
| |
| case ISD::XOR: |
| if (Node->getOperand(1).getOpcode() != ISD::Constant) |
| ResNode = tryRxSBG(Node, SystemZ::RXSBG); |
| // Fall through. |
| or_xor: |
| // If this is a 64-bit operation in which both 32-bit halves are nonzero, |
| // split the operation into two. |
| if (!ResNode && Node->getValueType(0) == MVT::i64) |
| if (auto *Op1 = dyn_cast<ConstantSDNode>(Node->getOperand(1))) { |
| uint64_t Val = Op1->getZExtValue(); |
| if (!SystemZ::isImmLF(Val) && !SystemZ::isImmHF(Val)) |
| Node = splitLargeImmediate(Opcode, Node, Node->getOperand(0), |
| Val - uint32_t(Val), uint32_t(Val)); |
| } |
| break; |
| |
| case ISD::AND: |
| if (Node->getOperand(1).getOpcode() != ISD::Constant) |
| ResNode = tryRxSBG(Node, SystemZ::RNSBG); |
| // Fall through. |
| case ISD::ROTL: |
| case ISD::SHL: |
| case ISD::SRL: |
| case ISD::ZERO_EXTEND: |
| if (!ResNode) |
| ResNode = tryRISBGZero(Node); |
| break; |
| |
| case ISD::Constant: |
| // If this is a 64-bit constant that is out of the range of LLILF, |
| // LLIHF and LGFI, split it into two 32-bit pieces. |
| if (Node->getValueType(0) == MVT::i64) { |
| uint64_t Val = cast<ConstantSDNode>(Node)->getZExtValue(); |
| if (!SystemZ::isImmLF(Val) && !SystemZ::isImmHF(Val) && !isInt<32>(Val)) |
| Node = splitLargeImmediate(ISD::OR, Node, SDValue(), |
| Val - uint32_t(Val), uint32_t(Val)); |
| } |
| break; |
| |
| case SystemZISD::SELECT_CCMASK: { |
| SDValue Op0 = Node->getOperand(0); |
| SDValue Op1 = Node->getOperand(1); |
| // Prefer to put any load first, so that it can be matched as a |
| // conditional load. |
| if (Op1.getOpcode() == ISD::LOAD && Op0.getOpcode() != ISD::LOAD) { |
| SDValue CCValid = Node->getOperand(2); |
| SDValue CCMask = Node->getOperand(3); |
| uint64_t ConstCCValid = |
| cast<ConstantSDNode>(CCValid.getNode())->getZExtValue(); |
| uint64_t ConstCCMask = |
| cast<ConstantSDNode>(CCMask.getNode())->getZExtValue(); |
| // Invert the condition. |
| CCMask = CurDAG->getConstant(ConstCCValid ^ ConstCCMask, |
| CCMask.getValueType()); |
| SDValue Op4 = Node->getOperand(4); |
| Node = CurDAG->UpdateNodeOperands(Node, Op1, Op0, CCValid, CCMask, Op4); |
| } |
| break; |
| } |
| } |
| |
| // Select the default instruction |
| if (!ResNode) |
| ResNode = SelectCode(Node); |
| |
| DEBUG(errs() << "=> "; |
| if (ResNode == nullptr || ResNode == Node) |
| Node->dump(CurDAG); |
| else |
| ResNode->dump(CurDAG); |
| errs() << "\n"; |
| ); |
| return ResNode; |
| } |
| |
| bool SystemZDAGToDAGISel:: |
| SelectInlineAsmMemoryOperand(const SDValue &Op, |
| char ConstraintCode, |
| std::vector<SDValue> &OutOps) { |
| assert(ConstraintCode == 'm' && "Unexpected constraint code"); |
| // Accept addresses with short displacements, which are compatible |
| // with Q, R, S and T. But keep the index operand for future expansion. |
| SDValue Base, Disp, Index; |
| if (!selectBDXAddr(SystemZAddressingMode::FormBD, |
| SystemZAddressingMode::Disp12Only, |
| Op, Base, Disp, Index)) |
| return true; |
| OutOps.push_back(Base); |
| OutOps.push_back(Disp); |
| OutOps.push_back(Index); |
| return false; |
| } |