| //===-- SystemZSelectionDAGInfo.cpp - SystemZ SelectionDAG Info -----------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the SystemZSelectionDAGInfo class. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "SystemZTargetMachine.h" |
| #include "llvm/CodeGen/SelectionDAG.h" |
| |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "systemz-selectiondag-info" |
| |
| SystemZSelectionDAGInfo::SystemZSelectionDAGInfo(const DataLayout &DL) |
| : TargetSelectionDAGInfo(&DL) {} |
| |
| SystemZSelectionDAGInfo::~SystemZSelectionDAGInfo() { |
| } |
| |
| // Decide whether it is best to use a loop or straight-line code for |
| // a block operation of Size bytes with source address Src and destination |
| // address Dest. Sequence is the opcode to use for straight-line code |
| // (such as MVC) and Loop is the opcode to use for loops (such as MVC_LOOP). |
| // Return the chain for the completed operation. |
| static SDValue emitMemMem(SelectionDAG &DAG, SDLoc DL, unsigned Sequence, |
| unsigned Loop, SDValue Chain, SDValue Dst, |
| SDValue Src, uint64_t Size) { |
| EVT PtrVT = Src.getValueType(); |
| // The heuristic we use is to prefer loops for anything that would |
| // require 7 or more MVCs. With these kinds of sizes there isn't |
| // much to choose between straight-line code and looping code, |
| // since the time will be dominated by the MVCs themselves. |
| // However, the loop has 4 or 5 instructions (depending on whether |
| // the base addresses can be proved equal), so there doesn't seem |
| // much point using a loop for 5 * 256 bytes or fewer. Anything in |
| // the range (5 * 256, 6 * 256) will need another instruction after |
| // the loop, so it doesn't seem worth using a loop then either. |
| // The next value up, 6 * 256, can be implemented in the same |
| // number of straight-line MVCs as 6 * 256 - 1. |
| if (Size > 6 * 256) |
| return DAG.getNode(Loop, DL, MVT::Other, Chain, Dst, Src, |
| DAG.getConstant(Size, PtrVT), |
| DAG.getConstant(Size / 256, PtrVT)); |
| return DAG.getNode(Sequence, DL, MVT::Other, Chain, Dst, Src, |
| DAG.getConstant(Size, PtrVT)); |
| } |
| |
| SDValue SystemZSelectionDAGInfo:: |
| EmitTargetCodeForMemcpy(SelectionDAG &DAG, SDLoc DL, SDValue Chain, |
| SDValue Dst, SDValue Src, SDValue Size, unsigned Align, |
| bool IsVolatile, bool AlwaysInline, |
| MachinePointerInfo DstPtrInfo, |
| MachinePointerInfo SrcPtrInfo) const { |
| if (IsVolatile) |
| return SDValue(); |
| |
| if (auto *CSize = dyn_cast<ConstantSDNode>(Size)) |
| return emitMemMem(DAG, DL, SystemZISD::MVC, SystemZISD::MVC_LOOP, |
| Chain, Dst, Src, CSize->getZExtValue()); |
| return SDValue(); |
| } |
| |
| // Handle a memset of 1, 2, 4 or 8 bytes with the operands given by |
| // Chain, Dst, ByteVal and Size. These cases are expected to use |
| // MVI, MVHHI, MVHI and MVGHI respectively. |
| static SDValue memsetStore(SelectionDAG &DAG, SDLoc DL, SDValue Chain, |
| SDValue Dst, uint64_t ByteVal, uint64_t Size, |
| unsigned Align, |
| MachinePointerInfo DstPtrInfo) { |
| uint64_t StoreVal = ByteVal; |
| for (unsigned I = 1; I < Size; ++I) |
| StoreVal |= ByteVal << (I * 8); |
| return DAG.getStore(Chain, DL, |
| DAG.getConstant(StoreVal, MVT::getIntegerVT(Size * 8)), |
| Dst, DstPtrInfo, false, false, Align); |
| } |
| |
| SDValue SystemZSelectionDAGInfo:: |
| EmitTargetCodeForMemset(SelectionDAG &DAG, SDLoc DL, SDValue Chain, |
| SDValue Dst, SDValue Byte, SDValue Size, |
| unsigned Align, bool IsVolatile, |
| MachinePointerInfo DstPtrInfo) const { |
| EVT PtrVT = Dst.getValueType(); |
| |
| if (IsVolatile) |
| return SDValue(); |
| |
| if (auto *CSize = dyn_cast<ConstantSDNode>(Size)) { |
| uint64_t Bytes = CSize->getZExtValue(); |
| if (Bytes == 0) |
| return SDValue(); |
| if (auto *CByte = dyn_cast<ConstantSDNode>(Byte)) { |
| // Handle cases that can be done using at most two of |
| // MVI, MVHI, MVHHI and MVGHI. The latter two can only be |
| // used if ByteVal is all zeros or all ones; in other casees, |
| // we can move at most 2 halfwords. |
| uint64_t ByteVal = CByte->getZExtValue(); |
| if (ByteVal == 0 || ByteVal == 255 ? |
| Bytes <= 16 && CountPopulation_64(Bytes) <= 2 : |
| Bytes <= 4) { |
| unsigned Size1 = Bytes == 16 ? 8 : 1 << findLastSet(Bytes); |
| unsigned Size2 = Bytes - Size1; |
| SDValue Chain1 = memsetStore(DAG, DL, Chain, Dst, ByteVal, Size1, |
| Align, DstPtrInfo); |
| if (Size2 == 0) |
| return Chain1; |
| Dst = DAG.getNode(ISD::ADD, DL, PtrVT, Dst, |
| DAG.getConstant(Size1, PtrVT)); |
| DstPtrInfo = DstPtrInfo.getWithOffset(Size1); |
| SDValue Chain2 = memsetStore(DAG, DL, Chain, Dst, ByteVal, Size2, |
| std::min(Align, Size1), DstPtrInfo); |
| return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chain1, Chain2); |
| } |
| } else { |
| // Handle one and two bytes using STC. |
| if (Bytes <= 2) { |
| SDValue Chain1 = DAG.getStore(Chain, DL, Byte, Dst, DstPtrInfo, |
| false, false, Align); |
| if (Bytes == 1) |
| return Chain1; |
| SDValue Dst2 = DAG.getNode(ISD::ADD, DL, PtrVT, Dst, |
| DAG.getConstant(1, PtrVT)); |
| SDValue Chain2 = DAG.getStore(Chain, DL, Byte, Dst2, |
| DstPtrInfo.getWithOffset(1), |
| false, false, 1); |
| return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chain1, Chain2); |
| } |
| } |
| assert(Bytes >= 2 && "Should have dealt with 0- and 1-byte cases already"); |
| |
| // Handle the special case of a memset of 0, which can use XC. |
| auto *CByte = dyn_cast<ConstantSDNode>(Byte); |
| if (CByte && CByte->getZExtValue() == 0) |
| return emitMemMem(DAG, DL, SystemZISD::XC, SystemZISD::XC_LOOP, |
| Chain, Dst, Dst, Bytes); |
| |
| // Copy the byte to the first location and then use MVC to copy |
| // it to the rest. |
| Chain = DAG.getStore(Chain, DL, Byte, Dst, DstPtrInfo, |
| false, false, Align); |
| SDValue DstPlus1 = DAG.getNode(ISD::ADD, DL, PtrVT, Dst, |
| DAG.getConstant(1, PtrVT)); |
| return emitMemMem(DAG, DL, SystemZISD::MVC, SystemZISD::MVC_LOOP, |
| Chain, DstPlus1, Dst, Bytes - 1); |
| } |
| return SDValue(); |
| } |
| |
| // Use CLC to compare [Src1, Src1 + Size) with [Src2, Src2 + Size), |
| // deciding whether to use a loop or straight-line code. |
| static SDValue emitCLC(SelectionDAG &DAG, SDLoc DL, SDValue Chain, |
| SDValue Src1, SDValue Src2, uint64_t Size) { |
| SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue); |
| EVT PtrVT = Src1.getValueType(); |
| // A two-CLC sequence is a clear win over a loop, not least because it |
| // needs only one branch. A three-CLC sequence needs the same number |
| // of branches as a loop (i.e. 2), but is shorter. That brings us to |
| // lengths greater than 768 bytes. It seems relatively likely that |
| // a difference will be found within the first 768 bytes, so we just |
| // optimize for the smallest number of branch instructions, in order |
| // to avoid polluting the prediction buffer too much. A loop only ever |
| // needs 2 branches, whereas a straight-line sequence would need 3 or more. |
| if (Size > 3 * 256) |
| return DAG.getNode(SystemZISD::CLC_LOOP, DL, VTs, Chain, Src1, Src2, |
| DAG.getConstant(Size, PtrVT), |
| DAG.getConstant(Size / 256, PtrVT)); |
| return DAG.getNode(SystemZISD::CLC, DL, VTs, Chain, Src1, Src2, |
| DAG.getConstant(Size, PtrVT)); |
| } |
| |
| // Convert the current CC value into an integer that is 0 if CC == 0, |
| // less than zero if CC == 1 and greater than zero if CC >= 2. |
| // The sequence starts with IPM, which puts CC into bits 29 and 28 |
| // of an integer and clears bits 30 and 31. |
| static SDValue addIPMSequence(SDLoc DL, SDValue Glue, SelectionDAG &DAG) { |
| SDValue IPM = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, Glue); |
| SDValue SRL = DAG.getNode(ISD::SRL, DL, MVT::i32, IPM, |
| DAG.getConstant(SystemZ::IPM_CC, MVT::i32)); |
| SDValue ROTL = DAG.getNode(ISD::ROTL, DL, MVT::i32, SRL, |
| DAG.getConstant(31, MVT::i32)); |
| return ROTL; |
| } |
| |
| std::pair<SDValue, SDValue> SystemZSelectionDAGInfo:: |
| EmitTargetCodeForMemcmp(SelectionDAG &DAG, SDLoc DL, SDValue Chain, |
| SDValue Src1, SDValue Src2, SDValue Size, |
| MachinePointerInfo Op1PtrInfo, |
| MachinePointerInfo Op2PtrInfo) const { |
| if (auto *CSize = dyn_cast<ConstantSDNode>(Size)) { |
| uint64_t Bytes = CSize->getZExtValue(); |
| assert(Bytes > 0 && "Caller should have handled 0-size case"); |
| Chain = emitCLC(DAG, DL, Chain, Src1, Src2, Bytes); |
| SDValue Glue = Chain.getValue(1); |
| return std::make_pair(addIPMSequence(DL, Glue, DAG), Chain); |
| } |
| return std::make_pair(SDValue(), SDValue()); |
| } |
| |
| std::pair<SDValue, SDValue> SystemZSelectionDAGInfo:: |
| EmitTargetCodeForMemchr(SelectionDAG &DAG, SDLoc DL, SDValue Chain, |
| SDValue Src, SDValue Char, SDValue Length, |
| MachinePointerInfo SrcPtrInfo) const { |
| // Use SRST to find the character. End is its address on success. |
| EVT PtrVT = Src.getValueType(); |
| SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other, MVT::Glue); |
| Length = DAG.getZExtOrTrunc(Length, DL, PtrVT); |
| Char = DAG.getZExtOrTrunc(Char, DL, MVT::i32); |
| Char = DAG.getNode(ISD::AND, DL, MVT::i32, Char, |
| DAG.getConstant(255, MVT::i32)); |
| SDValue Limit = DAG.getNode(ISD::ADD, DL, PtrVT, Src, Length); |
| SDValue End = DAG.getNode(SystemZISD::SEARCH_STRING, DL, VTs, Chain, |
| Limit, Src, Char); |
| Chain = End.getValue(1); |
| SDValue Glue = End.getValue(2); |
| |
| // Now select between End and null, depending on whether the character |
| // was found. |
| SmallVector<SDValue, 5> Ops; |
| Ops.push_back(End); |
| Ops.push_back(DAG.getConstant(0, PtrVT)); |
| Ops.push_back(DAG.getConstant(SystemZ::CCMASK_SRST, MVT::i32)); |
| Ops.push_back(DAG.getConstant(SystemZ::CCMASK_SRST_FOUND, MVT::i32)); |
| Ops.push_back(Glue); |
| VTs = DAG.getVTList(PtrVT, MVT::Glue); |
| End = DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VTs, Ops); |
| return std::make_pair(End, Chain); |
| } |
| |
| std::pair<SDValue, SDValue> SystemZSelectionDAGInfo:: |
| EmitTargetCodeForStrcpy(SelectionDAG &DAG, SDLoc DL, SDValue Chain, |
| SDValue Dest, SDValue Src, |
| MachinePointerInfo DestPtrInfo, |
| MachinePointerInfo SrcPtrInfo, bool isStpcpy) const { |
| SDVTList VTs = DAG.getVTList(Dest.getValueType(), MVT::Other); |
| SDValue EndDest = DAG.getNode(SystemZISD::STPCPY, DL, VTs, Chain, Dest, Src, |
| DAG.getConstant(0, MVT::i32)); |
| return std::make_pair(isStpcpy ? EndDest : Dest, EndDest.getValue(1)); |
| } |
| |
| std::pair<SDValue, SDValue> SystemZSelectionDAGInfo:: |
| EmitTargetCodeForStrcmp(SelectionDAG &DAG, SDLoc DL, SDValue Chain, |
| SDValue Src1, SDValue Src2, |
| MachinePointerInfo Op1PtrInfo, |
| MachinePointerInfo Op2PtrInfo) const { |
| SDVTList VTs = DAG.getVTList(Src1.getValueType(), MVT::Other, MVT::Glue); |
| SDValue Unused = DAG.getNode(SystemZISD::STRCMP, DL, VTs, Chain, Src1, Src2, |
| DAG.getConstant(0, MVT::i32)); |
| Chain = Unused.getValue(1); |
| SDValue Glue = Chain.getValue(2); |
| return std::make_pair(addIPMSequence(DL, Glue, DAG), Chain); |
| } |
| |
| // Search from Src for a null character, stopping once Src reaches Limit. |
| // Return a pair of values, the first being the number of nonnull characters |
| // and the second being the out chain. |
| // |
| // This can be used for strlen by setting Limit to 0. |
| static std::pair<SDValue, SDValue> getBoundedStrlen(SelectionDAG &DAG, SDLoc DL, |
| SDValue Chain, SDValue Src, |
| SDValue Limit) { |
| EVT PtrVT = Src.getValueType(); |
| SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other, MVT::Glue); |
| SDValue End = DAG.getNode(SystemZISD::SEARCH_STRING, DL, VTs, Chain, |
| Limit, Src, DAG.getConstant(0, MVT::i32)); |
| Chain = End.getValue(1); |
| SDValue Len = DAG.getNode(ISD::SUB, DL, PtrVT, End, Src); |
| return std::make_pair(Len, Chain); |
| } |
| |
| std::pair<SDValue, SDValue> SystemZSelectionDAGInfo:: |
| EmitTargetCodeForStrlen(SelectionDAG &DAG, SDLoc DL, SDValue Chain, |
| SDValue Src, MachinePointerInfo SrcPtrInfo) const { |
| EVT PtrVT = Src.getValueType(); |
| return getBoundedStrlen(DAG, DL, Chain, Src, DAG.getConstant(0, PtrVT)); |
| } |
| |
| std::pair<SDValue, SDValue> SystemZSelectionDAGInfo:: |
| EmitTargetCodeForStrnlen(SelectionDAG &DAG, SDLoc DL, SDValue Chain, |
| SDValue Src, SDValue MaxLength, |
| MachinePointerInfo SrcPtrInfo) const { |
| EVT PtrVT = Src.getValueType(); |
| MaxLength = DAG.getZExtOrTrunc(MaxLength, DL, PtrVT); |
| SDValue Limit = DAG.getNode(ISD::ADD, DL, PtrVT, Src, MaxLength); |
| return getBoundedStrlen(DAG, DL, Chain, Src, Limit); |
| } |