blob: ee311a883963e103507263003c96afe16609a74a [file] [log] [blame]
use super::{Context, Mapping, Path, Stash, Vec};
use core::convert::TryFrom;
use object::elf::{ELFCOMPRESS_ZLIB, SHF_COMPRESSED};
use object::read::elf::{CompressionHeader, FileHeader, SectionHeader, SectionTable, Sym};
use object::read::StringTable;
use object::{BigEndian, Bytes, NativeEndian};
#[cfg(target_pointer_width = "32")]
type Elf = object::elf::FileHeader32<NativeEndian>;
#[cfg(target_pointer_width = "64")]
type Elf = object::elf::FileHeader64<NativeEndian>;
impl Mapping {
pub fn new(path: &Path) -> Option<Mapping> {
let map = super::mmap(path)?;
Mapping::mk(map, |data, stash| Context::new(stash, Object::parse(data)?))
}
}
struct ParsedSym {
address: u64,
size: u64,
name: u32,
}
pub struct Object<'a> {
/// Zero-sized type representing the native endianness.
///
/// We could use a literal instead, but this helps ensure correctness.
endian: NativeEndian,
/// The entire file data.
data: &'a [u8],
sections: SectionTable<'a, Elf>,
strings: StringTable<'a>,
/// List of pre-parsed and sorted symbols by base address.
syms: Vec<ParsedSym>,
}
impl<'a> Object<'a> {
fn parse(data: &'a [u8]) -> Option<Object<'a>> {
let elf = Elf::parse(data).ok()?;
let endian = elf.endian().ok()?;
let sections = elf.sections(endian, data).ok()?;
let mut syms = sections
.symbols(endian, data, object::elf::SHT_SYMTAB)
.ok()?;
if syms.is_empty() {
syms = sections
.symbols(endian, data, object::elf::SHT_DYNSYM)
.ok()?;
}
let strings = syms.strings();
let mut syms = syms
.iter()
// Only look at function/object symbols. This mirrors what
// libbacktrace does and in general we're only symbolicating
// function addresses in theory. Object symbols correspond
// to data, and maybe someone's crazy enough to have a
// function go into static data?
.filter(|sym| {
let st_type = sym.st_type();
st_type == object::elf::STT_FUNC || st_type == object::elf::STT_OBJECT
})
// skip anything that's in an undefined section header,
// since it means it's an imported function and we're only
// symbolicating with locally defined functions.
.filter(|sym| sym.st_shndx(endian) != object::elf::SHN_UNDEF)
.map(|sym| {
let address = sym.st_value(endian).into();
let size = sym.st_size(endian).into();
let name = sym.st_name(endian);
ParsedSym {
address,
size,
name,
}
})
.collect::<Vec<_>>();
syms.sort_unstable_by_key(|s| s.address);
Some(Object {
endian,
data,
sections,
strings,
syms,
})
}
pub fn section(&self, stash: &'a Stash, name: &str) -> Option<&'a [u8]> {
if let Some(section) = self.section_header(name) {
let mut data = Bytes(section.data(self.endian, self.data).ok()?);
// Check for DWARF-standard (gABI) compression, i.e., as generated
// by ld's `--compress-debug-sections=zlib-gabi` flag.
let flags: u64 = section.sh_flags(self.endian).into();
if (flags & u64::from(SHF_COMPRESSED)) == 0 {
// Not compressed.
return Some(data.0);
}
let header = data.read::<<Elf as FileHeader>::CompressionHeader>().ok()?;
if header.ch_type(self.endian) != ELFCOMPRESS_ZLIB {
// Zlib compression is the only known type.
return None;
}
let size = usize::try_from(header.ch_size(self.endian)).ok()?;
let buf = stash.allocate(size);
decompress_zlib(data.0, buf)?;
return Some(buf);
}
// Check for the nonstandard GNU compression format, i.e., as generated
// by ld's `--compress-debug-sections=zlib-gnu` flag. This means that if
// we're actually asking for `.debug_info` then we need to look up a
// section named `.zdebug_info`.
if !name.starts_with(".debug_") {
return None;
}
let debug_name = name[7..].as_bytes();
let compressed_section = self
.sections
.iter()
.filter_map(|header| {
let name = self.sections.section_name(self.endian, header).ok()?;
if name.starts_with(b".zdebug_") && &name[8..] == debug_name {
Some(header)
} else {
None
}
})
.next()?;
let mut data = Bytes(compressed_section.data(self.endian, self.data).ok()?);
if data.read_bytes(8).ok()?.0 != b"ZLIB\0\0\0\0" {
return None;
}
let size = usize::try_from(data.read::<object::U32Bytes<_>>().ok()?.get(BigEndian)).ok()?;
let buf = stash.allocate(size);
decompress_zlib(data.0, buf)?;
Some(buf)
}
fn section_header(&self, name: &str) -> Option<&<Elf as FileHeader>::SectionHeader> {
self.sections
.section_by_name(self.endian, name.as_bytes())
.map(|(_index, section)| section)
}
pub fn search_symtab<'b>(&'b self, addr: u64) -> Option<&'b [u8]> {
// Same sort of binary search as Windows above
let i = match self.syms.binary_search_by_key(&addr, |sym| sym.address) {
Ok(i) => i,
Err(i) => i.checked_sub(1)?,
};
let sym = self.syms.get(i)?;
if sym.address <= addr && addr <= sym.address + sym.size {
self.strings.get(sym.name).ok()
} else {
None
}
}
pub(super) fn search_object_map(&self, _addr: u64) -> Option<(&Context<'_>, u64)> {
None
}
}
fn decompress_zlib(input: &[u8], output: &mut [u8]) -> Option<()> {
use miniz_oxide::inflate::core::inflate_flags::{
TINFL_FLAG_PARSE_ZLIB_HEADER, TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF,
};
use miniz_oxide::inflate::core::{decompress, DecompressorOxide};
use miniz_oxide::inflate::TINFLStatus;
let (status, in_read, out_read) = decompress(
&mut DecompressorOxide::new(),
input,
output,
0,
TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF | TINFL_FLAG_PARSE_ZLIB_HEADER,
);
if status == TINFLStatus::Done && in_read == input.len() && out_read == output.len() {
Some(())
} else {
None
}
}