| //! Checking that constant values used in types can be successfully evaluated. |
| //! |
| //! For concrete constants, this is fairly simple as we can just try and evaluate it. |
| //! |
| //! When dealing with polymorphic constants, for example `std::mem::size_of::<T>() - 1`, |
| //! this is not as easy. |
| //! |
| //! In this case we try to build an abstract representation of this constant using |
| //! `thir_abstract_const` which can then be checked for structural equality with other |
| //! generic constants mentioned in the `caller_bounds` of the current environment. |
| use rustc_data_structures::intern::Interned; |
| use rustc_errors::ErrorReported; |
| use rustc_hir::def::DefKind; |
| use rustc_index::vec::IndexVec; |
| use rustc_infer::infer::InferCtxt; |
| use rustc_middle::mir; |
| use rustc_middle::mir::interpret::ErrorHandled; |
| use rustc_middle::thir; |
| use rustc_middle::thir::abstract_const::{self, Node, NodeId, NotConstEvaluatable}; |
| use rustc_middle::ty::subst::{Subst, SubstsRef}; |
| use rustc_middle::ty::{self, TyCtxt, TypeFoldable}; |
| use rustc_session::lint; |
| use rustc_span::def_id::LocalDefId; |
| use rustc_span::Span; |
| |
| use std::cmp; |
| use std::iter; |
| use std::ops::ControlFlow; |
| |
| /// Check if a given constant can be evaluated. |
| pub fn is_const_evaluatable<'cx, 'tcx>( |
| infcx: &InferCtxt<'cx, 'tcx>, |
| uv: ty::Unevaluated<'tcx, ()>, |
| param_env: ty::ParamEnv<'tcx>, |
| span: Span, |
| ) -> Result<(), NotConstEvaluatable> { |
| debug!("is_const_evaluatable({:?})", uv); |
| if infcx.tcx.features().generic_const_exprs { |
| let tcx = infcx.tcx; |
| match AbstractConst::new(tcx, uv)? { |
| // We are looking at a generic abstract constant. |
| Some(ct) => { |
| for pred in param_env.caller_bounds() { |
| match pred.kind().skip_binder() { |
| ty::PredicateKind::ConstEvaluatable(uv) => { |
| if let Some(b_ct) = AbstractConst::new(tcx, uv)? { |
| // Try to unify with each subtree in the AbstractConst to allow for |
| // `N + 1` being const evaluatable even if theres only a `ConstEvaluatable` |
| // predicate for `(N + 1) * 2` |
| let result = |
| walk_abstract_const(tcx, b_ct, |b_ct| { |
| match try_unify(tcx, ct, b_ct) { |
| true => ControlFlow::BREAK, |
| false => ControlFlow::CONTINUE, |
| } |
| }); |
| |
| if let ControlFlow::Break(()) = result { |
| debug!("is_const_evaluatable: abstract_const ~~> ok"); |
| return Ok(()); |
| } |
| } |
| } |
| _ => {} // don't care |
| } |
| } |
| |
| // We were unable to unify the abstract constant with |
| // a constant found in the caller bounds, there are |
| // now three possible cases here. |
| #[derive(Debug, Copy, Clone, PartialEq, Eq, PartialOrd, Ord)] |
| enum FailureKind { |
| /// The abstract const still references an inference |
| /// variable, in this case we return `TooGeneric`. |
| MentionsInfer, |
| /// The abstract const references a generic parameter, |
| /// this means that we emit an error here. |
| MentionsParam, |
| /// The substs are concrete enough that we can simply |
| /// try and evaluate the given constant. |
| Concrete, |
| } |
| let mut failure_kind = FailureKind::Concrete; |
| walk_abstract_const::<!, _>(tcx, ct, |node| match node.root(tcx) { |
| Node::Leaf(leaf) => { |
| if leaf.has_infer_types_or_consts() { |
| failure_kind = FailureKind::MentionsInfer; |
| } else if leaf.has_param_types_or_consts() { |
| failure_kind = cmp::min(failure_kind, FailureKind::MentionsParam); |
| } |
| |
| ControlFlow::CONTINUE |
| } |
| Node::Cast(_, _, ty) => { |
| if ty.has_infer_types_or_consts() { |
| failure_kind = FailureKind::MentionsInfer; |
| } else if ty.has_param_types_or_consts() { |
| failure_kind = cmp::min(failure_kind, FailureKind::MentionsParam); |
| } |
| |
| ControlFlow::CONTINUE |
| } |
| Node::Binop(_, _, _) | Node::UnaryOp(_, _) | Node::FunctionCall(_, _) => { |
| ControlFlow::CONTINUE |
| } |
| }); |
| |
| match failure_kind { |
| FailureKind::MentionsInfer => { |
| return Err(NotConstEvaluatable::MentionsInfer); |
| } |
| FailureKind::MentionsParam => { |
| return Err(NotConstEvaluatable::MentionsParam); |
| } |
| FailureKind::Concrete => { |
| // Dealt with below by the same code which handles this |
| // without the feature gate. |
| } |
| } |
| } |
| None => { |
| // If we are dealing with a concrete constant, we can |
| // reuse the old code path and try to evaluate |
| // the constant. |
| } |
| } |
| } |
| |
| let future_compat_lint = || { |
| if let Some(local_def_id) = uv.def.did.as_local() { |
| infcx.tcx.struct_span_lint_hir( |
| lint::builtin::CONST_EVALUATABLE_UNCHECKED, |
| infcx.tcx.hir().local_def_id_to_hir_id(local_def_id), |
| span, |
| |err| { |
| err.build("cannot use constants which depend on generic parameters in types") |
| .emit(); |
| }, |
| ); |
| } |
| }; |
| |
| // FIXME: We should only try to evaluate a given constant here if it is fully concrete |
| // as we don't want to allow things like `[u8; std::mem::size_of::<*mut T>()]`. |
| // |
| // We previously did not check this, so we only emit a future compat warning if |
| // const evaluation succeeds and the given constant is still polymorphic for now |
| // and hopefully soon change this to an error. |
| // |
| // See #74595 for more details about this. |
| let concrete = infcx.const_eval_resolve(param_env, uv.expand(), Some(span)); |
| |
| if concrete.is_ok() && uv.substs.has_param_types_or_consts() { |
| match infcx.tcx.def_kind(uv.def.did) { |
| DefKind::AnonConst | DefKind::InlineConst => { |
| let mir_body = infcx.tcx.mir_for_ctfe_opt_const_arg(uv.def); |
| |
| if mir_body.is_polymorphic { |
| future_compat_lint(); |
| } |
| } |
| _ => future_compat_lint(), |
| } |
| } |
| |
| debug!(?concrete, "is_const_evaluatable"); |
| match concrete { |
| Err(ErrorHandled::TooGeneric) => Err(match uv.has_infer_types_or_consts() { |
| true => NotConstEvaluatable::MentionsInfer, |
| false => NotConstEvaluatable::MentionsParam, |
| }), |
| Err(ErrorHandled::Linted) => { |
| infcx.tcx.sess.delay_span_bug(span, "constant in type had error reported as lint"); |
| Err(NotConstEvaluatable::Error(ErrorReported)) |
| } |
| Err(ErrorHandled::Reported(e)) => Err(NotConstEvaluatable::Error(e)), |
| Ok(_) => Ok(()), |
| } |
| } |
| |
| /// A tree representing an anonymous constant. |
| /// |
| /// This is only able to represent a subset of `MIR`, |
| /// and should not leak any information about desugarings. |
| #[derive(Debug, Clone, Copy)] |
| pub struct AbstractConst<'tcx> { |
| // FIXME: Consider adding something like `IndexSlice` |
| // and use this here. |
| inner: &'tcx [Node<'tcx>], |
| substs: SubstsRef<'tcx>, |
| } |
| |
| impl<'tcx> AbstractConst<'tcx> { |
| pub fn new( |
| tcx: TyCtxt<'tcx>, |
| uv: ty::Unevaluated<'tcx, ()>, |
| ) -> Result<Option<AbstractConst<'tcx>>, ErrorReported> { |
| let inner = tcx.thir_abstract_const_opt_const_arg(uv.def)?; |
| debug!("AbstractConst::new({:?}) = {:?}", uv, inner); |
| Ok(inner.map(|inner| AbstractConst { inner, substs: uv.substs })) |
| } |
| |
| pub fn from_const( |
| tcx: TyCtxt<'tcx>, |
| ct: ty::Const<'tcx>, |
| ) -> Result<Option<AbstractConst<'tcx>>, ErrorReported> { |
| match ct.val() { |
| ty::ConstKind::Unevaluated(uv) => AbstractConst::new(tcx, uv.shrink()), |
| ty::ConstKind::Error(_) => Err(ErrorReported), |
| _ => Ok(None), |
| } |
| } |
| |
| #[inline] |
| pub fn subtree(self, node: NodeId) -> AbstractConst<'tcx> { |
| AbstractConst { inner: &self.inner[..=node.index()], substs: self.substs } |
| } |
| |
| #[inline] |
| pub fn root(self, tcx: TyCtxt<'tcx>) -> Node<'tcx> { |
| let node = self.inner.last().copied().unwrap(); |
| match node { |
| Node::Leaf(leaf) => Node::Leaf(leaf.subst(tcx, self.substs)), |
| Node::Cast(kind, operand, ty) => Node::Cast(kind, operand, ty.subst(tcx, self.substs)), |
| // Don't perform substitution on the following as they can't directly contain generic params |
| Node::Binop(_, _, _) | Node::UnaryOp(_, _) | Node::FunctionCall(_, _) => node, |
| } |
| } |
| } |
| |
| struct AbstractConstBuilder<'a, 'tcx> { |
| tcx: TyCtxt<'tcx>, |
| body_id: thir::ExprId, |
| body: &'a thir::Thir<'tcx>, |
| /// The current WIP node tree. |
| nodes: IndexVec<NodeId, Node<'tcx>>, |
| } |
| |
| impl<'a, 'tcx> AbstractConstBuilder<'a, 'tcx> { |
| fn root_span(&self) -> Span { |
| self.body.exprs[self.body_id].span |
| } |
| |
| fn error(&mut self, span: Span, msg: &str) -> Result<!, ErrorReported> { |
| self.tcx |
| .sess |
| .struct_span_err(self.root_span(), "overly complex generic constant") |
| .span_label(span, msg) |
| .help("consider moving this anonymous constant into a `const` function") |
| .emit(); |
| |
| Err(ErrorReported) |
| } |
| fn maybe_supported_error(&mut self, span: Span, msg: &str) -> Result<!, ErrorReported> { |
| self.tcx |
| .sess |
| .struct_span_err(self.root_span(), "overly complex generic constant") |
| .span_label(span, msg) |
| .help("consider moving this anonymous constant into a `const` function") |
| .note("this operation may be supported in the future") |
| .emit(); |
| |
| Err(ErrorReported) |
| } |
| |
| fn new( |
| tcx: TyCtxt<'tcx>, |
| (body, body_id): (&'a thir::Thir<'tcx>, thir::ExprId), |
| ) -> Result<Option<AbstractConstBuilder<'a, 'tcx>>, ErrorReported> { |
| let builder = AbstractConstBuilder { tcx, body_id, body, nodes: IndexVec::new() }; |
| |
| struct IsThirPolymorphic<'a, 'tcx> { |
| is_poly: bool, |
| thir: &'a thir::Thir<'tcx>, |
| } |
| |
| use thir::visit; |
| impl<'a, 'tcx: 'a> visit::Visitor<'a, 'tcx> for IsThirPolymorphic<'a, 'tcx> { |
| fn thir(&self) -> &'a thir::Thir<'tcx> { |
| &self.thir |
| } |
| |
| fn visit_expr(&mut self, expr: &thir::Expr<'tcx>) { |
| self.is_poly |= expr.ty.has_param_types_or_consts(); |
| if !self.is_poly { |
| visit::walk_expr(self, expr) |
| } |
| } |
| |
| fn visit_pat(&mut self, pat: &thir::Pat<'tcx>) { |
| self.is_poly |= pat.ty.has_param_types_or_consts(); |
| if !self.is_poly { |
| visit::walk_pat(self, pat); |
| } |
| } |
| |
| fn visit_const(&mut self, ct: ty::Const<'tcx>) { |
| self.is_poly |= ct.has_param_types_or_consts(); |
| } |
| } |
| |
| let mut is_poly_vis = IsThirPolymorphic { is_poly: false, thir: body }; |
| visit::walk_expr(&mut is_poly_vis, &body[body_id]); |
| debug!("AbstractConstBuilder: is_poly={}", is_poly_vis.is_poly); |
| if !is_poly_vis.is_poly { |
| return Ok(None); |
| } |
| |
| Ok(Some(builder)) |
| } |
| |
| /// We do not allow all binary operations in abstract consts, so filter disallowed ones. |
| fn check_binop(op: mir::BinOp) -> bool { |
| use mir::BinOp::*; |
| match op { |
| Add | Sub | Mul | Div | Rem | BitXor | BitAnd | BitOr | Shl | Shr | Eq | Lt | Le |
| | Ne | Ge | Gt => true, |
| Offset => false, |
| } |
| } |
| |
| /// While we currently allow all unary operations, we still want to explicitly guard against |
| /// future changes here. |
| fn check_unop(op: mir::UnOp) -> bool { |
| use mir::UnOp::*; |
| match op { |
| Not | Neg => true, |
| } |
| } |
| |
| /// Builds the abstract const by walking the thir and bailing out when |
| /// encountering an unspported operation. |
| fn build(mut self) -> Result<&'tcx [Node<'tcx>], ErrorReported> { |
| debug!("Abstractconstbuilder::build: body={:?}", &*self.body); |
| self.recurse_build(self.body_id)?; |
| |
| for n in self.nodes.iter() { |
| if let Node::Leaf(ty::Const(Interned( |
| ty::ConstS { val: ty::ConstKind::Unevaluated(ct), ty: _ }, |
| _, |
| ))) = n |
| { |
| // `AbstractConst`s should not contain any promoteds as they require references which |
| // are not allowed. |
| assert_eq!(ct.promoted, None); |
| } |
| } |
| |
| Ok(self.tcx.arena.alloc_from_iter(self.nodes.into_iter())) |
| } |
| |
| fn recurse_build(&mut self, node: thir::ExprId) -> Result<NodeId, ErrorReported> { |
| use thir::ExprKind; |
| let node = &self.body.exprs[node]; |
| debug!("recurse_build: node={:?}", node); |
| Ok(match &node.kind { |
| // I dont know if handling of these 3 is correct |
| &ExprKind::Scope { value, .. } => self.recurse_build(value)?, |
| &ExprKind::PlaceTypeAscription { source, .. } |
| | &ExprKind::ValueTypeAscription { source, .. } => self.recurse_build(source)?, |
| |
| // subtle: associated consts are literals this arm handles |
| // `<T as Trait>::ASSOC` as well as `12` |
| &ExprKind::Literal { literal, .. } => self.nodes.push(Node::Leaf(literal)), |
| |
| ExprKind::Call { fun, args, .. } => { |
| let fun = self.recurse_build(*fun)?; |
| |
| let mut new_args = Vec::<NodeId>::with_capacity(args.len()); |
| for &id in args.iter() { |
| new_args.push(self.recurse_build(id)?); |
| } |
| let new_args = self.tcx.arena.alloc_slice(&new_args); |
| self.nodes.push(Node::FunctionCall(fun, new_args)) |
| } |
| &ExprKind::Binary { op, lhs, rhs } if Self::check_binop(op) => { |
| let lhs = self.recurse_build(lhs)?; |
| let rhs = self.recurse_build(rhs)?; |
| self.nodes.push(Node::Binop(op, lhs, rhs)) |
| } |
| &ExprKind::Unary { op, arg } if Self::check_unop(op) => { |
| let arg = self.recurse_build(arg)?; |
| self.nodes.push(Node::UnaryOp(op, arg)) |
| } |
| // This is necessary so that the following compiles: |
| // |
| // ``` |
| // fn foo<const N: usize>(a: [(); N + 1]) { |
| // bar::<{ N + 1 }>(); |
| // } |
| // ``` |
| ExprKind::Block { body: thir::Block { stmts: box [], expr: Some(e), .. } } => { |
| self.recurse_build(*e)? |
| } |
| // `ExprKind::Use` happens when a `hir::ExprKind::Cast` is a |
| // "coercion cast" i.e. using a coercion or is a no-op. |
| // This is important so that `N as usize as usize` doesnt unify with `N as usize`. (untested) |
| &ExprKind::Use { source } => { |
| let arg = self.recurse_build(source)?; |
| self.nodes.push(Node::Cast(abstract_const::CastKind::Use, arg, node.ty)) |
| } |
| &ExprKind::Cast { source } => { |
| let arg = self.recurse_build(source)?; |
| self.nodes.push(Node::Cast(abstract_const::CastKind::As, arg, node.ty)) |
| } |
| ExprKind::Borrow{ arg, ..} => { |
| let arg_node = &self.body.exprs[*arg]; |
| |
| // Skip reborrows for now until we allow Deref/Borrow/AddressOf |
| // expressions. |
| // FIXME(generic_const_exprs): Verify/explain why this is sound |
| if let ExprKind::Deref {arg} = arg_node.kind { |
| self.recurse_build(arg)? |
| } else { |
| self.maybe_supported_error( |
| node.span, |
| "borrowing is not supported in generic constants", |
| )? |
| } |
| } |
| // FIXME(generic_const_exprs): We may want to support these. |
| ExprKind::AddressOf { .. } | ExprKind::Deref {..}=> self.maybe_supported_error( |
| node.span, |
| "dereferencing or taking the address is not supported in generic constants", |
| )?, |
| ExprKind::Repeat { .. } | ExprKind::Array { .. } => self.maybe_supported_error( |
| node.span, |
| "array construction is not supported in generic constants", |
| )?, |
| ExprKind::Block { .. } => self.maybe_supported_error( |
| node.span, |
| "blocks are not supported in generic constant", |
| )?, |
| ExprKind::NeverToAny { .. } => self.maybe_supported_error( |
| node.span, |
| "converting nevers to any is not supported in generic constant", |
| )?, |
| ExprKind::Tuple { .. } => self.maybe_supported_error( |
| node.span, |
| "tuple construction is not supported in generic constants", |
| )?, |
| ExprKind::Index { .. } => self.maybe_supported_error( |
| node.span, |
| "indexing is not supported in generic constant", |
| )?, |
| ExprKind::Field { .. } => self.maybe_supported_error( |
| node.span, |
| "field access is not supported in generic constant", |
| )?, |
| ExprKind::ConstBlock { .. } => self.maybe_supported_error( |
| node.span, |
| "const blocks are not supported in generic constant", |
| )?, |
| ExprKind::Adt(_) => self.maybe_supported_error( |
| node.span, |
| "struct/enum construction is not supported in generic constants", |
| )?, |
| // dont know if this is correct |
| ExprKind::Pointer { .. } => |
| self.error(node.span, "pointer casts are not allowed in generic constants")?, |
| ExprKind::Yield { .. } => |
| self.error(node.span, "generator control flow is not allowed in generic constants")?, |
| ExprKind::Continue { .. } | ExprKind::Break { .. } | ExprKind::Loop { .. } => self |
| .error( |
| node.span, |
| "loops and loop control flow are not supported in generic constants", |
| )?, |
| ExprKind::Box { .. } => |
| self.error(node.span, "allocations are not allowed in generic constants")?, |
| |
| ExprKind::Unary { .. } => unreachable!(), |
| // we handle valid unary/binary ops above |
| ExprKind::Binary { .. } => |
| self.error(node.span, "unsupported binary operation in generic constants")?, |
| ExprKind::LogicalOp { .. } => |
| self.error(node.span, "unsupported operation in generic constants, short-circuiting operations would imply control flow")?, |
| ExprKind::Assign { .. } | ExprKind::AssignOp { .. } => { |
| self.error(node.span, "assignment is not supported in generic constants")? |
| } |
| ExprKind::Closure { .. } | ExprKind::Return { .. } => self.error( |
| node.span, |
| "closures and function keywords are not supported in generic constants", |
| )?, |
| // let expressions imply control flow |
| ExprKind::Match { .. } | ExprKind::If { .. } | ExprKind::Let { .. } => |
| self.error(node.span, "control flow is not supported in generic constants")?, |
| ExprKind::InlineAsm { .. } => { |
| self.error(node.span, "assembly is not supported in generic constants")? |
| } |
| |
| // we dont permit let stmts so `VarRef` and `UpvarRef` cant happen |
| ExprKind::VarRef { .. } |
| | ExprKind::UpvarRef { .. } |
| | ExprKind::StaticRef { .. } |
| | ExprKind::ThreadLocalRef(_) => { |
| self.error(node.span, "unsupported operation in generic constant")? |
| } |
| }) |
| } |
| } |
| |
| /// Builds an abstract const, do not use this directly, but use `AbstractConst::new` instead. |
| pub(super) fn thir_abstract_const<'tcx>( |
| tcx: TyCtxt<'tcx>, |
| def: ty::WithOptConstParam<LocalDefId>, |
| ) -> Result<Option<&'tcx [thir::abstract_const::Node<'tcx>]>, ErrorReported> { |
| if tcx.features().generic_const_exprs { |
| match tcx.def_kind(def.did) { |
| // FIXME(generic_const_exprs): We currently only do this for anonymous constants, |
| // meaning that we do not look into associated constants. I(@lcnr) am not yet sure whether |
| // we want to look into them or treat them as opaque projections. |
| // |
| // Right now we do neither of that and simply always fail to unify them. |
| DefKind::AnonConst | DefKind::InlineConst => (), |
| _ => return Ok(None), |
| } |
| |
| let body = tcx.thir_body(def); |
| if body.0.borrow().exprs.is_empty() { |
| // type error in constant, there is no thir |
| return Err(ErrorReported); |
| } |
| |
| AbstractConstBuilder::new(tcx, (&*body.0.borrow(), body.1))? |
| .map(AbstractConstBuilder::build) |
| .transpose() |
| } else { |
| Ok(None) |
| } |
| } |
| |
| pub(super) fn try_unify_abstract_consts<'tcx>( |
| tcx: TyCtxt<'tcx>, |
| (a, b): (ty::Unevaluated<'tcx, ()>, ty::Unevaluated<'tcx, ()>), |
| ) -> bool { |
| (|| { |
| if let Some(a) = AbstractConst::new(tcx, a)? { |
| if let Some(b) = AbstractConst::new(tcx, b)? { |
| return Ok(try_unify(tcx, a, b)); |
| } |
| } |
| |
| Ok(false) |
| })() |
| .unwrap_or_else(|ErrorReported| true) |
| // FIXME(generic_const_exprs): We should instead have this |
| // method return the resulting `ty::Const` and return `ConstKind::Error` |
| // on `ErrorReported`. |
| } |
| |
| pub fn walk_abstract_const<'tcx, R, F>( |
| tcx: TyCtxt<'tcx>, |
| ct: AbstractConst<'tcx>, |
| mut f: F, |
| ) -> ControlFlow<R> |
| where |
| F: FnMut(AbstractConst<'tcx>) -> ControlFlow<R>, |
| { |
| fn recurse<'tcx, R>( |
| tcx: TyCtxt<'tcx>, |
| ct: AbstractConst<'tcx>, |
| f: &mut dyn FnMut(AbstractConst<'tcx>) -> ControlFlow<R>, |
| ) -> ControlFlow<R> { |
| f(ct)?; |
| let root = ct.root(tcx); |
| match root { |
| Node::Leaf(_) => ControlFlow::CONTINUE, |
| Node::Binop(_, l, r) => { |
| recurse(tcx, ct.subtree(l), f)?; |
| recurse(tcx, ct.subtree(r), f) |
| } |
| Node::UnaryOp(_, v) => recurse(tcx, ct.subtree(v), f), |
| Node::FunctionCall(func, args) => { |
| recurse(tcx, ct.subtree(func), f)?; |
| args.iter().try_for_each(|&arg| recurse(tcx, ct.subtree(arg), f)) |
| } |
| Node::Cast(_, operand, _) => recurse(tcx, ct.subtree(operand), f), |
| } |
| } |
| |
| recurse(tcx, ct, &mut f) |
| } |
| |
| /// Tries to unify two abstract constants using structural equality. |
| pub(super) fn try_unify<'tcx>( |
| tcx: TyCtxt<'tcx>, |
| mut a: AbstractConst<'tcx>, |
| mut b: AbstractConst<'tcx>, |
| ) -> bool { |
| // We substitute generics repeatedly to allow AbstractConsts to unify where a |
| // ConstKind::Unevalated could be turned into an AbstractConst that would unify e.g. |
| // Param(N) should unify with Param(T), substs: [Unevaluated("T2", [Unevaluated("T3", [Param(N)])])] |
| while let Node::Leaf(a_ct) = a.root(tcx) { |
| match AbstractConst::from_const(tcx, a_ct) { |
| Ok(Some(a_act)) => a = a_act, |
| Ok(None) => break, |
| Err(_) => return true, |
| } |
| } |
| while let Node::Leaf(b_ct) = b.root(tcx) { |
| match AbstractConst::from_const(tcx, b_ct) { |
| Ok(Some(b_act)) => b = b_act, |
| Ok(None) => break, |
| Err(_) => return true, |
| } |
| } |
| |
| match (a.root(tcx), b.root(tcx)) { |
| (Node::Leaf(a_ct), Node::Leaf(b_ct)) => { |
| if a_ct.ty() != b_ct.ty() { |
| return false; |
| } |
| |
| match (a_ct.val(), b_ct.val()) { |
| // We can just unify errors with everything to reduce the amount of |
| // emitted errors here. |
| (ty::ConstKind::Error(_), _) | (_, ty::ConstKind::Error(_)) => true, |
| (ty::ConstKind::Param(a_param), ty::ConstKind::Param(b_param)) => { |
| a_param == b_param |
| } |
| (ty::ConstKind::Value(a_val), ty::ConstKind::Value(b_val)) => a_val == b_val, |
| // If we have `fn a<const N: usize>() -> [u8; N + 1]` and `fn b<const M: usize>() -> [u8; 1 + M]` |
| // we do not want to use `assert_eq!(a(), b())` to infer that `N` and `M` have to be `1`. This |
| // means that we only allow inference variables if they are equal. |
| (ty::ConstKind::Infer(a_val), ty::ConstKind::Infer(b_val)) => a_val == b_val, |
| // We expand generic anonymous constants at the start of this function, so this |
| // branch should only be taking when dealing with associated constants, at |
| // which point directly comparing them seems like the desired behavior. |
| // |
| // FIXME(generic_const_exprs): This isn't actually the case. |
| // We also take this branch for concrete anonymous constants and |
| // expand generic anonymous constants with concrete substs. |
| (ty::ConstKind::Unevaluated(a_uv), ty::ConstKind::Unevaluated(b_uv)) => { |
| a_uv == b_uv |
| } |
| // FIXME(generic_const_exprs): We may want to either actually try |
| // to evaluate `a_ct` and `b_ct` if they are are fully concrete or something like |
| // this, for now we just return false here. |
| _ => false, |
| } |
| } |
| (Node::Binop(a_op, al, ar), Node::Binop(b_op, bl, br)) if a_op == b_op => { |
| try_unify(tcx, a.subtree(al), b.subtree(bl)) |
| && try_unify(tcx, a.subtree(ar), b.subtree(br)) |
| } |
| (Node::UnaryOp(a_op, av), Node::UnaryOp(b_op, bv)) if a_op == b_op => { |
| try_unify(tcx, a.subtree(av), b.subtree(bv)) |
| } |
| (Node::FunctionCall(a_f, a_args), Node::FunctionCall(b_f, b_args)) |
| if a_args.len() == b_args.len() => |
| { |
| try_unify(tcx, a.subtree(a_f), b.subtree(b_f)) |
| && iter::zip(a_args, b_args) |
| .all(|(&an, &bn)| try_unify(tcx, a.subtree(an), b.subtree(bn))) |
| } |
| (Node::Cast(a_kind, a_operand, a_ty), Node::Cast(b_kind, b_operand, b_ty)) |
| if (a_ty == b_ty) && (a_kind == b_kind) => |
| { |
| try_unify(tcx, a.subtree(a_operand), b.subtree(b_operand)) |
| } |
| // use this over `_ => false` to make adding variants to `Node` less error prone |
| (Node::Cast(..), _) |
| | (Node::FunctionCall(..), _) |
| | (Node::UnaryOp(..), _) |
| | (Node::Binop(..), _) |
| | (Node::Leaf(..), _) => false, |
| } |
| } |