blob: d676dbad93e0dcd900a8da8001403b1f85eb33a1 [file] [log] [blame]
//! Glue for working with `peepmatic`-generated peephole optimizers.
use crate::cursor::{Cursor, FuncCursor};
use crate::ir::{
dfg::DataFlowGraph,
entities::{Inst, Value},
immediates::{Imm64, Uimm64},
instructions::{InstructionData, Opcode},
types, InstBuilder,
};
use crate::isa::TargetIsa;
use cranelift_codegen_shared::condcodes::IntCC;
use peepmatic_runtime::{
cc::ConditionCode,
instruction_set::InstructionSet,
part::{Constant, Part},
r#type::{BitWidth, Kind, Type},
PeepholeOptimizations, PeepholeOptimizer,
};
use std::borrow::Cow;
use std::boxed::Box;
use std::convert::{TryFrom, TryInto};
use std::iter;
use std::ptr;
use std::sync::atomic::{AtomicPtr, Ordering};
peepmatic_traits::define_parse_and_typing_rules_for_operator! {
Opcode {
adjust_sp_down => AdjustSpDown {
parameters(iNN);
result(void);
}
adjust_sp_down_imm => AdjustSpDownImm {
immediates(iNN);
result(void);
}
band => Band {
parameters(iNN, iNN);
result(iNN);
}
band_imm => BandImm {
immediates(iNN);
parameters(iNN);
result(iNN);
}
bconst => Bconst {
immediates(b1);
result(bNN);
}
bint => Bint {
parameters(bNN);
result(iNN);
}
bor => Bor {
parameters(iNN, iNN);
result(iNN);
}
bor_imm => BorImm {
immediates(iNN);
parameters(iNN);
result(iNN);
}
brnz => Brnz {
parameters(bool_or_int);
result(void);
}
brz => Brz {
parameters(bool_or_int);
result(void);
}
bxor => Bxor {
parameters(iNN, iNN);
result(iNN);
}
bxor_imm => BxorImm {
immediates(iNN);
parameters(iNN);
result(iNN);
}
iadd => Iadd {
parameters(iNN, iNN);
result(iNN);
}
iadd_imm => IaddImm {
immediates(iNN);
parameters(iNN);
result(iNN);
}
icmp => Icmp {
immediates(cc);
parameters(iNN, iNN);
result(b1);
}
icmp_imm => IcmpImm {
immediates(cc, iNN);
parameters(iNN);
result(b1);
}
iconst => Iconst {
immediates(iNN);
result(iNN);
}
ifcmp => Ifcmp {
parameters(iNN, iNN);
result(cpu_flags);
}
ifcmp_imm => IfcmpImm {
immediates(iNN);
parameters(iNN);
result(cpu_flags);
}
imul => Imul {
parameters(iNN, iNN);
result(iNN);
}
imul_imm => ImulImm {
immediates(iNN);
parameters(iNN);
result(iNN);
}
ireduce => Ireduce {
parameters(iNN);
result(iMM);
is_reduce(true);
}
irsub_imm => IrsubImm {
immediates(iNN);
parameters(iNN);
result(iNN);
}
ishl => Ishl {
parameters(iNN, iNN);
result(iNN);
}
ishl_imm => IshlImm {
immediates(iNN);
parameters(iNN);
result(iNN);
}
isub => Isub {
parameters(iNN, iNN);
result(iNN);
}
rotl => Rotl {
parameters(iNN, iNN);
result(iNN);
}
rotl_imm => RotlImm {
immediates(iNN);
parameters(iNN);
result(iNN);
}
rotr => Rotr {
parameters(iNN, iNN);
result(iNN);
}
rotr_imm => RotrImm {
immediates(iNN);
parameters(iNN);
result(iNN);
}
sdiv => Sdiv {
parameters(iNN, iNN);
result(iNN);
}
sdiv_imm => SdivImm {
immediates(iNN);
parameters(iNN);
result(iNN);
}
select => Select {
parameters(bool_or_int, any_t, any_t);
result(any_t);
}
sextend => Sextend {
parameters(iNN);
result(iMM);
is_extend(true);
}
srem => Srem {
parameters(iNN, iNN);
result(iNN);
}
srem_imm => SremImm {
immediates(iNN);
parameters(iNN);
result(iNN);
}
sshr => Sshr {
parameters(iNN, iNN);
result(iNN);
}
sshr_imm => SshrImm {
immediates(iNN);
parameters(iNN);
result(iNN);
}
trapnz => Trapnz {
parameters(bool_or_int);
result(void);
}
trapz => Trapz {
parameters(bool_or_int);
result(void);
}
udiv => Udiv {
parameters(iNN, iNN);
result(iNN);
}
udiv_imm => UdivImm {
immediates(iNN);
parameters(iNN);
result(iNN);
}
uextend => Uextend {
parameters(iNN);
result(iMM);
is_extend(true);
}
urem => Urem {
parameters(iNN, iNN);
result(iNN);
}
urem_imm => UremImm {
immediates(iNN);
parameters(iNN);
result(iNN);
}
ushr => Ushr {
parameters(iNN, iNN);
result(iNN);
}
ushr_imm => UshrImm {
immediates(iNN);
parameters(iNN);
result(iNN);
}
}
parse_cfg(feature = "rebuild-peephole-optimizers");
}
/// Code required to rebuild Peepmatic-based peephole optimizers.
///
/// This module is used to scope imports and dependencies that are only required
/// for building peephole optimizers (as opposed to just using pre-built
/// peephole optimizers). This helps ensure that our regular builds using
/// pre-built peephole optimizers stay lean.
#[cfg(feature = "rebuild-peephole-optimizers")]
mod rebuild {
use super::*;
use alloc::vec::Vec;
use std::fs;
use std::path::Path;
/// Rebuild the `preopt.peepmatic` peephole optimizer.
///
/// Saves and overwrites the old `preopt.serialized` build and returns a
/// copy of the result.
pub fn rebuild_preopt() -> Vec<u8> {
let codegen_path = Path::new(include_str!(concat!(
env!("OUT_DIR"),
"/CRANELIFT_CODEGEN_PATH"
)));
let source_path = codegen_path.join("src").join("preopt.peepmatic");
let preopt = peepmatic::compile_file::<Opcode>(&source_path)
.expect("failed to compile `src/preopt.peepmatic`");
let serialized_path = codegen_path.join("src").join("preopt.serialized");
preopt
.serialize_to_file(&serialized_path)
.expect("failed to serialize peephole optimizer to `src/preopt.serialized`");
fs::read(&serialized_path).expect("failed to read `src/preopt.serialized`")
}
}
/// Get the `preopt.peepmatic` peephole optimizer.
pub(crate) fn preopt<'a, 'b>(
isa: &'b dyn TargetIsa,
) -> PeepholeOptimizer<'static, 'a, &'b dyn TargetIsa> {
#[cfg(feature = "rebuild-peephole-optimizers")]
fn get_serialized() -> Cow<'static, [u8]> {
rebuild::rebuild_preopt().into()
}
#[cfg(not(feature = "rebuild-peephole-optimizers"))]
fn get_serialized() -> Cow<'static, [u8]> {
static SERIALIZED: &[u8] = include_bytes!("preopt.serialized");
SERIALIZED.into()
}
// Once initialized, this must never be re-assigned. The initialized value
// is semantically "static data" and is intentionally leaked for the whole
// program's lifetime.
static DESERIALIZED: AtomicPtr<PeepholeOptimizations<Opcode>> = AtomicPtr::new(ptr::null_mut());
// If `DESERIALIZED` has already been initialized, then just use it.
let ptr = DESERIALIZED.load(Ordering::SeqCst);
if let Some(peep_opts) = unsafe { ptr.as_ref() } {
return peep_opts.optimizer(isa);
}
// Otherwise, if `DESERIALIZED` hasn't been initialized, then we need to
// deserialize the peephole optimizations and initialize it. However,
// another thread could be doing the same thing concurrently, so there is a
// race to see who initializes `DESERIALIZED` first, and we need to be
// prepared to both win or lose that race.
let peep_opts = PeepholeOptimizations::deserialize(&get_serialized())
.expect("should always be able to deserialize `preopt.serialized`");
let peep_opts = Box::into_raw(Box::new(peep_opts));
// Only update `DESERIALIZE` if it is still null, attempting to perform the
// one-time transition from null -> non-null.
if DESERIALIZED
.compare_and_swap(ptr::null_mut(), peep_opts, Ordering::SeqCst)
.is_null()
{
// We won the race to initialize `DESERIALIZED`.
debug_assert_eq!(DESERIALIZED.load(Ordering::SeqCst), peep_opts);
let peep_opts = unsafe { &*peep_opts };
return peep_opts.optimizer(isa);
}
// We lost the race to initialize `DESERIALIZED`. Drop our no-longer-needed
// instance of `peep_opts` and get the pointer to the instance that won the
// race.
let _ = unsafe { Box::from_raw(peep_opts) };
let peep_opts = DESERIALIZED.load(Ordering::SeqCst);
let peep_opts = unsafe { peep_opts.as_ref().unwrap() };
peep_opts.optimizer(isa)
}
/// Either a `Value` or an `Inst`.
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
pub enum ValueOrInst {
Value(Value),
Inst(Inst),
}
impl ValueOrInst {
/// Get the underlying `Value` if any.
pub fn value(&self) -> Option<Value> {
match *self {
Self::Value(v) => Some(v),
Self::Inst(_) => None,
}
}
/// Get the underlying `Inst` if any.
pub fn inst(&self) -> Option<Inst> {
match *self {
Self::Inst(i) => Some(i),
Self::Value(_) => None,
}
}
/// Unwrap the underlying `Value`, panicking if it is not a `Value.
pub fn unwrap_value(&self) -> Value {
self.value().unwrap()
}
/// Unwrap the underlying `Inst`, panicking if it is not a `Inst.
pub fn unwrap_inst(&self) -> Inst {
self.inst().unwrap()
}
/// Is this a `Value`?
pub fn is_value(&self) -> bool {
self.value().is_some()
}
/// Is this an `Inst`?
pub fn is_inst(&self) -> bool {
self.inst().is_some()
}
fn resolve_inst(&self, dfg: &DataFlowGraph) -> Option<Inst> {
match *self {
ValueOrInst::Inst(i) => Some(i),
ValueOrInst::Value(v) => dfg.value_def(v).inst(),
}
}
fn result_bit_width(&self, dfg: &DataFlowGraph) -> u8 {
match *self {
ValueOrInst::Value(v) => dfg.value_type(v).bits().try_into().unwrap(),
ValueOrInst::Inst(inst) => {
let result = dfg.first_result(inst);
dfg.value_type(result).bits().try_into().unwrap()
}
}
}
fn to_constant(&self, pos: &mut FuncCursor) -> Option<Constant> {
let inst = self.resolve_inst(&pos.func.dfg)?;
match pos.func.dfg[inst] {
InstructionData::UnaryImm {
opcode: Opcode::Iconst,
imm,
} => {
let width = self.result_bit_width(&pos.func.dfg).try_into().unwrap();
let x: i64 = imm.into();
Some(Constant::Int(x as u64, width))
}
InstructionData::UnaryBool {
opcode: Opcode::Bconst,
imm,
} => {
let width = self.result_bit_width(&pos.func.dfg).try_into().unwrap();
Some(Constant::Bool(imm, width))
}
_ => None,
}
}
}
impl From<Value> for ValueOrInst {
fn from(v: Value) -> ValueOrInst {
ValueOrInst::Value(v)
}
}
impl From<Inst> for ValueOrInst {
fn from(i: Inst) -> ValueOrInst {
ValueOrInst::Inst(i)
}
}
/// Get the fixed bit width of `bit_width`, or if it is polymorphic, the bit
/// width of `root`.
fn bit_width(dfg: &DataFlowGraph, bit_width: BitWidth, root: Inst) -> u8 {
bit_width.fixed_width().unwrap_or_else(|| {
let tyvar = dfg.ctrl_typevar(root);
let ty = dfg.compute_result_type(root, 0, tyvar).unwrap();
u8::try_from(ty.bits()).unwrap()
})
}
/// Convert the constant `c` into an instruction.
fn const_to_value<'a>(builder: impl InstBuilder<'a>, c: Constant, root: Inst) -> Value {
match c {
Constant::Bool(b, width) => {
let width = bit_width(builder.data_flow_graph(), width, root);
let ty = match width {
1 => types::B1,
8 => types::B8,
16 => types::B16,
32 => types::B32,
64 => types::B64,
128 => types::B128,
_ => unreachable!(),
};
builder.bconst(ty, b)
}
Constant::Int(x, width) => {
let width = bit_width(builder.data_flow_graph(), width, root);
let ty = match width {
8 => types::I8,
16 => types::I16,
32 => types::I32,
64 => types::I64,
128 => types::I128,
_ => unreachable!(),
};
builder.iconst(ty, x as i64)
}
}
}
fn part_to_value(pos: &mut FuncCursor, root: Inst, part: Part<ValueOrInst>) -> Option<Value> {
match part {
Part::Instruction(ValueOrInst::Inst(inst)) => {
pos.func.dfg.inst_results(inst).first().copied()
}
Part::Instruction(ValueOrInst::Value(v)) => Some(v),
Part::Constant(c) => Some(const_to_value(pos.ins(), c, root)),
Part::ConditionCode(_) => None,
}
}
impl TryFrom<Constant> for Imm64 {
type Error = &'static str;
fn try_from(c: Constant) -> Result<Self, Self::Error> {
match c {
Constant::Int(x, _) => Ok(Imm64::from(x as i64)),
Constant::Bool(..) => Err("cannot create Imm64 from Constant::Bool"),
}
}
}
impl Into<Constant> for Imm64 {
#[inline]
fn into(self) -> Constant {
let x: i64 = self.into();
Constant::Int(x as _, BitWidth::SixtyFour)
}
}
impl Into<Part<ValueOrInst>> for Imm64 {
#[inline]
fn into(self) -> Part<ValueOrInst> {
let c: Constant = self.into();
c.into()
}
}
fn part_to_imm64(pos: &mut FuncCursor, part: Part<ValueOrInst>) -> Imm64 {
return match part {
Part::Instruction(x) => match x.to_constant(pos).unwrap_or_else(|| cannot_convert()) {
Constant::Int(x, _) => (x as i64).into(),
Constant::Bool(..) => cannot_convert(),
},
Part::Constant(Constant::Int(x, _)) => (x as i64).into(),
Part::ConditionCode(_) | Part::Constant(Constant::Bool(..)) => cannot_convert(),
};
#[inline(never)]
#[cold]
fn cannot_convert() -> ! {
panic!("cannot convert part into `Imm64`")
}
}
impl Into<Constant> for Uimm64 {
#[inline]
fn into(self) -> Constant {
let x: u64 = self.into();
Constant::Int(x, BitWidth::SixtyFour)
}
}
impl Into<Part<ValueOrInst>> for Uimm64 {
#[inline]
fn into(self) -> Part<ValueOrInst> {
let c: Constant = self.into();
c.into()
}
}
fn peepmatic_to_intcc(cc: ConditionCode) -> IntCC {
match cc {
ConditionCode::Eq => IntCC::Equal,
ConditionCode::Ne => IntCC::NotEqual,
ConditionCode::Slt => IntCC::SignedLessThan,
ConditionCode::Sle => IntCC::SignedGreaterThanOrEqual,
ConditionCode::Sgt => IntCC::SignedGreaterThan,
ConditionCode::Sge => IntCC::SignedLessThanOrEqual,
ConditionCode::Ult => IntCC::UnsignedLessThan,
ConditionCode::Uge => IntCC::UnsignedGreaterThanOrEqual,
ConditionCode::Ugt => IntCC::UnsignedGreaterThan,
ConditionCode::Ule => IntCC::UnsignedLessThanOrEqual,
ConditionCode::Of => IntCC::Overflow,
ConditionCode::Nof => IntCC::NotOverflow,
}
}
fn intcc_to_peepmatic(cc: IntCC) -> ConditionCode {
match cc {
IntCC::Equal => ConditionCode::Eq,
IntCC::NotEqual => ConditionCode::Ne,
IntCC::SignedLessThan => ConditionCode::Slt,
IntCC::SignedGreaterThanOrEqual => ConditionCode::Sle,
IntCC::SignedGreaterThan => ConditionCode::Sgt,
IntCC::SignedLessThanOrEqual => ConditionCode::Sge,
IntCC::UnsignedLessThan => ConditionCode::Ult,
IntCC::UnsignedGreaterThanOrEqual => ConditionCode::Uge,
IntCC::UnsignedGreaterThan => ConditionCode::Ugt,
IntCC::UnsignedLessThanOrEqual => ConditionCode::Ule,
IntCC::Overflow => ConditionCode::Of,
IntCC::NotOverflow => ConditionCode::Nof,
}
}
fn peepmatic_ty_to_ir_ty(ty: Type, dfg: &DataFlowGraph, root: Inst) -> types::Type {
match (ty.kind, bit_width(dfg, ty.bit_width, root)) {
(Kind::Int, 8) => types::I8,
(Kind::Int, 16) => types::I16,
(Kind::Int, 32) => types::I32,
(Kind::Int, 64) => types::I64,
(Kind::Int, 128) => types::I128,
(Kind::Bool, 1) => types::B1,
(Kind::Bool, 8) => types::I8,
(Kind::Bool, 16) => types::I16,
(Kind::Bool, 32) => types::I32,
(Kind::Bool, 64) => types::I64,
(Kind::Bool, 128) => types::I128,
_ => unreachable!(),
}
}
// NB: the unsafe contract we must uphold here is that our implementation of
// `instruction_result_bit_width` must always return a valid, non-zero bit
// width.
unsafe impl<'a, 'b> InstructionSet<'b> for &'a dyn TargetIsa {
type Context = FuncCursor<'b>;
type Operator = Opcode;
type Instruction = ValueOrInst;
fn replace_instruction(
&self,
pos: &mut FuncCursor<'b>,
old: ValueOrInst,
new: Part<ValueOrInst>,
) -> ValueOrInst {
log::trace!("replace {:?} with {:?}", old, new);
let old_inst = old.resolve_inst(&pos.func.dfg).unwrap();
// Try to convert `new` to an instruction, because we prefer replacing
// an old instruction with a new one wholesale. However, if the
// replacement cannot be converted to an instruction (e.g. the
// right-hand side is a block/function parameter value) then we change
// the old instruction's result to an alias of the new value.
let new_inst = match new {
Part::Instruction(ValueOrInst::Inst(inst)) => Some(inst),
Part::Instruction(ValueOrInst::Value(_)) => {
// Do not try and follow the value definition. If we transplant
// this value's instruction, and there are other uses of this
// value, then we could mess up ordering between instructions.
None
}
Part::Constant(c) => {
let v = const_to_value(pos.ins(), c, old_inst);
let inst = pos.func.dfg.value_def(v).unwrap_inst();
Some(inst)
}
Part::ConditionCode(_) => None,
};
match new_inst {
Some(new_inst) => {
pos.func.transplant_inst(old_inst, new_inst);
debug_assert_eq!(pos.current_inst(), Some(old_inst));
old_inst.into()
}
None => {
let new_value = part_to_value(pos, old_inst, new).unwrap();
let old_results = pos.func.dfg.detach_results(old_inst);
let old_results = old_results.as_slice(&pos.func.dfg.value_lists);
assert_eq!(old_results.len(), 1);
let old_value = old_results[0];
pos.func.dfg.change_to_alias(old_value, new_value);
pos.func.dfg.replace(old_inst).nop();
new_value.into()
}
}
}
fn operator<E>(
&self,
pos: &mut FuncCursor<'b>,
value_or_inst: ValueOrInst,
operands: &mut E,
) -> Option<Opcode>
where
E: Extend<Part<Self::Instruction>>,
{
let inst = value_or_inst.resolve_inst(&pos.func.dfg)?;
Some(match pos.func.dfg[inst] {
InstructionData::Binary {
opcode: opcode @ Opcode::Band,
args,
}
| InstructionData::Binary {
opcode: opcode @ Opcode::Bor,
args,
}
| InstructionData::Binary {
opcode: opcode @ Opcode::Bxor,
args,
}
| InstructionData::Binary {
opcode: opcode @ Opcode::Iadd,
args,
}
| InstructionData::Binary {
opcode: opcode @ Opcode::Ifcmp,
args,
}
| InstructionData::Binary {
opcode: opcode @ Opcode::Imul,
args,
}
| InstructionData::Binary {
opcode: opcode @ Opcode::Ishl,
args,
}
| InstructionData::Binary {
opcode: opcode @ Opcode::Isub,
args,
}
| InstructionData::Binary {
opcode: opcode @ Opcode::Rotl,
args,
}
| InstructionData::Binary {
opcode: opcode @ Opcode::Rotr,
args,
}
| InstructionData::Binary {
opcode: opcode @ Opcode::Sdiv,
args,
}
| InstructionData::Binary {
opcode: opcode @ Opcode::Srem,
args,
}
| InstructionData::Binary {
opcode: opcode @ Opcode::Sshr,
args,
}
| InstructionData::Binary {
opcode: opcode @ Opcode::Udiv,
args,
}
| InstructionData::Binary {
opcode: opcode @ Opcode::Urem,
args,
}
| InstructionData::Binary {
opcode: opcode @ Opcode::Ushr,
args,
} => {
operands.extend(args.iter().map(|v| Part::Instruction((*v).into())));
opcode
}
InstructionData::BinaryImm64 {
opcode: opcode @ Opcode::BandImm,
imm,
arg,
}
| InstructionData::BinaryImm64 {
opcode: opcode @ Opcode::BorImm,
imm,
arg,
}
| InstructionData::BinaryImm64 {
opcode: opcode @ Opcode::BxorImm,
imm,
arg,
}
| InstructionData::BinaryImm64 {
opcode: opcode @ Opcode::IaddImm,
imm,
arg,
}
| InstructionData::BinaryImm64 {
opcode: opcode @ Opcode::IfcmpImm,
imm,
arg,
}
| InstructionData::BinaryImm64 {
opcode: opcode @ Opcode::ImulImm,
imm,
arg,
}
| InstructionData::BinaryImm64 {
opcode: opcode @ Opcode::IrsubImm,
imm,
arg,
}
| InstructionData::BinaryImm64 {
opcode: opcode @ Opcode::IshlImm,
imm,
arg,
}
| InstructionData::BinaryImm64 {
opcode: opcode @ Opcode::RotlImm,
imm,
arg,
}
| InstructionData::BinaryImm64 {
opcode: opcode @ Opcode::RotrImm,
imm,
arg,
}
| InstructionData::BinaryImm64 {
opcode: opcode @ Opcode::SdivImm,
imm,
arg,
}
| InstructionData::BinaryImm64 {
opcode: opcode @ Opcode::SremImm,
imm,
arg,
}
| InstructionData::BinaryImm64 {
opcode: opcode @ Opcode::SshrImm,
imm,
arg,
}
| InstructionData::BinaryImm64 {
opcode: opcode @ Opcode::UdivImm,
imm,
arg,
}
| InstructionData::BinaryImm64 {
opcode: opcode @ Opcode::UremImm,
imm,
arg,
}
| InstructionData::BinaryImm64 {
opcode: opcode @ Opcode::UshrImm,
imm,
arg,
} => {
operands.extend(
iter::once(imm.into()).chain(iter::once(Part::Instruction(arg.into()))),
);
opcode
}
InstructionData::Branch {
opcode: opcode @ Opcode::Brnz,
ref args,
destination: _,
}
| InstructionData::Branch {
opcode: opcode @ Opcode::Brz,
ref args,
destination: _,
} => {
operands.extend(
args.as_slice(&pos.func.dfg.value_lists)
.iter()
.map(|v| Part::Instruction((*v).into()))
// NB: Peepmatic only knows about the condition, not any
// of the arguments to the block, which are special
// cased elsewhere, if/when we actually replace the
// instruction.
.take(1),
);
opcode
}
InstructionData::CondTrap {
opcode: opcode @ Opcode::Trapnz,
arg,
code: _,
}
| InstructionData::CondTrap {
opcode: opcode @ Opcode::Trapz,
arg,
code: _,
} => {
operands.extend(iter::once(Part::Instruction(arg.into())));
opcode
}
InstructionData::IntCompare {
opcode: opcode @ Opcode::Icmp,
cond,
args,
} => {
operands.extend(
iter::once(intcc_to_peepmatic(cond).into())
.chain(args.iter().map(|v| Part::Instruction((*v).into()))),
);
opcode
}
InstructionData::IntCompareImm {
opcode: opcode @ Opcode::IcmpImm,
cond,
imm,
arg,
} => {
operands.extend(
iter::once(intcc_to_peepmatic(cond).into())
.chain(iter::once(Part::Constant(imm.into())))
.chain(iter::once(Part::Instruction(arg.into()))),
);
opcode
}
InstructionData::Ternary {
opcode: opcode @ Opcode::Select,
ref args,
} => {
operands.extend(args.iter().map(|v| Part::Instruction((*v).into())));
opcode
}
InstructionData::Unary {
opcode: opcode @ Opcode::AdjustSpDown,
arg,
}
| InstructionData::Unary {
opcode: opcode @ Opcode::Bint,
arg,
}
| InstructionData::Unary {
opcode: opcode @ Opcode::Ireduce,
arg,
}
| InstructionData::Unary {
opcode: opcode @ Opcode::Sextend,
arg,
}
| InstructionData::Unary {
opcode: opcode @ Opcode::Uextend,
arg,
} => {
operands.extend(iter::once(Part::Instruction(arg.into())));
opcode
}
InstructionData::UnaryBool { opcode, imm } => {
operands.extend(iter::once(Part::Constant(Constant::Bool(
imm,
BitWidth::Polymorphic,
))));
opcode
}
InstructionData::UnaryImm {
opcode: opcode @ Opcode::AdjustSpDownImm,
imm,
}
| InstructionData::UnaryImm {
opcode: opcode @ Opcode::Iconst,
imm,
} => {
operands.extend(iter::once(imm.into()));
opcode
}
ref otherwise => {
log::trace!("Not supported by Peepmatic: {:?}", otherwise);
return None;
}
})
}
fn make_inst_1(
&self,
pos: &mut FuncCursor<'b>,
root: ValueOrInst,
operator: Opcode,
r#type: Type,
a: Part<ValueOrInst>,
) -> ValueOrInst {
log::trace!("make_inst_1: {:?}({:?})", operator, a);
let root = root.resolve_inst(&pos.func.dfg).unwrap();
match operator {
Opcode::AdjustSpDown => {
let a = part_to_value(pos, root, a).unwrap();
pos.ins().adjust_sp_down(a).into()
}
Opcode::AdjustSpDownImm => {
let c = a.unwrap_constant();
let imm = Imm64::try_from(c).unwrap();
pos.ins().adjust_sp_down_imm(imm).into()
}
Opcode::Bconst => {
let c = a.unwrap_constant();
let val = const_to_value(pos.ins(), c, root);
pos.func.dfg.value_def(val).unwrap_inst().into()
}
Opcode::Bint => {
let a = part_to_value(pos, root, a).unwrap();
let ty = peepmatic_ty_to_ir_ty(r#type, &pos.func.dfg, root);
let val = pos.ins().bint(ty, a);
pos.func.dfg.value_def(val).unwrap_inst().into()
}
Opcode::Bnot => {
let a = part_to_value(pos, root, a).unwrap();
let val = pos.ins().bnot(a);
pos.func.dfg.value_def(val).unwrap_inst().into()
}
Opcode::Brnz => {
let a = part_to_value(pos, root, a).unwrap();
// NB: branching instructions must be the root of an
// optimization's right-hand side, so we get the destination
// block and arguments from the left-hand side's root. Peepmatic
// doesn't currently represent labels or varargs.
let block = pos.func.dfg[root].branch_destination().unwrap();
let args = pos.func.dfg.inst_args(root)[1..].to_vec();
pos.ins().brnz(a, block, &args).into()
}
Opcode::Brz => {
let a = part_to_value(pos, root, a).unwrap();
// See the comment in the `Opcode::Brnz` match argm.
let block = pos.func.dfg[root].branch_destination().unwrap();
let args = pos.func.dfg.inst_args(root)[1..].to_vec();
pos.ins().brz(a, block, &args).into()
}
Opcode::Iconst => {
let a = a.unwrap_constant();
let val = const_to_value(pos.ins(), a, root);
pos.func.dfg.value_def(val).unwrap_inst().into()
}
Opcode::Ireduce => {
let a = part_to_value(pos, root, a).unwrap();
let ty = peepmatic_ty_to_ir_ty(r#type, &pos.func.dfg, root);
let val = pos.ins().ireduce(ty, a);
pos.func.dfg.value_def(val).unwrap_inst().into()
}
Opcode::Sextend => {
let a = part_to_value(pos, root, a).unwrap();
let ty = peepmatic_ty_to_ir_ty(r#type, &pos.func.dfg, root);
let val = pos.ins().sextend(ty, a);
pos.func.dfg.value_def(val).unwrap_inst().into()
}
Opcode::Trapnz => {
let a = part_to_value(pos, root, a).unwrap();
// NB: similar to branching instructions (see comment in the
// `Opcode::Brnz` match arm) trapping instructions must be the
// root of an optimization's right-hand side, and we get the
// trap code from the root of the left-hand side. Peepmatic
// doesn't currently represent trap codes.
let code = pos.func.dfg[root].trap_code().unwrap();
pos.ins().trapnz(a, code).into()
}
Opcode::Trapz => {
let a = part_to_value(pos, root, a).unwrap();
// See comment in the `Opcode::Trapnz` match arm.
let code = pos.func.dfg[root].trap_code().unwrap();
pos.ins().trapz(a, code).into()
}
Opcode::Uextend => {
let a = part_to_value(pos, root, a).unwrap();
let ty = peepmatic_ty_to_ir_ty(r#type, &pos.func.dfg, root);
let val = pos.ins().uextend(ty, a);
pos.func.dfg.value_def(val).unwrap_inst().into()
}
_ => unreachable!(),
}
}
fn make_inst_2(
&self,
pos: &mut FuncCursor<'b>,
root: ValueOrInst,
operator: Opcode,
_: Type,
a: Part<ValueOrInst>,
b: Part<ValueOrInst>,
) -> ValueOrInst {
log::trace!("make_inst_2: {:?}({:?}, {:?})", operator, a, b);
let root = root.resolve_inst(&pos.func.dfg).unwrap();
match operator {
Opcode::Band => {
let a = part_to_value(pos, root, a).unwrap();
let b = part_to_value(pos, root, b).unwrap();
let val = pos.ins().band(a, b);
pos.func.dfg.value_def(val).unwrap_inst().into()
}
Opcode::BandImm => {
let a = part_to_imm64(pos, a);
let b = part_to_value(pos, root, b).unwrap();
let val = pos.ins().band_imm(b, a);
pos.func.dfg.value_def(val).unwrap_inst().into()
}
Opcode::Bor => {
let a = part_to_value(pos, root, a).unwrap();
let b = part_to_value(pos, root, b).unwrap();
let val = pos.ins().bor(a, b);
pos.func.dfg.value_def(val).unwrap_inst().into()
}
Opcode::BorImm => {
let a = part_to_imm64(pos, a);
let b = part_to_value(pos, root, b).unwrap();
let val = pos.ins().bor_imm(b, a);
pos.func.dfg.value_def(val).unwrap_inst().into()
}
Opcode::Bxor => {
let a = part_to_value(pos, root, a).unwrap();
let b = part_to_value(pos, root, b).unwrap();
let val = pos.ins().bxor(a, b);
pos.func.dfg.value_def(val).unwrap_inst().into()
}
Opcode::BxorImm => {
let a = part_to_imm64(pos, a);
let b = part_to_value(pos, root, b).unwrap();
let val = pos.ins().bxor_imm(b, a);
pos.func.dfg.value_def(val).unwrap_inst().into()
}
Opcode::Iadd => {
let a = part_to_value(pos, root, a).unwrap();
let b = part_to_value(pos, root, b).unwrap();
let val = pos.ins().iadd(a, b);
pos.func.dfg.value_def(val).unwrap_inst().into()
}
Opcode::IaddImm => {
let a = part_to_imm64(pos, a);
let b = part_to_value(pos, root, b).unwrap();
let val = pos.ins().iadd_imm(b, a);
pos.func.dfg.value_def(val).unwrap_inst().into()
}
Opcode::Ifcmp => {
let a = part_to_value(pos, root, a).unwrap();
let b = part_to_value(pos, root, b).unwrap();
let val = pos.ins().ifcmp(a, b);
pos.func.dfg.value_def(val).unwrap_inst().into()
}
Opcode::IfcmpImm => {
let a = part_to_imm64(pos, a);
let b = part_to_value(pos, root, b).unwrap();
let val = pos.ins().ifcmp_imm(b, a);
pos.func.dfg.value_def(val).unwrap_inst().into()
}
Opcode::Imul => {
let a = part_to_value(pos, root, a).unwrap();
let b = part_to_value(pos, root, b).unwrap();
let val = pos.ins().imul(a, b);
pos.func.dfg.value_def(val).unwrap_inst().into()
}
Opcode::ImulImm => {
let a = part_to_imm64(pos, a);
let b = part_to_value(pos, root, b).unwrap();
let val = pos.ins().imul_imm(b, a);
pos.func.dfg.value_def(val).unwrap_inst().into()
}
Opcode::IrsubImm => {
let a = part_to_imm64(pos, a);
let b = part_to_value(pos, root, b).unwrap();
let val = pos.ins().irsub_imm(b, a);
pos.func.dfg.value_def(val).unwrap_inst().into()
}
Opcode::Ishl => {
let a = part_to_value(pos, root, a).unwrap();
let b = part_to_value(pos, root, b).unwrap();
let val = pos.ins().ishl(a, b);
pos.func.dfg.value_def(val).unwrap_inst().into()
}
Opcode::IshlImm => {
let a = part_to_imm64(pos, a);
let b = part_to_value(pos, root, b).unwrap();
let val = pos.ins().ishl_imm(b, a);
pos.func.dfg.value_def(val).unwrap_inst().into()
}
Opcode::Isub => {
let a = part_to_value(pos, root, a).unwrap();
let b = part_to_value(pos, root, b).unwrap();
let val = pos.ins().isub(a, b);
pos.func.dfg.value_def(val).unwrap_inst().into()
}
Opcode::Rotl => {
let a = part_to_value(pos, root, a).unwrap();
let b = part_to_value(pos, root, b).unwrap();
let val = pos.ins().rotl(a, b);
pos.func.dfg.value_def(val).unwrap_inst().into()
}
Opcode::RotlImm => {
let a = part_to_imm64(pos, a);
let b = part_to_value(pos, root, b).unwrap();
let val = pos.ins().rotl_imm(b, a);
pos.func.dfg.value_def(val).unwrap_inst().into()
}
Opcode::Rotr => {
let a = part_to_value(pos, root, a).unwrap();
let b = part_to_value(pos, root, b).unwrap();
let val = pos.ins().rotr(a, b);
pos.func.dfg.value_def(val).unwrap_inst().into()
}
Opcode::RotrImm => {
let a = part_to_imm64(pos, a);
let b = part_to_value(pos, root, b).unwrap();
let val = pos.ins().rotr_imm(b, a);
pos.func.dfg.value_def(val).unwrap_inst().into()
}
Opcode::Sdiv => {
let a = part_to_value(pos, root, a).unwrap();
let b = part_to_value(pos, root, b).unwrap();
let val = pos.ins().sdiv(a, b);
pos.func.dfg.value_def(val).unwrap_inst().into()
}
Opcode::SdivImm => {
let a = part_to_imm64(pos, a);
let b = part_to_value(pos, root, b).unwrap();
let val = pos.ins().sdiv_imm(b, a);
pos.func.dfg.value_def(val).unwrap_inst().into()
}
Opcode::Srem => {
let a = part_to_value(pos, root, a).unwrap();
let b = part_to_value(pos, root, b).unwrap();
let val = pos.ins().srem(a, b);
pos.func.dfg.value_def(val).unwrap_inst().into()
}
Opcode::SremImm => {
let a = part_to_imm64(pos, a);
let b = part_to_value(pos, root, b).unwrap();
let val = pos.ins().srem_imm(b, a);
pos.func.dfg.value_def(val).unwrap_inst().into()
}
Opcode::Sshr => {
let a = part_to_value(pos, root, a).unwrap();
let b = part_to_value(pos, root, b).unwrap();
let val = pos.ins().sshr(a, b);
pos.func.dfg.value_def(val).unwrap_inst().into()
}
Opcode::SshrImm => {
let a = part_to_imm64(pos, a);
let b = part_to_value(pos, root, b).unwrap();
let val = pos.ins().sshr_imm(b, a);
pos.func.dfg.value_def(val).unwrap_inst().into()
}
Opcode::Udiv => {
let a = part_to_value(pos, root, a).unwrap();
let b = part_to_value(pos, root, b).unwrap();
let val = pos.ins().udiv(a, b);
pos.func.dfg.value_def(val).unwrap_inst().into()
}
Opcode::UdivImm => {
let a = part_to_imm64(pos, a);
let b = part_to_value(pos, root, b).unwrap();
let val = pos.ins().udiv_imm(b, a);
pos.func.dfg.value_def(val).unwrap_inst().into()
}
Opcode::Urem => {
let a = part_to_value(pos, root, a).unwrap();
let b = part_to_value(pos, root, b).unwrap();
let val = pos.ins().urem(a, b);
pos.func.dfg.value_def(val).unwrap_inst().into()
}
Opcode::UremImm => {
let a = part_to_imm64(pos, a);
let b = part_to_value(pos, root, b).unwrap();
let val = pos.ins().urem_imm(b, a);
pos.func.dfg.value_def(val).unwrap_inst().into()
}
Opcode::Ushr => {
let a = part_to_value(pos, root, a).unwrap();
let b = part_to_value(pos, root, b).unwrap();
let val = pos.ins().ushr(a, b);
pos.func.dfg.value_def(val).unwrap_inst().into()
}
Opcode::UshrImm => {
let a = part_to_imm64(pos, a);
let b = part_to_value(pos, root, b).unwrap();
let val = pos.ins().ushr_imm(b, a);
pos.func.dfg.value_def(val).unwrap_inst().into()
}
_ => unreachable!(),
}
}
fn make_inst_3(
&self,
pos: &mut FuncCursor<'b>,
root: ValueOrInst,
operator: Opcode,
_: Type,
a: Part<ValueOrInst>,
b: Part<ValueOrInst>,
c: Part<ValueOrInst>,
) -> ValueOrInst {
log::trace!("make_inst_3: {:?}({:?}, {:?}, {:?})", operator, a, b, c);
let root = root.resolve_inst(&pos.func.dfg).unwrap();
match operator {
Opcode::Icmp => {
let cond = a.unwrap_condition_code();
let cond = peepmatic_to_intcc(cond);
let b = part_to_value(pos, root, b).unwrap();
let c = part_to_value(pos, root, c).unwrap();
let val = pos.ins().icmp(cond, b, c);
pos.func.dfg.value_def(val).unwrap_inst().into()
}
Opcode::IcmpImm => {
let cond = a.unwrap_condition_code();
let cond = peepmatic_to_intcc(cond);
let imm = part_to_imm64(pos, b);
let c = part_to_value(pos, root, c).unwrap();
let val = pos.ins().icmp_imm(cond, c, imm);
pos.func.dfg.value_def(val).unwrap_inst().into()
}
Opcode::Select => {
let a = part_to_value(pos, root, a).unwrap();
let b = part_to_value(pos, root, b).unwrap();
let c = part_to_value(pos, root, c).unwrap();
let val = pos.ins().select(a, b, c);
pos.func.dfg.value_def(val).unwrap_inst().into()
}
_ => unreachable!(),
}
}
fn instruction_to_constant(
&self,
pos: &mut FuncCursor<'b>,
value_or_inst: ValueOrInst,
) -> Option<Constant> {
value_or_inst.to_constant(pos)
}
fn instruction_result_bit_width(
&self,
pos: &mut FuncCursor<'b>,
value_or_inst: ValueOrInst,
) -> u8 {
value_or_inst.result_bit_width(&pos.func.dfg)
}
fn native_word_size_in_bits(&self, _pos: &mut FuncCursor<'b>) -> u8 {
self.pointer_bits()
}
}
#[cfg(test)]
#[cfg(any(feature = "x64", feature = "x86", feature = "arm64"))]
mod tests {
use super::*;
use crate::isa::{lookup, TargetIsa};
use crate::settings::{builder, Flags};
use std::str::FromStr;
use target_lexicon::triple;
fn isa() -> Box<dyn TargetIsa> {
// We need a triple to instantiate and run the peephole optimizer, but we
// don't care which one when we're just trying to trigger a rebuild of the
// peephole optimizer (it doesn't affect the serialized bytes at all).
let triple = if cfg!(any(feature = "x64", feature = "x86")) {
triple!("x86_64")
} else if cfg!(feature = "arm64") {
triple!("aarch64")
} else {
panic!("unknown arch")
};
lookup(triple).unwrap().finish(Flags::new(builder()))
}
#[test]
fn get_peepmatic_preopt() {
let isa = isa();
let _ = preopt(&*isa);
}
}