| /* |
| * z_Linux_util.cpp -- platform specific routines. |
| */ |
| |
| //===----------------------------------------------------------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is dual licensed under the MIT and the University of Illinois Open |
| // Source Licenses. See LICENSE.txt for details. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "kmp.h" |
| #include "kmp_affinity.h" |
| #include "kmp_i18n.h" |
| #include "kmp_io.h" |
| #include "kmp_itt.h" |
| #include "kmp_lock.h" |
| #include "kmp_stats.h" |
| #include "kmp_str.h" |
| #include "kmp_wait_release.h" |
| #include "kmp_wrapper_getpid.h" |
| |
| #if !KMP_OS_DRAGONFLY && !KMP_OS_FREEBSD && !KMP_OS_NETBSD && !KMP_OS_OPENBSD |
| #include <alloca.h> |
| #endif |
| #include <math.h> // HUGE_VAL. |
| #include <sys/resource.h> |
| #include <sys/syscall.h> |
| #include <sys/time.h> |
| #include <sys/times.h> |
| #include <unistd.h> |
| |
| #if KMP_OS_LINUX && !KMP_OS_CNK |
| #include <sys/sysinfo.h> |
| #if KMP_USE_FUTEX |
| // We should really include <futex.h>, but that causes compatibility problems on |
| // different Linux* OS distributions that either require that you include (or |
| // break when you try to include) <pci/types.h>. Since all we need is the two |
| // macros below (which are part of the kernel ABI, so can't change) we just |
| // define the constants here and don't include <futex.h> |
| #ifndef FUTEX_WAIT |
| #define FUTEX_WAIT 0 |
| #endif |
| #ifndef FUTEX_WAKE |
| #define FUTEX_WAKE 1 |
| #endif |
| #endif |
| #elif KMP_OS_DARWIN |
| #include <mach/mach.h> |
| #include <sys/sysctl.h> |
| #elif KMP_OS_DRAGONFLY || KMP_OS_FREEBSD |
| #include <pthread_np.h> |
| #elif KMP_OS_NETBSD |
| #include <sys/types.h> |
| #include <sys/sysctl.h> |
| #endif |
| |
| #include <ctype.h> |
| #include <dirent.h> |
| #include <fcntl.h> |
| |
| #include "tsan_annotations.h" |
| |
| struct kmp_sys_timer { |
| struct timespec start; |
| }; |
| |
| // Convert timespec to nanoseconds. |
| #define TS2NS(timespec) (((timespec).tv_sec * 1e9) + (timespec).tv_nsec) |
| |
| static struct kmp_sys_timer __kmp_sys_timer_data; |
| |
| #if KMP_HANDLE_SIGNALS |
| typedef void (*sig_func_t)(int); |
| STATIC_EFI2_WORKAROUND struct sigaction __kmp_sighldrs[NSIG]; |
| static sigset_t __kmp_sigset; |
| #endif |
| |
| static int __kmp_init_runtime = FALSE; |
| |
| static int __kmp_fork_count = 0; |
| |
| static pthread_condattr_t __kmp_suspend_cond_attr; |
| static pthread_mutexattr_t __kmp_suspend_mutex_attr; |
| |
| static kmp_cond_align_t __kmp_wait_cv; |
| static kmp_mutex_align_t __kmp_wait_mx; |
| |
| kmp_uint64 __kmp_ticks_per_msec = 1000000; |
| |
| #ifdef DEBUG_SUSPEND |
| static void __kmp_print_cond(char *buffer, kmp_cond_align_t *cond) { |
| KMP_SNPRINTF(buffer, 128, "(cond (lock (%ld, %d)), (descr (%p)))", |
| cond->c_cond.__c_lock.__status, cond->c_cond.__c_lock.__spinlock, |
| cond->c_cond.__c_waiting); |
| } |
| #endif |
| |
| #if (KMP_OS_LINUX && KMP_AFFINITY_SUPPORTED) |
| |
| /* Affinity support */ |
| |
| void __kmp_affinity_bind_thread(int which) { |
| KMP_ASSERT2(KMP_AFFINITY_CAPABLE(), |
| "Illegal set affinity operation when not capable"); |
| |
| kmp_affin_mask_t *mask; |
| KMP_CPU_ALLOC_ON_STACK(mask); |
| KMP_CPU_ZERO(mask); |
| KMP_CPU_SET(which, mask); |
| __kmp_set_system_affinity(mask, TRUE); |
| KMP_CPU_FREE_FROM_STACK(mask); |
| } |
| |
| /* Determine if we can access affinity functionality on this version of |
| * Linux* OS by checking __NR_sched_{get,set}affinity system calls, and set |
| * __kmp_affin_mask_size to the appropriate value (0 means not capable). */ |
| void __kmp_affinity_determine_capable(const char *env_var) { |
| // Check and see if the OS supports thread affinity. |
| |
| #define KMP_CPU_SET_SIZE_LIMIT (1024 * 1024) |
| |
| int gCode; |
| int sCode; |
| unsigned char *buf; |
| buf = (unsigned char *)KMP_INTERNAL_MALLOC(KMP_CPU_SET_SIZE_LIMIT); |
| |
| // If Linux* OS: |
| // If the syscall fails or returns a suggestion for the size, |
| // then we don't have to search for an appropriate size. |
| gCode = syscall(__NR_sched_getaffinity, 0, KMP_CPU_SET_SIZE_LIMIT, buf); |
| KA_TRACE(30, ("__kmp_affinity_determine_capable: " |
| "initial getaffinity call returned %d errno = %d\n", |
| gCode, errno)); |
| |
| // if ((gCode < 0) && (errno == ENOSYS)) |
| if (gCode < 0) { |
| // System call not supported |
| if (__kmp_affinity_verbose || |
| (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none) && |
| (__kmp_affinity_type != affinity_default) && |
| (__kmp_affinity_type != affinity_disabled))) { |
| int error = errno; |
| kmp_msg_t err_code = KMP_ERR(error); |
| __kmp_msg(kmp_ms_warning, KMP_MSG(GetAffSysCallNotSupported, env_var), |
| err_code, __kmp_msg_null); |
| if (__kmp_generate_warnings == kmp_warnings_off) { |
| __kmp_str_free(&err_code.str); |
| } |
| } |
| KMP_AFFINITY_DISABLE(); |
| KMP_INTERNAL_FREE(buf); |
| return; |
| } |
| if (gCode > 0) { // Linux* OS only |
| // The optimal situation: the OS returns the size of the buffer it expects. |
| // |
| // A verification of correct behavior is that Isetaffinity on a NULL |
| // buffer with the same size fails with errno set to EFAULT. |
| sCode = syscall(__NR_sched_setaffinity, 0, gCode, NULL); |
| KA_TRACE(30, ("__kmp_affinity_determine_capable: " |
| "setaffinity for mask size %d returned %d errno = %d\n", |
| gCode, sCode, errno)); |
| if (sCode < 0) { |
| if (errno == ENOSYS) { |
| if (__kmp_affinity_verbose || |
| (__kmp_affinity_warnings && |
| (__kmp_affinity_type != affinity_none) && |
| (__kmp_affinity_type != affinity_default) && |
| (__kmp_affinity_type != affinity_disabled))) { |
| int error = errno; |
| kmp_msg_t err_code = KMP_ERR(error); |
| __kmp_msg(kmp_ms_warning, KMP_MSG(SetAffSysCallNotSupported, env_var), |
| err_code, __kmp_msg_null); |
| if (__kmp_generate_warnings == kmp_warnings_off) { |
| __kmp_str_free(&err_code.str); |
| } |
| } |
| KMP_AFFINITY_DISABLE(); |
| KMP_INTERNAL_FREE(buf); |
| } |
| if (errno == EFAULT) { |
| KMP_AFFINITY_ENABLE(gCode); |
| KA_TRACE(10, ("__kmp_affinity_determine_capable: " |
| "affinity supported (mask size %d)\n", |
| (int)__kmp_affin_mask_size)); |
| KMP_INTERNAL_FREE(buf); |
| return; |
| } |
| } |
| } |
| |
| // Call the getaffinity system call repeatedly with increasing set sizes |
| // until we succeed, or reach an upper bound on the search. |
| KA_TRACE(30, ("__kmp_affinity_determine_capable: " |
| "searching for proper set size\n")); |
| int size; |
| for (size = 1; size <= KMP_CPU_SET_SIZE_LIMIT; size *= 2) { |
| gCode = syscall(__NR_sched_getaffinity, 0, size, buf); |
| KA_TRACE(30, ("__kmp_affinity_determine_capable: " |
| "getaffinity for mask size %d returned %d errno = %d\n", |
| size, gCode, errno)); |
| |
| if (gCode < 0) { |
| if (errno == ENOSYS) { |
| // We shouldn't get here |
| KA_TRACE(30, ("__kmp_affinity_determine_capable: " |
| "inconsistent OS call behavior: errno == ENOSYS for mask " |
| "size %d\n", |
| size)); |
| if (__kmp_affinity_verbose || |
| (__kmp_affinity_warnings && |
| (__kmp_affinity_type != affinity_none) && |
| (__kmp_affinity_type != affinity_default) && |
| (__kmp_affinity_type != affinity_disabled))) { |
| int error = errno; |
| kmp_msg_t err_code = KMP_ERR(error); |
| __kmp_msg(kmp_ms_warning, KMP_MSG(GetAffSysCallNotSupported, env_var), |
| err_code, __kmp_msg_null); |
| if (__kmp_generate_warnings == kmp_warnings_off) { |
| __kmp_str_free(&err_code.str); |
| } |
| } |
| KMP_AFFINITY_DISABLE(); |
| KMP_INTERNAL_FREE(buf); |
| return; |
| } |
| continue; |
| } |
| |
| sCode = syscall(__NR_sched_setaffinity, 0, gCode, NULL); |
| KA_TRACE(30, ("__kmp_affinity_determine_capable: " |
| "setaffinity for mask size %d returned %d errno = %d\n", |
| gCode, sCode, errno)); |
| if (sCode < 0) { |
| if (errno == ENOSYS) { // Linux* OS only |
| // We shouldn't get here |
| KA_TRACE(30, ("__kmp_affinity_determine_capable: " |
| "inconsistent OS call behavior: errno == ENOSYS for mask " |
| "size %d\n", |
| size)); |
| if (__kmp_affinity_verbose || |
| (__kmp_affinity_warnings && |
| (__kmp_affinity_type != affinity_none) && |
| (__kmp_affinity_type != affinity_default) && |
| (__kmp_affinity_type != affinity_disabled))) { |
| int error = errno; |
| kmp_msg_t err_code = KMP_ERR(error); |
| __kmp_msg(kmp_ms_warning, KMP_MSG(SetAffSysCallNotSupported, env_var), |
| err_code, __kmp_msg_null); |
| if (__kmp_generate_warnings == kmp_warnings_off) { |
| __kmp_str_free(&err_code.str); |
| } |
| } |
| KMP_AFFINITY_DISABLE(); |
| KMP_INTERNAL_FREE(buf); |
| return; |
| } |
| if (errno == EFAULT) { |
| KMP_AFFINITY_ENABLE(gCode); |
| KA_TRACE(10, ("__kmp_affinity_determine_capable: " |
| "affinity supported (mask size %d)\n", |
| (int)__kmp_affin_mask_size)); |
| KMP_INTERNAL_FREE(buf); |
| return; |
| } |
| } |
| } |
| // save uncaught error code |
| // int error = errno; |
| KMP_INTERNAL_FREE(buf); |
| // restore uncaught error code, will be printed at the next KMP_WARNING below |
| // errno = error; |
| |
| // Affinity is not supported |
| KMP_AFFINITY_DISABLE(); |
| KA_TRACE(10, ("__kmp_affinity_determine_capable: " |
| "cannot determine mask size - affinity not supported\n")); |
| if (__kmp_affinity_verbose || |
| (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none) && |
| (__kmp_affinity_type != affinity_default) && |
| (__kmp_affinity_type != affinity_disabled))) { |
| KMP_WARNING(AffCantGetMaskSize, env_var); |
| } |
| } |
| |
| #endif // KMP_OS_LINUX && KMP_AFFINITY_SUPPORTED |
| |
| #if KMP_USE_FUTEX |
| |
| int __kmp_futex_determine_capable() { |
| int loc = 0; |
| int rc = syscall(__NR_futex, &loc, FUTEX_WAKE, 1, NULL, NULL, 0); |
| int retval = (rc == 0) || (errno != ENOSYS); |
| |
| KA_TRACE(10, |
| ("__kmp_futex_determine_capable: rc = %d errno = %d\n", rc, errno)); |
| KA_TRACE(10, ("__kmp_futex_determine_capable: futex syscall%s supported\n", |
| retval ? "" : " not")); |
| |
| return retval; |
| } |
| |
| #endif // KMP_USE_FUTEX |
| |
| #if (KMP_ARCH_X86 || KMP_ARCH_X86_64) && (!KMP_ASM_INTRINS) |
| /* Only 32-bit "add-exchange" instruction on IA-32 architecture causes us to |
| use compare_and_store for these routines */ |
| |
| kmp_int8 __kmp_test_then_or8(volatile kmp_int8 *p, kmp_int8 d) { |
| kmp_int8 old_value, new_value; |
| |
| old_value = TCR_1(*p); |
| new_value = old_value | d; |
| |
| while (!KMP_COMPARE_AND_STORE_REL8(p, old_value, new_value)) { |
| KMP_CPU_PAUSE(); |
| old_value = TCR_1(*p); |
| new_value = old_value | d; |
| } |
| return old_value; |
| } |
| |
| kmp_int8 __kmp_test_then_and8(volatile kmp_int8 *p, kmp_int8 d) { |
| kmp_int8 old_value, new_value; |
| |
| old_value = TCR_1(*p); |
| new_value = old_value & d; |
| |
| while (!KMP_COMPARE_AND_STORE_REL8(p, old_value, new_value)) { |
| KMP_CPU_PAUSE(); |
| old_value = TCR_1(*p); |
| new_value = old_value & d; |
| } |
| return old_value; |
| } |
| |
| kmp_uint32 __kmp_test_then_or32(volatile kmp_uint32 *p, kmp_uint32 d) { |
| kmp_uint32 old_value, new_value; |
| |
| old_value = TCR_4(*p); |
| new_value = old_value | d; |
| |
| while (!KMP_COMPARE_AND_STORE_REL32(p, old_value, new_value)) { |
| KMP_CPU_PAUSE(); |
| old_value = TCR_4(*p); |
| new_value = old_value | d; |
| } |
| return old_value; |
| } |
| |
| kmp_uint32 __kmp_test_then_and32(volatile kmp_uint32 *p, kmp_uint32 d) { |
| kmp_uint32 old_value, new_value; |
| |
| old_value = TCR_4(*p); |
| new_value = old_value & d; |
| |
| while (!KMP_COMPARE_AND_STORE_REL32(p, old_value, new_value)) { |
| KMP_CPU_PAUSE(); |
| old_value = TCR_4(*p); |
| new_value = old_value & d; |
| } |
| return old_value; |
| } |
| |
| #if KMP_ARCH_X86 |
| kmp_int8 __kmp_test_then_add8(volatile kmp_int8 *p, kmp_int8 d) { |
| kmp_int8 old_value, new_value; |
| |
| old_value = TCR_1(*p); |
| new_value = old_value + d; |
| |
| while (!KMP_COMPARE_AND_STORE_REL8(p, old_value, new_value)) { |
| KMP_CPU_PAUSE(); |
| old_value = TCR_1(*p); |
| new_value = old_value + d; |
| } |
| return old_value; |
| } |
| |
| kmp_int64 __kmp_test_then_add64(volatile kmp_int64 *p, kmp_int64 d) { |
| kmp_int64 old_value, new_value; |
| |
| old_value = TCR_8(*p); |
| new_value = old_value + d; |
| |
| while (!KMP_COMPARE_AND_STORE_REL64(p, old_value, new_value)) { |
| KMP_CPU_PAUSE(); |
| old_value = TCR_8(*p); |
| new_value = old_value + d; |
| } |
| return old_value; |
| } |
| #endif /* KMP_ARCH_X86 */ |
| |
| kmp_uint64 __kmp_test_then_or64(volatile kmp_uint64 *p, kmp_uint64 d) { |
| kmp_uint64 old_value, new_value; |
| |
| old_value = TCR_8(*p); |
| new_value = old_value | d; |
| while (!KMP_COMPARE_AND_STORE_REL64(p, old_value, new_value)) { |
| KMP_CPU_PAUSE(); |
| old_value = TCR_8(*p); |
| new_value = old_value | d; |
| } |
| return old_value; |
| } |
| |
| kmp_uint64 __kmp_test_then_and64(volatile kmp_uint64 *p, kmp_uint64 d) { |
| kmp_uint64 old_value, new_value; |
| |
| old_value = TCR_8(*p); |
| new_value = old_value & d; |
| while (!KMP_COMPARE_AND_STORE_REL64(p, old_value, new_value)) { |
| KMP_CPU_PAUSE(); |
| old_value = TCR_8(*p); |
| new_value = old_value & d; |
| } |
| return old_value; |
| } |
| |
| #endif /* (KMP_ARCH_X86 || KMP_ARCH_X86_64) && (! KMP_ASM_INTRINS) */ |
| |
| void __kmp_terminate_thread(int gtid) { |
| int status; |
| kmp_info_t *th = __kmp_threads[gtid]; |
| |
| if (!th) |
| return; |
| |
| #ifdef KMP_CANCEL_THREADS |
| KA_TRACE(10, ("__kmp_terminate_thread: kill (%d)\n", gtid)); |
| status = pthread_cancel(th->th.th_info.ds.ds_thread); |
| if (status != 0 && status != ESRCH) { |
| __kmp_fatal(KMP_MSG(CantTerminateWorkerThread), KMP_ERR(status), |
| __kmp_msg_null); |
| } |
| #endif |
| __kmp_yield(TRUE); |
| } // |
| |
| /* Set thread stack info according to values returned by pthread_getattr_np(). |
| If values are unreasonable, assume call failed and use incremental stack |
| refinement method instead. Returns TRUE if the stack parameters could be |
| determined exactly, FALSE if incremental refinement is necessary. */ |
| static kmp_int32 __kmp_set_stack_info(int gtid, kmp_info_t *th) { |
| int stack_data; |
| #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || \ |
| KMP_OS_HURD |
| pthread_attr_t attr; |
| int status; |
| size_t size = 0; |
| void *addr = 0; |
| |
| /* Always do incremental stack refinement for ubermaster threads since the |
| initial thread stack range can be reduced by sibling thread creation so |
| pthread_attr_getstack may cause thread gtid aliasing */ |
| if (!KMP_UBER_GTID(gtid)) { |
| |
| /* Fetch the real thread attributes */ |
| status = pthread_attr_init(&attr); |
| KMP_CHECK_SYSFAIL("pthread_attr_init", status); |
| #if KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD |
| status = pthread_attr_get_np(pthread_self(), &attr); |
| KMP_CHECK_SYSFAIL("pthread_attr_get_np", status); |
| #else |
| status = pthread_getattr_np(pthread_self(), &attr); |
| KMP_CHECK_SYSFAIL("pthread_getattr_np", status); |
| #endif |
| status = pthread_attr_getstack(&attr, &addr, &size); |
| KMP_CHECK_SYSFAIL("pthread_attr_getstack", status); |
| KA_TRACE(60, |
| ("__kmp_set_stack_info: T#%d pthread_attr_getstack returned size:" |
| " %lu, low addr: %p\n", |
| gtid, size, addr)); |
| status = pthread_attr_destroy(&attr); |
| KMP_CHECK_SYSFAIL("pthread_attr_destroy", status); |
| } |
| |
| if (size != 0 && addr != 0) { // was stack parameter determination successful? |
| /* Store the correct base and size */ |
| TCW_PTR(th->th.th_info.ds.ds_stackbase, (((char *)addr) + size)); |
| TCW_PTR(th->th.th_info.ds.ds_stacksize, size); |
| TCW_4(th->th.th_info.ds.ds_stackgrow, FALSE); |
| return TRUE; |
| } |
| #endif /* KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || |
| KMP_OS_HURD */ |
| /* Use incremental refinement starting from initial conservative estimate */ |
| TCW_PTR(th->th.th_info.ds.ds_stacksize, 0); |
| TCW_PTR(th->th.th_info.ds.ds_stackbase, &stack_data); |
| TCW_4(th->th.th_info.ds.ds_stackgrow, TRUE); |
| return FALSE; |
| } |
| |
| static void *__kmp_launch_worker(void *thr) { |
| int status, old_type, old_state; |
| #ifdef KMP_BLOCK_SIGNALS |
| sigset_t new_set, old_set; |
| #endif /* KMP_BLOCK_SIGNALS */ |
| void *exit_val; |
| #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || \ |
| KMP_OS_OPENBSD || KMP_OS_HURD |
| void *volatile padding = 0; |
| #endif |
| int gtid; |
| |
| gtid = ((kmp_info_t *)thr)->th.th_info.ds.ds_gtid; |
| __kmp_gtid_set_specific(gtid); |
| #ifdef KMP_TDATA_GTID |
| __kmp_gtid = gtid; |
| #endif |
| #if KMP_STATS_ENABLED |
| // set thread local index to point to thread-specific stats |
| __kmp_stats_thread_ptr = ((kmp_info_t *)thr)->th.th_stats; |
| __kmp_stats_thread_ptr->startLife(); |
| KMP_SET_THREAD_STATE(IDLE); |
| KMP_INIT_PARTITIONED_TIMERS(OMP_idle); |
| #endif |
| |
| #if USE_ITT_BUILD |
| __kmp_itt_thread_name(gtid); |
| #endif /* USE_ITT_BUILD */ |
| |
| #if KMP_AFFINITY_SUPPORTED |
| __kmp_affinity_set_init_mask(gtid, FALSE); |
| #endif |
| |
| #ifdef KMP_CANCEL_THREADS |
| status = pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, &old_type); |
| KMP_CHECK_SYSFAIL("pthread_setcanceltype", status); |
| // josh todo: isn't PTHREAD_CANCEL_ENABLE default for newly-created threads? |
| status = pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, &old_state); |
| KMP_CHECK_SYSFAIL("pthread_setcancelstate", status); |
| #endif |
| |
| #if KMP_ARCH_X86 || KMP_ARCH_X86_64 |
| // Set FP control regs to be a copy of the parallel initialization thread's. |
| __kmp_clear_x87_fpu_status_word(); |
| __kmp_load_x87_fpu_control_word(&__kmp_init_x87_fpu_control_word); |
| __kmp_load_mxcsr(&__kmp_init_mxcsr); |
| #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ |
| |
| #ifdef KMP_BLOCK_SIGNALS |
| status = sigfillset(&new_set); |
| KMP_CHECK_SYSFAIL_ERRNO("sigfillset", status); |
| status = pthread_sigmask(SIG_BLOCK, &new_set, &old_set); |
| KMP_CHECK_SYSFAIL("pthread_sigmask", status); |
| #endif /* KMP_BLOCK_SIGNALS */ |
| |
| #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || \ |
| KMP_OS_OPENBSD |
| if (__kmp_stkoffset > 0 && gtid > 0) { |
| padding = KMP_ALLOCA(gtid * __kmp_stkoffset); |
| } |
| #endif |
| |
| KMP_MB(); |
| __kmp_set_stack_info(gtid, (kmp_info_t *)thr); |
| |
| __kmp_check_stack_overlap((kmp_info_t *)thr); |
| |
| exit_val = __kmp_launch_thread((kmp_info_t *)thr); |
| |
| #ifdef KMP_BLOCK_SIGNALS |
| status = pthread_sigmask(SIG_SETMASK, &old_set, NULL); |
| KMP_CHECK_SYSFAIL("pthread_sigmask", status); |
| #endif /* KMP_BLOCK_SIGNALS */ |
| |
| return exit_val; |
| } |
| |
| #if KMP_USE_MONITOR |
| /* The monitor thread controls all of the threads in the complex */ |
| |
| static void *__kmp_launch_monitor(void *thr) { |
| int status, old_type, old_state; |
| #ifdef KMP_BLOCK_SIGNALS |
| sigset_t new_set; |
| #endif /* KMP_BLOCK_SIGNALS */ |
| struct timespec interval; |
| int yield_count; |
| int yield_cycles = 0; |
| |
| KMP_MB(); /* Flush all pending memory write invalidates. */ |
| |
| KA_TRACE(10, ("__kmp_launch_monitor: #1 launched\n")); |
| |
| /* register us as the monitor thread */ |
| __kmp_gtid_set_specific(KMP_GTID_MONITOR); |
| #ifdef KMP_TDATA_GTID |
| __kmp_gtid = KMP_GTID_MONITOR; |
| #endif |
| |
| KMP_MB(); |
| |
| #if USE_ITT_BUILD |
| // Instruct Intel(R) Threading Tools to ignore monitor thread. |
| __kmp_itt_thread_ignore(); |
| #endif /* USE_ITT_BUILD */ |
| |
| __kmp_set_stack_info(((kmp_info_t *)thr)->th.th_info.ds.ds_gtid, |
| (kmp_info_t *)thr); |
| |
| __kmp_check_stack_overlap((kmp_info_t *)thr); |
| |
| #ifdef KMP_CANCEL_THREADS |
| status = pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, &old_type); |
| KMP_CHECK_SYSFAIL("pthread_setcanceltype", status); |
| // josh todo: isn't PTHREAD_CANCEL_ENABLE default for newly-created threads? |
| status = pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, &old_state); |
| KMP_CHECK_SYSFAIL("pthread_setcancelstate", status); |
| #endif |
| |
| #if KMP_REAL_TIME_FIX |
| // This is a potential fix which allows application with real-time scheduling |
| // policy work. However, decision about the fix is not made yet, so it is |
| // disabled by default. |
| { // Are program started with real-time scheduling policy? |
| int sched = sched_getscheduler(0); |
| if (sched == SCHED_FIFO || sched == SCHED_RR) { |
| // Yes, we are a part of real-time application. Try to increase the |
| // priority of the monitor. |
| struct sched_param param; |
| int max_priority = sched_get_priority_max(sched); |
| int rc; |
| KMP_WARNING(RealTimeSchedNotSupported); |
| sched_getparam(0, ¶m); |
| if (param.sched_priority < max_priority) { |
| param.sched_priority += 1; |
| rc = sched_setscheduler(0, sched, ¶m); |
| if (rc != 0) { |
| int error = errno; |
| kmp_msg_t err_code = KMP_ERR(error); |
| __kmp_msg(kmp_ms_warning, KMP_MSG(CantChangeMonitorPriority), |
| err_code, KMP_MSG(MonitorWillStarve), __kmp_msg_null); |
| if (__kmp_generate_warnings == kmp_warnings_off) { |
| __kmp_str_free(&err_code.str); |
| } |
| } |
| } else { |
| // We cannot abort here, because number of CPUs may be enough for all |
| // the threads, including the monitor thread, so application could |
| // potentially work... |
| __kmp_msg(kmp_ms_warning, KMP_MSG(RunningAtMaxPriority), |
| KMP_MSG(MonitorWillStarve), KMP_HNT(RunningAtMaxPriority), |
| __kmp_msg_null); |
| } |
| } |
| // AC: free thread that waits for monitor started |
| TCW_4(__kmp_global.g.g_time.dt.t_value, 0); |
| } |
| #endif // KMP_REAL_TIME_FIX |
| |
| KMP_MB(); /* Flush all pending memory write invalidates. */ |
| |
| if (__kmp_monitor_wakeups == 1) { |
| interval.tv_sec = 1; |
| interval.tv_nsec = 0; |
| } else { |
| interval.tv_sec = 0; |
| interval.tv_nsec = (KMP_NSEC_PER_SEC / __kmp_monitor_wakeups); |
| } |
| |
| KA_TRACE(10, ("__kmp_launch_monitor: #2 monitor\n")); |
| |
| if (__kmp_yield_cycle) { |
| __kmp_yielding_on = 0; /* Start out with yielding shut off */ |
| yield_count = __kmp_yield_off_count; |
| } else { |
| __kmp_yielding_on = 1; /* Yielding is on permanently */ |
| } |
| |
| while (!TCR_4(__kmp_global.g.g_done)) { |
| struct timespec now; |
| struct timeval tval; |
| |
| /* This thread monitors the state of the system */ |
| |
| KA_TRACE(15, ("__kmp_launch_monitor: update\n")); |
| |
| status = gettimeofday(&tval, NULL); |
| KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status); |
| TIMEVAL_TO_TIMESPEC(&tval, &now); |
| |
| now.tv_sec += interval.tv_sec; |
| now.tv_nsec += interval.tv_nsec; |
| |
| if (now.tv_nsec >= KMP_NSEC_PER_SEC) { |
| now.tv_sec += 1; |
| now.tv_nsec -= KMP_NSEC_PER_SEC; |
| } |
| |
| status = pthread_mutex_lock(&__kmp_wait_mx.m_mutex); |
| KMP_CHECK_SYSFAIL("pthread_mutex_lock", status); |
| // AC: the monitor should not fall asleep if g_done has been set |
| if (!TCR_4(__kmp_global.g.g_done)) { // check once more under mutex |
| status = pthread_cond_timedwait(&__kmp_wait_cv.c_cond, |
| &__kmp_wait_mx.m_mutex, &now); |
| if (status != 0) { |
| if (status != ETIMEDOUT && status != EINTR) { |
| KMP_SYSFAIL("pthread_cond_timedwait", status); |
| } |
| } |
| } |
| status = pthread_mutex_unlock(&__kmp_wait_mx.m_mutex); |
| KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status); |
| |
| if (__kmp_yield_cycle) { |
| yield_cycles++; |
| if ((yield_cycles % yield_count) == 0) { |
| if (__kmp_yielding_on) { |
| __kmp_yielding_on = 0; /* Turn it off now */ |
| yield_count = __kmp_yield_off_count; |
| } else { |
| __kmp_yielding_on = 1; /* Turn it on now */ |
| yield_count = __kmp_yield_on_count; |
| } |
| yield_cycles = 0; |
| } |
| } else { |
| __kmp_yielding_on = 1; |
| } |
| |
| TCW_4(__kmp_global.g.g_time.dt.t_value, |
| TCR_4(__kmp_global.g.g_time.dt.t_value) + 1); |
| |
| KMP_MB(); /* Flush all pending memory write invalidates. */ |
| } |
| |
| KA_TRACE(10, ("__kmp_launch_monitor: #3 cleanup\n")); |
| |
| #ifdef KMP_BLOCK_SIGNALS |
| status = sigfillset(&new_set); |
| KMP_CHECK_SYSFAIL_ERRNO("sigfillset", status); |
| status = pthread_sigmask(SIG_UNBLOCK, &new_set, NULL); |
| KMP_CHECK_SYSFAIL("pthread_sigmask", status); |
| #endif /* KMP_BLOCK_SIGNALS */ |
| |
| KA_TRACE(10, ("__kmp_launch_monitor: #4 finished\n")); |
| |
| if (__kmp_global.g.g_abort != 0) { |
| /* now we need to terminate the worker threads */ |
| /* the value of t_abort is the signal we caught */ |
| |
| int gtid; |
| |
| KA_TRACE(10, ("__kmp_launch_monitor: #5 terminate sig=%d\n", |
| __kmp_global.g.g_abort)); |
| |
| /* terminate the OpenMP worker threads */ |
| /* TODO this is not valid for sibling threads!! |
| * the uber master might not be 0 anymore.. */ |
| for (gtid = 1; gtid < __kmp_threads_capacity; ++gtid) |
| __kmp_terminate_thread(gtid); |
| |
| __kmp_cleanup(); |
| |
| KA_TRACE(10, ("__kmp_launch_monitor: #6 raise sig=%d\n", |
| __kmp_global.g.g_abort)); |
| |
| if (__kmp_global.g.g_abort > 0) |
| raise(__kmp_global.g.g_abort); |
| } |
| |
| KA_TRACE(10, ("__kmp_launch_monitor: #7 exit\n")); |
| |
| return thr; |
| } |
| #endif // KMP_USE_MONITOR |
| |
| void __kmp_create_worker(int gtid, kmp_info_t *th, size_t stack_size) { |
| pthread_t handle; |
| pthread_attr_t thread_attr; |
| int status; |
| |
| th->th.th_info.ds.ds_gtid = gtid; |
| |
| #if KMP_STATS_ENABLED |
| // sets up worker thread stats |
| __kmp_acquire_tas_lock(&__kmp_stats_lock, gtid); |
| |
| // th->th.th_stats is used to transfer thread-specific stats-pointer to |
| // __kmp_launch_worker. So when thread is created (goes into |
| // __kmp_launch_worker) it will set its thread local pointer to |
| // th->th.th_stats |
| if (!KMP_UBER_GTID(gtid)) { |
| th->th.th_stats = __kmp_stats_list->push_back(gtid); |
| } else { |
| // For root threads, __kmp_stats_thread_ptr is set in __kmp_register_root(), |
| // so set the th->th.th_stats field to it. |
| th->th.th_stats = __kmp_stats_thread_ptr; |
| } |
| __kmp_release_tas_lock(&__kmp_stats_lock, gtid); |
| |
| #endif // KMP_STATS_ENABLED |
| |
| if (KMP_UBER_GTID(gtid)) { |
| KA_TRACE(10, ("__kmp_create_worker: uber thread (%d)\n", gtid)); |
| th->th.th_info.ds.ds_thread = pthread_self(); |
| __kmp_set_stack_info(gtid, th); |
| __kmp_check_stack_overlap(th); |
| return; |
| } |
| |
| KA_TRACE(10, ("__kmp_create_worker: try to create thread (%d)\n", gtid)); |
| |
| KMP_MB(); /* Flush all pending memory write invalidates. */ |
| |
| #ifdef KMP_THREAD_ATTR |
| status = pthread_attr_init(&thread_attr); |
| if (status != 0) { |
| __kmp_fatal(KMP_MSG(CantInitThreadAttrs), KMP_ERR(status), __kmp_msg_null); |
| } |
| status = pthread_attr_setdetachstate(&thread_attr, PTHREAD_CREATE_JOINABLE); |
| if (status != 0) { |
| __kmp_fatal(KMP_MSG(CantSetWorkerState), KMP_ERR(status), __kmp_msg_null); |
| } |
| |
| /* Set stack size for this thread now. |
| The multiple of 2 is there because on some machines, requesting an unusual |
| stacksize causes the thread to have an offset before the dummy alloca() |
| takes place to create the offset. Since we want the user to have a |
| sufficient stacksize AND support a stack offset, we alloca() twice the |
| offset so that the upcoming alloca() does not eliminate any premade offset, |
| and also gives the user the stack space they requested for all threads */ |
| stack_size += gtid * __kmp_stkoffset * 2; |
| |
| KA_TRACE(10, ("__kmp_create_worker: T#%d, default stacksize = %lu bytes, " |
| "__kmp_stksize = %lu bytes, final stacksize = %lu bytes\n", |
| gtid, KMP_DEFAULT_STKSIZE, __kmp_stksize, stack_size)); |
| |
| #ifdef _POSIX_THREAD_ATTR_STACKSIZE |
| status = pthread_attr_setstacksize(&thread_attr, stack_size); |
| #ifdef KMP_BACKUP_STKSIZE |
| if (status != 0) { |
| if (!__kmp_env_stksize) { |
| stack_size = KMP_BACKUP_STKSIZE + gtid * __kmp_stkoffset; |
| __kmp_stksize = KMP_BACKUP_STKSIZE; |
| KA_TRACE(10, ("__kmp_create_worker: T#%d, default stacksize = %lu bytes, " |
| "__kmp_stksize = %lu bytes, (backup) final stacksize = %lu " |
| "bytes\n", |
| gtid, KMP_DEFAULT_STKSIZE, __kmp_stksize, stack_size)); |
| status = pthread_attr_setstacksize(&thread_attr, stack_size); |
| } |
| } |
| #endif /* KMP_BACKUP_STKSIZE */ |
| if (status != 0) { |
| __kmp_fatal(KMP_MSG(CantSetWorkerStackSize, stack_size), KMP_ERR(status), |
| KMP_HNT(ChangeWorkerStackSize), __kmp_msg_null); |
| } |
| #endif /* _POSIX_THREAD_ATTR_STACKSIZE */ |
| |
| #endif /* KMP_THREAD_ATTR */ |
| |
| status = |
| pthread_create(&handle, &thread_attr, __kmp_launch_worker, (void *)th); |
| if (status != 0 || !handle) { // ??? Why do we check handle?? |
| #ifdef _POSIX_THREAD_ATTR_STACKSIZE |
| if (status == EINVAL) { |
| __kmp_fatal(KMP_MSG(CantSetWorkerStackSize, stack_size), KMP_ERR(status), |
| KMP_HNT(IncreaseWorkerStackSize), __kmp_msg_null); |
| } |
| if (status == ENOMEM) { |
| __kmp_fatal(KMP_MSG(CantSetWorkerStackSize, stack_size), KMP_ERR(status), |
| KMP_HNT(DecreaseWorkerStackSize), __kmp_msg_null); |
| } |
| #endif /* _POSIX_THREAD_ATTR_STACKSIZE */ |
| if (status == EAGAIN) { |
| __kmp_fatal(KMP_MSG(NoResourcesForWorkerThread), KMP_ERR(status), |
| KMP_HNT(Decrease_NUM_THREADS), __kmp_msg_null); |
| } |
| KMP_SYSFAIL("pthread_create", status); |
| } |
| |
| th->th.th_info.ds.ds_thread = handle; |
| |
| #ifdef KMP_THREAD_ATTR |
| status = pthread_attr_destroy(&thread_attr); |
| if (status) { |
| kmp_msg_t err_code = KMP_ERR(status); |
| __kmp_msg(kmp_ms_warning, KMP_MSG(CantDestroyThreadAttrs), err_code, |
| __kmp_msg_null); |
| if (__kmp_generate_warnings == kmp_warnings_off) { |
| __kmp_str_free(&err_code.str); |
| } |
| } |
| #endif /* KMP_THREAD_ATTR */ |
| |
| KMP_MB(); /* Flush all pending memory write invalidates. */ |
| |
| KA_TRACE(10, ("__kmp_create_worker: done creating thread (%d)\n", gtid)); |
| |
| } // __kmp_create_worker |
| |
| #if KMP_USE_MONITOR |
| void __kmp_create_monitor(kmp_info_t *th) { |
| pthread_t handle; |
| pthread_attr_t thread_attr; |
| size_t size; |
| int status; |
| int auto_adj_size = FALSE; |
| |
| if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME) { |
| // We don't need monitor thread in case of MAX_BLOCKTIME |
| KA_TRACE(10, ("__kmp_create_monitor: skipping monitor thread because of " |
| "MAX blocktime\n")); |
| th->th.th_info.ds.ds_tid = 0; // this makes reap_monitor no-op |
| th->th.th_info.ds.ds_gtid = 0; |
| return; |
| } |
| KA_TRACE(10, ("__kmp_create_monitor: try to create monitor\n")); |
| |
| KMP_MB(); /* Flush all pending memory write invalidates. */ |
| |
| th->th.th_info.ds.ds_tid = KMP_GTID_MONITOR; |
| th->th.th_info.ds.ds_gtid = KMP_GTID_MONITOR; |
| #if KMP_REAL_TIME_FIX |
| TCW_4(__kmp_global.g.g_time.dt.t_value, |
| -1); // Will use it for synchronization a bit later. |
| #else |
| TCW_4(__kmp_global.g.g_time.dt.t_value, 0); |
| #endif // KMP_REAL_TIME_FIX |
| |
| #ifdef KMP_THREAD_ATTR |
| if (__kmp_monitor_stksize == 0) { |
| __kmp_monitor_stksize = KMP_DEFAULT_MONITOR_STKSIZE; |
| auto_adj_size = TRUE; |
| } |
| status = pthread_attr_init(&thread_attr); |
| if (status != 0) { |
| __kmp_fatal(KMP_MSG(CantInitThreadAttrs), KMP_ERR(status), __kmp_msg_null); |
| } |
| status = pthread_attr_setdetachstate(&thread_attr, PTHREAD_CREATE_JOINABLE); |
| if (status != 0) { |
| __kmp_fatal(KMP_MSG(CantSetMonitorState), KMP_ERR(status), __kmp_msg_null); |
| } |
| |
| #ifdef _POSIX_THREAD_ATTR_STACKSIZE |
| status = pthread_attr_getstacksize(&thread_attr, &size); |
| KMP_CHECK_SYSFAIL("pthread_attr_getstacksize", status); |
| #else |
| size = __kmp_sys_min_stksize; |
| #endif /* _POSIX_THREAD_ATTR_STACKSIZE */ |
| #endif /* KMP_THREAD_ATTR */ |
| |
| if (__kmp_monitor_stksize == 0) { |
| __kmp_monitor_stksize = KMP_DEFAULT_MONITOR_STKSIZE; |
| } |
| if (__kmp_monitor_stksize < __kmp_sys_min_stksize) { |
| __kmp_monitor_stksize = __kmp_sys_min_stksize; |
| } |
| |
| KA_TRACE(10, ("__kmp_create_monitor: default stacksize = %lu bytes," |
| "requested stacksize = %lu bytes\n", |
| size, __kmp_monitor_stksize)); |
| |
| retry: |
| |
| /* Set stack size for this thread now. */ |
| #ifdef _POSIX_THREAD_ATTR_STACKSIZE |
| KA_TRACE(10, ("__kmp_create_monitor: setting stacksize = %lu bytes,", |
| __kmp_monitor_stksize)); |
| status = pthread_attr_setstacksize(&thread_attr, __kmp_monitor_stksize); |
| if (status != 0) { |
| if (auto_adj_size) { |
| __kmp_monitor_stksize *= 2; |
| goto retry; |
| } |
| kmp_msg_t err_code = KMP_ERR(status); |
| __kmp_msg(kmp_ms_warning, // should this be fatal? BB |
| KMP_MSG(CantSetMonitorStackSize, (long int)__kmp_monitor_stksize), |
| err_code, KMP_HNT(ChangeMonitorStackSize), __kmp_msg_null); |
| if (__kmp_generate_warnings == kmp_warnings_off) { |
| __kmp_str_free(&err_code.str); |
| } |
| } |
| #endif /* _POSIX_THREAD_ATTR_STACKSIZE */ |
| |
| status = |
| pthread_create(&handle, &thread_attr, __kmp_launch_monitor, (void *)th); |
| |
| if (status != 0) { |
| #ifdef _POSIX_THREAD_ATTR_STACKSIZE |
| if (status == EINVAL) { |
| if (auto_adj_size && (__kmp_monitor_stksize < (size_t)0x40000000)) { |
| __kmp_monitor_stksize *= 2; |
| goto retry; |
| } |
| __kmp_fatal(KMP_MSG(CantSetMonitorStackSize, __kmp_monitor_stksize), |
| KMP_ERR(status), KMP_HNT(IncreaseMonitorStackSize), |
| __kmp_msg_null); |
| } |
| if (status == ENOMEM) { |
| __kmp_fatal(KMP_MSG(CantSetMonitorStackSize, __kmp_monitor_stksize), |
| KMP_ERR(status), KMP_HNT(DecreaseMonitorStackSize), |
| __kmp_msg_null); |
| } |
| #endif /* _POSIX_THREAD_ATTR_STACKSIZE */ |
| if (status == EAGAIN) { |
| __kmp_fatal(KMP_MSG(NoResourcesForMonitorThread), KMP_ERR(status), |
| KMP_HNT(DecreaseNumberOfThreadsInUse), __kmp_msg_null); |
| } |
| KMP_SYSFAIL("pthread_create", status); |
| } |
| |
| th->th.th_info.ds.ds_thread = handle; |
| |
| #if KMP_REAL_TIME_FIX |
| // Wait for the monitor thread is really started and set its *priority*. |
| KMP_DEBUG_ASSERT(sizeof(kmp_uint32) == |
| sizeof(__kmp_global.g.g_time.dt.t_value)); |
| __kmp_wait_yield_4((kmp_uint32 volatile *)&__kmp_global.g.g_time.dt.t_value, |
| -1, &__kmp_neq_4, NULL); |
| #endif // KMP_REAL_TIME_FIX |
| |
| #ifdef KMP_THREAD_ATTR |
| status = pthread_attr_destroy(&thread_attr); |
| if (status != 0) { |
| kmp_msg_t err_code = KMP_ERR(status); |
| __kmp_msg(kmp_ms_warning, KMP_MSG(CantDestroyThreadAttrs), err_code, |
| __kmp_msg_null); |
| if (__kmp_generate_warnings == kmp_warnings_off) { |
| __kmp_str_free(&err_code.str); |
| } |
| } |
| #endif |
| |
| KMP_MB(); /* Flush all pending memory write invalidates. */ |
| |
| KA_TRACE(10, ("__kmp_create_monitor: monitor created %#.8lx\n", |
| th->th.th_info.ds.ds_thread)); |
| |
| } // __kmp_create_monitor |
| #endif // KMP_USE_MONITOR |
| |
| void __kmp_exit_thread(int exit_status) { |
| pthread_exit((void *)(intptr_t)exit_status); |
| } // __kmp_exit_thread |
| |
| #if KMP_USE_MONITOR |
| void __kmp_resume_monitor(); |
| |
| void __kmp_reap_monitor(kmp_info_t *th) { |
| int status; |
| void *exit_val; |
| |
| KA_TRACE(10, ("__kmp_reap_monitor: try to reap monitor thread with handle" |
| " %#.8lx\n", |
| th->th.th_info.ds.ds_thread)); |
| |
| // If monitor has been created, its tid and gtid should be KMP_GTID_MONITOR. |
| // If both tid and gtid are 0, it means the monitor did not ever start. |
| // If both tid and gtid are KMP_GTID_DNE, the monitor has been shut down. |
| KMP_DEBUG_ASSERT(th->th.th_info.ds.ds_tid == th->th.th_info.ds.ds_gtid); |
| if (th->th.th_info.ds.ds_gtid != KMP_GTID_MONITOR) { |
| KA_TRACE(10, ("__kmp_reap_monitor: monitor did not start, returning\n")); |
| return; |
| } |
| |
| KMP_MB(); /* Flush all pending memory write invalidates. */ |
| |
| /* First, check to see whether the monitor thread exists to wake it up. This |
| is to avoid performance problem when the monitor sleeps during |
| blocktime-size interval */ |
| |
| status = pthread_kill(th->th.th_info.ds.ds_thread, 0); |
| if (status != ESRCH) { |
| __kmp_resume_monitor(); // Wake up the monitor thread |
| } |
| KA_TRACE(10, ("__kmp_reap_monitor: try to join with monitor\n")); |
| status = pthread_join(th->th.th_info.ds.ds_thread, &exit_val); |
| if (exit_val != th) { |
| __kmp_fatal(KMP_MSG(ReapMonitorError), KMP_ERR(status), __kmp_msg_null); |
| } |
| |
| th->th.th_info.ds.ds_tid = KMP_GTID_DNE; |
| th->th.th_info.ds.ds_gtid = KMP_GTID_DNE; |
| |
| KA_TRACE(10, ("__kmp_reap_monitor: done reaping monitor thread with handle" |
| " %#.8lx\n", |
| th->th.th_info.ds.ds_thread)); |
| |
| KMP_MB(); /* Flush all pending memory write invalidates. */ |
| } |
| #endif // KMP_USE_MONITOR |
| |
| void __kmp_reap_worker(kmp_info_t *th) { |
| int status; |
| void *exit_val; |
| |
| KMP_MB(); /* Flush all pending memory write invalidates. */ |
| |
| KA_TRACE( |
| 10, ("__kmp_reap_worker: try to reap T#%d\n", th->th.th_info.ds.ds_gtid)); |
| |
| status = pthread_join(th->th.th_info.ds.ds_thread, &exit_val); |
| #ifdef KMP_DEBUG |
| /* Don't expose these to the user until we understand when they trigger */ |
| if (status != 0) { |
| __kmp_fatal(KMP_MSG(ReapWorkerError), KMP_ERR(status), __kmp_msg_null); |
| } |
| if (exit_val != th) { |
| KA_TRACE(10, ("__kmp_reap_worker: worker T#%d did not reap properly, " |
| "exit_val = %p\n", |
| th->th.th_info.ds.ds_gtid, exit_val)); |
| } |
| #endif /* KMP_DEBUG */ |
| |
| KA_TRACE(10, ("__kmp_reap_worker: done reaping T#%d\n", |
| th->th.th_info.ds.ds_gtid)); |
| |
| KMP_MB(); /* Flush all pending memory write invalidates. */ |
| } |
| |
| #if KMP_HANDLE_SIGNALS |
| |
| static void __kmp_null_handler(int signo) { |
| // Do nothing, for doing SIG_IGN-type actions. |
| } // __kmp_null_handler |
| |
| static void __kmp_team_handler(int signo) { |
| if (__kmp_global.g.g_abort == 0) { |
| /* Stage 1 signal handler, let's shut down all of the threads */ |
| #ifdef KMP_DEBUG |
| __kmp_debug_printf("__kmp_team_handler: caught signal = %d\n", signo); |
| #endif |
| switch (signo) { |
| case SIGHUP: |
| case SIGINT: |
| case SIGQUIT: |
| case SIGILL: |
| case SIGABRT: |
| case SIGFPE: |
| case SIGBUS: |
| case SIGSEGV: |
| #ifdef SIGSYS |
| case SIGSYS: |
| #endif |
| case SIGTERM: |
| if (__kmp_debug_buf) { |
| __kmp_dump_debug_buffer(); |
| } |
| KMP_MB(); // Flush all pending memory write invalidates. |
| TCW_4(__kmp_global.g.g_abort, signo); |
| KMP_MB(); // Flush all pending memory write invalidates. |
| TCW_4(__kmp_global.g.g_done, TRUE); |
| KMP_MB(); // Flush all pending memory write invalidates. |
| break; |
| default: |
| #ifdef KMP_DEBUG |
| __kmp_debug_printf("__kmp_team_handler: unknown signal type"); |
| #endif |
| break; |
| } |
| } |
| } // __kmp_team_handler |
| |
| static void __kmp_sigaction(int signum, const struct sigaction *act, |
| struct sigaction *oldact) { |
| int rc = sigaction(signum, act, oldact); |
| KMP_CHECK_SYSFAIL_ERRNO("sigaction", rc); |
| } |
| |
| static void __kmp_install_one_handler(int sig, sig_func_t handler_func, |
| int parallel_init) { |
| KMP_MB(); // Flush all pending memory write invalidates. |
| KB_TRACE(60, |
| ("__kmp_install_one_handler( %d, ..., %d )\n", sig, parallel_init)); |
| if (parallel_init) { |
| struct sigaction new_action; |
| struct sigaction old_action; |
| new_action.sa_handler = handler_func; |
| new_action.sa_flags = 0; |
| sigfillset(&new_action.sa_mask); |
| __kmp_sigaction(sig, &new_action, &old_action); |
| if (old_action.sa_handler == __kmp_sighldrs[sig].sa_handler) { |
| sigaddset(&__kmp_sigset, sig); |
| } else { |
| // Restore/keep user's handler if one previously installed. |
| __kmp_sigaction(sig, &old_action, NULL); |
| } |
| } else { |
| // Save initial/system signal handlers to see if user handlers installed. |
| __kmp_sigaction(sig, NULL, &__kmp_sighldrs[sig]); |
| } |
| KMP_MB(); // Flush all pending memory write invalidates. |
| } // __kmp_install_one_handler |
| |
| static void __kmp_remove_one_handler(int sig) { |
| KB_TRACE(60, ("__kmp_remove_one_handler( %d )\n", sig)); |
| if (sigismember(&__kmp_sigset, sig)) { |
| struct sigaction old; |
| KMP_MB(); // Flush all pending memory write invalidates. |
| __kmp_sigaction(sig, &__kmp_sighldrs[sig], &old); |
| if ((old.sa_handler != __kmp_team_handler) && |
| (old.sa_handler != __kmp_null_handler)) { |
| // Restore the users signal handler. |
| KB_TRACE(10, ("__kmp_remove_one_handler: oops, not our handler, " |
| "restoring: sig=%d\n", |
| sig)); |
| __kmp_sigaction(sig, &old, NULL); |
| } |
| sigdelset(&__kmp_sigset, sig); |
| KMP_MB(); // Flush all pending memory write invalidates. |
| } |
| } // __kmp_remove_one_handler |
| |
| void __kmp_install_signals(int parallel_init) { |
| KB_TRACE(10, ("__kmp_install_signals( %d )\n", parallel_init)); |
| if (__kmp_handle_signals || !parallel_init) { |
| // If ! parallel_init, we do not install handlers, just save original |
| // handlers. Let us do it even __handle_signals is 0. |
| sigemptyset(&__kmp_sigset); |
| __kmp_install_one_handler(SIGHUP, __kmp_team_handler, parallel_init); |
| __kmp_install_one_handler(SIGINT, __kmp_team_handler, parallel_init); |
| __kmp_install_one_handler(SIGQUIT, __kmp_team_handler, parallel_init); |
| __kmp_install_one_handler(SIGILL, __kmp_team_handler, parallel_init); |
| __kmp_install_one_handler(SIGABRT, __kmp_team_handler, parallel_init); |
| __kmp_install_one_handler(SIGFPE, __kmp_team_handler, parallel_init); |
| __kmp_install_one_handler(SIGBUS, __kmp_team_handler, parallel_init); |
| __kmp_install_one_handler(SIGSEGV, __kmp_team_handler, parallel_init); |
| #ifdef SIGSYS |
| __kmp_install_one_handler(SIGSYS, __kmp_team_handler, parallel_init); |
| #endif // SIGSYS |
| __kmp_install_one_handler(SIGTERM, __kmp_team_handler, parallel_init); |
| #ifdef SIGPIPE |
| __kmp_install_one_handler(SIGPIPE, __kmp_team_handler, parallel_init); |
| #endif // SIGPIPE |
| } |
| } // __kmp_install_signals |
| |
| void __kmp_remove_signals(void) { |
| int sig; |
| KB_TRACE(10, ("__kmp_remove_signals()\n")); |
| for (sig = 1; sig < NSIG; ++sig) { |
| __kmp_remove_one_handler(sig); |
| } |
| } // __kmp_remove_signals |
| |
| #endif // KMP_HANDLE_SIGNALS |
| |
| void __kmp_enable(int new_state) { |
| #ifdef KMP_CANCEL_THREADS |
| int status, old_state; |
| status = pthread_setcancelstate(new_state, &old_state); |
| KMP_CHECK_SYSFAIL("pthread_setcancelstate", status); |
| KMP_DEBUG_ASSERT(old_state == PTHREAD_CANCEL_DISABLE); |
| #endif |
| } |
| |
| void __kmp_disable(int *old_state) { |
| #ifdef KMP_CANCEL_THREADS |
| int status; |
| status = pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, old_state); |
| KMP_CHECK_SYSFAIL("pthread_setcancelstate", status); |
| #endif |
| } |
| |
| static void __kmp_atfork_prepare(void) { |
| __kmp_acquire_bootstrap_lock(&__kmp_initz_lock); |
| __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock); |
| } |
| |
| static void __kmp_atfork_parent(void) { |
| __kmp_release_bootstrap_lock(&__kmp_initz_lock); |
| __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); |
| } |
| |
| /* Reset the library so execution in the child starts "all over again" with |
| clean data structures in initial states. Don't worry about freeing memory |
| allocated by parent, just abandon it to be safe. */ |
| static void __kmp_atfork_child(void) { |
| __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); |
| /* TODO make sure this is done right for nested/sibling */ |
| // ATT: Memory leaks are here? TODO: Check it and fix. |
| /* KMP_ASSERT( 0 ); */ |
| |
| ++__kmp_fork_count; |
| |
| #if KMP_AFFINITY_SUPPORTED |
| #if KMP_OS_LINUX |
| // reset the affinity in the child to the initial thread |
| // affinity in the parent |
| kmp_set_thread_affinity_mask_initial(); |
| #endif |
| // Set default not to bind threads tightly in the child (we’re expecting |
| // over-subscription after the fork and this can improve things for |
| // scripting languages that use OpenMP inside process-parallel code). |
| __kmp_affinity_type = affinity_none; |
| #if OMP_40_ENABLED |
| if (__kmp_nested_proc_bind.bind_types != NULL) { |
| __kmp_nested_proc_bind.bind_types[0] = proc_bind_false; |
| } |
| #endif // OMP_40_ENABLED |
| #endif // KMP_AFFINITY_SUPPORTED |
| |
| __kmp_init_runtime = FALSE; |
| #if KMP_USE_MONITOR |
| __kmp_init_monitor = 0; |
| #endif |
| __kmp_init_parallel = FALSE; |
| __kmp_init_middle = FALSE; |
| __kmp_init_serial = FALSE; |
| TCW_4(__kmp_init_gtid, FALSE); |
| __kmp_init_common = FALSE; |
| |
| TCW_4(__kmp_init_user_locks, FALSE); |
| #if !KMP_USE_DYNAMIC_LOCK |
| __kmp_user_lock_table.used = 1; |
| __kmp_user_lock_table.allocated = 0; |
| __kmp_user_lock_table.table = NULL; |
| __kmp_lock_blocks = NULL; |
| #endif |
| |
| __kmp_all_nth = 0; |
| TCW_4(__kmp_nth, 0); |
| |
| __kmp_thread_pool = NULL; |
| __kmp_thread_pool_insert_pt = NULL; |
| __kmp_team_pool = NULL; |
| |
| /* Must actually zero all the *cache arguments passed to __kmpc_threadprivate |
| here so threadprivate doesn't use stale data */ |
| KA_TRACE(10, ("__kmp_atfork_child: checking cache address list %p\n", |
| __kmp_threadpriv_cache_list)); |
| |
| while (__kmp_threadpriv_cache_list != NULL) { |
| |
| if (*__kmp_threadpriv_cache_list->addr != NULL) { |
| KC_TRACE(50, ("__kmp_atfork_child: zeroing cache at address %p\n", |
| &(*__kmp_threadpriv_cache_list->addr))); |
| |
| *__kmp_threadpriv_cache_list->addr = NULL; |
| } |
| __kmp_threadpriv_cache_list = __kmp_threadpriv_cache_list->next; |
| } |
| |
| __kmp_init_runtime = FALSE; |
| |
| /* reset statically initialized locks */ |
| __kmp_init_bootstrap_lock(&__kmp_initz_lock); |
| __kmp_init_bootstrap_lock(&__kmp_stdio_lock); |
| __kmp_init_bootstrap_lock(&__kmp_console_lock); |
| __kmp_init_bootstrap_lock(&__kmp_task_team_lock); |
| |
| #if USE_ITT_BUILD |
| __kmp_itt_reset(); // reset ITT's global state |
| #endif /* USE_ITT_BUILD */ |
| |
| /* This is necessary to make sure no stale data is left around */ |
| /* AC: customers complain that we use unsafe routines in the atfork |
| handler. Mathworks: dlsym() is unsafe. We call dlsym and dlopen |
| in dynamic_link when check the presence of shared tbbmalloc library. |
| Suggestion is to make the library initialization lazier, similar |
| to what done for __kmpc_begin(). */ |
| // TODO: synchronize all static initializations with regular library |
| // startup; look at kmp_global.cpp and etc. |
| //__kmp_internal_begin (); |
| } |
| |
| void __kmp_register_atfork(void) { |
| if (__kmp_need_register_atfork) { |
| int status = pthread_atfork(__kmp_atfork_prepare, __kmp_atfork_parent, |
| __kmp_atfork_child); |
| KMP_CHECK_SYSFAIL("pthread_atfork", status); |
| __kmp_need_register_atfork = FALSE; |
| } |
| } |
| |
| void __kmp_suspend_initialize(void) { |
| int status; |
| status = pthread_mutexattr_init(&__kmp_suspend_mutex_attr); |
| KMP_CHECK_SYSFAIL("pthread_mutexattr_init", status); |
| status = pthread_condattr_init(&__kmp_suspend_cond_attr); |
| KMP_CHECK_SYSFAIL("pthread_condattr_init", status); |
| } |
| |
| static void __kmp_suspend_initialize_thread(kmp_info_t *th) { |
| ANNOTATE_HAPPENS_AFTER(&th->th.th_suspend_init_count); |
| if (th->th.th_suspend_init_count <= __kmp_fork_count) { |
| /* this means we haven't initialized the suspension pthread objects for this |
| thread in this instance of the process */ |
| int status; |
| status = pthread_cond_init(&th->th.th_suspend_cv.c_cond, |
| &__kmp_suspend_cond_attr); |
| KMP_CHECK_SYSFAIL("pthread_cond_init", status); |
| status = pthread_mutex_init(&th->th.th_suspend_mx.m_mutex, |
| &__kmp_suspend_mutex_attr); |
| KMP_CHECK_SYSFAIL("pthread_mutex_init", status); |
| *(volatile int *)&th->th.th_suspend_init_count = __kmp_fork_count + 1; |
| ANNOTATE_HAPPENS_BEFORE(&th->th.th_suspend_init_count); |
| } |
| } |
| |
| void __kmp_suspend_uninitialize_thread(kmp_info_t *th) { |
| if (th->th.th_suspend_init_count > __kmp_fork_count) { |
| /* this means we have initialize the suspension pthread objects for this |
| thread in this instance of the process */ |
| int status; |
| |
| status = pthread_cond_destroy(&th->th.th_suspend_cv.c_cond); |
| if (status != 0 && status != EBUSY) { |
| KMP_SYSFAIL("pthread_cond_destroy", status); |
| } |
| status = pthread_mutex_destroy(&th->th.th_suspend_mx.m_mutex); |
| if (status != 0 && status != EBUSY) { |
| KMP_SYSFAIL("pthread_mutex_destroy", status); |
| } |
| --th->th.th_suspend_init_count; |
| KMP_DEBUG_ASSERT(th->th.th_suspend_init_count == __kmp_fork_count); |
| } |
| } |
| |
| // return true if lock obtained, false otherwise |
| int __kmp_try_suspend_mx(kmp_info_t *th) { |
| return (pthread_mutex_trylock(&th->th.th_suspend_mx.m_mutex) == 0); |
| } |
| |
| void __kmp_lock_suspend_mx(kmp_info_t *th) { |
| int status = pthread_mutex_lock(&th->th.th_suspend_mx.m_mutex); |
| KMP_CHECK_SYSFAIL("pthread_mutex_lock", status); |
| } |
| |
| void __kmp_unlock_suspend_mx(kmp_info_t *th) { |
| int status = pthread_mutex_unlock(&th->th.th_suspend_mx.m_mutex); |
| KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status); |
| } |
| |
| /* This routine puts the calling thread to sleep after setting the |
| sleep bit for the indicated flag variable to true. */ |
| template <class C> |
| static inline void __kmp_suspend_template(int th_gtid, C *flag) { |
| KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_suspend); |
| kmp_info_t *th = __kmp_threads[th_gtid]; |
| int status; |
| typename C::flag_t old_spin; |
| |
| KF_TRACE(30, ("__kmp_suspend_template: T#%d enter for flag = %p\n", th_gtid, |
| flag->get())); |
| |
| __kmp_suspend_initialize_thread(th); |
| |
| status = pthread_mutex_lock(&th->th.th_suspend_mx.m_mutex); |
| KMP_CHECK_SYSFAIL("pthread_mutex_lock", status); |
| |
| KF_TRACE(10, ("__kmp_suspend_template: T#%d setting sleep bit for spin(%p)\n", |
| th_gtid, flag->get())); |
| |
| /* TODO: shouldn't this use release semantics to ensure that |
| __kmp_suspend_initialize_thread gets called first? */ |
| old_spin = flag->set_sleeping(); |
| #if OMP_50_ENABLED |
| if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME && |
| __kmp_pause_status != kmp_soft_paused) { |
| flag->unset_sleeping(); |
| status = pthread_mutex_unlock(&th->th.th_suspend_mx.m_mutex); |
| KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status); |
| return; |
| } |
| #endif |
| KF_TRACE(5, ("__kmp_suspend_template: T#%d set sleep bit for spin(%p)==%x," |
| " was %x\n", |
| th_gtid, flag->get(), flag->load(), old_spin)); |
| |
| if (flag->done_check_val(old_spin)) { |
| old_spin = flag->unset_sleeping(); |
| KF_TRACE(5, ("__kmp_suspend_template: T#%d false alarm, reset sleep bit " |
| "for spin(%p)\n", |
| th_gtid, flag->get())); |
| } else { |
| /* Encapsulate in a loop as the documentation states that this may |
| "with low probability" return when the condition variable has |
| not been signaled or broadcast */ |
| int deactivated = FALSE; |
| TCW_PTR(th->th.th_sleep_loc, (void *)flag); |
| |
| while (flag->is_sleeping()) { |
| #ifdef DEBUG_SUSPEND |
| char buffer[128]; |
| __kmp_suspend_count++; |
| __kmp_print_cond(buffer, &th->th.th_suspend_cv); |
| __kmp_printf("__kmp_suspend_template: suspending T#%d: %s\n", th_gtid, |
| buffer); |
| #endif |
| // Mark the thread as no longer active (only in the first iteration of the |
| // loop). |
| if (!deactivated) { |
| th->th.th_active = FALSE; |
| if (th->th.th_active_in_pool) { |
| th->th.th_active_in_pool = FALSE; |
| KMP_ATOMIC_DEC(&__kmp_thread_pool_active_nth); |
| KMP_DEBUG_ASSERT(TCR_4(__kmp_thread_pool_active_nth) >= 0); |
| } |
| deactivated = TRUE; |
| } |
| |
| #if USE_SUSPEND_TIMEOUT |
| struct timespec now; |
| struct timeval tval; |
| int msecs; |
| |
| status = gettimeofday(&tval, NULL); |
| KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status); |
| TIMEVAL_TO_TIMESPEC(&tval, &now); |
| |
| msecs = (4 * __kmp_dflt_blocktime) + 200; |
| now.tv_sec += msecs / 1000; |
| now.tv_nsec += (msecs % 1000) * 1000; |
| |
| KF_TRACE(15, ("__kmp_suspend_template: T#%d about to perform " |
| "pthread_cond_timedwait\n", |
| th_gtid)); |
| status = pthread_cond_timedwait(&th->th.th_suspend_cv.c_cond, |
| &th->th.th_suspend_mx.m_mutex, &now); |
| #else |
| KF_TRACE(15, ("__kmp_suspend_template: T#%d about to perform" |
| " pthread_cond_wait\n", |
| th_gtid)); |
| status = pthread_cond_wait(&th->th.th_suspend_cv.c_cond, |
| &th->th.th_suspend_mx.m_mutex); |
| #endif |
| |
| if ((status != 0) && (status != EINTR) && (status != ETIMEDOUT)) { |
| KMP_SYSFAIL("pthread_cond_wait", status); |
| } |
| #ifdef KMP_DEBUG |
| if (status == ETIMEDOUT) { |
| if (flag->is_sleeping()) { |
| KF_TRACE(100, |
| ("__kmp_suspend_template: T#%d timeout wakeup\n", th_gtid)); |
| } else { |
| KF_TRACE(2, ("__kmp_suspend_template: T#%d timeout wakeup, sleep bit " |
| "not set!\n", |
| th_gtid)); |
| } |
| } else if (flag->is_sleeping()) { |
| KF_TRACE(100, |
| ("__kmp_suspend_template: T#%d spurious wakeup\n", th_gtid)); |
| } |
| #endif |
| } // while |
| |
| // Mark the thread as active again (if it was previous marked as inactive) |
| if (deactivated) { |
| th->th.th_active = TRUE; |
| if (TCR_4(th->th.th_in_pool)) { |
| KMP_ATOMIC_INC(&__kmp_thread_pool_active_nth); |
| th->th.th_active_in_pool = TRUE; |
| } |
| } |
| } |
| #ifdef DEBUG_SUSPEND |
| { |
| char buffer[128]; |
| __kmp_print_cond(buffer, &th->th.th_suspend_cv); |
| __kmp_printf("__kmp_suspend_template: T#%d has awakened: %s\n", th_gtid, |
| buffer); |
| } |
| #endif |
| |
| status = pthread_mutex_unlock(&th->th.th_suspend_mx.m_mutex); |
| KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status); |
| KF_TRACE(30, ("__kmp_suspend_template: T#%d exit\n", th_gtid)); |
| } |
| |
| void __kmp_suspend_32(int th_gtid, kmp_flag_32 *flag) { |
| __kmp_suspend_template(th_gtid, flag); |
| } |
| void __kmp_suspend_64(int th_gtid, kmp_flag_64 *flag) { |
| __kmp_suspend_template(th_gtid, flag); |
| } |
| void __kmp_suspend_oncore(int th_gtid, kmp_flag_oncore *flag) { |
| __kmp_suspend_template(th_gtid, flag); |
| } |
| |
| /* This routine signals the thread specified by target_gtid to wake up |
| after setting the sleep bit indicated by the flag argument to FALSE. |
| The target thread must already have called __kmp_suspend_template() */ |
| template <class C> |
| static inline void __kmp_resume_template(int target_gtid, C *flag) { |
| KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_resume); |
| kmp_info_t *th = __kmp_threads[target_gtid]; |
| int status; |
| |
| #ifdef KMP_DEBUG |
| int gtid = TCR_4(__kmp_init_gtid) ? __kmp_get_gtid() : -1; |
| #endif |
| |
| KF_TRACE(30, ("__kmp_resume_template: T#%d wants to wakeup T#%d enter\n", |
| gtid, target_gtid)); |
| KMP_DEBUG_ASSERT(gtid != target_gtid); |
| |
| __kmp_suspend_initialize_thread(th); |
| |
| status = pthread_mutex_lock(&th->th.th_suspend_mx.m_mutex); |
| KMP_CHECK_SYSFAIL("pthread_mutex_lock", status); |
| |
| if (!flag) { // coming from __kmp_null_resume_wrapper |
| flag = (C *)CCAST(void *, th->th.th_sleep_loc); |
| } |
| |
| // First, check if the flag is null or its type has changed. If so, someone |
| // else woke it up. |
| if (!flag || flag->get_type() != flag->get_ptr_type()) { // get_ptr_type |
| // simply shows what |
| // flag was cast to |
| KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already " |
| "awake: flag(%p)\n", |
| gtid, target_gtid, NULL)); |
| status = pthread_mutex_unlock(&th->th.th_suspend_mx.m_mutex); |
| KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status); |
| return; |
| } else { // if multiple threads are sleeping, flag should be internally |
| // referring to a specific thread here |
| typename C::flag_t old_spin = flag->unset_sleeping(); |
| if (!flag->is_sleeping_val(old_spin)) { |
| KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already " |
| "awake: flag(%p): " |
| "%u => %u\n", |
| gtid, target_gtid, flag->get(), old_spin, flag->load())); |
| status = pthread_mutex_unlock(&th->th.th_suspend_mx.m_mutex); |
| KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status); |
| return; |
| } |
| KF_TRACE(5, ("__kmp_resume_template: T#%d about to wakeup T#%d, reset " |
| "sleep bit for flag's loc(%p): " |
| "%u => %u\n", |
| gtid, target_gtid, flag->get(), old_spin, flag->load())); |
| } |
| TCW_PTR(th->th.th_sleep_loc, NULL); |
| |
| #ifdef DEBUG_SUSPEND |
| { |
| char buffer[128]; |
| __kmp_print_cond(buffer, &th->th.th_suspend_cv); |
| __kmp_printf("__kmp_resume_template: T#%d resuming T#%d: %s\n", gtid, |
| target_gtid, buffer); |
| } |
| #endif |
| status = pthread_cond_signal(&th->th.th_suspend_cv.c_cond); |
| KMP_CHECK_SYSFAIL("pthread_cond_signal", status); |
| status = pthread_mutex_unlock(&th->th.th_suspend_mx.m_mutex); |
| KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status); |
| KF_TRACE(30, ("__kmp_resume_template: T#%d exiting after signaling wake up" |
| " for T#%d\n", |
| gtid, target_gtid)); |
| } |
| |
| void __kmp_resume_32(int target_gtid, kmp_flag_32 *flag) { |
| __kmp_resume_template(target_gtid, flag); |
| } |
| void __kmp_resume_64(int target_gtid, kmp_flag_64 *flag) { |
| __kmp_resume_template(target_gtid, flag); |
| } |
| void __kmp_resume_oncore(int target_gtid, kmp_flag_oncore *flag) { |
| __kmp_resume_template(target_gtid, flag); |
| } |
| |
| #if KMP_USE_MONITOR |
| void __kmp_resume_monitor() { |
| KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_resume); |
| int status; |
| #ifdef KMP_DEBUG |
| int gtid = TCR_4(__kmp_init_gtid) ? __kmp_get_gtid() : -1; |
| KF_TRACE(30, ("__kmp_resume_monitor: T#%d wants to wakeup T#%d enter\n", gtid, |
| KMP_GTID_MONITOR)); |
| KMP_DEBUG_ASSERT(gtid != KMP_GTID_MONITOR); |
| #endif |
| status = pthread_mutex_lock(&__kmp_wait_mx.m_mutex); |
| KMP_CHECK_SYSFAIL("pthread_mutex_lock", status); |
| #ifdef DEBUG_SUSPEND |
| { |
| char buffer[128]; |
| __kmp_print_cond(buffer, &__kmp_wait_cv.c_cond); |
| __kmp_printf("__kmp_resume_monitor: T#%d resuming T#%d: %s\n", gtid, |
| KMP_GTID_MONITOR, buffer); |
| } |
| #endif |
| status = pthread_cond_signal(&__kmp_wait_cv.c_cond); |
| KMP_CHECK_SYSFAIL("pthread_cond_signal", status); |
| status = pthread_mutex_unlock(&__kmp_wait_mx.m_mutex); |
| KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status); |
| KF_TRACE(30, ("__kmp_resume_monitor: T#%d exiting after signaling wake up" |
| " for T#%d\n", |
| gtid, KMP_GTID_MONITOR)); |
| } |
| #endif // KMP_USE_MONITOR |
| |
| void __kmp_yield(int cond) { |
| if (!cond) |
| return; |
| #if KMP_USE_MONITOR |
| if (!__kmp_yielding_on) |
| return; |
| #else |
| if (__kmp_yield_cycle && !KMP_YIELD_NOW()) |
| return; |
| #endif |
| sched_yield(); |
| } |
| |
| void __kmp_gtid_set_specific(int gtid) { |
| if (__kmp_init_gtid) { |
| int status; |
| status = pthread_setspecific(__kmp_gtid_threadprivate_key, |
| (void *)(intptr_t)(gtid + 1)); |
| KMP_CHECK_SYSFAIL("pthread_setspecific", status); |
| } else { |
| KA_TRACE(50, ("__kmp_gtid_set_specific: runtime shutdown, returning\n")); |
| } |
| } |
| |
| int __kmp_gtid_get_specific() { |
| int gtid; |
| if (!__kmp_init_gtid) { |
| KA_TRACE(50, ("__kmp_gtid_get_specific: runtime shutdown, returning " |
| "KMP_GTID_SHUTDOWN\n")); |
| return KMP_GTID_SHUTDOWN; |
| } |
| gtid = (int)(size_t)pthread_getspecific(__kmp_gtid_threadprivate_key); |
| if (gtid == 0) { |
| gtid = KMP_GTID_DNE; |
| } else { |
| gtid--; |
| } |
| KA_TRACE(50, ("__kmp_gtid_get_specific: key:%d gtid:%d\n", |
| __kmp_gtid_threadprivate_key, gtid)); |
| return gtid; |
| } |
| |
| double __kmp_read_cpu_time(void) { |
| /*clock_t t;*/ |
| struct tms buffer; |
| |
| /*t =*/times(&buffer); |
| |
| return (buffer.tms_utime + buffer.tms_cutime) / (double)CLOCKS_PER_SEC; |
| } |
| |
| int __kmp_read_system_info(struct kmp_sys_info *info) { |
| int status; |
| struct rusage r_usage; |
| |
| memset(info, 0, sizeof(*info)); |
| |
| status = getrusage(RUSAGE_SELF, &r_usage); |
| KMP_CHECK_SYSFAIL_ERRNO("getrusage", status); |
| |
| // The maximum resident set size utilized (in kilobytes) |
| info->maxrss = r_usage.ru_maxrss; |
| // The number of page faults serviced without any I/O |
| info->minflt = r_usage.ru_minflt; |
| // The number of page faults serviced that required I/O |
| info->majflt = r_usage.ru_majflt; |
| // The number of times a process was "swapped" out of memory |
| info->nswap = r_usage.ru_nswap; |
| // The number of times the file system had to perform input |
| info->inblock = r_usage.ru_inblock; |
| // The number of times the file system had to perform output |
| info->oublock = r_usage.ru_oublock; |
| // The number of times a context switch was voluntarily |
| info->nvcsw = r_usage.ru_nvcsw; |
| // The number of times a context switch was forced |
| info->nivcsw = r_usage.ru_nivcsw; |
| |
| return (status != 0); |
| } |
| |
| void __kmp_read_system_time(double *delta) { |
| double t_ns; |
| struct timeval tval; |
| struct timespec stop; |
| int status; |
| |
| status = gettimeofday(&tval, NULL); |
| KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status); |
| TIMEVAL_TO_TIMESPEC(&tval, &stop); |
| t_ns = TS2NS(stop) - TS2NS(__kmp_sys_timer_data.start); |
| *delta = (t_ns * 1e-9); |
| } |
| |
| void __kmp_clear_system_time(void) { |
| struct timeval tval; |
| int status; |
| status = gettimeofday(&tval, NULL); |
| KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status); |
| TIMEVAL_TO_TIMESPEC(&tval, &__kmp_sys_timer_data.start); |
| } |
| |
| static int __kmp_get_xproc(void) { |
| |
| int r = 0; |
| |
| #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || \ |
| KMP_OS_OPENBSD || KMP_OS_HURD |
| |
| r = sysconf(_SC_NPROCESSORS_ONLN); |
| |
| #elif KMP_OS_DARWIN |
| |
| // Bug C77011 High "OpenMP Threads and number of active cores". |
| |
| // Find the number of available CPUs. |
| kern_return_t rc; |
| host_basic_info_data_t info; |
| mach_msg_type_number_t num = HOST_BASIC_INFO_COUNT; |
| rc = host_info(mach_host_self(), HOST_BASIC_INFO, (host_info_t)&info, &num); |
| if (rc == 0 && num == HOST_BASIC_INFO_COUNT) { |
| // Cannot use KA_TRACE() here because this code works before trace support |
| // is initialized. |
| r = info.avail_cpus; |
| } else { |
| KMP_WARNING(CantGetNumAvailCPU); |
| KMP_INFORM(AssumedNumCPU); |
| } |
| |
| #else |
| |
| #error "Unknown or unsupported OS." |
| |
| #endif |
| |
| return r > 0 ? r : 2; /* guess value of 2 if OS told us 0 */ |
| |
| } // __kmp_get_xproc |
| |
| int __kmp_read_from_file(char const *path, char const *format, ...) { |
| int result; |
| va_list args; |
| |
| va_start(args, format); |
| FILE *f = fopen(path, "rb"); |
| if (f == NULL) |
| return 0; |
| result = vfscanf(f, format, args); |
| fclose(f); |
| |
| return result; |
| } |
| |
| void __kmp_runtime_initialize(void) { |
| int status; |
| pthread_mutexattr_t mutex_attr; |
| pthread_condattr_t cond_attr; |
| |
| if (__kmp_init_runtime) { |
| return; |
| } |
| |
| #if (KMP_ARCH_X86 || KMP_ARCH_X86_64) |
| if (!__kmp_cpuinfo.initialized) { |
| __kmp_query_cpuid(&__kmp_cpuinfo); |
| } |
| #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ |
| |
| __kmp_xproc = __kmp_get_xproc(); |
| |
| if (sysconf(_SC_THREADS)) { |
| |
| /* Query the maximum number of threads */ |
| __kmp_sys_max_nth = sysconf(_SC_THREAD_THREADS_MAX); |
| if (__kmp_sys_max_nth == -1) { |
| /* Unlimited threads for NPTL */ |
| __kmp_sys_max_nth = INT_MAX; |
| } else if (__kmp_sys_max_nth <= 1) { |
| /* Can't tell, just use PTHREAD_THREADS_MAX */ |
| __kmp_sys_max_nth = KMP_MAX_NTH; |
| } |
| |
| /* Query the minimum stack size */ |
| __kmp_sys_min_stksize = sysconf(_SC_THREAD_STACK_MIN); |
| if (__kmp_sys_min_stksize <= 1) { |
| __kmp_sys_min_stksize = KMP_MIN_STKSIZE; |
| } |
| } |
| |
| /* Set up minimum number of threads to switch to TLS gtid */ |
| __kmp_tls_gtid_min = KMP_TLS_GTID_MIN; |
| |
| status = pthread_key_create(&__kmp_gtid_threadprivate_key, |
| __kmp_internal_end_dest); |
| KMP_CHECK_SYSFAIL("pthread_key_create", status); |
| status = pthread_mutexattr_init(&mutex_attr); |
| KMP_CHECK_SYSFAIL("pthread_mutexattr_init", status); |
| status = pthread_mutex_init(&__kmp_wait_mx.m_mutex, &mutex_attr); |
| KMP_CHECK_SYSFAIL("pthread_mutex_init", status); |
| status = pthread_condattr_init(&cond_attr); |
| KMP_CHECK_SYSFAIL("pthread_condattr_init", status); |
| status = pthread_cond_init(&__kmp_wait_cv.c_cond, &cond_attr); |
| KMP_CHECK_SYSFAIL("pthread_cond_init", status); |
| #if USE_ITT_BUILD |
| __kmp_itt_initialize(); |
| #endif /* USE_ITT_BUILD */ |
| |
| __kmp_init_runtime = TRUE; |
| } |
| |
| void __kmp_runtime_destroy(void) { |
| int status; |
| |
| if (!__kmp_init_runtime) { |
| return; // Nothing to do. |
| } |
| |
| #if USE_ITT_BUILD |
| __kmp_itt_destroy(); |
| #endif /* USE_ITT_BUILD */ |
| |
| status = pthread_key_delete(__kmp_gtid_threadprivate_key); |
| KMP_CHECK_SYSFAIL("pthread_key_delete", status); |
| |
| status = pthread_mutex_destroy(&__kmp_wait_mx.m_mutex); |
| if (status != 0 && status != EBUSY) { |
| KMP_SYSFAIL("pthread_mutex_destroy", status); |
| } |
| status = pthread_cond_destroy(&__kmp_wait_cv.c_cond); |
| if (status != 0 && status != EBUSY) { |
| KMP_SYSFAIL("pthread_cond_destroy", status); |
| } |
| #if KMP_AFFINITY_SUPPORTED |
| __kmp_affinity_uninitialize(); |
| #endif |
| |
| __kmp_init_runtime = FALSE; |
| } |
| |
| /* Put the thread to sleep for a time period */ |
| /* NOTE: not currently used anywhere */ |
| void __kmp_thread_sleep(int millis) { sleep((millis + 500) / 1000); } |
| |
| /* Calculate the elapsed wall clock time for the user */ |
| void __kmp_elapsed(double *t) { |
| int status; |
| #ifdef FIX_SGI_CLOCK |
| struct timespec ts; |
| |
| status = clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &ts); |
| KMP_CHECK_SYSFAIL_ERRNO("clock_gettime", status); |
| *t = |
| (double)ts.tv_nsec * (1.0 / (double)KMP_NSEC_PER_SEC) + (double)ts.tv_sec; |
| #else |
| struct timeval tv; |
| |
| status = gettimeofday(&tv, NULL); |
| KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status); |
| *t = |
| (double)tv.tv_usec * (1.0 / (double)KMP_USEC_PER_SEC) + (double)tv.tv_sec; |
| #endif |
| } |
| |
| /* Calculate the elapsed wall clock tick for the user */ |
| void __kmp_elapsed_tick(double *t) { *t = 1 / (double)CLOCKS_PER_SEC; } |
| |
| /* Return the current time stamp in nsec */ |
| kmp_uint64 __kmp_now_nsec() { |
| struct timeval t; |
| gettimeofday(&t, NULL); |
| kmp_uint64 nsec = (kmp_uint64)KMP_NSEC_PER_SEC * (kmp_uint64)t.tv_sec + |
| (kmp_uint64)1000 * (kmp_uint64)t.tv_usec; |
| return nsec; |
| } |
| |
| #if KMP_ARCH_X86 || KMP_ARCH_X86_64 |
| /* Measure clock ticks per millisecond */ |
| void __kmp_initialize_system_tick() { |
| kmp_uint64 now, nsec2, diff; |
| kmp_uint64 delay = 100000; // 50~100 usec on most machines. |
| kmp_uint64 nsec = __kmp_now_nsec(); |
| kmp_uint64 goal = __kmp_hardware_timestamp() + delay; |
| while ((now = __kmp_hardware_timestamp()) < goal) |
| ; |
| nsec2 = __kmp_now_nsec(); |
| diff = nsec2 - nsec; |
| if (diff > 0) { |
| kmp_uint64 tpms = (kmp_uint64)(1e6 * (delay + (now - goal)) / diff); |
| if (tpms > 0) |
| __kmp_ticks_per_msec = tpms; |
| } |
| } |
| #endif |
| |
| /* Determine whether the given address is mapped into the current address |
| space. */ |
| |
| int __kmp_is_address_mapped(void *addr) { |
| |
| int found = 0; |
| int rc; |
| |
| #if KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_HURD |
| |
| /* On GNUish OSes, read the /proc/<pid>/maps pseudo-file to get all the address |
| ranges mapped into the address space. */ |
| |
| char *name = __kmp_str_format("/proc/%d/maps", getpid()); |
| FILE *file = NULL; |
| |
| file = fopen(name, "r"); |
| KMP_ASSERT(file != NULL); |
| |
| for (;;) { |
| |
| void *beginning = NULL; |
| void *ending = NULL; |
| char perms[5]; |
| |
| rc = fscanf(file, "%p-%p %4s %*[^\n]\n", &beginning, &ending, perms); |
| if (rc == EOF) { |
| break; |
| } |
| KMP_ASSERT(rc == 3 && |
| KMP_STRLEN(perms) == 4); // Make sure all fields are read. |
| |
| // Ending address is not included in the region, but beginning is. |
| if ((addr >= beginning) && (addr < ending)) { |
| perms[2] = 0; // 3th and 4th character does not matter. |
| if (strcmp(perms, "rw") == 0) { |
| // Memory we are looking for should be readable and writable. |
| found = 1; |
| } |
| break; |
| } |
| } |
| |
| // Free resources. |
| fclose(file); |
| KMP_INTERNAL_FREE(name); |
| |
| #elif KMP_OS_DARWIN |
| |
| /* On OS X*, /proc pseudo filesystem is not available. Try to read memory |
| using vm interface. */ |
| |
| int buffer; |
| vm_size_t count; |
| rc = vm_read_overwrite( |
| mach_task_self(), // Task to read memory of. |
| (vm_address_t)(addr), // Address to read from. |
| 1, // Number of bytes to be read. |
| (vm_address_t)(&buffer), // Address of buffer to save read bytes in. |
| &count // Address of var to save number of read bytes in. |
| ); |
| if (rc == 0) { |
| // Memory successfully read. |
| found = 1; |
| } |
| |
| #elif KMP_OS_NETBSD |
| |
| int mib[5]; |
| mib[0] = CTL_VM; |
| mib[1] = VM_PROC; |
| mib[2] = VM_PROC_MAP; |
| mib[3] = getpid(); |
| mib[4] = sizeof(struct kinfo_vmentry); |
| |
| size_t size; |
| rc = sysctl(mib, __arraycount(mib), NULL, &size, NULL, 0); |
| KMP_ASSERT(!rc); |
| KMP_ASSERT(size); |
| |
| size = size * 4 / 3; |
| struct kinfo_vmentry *kiv = (struct kinfo_vmentry *)KMP_INTERNAL_MALLOC(size); |
| KMP_ASSERT(kiv); |
| |
| rc = sysctl(mib, __arraycount(mib), kiv, &size, NULL, 0); |
| KMP_ASSERT(!rc); |
| KMP_ASSERT(size); |
| |
| for (size_t i = 0; i < size; i++) { |
| if (kiv[i].kve_start >= (uint64_t)addr && |
| kiv[i].kve_end <= (uint64_t)addr) { |
| found = 1; |
| break; |
| } |
| } |
| KMP_INTERNAL_FREE(kiv); |
| #elif KMP_OS_DRAGONFLY || KMP_OS_OPENBSD |
| |
| // FIXME(DragonFly, OpenBSD): Implement this |
| found = 1; |
| |
| #else |
| |
| #error "Unknown or unsupported OS" |
| |
| #endif |
| |
| return found; |
| |
| } // __kmp_is_address_mapped |
| |
| #ifdef USE_LOAD_BALANCE |
| |
| #if KMP_OS_DARWIN || KMP_OS_NETBSD |
| |
| // The function returns the rounded value of the system load average |
| // during given time interval which depends on the value of |
| // __kmp_load_balance_interval variable (default is 60 sec, other values |
| // may be 300 sec or 900 sec). |
| // It returns -1 in case of error. |
| int __kmp_get_load_balance(int max) { |
| double averages[3]; |
| int ret_avg = 0; |
| |
| int res = getloadavg(averages, 3); |
| |
| // Check __kmp_load_balance_interval to determine which of averages to use. |
| // getloadavg() may return the number of samples less than requested that is |
| // less than 3. |
| if (__kmp_load_balance_interval < 180 && (res >= 1)) { |
| ret_avg = averages[0]; // 1 min |
| } else if ((__kmp_load_balance_interval >= 180 && |
| __kmp_load_balance_interval < 600) && |
| (res >= 2)) { |
| ret_avg = averages[1]; // 5 min |
| } else if ((__kmp_load_balance_interval >= 600) && (res == 3)) { |
| ret_avg = averages[2]; // 15 min |
| } else { // Error occurred |
| return -1; |
| } |
| |
| return ret_avg; |
| } |
| |
| #else // Linux* OS |
| |
| // The fuction returns number of running (not sleeping) threads, or -1 in case |
| // of error. Error could be reported if Linux* OS kernel too old (without |
| // "/proc" support). Counting running threads stops if max running threads |
| // encountered. |
| int __kmp_get_load_balance(int max) { |
| static int permanent_error = 0; |
| static int glb_running_threads = 0; // Saved count of the running threads for |
| // the thread balance algortihm |
| static double glb_call_time = 0; /* Thread balance algorithm call time */ |
| |
| int running_threads = 0; // Number of running threads in the system. |
| |
| DIR *proc_dir = NULL; // Handle of "/proc/" directory. |
| struct dirent *proc_entry = NULL; |
| |
| kmp_str_buf_t task_path; // "/proc/<pid>/task/<tid>/" path. |
| DIR *task_dir = NULL; // Handle of "/proc/<pid>/task/<tid>/" directory. |
| struct dirent *task_entry = NULL; |
| int task_path_fixed_len; |
| |
| kmp_str_buf_t stat_path; // "/proc/<pid>/task/<tid>/stat" path. |
| int stat_file = -1; |
| int stat_path_fixed_len; |
| |
| int total_processes = 0; // Total number of processes in system. |
| int total_threads = 0; // Total number of threads in system. |
| |
| double call_time = 0.0; |
| |
| __kmp_str_buf_init(&task_path); |
| __kmp_str_buf_init(&stat_path); |
| |
| __kmp_elapsed(&call_time); |
| |
| if (glb_call_time && |
| (call_time - glb_call_time < __kmp_load_balance_interval)) { |
| running_threads = glb_running_threads; |
| goto finish; |
| } |
| |
| glb_call_time = call_time; |
| |
| // Do not spend time on scanning "/proc/" if we have a permanent error. |
| if (permanent_error) { |
| running_threads = -1; |
| goto finish; |
| } |
| |
| if (max <= 0) { |
| max = INT_MAX; |
| } |
| |
| // Open "/proc/" directory. |
| proc_dir = opendir("/proc"); |
| if (proc_dir == NULL) { |
| // Cannot open "/prroc/". Probably the kernel does not support it. Return an |
| // error now and in subsequent calls. |
| running_threads = -1; |
| permanent_error = 1; |
| goto finish; |
| } |
| |
| // Initialize fixed part of task_path. This part will not change. |
| __kmp_str_buf_cat(&task_path, "/proc/", 6); |
| task_path_fixed_len = task_path.used; // Remember number of used characters. |
| |
| proc_entry = readdir(proc_dir); |
| while (proc_entry != NULL) { |
| // Proc entry is a directory and name starts with a digit. Assume it is a |
| // process' directory. |
| if (proc_entry->d_type == DT_DIR && isdigit(proc_entry->d_name[0])) { |
| |
| ++total_processes; |
| // Make sure init process is the very first in "/proc", so we can replace |
| // strcmp( proc_entry->d_name, "1" ) == 0 with simpler total_processes == |
| // 1. We are going to check that total_processes == 1 => d_name == "1" is |
| // true (where "=>" is implication). Since C++ does not have => operator, |
| // let us replace it with its equivalent: a => b == ! a || b. |
| KMP_DEBUG_ASSERT(total_processes != 1 || |
| strcmp(proc_entry->d_name, "1") == 0); |
| |
| // Construct task_path. |
| task_path.used = task_path_fixed_len; // Reset task_path to "/proc/". |
| __kmp_str_buf_cat(&task_path, proc_entry->d_name, |
| KMP_STRLEN(proc_entry->d_name)); |
| __kmp_str_buf_cat(&task_path, "/task", 5); |
| |
| task_dir = opendir(task_path.str); |
| if (task_dir == NULL) { |
| // Process can finish between reading "/proc/" directory entry and |
| // opening process' "task/" directory. So, in general case we should not |
| // complain, but have to skip this process and read the next one. But on |
| // systems with no "task/" support we will spend lot of time to scan |
| // "/proc/" tree again and again without any benefit. "init" process |
| // (its pid is 1) should exist always, so, if we cannot open |
| // "/proc/1/task/" directory, it means "task/" is not supported by |
| // kernel. Report an error now and in the future. |
| if (strcmp(proc_entry->d_name, "1") == 0) { |
| running_threads = -1; |
| permanent_error = 1; |
| goto finish; |
| } |
| } else { |
| // Construct fixed part of stat file path. |
| __kmp_str_buf_clear(&stat_path); |
| __kmp_str_buf_cat(&stat_path, task_path.str, task_path.used); |
| __kmp_str_buf_cat(&stat_path, "/", 1); |
| stat_path_fixed_len = stat_path.used; |
| |
| task_entry = readdir(task_dir); |
| while (task_entry != NULL) { |
| // It is a directory and name starts with a digit. |
| if (proc_entry->d_type == DT_DIR && isdigit(task_entry->d_name[0])) { |
| ++total_threads; |
| |
| // Consruct complete stat file path. Easiest way would be: |
| // __kmp_str_buf_print( & stat_path, "%s/%s/stat", task_path.str, |
| // task_entry->d_name ); |
| // but seriae of __kmp_str_buf_cat works a bit faster. |
| stat_path.used = |
| stat_path_fixed_len; // Reset stat path to its fixed part. |
| __kmp_str_buf_cat(&stat_path, task_entry->d_name, |
| KMP_STRLEN(task_entry->d_name)); |
| __kmp_str_buf_cat(&stat_path, "/stat", 5); |
| |
| // Note: Low-level API (open/read/close) is used. High-level API |
| // (fopen/fclose) works ~ 30 % slower. |
| stat_file = open(stat_path.str, O_RDONLY); |
| if (stat_file == -1) { |
| // We cannot report an error because task (thread) can terminate |
| // just before reading this file. |
| } else { |
| /* Content of "stat" file looks like: |
| 24285 (program) S ... |
| |
| It is a single line (if program name does not include funny |
| symbols). First number is a thread id, then name of executable |
| file name in paretheses, then state of the thread. We need just |
| thread state. |
| |
| Good news: Length of program name is 15 characters max. Longer |
| names are truncated. |
| |
| Thus, we need rather short buffer: 15 chars for program name + |
| 2 parenthesis, + 3 spaces + ~7 digits of pid = 37. |
| |
| Bad news: Program name may contain special symbols like space, |
| closing parenthesis, or even new line. This makes parsing |
| "stat" file not 100 % reliable. In case of fanny program names |
| parsing may fail (report incorrect thread state). |
| |
| Parsing "status" file looks more promissing (due to different |
| file structure and escaping special symbols) but reading and |
| parsing of "status" file works slower. |
| -- ln |
| */ |
| char buffer[65]; |
| int len; |
| len = read(stat_file, buffer, sizeof(buffer) - 1); |
| if (len >= 0) { |
| buffer[len] = 0; |
| // Using scanf: |
| // sscanf( buffer, "%*d (%*s) %c ", & state ); |
| // looks very nice, but searching for a closing parenthesis |
| // works a bit faster. |
| char *close_parent = strstr(buffer, ") "); |
| if (close_parent != NULL) { |
| char state = *(close_parent + 2); |
| if (state == 'R') { |
| ++running_threads; |
| if (running_threads >= max) { |
| goto finish; |
| } |
| } |
| } |
| } |
| close(stat_file); |
| stat_file = -1; |
| } |
| } |
| task_entry = readdir(task_dir); |
| } |
| closedir(task_dir); |
| task_dir = NULL; |
| } |
| } |
| proc_entry = readdir(proc_dir); |
| } |
| |
| // There _might_ be a timing hole where the thread executing this |
| // code get skipped in the load balance, and running_threads is 0. |
| // Assert in the debug builds only!!! |
| KMP_DEBUG_ASSERT(running_threads > 0); |
| if (running_threads <= 0) { |
| running_threads = 1; |
| } |
| |
| finish: // Clean up and exit. |
| if (proc_dir != NULL) { |
| closedir(proc_dir); |
| } |
| __kmp_str_buf_free(&task_path); |
| if (task_dir != NULL) { |
| closedir(task_dir); |
| } |
| __kmp_str_buf_free(&stat_path); |
| if (stat_file != -1) { |
| close(stat_file); |
| } |
| |
| glb_running_threads = running_threads; |
| |
| return running_threads; |
| |
| } // __kmp_get_load_balance |
| |
| #endif // KMP_OS_DARWIN |
| |
| #endif // USE_LOAD_BALANCE |
| |
| #if !(KMP_ARCH_X86 || KMP_ARCH_X86_64 || KMP_MIC || \ |
| ((KMP_OS_LINUX || KMP_OS_DARWIN) && KMP_ARCH_AARCH64) || KMP_ARCH_PPC64) |
| |
| // we really only need the case with 1 argument, because CLANG always build |
| // a struct of pointers to shared variables referenced in the outlined function |
| int __kmp_invoke_microtask(microtask_t pkfn, int gtid, int tid, int argc, |
| void *p_argv[] |
| #if OMPT_SUPPORT |
| , |
| void **exit_frame_ptr |
| #endif |
| ) { |
| #if OMPT_SUPPORT |
| *exit_frame_ptr = OMPT_GET_FRAME_ADDRESS(0); |
| #endif |
| |
| switch (argc) { |
| default: |
| fprintf(stderr, "Too many args to microtask: %d!\n", argc); |
| fflush(stderr); |
| exit(-1); |
| case 0: |
| (*pkfn)(>id, &tid); |
| break; |
| case 1: |
| (*pkfn)(>id, &tid, p_argv[0]); |
| break; |
| case 2: |
| (*pkfn)(>id, &tid, p_argv[0], p_argv[1]); |
| break; |
| case 3: |
| (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2]); |
| break; |
| case 4: |
| (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3]); |
| break; |
| case 5: |
| (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4]); |
| break; |
| case 6: |
| (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], |
| p_argv[5]); |
| break; |
| case 7: |
| (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], |
| p_argv[5], p_argv[6]); |
| break; |
| case 8: |
| (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], |
| p_argv[5], p_argv[6], p_argv[7]); |
| break; |
| case 9: |
| (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], |
| p_argv[5], p_argv[6], p_argv[7], p_argv[8]); |
| break; |
| case 10: |
| (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], |
| p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9]); |
| break; |
| case 11: |
| (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], |
| p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10]); |
| break; |
| case 12: |
| (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], |
| p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10], |
| p_argv[11]); |
| break; |
| case 13: |
| (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], |
| p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10], |
| p_argv[11], p_argv[12]); |
| break; |
| case 14: |
| (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], |
| p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10], |
| p_argv[11], p_argv[12], p_argv[13]); |
| break; |
| case 15: |
| (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], |
| p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10], |
| p_argv[11], p_argv[12], p_argv[13], p_argv[14]); |
| break; |
| } |
| |
| #if OMPT_SUPPORT |
| *exit_frame_ptr = 0; |
| #endif |
| |
| return 1; |
| } |
| |
| #endif |
| |
| // end of file // |