blob: 1994faed70c66bfabe0514160b28a582530c8cc3 [file] [log] [blame]
//! Checking that constant values used in types can be successfully evaluated.
//!
//! For concrete constants, this is fairly simple as we can just try and evaluate it.
//!
//! When dealing with polymorphic constants, for example `std::mem::size_of::<T>() - 1`,
//! this is not as easy.
//!
//! In this case we try to build an abstract representation of this constant using
//! `thir_abstract_const` which can then be checked for structural equality with other
//! generic constants mentioned in the `caller_bounds` of the current environment.
use rustc_data_structures::intern::Interned;
use rustc_errors::ErrorReported;
use rustc_hir::def::DefKind;
use rustc_index::vec::IndexVec;
use rustc_infer::infer::InferCtxt;
use rustc_middle::mir;
use rustc_middle::mir::interpret::ErrorHandled;
use rustc_middle::thir;
use rustc_middle::thir::abstract_const::{self, Node, NodeId, NotConstEvaluatable};
use rustc_middle::ty::subst::{Subst, SubstsRef};
use rustc_middle::ty::{self, TyCtxt, TypeFoldable};
use rustc_session::lint;
use rustc_span::def_id::LocalDefId;
use rustc_span::Span;
use std::cmp;
use std::iter;
use std::ops::ControlFlow;
/// Check if a given constant can be evaluated.
pub fn is_const_evaluatable<'cx, 'tcx>(
infcx: &InferCtxt<'cx, 'tcx>,
uv: ty::Unevaluated<'tcx, ()>,
param_env: ty::ParamEnv<'tcx>,
span: Span,
) -> Result<(), NotConstEvaluatable> {
debug!("is_const_evaluatable({:?})", uv);
if infcx.tcx.features().generic_const_exprs {
let tcx = infcx.tcx;
match AbstractConst::new(tcx, uv)? {
// We are looking at a generic abstract constant.
Some(ct) => {
for pred in param_env.caller_bounds() {
match pred.kind().skip_binder() {
ty::PredicateKind::ConstEvaluatable(uv) => {
if let Some(b_ct) = AbstractConst::new(tcx, uv)? {
// Try to unify with each subtree in the AbstractConst to allow for
// `N + 1` being const evaluatable even if theres only a `ConstEvaluatable`
// predicate for `(N + 1) * 2`
let result =
walk_abstract_const(tcx, b_ct, |b_ct| {
match try_unify(tcx, ct, b_ct) {
true => ControlFlow::BREAK,
false => ControlFlow::CONTINUE,
}
});
if let ControlFlow::Break(()) = result {
debug!("is_const_evaluatable: abstract_const ~~> ok");
return Ok(());
}
}
}
_ => {} // don't care
}
}
// We were unable to unify the abstract constant with
// a constant found in the caller bounds, there are
// now three possible cases here.
#[derive(Debug, Copy, Clone, PartialEq, Eq, PartialOrd, Ord)]
enum FailureKind {
/// The abstract const still references an inference
/// variable, in this case we return `TooGeneric`.
MentionsInfer,
/// The abstract const references a generic parameter,
/// this means that we emit an error here.
MentionsParam,
/// The substs are concrete enough that we can simply
/// try and evaluate the given constant.
Concrete,
}
let mut failure_kind = FailureKind::Concrete;
walk_abstract_const::<!, _>(tcx, ct, |node| match node.root(tcx) {
Node::Leaf(leaf) => {
if leaf.has_infer_types_or_consts() {
failure_kind = FailureKind::MentionsInfer;
} else if leaf.has_param_types_or_consts() {
failure_kind = cmp::min(failure_kind, FailureKind::MentionsParam);
}
ControlFlow::CONTINUE
}
Node::Cast(_, _, ty) => {
if ty.has_infer_types_or_consts() {
failure_kind = FailureKind::MentionsInfer;
} else if ty.has_param_types_or_consts() {
failure_kind = cmp::min(failure_kind, FailureKind::MentionsParam);
}
ControlFlow::CONTINUE
}
Node::Binop(_, _, _) | Node::UnaryOp(_, _) | Node::FunctionCall(_, _) => {
ControlFlow::CONTINUE
}
});
match failure_kind {
FailureKind::MentionsInfer => {
return Err(NotConstEvaluatable::MentionsInfer);
}
FailureKind::MentionsParam => {
return Err(NotConstEvaluatable::MentionsParam);
}
FailureKind::Concrete => {
// Dealt with below by the same code which handles this
// without the feature gate.
}
}
}
None => {
// If we are dealing with a concrete constant, we can
// reuse the old code path and try to evaluate
// the constant.
}
}
}
let future_compat_lint = || {
if let Some(local_def_id) = uv.def.did.as_local() {
infcx.tcx.struct_span_lint_hir(
lint::builtin::CONST_EVALUATABLE_UNCHECKED,
infcx.tcx.hir().local_def_id_to_hir_id(local_def_id),
span,
|err| {
err.build("cannot use constants which depend on generic parameters in types")
.emit();
},
);
}
};
// FIXME: We should only try to evaluate a given constant here if it is fully concrete
// as we don't want to allow things like `[u8; std::mem::size_of::<*mut T>()]`.
//
// We previously did not check this, so we only emit a future compat warning if
// const evaluation succeeds and the given constant is still polymorphic for now
// and hopefully soon change this to an error.
//
// See #74595 for more details about this.
let concrete = infcx.const_eval_resolve(param_env, uv.expand(), Some(span));
if concrete.is_ok() && uv.substs.has_param_types_or_consts() {
match infcx.tcx.def_kind(uv.def.did) {
DefKind::AnonConst | DefKind::InlineConst => {
let mir_body = infcx.tcx.mir_for_ctfe_opt_const_arg(uv.def);
if mir_body.is_polymorphic {
future_compat_lint();
}
}
_ => future_compat_lint(),
}
}
debug!(?concrete, "is_const_evaluatable");
match concrete {
Err(ErrorHandled::TooGeneric) => Err(match uv.has_infer_types_or_consts() {
true => NotConstEvaluatable::MentionsInfer,
false => NotConstEvaluatable::MentionsParam,
}),
Err(ErrorHandled::Linted) => {
infcx.tcx.sess.delay_span_bug(span, "constant in type had error reported as lint");
Err(NotConstEvaluatable::Error(ErrorReported))
}
Err(ErrorHandled::Reported(e)) => Err(NotConstEvaluatable::Error(e)),
Ok(_) => Ok(()),
}
}
/// A tree representing an anonymous constant.
///
/// This is only able to represent a subset of `MIR`,
/// and should not leak any information about desugarings.
#[derive(Debug, Clone, Copy)]
pub struct AbstractConst<'tcx> {
// FIXME: Consider adding something like `IndexSlice`
// and use this here.
inner: &'tcx [Node<'tcx>],
substs: SubstsRef<'tcx>,
}
impl<'tcx> AbstractConst<'tcx> {
pub fn new(
tcx: TyCtxt<'tcx>,
uv: ty::Unevaluated<'tcx, ()>,
) -> Result<Option<AbstractConst<'tcx>>, ErrorReported> {
let inner = tcx.thir_abstract_const_opt_const_arg(uv.def)?;
debug!("AbstractConst::new({:?}) = {:?}", uv, inner);
Ok(inner.map(|inner| AbstractConst { inner, substs: uv.substs }))
}
pub fn from_const(
tcx: TyCtxt<'tcx>,
ct: ty::Const<'tcx>,
) -> Result<Option<AbstractConst<'tcx>>, ErrorReported> {
match ct.val() {
ty::ConstKind::Unevaluated(uv) => AbstractConst::new(tcx, uv.shrink()),
ty::ConstKind::Error(_) => Err(ErrorReported),
_ => Ok(None),
}
}
#[inline]
pub fn subtree(self, node: NodeId) -> AbstractConst<'tcx> {
AbstractConst { inner: &self.inner[..=node.index()], substs: self.substs }
}
#[inline]
pub fn root(self, tcx: TyCtxt<'tcx>) -> Node<'tcx> {
let node = self.inner.last().copied().unwrap();
match node {
Node::Leaf(leaf) => Node::Leaf(leaf.subst(tcx, self.substs)),
Node::Cast(kind, operand, ty) => Node::Cast(kind, operand, ty.subst(tcx, self.substs)),
// Don't perform substitution on the following as they can't directly contain generic params
Node::Binop(_, _, _) | Node::UnaryOp(_, _) | Node::FunctionCall(_, _) => node,
}
}
}
struct AbstractConstBuilder<'a, 'tcx> {
tcx: TyCtxt<'tcx>,
body_id: thir::ExprId,
body: &'a thir::Thir<'tcx>,
/// The current WIP node tree.
nodes: IndexVec<NodeId, Node<'tcx>>,
}
impl<'a, 'tcx> AbstractConstBuilder<'a, 'tcx> {
fn root_span(&self) -> Span {
self.body.exprs[self.body_id].span
}
fn error(&mut self, span: Span, msg: &str) -> Result<!, ErrorReported> {
self.tcx
.sess
.struct_span_err(self.root_span(), "overly complex generic constant")
.span_label(span, msg)
.help("consider moving this anonymous constant into a `const` function")
.emit();
Err(ErrorReported)
}
fn maybe_supported_error(&mut self, span: Span, msg: &str) -> Result<!, ErrorReported> {
self.tcx
.sess
.struct_span_err(self.root_span(), "overly complex generic constant")
.span_label(span, msg)
.help("consider moving this anonymous constant into a `const` function")
.note("this operation may be supported in the future")
.emit();
Err(ErrorReported)
}
fn new(
tcx: TyCtxt<'tcx>,
(body, body_id): (&'a thir::Thir<'tcx>, thir::ExprId),
) -> Result<Option<AbstractConstBuilder<'a, 'tcx>>, ErrorReported> {
let builder = AbstractConstBuilder { tcx, body_id, body, nodes: IndexVec::new() };
struct IsThirPolymorphic<'a, 'tcx> {
is_poly: bool,
thir: &'a thir::Thir<'tcx>,
}
use thir::visit;
impl<'a, 'tcx: 'a> visit::Visitor<'a, 'tcx> for IsThirPolymorphic<'a, 'tcx> {
fn thir(&self) -> &'a thir::Thir<'tcx> {
&self.thir
}
fn visit_expr(&mut self, expr: &thir::Expr<'tcx>) {
self.is_poly |= expr.ty.has_param_types_or_consts();
if !self.is_poly {
visit::walk_expr(self, expr)
}
}
fn visit_pat(&mut self, pat: &thir::Pat<'tcx>) {
self.is_poly |= pat.ty.has_param_types_or_consts();
if !self.is_poly {
visit::walk_pat(self, pat);
}
}
fn visit_const(&mut self, ct: ty::Const<'tcx>) {
self.is_poly |= ct.has_param_types_or_consts();
}
}
let mut is_poly_vis = IsThirPolymorphic { is_poly: false, thir: body };
visit::walk_expr(&mut is_poly_vis, &body[body_id]);
debug!("AbstractConstBuilder: is_poly={}", is_poly_vis.is_poly);
if !is_poly_vis.is_poly {
return Ok(None);
}
Ok(Some(builder))
}
/// We do not allow all binary operations in abstract consts, so filter disallowed ones.
fn check_binop(op: mir::BinOp) -> bool {
use mir::BinOp::*;
match op {
Add | Sub | Mul | Div | Rem | BitXor | BitAnd | BitOr | Shl | Shr | Eq | Lt | Le
| Ne | Ge | Gt => true,
Offset => false,
}
}
/// While we currently allow all unary operations, we still want to explicitly guard against
/// future changes here.
fn check_unop(op: mir::UnOp) -> bool {
use mir::UnOp::*;
match op {
Not | Neg => true,
}
}
/// Builds the abstract const by walking the thir and bailing out when
/// encountering an unspported operation.
fn build(mut self) -> Result<&'tcx [Node<'tcx>], ErrorReported> {
debug!("Abstractconstbuilder::build: body={:?}", &*self.body);
self.recurse_build(self.body_id)?;
for n in self.nodes.iter() {
if let Node::Leaf(ty::Const(Interned(
ty::ConstS { val: ty::ConstKind::Unevaluated(ct), ty: _ },
_,
))) = n
{
// `AbstractConst`s should not contain any promoteds as they require references which
// are not allowed.
assert_eq!(ct.promoted, None);
}
}
Ok(self.tcx.arena.alloc_from_iter(self.nodes.into_iter()))
}
fn recurse_build(&mut self, node: thir::ExprId) -> Result<NodeId, ErrorReported> {
use thir::ExprKind;
let node = &self.body.exprs[node];
debug!("recurse_build: node={:?}", node);
Ok(match &node.kind {
// I dont know if handling of these 3 is correct
&ExprKind::Scope { value, .. } => self.recurse_build(value)?,
&ExprKind::PlaceTypeAscription { source, .. }
| &ExprKind::ValueTypeAscription { source, .. } => self.recurse_build(source)?,
// subtle: associated consts are literals this arm handles
// `<T as Trait>::ASSOC` as well as `12`
&ExprKind::Literal { literal, .. } => self.nodes.push(Node::Leaf(literal)),
ExprKind::Call { fun, args, .. } => {
let fun = self.recurse_build(*fun)?;
let mut new_args = Vec::<NodeId>::with_capacity(args.len());
for &id in args.iter() {
new_args.push(self.recurse_build(id)?);
}
let new_args = self.tcx.arena.alloc_slice(&new_args);
self.nodes.push(Node::FunctionCall(fun, new_args))
}
&ExprKind::Binary { op, lhs, rhs } if Self::check_binop(op) => {
let lhs = self.recurse_build(lhs)?;
let rhs = self.recurse_build(rhs)?;
self.nodes.push(Node::Binop(op, lhs, rhs))
}
&ExprKind::Unary { op, arg } if Self::check_unop(op) => {
let arg = self.recurse_build(arg)?;
self.nodes.push(Node::UnaryOp(op, arg))
}
// This is necessary so that the following compiles:
//
// ```
// fn foo<const N: usize>(a: [(); N + 1]) {
// bar::<{ N + 1 }>();
// }
// ```
ExprKind::Block { body: thir::Block { stmts: box [], expr: Some(e), .. } } => {
self.recurse_build(*e)?
}
// `ExprKind::Use` happens when a `hir::ExprKind::Cast` is a
// "coercion cast" i.e. using a coercion or is a no-op.
// This is important so that `N as usize as usize` doesnt unify with `N as usize`. (untested)
&ExprKind::Use { source } => {
let arg = self.recurse_build(source)?;
self.nodes.push(Node::Cast(abstract_const::CastKind::Use, arg, node.ty))
}
&ExprKind::Cast { source } => {
let arg = self.recurse_build(source)?;
self.nodes.push(Node::Cast(abstract_const::CastKind::As, arg, node.ty))
}
ExprKind::Borrow{ arg, ..} => {
let arg_node = &self.body.exprs[*arg];
// Skip reborrows for now until we allow Deref/Borrow/AddressOf
// expressions.
// FIXME(generic_const_exprs): Verify/explain why this is sound
if let ExprKind::Deref {arg} = arg_node.kind {
self.recurse_build(arg)?
} else {
self.maybe_supported_error(
node.span,
"borrowing is not supported in generic constants",
)?
}
}
// FIXME(generic_const_exprs): We may want to support these.
ExprKind::AddressOf { .. } | ExprKind::Deref {..}=> self.maybe_supported_error(
node.span,
"dereferencing or taking the address is not supported in generic constants",
)?,
ExprKind::Repeat { .. } | ExprKind::Array { .. } => self.maybe_supported_error(
node.span,
"array construction is not supported in generic constants",
)?,
ExprKind::Block { .. } => self.maybe_supported_error(
node.span,
"blocks are not supported in generic constant",
)?,
ExprKind::NeverToAny { .. } => self.maybe_supported_error(
node.span,
"converting nevers to any is not supported in generic constant",
)?,
ExprKind::Tuple { .. } => self.maybe_supported_error(
node.span,
"tuple construction is not supported in generic constants",
)?,
ExprKind::Index { .. } => self.maybe_supported_error(
node.span,
"indexing is not supported in generic constant",
)?,
ExprKind::Field { .. } => self.maybe_supported_error(
node.span,
"field access is not supported in generic constant",
)?,
ExprKind::ConstBlock { .. } => self.maybe_supported_error(
node.span,
"const blocks are not supported in generic constant",
)?,
ExprKind::Adt(_) => self.maybe_supported_error(
node.span,
"struct/enum construction is not supported in generic constants",
)?,
// dont know if this is correct
ExprKind::Pointer { .. } =>
self.error(node.span, "pointer casts are not allowed in generic constants")?,
ExprKind::Yield { .. } =>
self.error(node.span, "generator control flow is not allowed in generic constants")?,
ExprKind::Continue { .. } | ExprKind::Break { .. } | ExprKind::Loop { .. } => self
.error(
node.span,
"loops and loop control flow are not supported in generic constants",
)?,
ExprKind::Box { .. } =>
self.error(node.span, "allocations are not allowed in generic constants")?,
ExprKind::Unary { .. } => unreachable!(),
// we handle valid unary/binary ops above
ExprKind::Binary { .. } =>
self.error(node.span, "unsupported binary operation in generic constants")?,
ExprKind::LogicalOp { .. } =>
self.error(node.span, "unsupported operation in generic constants, short-circuiting operations would imply control flow")?,
ExprKind::Assign { .. } | ExprKind::AssignOp { .. } => {
self.error(node.span, "assignment is not supported in generic constants")?
}
ExprKind::Closure { .. } | ExprKind::Return { .. } => self.error(
node.span,
"closures and function keywords are not supported in generic constants",
)?,
// let expressions imply control flow
ExprKind::Match { .. } | ExprKind::If { .. } | ExprKind::Let { .. } =>
self.error(node.span, "control flow is not supported in generic constants")?,
ExprKind::InlineAsm { .. } => {
self.error(node.span, "assembly is not supported in generic constants")?
}
// we dont permit let stmts so `VarRef` and `UpvarRef` cant happen
ExprKind::VarRef { .. }
| ExprKind::UpvarRef { .. }
| ExprKind::StaticRef { .. }
| ExprKind::ThreadLocalRef(_) => {
self.error(node.span, "unsupported operation in generic constant")?
}
})
}
}
/// Builds an abstract const, do not use this directly, but use `AbstractConst::new` instead.
pub(super) fn thir_abstract_const<'tcx>(
tcx: TyCtxt<'tcx>,
def: ty::WithOptConstParam<LocalDefId>,
) -> Result<Option<&'tcx [thir::abstract_const::Node<'tcx>]>, ErrorReported> {
if tcx.features().generic_const_exprs {
match tcx.def_kind(def.did) {
// FIXME(generic_const_exprs): We currently only do this for anonymous constants,
// meaning that we do not look into associated constants. I(@lcnr) am not yet sure whether
// we want to look into them or treat them as opaque projections.
//
// Right now we do neither of that and simply always fail to unify them.
DefKind::AnonConst | DefKind::InlineConst => (),
_ => return Ok(None),
}
let body = tcx.thir_body(def);
if body.0.borrow().exprs.is_empty() {
// type error in constant, there is no thir
return Err(ErrorReported);
}
AbstractConstBuilder::new(tcx, (&*body.0.borrow(), body.1))?
.map(AbstractConstBuilder::build)
.transpose()
} else {
Ok(None)
}
}
pub(super) fn try_unify_abstract_consts<'tcx>(
tcx: TyCtxt<'tcx>,
(a, b): (ty::Unevaluated<'tcx, ()>, ty::Unevaluated<'tcx, ()>),
) -> bool {
(|| {
if let Some(a) = AbstractConst::new(tcx, a)? {
if let Some(b) = AbstractConst::new(tcx, b)? {
return Ok(try_unify(tcx, a, b));
}
}
Ok(false)
})()
.unwrap_or_else(|ErrorReported| true)
// FIXME(generic_const_exprs): We should instead have this
// method return the resulting `ty::Const` and return `ConstKind::Error`
// on `ErrorReported`.
}
pub fn walk_abstract_const<'tcx, R, F>(
tcx: TyCtxt<'tcx>,
ct: AbstractConst<'tcx>,
mut f: F,
) -> ControlFlow<R>
where
F: FnMut(AbstractConst<'tcx>) -> ControlFlow<R>,
{
fn recurse<'tcx, R>(
tcx: TyCtxt<'tcx>,
ct: AbstractConst<'tcx>,
f: &mut dyn FnMut(AbstractConst<'tcx>) -> ControlFlow<R>,
) -> ControlFlow<R> {
f(ct)?;
let root = ct.root(tcx);
match root {
Node::Leaf(_) => ControlFlow::CONTINUE,
Node::Binop(_, l, r) => {
recurse(tcx, ct.subtree(l), f)?;
recurse(tcx, ct.subtree(r), f)
}
Node::UnaryOp(_, v) => recurse(tcx, ct.subtree(v), f),
Node::FunctionCall(func, args) => {
recurse(tcx, ct.subtree(func), f)?;
args.iter().try_for_each(|&arg| recurse(tcx, ct.subtree(arg), f))
}
Node::Cast(_, operand, _) => recurse(tcx, ct.subtree(operand), f),
}
}
recurse(tcx, ct, &mut f)
}
/// Tries to unify two abstract constants using structural equality.
pub(super) fn try_unify<'tcx>(
tcx: TyCtxt<'tcx>,
mut a: AbstractConst<'tcx>,
mut b: AbstractConst<'tcx>,
) -> bool {
// We substitute generics repeatedly to allow AbstractConsts to unify where a
// ConstKind::Unevalated could be turned into an AbstractConst that would unify e.g.
// Param(N) should unify with Param(T), substs: [Unevaluated("T2", [Unevaluated("T3", [Param(N)])])]
while let Node::Leaf(a_ct) = a.root(tcx) {
match AbstractConst::from_const(tcx, a_ct) {
Ok(Some(a_act)) => a = a_act,
Ok(None) => break,
Err(_) => return true,
}
}
while let Node::Leaf(b_ct) = b.root(tcx) {
match AbstractConst::from_const(tcx, b_ct) {
Ok(Some(b_act)) => b = b_act,
Ok(None) => break,
Err(_) => return true,
}
}
match (a.root(tcx), b.root(tcx)) {
(Node::Leaf(a_ct), Node::Leaf(b_ct)) => {
if a_ct.ty() != b_ct.ty() {
return false;
}
match (a_ct.val(), b_ct.val()) {
// We can just unify errors with everything to reduce the amount of
// emitted errors here.
(ty::ConstKind::Error(_), _) | (_, ty::ConstKind::Error(_)) => true,
(ty::ConstKind::Param(a_param), ty::ConstKind::Param(b_param)) => {
a_param == b_param
}
(ty::ConstKind::Value(a_val), ty::ConstKind::Value(b_val)) => a_val == b_val,
// If we have `fn a<const N: usize>() -> [u8; N + 1]` and `fn b<const M: usize>() -> [u8; 1 + M]`
// we do not want to use `assert_eq!(a(), b())` to infer that `N` and `M` have to be `1`. This
// means that we only allow inference variables if they are equal.
(ty::ConstKind::Infer(a_val), ty::ConstKind::Infer(b_val)) => a_val == b_val,
// We expand generic anonymous constants at the start of this function, so this
// branch should only be taking when dealing with associated constants, at
// which point directly comparing them seems like the desired behavior.
//
// FIXME(generic_const_exprs): This isn't actually the case.
// We also take this branch for concrete anonymous constants and
// expand generic anonymous constants with concrete substs.
(ty::ConstKind::Unevaluated(a_uv), ty::ConstKind::Unevaluated(b_uv)) => {
a_uv == b_uv
}
// FIXME(generic_const_exprs): We may want to either actually try
// to evaluate `a_ct` and `b_ct` if they are are fully concrete or something like
// this, for now we just return false here.
_ => false,
}
}
(Node::Binop(a_op, al, ar), Node::Binop(b_op, bl, br)) if a_op == b_op => {
try_unify(tcx, a.subtree(al), b.subtree(bl))
&& try_unify(tcx, a.subtree(ar), b.subtree(br))
}
(Node::UnaryOp(a_op, av), Node::UnaryOp(b_op, bv)) if a_op == b_op => {
try_unify(tcx, a.subtree(av), b.subtree(bv))
}
(Node::FunctionCall(a_f, a_args), Node::FunctionCall(b_f, b_args))
if a_args.len() == b_args.len() =>
{
try_unify(tcx, a.subtree(a_f), b.subtree(b_f))
&& iter::zip(a_args, b_args)
.all(|(&an, &bn)| try_unify(tcx, a.subtree(an), b.subtree(bn)))
}
(Node::Cast(a_kind, a_operand, a_ty), Node::Cast(b_kind, b_operand, b_ty))
if (a_ty == b_ty) && (a_kind == b_kind) =>
{
try_unify(tcx, a.subtree(a_operand), b.subtree(b_operand))
}
// use this over `_ => false` to make adding variants to `Node` less error prone
(Node::Cast(..), _)
| (Node::FunctionCall(..), _)
| (Node::UnaryOp(..), _)
| (Node::Binop(..), _)
| (Node::Leaf(..), _) => false,
}
}