| /* |
| * kmp_csupport.cpp -- kfront linkage support for OpenMP. |
| */ |
| |
| //===----------------------------------------------------------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is dual licensed under the MIT and the University of Illinois Open |
| // Source Licenses. See LICENSE.txt for details. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define __KMP_IMP |
| #include "omp.h" /* extern "C" declarations of user-visible routines */ |
| #include "kmp.h" |
| #include "kmp_error.h" |
| #include "kmp_i18n.h" |
| #include "kmp_itt.h" |
| #include "kmp_lock.h" |
| #include "kmp_stats.h" |
| |
| #if OMPT_SUPPORT |
| #include "ompt-specific.h" |
| #endif |
| |
| #define MAX_MESSAGE 512 |
| |
| // flags will be used in future, e.g. to implement openmp_strict library |
| // restrictions |
| |
| /*! |
| * @ingroup STARTUP_SHUTDOWN |
| * @param loc in source location information |
| * @param flags in for future use (currently ignored) |
| * |
| * Initialize the runtime library. This call is optional; if it is not made then |
| * it will be implicitly called by attempts to use other library functions. |
| */ |
| void __kmpc_begin(ident_t *loc, kmp_int32 flags) { |
| // By default __kmpc_begin() is no-op. |
| char *env; |
| if ((env = getenv("KMP_INITIAL_THREAD_BIND")) != NULL && |
| __kmp_str_match_true(env)) { |
| __kmp_middle_initialize(); |
| KC_TRACE(10, ("__kmpc_begin: middle initialization called\n")); |
| } else if (__kmp_ignore_mppbeg() == FALSE) { |
| // By default __kmp_ignore_mppbeg() returns TRUE. |
| __kmp_internal_begin(); |
| KC_TRACE(10, ("__kmpc_begin: called\n")); |
| } |
| } |
| |
| /*! |
| * @ingroup STARTUP_SHUTDOWN |
| * @param loc source location information |
| * |
| * Shutdown the runtime library. This is also optional, and even if called will |
| * not do anything unless the `KMP_IGNORE_MPPEND` environment variable is set to |
| * zero. |
| */ |
| void __kmpc_end(ident_t *loc) { |
| // By default, __kmp_ignore_mppend() returns TRUE which makes __kmpc_end() |
| // call no-op. However, this can be overridden with KMP_IGNORE_MPPEND |
| // environment variable. If KMP_IGNORE_MPPEND is 0, __kmp_ignore_mppend() |
| // returns FALSE and __kmpc_end() will unregister this root (it can cause |
| // library shut down). |
| if (__kmp_ignore_mppend() == FALSE) { |
| KC_TRACE(10, ("__kmpc_end: called\n")); |
| KA_TRACE(30, ("__kmpc_end\n")); |
| |
| __kmp_internal_end_thread(-1); |
| } |
| #if KMP_OS_WINDOWS && OMPT_SUPPORT |
| // Normal exit process on Windows does not allow worker threads of the final |
| // parallel region to finish reporting their events, so shutting down the |
| // library here fixes the issue at least for the cases where __kmpc_end() is |
| // placed properly. |
| if (ompt_enabled.enabled) |
| __kmp_internal_end_library(__kmp_gtid_get_specific()); |
| #endif |
| } |
| |
| /*! |
| @ingroup THREAD_STATES |
| @param loc Source location information. |
| @return The global thread index of the active thread. |
| |
| This function can be called in any context. |
| |
| If the runtime has ony been entered at the outermost level from a |
| single (necessarily non-OpenMP<sup>*</sup>) thread, then the thread number is |
| that which would be returned by omp_get_thread_num() in the outermost |
| active parallel construct. (Or zero if there is no active parallel |
| construct, since the master thread is necessarily thread zero). |
| |
| If multiple non-OpenMP threads all enter an OpenMP construct then this |
| will be a unique thread identifier among all the threads created by |
| the OpenMP runtime (but the value cannote be defined in terms of |
| OpenMP thread ids returned by omp_get_thread_num()). |
| */ |
| kmp_int32 __kmpc_global_thread_num(ident_t *loc) { |
| kmp_int32 gtid = __kmp_entry_gtid(); |
| |
| KC_TRACE(10, ("__kmpc_global_thread_num: T#%d\n", gtid)); |
| |
| return gtid; |
| } |
| |
| /*! |
| @ingroup THREAD_STATES |
| @param loc Source location information. |
| @return The number of threads under control of the OpenMP<sup>*</sup> runtime |
| |
| This function can be called in any context. |
| It returns the total number of threads under the control of the OpenMP runtime. |
| That is not a number that can be determined by any OpenMP standard calls, since |
| the library may be called from more than one non-OpenMP thread, and this |
| reflects the total over all such calls. Similarly the runtime maintains |
| underlying threads even when they are not active (since the cost of creating |
| and destroying OS threads is high), this call counts all such threads even if |
| they are not waiting for work. |
| */ |
| kmp_int32 __kmpc_global_num_threads(ident_t *loc) { |
| KC_TRACE(10, |
| ("__kmpc_global_num_threads: num_threads = %d\n", __kmp_all_nth)); |
| |
| return TCR_4(__kmp_all_nth); |
| } |
| |
| /*! |
| @ingroup THREAD_STATES |
| @param loc Source location information. |
| @return The thread number of the calling thread in the innermost active parallel |
| construct. |
| */ |
| kmp_int32 __kmpc_bound_thread_num(ident_t *loc) { |
| KC_TRACE(10, ("__kmpc_bound_thread_num: called\n")); |
| return __kmp_tid_from_gtid(__kmp_entry_gtid()); |
| } |
| |
| /*! |
| @ingroup THREAD_STATES |
| @param loc Source location information. |
| @return The number of threads in the innermost active parallel construct. |
| */ |
| kmp_int32 __kmpc_bound_num_threads(ident_t *loc) { |
| KC_TRACE(10, ("__kmpc_bound_num_threads: called\n")); |
| |
| return __kmp_entry_thread()->th.th_team->t.t_nproc; |
| } |
| |
| /*! |
| * @ingroup DEPRECATED |
| * @param loc location description |
| * |
| * This function need not be called. It always returns TRUE. |
| */ |
| kmp_int32 __kmpc_ok_to_fork(ident_t *loc) { |
| #ifndef KMP_DEBUG |
| |
| return TRUE; |
| |
| #else |
| |
| const char *semi2; |
| const char *semi3; |
| int line_no; |
| |
| if (__kmp_par_range == 0) { |
| return TRUE; |
| } |
| semi2 = loc->psource; |
| if (semi2 == NULL) { |
| return TRUE; |
| } |
| semi2 = strchr(semi2, ';'); |
| if (semi2 == NULL) { |
| return TRUE; |
| } |
| semi2 = strchr(semi2 + 1, ';'); |
| if (semi2 == NULL) { |
| return TRUE; |
| } |
| if (__kmp_par_range_filename[0]) { |
| const char *name = semi2 - 1; |
| while ((name > loc->psource) && (*name != '/') && (*name != ';')) { |
| name--; |
| } |
| if ((*name == '/') || (*name == ';')) { |
| name++; |
| } |
| if (strncmp(__kmp_par_range_filename, name, semi2 - name)) { |
| return __kmp_par_range < 0; |
| } |
| } |
| semi3 = strchr(semi2 + 1, ';'); |
| if (__kmp_par_range_routine[0]) { |
| if ((semi3 != NULL) && (semi3 > semi2) && |
| (strncmp(__kmp_par_range_routine, semi2 + 1, semi3 - semi2 - 1))) { |
| return __kmp_par_range < 0; |
| } |
| } |
| if (KMP_SSCANF(semi3 + 1, "%d", &line_no) == 1) { |
| if ((line_no >= __kmp_par_range_lb) && (line_no <= __kmp_par_range_ub)) { |
| return __kmp_par_range > 0; |
| } |
| return __kmp_par_range < 0; |
| } |
| return TRUE; |
| |
| #endif /* KMP_DEBUG */ |
| } |
| |
| /*! |
| @ingroup THREAD_STATES |
| @param loc Source location information. |
| @return 1 if this thread is executing inside an active parallel region, zero if |
| not. |
| */ |
| kmp_int32 __kmpc_in_parallel(ident_t *loc) { |
| return __kmp_entry_thread()->th.th_root->r.r_active; |
| } |
| |
| /*! |
| @ingroup PARALLEL |
| @param loc source location information |
| @param global_tid global thread number |
| @param num_threads number of threads requested for this parallel construct |
| |
| Set the number of threads to be used by the next fork spawned by this thread. |
| This call is only required if the parallel construct has a `num_threads` clause. |
| */ |
| void __kmpc_push_num_threads(ident_t *loc, kmp_int32 global_tid, |
| kmp_int32 num_threads) { |
| KA_TRACE(20, ("__kmpc_push_num_threads: enter T#%d num_threads=%d\n", |
| global_tid, num_threads)); |
| |
| __kmp_push_num_threads(loc, global_tid, num_threads); |
| } |
| |
| void __kmpc_pop_num_threads(ident_t *loc, kmp_int32 global_tid) { |
| KA_TRACE(20, ("__kmpc_pop_num_threads: enter\n")); |
| |
| /* the num_threads are automatically popped */ |
| } |
| |
| #if OMP_40_ENABLED |
| |
| void __kmpc_push_proc_bind(ident_t *loc, kmp_int32 global_tid, |
| kmp_int32 proc_bind) { |
| KA_TRACE(20, ("__kmpc_push_proc_bind: enter T#%d proc_bind=%d\n", global_tid, |
| proc_bind)); |
| |
| __kmp_push_proc_bind(loc, global_tid, (kmp_proc_bind_t)proc_bind); |
| } |
| |
| #endif /* OMP_40_ENABLED */ |
| |
| /*! |
| @ingroup PARALLEL |
| @param loc source location information |
| @param argc total number of arguments in the ellipsis |
| @param microtask pointer to callback routine consisting of outlined parallel |
| construct |
| @param ... pointers to shared variables that aren't global |
| |
| Do the actual fork and call the microtask in the relevant number of threads. |
| */ |
| void __kmpc_fork_call(ident_t *loc, kmp_int32 argc, kmpc_micro microtask, ...) { |
| int gtid = __kmp_entry_gtid(); |
| |
| #if (KMP_STATS_ENABLED) |
| // If we were in a serial region, then stop the serial timer, record |
| // the event, and start parallel region timer |
| stats_state_e previous_state = KMP_GET_THREAD_STATE(); |
| if (previous_state == stats_state_e::SERIAL_REGION) { |
| KMP_EXCHANGE_PARTITIONED_TIMER(OMP_parallel_overhead); |
| } else { |
| KMP_PUSH_PARTITIONED_TIMER(OMP_parallel_overhead); |
| } |
| int inParallel = __kmpc_in_parallel(loc); |
| if (inParallel) { |
| KMP_COUNT_BLOCK(OMP_NESTED_PARALLEL); |
| } else { |
| KMP_COUNT_BLOCK(OMP_PARALLEL); |
| } |
| #endif |
| |
| // maybe to save thr_state is enough here |
| { |
| va_list ap; |
| va_start(ap, microtask); |
| |
| #if OMPT_SUPPORT |
| ompt_frame_t *ompt_frame; |
| if (ompt_enabled.enabled) { |
| kmp_info_t *master_th = __kmp_threads[gtid]; |
| kmp_team_t *parent_team = master_th->th.th_team; |
| ompt_lw_taskteam_t *lwt = parent_team->t.ompt_serialized_team_info; |
| if (lwt) |
| ompt_frame = &(lwt->ompt_task_info.frame); |
| else { |
| int tid = __kmp_tid_from_gtid(gtid); |
| ompt_frame = &( |
| parent_team->t.t_implicit_task_taskdata[tid].ompt_task_info.frame); |
| } |
| ompt_frame->enter_frame.ptr = OMPT_GET_FRAME_ADDRESS(0); |
| OMPT_STORE_RETURN_ADDRESS(gtid); |
| } |
| #endif |
| |
| #if INCLUDE_SSC_MARKS |
| SSC_MARK_FORKING(); |
| #endif |
| __kmp_fork_call(loc, gtid, fork_context_intel, argc, |
| VOLATILE_CAST(microtask_t) microtask, // "wrapped" task |
| VOLATILE_CAST(launch_t) __kmp_invoke_task_func, |
| /* TODO: revert workaround for Intel(R) 64 tracker #96 */ |
| #if (KMP_ARCH_X86_64 || KMP_ARCH_ARM || KMP_ARCH_AARCH64) && KMP_OS_LINUX |
| &ap |
| #else |
| ap |
| #endif |
| ); |
| #if INCLUDE_SSC_MARKS |
| SSC_MARK_JOINING(); |
| #endif |
| __kmp_join_call(loc, gtid |
| #if OMPT_SUPPORT |
| , |
| fork_context_intel |
| #endif |
| ); |
| |
| va_end(ap); |
| } |
| |
| #if KMP_STATS_ENABLED |
| if (previous_state == stats_state_e::SERIAL_REGION) { |
| KMP_EXCHANGE_PARTITIONED_TIMER(OMP_serial); |
| } else { |
| KMP_POP_PARTITIONED_TIMER(); |
| } |
| #endif // KMP_STATS_ENABLED |
| } |
| |
| #if OMP_40_ENABLED |
| /*! |
| @ingroup PARALLEL |
| @param loc source location information |
| @param global_tid global thread number |
| @param num_teams number of teams requested for the teams construct |
| @param num_threads number of threads per team requested for the teams construct |
| |
| Set the number of teams to be used by the teams construct. |
| This call is only required if the teams construct has a `num_teams` clause |
| or a `thread_limit` clause (or both). |
| */ |
| void __kmpc_push_num_teams(ident_t *loc, kmp_int32 global_tid, |
| kmp_int32 num_teams, kmp_int32 num_threads) { |
| KA_TRACE(20, |
| ("__kmpc_push_num_teams: enter T#%d num_teams=%d num_threads=%d\n", |
| global_tid, num_teams, num_threads)); |
| |
| __kmp_push_num_teams(loc, global_tid, num_teams, num_threads); |
| } |
| |
| /*! |
| @ingroup PARALLEL |
| @param loc source location information |
| @param argc total number of arguments in the ellipsis |
| @param microtask pointer to callback routine consisting of outlined teams |
| construct |
| @param ... pointers to shared variables that aren't global |
| |
| Do the actual fork and call the microtask in the relevant number of threads. |
| */ |
| void __kmpc_fork_teams(ident_t *loc, kmp_int32 argc, kmpc_micro microtask, |
| ...) { |
| int gtid = __kmp_entry_gtid(); |
| kmp_info_t *this_thr = __kmp_threads[gtid]; |
| va_list ap; |
| va_start(ap, microtask); |
| |
| KMP_COUNT_BLOCK(OMP_TEAMS); |
| |
| // remember teams entry point and nesting level |
| this_thr->th.th_teams_microtask = microtask; |
| this_thr->th.th_teams_level = |
| this_thr->th.th_team->t.t_level; // AC: can be >0 on host |
| |
| #if OMPT_SUPPORT |
| kmp_team_t *parent_team = this_thr->th.th_team; |
| int tid = __kmp_tid_from_gtid(gtid); |
| if (ompt_enabled.enabled) { |
| parent_team->t.t_implicit_task_taskdata[tid] |
| .ompt_task_info.frame.enter_frame.ptr = OMPT_GET_FRAME_ADDRESS(0); |
| } |
| OMPT_STORE_RETURN_ADDRESS(gtid); |
| #endif |
| |
| // check if __kmpc_push_num_teams called, set default number of teams |
| // otherwise |
| if (this_thr->th.th_teams_size.nteams == 0) { |
| __kmp_push_num_teams(loc, gtid, 0, 0); |
| } |
| KMP_DEBUG_ASSERT(this_thr->th.th_set_nproc >= 1); |
| KMP_DEBUG_ASSERT(this_thr->th.th_teams_size.nteams >= 1); |
| KMP_DEBUG_ASSERT(this_thr->th.th_teams_size.nth >= 1); |
| |
| __kmp_fork_call(loc, gtid, fork_context_intel, argc, |
| VOLATILE_CAST(microtask_t) |
| __kmp_teams_master, // "wrapped" task |
| VOLATILE_CAST(launch_t) __kmp_invoke_teams_master, |
| #if (KMP_ARCH_X86_64 || KMP_ARCH_ARM || KMP_ARCH_AARCH64) && KMP_OS_LINUX |
| &ap |
| #else |
| ap |
| #endif |
| ); |
| __kmp_join_call(loc, gtid |
| #if OMPT_SUPPORT |
| , |
| fork_context_intel |
| #endif |
| ); |
| |
| this_thr->th.th_teams_microtask = NULL; |
| this_thr->th.th_teams_level = 0; |
| *(kmp_int64 *)(&this_thr->th.th_teams_size) = 0L; |
| va_end(ap); |
| } |
| #endif /* OMP_40_ENABLED */ |
| |
| // I don't think this function should ever have been exported. |
| // The __kmpc_ prefix was misapplied. I'm fairly certain that no generated |
| // openmp code ever called it, but it's been exported from the RTL for so |
| // long that I'm afraid to remove the definition. |
| int __kmpc_invoke_task_func(int gtid) { return __kmp_invoke_task_func(gtid); } |
| |
| /*! |
| @ingroup PARALLEL |
| @param loc source location information |
| @param global_tid global thread number |
| |
| Enter a serialized parallel construct. This interface is used to handle a |
| conditional parallel region, like this, |
| @code |
| #pragma omp parallel if (condition) |
| @endcode |
| when the condition is false. |
| */ |
| void __kmpc_serialized_parallel(ident_t *loc, kmp_int32 global_tid) { |
| // The implementation is now in kmp_runtime.cpp so that it can share static |
| // functions with kmp_fork_call since the tasks to be done are similar in |
| // each case. |
| #if OMPT_SUPPORT |
| OMPT_STORE_RETURN_ADDRESS(global_tid); |
| #endif |
| __kmp_serialized_parallel(loc, global_tid); |
| } |
| |
| /*! |
| @ingroup PARALLEL |
| @param loc source location information |
| @param global_tid global thread number |
| |
| Leave a serialized parallel construct. |
| */ |
| void __kmpc_end_serialized_parallel(ident_t *loc, kmp_int32 global_tid) { |
| kmp_internal_control_t *top; |
| kmp_info_t *this_thr; |
| kmp_team_t *serial_team; |
| |
| KC_TRACE(10, |
| ("__kmpc_end_serialized_parallel: called by T#%d\n", global_tid)); |
| |
| /* skip all this code for autopar serialized loops since it results in |
| unacceptable overhead */ |
| if (loc != NULL && (loc->flags & KMP_IDENT_AUTOPAR)) |
| return; |
| |
| // Not autopar code |
| if (!TCR_4(__kmp_init_parallel)) |
| __kmp_parallel_initialize(); |
| |
| #if OMP_50_ENABLED |
| __kmp_resume_if_soft_paused(); |
| #endif |
| |
| this_thr = __kmp_threads[global_tid]; |
| serial_team = this_thr->th.th_serial_team; |
| |
| #if OMP_45_ENABLED |
| kmp_task_team_t *task_team = this_thr->th.th_task_team; |
| |
| // we need to wait for the proxy tasks before finishing the thread |
| if (task_team != NULL && task_team->tt.tt_found_proxy_tasks) |
| __kmp_task_team_wait(this_thr, serial_team USE_ITT_BUILD_ARG(NULL)); |
| #endif |
| |
| KMP_MB(); |
| KMP_DEBUG_ASSERT(serial_team); |
| KMP_ASSERT(serial_team->t.t_serialized); |
| KMP_DEBUG_ASSERT(this_thr->th.th_team == serial_team); |
| KMP_DEBUG_ASSERT(serial_team != this_thr->th.th_root->r.r_root_team); |
| KMP_DEBUG_ASSERT(serial_team->t.t_threads); |
| KMP_DEBUG_ASSERT(serial_team->t.t_threads[0] == this_thr); |
| |
| #if OMPT_SUPPORT |
| if (ompt_enabled.enabled && |
| this_thr->th.ompt_thread_info.state != ompt_state_overhead) { |
| OMPT_CUR_TASK_INFO(this_thr)->frame.exit_frame = ompt_data_none; |
| if (ompt_enabled.ompt_callback_implicit_task) { |
| ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( |
| ompt_scope_end, NULL, OMPT_CUR_TASK_DATA(this_thr), 1, |
| OMPT_CUR_TASK_INFO(this_thr)->thread_num, ompt_task_implicit); |
| } |
| |
| // reset clear the task id only after unlinking the task |
| ompt_data_t *parent_task_data; |
| __ompt_get_task_info_internal(1, NULL, &parent_task_data, NULL, NULL, NULL); |
| |
| if (ompt_enabled.ompt_callback_parallel_end) { |
| ompt_callbacks.ompt_callback(ompt_callback_parallel_end)( |
| &(serial_team->t.ompt_team_info.parallel_data), parent_task_data, |
| ompt_parallel_invoker_program, OMPT_LOAD_RETURN_ADDRESS(global_tid)); |
| } |
| __ompt_lw_taskteam_unlink(this_thr); |
| this_thr->th.ompt_thread_info.state = ompt_state_overhead; |
| } |
| #endif |
| |
| /* If necessary, pop the internal control stack values and replace the team |
| * values */ |
| top = serial_team->t.t_control_stack_top; |
| if (top && top->serial_nesting_level == serial_team->t.t_serialized) { |
| copy_icvs(&serial_team->t.t_threads[0]->th.th_current_task->td_icvs, top); |
| serial_team->t.t_control_stack_top = top->next; |
| __kmp_free(top); |
| } |
| |
| // if( serial_team -> t.t_serialized > 1 ) |
| serial_team->t.t_level--; |
| |
| /* pop dispatch buffers stack */ |
| KMP_DEBUG_ASSERT(serial_team->t.t_dispatch->th_disp_buffer); |
| { |
| dispatch_private_info_t *disp_buffer = |
| serial_team->t.t_dispatch->th_disp_buffer; |
| serial_team->t.t_dispatch->th_disp_buffer = |
| serial_team->t.t_dispatch->th_disp_buffer->next; |
| __kmp_free(disp_buffer); |
| } |
| #if OMP_50_ENABLED |
| this_thr->th.th_def_allocator = serial_team->t.t_def_allocator; // restore |
| #endif |
| |
| --serial_team->t.t_serialized; |
| if (serial_team->t.t_serialized == 0) { |
| |
| /* return to the parallel section */ |
| |
| #if KMP_ARCH_X86 || KMP_ARCH_X86_64 |
| if (__kmp_inherit_fp_control && serial_team->t.t_fp_control_saved) { |
| __kmp_clear_x87_fpu_status_word(); |
| __kmp_load_x87_fpu_control_word(&serial_team->t.t_x87_fpu_control_word); |
| __kmp_load_mxcsr(&serial_team->t.t_mxcsr); |
| } |
| #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ |
| |
| this_thr->th.th_team = serial_team->t.t_parent; |
| this_thr->th.th_info.ds.ds_tid = serial_team->t.t_master_tid; |
| |
| /* restore values cached in the thread */ |
| this_thr->th.th_team_nproc = serial_team->t.t_parent->t.t_nproc; /* JPH */ |
| this_thr->th.th_team_master = |
| serial_team->t.t_parent->t.t_threads[0]; /* JPH */ |
| this_thr->th.th_team_serialized = this_thr->th.th_team->t.t_serialized; |
| |
| /* TODO the below shouldn't need to be adjusted for serialized teams */ |
| this_thr->th.th_dispatch = |
| &this_thr->th.th_team->t.t_dispatch[serial_team->t.t_master_tid]; |
| |
| __kmp_pop_current_task_from_thread(this_thr); |
| |
| KMP_ASSERT(this_thr->th.th_current_task->td_flags.executing == 0); |
| this_thr->th.th_current_task->td_flags.executing = 1; |
| |
| if (__kmp_tasking_mode != tskm_immediate_exec) { |
| // Copy the task team from the new child / old parent team to the thread. |
| this_thr->th.th_task_team = |
| this_thr->th.th_team->t.t_task_team[this_thr->th.th_task_state]; |
| KA_TRACE(20, |
| ("__kmpc_end_serialized_parallel: T#%d restoring task_team %p / " |
| "team %p\n", |
| global_tid, this_thr->th.th_task_team, this_thr->th.th_team)); |
| } |
| } else { |
| if (__kmp_tasking_mode != tskm_immediate_exec) { |
| KA_TRACE(20, ("__kmpc_end_serialized_parallel: T#%d decreasing nesting " |
| "depth of serial team %p to %d\n", |
| global_tid, serial_team, serial_team->t.t_serialized)); |
| } |
| } |
| |
| if (__kmp_env_consistency_check) |
| __kmp_pop_parallel(global_tid, NULL); |
| #if OMPT_SUPPORT |
| if (ompt_enabled.enabled) |
| this_thr->th.ompt_thread_info.state = |
| ((this_thr->th.th_team_serialized) ? ompt_state_work_serial |
| : ompt_state_work_parallel); |
| #endif |
| } |
| |
| /*! |
| @ingroup SYNCHRONIZATION |
| @param loc source location information. |
| |
| Execute <tt>flush</tt>. This is implemented as a full memory fence. (Though |
| depending on the memory ordering convention obeyed by the compiler |
| even that may not be necessary). |
| */ |
| void __kmpc_flush(ident_t *loc) { |
| KC_TRACE(10, ("__kmpc_flush: called\n")); |
| |
| /* need explicit __mf() here since use volatile instead in library */ |
| KMP_MB(); /* Flush all pending memory write invalidates. */ |
| |
| #if (KMP_ARCH_X86 || KMP_ARCH_X86_64) |
| #if KMP_MIC |
| // fence-style instructions do not exist, but lock; xaddl $0,(%rsp) can be used. |
| // We shouldn't need it, though, since the ABI rules require that |
| // * If the compiler generates NGO stores it also generates the fence |
| // * If users hand-code NGO stores they should insert the fence |
| // therefore no incomplete unordered stores should be visible. |
| #else |
| // C74404 |
| // This is to address non-temporal store instructions (sfence needed). |
| // The clflush instruction is addressed either (mfence needed). |
| // Probably the non-temporal load monvtdqa instruction should also be |
| // addressed. |
| // mfence is a SSE2 instruction. Do not execute it if CPU is not SSE2. |
| if (!__kmp_cpuinfo.initialized) { |
| __kmp_query_cpuid(&__kmp_cpuinfo); |
| } |
| if (!__kmp_cpuinfo.sse2) { |
| // CPU cannot execute SSE2 instructions. |
| } else { |
| #if KMP_COMPILER_ICC |
| _mm_mfence(); |
| #elif KMP_COMPILER_MSVC |
| MemoryBarrier(); |
| #else |
| __sync_synchronize(); |
| #endif // KMP_COMPILER_ICC |
| } |
| #endif // KMP_MIC |
| #elif (KMP_ARCH_ARM || KMP_ARCH_AARCH64 || KMP_ARCH_MIPS || KMP_ARCH_MIPS64) |
| // Nothing to see here move along |
| #elif KMP_ARCH_PPC64 |
| // Nothing needed here (we have a real MB above). |
| #if KMP_OS_CNK |
| // The flushing thread needs to yield here; this prevents a |
| // busy-waiting thread from saturating the pipeline. flush is |
| // often used in loops like this: |
| // while (!flag) { |
| // #pragma omp flush(flag) |
| // } |
| // and adding the yield here is good for at least a 10x speedup |
| // when running >2 threads per core (on the NAS LU benchmark). |
| __kmp_yield(TRUE); |
| #endif |
| #else |
| #error Unknown or unsupported architecture |
| #endif |
| |
| #if OMPT_SUPPORT && OMPT_OPTIONAL |
| if (ompt_enabled.ompt_callback_flush) { |
| ompt_callbacks.ompt_callback(ompt_callback_flush)( |
| __ompt_get_thread_data_internal(), OMPT_GET_RETURN_ADDRESS(0)); |
| } |
| #endif |
| } |
| |
| /* -------------------------------------------------------------------------- */ |
| /*! |
| @ingroup SYNCHRONIZATION |
| @param loc source location information |
| @param global_tid thread id. |
| |
| Execute a barrier. |
| */ |
| void __kmpc_barrier(ident_t *loc, kmp_int32 global_tid) { |
| KMP_COUNT_BLOCK(OMP_BARRIER); |
| KC_TRACE(10, ("__kmpc_barrier: called T#%d\n", global_tid)); |
| |
| if (!TCR_4(__kmp_init_parallel)) |
| __kmp_parallel_initialize(); |
| |
| #if OMP_50_ENABLED |
| __kmp_resume_if_soft_paused(); |
| #endif |
| |
| if (__kmp_env_consistency_check) { |
| if (loc == 0) { |
| KMP_WARNING(ConstructIdentInvalid); // ??? What does it mean for the user? |
| } |
| |
| __kmp_check_barrier(global_tid, ct_barrier, loc); |
| } |
| |
| #if OMPT_SUPPORT |
| ompt_frame_t *ompt_frame; |
| if (ompt_enabled.enabled) { |
| __ompt_get_task_info_internal(0, NULL, NULL, &ompt_frame, NULL, NULL); |
| if (ompt_frame->enter_frame.ptr == NULL) |
| ompt_frame->enter_frame.ptr = OMPT_GET_FRAME_ADDRESS(0); |
| OMPT_STORE_RETURN_ADDRESS(global_tid); |
| } |
| #endif |
| __kmp_threads[global_tid]->th.th_ident = loc; |
| // TODO: explicit barrier_wait_id: |
| // this function is called when 'barrier' directive is present or |
| // implicit barrier at the end of a worksharing construct. |
| // 1) better to add a per-thread barrier counter to a thread data structure |
| // 2) set to 0 when a new team is created |
| // 4) no sync is required |
| |
| __kmp_barrier(bs_plain_barrier, global_tid, FALSE, 0, NULL, NULL); |
| #if OMPT_SUPPORT && OMPT_OPTIONAL |
| if (ompt_enabled.enabled) { |
| ompt_frame->enter_frame = ompt_data_none; |
| } |
| #endif |
| } |
| |
| /* The BARRIER for a MASTER section is always explicit */ |
| /*! |
| @ingroup WORK_SHARING |
| @param loc source location information. |
| @param global_tid global thread number . |
| @return 1 if this thread should execute the <tt>master</tt> block, 0 otherwise. |
| */ |
| kmp_int32 __kmpc_master(ident_t *loc, kmp_int32 global_tid) { |
| int status = 0; |
| |
| KC_TRACE(10, ("__kmpc_master: called T#%d\n", global_tid)); |
| |
| if (!TCR_4(__kmp_init_parallel)) |
| __kmp_parallel_initialize(); |
| |
| #if OMP_50_ENABLED |
| __kmp_resume_if_soft_paused(); |
| #endif |
| |
| if (KMP_MASTER_GTID(global_tid)) { |
| KMP_COUNT_BLOCK(OMP_MASTER); |
| KMP_PUSH_PARTITIONED_TIMER(OMP_master); |
| status = 1; |
| } |
| |
| #if OMPT_SUPPORT && OMPT_OPTIONAL |
| if (status) { |
| if (ompt_enabled.ompt_callback_master) { |
| kmp_info_t *this_thr = __kmp_threads[global_tid]; |
| kmp_team_t *team = this_thr->th.th_team; |
| |
| int tid = __kmp_tid_from_gtid(global_tid); |
| ompt_callbacks.ompt_callback(ompt_callback_master)( |
| ompt_scope_begin, &(team->t.ompt_team_info.parallel_data), |
| &(team->t.t_implicit_task_taskdata[tid].ompt_task_info.task_data), |
| OMPT_GET_RETURN_ADDRESS(0)); |
| } |
| } |
| #endif |
| |
| if (__kmp_env_consistency_check) { |
| #if KMP_USE_DYNAMIC_LOCK |
| if (status) |
| __kmp_push_sync(global_tid, ct_master, loc, NULL, 0); |
| else |
| __kmp_check_sync(global_tid, ct_master, loc, NULL, 0); |
| #else |
| if (status) |
| __kmp_push_sync(global_tid, ct_master, loc, NULL); |
| else |
| __kmp_check_sync(global_tid, ct_master, loc, NULL); |
| #endif |
| } |
| |
| return status; |
| } |
| |
| /*! |
| @ingroup WORK_SHARING |
| @param loc source location information. |
| @param global_tid global thread number . |
| |
| Mark the end of a <tt>master</tt> region. This should only be called by the |
| thread that executes the <tt>master</tt> region. |
| */ |
| void __kmpc_end_master(ident_t *loc, kmp_int32 global_tid) { |
| KC_TRACE(10, ("__kmpc_end_master: called T#%d\n", global_tid)); |
| |
| KMP_DEBUG_ASSERT(KMP_MASTER_GTID(global_tid)); |
| KMP_POP_PARTITIONED_TIMER(); |
| |
| #if OMPT_SUPPORT && OMPT_OPTIONAL |
| kmp_info_t *this_thr = __kmp_threads[global_tid]; |
| kmp_team_t *team = this_thr->th.th_team; |
| if (ompt_enabled.ompt_callback_master) { |
| int tid = __kmp_tid_from_gtid(global_tid); |
| ompt_callbacks.ompt_callback(ompt_callback_master)( |
| ompt_scope_end, &(team->t.ompt_team_info.parallel_data), |
| &(team->t.t_implicit_task_taskdata[tid].ompt_task_info.task_data), |
| OMPT_GET_RETURN_ADDRESS(0)); |
| } |
| #endif |
| |
| if (__kmp_env_consistency_check) { |
| if (global_tid < 0) |
| KMP_WARNING(ThreadIdentInvalid); |
| |
| if (KMP_MASTER_GTID(global_tid)) |
| __kmp_pop_sync(global_tid, ct_master, loc); |
| } |
| } |
| |
| /*! |
| @ingroup WORK_SHARING |
| @param loc source location information. |
| @param gtid global thread number. |
| |
| Start execution of an <tt>ordered</tt> construct. |
| */ |
| void __kmpc_ordered(ident_t *loc, kmp_int32 gtid) { |
| int cid = 0; |
| kmp_info_t *th; |
| KMP_DEBUG_ASSERT(__kmp_init_serial); |
| |
| KC_TRACE(10, ("__kmpc_ordered: called T#%d\n", gtid)); |
| |
| if (!TCR_4(__kmp_init_parallel)) |
| __kmp_parallel_initialize(); |
| |
| #if OMP_50_ENABLED |
| __kmp_resume_if_soft_paused(); |
| #endif |
| |
| #if USE_ITT_BUILD |
| __kmp_itt_ordered_prep(gtid); |
| // TODO: ordered_wait_id |
| #endif /* USE_ITT_BUILD */ |
| |
| th = __kmp_threads[gtid]; |
| |
| #if OMPT_SUPPORT && OMPT_OPTIONAL |
| kmp_team_t *team; |
| ompt_wait_id_t lck; |
| void *codeptr_ra; |
| if (ompt_enabled.enabled) { |
| OMPT_STORE_RETURN_ADDRESS(gtid); |
| team = __kmp_team_from_gtid(gtid); |
| lck = (ompt_wait_id_t)&team->t.t_ordered.dt.t_value; |
| /* OMPT state update */ |
| th->th.ompt_thread_info.wait_id = lck; |
| th->th.ompt_thread_info.state = ompt_state_wait_ordered; |
| |
| /* OMPT event callback */ |
| codeptr_ra = OMPT_LOAD_RETURN_ADDRESS(gtid); |
| if (ompt_enabled.ompt_callback_mutex_acquire) { |
| ompt_callbacks.ompt_callback(ompt_callback_mutex_acquire)( |
| ompt_mutex_ordered, omp_lock_hint_none, kmp_mutex_impl_spin, |
| (ompt_wait_id_t)lck, codeptr_ra); |
| } |
| } |
| #endif |
| |
| if (th->th.th_dispatch->th_deo_fcn != 0) |
| (*th->th.th_dispatch->th_deo_fcn)(>id, &cid, loc); |
| else |
| __kmp_parallel_deo(>id, &cid, loc); |
| |
| #if OMPT_SUPPORT && OMPT_OPTIONAL |
| if (ompt_enabled.enabled) { |
| /* OMPT state update */ |
| th->th.ompt_thread_info.state = ompt_state_work_parallel; |
| th->th.ompt_thread_info.wait_id = 0; |
| |
| /* OMPT event callback */ |
| if (ompt_enabled.ompt_callback_mutex_acquired) { |
| ompt_callbacks.ompt_callback(ompt_callback_mutex_acquired)( |
| ompt_mutex_ordered, (ompt_wait_id_t)lck, codeptr_ra); |
| } |
| } |
| #endif |
| |
| #if USE_ITT_BUILD |
| __kmp_itt_ordered_start(gtid); |
| #endif /* USE_ITT_BUILD */ |
| } |
| |
| /*! |
| @ingroup WORK_SHARING |
| @param loc source location information. |
| @param gtid global thread number. |
| |
| End execution of an <tt>ordered</tt> construct. |
| */ |
| void __kmpc_end_ordered(ident_t *loc, kmp_int32 gtid) { |
| int cid = 0; |
| kmp_info_t *th; |
| |
| KC_TRACE(10, ("__kmpc_end_ordered: called T#%d\n", gtid)); |
| |
| #if USE_ITT_BUILD |
| __kmp_itt_ordered_end(gtid); |
| // TODO: ordered_wait_id |
| #endif /* USE_ITT_BUILD */ |
| |
| th = __kmp_threads[gtid]; |
| |
| if (th->th.th_dispatch->th_dxo_fcn != 0) |
| (*th->th.th_dispatch->th_dxo_fcn)(>id, &cid, loc); |
| else |
| __kmp_parallel_dxo(>id, &cid, loc); |
| |
| #if OMPT_SUPPORT && OMPT_OPTIONAL |
| OMPT_STORE_RETURN_ADDRESS(gtid); |
| if (ompt_enabled.ompt_callback_mutex_released) { |
| ompt_callbacks.ompt_callback(ompt_callback_mutex_released)( |
| ompt_mutex_ordered, |
| (ompt_wait_id_t)&__kmp_team_from_gtid(gtid)->t.t_ordered.dt.t_value, |
| OMPT_LOAD_RETURN_ADDRESS(gtid)); |
| } |
| #endif |
| } |
| |
| #if KMP_USE_DYNAMIC_LOCK |
| |
| static __forceinline void |
| __kmp_init_indirect_csptr(kmp_critical_name *crit, ident_t const *loc, |
| kmp_int32 gtid, kmp_indirect_locktag_t tag) { |
| // Pointer to the allocated indirect lock is written to crit, while indexing |
| // is ignored. |
| void *idx; |
| kmp_indirect_lock_t **lck; |
| lck = (kmp_indirect_lock_t **)crit; |
| kmp_indirect_lock_t *ilk = __kmp_allocate_indirect_lock(&idx, gtid, tag); |
| KMP_I_LOCK_FUNC(ilk, init)(ilk->lock); |
| KMP_SET_I_LOCK_LOCATION(ilk, loc); |
| KMP_SET_I_LOCK_FLAGS(ilk, kmp_lf_critical_section); |
| KA_TRACE(20, |
| ("__kmp_init_indirect_csptr: initialized indirect lock #%d\n", tag)); |
| #if USE_ITT_BUILD |
| __kmp_itt_critical_creating(ilk->lock, loc); |
| #endif |
| int status = KMP_COMPARE_AND_STORE_PTR(lck, nullptr, ilk); |
| if (status == 0) { |
| #if USE_ITT_BUILD |
| __kmp_itt_critical_destroyed(ilk->lock); |
| #endif |
| // We don't really need to destroy the unclaimed lock here since it will be |
| // cleaned up at program exit. |
| // KMP_D_LOCK_FUNC(&idx, destroy)((kmp_dyna_lock_t *)&idx); |
| } |
| KMP_DEBUG_ASSERT(*lck != NULL); |
| } |
| |
| // Fast-path acquire tas lock |
| #define KMP_ACQUIRE_TAS_LOCK(lock, gtid) \ |
| { \ |
| kmp_tas_lock_t *l = (kmp_tas_lock_t *)lock; \ |
| kmp_int32 tas_free = KMP_LOCK_FREE(tas); \ |
| kmp_int32 tas_busy = KMP_LOCK_BUSY(gtid + 1, tas); \ |
| if (KMP_ATOMIC_LD_RLX(&l->lk.poll) != tas_free || \ |
| !__kmp_atomic_compare_store_acq(&l->lk.poll, tas_free, tas_busy)) { \ |
| kmp_uint32 spins; \ |
| KMP_FSYNC_PREPARE(l); \ |
| KMP_INIT_YIELD(spins); \ |
| if (TCR_4(__kmp_nth) > \ |
| (__kmp_avail_proc ? __kmp_avail_proc : __kmp_xproc)) { \ |
| KMP_YIELD(TRUE); \ |
| } else { \ |
| KMP_YIELD_SPIN(spins); \ |
| } \ |
| kmp_backoff_t backoff = __kmp_spin_backoff_params; \ |
| while ( \ |
| KMP_ATOMIC_LD_RLX(&l->lk.poll) != tas_free || \ |
| !__kmp_atomic_compare_store_acq(&l->lk.poll, tas_free, tas_busy)) { \ |
| __kmp_spin_backoff(&backoff); \ |
| if (TCR_4(__kmp_nth) > \ |
| (__kmp_avail_proc ? __kmp_avail_proc : __kmp_xproc)) { \ |
| KMP_YIELD(TRUE); \ |
| } else { \ |
| KMP_YIELD_SPIN(spins); \ |
| } \ |
| } \ |
| } \ |
| KMP_FSYNC_ACQUIRED(l); \ |
| } |
| |
| // Fast-path test tas lock |
| #define KMP_TEST_TAS_LOCK(lock, gtid, rc) \ |
| { \ |
| kmp_tas_lock_t *l = (kmp_tas_lock_t *)lock; \ |
| kmp_int32 tas_free = KMP_LOCK_FREE(tas); \ |
| kmp_int32 tas_busy = KMP_LOCK_BUSY(gtid + 1, tas); \ |
| rc = KMP_ATOMIC_LD_RLX(&l->lk.poll) == tas_free && \ |
| __kmp_atomic_compare_store_acq(&l->lk.poll, tas_free, tas_busy); \ |
| } |
| |
| // Fast-path release tas lock |
| #define KMP_RELEASE_TAS_LOCK(lock, gtid) \ |
| { KMP_ATOMIC_ST_REL(&((kmp_tas_lock_t *)lock)->lk.poll, KMP_LOCK_FREE(tas)); } |
| |
| #if KMP_USE_FUTEX |
| |
| #include <sys/syscall.h> |
| #include <unistd.h> |
| #ifndef FUTEX_WAIT |
| #define FUTEX_WAIT 0 |
| #endif |
| #ifndef FUTEX_WAKE |
| #define FUTEX_WAKE 1 |
| #endif |
| |
| // Fast-path acquire futex lock |
| #define KMP_ACQUIRE_FUTEX_LOCK(lock, gtid) \ |
| { \ |
| kmp_futex_lock_t *ftx = (kmp_futex_lock_t *)lock; \ |
| kmp_int32 gtid_code = (gtid + 1) << 1; \ |
| KMP_MB(); \ |
| KMP_FSYNC_PREPARE(ftx); \ |
| kmp_int32 poll_val; \ |
| while ((poll_val = KMP_COMPARE_AND_STORE_RET32( \ |
| &(ftx->lk.poll), KMP_LOCK_FREE(futex), \ |
| KMP_LOCK_BUSY(gtid_code, futex))) != KMP_LOCK_FREE(futex)) { \ |
| kmp_int32 cond = KMP_LOCK_STRIP(poll_val) & 1; \ |
| if (!cond) { \ |
| if (!KMP_COMPARE_AND_STORE_RET32(&(ftx->lk.poll), poll_val, \ |
| poll_val | \ |
| KMP_LOCK_BUSY(1, futex))) { \ |
| continue; \ |
| } \ |
| poll_val |= KMP_LOCK_BUSY(1, futex); \ |
| } \ |
| kmp_int32 rc; \ |
| if ((rc = syscall(__NR_futex, &(ftx->lk.poll), FUTEX_WAIT, poll_val, \ |
| NULL, NULL, 0)) != 0) { \ |
| continue; \ |
| } \ |
| gtid_code |= 1; \ |
| } \ |
| KMP_FSYNC_ACQUIRED(ftx); \ |
| } |
| |
| // Fast-path test futex lock |
| #define KMP_TEST_FUTEX_LOCK(lock, gtid, rc) \ |
| { \ |
| kmp_futex_lock_t *ftx = (kmp_futex_lock_t *)lock; \ |
| if (KMP_COMPARE_AND_STORE_ACQ32(&(ftx->lk.poll), KMP_LOCK_FREE(futex), \ |
| KMP_LOCK_BUSY(gtid + 1 << 1, futex))) { \ |
| KMP_FSYNC_ACQUIRED(ftx); \ |
| rc = TRUE; \ |
| } else { \ |
| rc = FALSE; \ |
| } \ |
| } |
| |
| // Fast-path release futex lock |
| #define KMP_RELEASE_FUTEX_LOCK(lock, gtid) \ |
| { \ |
| kmp_futex_lock_t *ftx = (kmp_futex_lock_t *)lock; \ |
| KMP_MB(); \ |
| KMP_FSYNC_RELEASING(ftx); \ |
| kmp_int32 poll_val = \ |
| KMP_XCHG_FIXED32(&(ftx->lk.poll), KMP_LOCK_FREE(futex)); \ |
| if (KMP_LOCK_STRIP(poll_val) & 1) { \ |
| syscall(__NR_futex, &(ftx->lk.poll), FUTEX_WAKE, \ |
| KMP_LOCK_BUSY(1, futex), NULL, NULL, 0); \ |
| } \ |
| KMP_MB(); \ |
| KMP_YIELD(TCR_4(__kmp_nth) > \ |
| (__kmp_avail_proc ? __kmp_avail_proc : __kmp_xproc)); \ |
| } |
| |
| #endif // KMP_USE_FUTEX |
| |
| #else // KMP_USE_DYNAMIC_LOCK |
| |
| static kmp_user_lock_p __kmp_get_critical_section_ptr(kmp_critical_name *crit, |
| ident_t const *loc, |
| kmp_int32 gtid) { |
| kmp_user_lock_p *lck_pp = (kmp_user_lock_p *)crit; |
| |
| // Because of the double-check, the following load doesn't need to be volatile |
| kmp_user_lock_p lck = (kmp_user_lock_p)TCR_PTR(*lck_pp); |
| |
| if (lck == NULL) { |
| void *idx; |
| |
| // Allocate & initialize the lock. |
| // Remember alloc'ed locks in table in order to free them in __kmp_cleanup() |
| lck = __kmp_user_lock_allocate(&idx, gtid, kmp_lf_critical_section); |
| __kmp_init_user_lock_with_checks(lck); |
| __kmp_set_user_lock_location(lck, loc); |
| #if USE_ITT_BUILD |
| __kmp_itt_critical_creating(lck); |
| // __kmp_itt_critical_creating() should be called *before* the first usage |
| // of underlying lock. It is the only place where we can guarantee it. There |
| // are chances the lock will destroyed with no usage, but it is not a |
| // problem, because this is not real event seen by user but rather setting |
| // name for object (lock). See more details in kmp_itt.h. |
| #endif /* USE_ITT_BUILD */ |
| |
| // Use a cmpxchg instruction to slam the start of the critical section with |
| // the lock pointer. If another thread beat us to it, deallocate the lock, |
| // and use the lock that the other thread allocated. |
| int status = KMP_COMPARE_AND_STORE_PTR(lck_pp, 0, lck); |
| |
| if (status == 0) { |
| // Deallocate the lock and reload the value. |
| #if USE_ITT_BUILD |
| __kmp_itt_critical_destroyed(lck); |
| // Let ITT know the lock is destroyed and the same memory location may be reused |
| // for another purpose. |
| #endif /* USE_ITT_BUILD */ |
| __kmp_destroy_user_lock_with_checks(lck); |
| __kmp_user_lock_free(&idx, gtid, lck); |
| lck = (kmp_user_lock_p)TCR_PTR(*lck_pp); |
| KMP_DEBUG_ASSERT(lck != NULL); |
| } |
| } |
| return lck; |
| } |
| |
| #endif // KMP_USE_DYNAMIC_LOCK |
| |
| /*! |
| @ingroup WORK_SHARING |
| @param loc source location information. |
| @param global_tid global thread number . |
| @param crit identity of the critical section. This could be a pointer to a lock |
| associated with the critical section, or some other suitably unique value. |
| |
| Enter code protected by a `critical` construct. |
| This function blocks until the executing thread can enter the critical section. |
| */ |
| void __kmpc_critical(ident_t *loc, kmp_int32 global_tid, |
| kmp_critical_name *crit) { |
| #if KMP_USE_DYNAMIC_LOCK |
| #if OMPT_SUPPORT && OMPT_OPTIONAL |
| OMPT_STORE_RETURN_ADDRESS(global_tid); |
| #endif // OMPT_SUPPORT |
| __kmpc_critical_with_hint(loc, global_tid, crit, omp_lock_hint_none); |
| #else |
| KMP_COUNT_BLOCK(OMP_CRITICAL); |
| #if OMPT_SUPPORT && OMPT_OPTIONAL |
| ompt_state_t prev_state = ompt_state_undefined; |
| ompt_thread_info_t ti; |
| #endif |
| kmp_user_lock_p lck; |
| |
| KC_TRACE(10, ("__kmpc_critical: called T#%d\n", global_tid)); |
| |
| // TODO: add THR_OVHD_STATE |
| |
| KMP_PUSH_PARTITIONED_TIMER(OMP_critical_wait); |
| KMP_CHECK_USER_LOCK_INIT(); |
| |
| if ((__kmp_user_lock_kind == lk_tas) && |
| (sizeof(lck->tas.lk.poll) <= OMP_CRITICAL_SIZE)) { |
| lck = (kmp_user_lock_p)crit; |
| } |
| #if KMP_USE_FUTEX |
| else if ((__kmp_user_lock_kind == lk_futex) && |
| (sizeof(lck->futex.lk.poll) <= OMP_CRITICAL_SIZE)) { |
| lck = (kmp_user_lock_p)crit; |
| } |
| #endif |
| else { // ticket, queuing or drdpa |
| lck = __kmp_get_critical_section_ptr(crit, loc, global_tid); |
| } |
| |
| if (__kmp_env_consistency_check) |
| __kmp_push_sync(global_tid, ct_critical, loc, lck); |
| |
| // since the critical directive binds to all threads, not just the current |
| // team we have to check this even if we are in a serialized team. |
| // also, even if we are the uber thread, we still have to conduct the lock, |
| // as we have to contend with sibling threads. |
| |
| #if USE_ITT_BUILD |
| __kmp_itt_critical_acquiring(lck); |
| #endif /* USE_ITT_BUILD */ |
| #if OMPT_SUPPORT && OMPT_OPTIONAL |
| OMPT_STORE_RETURN_ADDRESS(gtid); |
| void *codeptr_ra = NULL; |
| if (ompt_enabled.enabled) { |
| ti = __kmp_threads[global_tid]->th.ompt_thread_info; |
| /* OMPT state update */ |
| prev_state = ti.state; |
| ti.wait_id = (ompt_wait_id_t)lck; |
| ti.state = ompt_state_wait_critical; |
| |
| /* OMPT event callback */ |
| codeptr_ra = OMPT_LOAD_RETURN_ADDRESS(gtid); |
| if (ompt_enabled.ompt_callback_mutex_acquire) { |
| ompt_callbacks.ompt_callback(ompt_callback_mutex_acquire)( |
| ompt_mutex_critical, omp_lock_hint_none, __ompt_get_mutex_impl_type(), |
| (ompt_wait_id_t)crit, codeptr_ra); |
| } |
| } |
| #endif |
| // Value of 'crit' should be good for using as a critical_id of the critical |
| // section directive. |
| __kmp_acquire_user_lock_with_checks(lck, global_tid); |
| |
| #if USE_ITT_BUILD |
| __kmp_itt_critical_acquired(lck); |
| #endif /* USE_ITT_BUILD */ |
| #if OMPT_SUPPORT && OMPT_OPTIONAL |
| if (ompt_enabled.enabled) { |
| /* OMPT state update */ |
| ti.state = prev_state; |
| ti.wait_id = 0; |
| |
| /* OMPT event callback */ |
| if (ompt_enabled.ompt_callback_mutex_acquired) { |
| ompt_callbacks.ompt_callback(ompt_callback_mutex_acquired)( |
| ompt_mutex_critical, (ompt_wait_id_t)crit, codeptr_ra); |
| } |
| } |
| #endif |
| KMP_POP_PARTITIONED_TIMER(); |
| |
| KMP_PUSH_PARTITIONED_TIMER(OMP_critical); |
| KA_TRACE(15, ("__kmpc_critical: done T#%d\n", global_tid)); |
| #endif // KMP_USE_DYNAMIC_LOCK |
| } |
| |
| #if KMP_USE_DYNAMIC_LOCK |
| |
| // Converts the given hint to an internal lock implementation |
| static __forceinline kmp_dyna_lockseq_t __kmp_map_hint_to_lock(uintptr_t hint) { |
| #if KMP_USE_TSX |
| #define KMP_TSX_LOCK(seq) lockseq_##seq |
| #else |
| #define KMP_TSX_LOCK(seq) __kmp_user_lock_seq |
| #endif |
| |
| #if KMP_ARCH_X86 || KMP_ARCH_X86_64 |
| #define KMP_CPUINFO_RTM (__kmp_cpuinfo.rtm) |
| #else |
| #define KMP_CPUINFO_RTM 0 |
| #endif |
| |
| // Hints that do not require further logic |
| if (hint & kmp_lock_hint_hle) |
| return KMP_TSX_LOCK(hle); |
| if (hint & kmp_lock_hint_rtm) |
| return KMP_CPUINFO_RTM ? KMP_TSX_LOCK(rtm) : __kmp_user_lock_seq; |
| if (hint & kmp_lock_hint_adaptive) |
| return KMP_CPUINFO_RTM ? KMP_TSX_LOCK(adaptive) : __kmp_user_lock_seq; |
| |
| // Rule out conflicting hints first by returning the default lock |
| if ((hint & omp_lock_hint_contended) && (hint & omp_lock_hint_uncontended)) |
| return __kmp_user_lock_seq; |
| if ((hint & omp_lock_hint_speculative) && |
| (hint & omp_lock_hint_nonspeculative)) |
| return __kmp_user_lock_seq; |
| |
| // Do not even consider speculation when it appears to be contended |
| if (hint & omp_lock_hint_contended) |
| return lockseq_queuing; |
| |
| // Uncontended lock without speculation |
| if ((hint & omp_lock_hint_uncontended) && !(hint & omp_lock_hint_speculative)) |
| return lockseq_tas; |
| |
| // HLE lock for speculation |
| if (hint & omp_lock_hint_speculative) |
| return KMP_TSX_LOCK(hle); |
| |
| return __kmp_user_lock_seq; |
| } |
| |
| #if OMPT_SUPPORT && OMPT_OPTIONAL |
| #if KMP_USE_DYNAMIC_LOCK |
| static kmp_mutex_impl_t |
| __ompt_get_mutex_impl_type(void *user_lock, kmp_indirect_lock_t *ilock = 0) { |
| if (user_lock) { |
| switch (KMP_EXTRACT_D_TAG(user_lock)) { |
| case 0: |
| break; |
| #if KMP_USE_FUTEX |
| case locktag_futex: |
| return kmp_mutex_impl_queuing; |
| #endif |
| case locktag_tas: |
| return kmp_mutex_impl_spin; |
| #if KMP_USE_TSX |
| case locktag_hle: |
| return kmp_mutex_impl_speculative; |
| #endif |
| default: |
| return kmp_mutex_impl_none; |
| } |
| ilock = KMP_LOOKUP_I_LOCK(user_lock); |
| } |
| KMP_ASSERT(ilock); |
| switch (ilock->type) { |
| #if KMP_USE_TSX |
| case locktag_adaptive: |
| case locktag_rtm: |
| return kmp_mutex_impl_speculative; |
| #endif |
| case locktag_nested_tas: |
| return kmp_mutex_impl_spin; |
| #if KMP_USE_FUTEX |
| case locktag_nested_futex: |
| #endif |
| case locktag_ticket: |
| case locktag_queuing: |
| case locktag_drdpa: |
| case locktag_nested_ticket: |
| case locktag_nested_queuing: |
| case locktag_nested_drdpa: |
| return kmp_mutex_impl_queuing; |
| default: |
| return kmp_mutex_impl_none; |
| } |
| } |
| #else |
| // For locks without dynamic binding |
| static kmp_mutex_impl_t __ompt_get_mutex_impl_type() { |
| switch (__kmp_user_lock_kind) { |
| case lk_tas: |
| return kmp_mutex_impl_spin; |
| #if KMP_USE_FUTEX |
| case lk_futex: |
| #endif |
| case lk_ticket: |
| case lk_queuing: |
| case lk_drdpa: |
| return kmp_mutex_impl_queuing; |
| #if KMP_USE_TSX |
| case lk_hle: |
| case lk_rtm: |
| case lk_adaptive: |
| return kmp_mutex_impl_speculative; |
| #endif |
| default: |
| return kmp_mutex_impl_none; |
| } |
| } |
| #endif // KMP_USE_DYNAMIC_LOCK |
| #endif // OMPT_SUPPORT && OMPT_OPTIONAL |
| |
| /*! |
| @ingroup WORK_SHARING |
| @param loc source location information. |
| @param global_tid global thread number. |
| @param crit identity of the critical section. This could be a pointer to a lock |
| associated with the critical section, or some other suitably unique value. |
| @param hint the lock hint. |
| |
| Enter code protected by a `critical` construct with a hint. The hint value is |
| used to suggest a lock implementation. This function blocks until the executing |
| thread can enter the critical section unless the hint suggests use of |
| speculative execution and the hardware supports it. |
| */ |
| void __kmpc_critical_with_hint(ident_t *loc, kmp_int32 global_tid, |
| kmp_critical_name *crit, uint32_t hint) { |
| KMP_COUNT_BLOCK(OMP_CRITICAL); |
| kmp_user_lock_p lck; |
| #if OMPT_SUPPORT && OMPT_OPTIONAL |
| ompt_state_t prev_state = ompt_state_undefined; |
| ompt_thread_info_t ti; |
| // This is the case, if called from __kmpc_critical: |
| void *codeptr = OMPT_LOAD_RETURN_ADDRESS(global_tid); |
| if (!codeptr) |
| codeptr = OMPT_GET_RETURN_ADDRESS(0); |
| #endif |
| |
| KC_TRACE(10, ("__kmpc_critical: called T#%d\n", global_tid)); |
| |
| kmp_dyna_lock_t *lk = (kmp_dyna_lock_t *)crit; |
| // Check if it is initialized. |
| KMP_PUSH_PARTITIONED_TIMER(OMP_critical_wait); |
| if (*lk == 0) { |
| kmp_dyna_lockseq_t lckseq = __kmp_map_hint_to_lock(hint); |
| if (KMP_IS_D_LOCK(lckseq)) { |
| KMP_COMPARE_AND_STORE_ACQ32((volatile kmp_int32 *)crit, 0, |
| KMP_GET_D_TAG(lckseq)); |
| } else { |
| __kmp_init_indirect_csptr(crit, loc, global_tid, KMP_GET_I_TAG(lckseq)); |
| } |
| } |
| // Branch for accessing the actual lock object and set operation. This |
| // branching is inevitable since this lock initialization does not follow the |
| // normal dispatch path (lock table is not used). |
| if (KMP_EXTRACT_D_TAG(lk) != 0) { |
| lck = (kmp_user_lock_p)lk; |
| if (__kmp_env_consistency_check) { |
| __kmp_push_sync(global_tid, ct_critical, loc, lck, |
| __kmp_map_hint_to_lock(hint)); |
| } |
| #if USE_ITT_BUILD |
| __kmp_itt_critical_acquiring(lck); |
| #endif |
| #if OMPT_SUPPORT && OMPT_OPTIONAL |
| if (ompt_enabled.enabled) { |
| ti = __kmp_threads[global_tid]->th.ompt_thread_info; |
| /* OMPT state update */ |
| prev_state = ti.state; |
| ti.wait_id = (ompt_wait_id_t)lck; |
| ti.state = ompt_state_wait_critical; |
| |
| /* OMPT event callback */ |
| if (ompt_enabled.ompt_callback_mutex_acquire) { |
| ompt_callbacks.ompt_callback(ompt_callback_mutex_acquire)( |
| ompt_mutex_critical, (unsigned int)hint, |
| __ompt_get_mutex_impl_type(crit), (ompt_wait_id_t)crit, codeptr); |
| } |
| } |
| #endif |
| #if KMP_USE_INLINED_TAS |
| if (__kmp_user_lock_seq == lockseq_tas && !__kmp_env_consistency_check) { |
| KMP_ACQUIRE_TAS_LOCK(lck, global_tid); |
| } else |
| #elif KMP_USE_INLINED_FUTEX |
| if (__kmp_user_lock_seq == lockseq_futex && !__kmp_env_consistency_check) { |
| KMP_ACQUIRE_FUTEX_LOCK(lck, global_tid); |
| } else |
| #endif |
| { |
| KMP_D_LOCK_FUNC(lk, set)(lk, global_tid); |
| } |
| } else { |
| kmp_indirect_lock_t *ilk = *((kmp_indirect_lock_t **)lk); |
| lck = ilk->lock; |
| if (__kmp_env_consistency_check) { |
| __kmp_push_sync(global_tid, ct_critical, loc, lck, |
| __kmp_map_hint_to_lock(hint)); |
| } |
| #if USE_ITT_BUILD |
| __kmp_itt_critical_acquiring(lck); |
| #endif |
| #if OMPT_SUPPORT && OMPT_OPTIONAL |
| if (ompt_enabled.enabled) { |
| ti = __kmp_threads[global_tid]->th.ompt_thread_info; |
| /* OMPT state update */ |
| prev_state = ti.state; |
| ti.wait_id = (ompt_wait_id_t)lck; |
| ti.state = ompt_state_wait_critical; |
| |
| /* OMPT event callback */ |
| if (ompt_enabled.ompt_callback_mutex_acquire) { |
| ompt_callbacks.ompt_callback(ompt_callback_mutex_acquire)( |
| ompt_mutex_critical, (unsigned int)hint, |
| __ompt_get_mutex_impl_type(0, ilk), (ompt_wait_id_t)crit, codeptr); |
| } |
| } |
| #endif |
| KMP_I_LOCK_FUNC(ilk, set)(lck, global_tid); |
| } |
| KMP_POP_PARTITIONED_TIMER(); |
| |
| #if USE_ITT_BUILD |
| __kmp_itt_critical_acquired(lck); |
| #endif /* USE_ITT_BUILD */ |
| #if OMPT_SUPPORT && OMPT_OPTIONAL |
| if (ompt_enabled.enabled) { |
| /* OMPT state update */ |
| ti.state = prev_state; |
| ti.wait_id = 0; |
| |
| /* OMPT event callback */ |
| if (ompt_enabled.ompt_callback_mutex_acquired) { |
| ompt_callbacks.ompt_callback(ompt_callback_mutex_acquired)( |
| ompt_mutex_critical, (ompt_wait_id_t)crit, codeptr); |
| } |
| } |
| #endif |
| |
| KMP_PUSH_PARTITIONED_TIMER(OMP_critical); |
| KA_TRACE(15, ("__kmpc_critical: done T#%d\n", global_tid)); |
| } // __kmpc_critical_with_hint |
| |
| #endif // KMP_USE_DYNAMIC_LOCK |
| |
| /*! |
| @ingroup WORK_SHARING |
| @param loc source location information. |
| @param global_tid global thread number . |
| @param crit identity of the critical section. This could be a pointer to a lock |
| associated with the critical section, or some other suitably unique value. |
| |
| Leave a critical section, releasing any lock that was held during its execution. |
| */ |
| void __kmpc_end_critical(ident_t *loc, kmp_int32 global_tid, |
| kmp_critical_name *crit) { |
| kmp_user_lock_p lck; |
| |
| KC_TRACE(10, ("__kmpc_end_critical: called T#%d\n", global_tid)); |
| |
| #if KMP_USE_DYNAMIC_LOCK |
| if (KMP_IS_D_LOCK(__kmp_user_lock_seq)) { |
| lck = (kmp_user_lock_p)crit; |
| KMP_ASSERT(lck != NULL); |
| if (__kmp_env_consistency_check) { |
| __kmp_pop_sync(global_tid, ct_critical, loc); |
| } |
| #if USE_ITT_BUILD |
| __kmp_itt_critical_releasing(lck); |
| #endif |
| #if KMP_USE_INLINED_TAS |
| if (__kmp_user_lock_seq == lockseq_tas && !__kmp_env_consistency_check) { |
| KMP_RELEASE_TAS_LOCK(lck, global_tid); |
| } else |
| #elif KMP_USE_INLINED_FUTEX |
| if (__kmp_user_lock_seq == lockseq_futex && !__kmp_env_consistency_check) { |
| KMP_RELEASE_FUTEX_LOCK(lck, global_tid); |
| } else |
| #endif |
| { |
| KMP_D_LOCK_FUNC(lck, unset)((kmp_dyna_lock_t *)lck, global_tid); |
| } |
| } else { |
| kmp_indirect_lock_t *ilk = |
| (kmp_indirect_lock_t *)TCR_PTR(*((kmp_indirect_lock_t **)crit)); |
| KMP_ASSERT(ilk != NULL); |
| lck = ilk->lock; |
| if (__kmp_env_consistency_check) { |
| __kmp_pop_sync(global_tid, ct_critical, loc); |
| } |
| #if USE_ITT_BUILD |
| __kmp_itt_critical_releasing(lck); |
| #endif |
| KMP_I_LOCK_FUNC(ilk, unset)(lck, global_tid); |
| } |
| |
| #else // KMP_USE_DYNAMIC_LOCK |
| |
| if ((__kmp_user_lock_kind == lk_tas) && |
| (sizeof(lck->tas.lk.poll) <= OMP_CRITICAL_SIZE)) { |
| lck = (kmp_user_lock_p)crit; |
| } |
| #if KMP_USE_FUTEX |
| else if ((__kmp_user_lock_kind == lk_futex) && |
| (sizeof(lck->futex.lk.poll) <= OMP_CRITICAL_SIZE)) { |
| lck = (kmp_user_lock_p)crit; |
| } |
| #endif |
| else { // ticket, queuing or drdpa |
| lck = (kmp_user_lock_p)TCR_PTR(*((kmp_user_lock_p *)crit)); |
| } |
| |
| KMP_ASSERT(lck != NULL); |
| |
| if (__kmp_env_consistency_check) |
| __kmp_pop_sync(global_tid, ct_critical, loc); |
| |
| #if USE_ITT_BUILD |
| __kmp_itt_critical_releasing(lck); |
| #endif /* USE_ITT_BUILD */ |
| // Value of 'crit' should be good for using as a critical_id of the critical |
| // section directive. |
| __kmp_release_user_lock_with_checks(lck, global_tid); |
| |
| #endif // KMP_USE_DYNAMIC_LOCK |
| |
| #if OMPT_SUPPORT && OMPT_OPTIONAL |
| /* OMPT release event triggers after lock is released; place here to trigger |
| * for all #if branches */ |
| OMPT_STORE_RETURN_ADDRESS(global_tid); |
| if (ompt_enabled.ompt_callback_mutex_released) { |
| ompt_callbacks.ompt_callback(ompt_callback_mutex_released)( |
| ompt_mutex_critical, (ompt_wait_id_t)crit, OMPT_LOAD_RETURN_ADDRESS(0)); |
| } |
| #endif |
| |
| KMP_POP_PARTITIONED_TIMER(); |
| KA_TRACE(15, ("__kmpc_end_critical: done T#%d\n", global_tid)); |
| } |
| |
| /*! |
| @ingroup SYNCHRONIZATION |
| @param loc source location information |
| @param global_tid thread id. |
| @return one if the thread should execute the master block, zero otherwise |
| |
| Start execution of a combined barrier and master. The barrier is executed inside |
| this function. |
| */ |
| kmp_int32 __kmpc_barrier_master(ident_t *loc, kmp_int32 global_tid) { |
| int status; |
| |
| KC_TRACE(10, ("__kmpc_barrier_master: called T#%d\n", global_tid)); |
| |
| if (!TCR_4(__kmp_init_parallel)) |
| __kmp_parallel_initialize(); |
| |
| #if OMP_50_ENABLED |
| __kmp_resume_if_soft_paused(); |
| #endif |
| |
| if (__kmp_env_consistency_check) |
| __kmp_check_barrier(global_tid, ct_barrier, loc); |
| |
| #if OMPT_SUPPORT |
| ompt_frame_t *ompt_frame; |
| if (ompt_enabled.enabled) { |
| __ompt_get_task_info_internal(0, NULL, NULL, &ompt_frame, NULL, NULL); |
| if (ompt_frame->enter_frame.ptr == NULL) |
| ompt_frame->enter_frame.ptr = OMPT_GET_FRAME_ADDRESS(0); |
| OMPT_STORE_RETURN_ADDRESS(global_tid); |
| } |
| #endif |
| #if USE_ITT_NOTIFY |
| __kmp_threads[global_tid]->th.th_ident = loc; |
| #endif |
| status = __kmp_barrier(bs_plain_barrier, global_tid, TRUE, 0, NULL, NULL); |
| #if OMPT_SUPPORT && OMPT_OPTIONAL |
| if (ompt_enabled.enabled) { |
| ompt_frame->enter_frame = ompt_data_none; |
| } |
| #endif |
| |
| return (status != 0) ? 0 : 1; |
| } |
| |
| /*! |
| @ingroup SYNCHRONIZATION |
| @param loc source location information |
| @param global_tid thread id. |
| |
| Complete the execution of a combined barrier and master. This function should |
| only be called at the completion of the <tt>master</tt> code. Other threads will |
| still be waiting at the barrier and this call releases them. |
| */ |
| void __kmpc_end_barrier_master(ident_t *loc, kmp_int32 global_tid) { |
| KC_TRACE(10, ("__kmpc_end_barrier_master: called T#%d\n", global_tid)); |
| |
| __kmp_end_split_barrier(bs_plain_barrier, global_tid); |
| } |
| |
| /*! |
| @ingroup SYNCHRONIZATION |
| @param loc source location information |
| @param global_tid thread id. |
| @return one if the thread should execute the master block, zero otherwise |
| |
| Start execution of a combined barrier and master(nowait) construct. |
| The barrier is executed inside this function. |
| There is no equivalent "end" function, since the |
| */ |
| kmp_int32 __kmpc_barrier_master_nowait(ident_t *loc, kmp_int32 global_tid) { |
| kmp_int32 ret; |
| |
| KC_TRACE(10, ("__kmpc_barrier_master_nowait: called T#%d\n", global_tid)); |
| |
| if (!TCR_4(__kmp_init_parallel)) |
| __kmp_parallel_initialize(); |
| |
| #if OMP_50_ENABLED |
| __kmp_resume_if_soft_paused(); |
| #endif |
| |
| if (__kmp_env_consistency_check) { |
| if (loc == 0) { |
| KMP_WARNING(ConstructIdentInvalid); // ??? What does it mean for the user? |
| } |
| __kmp_check_barrier(global_tid, ct_barrier, loc); |
| } |
| |
| #if OMPT_SUPPORT |
| ompt_frame_t *ompt_frame; |
| if (ompt_enabled.enabled) { |
| __ompt_get_task_info_internal(0, NULL, NULL, &ompt_frame, NULL, NULL); |
| if (ompt_frame->enter_frame.ptr == NULL) |
| ompt_frame->enter_frame.ptr = OMPT_GET_FRAME_ADDRESS(0); |
| OMPT_STORE_RETURN_ADDRESS(global_tid); |
| } |
| #endif |
| #if USE_ITT_NOTIFY |
| __kmp_threads[global_tid]->th.th_ident = loc; |
| #endif |
| __kmp_barrier(bs_plain_barrier, global_tid, FALSE, 0, NULL, NULL); |
| #if OMPT_SUPPORT && OMPT_OPTIONAL |
| if (ompt_enabled.enabled) { |
| ompt_frame->enter_frame = ompt_data_none; |
| } |
| #endif |
| |
| ret = __kmpc_master(loc, global_tid); |
| |
| if (__kmp_env_consistency_check) { |
| /* there's no __kmpc_end_master called; so the (stats) */ |
| /* actions of __kmpc_end_master are done here */ |
| |
| if (global_tid < 0) { |
| KMP_WARNING(ThreadIdentInvalid); |
| } |
| if (ret) { |
| /* only one thread should do the pop since only */ |
| /* one did the push (see __kmpc_master()) */ |
| |
| __kmp_pop_sync(global_tid, ct_master, loc); |
| } |
| } |
| |
| return (ret); |
| } |
| |
| /* The BARRIER for a SINGLE process section is always explicit */ |
| /*! |
| @ingroup WORK_SHARING |
| @param loc source location information |
| @param global_tid global thread number |
| @return One if this thread should execute the single construct, zero otherwise. |
| |
| Test whether to execute a <tt>single</tt> construct. |
| There are no implicit barriers in the two "single" calls, rather the compiler |
| should introduce an explicit barrier if it is required. |
| */ |
| |
| kmp_int32 __kmpc_single(ident_t *loc, kmp_int32 global_tid) { |
| kmp_int32 rc = __kmp_enter_single(global_tid, loc, TRUE); |
| |
| if (rc) { |
| // We are going to execute the single statement, so we should count it. |
| KMP_COUNT_BLOCK(OMP_SINGLE); |
| KMP_PUSH_PARTITIONED_TIMER(OMP_single); |
| } |
| |
| #if OMPT_SUPPORT && OMPT_OPTIONAL |
| kmp_info_t *this_thr = __kmp_threads[global_tid]; |
| kmp_team_t *team = this_thr->th.th_team; |
| int tid = __kmp_tid_from_gtid(global_tid); |
| |
| if (ompt_enabled.enabled) { |
| if (rc) { |
| if (ompt_enabled.ompt_callback_work) { |
| ompt_callbacks.ompt_callback(ompt_callback_work)( |
| ompt_work_single_executor, ompt_scope_begin, |
| &(team->t.ompt_team_info.parallel_data), |
| &(team->t.t_implicit_task_taskdata[tid].ompt_task_info.task_data), |
| 1, OMPT_GET_RETURN_ADDRESS(0)); |
| } |
| } else { |
| if (ompt_enabled.ompt_callback_work) { |
| ompt_callbacks.ompt_callback(ompt_callback_work)( |
| ompt_work_single_other, ompt_scope_begin, |
| &(team->t.ompt_team_info.parallel_data), |
| &(team->t.t_implicit_task_taskdata[tid].ompt_task_info.task_data), |
| 1, OMPT_GET_RETURN_ADDRESS(0)); |
| ompt_callbacks.ompt_callback(ompt_callback_work)( |
| ompt_work_single_other, ompt_scope_end, |
| &(team->t.ompt_team_info.parallel_data), |
| &(team->t.t_implicit_task_taskdata[tid].ompt_task_info.task_data), |
| 1, OMPT_GET_RETURN_ADDRESS(0)); |
| } |
| } |
| } |
| #endif |
| |
| return rc; |
| } |
| |
| /*! |
| @ingroup WORK_SHARING |
| @param loc source location information |
| @param global_tid global thread number |
| |
| Mark the end of a <tt>single</tt> construct. This function should |
| only be called by the thread that executed the block of code protected |
| by the `single` construct. |
| */ |
| void __kmpc_end_single(ident_t *loc, kmp_int32 global_tid) { |
| __kmp_exit_single(global_tid); |
| KMP_POP_PARTITIONED_TIMER(); |
| |
| #if OMPT_SUPPORT && OMPT_OPTIONAL |
| kmp_info_t *this_thr = __kmp_threads[global_tid]; |
| kmp_team_t *team = this_thr->th.th_team; |
| int tid = __kmp_tid_from_gtid(global_tid); |
| |
| if (ompt_enabled.ompt_callback_work) { |
| ompt_callbacks.ompt_callback(ompt_callback_work)( |
| ompt_work_single_executor, ompt_scope_end, |
| &(team->t.ompt_team_info.parallel_data), |
| &(team->t.t_implicit_task_taskdata[tid].ompt_task_info.task_data), 1, |
| OMPT_GET_RETURN_ADDRESS(0)); |
| } |
| #endif |
| } |
| |
| /*! |
| @ingroup WORK_SHARING |
| @param loc Source location |
| @param global_tid Global thread id |
| |
| Mark the end of a statically scheduled loop. |
| */ |
| void __kmpc_for_static_fini(ident_t *loc, kmp_int32 global_tid) { |
| KMP_POP_PARTITIONED_TIMER(); |
| KE_TRACE(10, ("__kmpc_for_static_fini called T#%d\n", global_tid)); |
| |
| #if OMPT_SUPPORT && OMPT_OPTIONAL |
| if (ompt_enabled.ompt_callback_work) { |
| ompt_work_t ompt_work_type = ompt_work_loop; |
| ompt_team_info_t *team_info = __ompt_get_teaminfo(0, NULL); |
| ompt_task_info_t *task_info = __ompt_get_task_info_object(0); |
| // Determine workshare type |
| if (loc != NULL) { |
| if ((loc->flags & KMP_IDENT_WORK_LOOP) != 0) { |
| ompt_work_type = ompt_work_loop; |
| } else if ((loc->flags & KMP_IDENT_WORK_SECTIONS) != 0) { |
| ompt_work_type = ompt_work_sections; |
| } else if ((loc->flags & KMP_IDENT_WORK_DISTRIBUTE) != 0) { |
| ompt_work_type = ompt_work_distribute; |
| } else { |
| // use default set above. |
| // a warning about this case is provided in __kmpc_for_static_init |
| } |
| KMP_DEBUG_ASSERT(ompt_work_type); |
| } |
| ompt_callbacks.ompt_callback(ompt_callback_work)( |
| ompt_work_type, ompt_scope_end, &(team_info->parallel_data), |
| &(task_info->task_data), 0, OMPT_GET_RETURN_ADDRESS(0)); |
| } |
| #endif |
| if (__kmp_env_consistency_check) |
| __kmp_pop_workshare(global_tid, ct_pdo, loc); |
| } |
| |
| // User routines which take C-style arguments (call by value) |
| // different from the Fortran equivalent routines |
| |
| void ompc_set_num_threads(int arg) { |
| // !!!!! TODO: check the per-task binding |
| __kmp_set_num_threads(arg, __kmp_entry_gtid()); |
| } |
| |
| void ompc_set_dynamic(int flag) { |
| kmp_info_t *thread; |
| |
| /* For the thread-private implementation of the internal controls */ |
| thread = __kmp_entry_thread(); |
| |
| __kmp_save_internal_controls(thread); |
| |
| set__dynamic(thread, flag ? TRUE : FALSE); |
| } |
| |
| void ompc_set_nested(int flag) { |
| kmp_info_t *thread; |
| |
| /* For the thread-private internal controls implementation */ |
| thread = __kmp_entry_thread(); |
| |
| __kmp_save_internal_controls(thread); |
| |
| set__nested(thread, flag ? TRUE : FALSE); |
| } |
| |
| void ompc_set_max_active_levels(int max_active_levels) { |
| /* TO DO */ |
| /* we want per-task implementation of this internal control */ |
| |
| /* For the per-thread internal controls implementation */ |
| __kmp_set_max_active_levels(__kmp_entry_gtid(), max_active_levels); |
| } |
| |
| void ompc_set_schedule(omp_sched_t kind, int modifier) { |
| // !!!!! TODO: check the per-task binding |
| __kmp_set_schedule(__kmp_entry_gtid(), (kmp_sched_t)kind, modifier); |
| } |
| |
| int ompc_get_ancestor_thread_num(int level) { |
| return __kmp_get_ancestor_thread_num(__kmp_entry_gtid(), level); |
| } |
| |
| int ompc_get_team_size(int level) { |
| return __kmp_get_team_size(__kmp_entry_gtid(), level); |
| } |
| |
| #if OMP_50_ENABLED |
| /* OpenMP 5.0 Affinity Format API */ |
| |
| void ompc_set_affinity_format(char const *format) { |
| if (!__kmp_init_serial) { |
| __kmp_serial_initialize(); |
| } |
| __kmp_strncpy_truncate(__kmp_affinity_format, KMP_AFFINITY_FORMAT_SIZE, |
| format, KMP_STRLEN(format) + 1); |
| } |
| |
| size_t ompc_get_affinity_format(char *buffer, size_t size) { |
| size_t format_size; |
| if (!__kmp_init_serial) { |
| __kmp_serial_initialize(); |
| } |
| format_size = KMP_STRLEN(__kmp_affinity_format); |
| if (buffer && size) { |
| __kmp_strncpy_truncate(buffer, size, __kmp_affinity_format, |
| format_size + 1); |
| } |
| return format_size; |
| } |
| |
| void ompc_display_affinity(char const *format) { |
| int gtid; |
| if (!TCR_4(__kmp_init_middle)) { |
| __kmp_middle_initialize(); |
| } |
| gtid = __kmp_get_gtid(); |
| __kmp_aux_display_affinity(gtid, format); |
| } |
| |
| size_t ompc_capture_affinity(char *buffer, size_t buf_size, |
| char const *format) { |
| int gtid; |
| size_t num_required; |
| kmp_str_buf_t capture_buf; |
| if (!TCR_4(__kmp_init_middle)) { |
| __kmp_middle_initialize(); |
| } |
| gtid = __kmp_get_gtid(); |
| __kmp_str_buf_init(&capture_buf); |
| num_required = __kmp_aux_capture_affinity(gtid, format, &capture_buf); |
| if (buffer && buf_size) { |
| __kmp_strncpy_truncate(buffer, buf_size, capture_buf.str, |
| capture_buf.used + 1); |
| } |
| __kmp_str_buf_free(&capture_buf); |
| return num_required; |
| } |
| #endif /* OMP_50_ENABLED */ |
| |
| void kmpc_set_stacksize(int arg) { |
| // __kmp_aux_set_stacksize initializes the library if needed |
| __kmp_aux_set_stacksize(arg); |
| } |
| |
| void kmpc_set_stacksize_s(size_t arg) { |
| // __kmp_aux_set_stacksize initializes the library if needed |
| __kmp_aux_set_stacksize(arg); |
| } |
| |
| void kmpc_set_blocktime(int arg) { |
| int gtid, tid; |
| kmp_info_t *thread; |
| |
| gtid = __kmp_entry_gtid(); |
| tid = __kmp_tid_from_gtid(gtid); |
| thread = __kmp_thread_from_gtid(gtid); |
| |
| __kmp_aux_set_blocktime(arg, thread, tid); |
| } |
| |
| void kmpc_set_library(int arg) { |
| // __kmp_user_set_library initializes the library if needed |
| __kmp_user_set_library((enum library_type)arg); |
| } |
| |
| void kmpc_set_defaults(char const *str) { |
| // __kmp_aux_set_defaults initializes the library if needed |
| __kmp_aux_set_defaults(str, KMP_STRLEN(str)); |
| } |
| |
| void kmpc_set_disp_num_buffers(int arg) { |
| // ignore after initialization because some teams have already |
| // allocated dispatch buffers |
| if (__kmp_init_serial == 0 && arg > 0) |
| __kmp_dispatch_num_buffers = arg; |
| } |
| |
| int kmpc_set_affinity_mask_proc(int proc, void **mask) { |
| #if defined(KMP_STUB) || !KMP_AFFINITY_SUPPORTED |
| return -1; |
| #else |
| if (!TCR_4(__kmp_init_middle)) { |
| __kmp_middle_initialize(); |
| } |
| return __kmp_aux_set_affinity_mask_proc(proc, mask); |
| #endif |
| } |
| |
| int kmpc_unset_affinity_mask_proc(int proc, void **mask) { |
| #if defined(KMP_STUB) || !KMP_AFFINITY_SUPPORTED |
| return -1; |
| #else |
| if (!TCR_4(__kmp_init_middle)) { |
| __kmp_middle_initialize(); |
| } |
| return __kmp_aux_unset_affinity_mask_proc(proc, mask); |
| #endif |
| } |
| |
| int kmpc_get_affinity_mask_proc(int proc, void **mask) { |
| #if defined(KMP_STUB) || !KMP_AFFINITY_SUPPORTED |
| return -1; |
| #else |
| if (!TCR_4(__kmp_init_middle)) { |
| __kmp_middle_initialize(); |
| } |
| return __kmp_aux_get_affinity_mask_proc(proc, mask); |
| #endif |
| } |
| |
| /* -------------------------------------------------------------------------- */ |
| /*! |
| @ingroup THREADPRIVATE |
| @param loc source location information |
| @param gtid global thread number |
| @param cpy_size size of the cpy_data buffer |
| @param cpy_data pointer to data to be copied |
| @param cpy_func helper function to call for copying data |
| @param didit flag variable: 1=single thread; 0=not single thread |
| |
| __kmpc_copyprivate implements the interface for the private data broadcast |
| needed for the copyprivate clause associated with a single region in an |
| OpenMP<sup>*</sup> program (both C and Fortran). |
| All threads participating in the parallel region call this routine. |
| One of the threads (called the single thread) should have the <tt>didit</tt> |
| variable set to 1 and all other threads should have that variable set to 0. |
| All threads pass a pointer to a data buffer (cpy_data) that they have built. |
| |
| The OpenMP specification forbids the use of nowait on the single region when a |
| copyprivate clause is present. However, @ref __kmpc_copyprivate implements a |
| barrier internally to avoid race conditions, so the code generation for the |
| single region should avoid generating a barrier after the call to @ref |
| __kmpc_copyprivate. |
| |
| The <tt>gtid</tt> parameter is the global thread id for the current thread. |
| The <tt>loc</tt> parameter is a pointer to source location information. |
| |
| Internal implementation: The single thread will first copy its descriptor |
| address (cpy_data) to a team-private location, then the other threads will each |
| call the function pointed to by the parameter cpy_func, which carries out the |
| copy by copying the data using the cpy_data buffer. |
| |
| The cpy_func routine used for the copy and the contents of the data area defined |
| by cpy_data and cpy_size may be built in any fashion that will allow the copy |
| to be done. For instance, the cpy_data buffer can hold the actual data to be |
| copied or it may hold a list of pointers to the data. The cpy_func routine must |
| interpret the cpy_data buffer appropriately. |
| |
| The interface to cpy_func is as follows: |
| @code |
| void cpy_func( void *destination, void *source ) |
| @endcode |
| where void *destination is the cpy_data pointer for the thread being copied to |
| and void *source is the cpy_data pointer for the thread being copied from. |
| */ |
| void __kmpc_copyprivate(ident_t *loc, kmp_int32 gtid, size_t cpy_size, |
| void *cpy_data, void (*cpy_func)(void *, void *), |
| kmp_int32 didit) { |
| void **data_ptr; |
| |
| KC_TRACE(10, ("__kmpc_copyprivate: called T#%d\n", gtid)); |
| |
| KMP_MB(); |
| |
| data_ptr = &__kmp_team_from_gtid(gtid)->t.t_copypriv_data; |
| |
| if (__kmp_env_consistency_check) { |
| if (loc == 0) { |
| KMP_WARNING(ConstructIdentInvalid); |
| } |
| } |
| |
| // ToDo: Optimize the following two barriers into some kind of split barrier |
| |
| if (didit) |
| *data_ptr = cpy_data; |
| |
| #if OMPT_SUPPORT |
| ompt_frame_t *ompt_frame; |
| if (ompt_enabled.enabled) { |
| __ompt_get_task_info_internal(0, NULL, NULL, &ompt_frame, NULL, NULL); |
| if (ompt_frame->enter_frame.ptr == NULL) |
| ompt_frame->enter_frame.ptr = OMPT_GET_FRAME_ADDRESS(0); |
| OMPT_STORE_RETURN_ADDRESS(gtid); |
| } |
| #endif |
| /* This barrier is not a barrier region boundary */ |
| #if USE_ITT_NOTIFY |
| __kmp_threads[gtid]->th.th_ident = loc; |
| #endif |
| __kmp_barrier(bs_plain_barrier, gtid, FALSE, 0, NULL, NULL); |
| |
| if (!didit) |
| (*cpy_func)(cpy_data, *data_ptr); |
| |
| // Consider next barrier a user-visible barrier for barrier region boundaries |
| // Nesting checks are already handled by the single construct checks |
| |
| #if OMPT_SUPPORT |
| if (ompt_enabled.enabled) { |
| OMPT_STORE_RETURN_ADDRESS(gtid); |
| } |
| #endif |
| #if USE_ITT_NOTIFY |
| __kmp_threads[gtid]->th.th_ident = loc; // TODO: check if it is needed (e.g. |
| // tasks can overwrite the location) |
| #endif |
| __kmp_barrier(bs_plain_barrier, gtid, FALSE, 0, NULL, NULL); |
| #if OMPT_SUPPORT && OMPT_OPTIONAL |
| if (ompt_enabled.enabled) { |
| ompt_frame->enter_frame = ompt_data_none; |
| } |
| #endif |
| } |
| |
| /* -------------------------------------------------------------------------- */ |
| |
| #define INIT_LOCK __kmp_init_user_lock_with_checks |
| #define INIT_NESTED_LOCK __kmp_init_nested_user_lock_with_checks |
| #define ACQUIRE_LOCK __kmp_acquire_user_lock_with_checks |
| #define ACQUIRE_LOCK_TIMED __kmp_acquire_user_lock_with_checks_timed |
| #define ACQUIRE_NESTED_LOCK __kmp_acquire_nested_user_lock_with_checks |
| #define ACQUIRE_NESTED_LOCK_TIMED \ |
| __kmp_acquire_nested_user_lock_with_checks_timed |
| #define RELEASE_LOCK __kmp_release_user_lock_with_checks |
| #define RELEASE_NESTED_LOCK __kmp_release_nested_user_lock_with_checks |
| #define TEST_LOCK __kmp_test_user_lock_with_checks |
| #define TEST_NESTED_LOCK __kmp_test_nested_user_lock_with_checks |
| #define DESTROY_LOCK __kmp_destroy_user_lock_with_checks |
| #define DESTROY_NESTED_LOCK __kmp_destroy_nested_user_lock_with_checks |
| |
| // TODO: Make check abort messages use location info & pass it into |
| // with_checks routines |
| |
| #if KMP_USE_DYNAMIC_LOCK |
| |
| // internal lock initializer |
| static __forceinline void __kmp_init_lock_with_hint(ident_t *loc, void **lock, |
| kmp_dyna_lockseq_t seq) { |
| if (KMP_IS_D_LOCK(seq)) { |
| KMP_INIT_D_LOCK(lock, seq); |
| #if USE_ITT_BUILD |
| __kmp_itt_lock_creating((kmp_user_lock_p)lock, NULL); |
| #endif |
| } else { |
| KMP_INIT_I_LOCK(lock, seq); |
| #if USE_ITT_BUILD |
| kmp_indirect_lock_t *ilk = KMP_LOOKUP_I_LOCK(lock); |
| __kmp_itt_lock_creating(ilk->lock, loc); |
| #endif |
| } |
| } |
| |
| // internal nest lock initializer |
| static __forceinline void |
| __kmp_init_nest_lock_with_hint(ident_t *loc, void **lock, |
| kmp_dyna_lockseq_t seq) { |
| #if KMP_USE_TSX |
| // Don't have nested lock implementation for speculative locks |
| if (seq == lockseq_hle || seq == lockseq_rtm || seq == lockseq_adaptive) |
| seq = __kmp_user_lock_seq; |
| #endif |
| switch (seq) { |
| case lockseq_tas: |
| seq = lockseq_nested_tas; |
| break; |
| #if KMP_USE_FUTEX |
| case lockseq_futex: |
| seq = lockseq_nested_futex; |
| break; |
| #endif |
| case lockseq_ticket: |
| seq = lockseq_nested_ticket; |
| break; |
| case lockseq_queuing: |
| seq = lockseq_nested_queuing; |
| break; |
| case lockseq_drdpa: |
| seq = lockseq_nested_drdpa; |
| break; |
| default: |
| seq = lockseq_nested_queuing; |
| } |
| KMP_INIT_I_LOCK(lock, seq); |
| #if USE_ITT_BUILD |
| kmp_indirect_lock_t *ilk = KMP_LOOKUP_I_LOCK(lock); |
| __kmp_itt_lock_creating(ilk->lock, loc); |
| #endif |
| } |
| |
| /* initialize the lock with a hint */ |
| void __kmpc_init_lock_with_hint(ident_t *loc, kmp_int32 gtid, void **user_lock, |
| uintptr_t hint) { |
| KMP_DEBUG_ASSERT(__kmp_init_serial); |
| if (__kmp_env_consistency_check && user_lock == NULL) { |
| KMP_FATAL(LockIsUninitialized, "omp_init_lock_with_hint"); |
| } |
| |
| __kmp_init_lock_with_hint(loc, user_lock, __kmp_map_hint_to_lock(hint)); |
| |
| #if OMPT_SUPPORT && OMPT_OPTIONAL |
| // This is the case, if called from omp_init_lock_with_hint: |
| void *codeptr = OMPT_LOAD_RETURN_ADDRESS(gtid); |
| if (!codeptr) |
| codeptr = OMPT_GET_RETURN_ADDRESS(0); |
| if (ompt_enabled.ompt_callback_lock_init) { |
| ompt_callbacks.ompt_callback(ompt_callback_lock_init)( |
| ompt_mutex_lock, (omp_lock_hint_t)hint, |
| __ompt_get_mutex_impl_type(user_lock), (ompt_wait_id_t)user_lock, |
| codeptr); |
| } |
| #endif |
| } |
| |
| /* initialize the lock with a hint */ |
| void __kmpc_init_nest_lock_with_hint(ident_t *loc, kmp_int32 gtid, |
| void **user_lock, uintptr_t hint) { |
| KMP_DEBUG_ASSERT(__kmp_init_serial); |
| if (__kmp_env_consistency_check && user_lock == NULL) { |
| KMP_FATAL(LockIsUninitialized, "omp_init_nest_lock_with_hint"); |
| } |
| |
| __kmp_init_nest_lock_with_hint(loc, user_lock, __kmp_map_hint_to_lock(hint)); |
| |
| #if OMPT_SUPPORT && OMPT_OPTIONAL |
| // This is the case, if called from omp_init_lock_with_hint: |
| void *codeptr = OMPT_LOAD_RETURN_ADDRESS(gtid); |
| if (!codeptr) |
| codeptr = OMPT_GET_RETURN_ADDRESS(0); |
| if (ompt_enabled.ompt_callback_lock_init) { |
| ompt_callbacks.ompt_callback(ompt_callback_lock_init)( |
| ompt_mutex_nest_lock, (omp_lock_hint_t)hint, |
| __ompt_get_mutex_impl_type(user_lock), (ompt_wait_id_t)user_lock, |
| codeptr); |
| } |
| #endif |
| } |
| |
| #endif // KMP_USE_DYNAMIC_LOCK |
| |
| /* initialize the lock */ |
| void __kmpc_init_lock(ident_t *loc, kmp_int32 gtid, void **user_lock) { |
| #if KMP_USE_DYNAMIC_LOCK |
| |
| KMP_DEBUG_ASSERT(__kmp_init_serial); |
| if (__kmp_env_consistency_check && user_lock == NULL) { |
| KMP_FATAL(LockIsUninitialized, "omp_init_lock"); |
| } |
| __kmp_init_lock_with_hint(loc, user_lock, __kmp_user_lock_seq); |
| |
| #if OMPT_SUPPORT && OMPT_OPTIONAL |
| // This is the case, if called from omp_init_lock_with_hint: |
| void *codeptr = OMPT_LOAD_RETURN_ADDRESS(gtid); |
| if (!codeptr) |
| codeptr = OMPT_GET_RETURN_ADDRESS(0); |
| if (ompt_enabled.ompt_callback_lock_init) { |
| ompt_callbacks.ompt_callback(ompt_callback_lock_init)( |
| ompt_mutex_lock, omp_lock_hint_none, |
| __ompt_get_mutex_impl_type(user_lock), (ompt_wait_id_t)user_lock, |
| codeptr); |
| } |
| #endif |
| |
| #else // KMP_USE_DYNAMIC_LOCK |
| |
| static char const *const func = "omp_init_lock"; |
| kmp_user_lock_p lck; |
| KMP_DEBUG_ASSERT(__kmp_init_serial); |
| |
| if (__kmp_env_consistency_check) { |
| if (user_lock == NULL) { |
| KMP_FATAL(LockIsUninitialized, func); |
| } |
| } |
| |
| KMP_CHECK_USER_LOCK_INIT(); |
| |
| if ((__kmp_user_lock_kind == lk_tas) && |
| (sizeof(lck->tas.lk.poll) <= OMP_LOCK_T_SIZE)) { |
| lck = (kmp_user_lock_p)user_lock; |
| } |
| #if KMP_USE_FUTEX |
| else if ((__kmp_user_lock_kind == lk_futex) && |
| (sizeof(lck->futex.lk.poll) <= OMP_LOCK_T_SIZE)) { |
| lck = (kmp_user_lock_p)user_lock; |
| } |
| #endif |
| else { |
| lck = __kmp_user_lock_allocate(user_lock, gtid, 0); |
| } |
| INIT_LOCK(lck); |
| __kmp_set_user_lock_location(lck, loc); |
| |
| #if OMPT_SUPPORT && OMPT_OPTIONAL |
| // This is the case, if called from omp_init_lock_with_hint: |
| void *codeptr = OMPT_LOAD_RETURN_ADDRESS(gtid); |
| if (!codeptr) |
| codeptr = OMPT_GET_RETURN_ADDRESS(0); |
| if (ompt_enabled.ompt_callback_lock_init) { |
| ompt_callbacks.ompt_callback(ompt_callback_lock_init)( |
| ompt_mutex_lock, omp_lock_hint_none, __ompt_get_mutex_impl_type(), |
| (ompt_wait_id_t)user_lock, codeptr); |
| } |
| #endif |
| |
| #if USE_ITT_BUILD |
| __kmp_itt_lock_creating(lck); |
| #endif /* USE_ITT_BUILD */ |
| |
| #endif // KMP_USE_DYNAMIC_LOCK |
| } // __kmpc_init_lock |
| |
| /* initialize the lock */ |
| void __kmpc_init_nest_lock(ident_t *loc, kmp_int32 gtid, void **user_lock) { |
| #if KMP_USE_DYNAMIC_LOCK |
| |
| KMP_DEBUG_ASSERT(__kmp_init_serial); |
| if (__kmp_env_consistency_check && user_lock == NULL) { |
| KMP_FATAL(LockIsUninitialized, "omp_init_nest_lock"); |
| } |
| __kmp_init_nest_lock_with_hint(loc, user_lock, __kmp_user_lock_seq); |
| |
| #if OMPT_SUPPORT && OMPT_OPTIONAL |
| // This is the case, if called from omp_init_lock_with_hint: |
| void *codeptr = OMPT_LOAD_RETURN_ADDRESS(gtid); |
| if (!codeptr) |
| codeptr = OMPT_GET_RETURN_ADDRESS(0); |
| if (ompt_enabled.ompt_callback_lock_init) { |
| ompt_callbacks.ompt_callback(ompt_callback_lock_init)( |
| ompt_mutex_nest_lock, omp_lock_hint_none, |
| __ompt_get_mutex_impl_type(user_lock), (ompt_wait_id_t)user_lock, |
| codeptr); |
| } |
| #endif |
| |
| #else // KMP_USE_DYNAMIC_LOCK |
| |
| static char const *const func = "omp_init_nest_lock"; |
| kmp_user_lock_p lck; |
| KMP_DEBUG_ASSERT(__kmp_init_serial); |
| |
| if (__kmp_env_consistency_check) { |
| if (user_lock == NULL) { |
| KMP_FATAL(LockIsUninitialized, func); |
| } |
| } |
| |
| KMP_CHECK_USER_LOCK_INIT(); |
| |
| if ((__kmp_user_lock_kind == lk_tas) && |
| (sizeof(lck->tas.lk.poll) + sizeof(lck->tas.lk.depth_locked) <= |
| OMP_NEST_LOCK_T_SIZE)) { |
| lck = (kmp_user_lock_p)user_lock; |
| } |
| #if KMP_USE_FUTEX |
| else if ((__kmp_user_lock_kind == lk_futex) && |
| (sizeof(lck->futex.lk.poll) + sizeof(lck->futex.lk.depth_locked) <= |
| OMP_NEST_LOCK_T_SIZE)) { |
| lck = (kmp_user_lock_p)user_lock; |
| } |
| #endif |
| else { |
| lck = __kmp_user_lock_allocate(user_lock, gtid, 0); |
| } |
| |
| INIT_NESTED_LOCK(lck); |
| __kmp_set_user_lock_location(lck, loc); |
| |
| #if OMPT_SUPPORT && OMPT_OPTIONAL |
| // This is the case, if called from omp_init_lock_with_hint: |
| void *codeptr = OMPT_LOAD_RETURN_ADDRESS(gtid); |
| if (!codeptr) |
| codeptr = OMPT_GET_RETURN_ADDRESS(0); |
| if (ompt_enabled.ompt_callback_lock_init) { |
| ompt_callbacks.ompt_callback(ompt_callback_lock_init)( |
| ompt_mutex_nest_lock, omp_lock_hint_none, __ompt_get_mutex_impl_type(), |
| (ompt_wait_id_t)user_lock, codeptr); |
| } |
| #endif |
| |
| #if USE_ITT_BUILD |
| __kmp_itt_lock_creating(lck); |
| #endif /* USE_ITT_BUILD */ |
| |
| #endif // KMP_USE_DYNAMIC_LOCK |
| } // __kmpc_init_nest_lock |
| |
| void __kmpc_destroy_lock(ident_t *loc, kmp_int32 gtid, void **user_lock) { |
| #if KMP_USE_DYNAMIC_LOCK |
| |
| #if USE_ITT_BUILD |
| kmp_user_lock_p lck; |
| if (KMP_EXTRACT_D_TAG(user_lock) == 0) { |
| lck = ((kmp_indirect_lock_t *)KMP_LOOKUP_I_LOCK(user_lock))->lock; |
| } else { |
| lck = (kmp_user_lock_p)user_lock; |
| } |
| __kmp_itt_lock_destroyed(lck); |
| #endif |
| #if OMPT_SUPPORT && OMPT_OPTIONAL |
| // This is the case, if called from omp_init_lock_with_hint: |
| void *codeptr = OMPT_LOAD_RETURN_ADDRESS(gtid); |
| if (!codeptr) |
| codeptr = OMPT_GET_RETURN_ADDRESS(0); |
| if (ompt_enabled.ompt_callback_lock_destroy) { |
| kmp_user_lock_p lck; |
| if (KMP_EXTRACT_D_TAG(user_lock) == 0) { |
| lck = ((kmp_indirect_lock_t *)KMP_LOOKUP_I_LOCK(user_lock))->lock; |
| } else { |
| lck = (kmp_user_lock_p)user_lock; |
| } |
| ompt_callbacks.ompt_callback(ompt_callback_lock_destroy)( |
| ompt_mutex_lock, (ompt_wait_id_t)user_lock, codeptr); |
| } |
| #endif |
| KMP_D_LOCK_FUNC(user_lock, destroy)((kmp_dyna_lock_t *)user_lock); |
| #else |
| kmp_user_lock_p lck; |
| |
| if ((__kmp_user_lock_kind == lk_tas) && |
| (sizeof(lck->tas.lk.poll) <= OMP_LOCK_T_SIZE)) { |
| lck = (kmp_user_lock_p)user_lock; |
| } |
| #if KMP_USE_FUTEX |
| else if ((__kmp_user_lock_kind == lk_futex) && |
| (sizeof(lck->futex.lk.poll) <= OMP_LOCK_T_SIZE)) { |
| lck = (kmp_user_lock_p)user_lock; |
| } |
| #endif |
| else { |
| lck = __kmp_lookup_user_lock(user_lock, "omp_destroy_lock"); |
| } |
| |
| #if OMPT_SUPPORT && OMPT_OPTIONAL |
| // This is the case, if called from omp_init_lock_with_hint: |
| void *codeptr = OMPT_LOAD_RETURN_ADDRESS(gtid); |
| if (!codeptr) |
| codeptr = OMPT_GET_RETURN_ADDRESS(0); |
| if (ompt_enabled.ompt_callback_lock_destroy) { |
| ompt_callbacks.ompt_callback(ompt_callback_lock_destroy)( |
| ompt_mutex_lock, (ompt_wait_id_t)user_lock, codeptr); |
| } |
| #endif |
| |
| #if USE_ITT_BUILD |
| __kmp_itt_lock_destroyed(lck); |
| #endif /* USE_ITT_BUILD */ |
| DESTROY_LOCK(lck); |
| |
| if ((__kmp_user_lock_kind == lk_tas) && |
| (sizeof(lck->tas.lk.poll) <= OMP_LOCK_T_SIZE)) { |
| ; |
| } |
| #if KMP_USE_FUTEX |
| else if ((__kmp_user_lock_kind == lk_futex) && |
| (sizeof(lck->futex.lk.poll) <= OMP_LOCK_T_SIZE)) { |
| ; |
| } |
| #endif |
| else { |
| __kmp_user_lock_free(user_lock, gtid, lck); |
| } |
| #endif // KMP_USE_DYNAMIC_LOCK |
| } // __kmpc_destroy_lock |
| |
| /* destroy the lock */ |
| void __kmpc_destroy_nest_lock(ident_t *loc, kmp_int32 gtid, void **user_lock) { |
| #if KMP_USE_DYNAMIC_LOCK |
| |
| #if USE_ITT_BUILD |
| kmp_indirect_lock_t *ilk = KMP_LOOKUP_I_LOCK(user_lock); |
| __kmp_itt_lock_destroyed(ilk->lock); |
| #endif |
| #if OMPT_SUPPORT && OMPT_OPTIONAL |
| // This is the case, if called from omp_init_lock_with_hint: |
| void *codeptr = OMPT_LOAD_RETURN_ADDRESS(gtid); |
| if (!codeptr) |
| codeptr = OMPT_GET_RETURN_ADDRESS(0); |
| if (ompt_enabled.ompt_callback_lock_destroy) { |
| ompt_callbacks.ompt_callback(ompt_callback_lock_destroy)( |
| ompt_mutex_nest_lock, (ompt_wait_id_t)user_lock, codeptr); |
| } |
| #endif |
| KMP_D_LOCK_FUNC(user_lock, destroy)((kmp_dyna_lock_t *)user_lock); |
| |
| #else // KMP_USE_DYNAMIC_LOCK |
| |
| kmp_user_lock_p lck; |
| |
| if ((__kmp_user_lock_kind == lk_tas) && |
| (sizeof(lck->tas.lk.poll) + sizeof(lck->tas.lk.depth_locked) <= |
| OMP_NEST_LOCK_T_SIZE)) { |
| lck = (kmp_user_lock_p)user_lock; |
| } |
| #if KMP_USE_FUTEX |
| else if ((__kmp_user_lock_kind == lk_futex) && |
| (sizeof(lck->futex.lk.poll) + sizeof(lck->futex.lk.depth_locked) <= |
| OMP_NEST_LOCK_T_SIZE)) { |
| lck = (kmp_user_lock_p)user_lock; |
| } |
| #endif |
| else { |
| lck = __kmp_lookup_user_lock(user_lock, "omp_destroy_nest_lock"); |
| } |
| |
| #if OMPT_SUPPORT && OMPT_OPTIONAL |
| // This is the case, if called from omp_init_lock_with_hint: |
| void *codeptr = OMPT_LOAD_RETURN_ADDRESS(gtid); |
| if (!codeptr) |
| codeptr = OMPT_GET_RETURN_ADDRESS(0); |
| if (ompt_enabled.ompt_callback_lock_destroy) { |
| ompt_callbacks.ompt_callback(ompt_callback_lock_destroy)( |
| ompt_mutex_nest_lock, (ompt_wait_id_t)user_lock, codeptr); |
| } |
| #endif |
| |
| #if USE_ITT_BUILD |
| __kmp_itt_lock_destroyed(lck); |
| #endif /* USE_ITT_BUILD */ |
| |
| DESTROY_NESTED_LOCK(lck); |
| |
| if ((__kmp_user_lock_kind == lk_tas) && |
| (sizeof(lck->tas.lk.poll) + sizeof(lck->tas.lk.depth_locked) <= |
| OMP_NEST_LOCK_T_SIZE)) { |
| ; |
| } |
| #if KMP_USE_FUTEX |
| else if ((__kmp_user_lock_kind == lk_futex) && |
| (sizeof(lck->futex.lk.poll) + sizeof(lck->futex.lk.depth_locked) <= |
| OMP_NEST_LOCK_T_SIZE)) { |
| ; |
| } |
| #endif |
| else { |
| __kmp_user_lock_free(user_lock, gtid, lck); |
| } |
| #endif // KMP_USE_DYNAMIC_LOCK |
| } // __kmpc_destroy_nest_lock |
| |
| void __kmpc_set_lock(ident_t *loc, kmp_int32 gtid, void **user_lock) { |
| KMP_COUNT_BLOCK(OMP_set_lock); |
| #if KMP_USE_DYNAMIC_LOCK |
| int tag = KMP_EXTRACT_D_TAG(user_lock); |
| #if USE_ITT_BUILD |
| __kmp_itt_lock_acquiring( |
| (kmp_user_lock_p) |
| user_lock); // itt function will get to the right lock object. |
| #endif |
| #if OMPT_SUPPORT && OMPT_OPTIONAL |
| // This is the case, if called from omp_init_lock_with_hint: |
| void *codeptr = OMPT_LOAD_RETURN_ADDRESS(gtid); |
| if (!codeptr) |
| codeptr = OMPT_GET_RETURN_ADDRESS(0); |
| if (ompt_enabled.ompt_callback_mutex_acquire) { |
| ompt_callbacks.ompt_callback(ompt_callback_mutex_acquire)( |
| ompt_mutex_lock, omp_lock_hint_none, |
| __ompt_get_mutex_impl_type(user_lock), (ompt_wait_id_t)user_lock, |
| codeptr); |
| } |
| #endif |
| #if KMP_USE_INLINED_TAS |
| if (tag == locktag_tas && !__kmp_env_consistency_check) { |
| KMP_ACQUIRE_TAS_LOCK(user_lock, gtid); |
| } else |
| #elif KMP_USE_INLINED_FUTEX |
| if (tag == locktag_futex && !__kmp_env_consistency_check) { |
| KMP_ACQUIRE_FUTEX_LOCK(user_lock, gtid); |
| } else |
| #endif |
| { |
| __kmp_direct_set[tag]((kmp_dyna_lock_t *)user_lock, gtid); |
| } |
| #if USE_ITT_BUILD |
| __kmp_itt_lock_acquired((kmp_user_lock_p)user_lock); |
| #endif |
| #if OMPT_SUPPORT && OMPT_OPTIONAL |
| if (ompt_enabled.ompt_callback_mutex_acquired) { |
| ompt_callbacks.ompt_callback(ompt_callback_mutex_acquired)( |
| ompt_mutex_lock, (ompt_wait_id_t)user_lock, codeptr); |
| } |
| #endif |
| |
| #else // KMP_USE_DYNAMIC_LOCK |
| |
| kmp_user_lock_p lck; |
| |
| if ((__kmp_user_lock_kind == lk_tas) && |
| (sizeof(lck->tas.lk.poll) <= OMP_LOCK_T_SIZE)) { |
| lck = (kmp_user_lock_p)user_lock; |
| } |
| #if KMP_USE_FUTEX |
| else if ((__kmp_user_lock_kind == lk_futex) && |
| (sizeof(lck->futex.lk.poll) <= OMP_LOCK_T_SIZE)) { |
| lck = (kmp_user_lock_p)user_lock; |
| } |
| #endif |
| else { |
| lck = __kmp_lookup_user_lock(user_lock, "omp_set_lock"); |
| } |
| |
| #if USE_ITT_BUILD |
| __kmp_itt_lock_acquiring(lck); |
| #endif /* USE_ITT_BUILD */ |
| #if OMPT_SUPPORT && OMPT_OPTIONAL |
| // This is the case, if called from omp_init_lock_with_hint: |
| void *codeptr = OMPT_LOAD_RETURN_ADDRESS(gtid); |
| if (!codeptr) |
| codeptr = OMPT_GET_RETURN_ADDRESS(0); |
| if (ompt_enabled.ompt_callback_mutex_acquire) { |
| ompt_callbacks.ompt_callback(ompt_callback_mutex_acquire)( |
| ompt_mutex_lock, omp_lock_hint_none, __ompt_get_mutex_impl_type(), |
| (ompt_wait_id_t)lck, codeptr); |
| } |
| #endif |
| |
| ACQUIRE_LOCK(lck, gtid); |
| |
| #if USE_ITT_BUILD |
| __kmp_itt_lock_acquired(lck); |
| #endif /* USE_ITT_BUILD */ |
| |
| #if OMPT_SUPPORT && OMPT_OPTIONAL |
| if (ompt_enabled.ompt_callback_mutex_acquired) { |
| ompt_callbacks.ompt_callback(ompt_callback_mutex_acquired)( |
| ompt_mutex_lock, (ompt_wait_id_t)lck, codeptr); |
| } |
| #endif |
| |
| #endif // KMP_USE_DYNAMIC_LOCK |
| } |
| |
| void __kmpc_set_nest_lock(ident_t *loc, kmp_int32 gtid, void **user_lock) { |
| #if KMP_USE_DYNAMIC_LOCK |
| |
| #if USE_ITT_BUILD |
| __kmp_itt_lock_acquiring((kmp_user_lock_p)user_lock); |
| #endif |
| #if OMPT_SUPPORT && OMPT_OPTIONAL |
| // This is the case, if called from omp_init_lock_with_hint: |
| void *codeptr = OMPT_LOAD_RETURN_ADDRESS(gtid); |
| if (!codeptr) |
| codeptr = OMPT_GET_RETURN_ADDRESS(0); |
| if (ompt_enabled.enabled) { |
| if (ompt_enabled.ompt_callback_mutex_acquire) { |
| ompt_callbacks.ompt_callback(ompt_callback_mutex_acquire)( |
| ompt_mutex_nest_lock, omp_lock_hint_none, |
| __ompt_get_mutex_impl_type(user_lock), (ompt_wait_id_t)user_lock, |
| codeptr); |
| } |
| } |
| #endif |
| int acquire_status = |
| KMP_D_LOCK_FUNC(user_lock, set)((kmp_dyna_lock_t *)user_lock, gtid); |
| (void) acquire_status; |
| #if USE_ITT_BUILD |
| __kmp_itt_lock_acquired((kmp_user_lock_p)user_lock); |
| #endif |
| |
| #if OMPT_SUPPORT && OMPT_OPTIONAL |
| if (ompt_enabled.enabled) { |
| if (acquire_status == KMP_LOCK_ACQUIRED_FIRST) { |
| if (ompt_enabled.ompt_callback_mutex_acquired) { |
| // lock_first |
| ompt_callbacks.ompt_callback(ompt_callback_mutex_acquired)( |
| ompt_mutex_nest_lock, (ompt_wait_id_t)user_lock, codeptr); |
| } |
| } else { |
| if (ompt_enabled.ompt_callback_nest_lock) { |
| // lock_next |
| ompt_callbacks.ompt_callback(ompt_callback_nest_lock)( |
| ompt_scope_begin, (ompt_wait_id_t)user_lock, codeptr); |
| } |
| } |
| } |
| #endif |
| |
| #else // KMP_USE_DYNAMIC_LOCK |
| int acquire_status; |
| kmp_user_lock_p lck; |
| |
| if ((__kmp_user_lock_kind == lk_tas) && |
| (sizeof(lck->tas.lk.poll) + sizeof(lck->tas.lk.depth_locked) <= |
| OMP_NEST_LOCK_T_SIZE)) { |
| lck = (kmp_user_lock_p)user_lock; |
| } |
| #if KMP_USE_FUTEX |
| else if ((__kmp_user_lock_kind == lk_futex) && |
| (sizeof(lck->futex.lk.poll) + sizeof(lck->futex.lk.depth_locked) <= |
| OMP_NEST_LOCK_T_SIZE)) { |
| lck = (kmp_user_lock_p)user_lock; |
| } |
| #endif |
| else { |
| lck = __kmp_lookup_user_lock(user_lock, "omp_set_nest_lock"); |
| } |
| |
| #if USE_ITT_BUILD |
| __kmp_itt_lock_acquiring(lck); |
| #endif /* USE_ITT_BUILD */ |
| #if OMPT_SUPPORT && OMPT_OPTIONAL |
| // This is the case, if called from omp_init_lock_with_hint: |
| void *codeptr = OMPT_LOAD_RETURN_ADDRESS(gtid); |
| if (!codeptr) |
| codeptr = OMPT_GET_RETURN_ADDRESS(0); |
| if (ompt_enabled.enabled) { |
| if (ompt_enabled.ompt_callback_mutex_acquire) { |
| ompt_callbacks.ompt_callback(ompt_callback_mutex_acquire)( |
| ompt_mutex_nest_lock, omp_lock_hint_none, |
| __ompt_get_mutex_impl_type(), (ompt_wait_id_t)lck, codeptr); |
| } |
| } |
| #endif |
| |
| ACQUIRE_NESTED_LOCK(lck, gtid, &acquire_status); |
| |
| #if USE_ITT_BUILD |
| __kmp_itt_lock_acquired(lck); |
| #endif /* USE_ITT_BUILD */ |
| |
| #if OMPT_SUPPORT && OMPT_OPTIONAL |
| if (ompt_enabled.enabled) { |
| if (acquire_status == KMP_LOCK_ACQUIRED_FIRST) { |
| if (ompt_enabled.ompt_callback_mutex_acquired) { |
| // lock_first |
| ompt_callbacks.ompt_callback(ompt_callback_mutex_acquired)( |
| ompt_mutex_nest_lock, (ompt_wait_id_t)lck, codeptr); |
| } |
| } else { |
| if (ompt_enabled.ompt_callback_nest_lock) { |
| // lock_next |
| ompt_callbacks.ompt_callback(ompt_callback_nest_lock)( |
| ompt_scope_begin, (ompt_wait_id_t)lck, codeptr); |
| } |
| } |
| } |
| #endif |
| |
| #endif // KMP_USE_DYNAMIC_LOCK |
| } |
| |
| void __kmpc_unset_lock(ident_t *loc, kmp_int32 gtid, void **user_lock) { |
| #if KMP_USE_DYNAMIC_LOCK |
| |
| int tag = KMP_EXTRACT_D_TAG(user_lock); |
| #if USE_ITT_BUILD |
| __kmp_itt_lock_releasing((kmp_user_lock_p)user_lock); |
| #endif |
| #if KMP_USE_INLINED_TAS |
| if (tag == locktag_tas && !__kmp_env_consistency_check) { |
| KMP_RELEASE_TAS_LOCK(user_lock, gtid); |
| } else |
| #elif KMP_USE_INLINED_FUTEX |
| if (tag == locktag_futex && !__kmp_env_consistency_check) { |
| KMP_RELEASE_FUTEX_LOCK(user_lock, gtid); |
| } else |
| #endif |
| { |
| __kmp_direct_unset[tag]((kmp_dyna_lock_t *)user_lock, gtid); |
| } |
| |
| #if OMPT_SUPPORT && OMPT_OPTIONAL |
| // This is the case, if called from omp_init_lock_with_hint: |
| void *codeptr = OMPT_LOAD_RETURN_ADDRESS(gtid); |
| if (!codeptr) |
| codeptr = OMPT_GET_RETURN_ADDRESS(0); |
| if (ompt_enabled.ompt_callback_mutex_released) { |
| ompt_callbacks.ompt_callback(ompt_callback_mutex_released)( |
| ompt_mutex_lock, (ompt_wait_id_t)user_lock, codeptr); |
| } |
| #endif |
| |
| #else // KMP_USE_DYNAMIC_LOCK |
| |
| kmp_user_lock_p lck; |
| |
| /* Can't use serial interval since not block structured */ |
| /* release the lock */ |
| |
| if ((__kmp_user_lock_kind == lk_tas) && |
| (sizeof(lck->tas.lk.poll) <= OMP_LOCK_T_SIZE)) { |
| #if KMP_OS_LINUX && \ |
| (KMP_ARCH_X86 || KMP_ARCH_X86_64 || KMP_ARCH_ARM || KMP_ARCH_AARCH64) |
| // "fast" path implemented to fix customer performance issue |
| #if USE_ITT_BUILD |
| __kmp_itt_lock_releasing((kmp_user_lock_p)user_lock); |
| #endif /* USE_ITT_BUILD */ |
| TCW_4(((kmp_user_lock_p)user_lock)->tas.lk.poll, 0); |
| KMP_MB(); |
| |
| #if OMPT_SUPPORT && OMPT_OPTIONAL |
| // This is the case, if called from omp_init_lock_with_hint: |
| void *codeptr = OMPT_LOAD_RETURN_ADDRESS(gtid); |
| if (!codeptr) |
| codeptr = OMPT_GET_RETURN_ADDRESS(0); |
| if (ompt_enabled.ompt_callback_mutex_released) { |
| ompt_callbacks.ompt_callback(ompt_callback_mutex_released)( |
| ompt_mutex_lock, (ompt_wait_id_t)lck, codeptr); |
| } |
| #endif |
| |
| return; |
| #else |
| lck = (kmp_user_lock_p)user_lock; |
| #endif |
| } |
| #if KMP_USE_FUTEX |
| else if ((__kmp_user_lock_kind == lk_futex) && |
| (sizeof(lck->futex.lk.poll) <= OMP_LOCK_T_SIZE)) { |
| lck = (kmp_user_lock_p)user_lock; |
| } |
| #endif |
| else { |
| lck = __kmp_lookup_user_lock(user_lock, "omp_unset_lock"); |
| } |
| |
| #if USE_ITT_BUILD |
| __kmp_itt_lock_releasing(lck); |
| #endif /* USE_ITT_BUILD */ |
| |
| RELEASE_LOCK(lck, gtid); |
| |
| #if OMPT_SUPPORT && OMPT_OPTIONAL |
| // This is the case, if called from omp_init_lock_with_hint: |
| void *codeptr = OMPT_LOAD_RETURN_ADDRESS(gtid); |
| if (!codeptr) |
| codeptr = OMPT_GET_RETURN_ADDRESS(0); |
| if (ompt_enabled.ompt_callback_mutex_released) { |
| ompt_callbacks.ompt_callback(ompt_callback_mutex_released)( |
| ompt_mutex_lock, (ompt_wait_id_t)lck, codeptr); |
| } |
| #endif |
| |
| #endif // KMP_USE_DYNAMIC_LOCK |
| } |
| |
| /* release the lock */ |
| void __kmpc_unset_nest_lock(ident_t *loc, kmp_int32 gtid, void **user_lock) { |
| #if KMP_USE_DYNAMIC_LOCK |
| |
| #if USE_ITT_BUILD |
| __kmp_itt_lock_releasing((kmp_user_lock_p)user_lock); |
| #endif |
| int release_status = |
| KMP_D_LOCK_FUNC(user_lock, unset)((kmp_dyna_lock_t *)user_lock, gtid); |
| (void) release_status; |
| |
| #if OMPT_SUPPORT && OMPT_OPTIONAL |
| // This is the case, if called from omp_init_lock_with_hint: |
| void *codeptr = OMPT_LOAD_RETURN_ADDRESS(gtid); |
| if (!codeptr) |
| codeptr = OMPT_GET_RETURN_ADDRESS(0); |
| if (ompt_enabled.enabled) { |
| if (release_status == KMP_LOCK_RELEASED) { |
| if (ompt_enabled.ompt_callback_mutex_released) { |
| // release_lock_last |
| ompt_callbacks.ompt_callback(ompt_callback_mutex_released)( |
| ompt_mutex_nest_lock, (ompt_wait_id_t)user_lock, codeptr); |
| } |
| } else if (ompt_enabled.ompt_callback_nest_lock) { |
| // release_lock_prev |
| ompt_callbacks.ompt_callback(ompt_callback_nest_lock)( |
| ompt_scope_end, (ompt_wait_id_t)user_lock, codeptr); |
| } |
| } |
| #endif |
| |
| #else // KMP_USE_DYNAMIC_LOCK |
| |
| kmp_user_lock_p lck; |
| |
| /* Can't use serial interval since not block structured */ |
| |
| if ((__kmp_user_lock_kind == lk_tas) && |
| (sizeof(lck->tas.lk.poll) + sizeof(lck->tas.lk.depth_locked) <= |
| OMP_NEST_LOCK_T_SIZE)) { |
| #if KMP_OS_LINUX && \ |
| (KMP_ARCH_X86 || KMP_ARCH_X86_64 || KMP_ARCH_ARM || KMP_ARCH_AARCH64) |
| // "fast" path implemented to fix customer performance issue |
| kmp_tas_lock_t *tl = (kmp_tas_lock_t *)user_lock; |
| #if USE_ITT_BUILD |
| __kmp_itt_lock_releasing((kmp_user_lock_p)user_lock); |
| #endif /* USE_ITT_BUILD */ |
| |
| #if OMPT_SUPPORT && OMPT_OPTIONAL |
| int release_status = KMP_LOCK_STILL_HELD; |
| #endif |
| |
| if (--(tl->lk.depth_locked) == 0) { |
| TCW_4(tl->lk.poll, 0); |
| #if OMPT_SUPPORT && OMPT_OPTIONAL |
| release_status = KMP_LOCK_RELEASED; |
| #endif |
| } |
| KMP_MB(); |
| |
| #if OMPT_SUPPORT && OMPT_OPTIONAL |
| // This is the case, if called from omp_init_lock_with_hint: |
| void *codeptr = OMPT_LOAD_RETURN_ADDRESS(gtid); |
| if (!codeptr) |
| codeptr = OMPT_GET_RETURN_ADDRESS(0); |
| if (ompt_enabled.enabled) { |
| if (release_status == KMP_LOCK_RELEASED) { |
| if (ompt_enabled.ompt_callback_mutex_released) { |
| // release_lock_last |
| ompt_callbacks.ompt_callback(ompt_callback_mutex_released)( |
| ompt_mutex_nest_lock, (ompt_wait_id_t)lck, codeptr); |
| } |
| } else if (ompt_enabled.ompt_callback_nest_lock) { |
| // release_lock_previous |
| ompt_callbacks.ompt_callback(ompt_callback_nest_lock)( |
| ompt_mutex_scope_end, (ompt_wait_id_t)lck, codeptr); |
| } |
| } |
| #endif |
| |
| return; |
| #else |
| lck = (kmp_user_lock_p)user_lock; |
| #endif |
| } |
| #if KMP_USE_FUTEX |
| else if ((__kmp_user_lock_kind == lk_futex) && |
| (sizeof(lck->futex.lk.poll) + sizeof(lck->futex.lk.depth_locked) <= |
| OMP_NEST_LOCK_T_SIZE)) { |
| lck = (kmp_user_lock_p)user_lock; |
| } |
| #endif |
| else { |
| lck = __kmp_lookup_user_lock(user_lock, "omp_unset_nest_lock"); |
| } |
| |
| #if USE_ITT_BUILD |
| __kmp_itt_lock_releasing(lck); |
| #endif /* USE_ITT_BUILD */ |
| |
| int release_status; |
| release_status = RELEASE_NESTED_LOCK(lck, gtid); |
| #if OMPT_SUPPORT && OMPT_OPTIONAL |
| // This is the case, if called from omp_init_lock_with_hint: |
| void *codeptr = OMPT_LOAD_RETURN_ADDRESS(gtid); |
| if (!codeptr) |
| codeptr = OMPT_GET_RETURN_ADDRESS(0); |
| if (ompt_enabled.enabled) { |
| if (release_status == KMP_LOCK_RELEASED) { |
| if (ompt_enabled.ompt_callback_mutex_released) { |
| // release_lock_last |
| ompt_callbacks.ompt_callback(ompt_callback_mutex_released)( |
| ompt_mutex_nest_lock, (ompt_wait_id_t)lck, codeptr); |
| } |
| } else if (ompt_enabled.ompt_callback_nest_lock) { |
| // release_lock_previous |
| ompt_callbacks.ompt_callback(ompt_callback_nest_lock)( |
| ompt_mutex_scope_end, (ompt_wait_id_t)lck, codeptr); |
| } |
| } |
| #endif |
| |
| #endif // KMP_USE_DYNAMIC_LOCK |
| } |
| |
| /* try to acquire the lock */ |
| int __kmpc_test_lock(ident_t *loc, kmp_int32 gtid, void **user_lock) { |
| KMP_COUNT_BLOCK(OMP_test_lock); |
| |
| #if KMP_USE_DYNAMIC_LOCK |
| int rc; |
| int tag = KMP_EXTRACT_D_TAG(user_lock); |
| #if USE_ITT_BUILD |
| __kmp_itt_lock_acquiring((kmp_user_lock_p)user_lock); |
| #endif |
| #if OMPT_SUPPORT && OMPT_OPTIONAL |
| // This is the case, if called from omp_init_lock_with_hint: |
| void *codeptr = OMPT_LOAD_RETURN_ADDRESS(gtid); |
| if (!codeptr) |
| codeptr = OMPT_GET_RETURN_ADDRESS(0); |
| if (ompt_enabled.ompt_callback_mutex_acquire) { |
| ompt_callbacks.ompt_callback(ompt_callback_mutex_acquire)( |
| ompt_mutex_lock, omp_lock_hint_none, |
| __ompt_get_mutex_impl_type(user_lock), (ompt_wait_id_t)user_lock, |
| codeptr); |
| } |
| #endif |
| #if KMP_USE_INLINED_TAS |
| if (tag == locktag_tas && !__kmp_env_consistency_check) { |
| KMP_TEST_TAS_LOCK(user_lock, gtid, rc); |
| } else |
| #elif KMP_USE_INLINED_FUTEX |
| if (tag == locktag_futex && !__kmp_env_consistency_check) { |
| KMP_TEST_FUTEX_LOCK(user_lock, gtid, rc); |
| } else |
| #endif |
| { |
| rc = __kmp_direct_test[tag]((kmp_dyna_lock_t *)user_lock, gtid); |
| } |
| if (rc) { |
| #if USE_ITT_BUILD |
| __kmp_itt_lock_acquired((kmp_user_lock_p)user_lock); |
| #endif |
| #if OMPT_SUPPORT && OMPT_OPTIONAL |
| if (ompt_enabled.ompt_callback_mutex_acquired) { |
| ompt_callbacks.ompt_callback(ompt_callback_mutex_acquired)( |
| ompt_mutex_lock, (ompt_wait_id_t)user_lock, codeptr); |
| } |
| #endif |
| return FTN_TRUE; |
| } else { |
| #if USE_ITT_BUILD |
| __kmp_itt_lock_cancelled((kmp_user_lock_p)user_lock); |
| #endif |
| return FTN_FALSE; |
| } |
| |
| #else // KMP_USE_DYNAMIC_LOCK |
| |
| kmp_user_lock_p lck; |
| int rc; |
| |
| if ((__kmp_user_lock_kind == lk_tas) && |
| (sizeof(lck->tas.lk.poll) <= OMP_LOCK_T_SIZE)) { |
| lck = (kmp_user_lock_p)user_lock; |
| } |
| #if KMP_USE_FUTEX |
| else if ((__kmp_user_lock_kind == lk_futex) && |
| (sizeof(lck->futex.lk.poll) <= OMP_LOCK_T_SIZE)) { |
| lck = (kmp_user_lock_p)user_lock; |
| } |
| #endif |
| else { |
| lck = __kmp_lookup_user_lock(user_lock, "omp_test_lock"); |
| } |
| |
| #if USE_ITT_BUILD |
| __kmp_itt_lock_acquiring(lck); |
| #endif /* USE_ITT_BUILD */ |
| #if OMPT_SUPPORT && OMPT_OPTIONAL |
| // This is the case, if called from omp_init_lock_with_hint: |
| void *codeptr = OMPT_LOAD_RETURN_ADDRESS(gtid); |
| if (!codeptr) |
| codeptr = OMPT_GET_RETURN_ADDRESS(0); |
| if (ompt_enabled.ompt_callback_mutex_acquire) { |
| ompt_callbacks.ompt_callback(ompt_callback_mutex_acquire)( |
| ompt_mutex_lock, omp_lock_hint_none, __ompt_get_mutex_impl_type(), |
| (ompt_wait_id_t)lck, codeptr); |
| } |
| #endif |
| |
| rc = TEST_LOCK(lck, gtid); |
| #if USE_ITT_BUILD |
| if (rc) { |
| __kmp_itt_lock_acquired(lck); |
| } else { |
| __kmp_itt_lock_cancelled(lck); |
| } |
| #endif /* USE_ITT_BUILD */ |
| #if OMPT_SUPPORT && OMPT_OPTIONAL |
| if (rc && ompt_enabled.ompt_callback_mutex_acquired) { |
| ompt_callbacks.ompt_callback(ompt_callback_mutex_acquired)( |
| ompt_mutex_lock, (ompt_wait_id_t)lck, codeptr); |
| } |
| #endif |
| |
| return (rc ? FTN_TRUE : FTN_FALSE); |
| |
| /* Can't use serial interval since not block structured */ |
| |
| #endif // KMP_USE_DYNAMIC_LOCK |
| } |
| |
| /* try to acquire the lock */ |
| int __kmpc_test_nest_lock(ident_t *loc, kmp_int32 gtid, void **user_lock) { |
| #if KMP_USE_DYNAMIC_LOCK |
| int rc; |
| #if USE_ITT_BUILD |
| __kmp_itt_lock_acquiring((kmp_user_lock_p)user_lock); |
| #endif |
| #if OMPT_SUPPORT && OMPT_OPTIONAL |
| // This is the case, if called from omp_init_lock_with_hint: |
| void *codeptr = OMPT_LOAD_RETURN_ADDRESS(gtid); |
| if (!codeptr) |
| codeptr = OMPT_GET_RETURN_ADDRESS(0); |
| if (ompt_enabled.ompt_callback_mutex_acquire) { |
| ompt_callbacks.ompt_callback(ompt_callback_mutex_acquire)( |
| ompt_mutex_nest_lock, omp_lock_hint_none, |
| __ompt_get_mutex_impl_type(user_lock), (ompt_wait_id_t)user_lock, |
| codeptr); |
| } |
| #endif |
| rc = KMP_D_LOCK_FUNC(user_lock, test)((kmp_dyna_lock_t *)user_lock, gtid); |
| #if USE_ITT_BUILD |
| if (rc) { |
| __kmp_itt_lock_acquired((kmp_user_lock_p)user_lock); |
| } else { |
| __kmp_itt_lock_cancelled((kmp_user_lock_p)user_lock); |
| } |
| #endif |
| #if OMPT_SUPPORT && OMPT_OPTIONAL |
| if (ompt_enabled.enabled && rc) { |
| if (rc == 1) { |
| if (ompt_enabled.ompt_callback_mutex_acquired) { |
| // lock_first |
| ompt_callbacks.ompt_callback(ompt_callback_mutex_acquired)( |
| ompt_mutex_nest_lock, (ompt_wait_id_t)user_lock, codeptr); |
| } |
| } else { |
| if (ompt_enabled.ompt_callback_nest_lock) { |
| // lock_next |
| ompt_callbacks.ompt_callback(ompt_callback_nest_lock)( |
| ompt_scope_begin, (ompt_wait_id_t)user_lock, codeptr); |
| } |
| } |
| } |
| #endif |
| return rc; |
| |
| #else // KMP_USE_DYNAMIC_LOCK |
| |
| kmp_user_lock_p lck; |
| int rc; |
| |
| if ((__kmp_user_lock_kind == lk_tas) && |
| (sizeof(lck->tas.lk.poll) + sizeof(lck->tas.lk.depth_locked) <= |
| OMP_NEST_LOCK_T_SIZE)) { |
| lck = (kmp_user_lock_p)user_lock; |
| } |
| #if KMP_USE_FUTEX |
| else if ((__kmp_user_lock_kind == lk_futex) && |
| (sizeof(lck->futex.lk.poll) + sizeof(lck->futex.lk.depth_locked) <= |
| OMP_NEST_LOCK_T_SIZE)) { |
| lck = (kmp_user_lock_p)user_lock; |
| } |
| #endif |
| else { |
| lck = __kmp_lookup_user_lock(user_lock, "omp_test_nest_lock"); |
| } |
| |
| #if USE_ITT_BUILD |
| __kmp_itt_lock_acquiring(lck); |
| #endif /* USE_ITT_BUILD */ |
| |
| #if OMPT_SUPPORT && OMPT_OPTIONAL |
| // This is the case, if called from omp_init_lock_with_hint: |
| void *codeptr = OMPT_LOAD_RETURN_ADDRESS(gtid); |
| if (!codeptr) |
| codeptr = OMPT_GET_RETURN_ADDRESS(0); |
| if (ompt_enabled.enabled) && |
| ompt_enabled.ompt_callback_mutex_acquire) { |
| ompt_callbacks.ompt_callback(ompt_callback_mutex_acquire)( |
| ompt_mutex_nest_lock, omp_lock_hint_none, |
| __ompt_get_mutex_impl_type(), (ompt_wait_id_t)lck, codeptr); |
| } |
| #endif |
| |
| rc = TEST_NESTED_LOCK(lck, gtid); |
| #if USE_ITT_BUILD |
| if (rc) { |
| __kmp_itt_lock_acquired(lck); |
| } else { |
| __kmp_itt_lock_cancelled(lck); |
| } |
| #endif /* USE_ITT_BUILD */ |
| #if OMPT_SUPPORT && OMPT_OPTIONAL |
| if (ompt_enabled.enabled && rc) { |
| if (rc == 1) { |
| if (ompt_enabled.ompt_callback_mutex_acquired) { |
| // lock_first |
| ompt_callbacks.ompt_callback(ompt_callback_mutex_acquired)( |
| ompt_mutex_nest_lock, (ompt_wait_id_t)lck, codeptr); |
| } |
| } else { |
| if (ompt_enabled.ompt_callback_nest_lock) { |
| // lock_next |
| ompt_callbacks.ompt_callback(ompt_callback_nest_lock)( |
| ompt_mutex_scope_begin, (ompt_wait_id_t)lck, codeptr); |
| } |
| } |
| } |
| #endif |
| return rc; |
| |
| /* Can't use serial interval since not block structured */ |
| |
| #endif // KMP_USE_DYNAMIC_LOCK |
| } |
| |
| // Interface to fast scalable reduce methods routines |
| |
| // keep the selected method in a thread local structure for cross-function |
| // usage: will be used in __kmpc_end_reduce* functions; |
| // another solution: to re-determine the method one more time in |
| // __kmpc_end_reduce* functions (new prototype required then) |
| // AT: which solution is better? |
| #define __KMP_SET_REDUCTION_METHOD(gtid, rmethod) \ |
| ((__kmp_threads[(gtid)]->th.th_local.packed_reduction_method) = (rmethod)) |
| |
| #define __KMP_GET_REDUCTION_METHOD(gtid) \ |
| (__kmp_threads[(gtid)]->th.th_local.packed_reduction_method) |
| |
| // description of the packed_reduction_method variable: look at the macros in |
| // kmp.h |
| |
| // used in a critical section reduce block |
| static __forceinline void |
| __kmp_enter_critical_section_reduce_block(ident_t *loc, kmp_int32 global_tid, |
| kmp_critical_name *crit) { |
| |
| // this lock was visible to a customer and to the threading profile tool as a |
| // serial overhead span (although it's used for an internal purpose only) |
| // why was it visible in previous implementation? |
| // should we keep it visible in new reduce block? |
| kmp_user_lock_p lck; |
| |
| #if KMP_USE_DYNAMIC_LOCK |
| |
| kmp_dyna_lock_t *lk = (kmp_dyna_lock_t *)crit; |
| // Check if it is initialized. |
| if (*lk == 0) { |
| if (KMP_IS_D_LOCK(__kmp_user_lock_seq)) { |
| KMP_COMPARE_AND_STORE_ACQ32((volatile kmp_int32 *)crit, 0, |
| KMP_GET_D_TAG(__kmp_user_lock_seq)); |
| } else { |
| __kmp_init_indirect_csptr(crit, loc, global_tid, |
| KMP_GET_I_TAG(__kmp_user_lock_seq)); |
| } |
| } |
| // Branch for accessing the actual lock object and set operation. This |
| // branching is inevitable since this lock initialization does not follow the |
| // normal dispatch path (lock table is not used). |
| if (KMP_EXTRACT_D_TAG(lk) != 0) { |
| lck = (kmp_user_lock_p)lk; |
| KMP_DEBUG_ASSERT(lck != NULL); |
| if (__kmp_env_consistency_check) { |
| __kmp_push_sync(global_tid, ct_critical, loc, lck, __kmp_user_lock_seq); |
| } |
| KMP_D_LOCK_FUNC(lk, set)(lk, global_tid); |
| } else { |
| kmp_indirect_lock_t *ilk = *((kmp_indirect_lock_t **)lk); |
| lck = ilk->lock; |
| KMP_DEBUG_ASSERT(lck != NULL); |
| if (__kmp_env_consistency_check) { |
| __kmp_push_sync(global_tid, ct_critical, loc, lck, __kmp_user_lock_seq); |
| } |
| KMP_I_LOCK_FUNC(ilk, set)(lck, global_tid); |
| } |
| |
| #else // KMP_USE_DYNAMIC_LOCK |
| |
| // We know that the fast reduction code is only emitted by Intel compilers |
| // with 32 byte critical sections. If there isn't enough space, then we |
| // have to use a pointer. |
| if (__kmp_base_user_lock_size <= INTEL_CRITICAL_SIZE) { |
| lck = (kmp_user_lock_p)crit; |
| } else { |
| lck = __kmp_get_critical_section_ptr(crit, loc, global_tid); |
| } |
| KMP_DEBUG_ASSERT(lck != NULL); |
| |
| if (__kmp_env_consistency_check) |
| __kmp_push_sync(global_tid, ct_critical, loc, lck); |
| |
| __kmp_acquire_user_lock_with_checks(lck, global_tid); |
| |
| #endif // KMP_USE_DYNAMIC_LOCK |
| } |
| |
| // used in a critical section reduce block |
| static __forceinline void |
| __kmp_end_critical_section_reduce_block(ident_t *loc, kmp_int32 global_tid, |
| kmp_critical_name *crit) { |
| |
| kmp_user_lock_p lck; |
| |
| #if KMP_USE_DYNAMIC_LOCK |
| |
| if (KMP_IS_D_LOCK(__kmp_user_lock_seq)) { |
| lck = (kmp_user_lock_p)crit; |
| if (__kmp_env_consistency_check) |
| __kmp_pop_sync(global_tid, ct_critical, loc); |
| KMP_D_LOCK_FUNC(lck, unset)((kmp_dyna_lock_t *)lck, global_tid); |
| } else { |
| kmp_indirect_lock_t *ilk = |
| (kmp_indirect_lock_t *)TCR_PTR(*((kmp_indirect_lock_t **)crit)); |
| if (__kmp_env_consistency_check) |
| __kmp_pop_sync(global_tid, ct_critical, loc); |
| KMP_I_LOCK_FUNC(ilk, unset)(ilk->lock, global_tid); |
| } |
| |
| #else // KMP_USE_DYNAMIC_LOCK |
| |
| // We know that the fast reduction code is only emitted by Intel compilers |
| // with 32 byte critical sections. If there isn't enough space, then we have |
| // to use a pointer. |
| if (__kmp_base_user_lock_size > 32) { |
| lck = *((kmp_user_lock_p *)crit); |
| KMP_ASSERT(lck != NULL); |
| } else { |
| lck = (kmp_user_lock_p)crit; |
| } |
| |
| if (__kmp_env_consistency_check) |
| __kmp_pop_sync(global_tid, ct_critical, loc); |
| |
| __kmp_release_user_lock_with_checks(lck, global_tid); |
| |
| #endif // KMP_USE_DYNAMIC_LOCK |
| } // __kmp_end_critical_section_reduce_block |
| |
| #if OMP_40_ENABLED |
| static __forceinline int |
| __kmp_swap_teams_for_teams_reduction(kmp_info_t *th, kmp_team_t **team_p, |
| int *task_state) { |
| kmp_team_t *team; |
| |
| // Check if we are inside the teams construct? |
| if (th->th.th_teams_microtask) { |
| *team_p = team = th->th.th_team; |
| if (team->t.t_level == th->th.th_teams_level) { |
| // This is reduction at teams construct. |
| KMP_DEBUG_ASSERT(!th->th.th_info.ds.ds_tid); // AC: check that tid == 0 |
| // Let's swap teams temporarily for the reduction. |
| th->th.th_info.ds.ds_tid = team->t.t_master_tid; |
| th->th.th_team = team->t.t_parent; |
| th->th.th_team_nproc = th->th.th_team->t.t_nproc; |
| th->th.th_task_team = th->th.th_team->t.t_task_team[0]; |
| *task_state = th->th.th_task_state; |
| th->th.th_task_state = 0; |
| |
| return 1; |
| } |
| } |
| return 0; |
| } |
| |
| static __forceinline void |
| __kmp_restore_swapped_teams(kmp_info_t *th, kmp_team_t *team, int task_state) { |
| // Restore thread structure swapped in __kmp_swap_teams_for_teams_reduction. |
| th->th.th_info.ds.ds_tid = 0; |
| th->th.th_team = team; |
| th->th.th_team_nproc = team->t.t_nproc; |
| th->th.th_task_team = team->t.t_task_team[task_state]; |
| th->th.th_task_state = task_state; |
| } |
| #endif |
| |
| /* 2.a.i. Reduce Block without a terminating barrier */ |
| /*! |
| @ingroup SYNCHRONIZATION |
| @param loc source location information |
| @param global_tid global thread number |
| @param num_vars number of items (variables) to be reduced |
| @param reduce_size size of data in bytes to be reduced |
| @param reduce_data pointer to data to be reduced |
| @param reduce_func callback function providing reduction operation on two |
| operands and returning result of reduction in lhs_data |
| @param lck pointer to the unique lock data structure |
| @result 1 for the master thread, 0 for all other team threads, 2 for all team |
| threads if atomic reduction needed |
| |
| The nowait version is used for a reduce clause with the nowait argument. |
| */ |
| kmp_int32 |
| __kmpc_reduce_nowait(ident_t *loc, kmp_int32 global_tid, kmp_int32 num_vars, |
| size_t reduce_size, void *reduce_data, |
| void (*reduce_func)(void *lhs_data, void *rhs_data), |
| kmp_critical_name *lck) { |
| |
| KMP_COUNT_BLOCK(REDUCE_nowait); |
| int retval = 0; |
| PACKED_REDUCTION_METHOD_T packed_reduction_method; |
| #if OMP_40_ENABLED |
| kmp_info_t *th; |
| kmp_team_t *team; |
| int teams_swapped = 0, task_state; |
| #endif |
| KA_TRACE(10, ("__kmpc_reduce_nowait() enter: called T#%d\n", global_tid)); |
| |
| // why do we need this initialization here at all? |
| // Reduction clause can not be used as a stand-alone directive. |
| |
| // do not call __kmp_serial_initialize(), it will be called by |
| // __kmp_parallel_initialize() if needed |
| // possible detection of false-positive race by the threadchecker ??? |
| if (!TCR_4(__kmp_init_parallel)) |
| __kmp_parallel_initialize(); |
| |
| #if OMP_50_ENABLED |
| __kmp_resume_if_soft_paused(); |
| #endif |
| |
| // check correctness of reduce block nesting |
| #if KMP_USE_DYNAMIC_LOCK |
| if (__kmp_env_consistency_check) |
| __kmp_push_sync(global_tid, ct_reduce, loc, NULL, 0); |
| #else |
| if (__kmp_env_consistency_check) |
| __kmp_push_sync(global_tid, ct_reduce, loc, NULL); |
| #endif |
| |
| #if OMP_40_ENABLED |
| th = __kmp_thread_from_gtid(global_tid); |
| teams_swapped = __kmp_swap_teams_for_teams_reduction(th, &team, &task_state); |
| #endif // OMP_40_ENABLED |
| |
| // packed_reduction_method value will be reused by __kmp_end_reduce* function, |
| // the value should be kept in a variable |
| // the variable should be either a construct-specific or thread-specific |
| // property, not a team specific property |
| // (a thread can reach the next reduce block on the next construct, reduce |
| // method may differ on the next construct) |
| // an ident_t "loc" parameter could be used as a construct-specific property |
| // (what if loc == 0?) |
| // (if both construct-specific and team-specific variables were shared, |
| // then unness extra syncs should be needed) |
| // a thread-specific variable is better regarding two issues above (next |
| // construct and extra syncs) |
| // a thread-specific "th_local.reduction_method" variable is used currently |
| // each thread executes 'determine' and 'set' lines (no need to execute by one |
| // thread, to avoid unness extra syncs) |
| |
| packed_reduction_method = __kmp_determine_reduction_method( |
| loc, global_tid, num_vars, reduce_size, reduce_data, reduce_func, lck); |
| __KMP_SET_REDUCTION_METHOD(global_tid, packed_reduction_method); |
| |
| if (packed_reduction_method == critical_reduce_block) { |
| |
| __kmp_enter_critical_section_reduce_block(loc, global_tid, lck); |
| retval = 1; |
| |
| } else if (packed_reduction_method == empty_reduce_block) { |
| |
| // usage: if team size == 1, no synchronization is required ( Intel |
| // platforms only ) |
| retval = 1; |
| |
| } else if (packed_reduction_method == atomic_reduce_block) { |
| |
| retval = 2; |
| |
| // all threads should do this pop here (because __kmpc_end_reduce_nowait() |
| // won't be called by the code gen) |
| // (it's not quite good, because the checking block has been closed by |
| // this 'pop', |
| // but atomic operation has not been executed yet, will be executed |
| // slightly later, literally on next instruction) |
| if (__kmp_env_consistency_check) |
| __kmp_pop_sync(global_tid, ct_reduce, loc); |
| |
| } else if (TEST_REDUCTION_METHOD(packed_reduction_method, |
| tree_reduce_block)) { |
| |
| // AT: performance issue: a real barrier here |
| // AT: (if master goes slow, other threads are blocked here waiting for the |
| // master to come and release them) |
| // AT: (it's not what a customer might expect specifying NOWAIT clause) |
| // AT: (specifying NOWAIT won't result in improvement of performance, it'll |
| // be confusing to a customer) |
| // AT: another implementation of *barrier_gather*nowait() (or some other design) |
| // might go faster and be more in line with sense of NOWAIT |
| // AT: TO DO: do epcc test and compare times |
| |
| // this barrier should be invisible to a customer and to the threading profile |
| // tool (it's neither a terminating barrier nor customer's code, it's |
| // used for an internal purpose) |
| #if OMPT_SUPPORT |
| // JP: can this barrier potentially leed to task scheduling? |
| // JP: as long as there is a barrier in the implementation, OMPT should and |
| // will provide the barrier events |
| // so we set-up the necessary frame/return addresses. |
| ompt_frame_t *ompt_frame; |
| if (ompt_enabled.enabled) { |
| __ompt_get_task_info_internal(0, NULL, NULL, &ompt_frame, NULL, NULL); |
| if (ompt_frame->enter_frame.ptr == NULL) |
| ompt_frame->enter_frame.ptr = OMPT_GET_FRAME_ADDRESS(0); |
| OMPT_STORE_RETURN_ADDRESS(global_tid); |
| } |
| #endif |
| #if USE_ITT_NOTIFY |
| __kmp_threads[global_tid]->th.th_ident = loc; |
| #endif |
| retval = |
| __kmp_barrier(UNPACK_REDUCTION_BARRIER(packed_reduction_method), |
| global_tid, FALSE, reduce_size, reduce_data, reduce_func); |
| retval = (retval != 0) ? (0) : (1); |
| #if OMPT_SUPPORT && OMPT_OPTIONAL |
| if (ompt_enabled.enabled) { |
| ompt_frame->enter_frame = ompt_data_none; |
| } |
| #endif |
| |
| // all other workers except master should do this pop here |
| // ( none of other workers will get to __kmpc_end_reduce_nowait() ) |
| if (__kmp_env_consistency_check) { |
| if (retval == 0) { |
| __kmp_pop_sync(global_tid, ct_reduce, loc); |
| } |
| } |
| |
| } else { |
| |
| // should never reach this block |
| KMP_ASSERT(0); // "unexpected method" |
| } |
| #if OMP_40_ENABLED |
| if (teams_swapped) { |
| __kmp_restore_swapped_teams(th, team, task_state); |
| } |
| #endif |
| KA_TRACE( |
| 10, |
| ("__kmpc_reduce_nowait() exit: called T#%d: method %08x, returns %08x\n", |
| global_tid, packed_reduction_method, retval)); |
| |
| return retval; |
| } |
| |
| /*! |
| @ingroup SYNCHRONIZATION |
| @param loc source location information |
| @param global_tid global thread id. |
| @param lck pointer to the unique lock data structure |
| |
| Finish the execution of a reduce nowait. |
| */ |
| void __kmpc_end_reduce_nowait(ident_t *loc, kmp_int32 global_tid, |
| kmp_critical_name *lck) { |
| |
| PACKED_REDUCTION_METHOD_T packed_reduction_method; |
| |
| KA_TRACE(10, ("__kmpc_end_reduce_nowait() enter: called T#%d\n", global_tid)); |
| |
| packed_reduction_method = __KMP_GET_REDUCTION_METHOD(global_tid); |
| |
| if (packed_reduction_method == critical_reduce_block) { |
| |
| __kmp_end_critical_section_reduce_block(loc, global_tid, lck); |
| |
| } else if (packed_reduction_method == empty_reduce_block) { |
| |
| // usage: if team size == 1, no synchronization is required ( on Intel |
| // platforms only ) |
| |
| } else if (packed_reduction_method == atomic_reduce_block) { |
| |
| // neither master nor other workers should get here |
| // (code gen does not generate this call in case 2: atomic reduce block) |
| // actually it's better to remove this elseif at all; |
| // after removal this value will checked by the 'else' and will assert |
| |
| } else if (TEST_REDUCTION_METHOD(packed_reduction_method, |
| tree_reduce_block)) { |
| |
| // only master gets here |
| |
| } else { |
| |
| // should never reach this block |
| KMP_ASSERT(0); // "unexpected method" |
| } |
| |
| if (__kmp_env_consistency_check) |
| __kmp_pop_sync(global_tid, ct_reduce, loc); |
| |
| KA_TRACE(10, ("__kmpc_end_reduce_nowait() exit: called T#%d: method %08x\n", |
| global_tid, packed_reduction_method)); |
| |
| return; |
| } |
| |
| /* 2.a.ii. Reduce Block with a terminating barrier */ |
| |
| /*! |
| @ingroup SYNCHRONIZATION |
| @param loc source location information |
| @param global_tid global thread number |
| @param num_vars number of items (variables) to be reduced |
| @param reduce_size size of data in bytes to be reduced |
| @param reduce_data pointer to data to be reduced |
| @param reduce_func callback function providing reduction operation on two |
| operands and returning result of reduction in lhs_data |
| @param lck pointer to the unique lock data structure |
| @result 1 for the master thread, 0 for all other team threads, 2 for all team |
| threads if atomic reduction needed |
| |
| A blocking reduce that includes an implicit barrier. |
| */ |
| kmp_int32 __kmpc_reduce(ident_t *loc, kmp_int32 global_tid, kmp_int32 num_vars, |
| size_t reduce_size, void *reduce_data, |
| void (*reduce_func)(void *lhs_data, void *rhs_data), |
| kmp_critical_name *lck) { |
| KMP_COUNT_BLOCK(REDUCE_wait); |
| int retval = 0; |
| PACKED_REDUCTION_METHOD_T packed_reduction_method; |
| #if OMP_40_ENABLED |
| kmp_info_t *th; |
| kmp_team_t *team; |
| int teams_swapped = 0, task_state; |
| #endif |
| |
| KA_TRACE(10, ("__kmpc_reduce() enter: called T#%d\n", global_tid)); |
| |
| // why do we need this initialization here at all? |
| // Reduction clause can not be a stand-alone directive. |
| |
| // do not call __kmp_serial_initialize(), it will be called by |
| // __kmp_parallel_initialize() if needed |
| // possible detection of false-positive race by the threadchecker ??? |
| if (!TCR_4(__kmp_init_parallel)) |
| __kmp_parallel_initialize(); |
| |
| #if OMP_50_ENABLED |
| __kmp_resume_if_soft_paused(); |
| #endif |
| |
| // check correctness of reduce block nesting |
| #if KMP_USE_DYNAMIC_LOCK |
| if (__kmp_env_consistency_check) |
| __kmp_push_sync(global_tid, ct_reduce, loc, NULL, 0); |
| #else |
| if (__kmp_env_consistency_check) |
| __kmp_push_sync(global_tid, ct_reduce, loc, NULL); |
| #endif |
| |
| #if OMP_40_ENABLED |
| th = __kmp_thread_from_gtid(global_tid); |
| teams_swapped = __kmp_swap_teams_for_teams_reduction(th, &team, &task_state); |
| #endif // OMP_40_ENABLED |
| |
| packed_reduction_method = __kmp_determine_reduction_method( |
| loc, global_tid, num_vars, reduce_size, reduce_data, reduce_func, lck); |
| __KMP_SET_REDUCTION_METHOD(global_tid, packed_reduction_method); |
| |
| if (packed_reduction_method == critical_reduce_block) { |
| |
| __kmp_enter_critical_section_reduce_block(loc, global_tid, lck); |
| retval = 1; |
| |
| } else if (packed_reduction_method == empty_reduce_block) { |
| |
| // usage: if team size == 1, no synchronization is required ( Intel |
| // platforms only ) |
| retval = 1; |
| |
| } else if (packed_reduction_method == atomic_reduce_block) { |
| |
| retval = 2; |
| |
| } else if (TEST_REDUCTION_METHOD(packed_reduction_method, |
| tree_reduce_block)) { |
| |
| // case tree_reduce_block: |
| // this barrier should be visible to a customer and to the threading profile |
| // tool (it's a terminating barrier on constructs if NOWAIT not specified) |
| #if OMPT_SUPPORT |
| ompt_frame_t *ompt_frame; |
| if (ompt_enabled.enabled) { |
| __ompt_get_task_info_internal(0, NULL, NULL, &ompt_frame, NULL, NULL); |
| if (ompt_frame->enter_frame.ptr == NULL) |
| ompt_frame->enter_frame.ptr = OMPT_GET_FRAME_ADDRESS(0); |
| OMPT_STORE_RETURN_ADDRESS(global_tid); |
| } |
| #endif |
| #if USE_ITT_NOTIFY |
| __kmp_threads[global_tid]->th.th_ident = |
| loc; // needed for correct notification of frames |
| #endif |
| retval = |
| __kmp_barrier(UNPACK_REDUCTION_BARRIER(packed_reduction_method), |
| global_tid, TRUE, reduce_size, reduce_data, reduce_func); |
| retval = (retval != 0) ? (0) : (1); |
| #if OMPT_SUPPORT && OMPT_OPTIONAL |
| if (ompt_enabled.enabled) { |
| ompt_frame->enter_frame = ompt_data_none; |
| } |
| #endif |
| |
| // all other workers except master should do this pop here |
| // ( none of other workers except master will enter __kmpc_end_reduce() ) |
| if (__kmp_env_consistency_check) { |
| if (retval == 0) { // 0: all other workers; 1: master |
| __kmp_pop_sync(global_tid, ct_reduce, loc); |
| } |
| } |
| |
| } else { |
| |
| // should never reach this block |
| KMP_ASSERT(0); // "unexpected method" |
| } |
| #if OMP_40_ENABLED |
| if (teams_swapped) { |
| __kmp_restore_swapped_teams(th, team, task_state); |
| } |
| #endif |
| |
| KA_TRACE(10, |
| ("__kmpc_reduce() exit: called T#%d: method %08x, returns %08x\n", |
| global_tid, packed_reduction_method, retval)); |
| |
| return retval; |
| } |
| |
| /*! |
| @ingroup SYNCHRONIZATION |
| @param loc source location information |
| @param global_tid global thread id. |
| @param lck pointer to the unique lock data structure |
| |
| Finish the execution of a blocking reduce. |
| The <tt>lck</tt> pointer must be the same as that used in the corresponding |
| start function. |
| */ |
| void __kmpc_end_reduce(ident_t *loc, kmp_int32 global_tid, |
| kmp_critical_name *lck) { |
| |
| PACKED_REDUCTION_METHOD_T packed_reduction_method; |
| #if OMP_40_ENABLED |
| kmp_info_t *th; |
| kmp_team_t *team; |
| int teams_swapped = 0, task_state; |
| #endif |
| |
| KA_TRACE(10, ("__kmpc_end_reduce() enter: called T#%d\n", global_tid)); |
| |
| #if OMP_40_ENABLED |
| th = __kmp_thread_from_gtid(global_tid); |
| teams_swapped = __kmp_swap_teams_for_teams_reduction(th, &team, &task_state); |
| #endif // OMP_40_ENABLED |
| |
| packed_reduction_method = __KMP_GET_REDUCTION_METHOD(global_tid); |
| |
| // this barrier should be visible to a customer and to the threading profile |
| // tool (it's a terminating barrier on constructs if NOWAIT not specified) |
| |
| if (packed_reduction_method == critical_reduce_block) { |
| |
| __kmp_end_critical_section_reduce_block(loc, global_tid, lck); |
| |
| // TODO: implicit barrier: should be exposed |
| #if OMPT_SUPPORT |
| ompt_frame_t *ompt_frame; |
| if (ompt_enabled.enabled) { |
| __ompt_get_task_info_internal(0, NULL, NULL, &ompt_frame, NULL, NULL); |
| if (ompt_frame->enter_frame.ptr == NULL) |
| ompt_frame->enter_frame.ptr = OMPT_GET_FRAME_ADDRESS(0); |
| OMPT_STORE_RETURN_ADDRESS(global_tid); |
| } |
| #endif |
| #if USE_ITT_NOTIFY |
| __kmp_threads[global_tid]->th.th_ident = loc; |
| #endif |
| __kmp_barrier(bs_plain_barrier, global_tid, FALSE, 0, NULL, NULL); |
| #if OMPT_SUPPORT && OMPT_OPTIONAL |
| if (ompt_enabled.enabled) { |
| ompt_frame->enter_frame = ompt_data_none; |
| } |
| #endif |
| |
| } else if (packed_reduction_method == empty_reduce_block) { |
| |
| // usage: if team size==1, no synchronization is required (Intel platforms only) |
| |
| // TODO: implicit barrier: should be exposed |
| #if OMPT_SUPPORT |
| ompt_frame_t *ompt_frame; |
| if (ompt_enabled.enabled) { |
| __ompt_get_task_info_internal(0, NULL, NULL, &ompt_frame, NULL, NULL); |
| if (ompt_frame->enter_frame.ptr == NULL) |
| ompt_frame->enter_frame.ptr = OMPT_GET_FRAME_ADDRESS(0); |
| OMPT_STORE_RETURN_ADDRESS(global_tid); |
| } |
| #endif |
| #if USE_ITT_NOTIFY |
| __kmp_threads[global_tid]->th.th_ident = loc; |
| #endif |
| __kmp_barrier(bs_plain_barrier, global_tid, FALSE, 0, NULL, NULL); |
| #if OMPT_SUPPORT && OMPT_OPTIONAL |
| if (ompt_enabled.enabled) { |
| ompt_frame->enter_frame = ompt_data_none; |
| } |
| #endif |
| |
| } else if (packed_reduction_method == atomic_reduce_block) { |
| |
| #if OMPT_SUPPORT |
| ompt_frame_t *ompt_frame; |
| if (ompt_enabled.enabled) { |
| __ompt_get_task_info_internal(0, NULL, NULL, &ompt_frame, NULL, NULL); |
| if (ompt_frame->enter_frame.ptr == NULL) |
| ompt_frame->enter_frame.ptr = OMPT_GET_FRAME_ADDRESS(0); |
| OMPT_STORE_RETURN_ADDRESS(global_tid); |
| } |
| #endif |
| // TODO: implicit barrier: should be exposed |
| #if USE_ITT_NOTIFY |
| __kmp_threads[global_tid]->th.th_ident = loc; |
| #endif |
| __kmp_barrier(bs_plain_barrier, global_tid, FALSE, 0, NULL, NULL); |
| #if OMPT_SUPPORT && OMPT_OPTIONAL |
| if (ompt_enabled.enabled) { |
| ompt_frame->enter_frame = ompt_data_none; |
| } |
| #endif |
| |
| } else if (TEST_REDUCTION_METHOD(packed_reduction_method, |
| tree_reduce_block)) { |
| |
| // only master executes here (master releases all other workers) |
| __kmp_end_split_barrier(UNPACK_REDUCTION_BARRIER(packed_reduction_method), |
| global_tid); |
| |
| } else { |
| |
| // should never reach this block |
| KMP_ASSERT(0); // "unexpected method" |
| } |
| #if OMP_40_ENABLED |
| if (teams_swapped) { |
| __kmp_restore_swapped_teams(th, team, task_state); |
| } |
| #endif |
| |
| if (__kmp_env_consistency_check) |
| __kmp_pop_sync(global_tid, ct_reduce, loc); |
| |
| KA_TRACE(10, ("__kmpc_end_reduce() exit: called T#%d: method %08x\n", |
| global_tid, packed_reduction_method)); |
| |
| return; |
| } |
| |
| #undef __KMP_GET_REDUCTION_METHOD |
| #undef __KMP_SET_REDUCTION_METHOD |
| |
| /* end of interface to fast scalable reduce routines */ |
| |
| kmp_uint64 __kmpc_get_taskid() { |
| |
| kmp_int32 gtid; |
| kmp_info_t *thread; |
| |
| gtid = __kmp_get_gtid(); |
| if (gtid < 0) { |
| return 0; |
| } |
| thread = __kmp_thread_from_gtid(gtid); |
| return thread->th.th_current_task->td_task_id; |
| |
| } // __kmpc_get_taskid |
| |
| kmp_uint64 __kmpc_get_parent_taskid() { |
| |
| kmp_int32 gtid; |
| kmp_info_t *thread; |
| kmp_taskdata_t *parent_task; |
| |
| gtid = __kmp_get_gtid(); |
| if (gtid < 0) { |
| return 0; |
| } |
| thread = __kmp_thread_from_gtid(gtid); |
| parent_task = thread->th.th_current_task->td_parent; |
| return (parent_task == NULL ? 0 : parent_task->td_task_id); |
| |
| } // __kmpc_get_parent_taskid |
| |
| #if OMP_45_ENABLED |
| /*! |
| @ingroup WORK_SHARING |
| @param loc source location information. |
| @param gtid global thread number. |
| @param num_dims number of associated doacross loops. |
| @param dims info on loops bounds. |
| |
| Initialize doacross loop information. |
| Expect compiler send us inclusive bounds, |
| e.g. for(i=2;i<9;i+=2) lo=2, up=8, st=2. |
| */ |
| void __kmpc_doacross_init(ident_t *loc, int gtid, int num_dims, |
| const struct kmp_dim *dims) { |
| int j, idx; |
| kmp_int64 last, trace_count; |
| kmp_info_t *th = __kmp_threads[gtid]; |
| kmp_team_t *team = th->th.th_team; |
| kmp_uint32 *flags; |
| kmp_disp_t *pr_buf = th->th.th_dispatch; |
| dispatch_shared_info_t *sh_buf; |
| |
| KA_TRACE( |
| 20, |
| ("__kmpc_doacross_init() enter: called T#%d, num dims %d, active %d\n", |
| gtid, num_dims, !team->t.t_serialized)); |
| KMP_DEBUG_ASSERT(dims != NULL); |
| KMP_DEBUG_ASSERT(num_dims > 0); |
| |
| if (team->t.t_serialized) { |
| KA_TRACE(20, ("__kmpc_doacross_init() exit: serialized team\n")); |
| return; // no dependencies if team is serialized |
| } |
| KMP_DEBUG_ASSERT(team->t.t_nproc > 1); |
| idx = pr_buf->th_doacross_buf_idx++; // Increment index of shared buffer for |
| // the next loop |
| sh_buf = &team->t.t_disp_buffer[idx % __kmp_dispatch_num_buffers]; |
| |
| // Save bounds info into allocated private buffer |
| KMP_DEBUG_ASSERT(pr_buf->th_doacross_info == NULL); |
| pr_buf->th_doacross_info = (kmp_int64 *)__kmp_thread_malloc( |
| th, sizeof(kmp_int64) * (4 * num_dims + 1)); |
| KMP_DEBUG_ASSERT(pr_buf->th_doacross_info != NULL); |
| pr_buf->th_doacross_info[0] = |
| (kmp_int64)num_dims; // first element is number of dimensions |
| // Save also address of num_done in order to access it later without knowing |
| // the buffer index |
| pr_buf->th_doacross_info[1] = (kmp_int64)&sh_buf->doacross_num_done; |
| pr_buf->th_doacross_info[2] = dims[0].lo; |
| pr_buf->th_doacross_info[3] = dims[0].up; |
| pr_buf->th_doacross_info[4] = dims[0].st; |
| last = 5; |
| for (j = 1; j < num_dims; ++j) { |
| kmp_int64 |
| range_length; // To keep ranges of all dimensions but the first dims[0] |
| if (dims[j].st == 1) { // most common case |
| // AC: should we care of ranges bigger than LLONG_MAX? (not for now) |
| range_length = dims[j].up - dims[j].lo + 1; |
| } else { |
| if (dims[j].st > 0) { |
| KMP_DEBUG_ASSERT(dims[j].up > dims[j].lo); |
| range_length = (kmp_uint64)(dims[j].up - dims[j].lo) / dims[j].st + 1; |
| } else { // negative increment |
| KMP_DEBUG_ASSERT(dims[j].lo > dims[j].up); |
| range_length = |
| (kmp_uint64)(dims[j].lo - dims[j].up) / (-dims[j].st) + 1; |
| } |
| } |
| pr_buf->th_doacross_info[last++] = range_length; |
| pr_buf->th_doacross_info[last++] = dims[j].lo; |
| pr_buf->th_doacross_info[last++] = dims[j].up; |
| pr_buf->th_doacross_info[last++] = dims[j].st; |
| } |
| |
| // Compute total trip count. |
| // Start with range of dims[0] which we don't need to keep in the buffer. |
| if (dims[0].st == 1) { // most common case |
| trace_count = dims[0].up - dims[0].lo + 1; |
| } else if (dims[0].st > 0) { |
| KMP_DEBUG_ASSERT(dims[0].up > dims[0].lo); |
| trace_count = (kmp_uint64)(dims[0].up - dims[0].lo) / dims[0].st + 1; |
| } else { // negative increment |
| KMP_DEBUG_ASSERT(dims[0].lo > dims[0].up); |
| trace_count = (kmp_uint64)(dims[0].lo - dims[0].up) / (-dims[0].st) + 1; |
| } |
| for (j = 1; j < num_dims; ++j) { |
| trace_count *= pr_buf->th_doacross_info[4 * j + 1]; // use kept ranges |
| } |
| KMP_DEBUG_ASSERT(trace_count > 0); |
| |
| // Check if shared buffer is not occupied by other loop (idx - |
| // __kmp_dispatch_num_buffers) |
| if (idx != sh_buf->doacross_buf_idx) { |
| // Shared buffer is occupied, wait for it to be free |
| __kmp_wait_yield_4((volatile kmp_uint32 *)&sh_buf->doacross_buf_idx, idx, |
| __kmp_eq_4, NULL); |
| } |
| #if KMP_32_BIT_ARCH |
| // Check if we are the first thread. After the CAS the first thread gets 0, |
| // others get 1 if initialization is in progress, allocated pointer otherwise. |
| // Treat pointer as volatile integer (value 0 or 1) until memory is allocated. |
| flags = (kmp_uint32 *)KMP_COMPARE_AND_STORE_RET32( |
| (volatile kmp_int32 *)&sh_buf->doacross_flags, NULL, 1); |
| #else |
| flags = (kmp_uint32 *)KMP_COMPARE_AND_STORE_RET64( |
| (volatile kmp_int64 *)&sh_buf->doacross_flags, NULL, 1LL); |
| #endif |
| if (flags == NULL) { |
| // we are the first thread, allocate the array of flags |
| size_t size = trace_count / 8 + 8; // in bytes, use single bit per iteration |
| flags = (kmp_uint32 *)__kmp_thread_calloc(th, size, 1); |
| KMP_MB(); |
| sh_buf->doacross_flags = flags; |
| } else if (flags == (kmp_uint32 *)1) { |
| #if KMP_32_BIT_ARCH |
| // initialization is still in progress, need to wait |
| while (*(volatile kmp_int32 *)&sh_buf->doacross_flags == 1) |
| #else |
| while (*(volatile kmp_int64 *)&sh_buf->doacross_flags == 1LL) |
| #endif |
| KMP_YIELD(TRUE); |
| KMP_MB(); |
| } else { |
| KMP_MB(); |
| } |
| KMP_DEBUG_ASSERT(sh_buf->doacross_flags > (kmp_uint32 *)1); // check ptr value |
| pr_buf->th_doacross_flags = |
| sh_buf->doacross_flags; // save private copy in order to not |
| // touch shared buffer on each iteration |
| KA_TRACE(20, ("__kmpc_doacross_init() exit: T#%d\n", gtid)); |
| } |
| |
| void __kmpc_doacross_wait(ident_t *loc, int gtid, const kmp_int64 *vec) { |
| kmp_int32 shft, num_dims, i; |
| kmp_uint32 flag; |
| kmp_int64 iter_number; // iteration number of "collapsed" loop nest |
| kmp_info_t *th = __kmp_threads[gtid]; |
| kmp_team_t *team = th->th.th_team; |
| kmp_disp_t *pr_buf; |
| kmp_int64 lo, up, st; |
| |
| KA_TRACE(20, ("__kmpc_doacross_wait() enter: called T#%d\n", gtid)); |
| if (team->t.t_serialized) { |
| KA_TRACE(20, ("__kmpc_doacross_wait() exit: serialized team\n")); |
| return; // no dependencies if team is serialized |
| } |
| |
| // calculate sequential iteration number and check out-of-bounds condition |
| pr_buf = th->th.th_dispatch; |
| KMP_DEBUG_ASSERT(pr_buf->th_doacross_info != NULL); |
| num_dims = pr_buf->th_doacross_info[0]; |
| lo = pr_buf->th_doacross_info[2]; |
| up = pr_buf->th_doacross_info[3]; |
| st = pr_buf->th_doacross_info[4]; |
| if (st == 1) { // most common case |
| if (vec[0] < lo || vec[0] > up) { |
| KA_TRACE(20, ("__kmpc_doacross_wait() exit: T#%d iter %lld is out of " |
| "bounds [%lld,%lld]\n", |
| gtid, vec[0], lo, up)); |
| return; |
| } |
| iter_number = vec[0] - lo; |
| } else if (st > 0) { |
| if (vec[0] < lo || vec[0] > up) { |
| KA_TRACE(20, ("__kmpc_doacross_wait() exit: T#%d iter %lld is out of " |
| "bounds [%lld,%lld]\n", |
| gtid, vec[0], lo, up)); |
| return; |
| } |
| iter_number = (kmp_uint64)(vec[0] - lo) / st; |
| } else { // negative increment |
| if (vec[0] > lo || vec[0] < up) { |
| KA_TRACE(20, ("__kmpc_doacross_wait() exit: T#%d iter %lld is out of " |
| "bounds [%lld,%lld]\n", |
| gtid, vec[0], lo, up)); |
| return; |
| } |
| iter_number = (kmp_uint64)(lo - vec[0]) / (-st); |
| } |
| for (i = 1; i < num_dims; ++i) { |
| kmp_int64 iter, ln; |
| kmp_int32 j = i * 4; |
| ln = pr_buf->th_doacross_info[j + 1]; |
| lo = pr_buf->th_doacross_info[j + 2]; |
| up = pr_buf->th_doacross_info[j + 3]; |
| st = pr_buf->th_doacross_info[j + 4]; |
| if (st == 1) { |
| if (vec[i] < lo || vec[i] > up) { |
| KA_TRACE(20, ("__kmpc_doacross_wait() exit: T#%d iter %lld is out of " |
| "bounds [%lld,%lld]\n", |
| gtid, vec[i], lo, up)); |
| return; |
| } |
| iter = vec[i] - lo; |
| } else if (st > 0) { |
| if (vec[i] < lo || vec[i] > up) { |
| KA_TRACE(20, ("__kmpc_doacross_wait() exit: T#%d iter %lld is out of " |
| "bounds [%lld,%lld]\n", |
| gtid, vec[i], lo, up)); |
| return; |
| } |
| iter = (kmp_uint64)(vec[i] - lo) / st; |
| } else { // st < 0 |
| if (vec[i] > lo || vec[i] < up) { |
| KA_TRACE(20, ("__kmpc_doacross_wait() exit: T#%d iter %lld is out of " |
| "bounds [%lld,%lld]\n", |
| gtid, vec[i], lo, up)); |
| return; |
| } |
| iter = (kmp_uint64)(lo - vec[i]) / (-st); |
| } |
| iter_number = iter + ln * iter_number; |
| } |
| shft = iter_number % 32; // use 32-bit granularity |
| iter_number >>= 5; // divided by 32 |
| flag = 1 << shft; |
| while ((flag & pr_buf->th_doacross_flags[iter_number]) == 0) { |
| KMP_YIELD(TRUE); |
| } |
| KMP_MB(); |
| KA_TRACE(20, |
| ("__kmpc_doacross_wait() exit: T#%d wait for iter %lld completed\n", |
| gtid, (iter_number << 5) + shft)); |
| } |
| |
| void __kmpc_doacross_post(ident_t *loc, int gtid, const kmp_int64 *vec) { |
| kmp_int32 shft, num_dims, i; |
| kmp_uint32 flag; |
| kmp_int64 iter_number; // iteration number of "collapsed" loop nest |
| kmp_info_t *th = __kmp_threads[gtid]; |
| kmp_team_t *team = th->th.th_team; |
| kmp_disp_t *pr_buf; |
| kmp_int64 lo, st; |
| |
| KA_TRACE(20, ("__kmpc_doacross_post() enter: called T#%d\n", gtid)); |
| if (team->t.t_serialized) { |
| KA_TRACE(20, ("__kmpc_doacross_post() exit: serialized team\n")); |
| return; // no dependencies if team is serialized |
| } |
| |
| // calculate sequential iteration number (same as in "wait" but no |
| // out-of-bounds checks) |
| pr_buf = th->th.th_dispatch; |
| KMP_DEBUG_ASSERT(pr_buf->th_doacross_info != NULL); |
| num_dims = pr_buf->th_doacross_info[0]; |
| lo = pr_buf->th_doacross_info[2]; |
| st = pr_buf->th_doacross_info[4]; |
| if (st == 1) { // most common case |
| iter_number = vec[0] - lo; |
| } else if (st > 0) { |
| iter_number = (kmp_uint64)(vec[0] - lo) / st; |
| } else { // negative increment |
| iter_number = (kmp_uint64)(lo - vec[0]) / (-st); |
| } |
| for (i = 1; i < num_dims; ++i) { |
| kmp_int64 iter, ln; |
| kmp_int32 j = i * 4; |
| ln = pr_buf->th_doacross_info[j + 1]; |
| lo = pr_buf->th_doacross_info[j + 2]; |
| st = pr_buf->th_doacross_info[j + 4]; |
| if (st == 1) { |
| iter = vec[i] - lo; |
| } else if (st > 0) { |
| iter = (kmp_uint64)(vec[i] - lo) / st; |
| } else { // st < 0 |
| iter = (kmp_uint64)(lo - vec[i]) / (-st); |
| } |
| iter_number = iter + ln * iter_number; |
| } |
| shft = iter_number % 32; // use 32-bit granularity |
| iter_number >>= 5; // divided by 32 |
| flag = 1 << shft; |
| KMP_MB(); |
| if ((flag & pr_buf->th_doacross_flags[iter_number]) == 0) |
| KMP_TEST_THEN_OR32(&pr_buf->th_doacross_flags[iter_number], flag); |
| KA_TRACE(20, ("__kmpc_doacross_post() exit: T#%d iter %lld posted\n", gtid, |
| (iter_number << 5) + shft)); |
| } |
| |
| void __kmpc_doacross_fini(ident_t *loc, int gtid) { |
| kmp_int32 num_done; |
| kmp_info_t *th = __kmp_threads[gtid]; |
| kmp_team_t *team = th->th.th_team; |
| kmp_disp_t *pr_buf = th->th.th_dispatch; |
| |
| KA_TRACE(20, ("__kmpc_doacross_fini() enter: called T#%d\n", gtid)); |
| if (team->t.t_serialized) { |
| KA_TRACE(20, ("__kmpc_doacross_fini() exit: serialized team %p\n", team)); |
| return; // nothing to do |
| } |
| num_done = KMP_TEST_THEN_INC32((kmp_int32 *)pr_buf->th_doacross_info[1]) + 1; |
| if (num_done == th->th.th_team_nproc) { |
| // we are the last thread, need to free shared resources |
| int idx = pr_buf->th_doacross_buf_idx - 1; |
| dispatch_shared_info_t *sh_buf = |
| &team->t.t_disp_buffer[idx % __kmp_dispatch_num_buffers]; |
| KMP_DEBUG_ASSERT(pr_buf->th_doacross_info[1] == |
| (kmp_int64)&sh_buf->doacross_num_done); |
| KMP_DEBUG_ASSERT(num_done == sh_buf->doacross_num_done); |
| KMP_DEBUG_ASSERT(idx == sh_buf->doacross_buf_idx); |
| __kmp_thread_free(th, CCAST(kmp_uint32 *, sh_buf->doacross_flags)); |
| sh_buf->doacross_flags = NULL; |
| sh_buf->doacross_num_done = 0; |
| sh_buf->doacross_buf_idx += |
| __kmp_dispatch_num_buffers; // free buffer for future re-use |
| } |
| // free private resources (need to keep buffer index forever) |
| pr_buf->th_doacross_flags = NULL; |
| __kmp_thread_free(th, (void *)pr_buf->th_doacross_info); |
| pr_buf->th_doacross_info = NULL; |
| KA_TRACE(20, ("__kmpc_doacross_fini() exit: T#%d\n", gtid)); |
| } |
| #endif |
| |
| #if OMP_50_ENABLED |
| int __kmpc_get_target_offload(void) { |
| if (!__kmp_init_serial) { |
| __kmp_serial_initialize(); |
| } |
| return __kmp_target_offload; |
| } |
| |
| int __kmpc_pause_resource(kmp_pause_status_t level) { |
| if (!__kmp_init_serial) { |
| return 1; // Can't pause if runtime is not initialized |
| } |
| return __kmp_pause_resource(level); |
| } |
| #endif // OMP_50_ENABLED |
| |
| // end of file // |