| ; RUN: opt < %s -loop-vectorize -force-vector-unroll=1 -force-vector-width=2 -S | FileCheck %s |
| |
| target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v64:64:64-v128:128:128-a0:0:64-s0:64:64-f80:128:128-n8:16:32:64-S128" |
| |
| ; Make sure that we can handle multiple integer induction variables. |
| ; CHECK-LABEL: @multi_int_induction( |
| ; CHECK: vector.body: |
| ; CHECK: %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ] |
| ; CHECK: %normalized.idx = sub i64 %index, 0 |
| ; CHECK: %[[VAR:.*]] = trunc i64 %normalized.idx to i32 |
| ; CHECK: %offset.idx = add i32 190, %[[VAR]] |
| define void @multi_int_induction(i32* %A, i32 %N) { |
| for.body.lr.ph: |
| br label %for.body |
| |
| for.body: |
| %indvars.iv = phi i64 [ 0, %for.body.lr.ph ], [ %indvars.iv.next, %for.body ] |
| %count.09 = phi i32 [ 190, %for.body.lr.ph ], [ %inc, %for.body ] |
| %arrayidx2 = getelementptr inbounds i32* %A, i64 %indvars.iv |
| store i32 %count.09, i32* %arrayidx2, align 4 |
| %inc = add nsw i32 %count.09, 1 |
| %indvars.iv.next = add i64 %indvars.iv, 1 |
| %lftr.wideiv = trunc i64 %indvars.iv.next to i32 |
| %exitcond = icmp ne i32 %lftr.wideiv, %N |
| br i1 %exitcond, label %for.body, label %for.end |
| |
| for.end: |
| ret void |
| } |
| |
| ; RUN: opt < %s -loop-vectorize -force-vector-unroll=1 -force-vector-width=2 -instcombine -S | FileCheck %s --check-prefix=IND |
| |
| ; Make sure we remove unneeded vectorization of induction variables. |
| ; In order for instcombine to cleanup the vectorized induction variables that we |
| ; create in the loop vectorizer we need to perform some form of redundancy |
| ; elimination to get rid of multiple uses. |
| |
| ; IND-LABEL: scalar_use |
| |
| ; IND: br label %vector.body |
| ; IND: vector.body: |
| ; Vectorized induction variable. |
| ; IND-NOT: insertelement <2 x i64> |
| ; IND-NOT: shufflevector <2 x i64> |
| ; IND: br {{.*}}, label %vector.body |
| |
| define void @scalar_use(float* %a, float %b, i64 %offset, i64 %offset2, i64 %n) { |
| entry: |
| br label %for.body |
| |
| for.body: |
| %iv = phi i64 [ 0, %entry ], [ %iv.next, %for.body ] |
| %ind.sum = add i64 %iv, %offset |
| %arr.idx = getelementptr inbounds float* %a, i64 %ind.sum |
| %l1 = load float* %arr.idx, align 4 |
| %ind.sum2 = add i64 %iv, %offset2 |
| %arr.idx2 = getelementptr inbounds float* %a, i64 %ind.sum2 |
| %l2 = load float* %arr.idx2, align 4 |
| %m = fmul fast float %b, %l2 |
| %ad = fadd fast float %l1, %m |
| store float %ad, float* %arr.idx, align 4 |
| %iv.next = add nuw nsw i64 %iv, 1 |
| %exitcond = icmp eq i64 %iv.next, %n |
| br i1 %exitcond, label %loopexit, label %for.body |
| |
| loopexit: |
| ret void |
| } |
| |
| |
| ; Make sure that the loop exit count computation does not overflow for i8 and |
| ; i16. The exit count of these loops is i8/i16 max + 1. If we don't cast the |
| ; induction variable to a bigger type the exit count computation will overflow |
| ; to 0. |
| ; PR17532 |
| |
| ; CHECK-LABEL: i8_loop |
| ; CHECK: icmp eq i32 {{.*}}, 256 |
| define i32 @i8_loop() nounwind readnone ssp uwtable { |
| br label %1 |
| |
| ; <label>:1 ; preds = %1, %0 |
| %a.0 = phi i32 [ 1, %0 ], [ %2, %1 ] |
| %b.0 = phi i8 [ 0, %0 ], [ %3, %1 ] |
| %2 = and i32 %a.0, 4 |
| %3 = add i8 %b.0, -1 |
| %4 = icmp eq i8 %3, 0 |
| br i1 %4, label %5, label %1 |
| |
| ; <label>:5 ; preds = %1 |
| ret i32 %2 |
| } |
| |
| ; CHECK-LABEL: i16_loop |
| ; CHECK: icmp eq i32 {{.*}}, 65536 |
| |
| define i32 @i16_loop() nounwind readnone ssp uwtable { |
| br label %1 |
| |
| ; <label>:1 ; preds = %1, %0 |
| %a.0 = phi i32 [ 1, %0 ], [ %2, %1 ] |
| %b.0 = phi i16 [ 0, %0 ], [ %3, %1 ] |
| %2 = and i32 %a.0, 4 |
| %3 = add i16 %b.0, -1 |
| %4 = icmp eq i16 %3, 0 |
| br i1 %4, label %5, label %1 |
| |
| ; <label>:5 ; preds = %1 |
| ret i32 %2 |
| } |
| |
| ; This loop has a backedge taken count of i32_max. We need to check for this |
| ; condition and branch directly to the scalar loop. |
| |
| ; CHECK-LABEL: max_i32_backedgetaken |
| ; CHECK: %backedge.overflow = icmp eq i32 -1, -1 |
| ; CHECK: br i1 %backedge.overflow, label %scalar.ph, label %overflow.checked |
| |
| ; CHECK: scalar.ph: |
| ; CHECK: %bc.resume.val = phi i32 [ %resume.val, %middle.block ], [ 0, %0 ] |
| ; CHECK: %bc.merge.rdx = phi i32 [ 1, %0 ], [ %5, %middle.block ] |
| |
| define i32 @max_i32_backedgetaken() nounwind readnone ssp uwtable { |
| |
| br label %1 |
| |
| ; <label>:1 ; preds = %1, %0 |
| %a.0 = phi i32 [ 1, %0 ], [ %2, %1 ] |
| %b.0 = phi i32 [ 0, %0 ], [ %3, %1 ] |
| %2 = and i32 %a.0, 4 |
| %3 = add i32 %b.0, -1 |
| %4 = icmp eq i32 %3, 0 |
| br i1 %4, label %5, label %1 |
| |
| ; <label>:5 ; preds = %1 |
| ret i32 %2 |
| } |
| |
| ; When generating the overflow check we must sure that the induction start value |
| ; is defined before the branch to the scalar preheader. |
| |
| ; CHECK-LABEL: testoverflowcheck |
| ; CHECK: entry |
| ; CHECK: %[[LOAD:.*]] = load i8 |
| ; CHECK: %[[VAL:.*]] = zext i8 %[[LOAD]] to i32 |
| ; CHECK: br |
| |
| ; CHECK: scalar.ph |
| ; CHECK: phi i32 [ %{{.*}}, %middle.block ], [ %[[VAL]], %entry ] |
| |
| @e = global i8 1, align 1 |
| @d = common global i32 0, align 4 |
| @c = common global i32 0, align 4 |
| define i32 @testoverflowcheck() { |
| entry: |
| %.pr.i = load i8* @e, align 1 |
| %0 = load i32* @d, align 4 |
| %c.promoted.i = load i32* @c, align 4 |
| br label %cond.end.i |
| |
| cond.end.i: |
| %inc4.i = phi i8 [ %.pr.i, %entry ], [ %inc.i, %cond.end.i ] |
| %and3.i = phi i32 [ %c.promoted.i, %entry ], [ %and.i, %cond.end.i ] |
| %and.i = and i32 %0, %and3.i |
| %inc.i = add i8 %inc4.i, 1 |
| %tobool.i = icmp eq i8 %inc.i, 0 |
| br i1 %tobool.i, label %loopexit, label %cond.end.i |
| |
| loopexit: |
| ret i32 %and.i |
| } |