| // ignore-tidy-filelength |
| use crate::ich::StableHashingContext; |
| use crate::middle::codegen_fn_attrs::CodegenFnAttrFlags; |
| use crate::mir::{GeneratorLayout, GeneratorSavedLocal}; |
| use crate::ty::subst::Subst; |
| use crate::ty::{self, subst::SubstsRef, ReprOptions, Ty, TyCtxt, TypeFoldable}; |
| |
| use rustc_ast as ast; |
| use rustc_attr as attr; |
| use rustc_data_structures::stable_hasher::{HashStable, StableHasher}; |
| use rustc_hir as hir; |
| use rustc_hir::lang_items::LangItem; |
| use rustc_index::bit_set::BitSet; |
| use rustc_index::vec::{Idx, IndexVec}; |
| use rustc_session::{config::OptLevel, DataTypeKind, FieldInfo, SizeKind, VariantInfo}; |
| use rustc_span::symbol::{Ident, Symbol}; |
| use rustc_span::DUMMY_SP; |
| use rustc_target::abi::call::{ |
| ArgAbi, ArgAttribute, ArgAttributes, ArgExtension, Conv, FnAbi, PassMode, Reg, RegKind, |
| }; |
| use rustc_target::abi::*; |
| use rustc_target::spec::{abi::Abi as SpecAbi, HasTargetSpec, PanicStrategy}; |
| |
| use std::cmp; |
| use std::fmt; |
| use std::iter; |
| use std::mem; |
| use std::num::NonZeroUsize; |
| use std::ops::Bound; |
| |
| pub trait IntegerExt { |
| fn to_ty<'tcx>(&self, tcx: TyCtxt<'tcx>, signed: bool) -> Ty<'tcx>; |
| fn from_attr<C: HasDataLayout>(cx: &C, ity: attr::IntType) -> Integer; |
| fn from_int_ty<C: HasDataLayout>(cx: &C, ity: ty::IntTy) -> Integer; |
| fn from_uint_ty<C: HasDataLayout>(cx: &C, uty: ty::UintTy) -> Integer; |
| fn repr_discr<'tcx>( |
| tcx: TyCtxt<'tcx>, |
| ty: Ty<'tcx>, |
| repr: &ReprOptions, |
| min: i128, |
| max: i128, |
| ) -> (Integer, bool); |
| } |
| |
| impl IntegerExt for Integer { |
| fn to_ty<'tcx>(&self, tcx: TyCtxt<'tcx>, signed: bool) -> Ty<'tcx> { |
| match (*self, signed) { |
| (I8, false) => tcx.types.u8, |
| (I16, false) => tcx.types.u16, |
| (I32, false) => tcx.types.u32, |
| (I64, false) => tcx.types.u64, |
| (I128, false) => tcx.types.u128, |
| (I8, true) => tcx.types.i8, |
| (I16, true) => tcx.types.i16, |
| (I32, true) => tcx.types.i32, |
| (I64, true) => tcx.types.i64, |
| (I128, true) => tcx.types.i128, |
| } |
| } |
| |
| /// Gets the Integer type from an attr::IntType. |
| fn from_attr<C: HasDataLayout>(cx: &C, ity: attr::IntType) -> Integer { |
| let dl = cx.data_layout(); |
| |
| match ity { |
| attr::SignedInt(ast::IntTy::I8) | attr::UnsignedInt(ast::UintTy::U8) => I8, |
| attr::SignedInt(ast::IntTy::I16) | attr::UnsignedInt(ast::UintTy::U16) => I16, |
| attr::SignedInt(ast::IntTy::I32) | attr::UnsignedInt(ast::UintTy::U32) => I32, |
| attr::SignedInt(ast::IntTy::I64) | attr::UnsignedInt(ast::UintTy::U64) => I64, |
| attr::SignedInt(ast::IntTy::I128) | attr::UnsignedInt(ast::UintTy::U128) => I128, |
| attr::SignedInt(ast::IntTy::Isize) | attr::UnsignedInt(ast::UintTy::Usize) => { |
| dl.ptr_sized_integer() |
| } |
| } |
| } |
| |
| fn from_int_ty<C: HasDataLayout>(cx: &C, ity: ty::IntTy) -> Integer { |
| match ity { |
| ty::IntTy::I8 => I8, |
| ty::IntTy::I16 => I16, |
| ty::IntTy::I32 => I32, |
| ty::IntTy::I64 => I64, |
| ty::IntTy::I128 => I128, |
| ty::IntTy::Isize => cx.data_layout().ptr_sized_integer(), |
| } |
| } |
| fn from_uint_ty<C: HasDataLayout>(cx: &C, ity: ty::UintTy) -> Integer { |
| match ity { |
| ty::UintTy::U8 => I8, |
| ty::UintTy::U16 => I16, |
| ty::UintTy::U32 => I32, |
| ty::UintTy::U64 => I64, |
| ty::UintTy::U128 => I128, |
| ty::UintTy::Usize => cx.data_layout().ptr_sized_integer(), |
| } |
| } |
| |
| /// Finds the appropriate Integer type and signedness for the given |
| /// signed discriminant range and `#[repr]` attribute. |
| /// N.B.: `u128` values above `i128::MAX` will be treated as signed, but |
| /// that shouldn't affect anything, other than maybe debuginfo. |
| fn repr_discr<'tcx>( |
| tcx: TyCtxt<'tcx>, |
| ty: Ty<'tcx>, |
| repr: &ReprOptions, |
| min: i128, |
| max: i128, |
| ) -> (Integer, bool) { |
| // Theoretically, negative values could be larger in unsigned representation |
| // than the unsigned representation of the signed minimum. However, if there |
| // are any negative values, the only valid unsigned representation is u128 |
| // which can fit all i128 values, so the result remains unaffected. |
| let unsigned_fit = Integer::fit_unsigned(cmp::max(min as u128, max as u128)); |
| let signed_fit = cmp::max(Integer::fit_signed(min), Integer::fit_signed(max)); |
| |
| let mut min_from_extern = None; |
| let min_default = I8; |
| |
| if let Some(ity) = repr.int { |
| let discr = Integer::from_attr(&tcx, ity); |
| let fit = if ity.is_signed() { signed_fit } else { unsigned_fit }; |
| if discr < fit { |
| bug!( |
| "Integer::repr_discr: `#[repr]` hint too small for \ |
| discriminant range of enum `{}", |
| ty |
| ) |
| } |
| return (discr, ity.is_signed()); |
| } |
| |
| if repr.c() { |
| match &tcx.sess.target.arch[..] { |
| "hexagon" => min_from_extern = Some(I8), |
| // WARNING: the ARM EABI has two variants; the one corresponding |
| // to `at_least == I32` appears to be used on Linux and NetBSD, |
| // but some systems may use the variant corresponding to no |
| // lower bound. However, we don't run on those yet...? |
| "arm" => min_from_extern = Some(I32), |
| _ => min_from_extern = Some(I32), |
| } |
| } |
| |
| let at_least = min_from_extern.unwrap_or(min_default); |
| |
| // If there are no negative values, we can use the unsigned fit. |
| if min >= 0 { |
| (cmp::max(unsigned_fit, at_least), false) |
| } else { |
| (cmp::max(signed_fit, at_least), true) |
| } |
| } |
| } |
| |
| pub trait PrimitiveExt { |
| fn to_ty<'tcx>(&self, tcx: TyCtxt<'tcx>) -> Ty<'tcx>; |
| fn to_int_ty<'tcx>(&self, tcx: TyCtxt<'tcx>) -> Ty<'tcx>; |
| } |
| |
| impl PrimitiveExt for Primitive { |
| fn to_ty<'tcx>(&self, tcx: TyCtxt<'tcx>) -> Ty<'tcx> { |
| match *self { |
| Int(i, signed) => i.to_ty(tcx, signed), |
| F32 => tcx.types.f32, |
| F64 => tcx.types.f64, |
| Pointer => tcx.mk_mut_ptr(tcx.mk_unit()), |
| } |
| } |
| |
| /// Return an *integer* type matching this primitive. |
| /// Useful in particular when dealing with enum discriminants. |
| fn to_int_ty(&self, tcx: TyCtxt<'tcx>) -> Ty<'tcx> { |
| match *self { |
| Int(i, signed) => i.to_ty(tcx, signed), |
| Pointer => tcx.types.usize, |
| F32 | F64 => bug!("floats do not have an int type"), |
| } |
| } |
| } |
| |
| /// The first half of a fat pointer. |
| /// |
| /// - For a trait object, this is the address of the box. |
| /// - For a slice, this is the base address. |
| pub const FAT_PTR_ADDR: usize = 0; |
| |
| /// The second half of a fat pointer. |
| /// |
| /// - For a trait object, this is the address of the vtable. |
| /// - For a slice, this is the length. |
| pub const FAT_PTR_EXTRA: usize = 1; |
| |
| /// The maximum supported number of lanes in a SIMD vector. |
| /// |
| /// This value is selected based on backend support: |
| /// * LLVM does not appear to have a vector width limit. |
| /// * Cranelift stores the base-2 log of the lane count in a 4 bit integer. |
| pub const MAX_SIMD_LANES: u64 = 1 << 0xF; |
| |
| #[derive(Copy, Clone, Debug, TyEncodable, TyDecodable)] |
| pub enum LayoutError<'tcx> { |
| Unknown(Ty<'tcx>), |
| SizeOverflow(Ty<'tcx>), |
| } |
| |
| impl<'tcx> fmt::Display for LayoutError<'tcx> { |
| fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| match *self { |
| LayoutError::Unknown(ty) => write!(f, "the type `{}` has an unknown layout", ty), |
| LayoutError::SizeOverflow(ty) => { |
| write!(f, "values of the type `{}` are too big for the current architecture", ty) |
| } |
| } |
| } |
| } |
| |
| fn layout_raw<'tcx>( |
| tcx: TyCtxt<'tcx>, |
| query: ty::ParamEnvAnd<'tcx, Ty<'tcx>>, |
| ) -> Result<&'tcx Layout, LayoutError<'tcx>> { |
| ty::tls::with_related_context(tcx, move |icx| { |
| let (param_env, ty) = query.into_parts(); |
| |
| if !tcx.sess.recursion_limit().value_within_limit(icx.layout_depth) { |
| tcx.sess.fatal(&format!("overflow representing the type `{}`", ty)); |
| } |
| |
| // Update the ImplicitCtxt to increase the layout_depth |
| let icx = ty::tls::ImplicitCtxt { layout_depth: icx.layout_depth + 1, ..icx.clone() }; |
| |
| ty::tls::enter_context(&icx, |_| { |
| let cx = LayoutCx { tcx, param_env }; |
| let layout = cx.layout_raw_uncached(ty); |
| // Type-level uninhabitedness should always imply ABI uninhabitedness. |
| if let Ok(layout) = layout { |
| if tcx.conservative_is_privately_uninhabited(param_env.and(ty)) { |
| assert!(layout.abi.is_uninhabited()); |
| } |
| } |
| layout |
| }) |
| }) |
| } |
| |
| pub fn provide(providers: &mut ty::query::Providers) { |
| *providers = ty::query::Providers { layout_raw, ..*providers }; |
| } |
| |
| pub struct LayoutCx<'tcx, C> { |
| pub tcx: C, |
| pub param_env: ty::ParamEnv<'tcx>, |
| } |
| |
| #[derive(Copy, Clone, Debug)] |
| enum StructKind { |
| /// A tuple, closure, or univariant which cannot be coerced to unsized. |
| AlwaysSized, |
| /// A univariant, the last field of which may be coerced to unsized. |
| MaybeUnsized, |
| /// A univariant, but with a prefix of an arbitrary size & alignment (e.g., enum tag). |
| Prefixed(Size, Align), |
| } |
| |
| // Invert a bijective mapping, i.e. `invert(map)[y] = x` if `map[x] = y`. |
| // This is used to go between `memory_index` (source field order to memory order) |
| // and `inverse_memory_index` (memory order to source field order). |
| // See also `FieldsShape::Arbitrary::memory_index` for more details. |
| // FIXME(eddyb) build a better abstraction for permutations, if possible. |
| fn invert_mapping(map: &[u32]) -> Vec<u32> { |
| let mut inverse = vec![0; map.len()]; |
| for i in 0..map.len() { |
| inverse[map[i] as usize] = i as u32; |
| } |
| inverse |
| } |
| |
| impl<'tcx> LayoutCx<'tcx, TyCtxt<'tcx>> { |
| fn scalar_pair(&self, a: Scalar, b: Scalar) -> Layout { |
| let dl = self.data_layout(); |
| let b_align = b.value.align(dl); |
| let align = a.value.align(dl).max(b_align).max(dl.aggregate_align); |
| let b_offset = a.value.size(dl).align_to(b_align.abi); |
| let size = (b_offset + b.value.size(dl)).align_to(align.abi); |
| |
| // HACK(nox): We iter on `b` and then `a` because `max_by_key` |
| // returns the last maximum. |
| let largest_niche = Niche::from_scalar(dl, b_offset, b.clone()) |
| .into_iter() |
| .chain(Niche::from_scalar(dl, Size::ZERO, a.clone())) |
| .max_by_key(|niche| niche.available(dl)); |
| |
| Layout { |
| variants: Variants::Single { index: VariantIdx::new(0) }, |
| fields: FieldsShape::Arbitrary { |
| offsets: vec![Size::ZERO, b_offset], |
| memory_index: vec![0, 1], |
| }, |
| abi: Abi::ScalarPair(a, b), |
| largest_niche, |
| align, |
| size, |
| } |
| } |
| |
| fn univariant_uninterned( |
| &self, |
| ty: Ty<'tcx>, |
| fields: &[TyAndLayout<'_>], |
| repr: &ReprOptions, |
| kind: StructKind, |
| ) -> Result<Layout, LayoutError<'tcx>> { |
| let dl = self.data_layout(); |
| let pack = repr.pack; |
| if pack.is_some() && repr.align.is_some() { |
| bug!("struct cannot be packed and aligned"); |
| } |
| |
| let mut align = if pack.is_some() { dl.i8_align } else { dl.aggregate_align }; |
| |
| let mut inverse_memory_index: Vec<u32> = (0..fields.len() as u32).collect(); |
| |
| let optimize = !repr.inhibit_struct_field_reordering_opt(); |
| if optimize { |
| let end = |
| if let StructKind::MaybeUnsized = kind { fields.len() - 1 } else { fields.len() }; |
| let optimizing = &mut inverse_memory_index[..end]; |
| let field_align = |f: &TyAndLayout<'_>| { |
| if let Some(pack) = pack { f.align.abi.min(pack) } else { f.align.abi } |
| }; |
| match kind { |
| StructKind::AlwaysSized | StructKind::MaybeUnsized => { |
| optimizing.sort_by_key(|&x| { |
| // Place ZSTs first to avoid "interesting offsets", |
| // especially with only one or two non-ZST fields. |
| let f = &fields[x as usize]; |
| (!f.is_zst(), cmp::Reverse(field_align(f))) |
| }); |
| } |
| StructKind::Prefixed(..) => { |
| // Sort in ascending alignment so that the layout stay optimal |
| // regardless of the prefix |
| optimizing.sort_by_key(|&x| field_align(&fields[x as usize])); |
| } |
| } |
| } |
| |
| // inverse_memory_index holds field indices by increasing memory offset. |
| // That is, if field 5 has offset 0, the first element of inverse_memory_index is 5. |
| // We now write field offsets to the corresponding offset slot; |
| // field 5 with offset 0 puts 0 in offsets[5]. |
| // At the bottom of this function, we invert `inverse_memory_index` to |
| // produce `memory_index` (see `invert_mapping`). |
| |
| let mut sized = true; |
| let mut offsets = vec![Size::ZERO; fields.len()]; |
| let mut offset = Size::ZERO; |
| let mut largest_niche = None; |
| let mut largest_niche_available = 0; |
| |
| if let StructKind::Prefixed(prefix_size, prefix_align) = kind { |
| let prefix_align = |
| if let Some(pack) = pack { prefix_align.min(pack) } else { prefix_align }; |
| align = align.max(AbiAndPrefAlign::new(prefix_align)); |
| offset = prefix_size.align_to(prefix_align); |
| } |
| |
| for &i in &inverse_memory_index { |
| let field = fields[i as usize]; |
| if !sized { |
| bug!("univariant: field #{} of `{}` comes after unsized field", offsets.len(), ty); |
| } |
| |
| if field.is_unsized() { |
| sized = false; |
| } |
| |
| // Invariant: offset < dl.obj_size_bound() <= 1<<61 |
| let field_align = if let Some(pack) = pack { |
| field.align.min(AbiAndPrefAlign::new(pack)) |
| } else { |
| field.align |
| }; |
| offset = offset.align_to(field_align.abi); |
| align = align.max(field_align); |
| |
| debug!("univariant offset: {:?} field: {:#?}", offset, field); |
| offsets[i as usize] = offset; |
| |
| if !repr.hide_niche() { |
| if let Some(mut niche) = field.largest_niche.clone() { |
| let available = niche.available(dl); |
| if available > largest_niche_available { |
| largest_niche_available = available; |
| niche.offset += offset; |
| largest_niche = Some(niche); |
| } |
| } |
| } |
| |
| offset = offset.checked_add(field.size, dl).ok_or(LayoutError::SizeOverflow(ty))?; |
| } |
| |
| if let Some(repr_align) = repr.align { |
| align = align.max(AbiAndPrefAlign::new(repr_align)); |
| } |
| |
| debug!("univariant min_size: {:?}", offset); |
| let min_size = offset; |
| |
| // As stated above, inverse_memory_index holds field indices by increasing offset. |
| // This makes it an already-sorted view of the offsets vec. |
| // To invert it, consider: |
| // If field 5 has offset 0, offsets[0] is 5, and memory_index[5] should be 0. |
| // Field 5 would be the first element, so memory_index is i: |
| // Note: if we didn't optimize, it's already right. |
| |
| let memory_index = |
| if optimize { invert_mapping(&inverse_memory_index) } else { inverse_memory_index }; |
| |
| let size = min_size.align_to(align.abi); |
| let mut abi = Abi::Aggregate { sized }; |
| |
| // Unpack newtype ABIs and find scalar pairs. |
| if sized && size.bytes() > 0 { |
| // All other fields must be ZSTs. |
| let mut non_zst_fields = fields.iter().enumerate().filter(|&(_, f)| !f.is_zst()); |
| |
| match (non_zst_fields.next(), non_zst_fields.next(), non_zst_fields.next()) { |
| // We have exactly one non-ZST field. |
| (Some((i, field)), None, None) => { |
| // Field fills the struct and it has a scalar or scalar pair ABI. |
| if offsets[i].bytes() == 0 && align.abi == field.align.abi && size == field.size |
| { |
| match field.abi { |
| // For plain scalars, or vectors of them, we can't unpack |
| // newtypes for `#[repr(C)]`, as that affects C ABIs. |
| Abi::Scalar(_) | Abi::Vector { .. } if optimize => { |
| abi = field.abi.clone(); |
| } |
| // But scalar pairs are Rust-specific and get |
| // treated as aggregates by C ABIs anyway. |
| Abi::ScalarPair(..) => { |
| abi = field.abi.clone(); |
| } |
| _ => {} |
| } |
| } |
| } |
| |
| // Two non-ZST fields, and they're both scalars. |
| ( |
| Some((i, &TyAndLayout { layout: &Layout { abi: Abi::Scalar(ref a), .. }, .. })), |
| Some((j, &TyAndLayout { layout: &Layout { abi: Abi::Scalar(ref b), .. }, .. })), |
| None, |
| ) => { |
| // Order by the memory placement, not source order. |
| let ((i, a), (j, b)) = |
| if offsets[i] < offsets[j] { ((i, a), (j, b)) } else { ((j, b), (i, a)) }; |
| let pair = self.scalar_pair(a.clone(), b.clone()); |
| let pair_offsets = match pair.fields { |
| FieldsShape::Arbitrary { ref offsets, ref memory_index } => { |
| assert_eq!(memory_index, &[0, 1]); |
| offsets |
| } |
| _ => bug!(), |
| }; |
| if offsets[i] == pair_offsets[0] |
| && offsets[j] == pair_offsets[1] |
| && align == pair.align |
| && size == pair.size |
| { |
| // We can use `ScalarPair` only when it matches our |
| // already computed layout (including `#[repr(C)]`). |
| abi = pair.abi; |
| } |
| } |
| |
| _ => {} |
| } |
| } |
| |
| if sized && fields.iter().any(|f| f.abi.is_uninhabited()) { |
| abi = Abi::Uninhabited; |
| } |
| |
| Ok(Layout { |
| variants: Variants::Single { index: VariantIdx::new(0) }, |
| fields: FieldsShape::Arbitrary { offsets, memory_index }, |
| abi, |
| largest_niche, |
| align, |
| size, |
| }) |
| } |
| |
| fn layout_raw_uncached(&self, ty: Ty<'tcx>) -> Result<&'tcx Layout, LayoutError<'tcx>> { |
| let tcx = self.tcx; |
| let param_env = self.param_env; |
| let dl = self.data_layout(); |
| let scalar_unit = |value: Primitive| { |
| let bits = value.size(dl).bits(); |
| assert!(bits <= 128); |
| Scalar { value, valid_range: 0..=(!0 >> (128 - bits)) } |
| }; |
| let scalar = |value: Primitive| tcx.intern_layout(Layout::scalar(self, scalar_unit(value))); |
| |
| let univariant = |fields: &[TyAndLayout<'_>], repr: &ReprOptions, kind| { |
| Ok(tcx.intern_layout(self.univariant_uninterned(ty, fields, repr, kind)?)) |
| }; |
| debug_assert!(!ty.has_infer_types_or_consts()); |
| |
| Ok(match *ty.kind() { |
| // Basic scalars. |
| ty::Bool => tcx.intern_layout(Layout::scalar( |
| self, |
| Scalar { value: Int(I8, false), valid_range: 0..=1 }, |
| )), |
| ty::Char => tcx.intern_layout(Layout::scalar( |
| self, |
| Scalar { value: Int(I32, false), valid_range: 0..=0x10FFFF }, |
| )), |
| ty::Int(ity) => scalar(Int(Integer::from_int_ty(dl, ity), true)), |
| ty::Uint(ity) => scalar(Int(Integer::from_uint_ty(dl, ity), false)), |
| ty::Float(fty) => scalar(match fty { |
| ty::FloatTy::F32 => F32, |
| ty::FloatTy::F64 => F64, |
| }), |
| ty::FnPtr(_) => { |
| let mut ptr = scalar_unit(Pointer); |
| ptr.valid_range = 1..=*ptr.valid_range.end(); |
| tcx.intern_layout(Layout::scalar(self, ptr)) |
| } |
| |
| // The never type. |
| ty::Never => tcx.intern_layout(Layout { |
| variants: Variants::Single { index: VariantIdx::new(0) }, |
| fields: FieldsShape::Primitive, |
| abi: Abi::Uninhabited, |
| largest_niche: None, |
| align: dl.i8_align, |
| size: Size::ZERO, |
| }), |
| |
| // Potentially-wide pointers. |
| ty::Ref(_, pointee, _) | ty::RawPtr(ty::TypeAndMut { ty: pointee, .. }) => { |
| let mut data_ptr = scalar_unit(Pointer); |
| if !ty.is_unsafe_ptr() { |
| data_ptr.valid_range = 1..=*data_ptr.valid_range.end(); |
| } |
| |
| let pointee = tcx.normalize_erasing_regions(param_env, pointee); |
| if pointee.is_sized(tcx.at(DUMMY_SP), param_env) { |
| return Ok(tcx.intern_layout(Layout::scalar(self, data_ptr))); |
| } |
| |
| let unsized_part = tcx.struct_tail_erasing_lifetimes(pointee, param_env); |
| let metadata = match unsized_part.kind() { |
| ty::Foreign(..) => { |
| return Ok(tcx.intern_layout(Layout::scalar(self, data_ptr))); |
| } |
| ty::Slice(_) | ty::Str => scalar_unit(Int(dl.ptr_sized_integer(), false)), |
| ty::Dynamic(..) => { |
| let mut vtable = scalar_unit(Pointer); |
| vtable.valid_range = 1..=*vtable.valid_range.end(); |
| vtable |
| } |
| _ => return Err(LayoutError::Unknown(unsized_part)), |
| }; |
| |
| // Effectively a (ptr, meta) tuple. |
| tcx.intern_layout(self.scalar_pair(data_ptr, metadata)) |
| } |
| |
| // Arrays and slices. |
| ty::Array(element, mut count) => { |
| if count.has_projections() { |
| count = tcx.normalize_erasing_regions(param_env, count); |
| if count.has_projections() { |
| return Err(LayoutError::Unknown(ty)); |
| } |
| } |
| |
| let count = count.try_eval_usize(tcx, param_env).ok_or(LayoutError::Unknown(ty))?; |
| let element = self.layout_of(element)?; |
| let size = |
| element.size.checked_mul(count, dl).ok_or(LayoutError::SizeOverflow(ty))?; |
| |
| let abi = |
| if count != 0 && tcx.conservative_is_privately_uninhabited(param_env.and(ty)) { |
| Abi::Uninhabited |
| } else { |
| Abi::Aggregate { sized: true } |
| }; |
| |
| let largest_niche = if count != 0 { element.largest_niche.clone() } else { None }; |
| |
| tcx.intern_layout(Layout { |
| variants: Variants::Single { index: VariantIdx::new(0) }, |
| fields: FieldsShape::Array { stride: element.size, count }, |
| abi, |
| largest_niche, |
| align: element.align, |
| size, |
| }) |
| } |
| ty::Slice(element) => { |
| let element = self.layout_of(element)?; |
| tcx.intern_layout(Layout { |
| variants: Variants::Single { index: VariantIdx::new(0) }, |
| fields: FieldsShape::Array { stride: element.size, count: 0 }, |
| abi: Abi::Aggregate { sized: false }, |
| largest_niche: None, |
| align: element.align, |
| size: Size::ZERO, |
| }) |
| } |
| ty::Str => tcx.intern_layout(Layout { |
| variants: Variants::Single { index: VariantIdx::new(0) }, |
| fields: FieldsShape::Array { stride: Size::from_bytes(1), count: 0 }, |
| abi: Abi::Aggregate { sized: false }, |
| largest_niche: None, |
| align: dl.i8_align, |
| size: Size::ZERO, |
| }), |
| |
| // Odd unit types. |
| ty::FnDef(..) => univariant(&[], &ReprOptions::default(), StructKind::AlwaysSized)?, |
| ty::Dynamic(..) | ty::Foreign(..) => { |
| let mut unit = self.univariant_uninterned( |
| ty, |
| &[], |
| &ReprOptions::default(), |
| StructKind::AlwaysSized, |
| )?; |
| match unit.abi { |
| Abi::Aggregate { ref mut sized } => *sized = false, |
| _ => bug!(), |
| } |
| tcx.intern_layout(unit) |
| } |
| |
| ty::Generator(def_id, substs, _) => self.generator_layout(ty, def_id, substs)?, |
| |
| ty::Closure(_, ref substs) => { |
| let tys = substs.as_closure().upvar_tys(); |
| univariant( |
| &tys.map(|ty| self.layout_of(ty)).collect::<Result<Vec<_>, _>>()?, |
| &ReprOptions::default(), |
| StructKind::AlwaysSized, |
| )? |
| } |
| |
| ty::Tuple(tys) => { |
| let kind = |
| if tys.len() == 0 { StructKind::AlwaysSized } else { StructKind::MaybeUnsized }; |
| |
| univariant( |
| &tys.iter() |
| .map(|k| self.layout_of(k.expect_ty())) |
| .collect::<Result<Vec<_>, _>>()?, |
| &ReprOptions::default(), |
| kind, |
| )? |
| } |
| |
| // SIMD vector types. |
| ty::Adt(def, substs) if def.repr.simd() => { |
| // Supported SIMD vectors are homogeneous ADTs with at least one field: |
| // |
| // * #[repr(simd)] struct S(T, T, T, T); |
| // * #[repr(simd)] struct S { x: T, y: T, z: T, w: T } |
| // * #[repr(simd)] struct S([T; 4]) |
| // |
| // where T is a primitive scalar (integer/float/pointer). |
| |
| // SIMD vectors with zero fields are not supported. |
| // (should be caught by typeck) |
| if def.non_enum_variant().fields.is_empty() { |
| tcx.sess.fatal(&format!("monomorphising SIMD type `{}` of zero length", ty)); |
| } |
| |
| // Type of the first ADT field: |
| let f0_ty = def.non_enum_variant().fields[0].ty(tcx, substs); |
| |
| // Heterogeneous SIMD vectors are not supported: |
| // (should be caught by typeck) |
| for fi in &def.non_enum_variant().fields { |
| if fi.ty(tcx, substs) != f0_ty { |
| tcx.sess.fatal(&format!("monomorphising heterogeneous SIMD type `{}`", ty)); |
| } |
| } |
| |
| // The element type and number of elements of the SIMD vector |
| // are obtained from: |
| // |
| // * the element type and length of the single array field, if |
| // the first field is of array type, or |
| // |
| // * the homogenous field type and the number of fields. |
| let (e_ty, e_len, is_array) = if let ty::Array(e_ty, _) = f0_ty.kind() { |
| // First ADT field is an array: |
| |
| // SIMD vectors with multiple array fields are not supported: |
| // (should be caught by typeck) |
| if def.non_enum_variant().fields.len() != 1 { |
| tcx.sess.fatal(&format!( |
| "monomorphising SIMD type `{}` with more than one array field", |
| ty |
| )); |
| } |
| |
| // Extract the number of elements from the layout of the array field: |
| let len = if let Ok(TyAndLayout { |
| layout: Layout { fields: FieldsShape::Array { count, .. }, .. }, |
| .. |
| }) = self.layout_of(f0_ty) |
| { |
| count |
| } else { |
| return Err(LayoutError::Unknown(ty)); |
| }; |
| |
| (*e_ty, *len, true) |
| } else { |
| // First ADT field is not an array: |
| (f0_ty, def.non_enum_variant().fields.len() as _, false) |
| }; |
| |
| // SIMD vectors of zero length are not supported. |
| // Additionally, lengths are capped at 2^16 as a fixed maximum backends must |
| // support. |
| // |
| // Can't be caught in typeck if the array length is generic. |
| if e_len == 0 { |
| tcx.sess.fatal(&format!("monomorphising SIMD type `{}` of zero length", ty)); |
| } else if e_len > MAX_SIMD_LANES { |
| tcx.sess.fatal(&format!( |
| "monomorphising SIMD type `{}` of length greater than {}", |
| ty, MAX_SIMD_LANES, |
| )); |
| } |
| |
| // Compute the ABI of the element type: |
| let e_ly = self.layout_of(e_ty)?; |
| let e_abi = if let Abi::Scalar(ref scalar) = e_ly.abi { |
| scalar.clone() |
| } else { |
| // This error isn't caught in typeck, e.g., if |
| // the element type of the vector is generic. |
| tcx.sess.fatal(&format!( |
| "monomorphising SIMD type `{}` with a non-primitive-scalar \ |
| (integer/float/pointer) element type `{}`", |
| ty, e_ty |
| )) |
| }; |
| |
| // Compute the size and alignment of the vector: |
| let size = e_ly.size.checked_mul(e_len, dl).ok_or(LayoutError::SizeOverflow(ty))?; |
| let align = dl.vector_align(size); |
| let size = size.align_to(align.abi); |
| |
| // Compute the placement of the vector fields: |
| let fields = if is_array { |
| FieldsShape::Arbitrary { offsets: vec![Size::ZERO], memory_index: vec![0] } |
| } else { |
| FieldsShape::Array { stride: e_ly.size, count: e_len } |
| }; |
| |
| tcx.intern_layout(Layout { |
| variants: Variants::Single { index: VariantIdx::new(0) }, |
| fields, |
| abi: Abi::Vector { element: e_abi, count: e_len }, |
| largest_niche: e_ly.largest_niche.clone(), |
| size, |
| align, |
| }) |
| } |
| |
| // ADTs. |
| ty::Adt(def, substs) => { |
| // Cache the field layouts. |
| let variants = def |
| .variants |
| .iter() |
| .map(|v| { |
| v.fields |
| .iter() |
| .map(|field| self.layout_of(field.ty(tcx, substs))) |
| .collect::<Result<Vec<_>, _>>() |
| }) |
| .collect::<Result<IndexVec<VariantIdx, _>, _>>()?; |
| |
| if def.is_union() { |
| if def.repr.pack.is_some() && def.repr.align.is_some() { |
| bug!("union cannot be packed and aligned"); |
| } |
| |
| let mut align = |
| if def.repr.pack.is_some() { dl.i8_align } else { dl.aggregate_align }; |
| |
| if let Some(repr_align) = def.repr.align { |
| align = align.max(AbiAndPrefAlign::new(repr_align)); |
| } |
| |
| let optimize = !def.repr.inhibit_union_abi_opt(); |
| let mut size = Size::ZERO; |
| let mut abi = Abi::Aggregate { sized: true }; |
| let index = VariantIdx::new(0); |
| for field in &variants[index] { |
| assert!(!field.is_unsized()); |
| align = align.max(field.align); |
| |
| // If all non-ZST fields have the same ABI, forward this ABI |
| if optimize && !field.is_zst() { |
| // Normalize scalar_unit to the maximal valid range |
| let field_abi = match &field.abi { |
| Abi::Scalar(x) => Abi::Scalar(scalar_unit(x.value)), |
| Abi::ScalarPair(x, y) => { |
| Abi::ScalarPair(scalar_unit(x.value), scalar_unit(y.value)) |
| } |
| Abi::Vector { element: x, count } => { |
| Abi::Vector { element: scalar_unit(x.value), count: *count } |
| } |
| Abi::Uninhabited | Abi::Aggregate { .. } => { |
| Abi::Aggregate { sized: true } |
| } |
| }; |
| |
| if size == Size::ZERO { |
| // first non ZST: initialize 'abi' |
| abi = field_abi; |
| } else if abi != field_abi { |
| // different fields have different ABI: reset to Aggregate |
| abi = Abi::Aggregate { sized: true }; |
| } |
| } |
| |
| size = cmp::max(size, field.size); |
| } |
| |
| if let Some(pack) = def.repr.pack { |
| align = align.min(AbiAndPrefAlign::new(pack)); |
| } |
| |
| return Ok(tcx.intern_layout(Layout { |
| variants: Variants::Single { index }, |
| fields: FieldsShape::Union( |
| NonZeroUsize::new(variants[index].len()) |
| .ok_or(LayoutError::Unknown(ty))?, |
| ), |
| abi, |
| largest_niche: None, |
| align, |
| size: size.align_to(align.abi), |
| })); |
| } |
| |
| // A variant is absent if it's uninhabited and only has ZST fields. |
| // Present uninhabited variants only require space for their fields, |
| // but *not* an encoding of the discriminant (e.g., a tag value). |
| // See issue #49298 for more details on the need to leave space |
| // for non-ZST uninhabited data (mostly partial initialization). |
| let absent = |fields: &[TyAndLayout<'_>]| { |
| let uninhabited = fields.iter().any(|f| f.abi.is_uninhabited()); |
| let is_zst = fields.iter().all(|f| f.is_zst()); |
| uninhabited && is_zst |
| }; |
| let (present_first, present_second) = { |
| let mut present_variants = variants |
| .iter_enumerated() |
| .filter_map(|(i, v)| if absent(v) { None } else { Some(i) }); |
| (present_variants.next(), present_variants.next()) |
| }; |
| let present_first = match present_first { |
| Some(present_first) => present_first, |
| // Uninhabited because it has no variants, or only absent ones. |
| None if def.is_enum() => return tcx.layout_raw(param_env.and(tcx.types.never)), |
| // If it's a struct, still compute a layout so that we can still compute the |
| // field offsets. |
| None => VariantIdx::new(0), |
| }; |
| |
| let is_struct = !def.is_enum() || |
| // Only one variant is present. |
| (present_second.is_none() && |
| // Representation optimizations are allowed. |
| !def.repr.inhibit_enum_layout_opt()); |
| if is_struct { |
| // Struct, or univariant enum equivalent to a struct. |
| // (Typechecking will reject discriminant-sizing attrs.) |
| |
| let v = present_first; |
| let kind = if def.is_enum() || variants[v].is_empty() { |
| StructKind::AlwaysSized |
| } else { |
| let param_env = tcx.param_env(def.did); |
| let last_field = def.variants[v].fields.last().unwrap(); |
| let always_sized = |
| tcx.type_of(last_field.did).is_sized(tcx.at(DUMMY_SP), param_env); |
| if !always_sized { |
| StructKind::MaybeUnsized |
| } else { |
| StructKind::AlwaysSized |
| } |
| }; |
| |
| let mut st = self.univariant_uninterned(ty, &variants[v], &def.repr, kind)?; |
| st.variants = Variants::Single { index: v }; |
| let (start, end) = self.tcx.layout_scalar_valid_range(def.did); |
| match st.abi { |
| Abi::Scalar(ref mut scalar) | Abi::ScalarPair(ref mut scalar, _) => { |
| // the asserts ensure that we are not using the |
| // `#[rustc_layout_scalar_valid_range(n)]` |
| // attribute to widen the range of anything as that would probably |
| // result in UB somewhere |
| // FIXME(eddyb) the asserts are probably not needed, |
| // as larger validity ranges would result in missed |
| // optimizations, *not* wrongly assuming the inner |
| // value is valid. e.g. unions enlarge validity ranges, |
| // because the values may be uninitialized. |
| if let Bound::Included(start) = start { |
| // FIXME(eddyb) this might be incorrect - it doesn't |
| // account for wrap-around (end < start) ranges. |
| assert!(*scalar.valid_range.start() <= start); |
| scalar.valid_range = start..=*scalar.valid_range.end(); |
| } |
| if let Bound::Included(end) = end { |
| // FIXME(eddyb) this might be incorrect - it doesn't |
| // account for wrap-around (end < start) ranges. |
| assert!(*scalar.valid_range.end() >= end); |
| scalar.valid_range = *scalar.valid_range.start()..=end; |
| } |
| |
| // Update `largest_niche` if we have introduced a larger niche. |
| let niche = if def.repr.hide_niche() { |
| None |
| } else { |
| Niche::from_scalar(dl, Size::ZERO, scalar.clone()) |
| }; |
| if let Some(niche) = niche { |
| match &st.largest_niche { |
| Some(largest_niche) => { |
| // Replace the existing niche even if they're equal, |
| // because this one is at a lower offset. |
| if largest_niche.available(dl) <= niche.available(dl) { |
| st.largest_niche = Some(niche); |
| } |
| } |
| None => st.largest_niche = Some(niche), |
| } |
| } |
| } |
| _ => assert!( |
| start == Bound::Unbounded && end == Bound::Unbounded, |
| "nonscalar layout for layout_scalar_valid_range type {:?}: {:#?}", |
| def, |
| st, |
| ), |
| } |
| |
| return Ok(tcx.intern_layout(st)); |
| } |
| |
| // At this point, we have handled all unions and |
| // structs. (We have also handled univariant enums |
| // that allow representation optimization.) |
| assert!(def.is_enum()); |
| |
| // The current code for niche-filling relies on variant indices |
| // instead of actual discriminants, so dataful enums with |
| // explicit discriminants (RFC #2363) would misbehave. |
| let no_explicit_discriminants = def |
| .variants |
| .iter_enumerated() |
| .all(|(i, v)| v.discr == ty::VariantDiscr::Relative(i.as_u32())); |
| |
| let mut niche_filling_layout = None; |
| |
| // Niche-filling enum optimization. |
| if !def.repr.inhibit_enum_layout_opt() && no_explicit_discriminants { |
| let mut dataful_variant = None; |
| let mut niche_variants = VariantIdx::MAX..=VariantIdx::new(0); |
| |
| // Find one non-ZST variant. |
| 'variants: for (v, fields) in variants.iter_enumerated() { |
| if absent(fields) { |
| continue 'variants; |
| } |
| for f in fields { |
| if !f.is_zst() { |
| if dataful_variant.is_none() { |
| dataful_variant = Some(v); |
| continue 'variants; |
| } else { |
| dataful_variant = None; |
| break 'variants; |
| } |
| } |
| } |
| niche_variants = *niche_variants.start().min(&v)..=v; |
| } |
| |
| if niche_variants.start() > niche_variants.end() { |
| dataful_variant = None; |
| } |
| |
| if let Some(i) = dataful_variant { |
| let count = (niche_variants.end().as_u32() |
| - niche_variants.start().as_u32() |
| + 1) as u128; |
| |
| // Find the field with the largest niche |
| let niche_candidate = variants[i] |
| .iter() |
| .enumerate() |
| .filter_map(|(j, &field)| Some((j, field.largest_niche.as_ref()?))) |
| .max_by_key(|(_, niche)| niche.available(dl)); |
| |
| if let Some((field_index, niche, (niche_start, niche_scalar))) = |
| niche_candidate.and_then(|(field_index, niche)| { |
| Some((field_index, niche, niche.reserve(self, count)?)) |
| }) |
| { |
| let mut align = dl.aggregate_align; |
| let st = variants |
| .iter_enumerated() |
| .map(|(j, v)| { |
| let mut st = self.univariant_uninterned( |
| ty, |
| v, |
| &def.repr, |
| StructKind::AlwaysSized, |
| )?; |
| st.variants = Variants::Single { index: j }; |
| |
| align = align.max(st.align); |
| |
| Ok(st) |
| }) |
| .collect::<Result<IndexVec<VariantIdx, _>, _>>()?; |
| |
| let offset = st[i].fields.offset(field_index) + niche.offset; |
| let size = st[i].size; |
| |
| let abi = if st.iter().all(|v| v.abi.is_uninhabited()) { |
| Abi::Uninhabited |
| } else { |
| match st[i].abi { |
| Abi::Scalar(_) => Abi::Scalar(niche_scalar.clone()), |
| Abi::ScalarPair(ref first, ref second) => { |
| // We need to use scalar_unit to reset the |
| // valid range to the maximal one for that |
| // primitive, because only the niche is |
| // guaranteed to be initialised, not the |
| // other primitive. |
| if offset.bytes() == 0 { |
| Abi::ScalarPair( |
| niche_scalar.clone(), |
| scalar_unit(second.value), |
| ) |
| } else { |
| Abi::ScalarPair( |
| scalar_unit(first.value), |
| niche_scalar.clone(), |
| ) |
| } |
| } |
| _ => Abi::Aggregate { sized: true }, |
| } |
| }; |
| |
| let largest_niche = |
| Niche::from_scalar(dl, offset, niche_scalar.clone()); |
| |
| niche_filling_layout = Some(Layout { |
| variants: Variants::Multiple { |
| tag: niche_scalar, |
| tag_encoding: TagEncoding::Niche { |
| dataful_variant: i, |
| niche_variants, |
| niche_start, |
| }, |
| tag_field: 0, |
| variants: st, |
| }, |
| fields: FieldsShape::Arbitrary { |
| offsets: vec![offset], |
| memory_index: vec![0], |
| }, |
| abi, |
| largest_niche, |
| size, |
| align, |
| }); |
| } |
| } |
| } |
| |
| let (mut min, mut max) = (i128::MAX, i128::MIN); |
| let discr_type = def.repr.discr_type(); |
| let bits = Integer::from_attr(self, discr_type).size().bits(); |
| for (i, discr) in def.discriminants(tcx) { |
| if variants[i].iter().any(|f| f.abi.is_uninhabited()) { |
| continue; |
| } |
| let mut x = discr.val as i128; |
| if discr_type.is_signed() { |
| // sign extend the raw representation to be an i128 |
| x = (x << (128 - bits)) >> (128 - bits); |
| } |
| if x < min { |
| min = x; |
| } |
| if x > max { |
| max = x; |
| } |
| } |
| // We might have no inhabited variants, so pretend there's at least one. |
| if (min, max) == (i128::MAX, i128::MIN) { |
| min = 0; |
| max = 0; |
| } |
| assert!(min <= max, "discriminant range is {}...{}", min, max); |
| let (min_ity, signed) = Integer::repr_discr(tcx, ty, &def.repr, min, max); |
| |
| let mut align = dl.aggregate_align; |
| let mut size = Size::ZERO; |
| |
| // We're interested in the smallest alignment, so start large. |
| let mut start_align = Align::from_bytes(256).unwrap(); |
| assert_eq!(Integer::for_align(dl, start_align), None); |
| |
| // repr(C) on an enum tells us to make a (tag, union) layout, |
| // so we need to grow the prefix alignment to be at least |
| // the alignment of the union. (This value is used both for |
| // determining the alignment of the overall enum, and the |
| // determining the alignment of the payload after the tag.) |
| let mut prefix_align = min_ity.align(dl).abi; |
| if def.repr.c() { |
| for fields in &variants { |
| for field in fields { |
| prefix_align = prefix_align.max(field.align.abi); |
| } |
| } |
| } |
| |
| // Create the set of structs that represent each variant. |
| let mut layout_variants = variants |
| .iter_enumerated() |
| .map(|(i, field_layouts)| { |
| let mut st = self.univariant_uninterned( |
| ty, |
| &field_layouts, |
| &def.repr, |
| StructKind::Prefixed(min_ity.size(), prefix_align), |
| )?; |
| st.variants = Variants::Single { index: i }; |
| // Find the first field we can't move later |
| // to make room for a larger discriminant. |
| for field in |
| st.fields.index_by_increasing_offset().map(|j| field_layouts[j]) |
| { |
| if !field.is_zst() || field.align.abi.bytes() != 1 { |
| start_align = start_align.min(field.align.abi); |
| break; |
| } |
| } |
| size = cmp::max(size, st.size); |
| align = align.max(st.align); |
| Ok(st) |
| }) |
| .collect::<Result<IndexVec<VariantIdx, _>, _>>()?; |
| |
| // Align the maximum variant size to the largest alignment. |
| size = size.align_to(align.abi); |
| |
| if size.bytes() >= dl.obj_size_bound() { |
| return Err(LayoutError::SizeOverflow(ty)); |
| } |
| |
| let typeck_ity = Integer::from_attr(dl, def.repr.discr_type()); |
| if typeck_ity < min_ity { |
| // It is a bug if Layout decided on a greater discriminant size than typeck for |
| // some reason at this point (based on values discriminant can take on). Mostly |
| // because this discriminant will be loaded, and then stored into variable of |
| // type calculated by typeck. Consider such case (a bug): typeck decided on |
| // byte-sized discriminant, but layout thinks we need a 16-bit to store all |
| // discriminant values. That would be a bug, because then, in codegen, in order |
| // to store this 16-bit discriminant into 8-bit sized temporary some of the |
| // space necessary to represent would have to be discarded (or layout is wrong |
| // on thinking it needs 16 bits) |
| bug!( |
| "layout decided on a larger discriminant type ({:?}) than typeck ({:?})", |
| min_ity, |
| typeck_ity |
| ); |
| // However, it is fine to make discr type however large (as an optimisation) |
| // after this point – we’ll just truncate the value we load in codegen. |
| } |
| |
| // Check to see if we should use a different type for the |
| // discriminant. We can safely use a type with the same size |
| // as the alignment of the first field of each variant. |
| // We increase the size of the discriminant to avoid LLVM copying |
| // padding when it doesn't need to. This normally causes unaligned |
| // load/stores and excessive memcpy/memset operations. By using a |
| // bigger integer size, LLVM can be sure about its contents and |
| // won't be so conservative. |
| |
| // Use the initial field alignment |
| let mut ity = if def.repr.c() || def.repr.int.is_some() { |
| min_ity |
| } else { |
| Integer::for_align(dl, start_align).unwrap_or(min_ity) |
| }; |
| |
| // If the alignment is not larger than the chosen discriminant size, |
| // don't use the alignment as the final size. |
| if ity <= min_ity { |
| ity = min_ity; |
| } else { |
| // Patch up the variants' first few fields. |
| let old_ity_size = min_ity.size(); |
| let new_ity_size = ity.size(); |
| for variant in &mut layout_variants { |
| match variant.fields { |
| FieldsShape::Arbitrary { ref mut offsets, .. } => { |
| for i in offsets { |
| if *i <= old_ity_size { |
| assert_eq!(*i, old_ity_size); |
| *i = new_ity_size; |
| } |
| } |
| // We might be making the struct larger. |
| if variant.size <= old_ity_size { |
| variant.size = new_ity_size; |
| } |
| } |
| _ => bug!(), |
| } |
| } |
| } |
| |
| let tag_mask = !0u128 >> (128 - ity.size().bits()); |
| let tag = Scalar { |
| value: Int(ity, signed), |
| valid_range: (min as u128 & tag_mask)..=(max as u128 & tag_mask), |
| }; |
| let mut abi = Abi::Aggregate { sized: true }; |
| if tag.value.size(dl) == size { |
| abi = Abi::Scalar(tag.clone()); |
| } else { |
| // Try to use a ScalarPair for all tagged enums. |
| let mut common_prim = None; |
| for (field_layouts, layout_variant) in iter::zip(&variants, &layout_variants) { |
| let offsets = match layout_variant.fields { |
| FieldsShape::Arbitrary { ref offsets, .. } => offsets, |
| _ => bug!(), |
| }; |
| let mut fields = |
| iter::zip(field_layouts, offsets).filter(|p| !p.0.is_zst()); |
| let (field, offset) = match (fields.next(), fields.next()) { |
| (None, None) => continue, |
| (Some(pair), None) => pair, |
| _ => { |
| common_prim = None; |
| break; |
| } |
| }; |
| let prim = match field.abi { |
| Abi::Scalar(ref scalar) => scalar.value, |
| _ => { |
| common_prim = None; |
| break; |
| } |
| }; |
| if let Some(pair) = common_prim { |
| // This is pretty conservative. We could go fancier |
| // by conflating things like i32 and u32, or even |
| // realising that (u8, u8) could just cohabit with |
| // u16 or even u32. |
| if pair != (prim, offset) { |
| common_prim = None; |
| break; |
| } |
| } else { |
| common_prim = Some((prim, offset)); |
| } |
| } |
| if let Some((prim, offset)) = common_prim { |
| let pair = self.scalar_pair(tag.clone(), scalar_unit(prim)); |
| let pair_offsets = match pair.fields { |
| FieldsShape::Arbitrary { ref offsets, ref memory_index } => { |
| assert_eq!(memory_index, &[0, 1]); |
| offsets |
| } |
| _ => bug!(), |
| }; |
| if pair_offsets[0] == Size::ZERO |
| && pair_offsets[1] == *offset |
| && align == pair.align |
| && size == pair.size |
| { |
| // We can use `ScalarPair` only when it matches our |
| // already computed layout (including `#[repr(C)]`). |
| abi = pair.abi; |
| } |
| } |
| } |
| |
| if layout_variants.iter().all(|v| v.abi.is_uninhabited()) { |
| abi = Abi::Uninhabited; |
| } |
| |
| let largest_niche = Niche::from_scalar(dl, Size::ZERO, tag.clone()); |
| |
| let tagged_layout = Layout { |
| variants: Variants::Multiple { |
| tag, |
| tag_encoding: TagEncoding::Direct, |
| tag_field: 0, |
| variants: layout_variants, |
| }, |
| fields: FieldsShape::Arbitrary { |
| offsets: vec![Size::ZERO], |
| memory_index: vec![0], |
| }, |
| largest_niche, |
| abi, |
| align, |
| size, |
| }; |
| |
| let best_layout = match (tagged_layout, niche_filling_layout) { |
| (tagged_layout, Some(niche_filling_layout)) => { |
| // Pick the smaller layout; otherwise, |
| // pick the layout with the larger niche; otherwise, |
| // pick tagged as it has simpler codegen. |
| cmp::min_by_key(tagged_layout, niche_filling_layout, |layout| { |
| let niche_size = |
| layout.largest_niche.as_ref().map_or(0, |n| n.available(dl)); |
| (layout.size, cmp::Reverse(niche_size)) |
| }) |
| } |
| (tagged_layout, None) => tagged_layout, |
| }; |
| |
| tcx.intern_layout(best_layout) |
| } |
| |
| // Types with no meaningful known layout. |
| ty::Projection(_) | ty::Opaque(..) => { |
| let normalized = tcx.normalize_erasing_regions(param_env, ty); |
| if ty == normalized { |
| return Err(LayoutError::Unknown(ty)); |
| } |
| tcx.layout_raw(param_env.and(normalized))? |
| } |
| |
| ty::Placeholder(..) | ty::GeneratorWitness(..) | ty::Infer(_) => { |
| bug!("Layout::compute: unexpected type `{}`", ty) |
| } |
| |
| ty::Bound(..) | ty::Param(_) | ty::Error(_) => { |
| return Err(LayoutError::Unknown(ty)); |
| } |
| }) |
| } |
| } |
| |
| /// Overlap eligibility and variant assignment for each GeneratorSavedLocal. |
| #[derive(Clone, Debug, PartialEq)] |
| enum SavedLocalEligibility { |
| Unassigned, |
| Assigned(VariantIdx), |
| // FIXME: Use newtype_index so we aren't wasting bytes |
| Ineligible(Option<u32>), |
| } |
| |
| // When laying out generators, we divide our saved local fields into two |
| // categories: overlap-eligible and overlap-ineligible. |
| // |
| // Those fields which are ineligible for overlap go in a "prefix" at the |
| // beginning of the layout, and always have space reserved for them. |
| // |
| // Overlap-eligible fields are only assigned to one variant, so we lay |
| // those fields out for each variant and put them right after the |
| // prefix. |
| // |
| // Finally, in the layout details, we point to the fields from the |
| // variants they are assigned to. It is possible for some fields to be |
| // included in multiple variants. No field ever "moves around" in the |
| // layout; its offset is always the same. |
| // |
| // Also included in the layout are the upvars and the discriminant. |
| // These are included as fields on the "outer" layout; they are not part |
| // of any variant. |
| impl<'tcx> LayoutCx<'tcx, TyCtxt<'tcx>> { |
| /// Compute the eligibility and assignment of each local. |
| fn generator_saved_local_eligibility( |
| &self, |
| info: &GeneratorLayout<'tcx>, |
| ) -> (BitSet<GeneratorSavedLocal>, IndexVec<GeneratorSavedLocal, SavedLocalEligibility>) { |
| use SavedLocalEligibility::*; |
| |
| let mut assignments: IndexVec<GeneratorSavedLocal, SavedLocalEligibility> = |
| IndexVec::from_elem_n(Unassigned, info.field_tys.len()); |
| |
| // The saved locals not eligible for overlap. These will get |
| // "promoted" to the prefix of our generator. |
| let mut ineligible_locals = BitSet::new_empty(info.field_tys.len()); |
| |
| // Figure out which of our saved locals are fields in only |
| // one variant. The rest are deemed ineligible for overlap. |
| for (variant_index, fields) in info.variant_fields.iter_enumerated() { |
| for local in fields { |
| match assignments[*local] { |
| Unassigned => { |
| assignments[*local] = Assigned(variant_index); |
| } |
| Assigned(idx) => { |
| // We've already seen this local at another suspension |
| // point, so it is no longer a candidate. |
| trace!( |
| "removing local {:?} in >1 variant ({:?}, {:?})", |
| local, |
| variant_index, |
| idx |
| ); |
| ineligible_locals.insert(*local); |
| assignments[*local] = Ineligible(None); |
| } |
| Ineligible(_) => {} |
| } |
| } |
| } |
| |
| // Next, check every pair of eligible locals to see if they |
| // conflict. |
| for local_a in info.storage_conflicts.rows() { |
| let conflicts_a = info.storage_conflicts.count(local_a); |
| if ineligible_locals.contains(local_a) { |
| continue; |
| } |
| |
| for local_b in info.storage_conflicts.iter(local_a) { |
| // local_a and local_b are storage live at the same time, therefore they |
| // cannot overlap in the generator layout. The only way to guarantee |
| // this is if they are in the same variant, or one is ineligible |
| // (which means it is stored in every variant). |
| if ineligible_locals.contains(local_b) |
| || assignments[local_a] == assignments[local_b] |
| { |
| continue; |
| } |
| |
| // If they conflict, we will choose one to make ineligible. |
| // This is not always optimal; it's just a greedy heuristic that |
| // seems to produce good results most of the time. |
| let conflicts_b = info.storage_conflicts.count(local_b); |
| let (remove, other) = |
| if conflicts_a > conflicts_b { (local_a, local_b) } else { (local_b, local_a) }; |
| ineligible_locals.insert(remove); |
| assignments[remove] = Ineligible(None); |
| trace!("removing local {:?} due to conflict with {:?}", remove, other); |
| } |
| } |
| |
| // Count the number of variants in use. If only one of them, then it is |
| // impossible to overlap any locals in our layout. In this case it's |
| // always better to make the remaining locals ineligible, so we can |
| // lay them out with the other locals in the prefix and eliminate |
| // unnecessary padding bytes. |
| { |
| let mut used_variants = BitSet::new_empty(info.variant_fields.len()); |
| for assignment in &assignments { |
| if let Assigned(idx) = assignment { |
| used_variants.insert(*idx); |
| } |
| } |
| if used_variants.count() < 2 { |
| for assignment in assignments.iter_mut() { |
| *assignment = Ineligible(None); |
| } |
| ineligible_locals.insert_all(); |
| } |
| } |
| |
| // Write down the order of our locals that will be promoted to the prefix. |
| { |
| for (idx, local) in ineligible_locals.iter().enumerate() { |
| assignments[local] = Ineligible(Some(idx as u32)); |
| } |
| } |
| debug!("generator saved local assignments: {:?}", assignments); |
| |
| (ineligible_locals, assignments) |
| } |
| |
| /// Compute the full generator layout. |
| fn generator_layout( |
| &self, |
| ty: Ty<'tcx>, |
| def_id: hir::def_id::DefId, |
| substs: SubstsRef<'tcx>, |
| ) -> Result<&'tcx Layout, LayoutError<'tcx>> { |
| use SavedLocalEligibility::*; |
| let tcx = self.tcx; |
| let subst_field = |ty: Ty<'tcx>| ty.subst(tcx, substs); |
| |
| let info = match tcx.generator_layout(def_id) { |
| None => return Err(LayoutError::Unknown(ty)), |
| Some(info) => info, |
| }; |
| let (ineligible_locals, assignments) = self.generator_saved_local_eligibility(&info); |
| |
| // Build a prefix layout, including "promoting" all ineligible |
| // locals as part of the prefix. We compute the layout of all of |
| // these fields at once to get optimal packing. |
| let tag_index = substs.as_generator().prefix_tys().count(); |
| |
| // `info.variant_fields` already accounts for the reserved variants, so no need to add them. |
| let max_discr = (info.variant_fields.len() - 1) as u128; |
| let discr_int = Integer::fit_unsigned(max_discr); |
| let discr_int_ty = discr_int.to_ty(tcx, false); |
| let tag = Scalar { value: Primitive::Int(discr_int, false), valid_range: 0..=max_discr }; |
| let tag_layout = self.tcx.intern_layout(Layout::scalar(self, tag.clone())); |
| let tag_layout = TyAndLayout { ty: discr_int_ty, layout: tag_layout }; |
| |
| let promoted_layouts = ineligible_locals |
| .iter() |
| .map(|local| subst_field(info.field_tys[local])) |
| .map(|ty| tcx.mk_maybe_uninit(ty)) |
| .map(|ty| self.layout_of(ty)); |
| let prefix_layouts = substs |
| .as_generator() |
| .prefix_tys() |
| .map(|ty| self.layout_of(ty)) |
| .chain(iter::once(Ok(tag_layout))) |
| .chain(promoted_layouts) |
| .collect::<Result<Vec<_>, _>>()?; |
| let prefix = self.univariant_uninterned( |
| ty, |
| &prefix_layouts, |
| &ReprOptions::default(), |
| StructKind::AlwaysSized, |
| )?; |
| |
| let (prefix_size, prefix_align) = (prefix.size, prefix.align); |
| |
| // Split the prefix layout into the "outer" fields (upvars and |
| // discriminant) and the "promoted" fields. Promoted fields will |
| // get included in each variant that requested them in |
| // GeneratorLayout. |
| debug!("prefix = {:#?}", prefix); |
| let (outer_fields, promoted_offsets, promoted_memory_index) = match prefix.fields { |
| FieldsShape::Arbitrary { mut offsets, memory_index } => { |
| let mut inverse_memory_index = invert_mapping(&memory_index); |
| |
| // "a" (`0..b_start`) and "b" (`b_start..`) correspond to |
| // "outer" and "promoted" fields respectively. |
| let b_start = (tag_index + 1) as u32; |
| let offsets_b = offsets.split_off(b_start as usize); |
| let offsets_a = offsets; |
| |
| // Disentangle the "a" and "b" components of `inverse_memory_index` |
| // by preserving the order but keeping only one disjoint "half" each. |
| // FIXME(eddyb) build a better abstraction for permutations, if possible. |
| let inverse_memory_index_b: Vec<_> = |
| inverse_memory_index.iter().filter_map(|&i| i.checked_sub(b_start)).collect(); |
| inverse_memory_index.retain(|&i| i < b_start); |
| let inverse_memory_index_a = inverse_memory_index; |
| |
| // Since `inverse_memory_index_{a,b}` each only refer to their |
| // respective fields, they can be safely inverted |
| let memory_index_a = invert_mapping(&inverse_memory_index_a); |
| let memory_index_b = invert_mapping(&inverse_memory_index_b); |
| |
| let outer_fields = |
| FieldsShape::Arbitrary { offsets: offsets_a, memory_index: memory_index_a }; |
| (outer_fields, offsets_b, memory_index_b) |
| } |
| _ => bug!(), |
| }; |
| |
| let mut size = prefix.size; |
| let mut align = prefix.align; |
| let variants = info |
| .variant_fields |
| .iter_enumerated() |
| .map(|(index, variant_fields)| { |
| // Only include overlap-eligible fields when we compute our variant layout. |
| let variant_only_tys = variant_fields |
| .iter() |
| .filter(|local| match assignments[**local] { |
| Unassigned => bug!(), |
| Assigned(v) if v == index => true, |
| Assigned(_) => bug!("assignment does not match variant"), |
| Ineligible(_) => false, |
| }) |
| .map(|local| subst_field(info.field_tys[*local])); |
| |
| let mut variant = self.univariant_uninterned( |
| ty, |
| &variant_only_tys |
| .map(|ty| self.layout_of(ty)) |
| .collect::<Result<Vec<_>, _>>()?, |
| &ReprOptions::default(), |
| StructKind::Prefixed(prefix_size, prefix_align.abi), |
| )?; |
| variant.variants = Variants::Single { index }; |
| |
| let (offsets, memory_index) = match variant.fields { |
| FieldsShape::Arbitrary { offsets, memory_index } => (offsets, memory_index), |
| _ => bug!(), |
| }; |
| |
| // Now, stitch the promoted and variant-only fields back together in |
| // the order they are mentioned by our GeneratorLayout. |
| // Because we only use some subset (that can differ between variants) |
| // of the promoted fields, we can't just pick those elements of the |
| // `promoted_memory_index` (as we'd end up with gaps). |
| // So instead, we build an "inverse memory_index", as if all of the |
| // promoted fields were being used, but leave the elements not in the |
| // subset as `INVALID_FIELD_IDX`, which we can filter out later to |
| // obtain a valid (bijective) mapping. |
| const INVALID_FIELD_IDX: u32 = !0; |
| let mut combined_inverse_memory_index = |
| vec![INVALID_FIELD_IDX; promoted_memory_index.len() + memory_index.len()]; |
| let mut offsets_and_memory_index = iter::zip(offsets, memory_index); |
| let combined_offsets = variant_fields |
| .iter() |
| .enumerate() |
| .map(|(i, local)| { |
| let (offset, memory_index) = match assignments[*local] { |
| Unassigned => bug!(), |
| Assigned(_) => { |
| let (offset, memory_index) = |
| offsets_and_memory_index.next().unwrap(); |
| (offset, promoted_memory_index.len() as u32 + memory_index) |
| } |
| Ineligible(field_idx) => { |
| let field_idx = field_idx.unwrap() as usize; |
| (promoted_offsets[field_idx], promoted_memory_index[field_idx]) |
| } |
| }; |
| combined_inverse_memory_index[memory_index as usize] = i as u32; |
| offset |
| }) |
| .collect(); |
| |
| // Remove the unused slots and invert the mapping to obtain the |
| // combined `memory_index` (also see previous comment). |
| combined_inverse_memory_index.retain(|&i| i != INVALID_FIELD_IDX); |
| let combined_memory_index = invert_mapping(&combined_inverse_memory_index); |
| |
| variant.fields = FieldsShape::Arbitrary { |
| offsets: combined_offsets, |
| memory_index: combined_memory_index, |
| }; |
| |
| size = size.max(variant.size); |
| align = align.max(variant.align); |
| Ok(variant) |
| }) |
| .collect::<Result<IndexVec<VariantIdx, _>, _>>()?; |
| |
| size = size.align_to(align.abi); |
| |
| let abi = if prefix.abi.is_uninhabited() || variants.iter().all(|v| v.abi.is_uninhabited()) |
| { |
| Abi::Uninhabited |
| } else { |
| Abi::Aggregate { sized: true } |
| }; |
| |
| let layout = tcx.intern_layout(Layout { |
| variants: Variants::Multiple { |
| tag, |
| tag_encoding: TagEncoding::Direct, |
| tag_field: tag_index, |
| variants, |
| }, |
| fields: outer_fields, |
| abi, |
| largest_niche: prefix.largest_niche, |
| size, |
| align, |
| }); |
| debug!("generator layout ({:?}): {:#?}", ty, layout); |
| Ok(layout) |
| } |
| |
| /// This is invoked by the `layout_raw` query to record the final |
| /// layout of each type. |
| #[inline(always)] |
| fn record_layout_for_printing(&self, layout: TyAndLayout<'tcx>) { |
| // If we are running with `-Zprint-type-sizes`, maybe record layouts |
| // for dumping later. |
| if self.tcx.sess.opts.debugging_opts.print_type_sizes { |
| self.record_layout_for_printing_outlined(layout) |
| } |
| } |
| |
| fn record_layout_for_printing_outlined(&self, layout: TyAndLayout<'tcx>) { |
| // Ignore layouts that are done with non-empty environments or |
| // non-monomorphic layouts, as the user only wants to see the stuff |
| // resulting from the final codegen session. |
| if layout.ty.has_param_types_or_consts() || !self.param_env.caller_bounds().is_empty() { |
| return; |
| } |
| |
| // (delay format until we actually need it) |
| let record = |kind, packed, opt_discr_size, variants| { |
| let type_desc = format!("{:?}", layout.ty); |
| self.tcx.sess.code_stats.record_type_size( |
| kind, |
| type_desc, |
| layout.align.abi, |
| layout.size, |
| packed, |
| opt_discr_size, |
| variants, |
| ); |
| }; |
| |
| let adt_def = match *layout.ty.kind() { |
| ty::Adt(ref adt_def, _) => { |
| debug!("print-type-size t: `{:?}` process adt", layout.ty); |
| adt_def |
| } |
| |
| ty::Closure(..) => { |
| debug!("print-type-size t: `{:?}` record closure", layout.ty); |
| record(DataTypeKind::Closure, false, None, vec![]); |
| return; |
| } |
| |
| _ => { |
| debug!("print-type-size t: `{:?}` skip non-nominal", layout.ty); |
| return; |
| } |
| }; |
| |
| let adt_kind = adt_def.adt_kind(); |
| let adt_packed = adt_def.repr.pack.is_some(); |
| |
| let build_variant_info = |n: Option<Ident>, flds: &[Symbol], layout: TyAndLayout<'tcx>| { |
| let mut min_size = Size::ZERO; |
| let field_info: Vec<_> = flds |
| .iter() |
| .enumerate() |
| .map(|(i, &name)| match layout.field(self, i) { |
| Err(err) => { |
| bug!("no layout found for field {}: `{:?}`", name, err); |
| } |
| Ok(field_layout) => { |
| let offset = layout.fields.offset(i); |
| let field_end = offset + field_layout.size; |
| if min_size < field_end { |
| min_size = field_end; |
| } |
| FieldInfo { |
| name: name.to_string(), |
| offset: offset.bytes(), |
| size: field_layout.size.bytes(), |
| align: field_layout.align.abi.bytes(), |
| } |
| } |
| }) |
| .collect(); |
| |
| VariantInfo { |
| name: n.map(|n| n.to_string()), |
| kind: if layout.is_unsized() { SizeKind::Min } else { SizeKind::Exact }, |
| align: layout.align.abi.bytes(), |
| size: if min_size.bytes() == 0 { layout.size.bytes() } else { min_size.bytes() }, |
| fields: field_info, |
| } |
| }; |
| |
| match layout.variants { |
| Variants::Single { index } => { |
| debug!("print-type-size `{:#?}` variant {}", layout, adt_def.variants[index].ident); |
| if !adt_def.variants.is_empty() { |
| let variant_def = &adt_def.variants[index]; |
| let fields: Vec<_> = variant_def.fields.iter().map(|f| f.ident.name).collect(); |
| record( |
| adt_kind.into(), |
| adt_packed, |
| None, |
| vec![build_variant_info(Some(variant_def.ident), &fields, layout)], |
| ); |
| } else { |
| // (This case arises for *empty* enums; so give it |
| // zero variants.) |
| record(adt_kind.into(), adt_packed, None, vec![]); |
| } |
| } |
| |
| Variants::Multiple { ref tag, ref tag_encoding, .. } => { |
| debug!( |
| "print-type-size `{:#?}` adt general variants def {}", |
| layout.ty, |
| adt_def.variants.len() |
| ); |
| let variant_infos: Vec<_> = adt_def |
| .variants |
| .iter_enumerated() |
| .map(|(i, variant_def)| { |
| let fields: Vec<_> = |
| variant_def.fields.iter().map(|f| f.ident.name).collect(); |
| build_variant_info( |
| Some(variant_def.ident), |
| &fields, |
| layout.for_variant(self, i), |
| ) |
| }) |
| .collect(); |
| record( |
| adt_kind.into(), |
| adt_packed, |
| match tag_encoding { |
| TagEncoding::Direct => Some(tag.value.size(self)), |
| _ => None, |
| }, |
| variant_infos, |
| ); |
| } |
| } |
| } |
| } |
| |
| /// Type size "skeleton", i.e., the only information determining a type's size. |
| /// While this is conservative, (aside from constant sizes, only pointers, |
| /// newtypes thereof and null pointer optimized enums are allowed), it is |
| /// enough to statically check common use cases of transmute. |
| #[derive(Copy, Clone, Debug)] |
| pub enum SizeSkeleton<'tcx> { |
| /// Any statically computable Layout. |
| Known(Size), |
| |
| /// A potentially-fat pointer. |
| Pointer { |
| /// If true, this pointer is never null. |
| non_zero: bool, |
| /// The type which determines the unsized metadata, if any, |
| /// of this pointer. Either a type parameter or a projection |
| /// depending on one, with regions erased. |
| tail: Ty<'tcx>, |
| }, |
| } |
| |
| impl<'tcx> SizeSkeleton<'tcx> { |
| pub fn compute( |
| ty: Ty<'tcx>, |
| tcx: TyCtxt<'tcx>, |
| param_env: ty::ParamEnv<'tcx>, |
| ) -> Result<SizeSkeleton<'tcx>, LayoutError<'tcx>> { |
| debug_assert!(!ty.has_infer_types_or_consts()); |
| |
| // First try computing a static layout. |
| let err = match tcx.layout_of(param_env.and(ty)) { |
| Ok(layout) => { |
| return Ok(SizeSkeleton::Known(layout.size)); |
| } |
| Err(err) => err, |
| }; |
| |
| match *ty.kind() { |
| ty::Ref(_, pointee, _) | ty::RawPtr(ty::TypeAndMut { ty: pointee, .. }) => { |
| let non_zero = !ty.is_unsafe_ptr(); |
| let tail = tcx.struct_tail_erasing_lifetimes(pointee, param_env); |
| match tail.kind() { |
| ty::Param(_) | ty::Projection(_) => { |
| debug_assert!(tail.has_param_types_or_consts()); |
| Ok(SizeSkeleton::Pointer { non_zero, tail: tcx.erase_regions(tail) }) |
| } |
| _ => bug!( |
| "SizeSkeleton::compute({}): layout errored ({}), yet \ |
| tail `{}` is not a type parameter or a projection", |
| ty, |
| err, |
| tail |
| ), |
| } |
| } |
| |
| ty::Adt(def, substs) => { |
| // Only newtypes and enums w/ nullable pointer optimization. |
| if def.is_union() || def.variants.is_empty() || def.variants.len() > 2 { |
| return Err(err); |
| } |
| |
| // Get a zero-sized variant or a pointer newtype. |
| let zero_or_ptr_variant = |i| { |
| let i = VariantIdx::new(i); |
| let fields = def.variants[i] |
| .fields |
| .iter() |
| .map(|field| SizeSkeleton::compute(field.ty(tcx, substs), tcx, param_env)); |
| let mut ptr = None; |
| for field in fields { |
| let field = field?; |
| match field { |
| SizeSkeleton::Known(size) => { |
| if size.bytes() > 0 { |
| return Err(err); |
| } |
| } |
| SizeSkeleton::Pointer { .. } => { |
| if ptr.is_some() { |
| return Err(err); |
| } |
| ptr = Some(field); |
| } |
| } |
| } |
| Ok(ptr) |
| }; |
| |
| let v0 = zero_or_ptr_variant(0)?; |
| // Newtype. |
| if def.variants.len() == 1 { |
| if let Some(SizeSkeleton::Pointer { non_zero, tail }) = v0 { |
| return Ok(SizeSkeleton::Pointer { |
| non_zero: non_zero |
| || match tcx.layout_scalar_valid_range(def.did) { |
| (Bound::Included(start), Bound::Unbounded) => start > 0, |
| (Bound::Included(start), Bound::Included(end)) => { |
| 0 < start && start < end |
| } |
| _ => false, |
| }, |
| tail, |
| }); |
| } else { |
| return Err(err); |
| } |
| } |
| |
| let v1 = zero_or_ptr_variant(1)?; |
| // Nullable pointer enum optimization. |
| match (v0, v1) { |
| (Some(SizeSkeleton::Pointer { non_zero: true, tail }), None) |
| | (None, Some(SizeSkeleton::Pointer { non_zero: true, tail })) => { |
| Ok(SizeSkeleton::Pointer { non_zero: false, tail }) |
| } |
| _ => Err(err), |
| } |
| } |
| |
| ty::Projection(_) | ty::Opaque(..) => { |
| let normalized = tcx.normalize_erasing_regions(param_env, ty); |
| if ty == normalized { |
| Err(err) |
| } else { |
| SizeSkeleton::compute(normalized, tcx, param_env) |
| } |
| } |
| |
| _ => Err(err), |
| } |
| } |
| |
| pub fn same_size(self, other: SizeSkeleton<'_>) -> bool { |
| match (self, other) { |
| (SizeSkeleton::Known(a), SizeSkeleton::Known(b)) => a == b, |
| (SizeSkeleton::Pointer { tail: a, .. }, SizeSkeleton::Pointer { tail: b, .. }) => { |
| a == b |
| } |
| _ => false, |
| } |
| } |
| } |
| |
| pub trait HasTyCtxt<'tcx>: HasDataLayout { |
| fn tcx(&self) -> TyCtxt<'tcx>; |
| } |
| |
| pub trait HasParamEnv<'tcx> { |
| fn param_env(&self) -> ty::ParamEnv<'tcx>; |
| } |
| |
| impl<'tcx> HasDataLayout for TyCtxt<'tcx> { |
| fn data_layout(&self) -> &TargetDataLayout { |
| &self.data_layout |
| } |
| } |
| |
| impl<'tcx> HasTyCtxt<'tcx> for TyCtxt<'tcx> { |
| fn tcx(&self) -> TyCtxt<'tcx> { |
| *self |
| } |
| } |
| |
| impl<'tcx, C> HasParamEnv<'tcx> for LayoutCx<'tcx, C> { |
| fn param_env(&self) -> ty::ParamEnv<'tcx> { |
| self.param_env |
| } |
| } |
| |
| impl<'tcx, T: HasDataLayout> HasDataLayout for LayoutCx<'tcx, T> { |
| fn data_layout(&self) -> &TargetDataLayout { |
| self.tcx.data_layout() |
| } |
| } |
| |
| impl<'tcx, T: HasTyCtxt<'tcx>> HasTyCtxt<'tcx> for LayoutCx<'tcx, T> { |
| fn tcx(&self) -> TyCtxt<'tcx> { |
| self.tcx.tcx() |
| } |
| } |
| |
| pub type TyAndLayout<'tcx> = rustc_target::abi::TyAndLayout<'tcx, Ty<'tcx>>; |
| |
| impl<'tcx> LayoutOf for LayoutCx<'tcx, TyCtxt<'tcx>> { |
| type Ty = Ty<'tcx>; |
| type TyAndLayout = Result<TyAndLayout<'tcx>, LayoutError<'tcx>>; |
| |
| /// Computes the layout of a type. Note that this implicitly |
| /// executes in "reveal all" mode. |
| fn layout_of(&self, ty: Ty<'tcx>) -> Self::TyAndLayout { |
| let param_env = self.param_env.with_reveal_all_normalized(self.tcx); |
| let ty = self.tcx.normalize_erasing_regions(param_env, ty); |
| let layout = self.tcx.layout_raw(param_env.and(ty))?; |
| let layout = TyAndLayout { ty, layout }; |
| |
| // N.B., this recording is normally disabled; when enabled, it |
| // can however trigger recursive invocations of `layout_of`. |
| // Therefore, we execute it *after* the main query has |
| // completed, to avoid problems around recursive structures |
| // and the like. (Admittedly, I wasn't able to reproduce a problem |
| // here, but it seems like the right thing to do. -nmatsakis) |
| self.record_layout_for_printing(layout); |
| |
| Ok(layout) |
| } |
| } |
| |
| impl LayoutOf for LayoutCx<'tcx, ty::query::TyCtxtAt<'tcx>> { |
| type Ty = Ty<'tcx>; |
| type TyAndLayout = Result<TyAndLayout<'tcx>, LayoutError<'tcx>>; |
| |
| /// Computes the layout of a type. Note that this implicitly |
| /// executes in "reveal all" mode. |
| fn layout_of(&self, ty: Ty<'tcx>) -> Self::TyAndLayout { |
| let param_env = self.param_env.with_reveal_all_normalized(*self.tcx); |
| let ty = self.tcx.normalize_erasing_regions(param_env, ty); |
| let layout = self.tcx.layout_raw(param_env.and(ty))?; |
| let layout = TyAndLayout { ty, layout }; |
| |
| // N.B., this recording is normally disabled; when enabled, it |
| // can however trigger recursive invocations of `layout_of`. |
| // Therefore, we execute it *after* the main query has |
| // completed, to avoid problems around recursive structures |
| // and the like. (Admittedly, I wasn't able to reproduce a problem |
| // here, but it seems like the right thing to do. -nmatsakis) |
| let cx = LayoutCx { tcx: *self.tcx, param_env: self.param_env }; |
| cx.record_layout_for_printing(layout); |
| |
| Ok(layout) |
| } |
| } |
| |
| // Helper (inherent) `layout_of` methods to avoid pushing `LayoutCx` to users. |
| impl TyCtxt<'tcx> { |
| /// Computes the layout of a type. Note that this implicitly |
| /// executes in "reveal all" mode. |
| #[inline] |
| pub fn layout_of( |
| self, |
| param_env_and_ty: ty::ParamEnvAnd<'tcx, Ty<'tcx>>, |
| ) -> Result<TyAndLayout<'tcx>, LayoutError<'tcx>> { |
| let cx = LayoutCx { tcx: self, param_env: param_env_and_ty.param_env }; |
| cx.layout_of(param_env_and_ty.value) |
| } |
| } |
| |
| impl ty::query::TyCtxtAt<'tcx> { |
| /// Computes the layout of a type. Note that this implicitly |
| /// executes in "reveal all" mode. |
| #[inline] |
| pub fn layout_of( |
| self, |
| param_env_and_ty: ty::ParamEnvAnd<'tcx, Ty<'tcx>>, |
| ) -> Result<TyAndLayout<'tcx>, LayoutError<'tcx>> { |
| let cx = LayoutCx { tcx: self.at(self.span), param_env: param_env_and_ty.param_env }; |
| cx.layout_of(param_env_and_ty.value) |
| } |
| } |
| |
| impl<'tcx, C> TyAndLayoutMethods<'tcx, C> for Ty<'tcx> |
| where |
| C: LayoutOf<Ty = Ty<'tcx>, TyAndLayout: MaybeResult<TyAndLayout<'tcx>>> |
| + HasTyCtxt<'tcx> |
| + HasParamEnv<'tcx>, |
| { |
| fn for_variant( |
| this: TyAndLayout<'tcx>, |
| cx: &C, |
| variant_index: VariantIdx, |
| ) -> TyAndLayout<'tcx> { |
| let layout = match this.variants { |
| Variants::Single { index } |
| // If all variants but one are uninhabited, the variant layout is the enum layout. |
| if index == variant_index && |
| // Don't confuse variants of uninhabited enums with the enum itself. |
| // For more details see https://github.com/rust-lang/rust/issues/69763. |
| this.fields != FieldsShape::Primitive => |
| { |
| this.layout |
| } |
| |
| Variants::Single { index } => { |
| // Deny calling for_variant more than once for non-Single enums. |
| if let Ok(original_layout) = cx.layout_of(this.ty).to_result() { |
| assert_eq!(original_layout.variants, Variants::Single { index }); |
| } |
| |
| let fields = match this.ty.kind() { |
| ty::Adt(def, _) if def.variants.is_empty() => |
| bug!("for_variant called on zero-variant enum"), |
| ty::Adt(def, _) => def.variants[variant_index].fields.len(), |
| _ => bug!(), |
| }; |
| let tcx = cx.tcx(); |
| tcx.intern_layout(Layout { |
| variants: Variants::Single { index: variant_index }, |
| fields: match NonZeroUsize::new(fields) { |
| Some(fields) => FieldsShape::Union(fields), |
| None => FieldsShape::Arbitrary { offsets: vec![], memory_index: vec![] }, |
| }, |
| abi: Abi::Uninhabited, |
| largest_niche: None, |
| align: tcx.data_layout.i8_align, |
| size: Size::ZERO, |
| }) |
| } |
| |
| Variants::Multiple { ref variants, .. } => &variants[variant_index], |
| }; |
| |
| assert_eq!(layout.variants, Variants::Single { index: variant_index }); |
| |
| TyAndLayout { ty: this.ty, layout } |
| } |
| |
| fn field(this: TyAndLayout<'tcx>, cx: &C, i: usize) -> C::TyAndLayout { |
| enum TyMaybeWithLayout<C: LayoutOf> { |
| Ty(C::Ty), |
| TyAndLayout(C::TyAndLayout), |
| } |
| |
| fn ty_and_layout_kind< |
| C: LayoutOf<Ty = Ty<'tcx>, TyAndLayout: MaybeResult<TyAndLayout<'tcx>>> |
| + HasTyCtxt<'tcx> |
| + HasParamEnv<'tcx>, |
| >( |
| this: TyAndLayout<'tcx>, |
| cx: &C, |
| i: usize, |
| ty: C::Ty, |
| ) -> TyMaybeWithLayout<C> { |
| let tcx = cx.tcx(); |
| let tag_layout = |tag: &Scalar| -> C::TyAndLayout { |
| let layout = Layout::scalar(cx, tag.clone()); |
| MaybeResult::from(Ok(TyAndLayout { |
| layout: tcx.intern_layout(layout), |
| ty: tag.value.to_ty(tcx), |
| })) |
| }; |
| |
| match *ty.kind() { |
| ty::Bool |
| | ty::Char |
| | ty::Int(_) |
| | ty::Uint(_) |
| | ty::Float(_) |
| | ty::FnPtr(_) |
| | ty::Never |
| | ty::FnDef(..) |
| | ty::GeneratorWitness(..) |
| | ty::Foreign(..) |
| | ty::Dynamic(..) => bug!("TyAndLayout::field_type({:?}): not applicable", this), |
| |
| // Potentially-fat pointers. |
| ty::Ref(_, pointee, _) | ty::RawPtr(ty::TypeAndMut { ty: pointee, .. }) => { |
| assert!(i < this.fields.count()); |
| |
| // Reuse the fat `*T` type as its own thin pointer data field. |
| // This provides information about, e.g., DST struct pointees |
| // (which may have no non-DST form), and will work as long |
| // as the `Abi` or `FieldsShape` is checked by users. |
| if i == 0 { |
| let nil = tcx.mk_unit(); |
| let ptr_ty = if ty.is_unsafe_ptr() { |
| tcx.mk_mut_ptr(nil) |
| } else { |
| tcx.mk_mut_ref(tcx.lifetimes.re_static, nil) |
| }; |
| return TyMaybeWithLayout::TyAndLayout(MaybeResult::from( |
| cx.layout_of(ptr_ty).to_result().map(|mut ptr_layout| { |
| ptr_layout.ty = ty; |
| ptr_layout |
| }), |
| )); |
| } |
| |
| match tcx.struct_tail_erasing_lifetimes(pointee, cx.param_env()).kind() { |
| ty::Slice(_) | ty::Str => TyMaybeWithLayout::Ty(tcx.types.usize), |
| ty::Dynamic(_, _) => { |
| TyMaybeWithLayout::Ty(tcx.mk_imm_ref( |
| tcx.lifetimes.re_static, |
| tcx.mk_array(tcx.types.usize, 3), |
| )) |
| /* FIXME: use actual fn pointers |
| Warning: naively computing the number of entries in the |
| vtable by counting the methods on the trait + methods on |
| all parent traits does not work, because some methods can |
| be not object safe and thus excluded from the vtable. |
| Increase this counter if you tried to implement this but |
| failed to do it without duplicating a lot of code from |
| other places in the compiler: 2 |
| tcx.mk_tup(&[ |
| tcx.mk_array(tcx.types.usize, 3), |
| tcx.mk_array(Option<fn()>), |
| ]) |
| */ |
| } |
| _ => bug!("TyAndLayout::field_type({:?}): not applicable", this), |
| } |
| } |
| |
| // Arrays and slices. |
| ty::Array(element, _) | ty::Slice(element) => TyMaybeWithLayout::Ty(element), |
| ty::Str => TyMaybeWithLayout::Ty(tcx.types.u8), |
| |
| // Tuples, generators and closures. |
| ty::Closure(_, ref substs) => { |
| ty_and_layout_kind(this, cx, i, substs.as_closure().tupled_upvars_ty()) |
| } |
| |
| ty::Generator(def_id, ref substs, _) => match this.variants { |
| Variants::Single { index } => TyMaybeWithLayout::Ty( |
| substs |
| .as_generator() |
| .state_tys(def_id, tcx) |
| .nth(index.as_usize()) |
| .unwrap() |
| .nth(i) |
| .unwrap(), |
| ), |
| Variants::Multiple { ref tag, tag_field, .. } => { |
| if i == tag_field { |
| return TyMaybeWithLayout::TyAndLayout(tag_layout(tag)); |
| } |
| TyMaybeWithLayout::Ty(substs.as_generator().prefix_tys().nth(i).unwrap()) |
| } |
| }, |
| |
| ty::Tuple(tys) => TyMaybeWithLayout::Ty(tys[i].expect_ty()), |
| |
| // ADTs. |
| ty::Adt(def, substs) => { |
| match this.variants { |
| Variants::Single { index } => { |
| TyMaybeWithLayout::Ty(def.variants[index].fields[i].ty(tcx, substs)) |
| } |
| |
| // Discriminant field for enums (where applicable). |
| Variants::Multiple { ref tag, .. } => { |
| assert_eq!(i, 0); |
| return TyMaybeWithLayout::TyAndLayout(tag_layout(tag)); |
| } |
| } |
| } |
| |
| ty::Projection(_) |
| | ty::Bound(..) |
| | ty::Placeholder(..) |
| | ty::Opaque(..) |
| | ty::Param(_) |
| | ty::Infer(_) |
| | ty::Error(_) => bug!("TyAndLayout::field_type: unexpected type `{}`", this.ty), |
| } |
| } |
| |
| cx.layout_of(match ty_and_layout_kind(this, cx, i, this.ty) { |
| TyMaybeWithLayout::Ty(result) => result, |
| TyMaybeWithLayout::TyAndLayout(result) => return result, |
| }) |
| } |
| |
| fn pointee_info_at(this: TyAndLayout<'tcx>, cx: &C, offset: Size) -> Option<PointeeInfo> { |
| let addr_space_of_ty = |ty: Ty<'tcx>| { |
| if ty.is_fn() { cx.data_layout().instruction_address_space } else { AddressSpace::DATA } |
| }; |
| |
| let pointee_info = match *this.ty.kind() { |
| ty::RawPtr(mt) if offset.bytes() == 0 => { |
| cx.layout_of(mt.ty).to_result().ok().map(|layout| PointeeInfo { |
| size: layout.size, |
| align: layout.align.abi, |
| safe: None, |
| address_space: addr_space_of_ty(mt.ty), |
| }) |
| } |
| ty::FnPtr(fn_sig) if offset.bytes() == 0 => { |
| cx.layout_of(cx.tcx().mk_fn_ptr(fn_sig)).to_result().ok().map(|layout| { |
| PointeeInfo { |
| size: layout.size, |
| align: layout.align.abi, |
| safe: None, |
| address_space: cx.data_layout().instruction_address_space, |
| } |
| }) |
| } |
| ty::Ref(_, ty, mt) if offset.bytes() == 0 => { |
| let address_space = addr_space_of_ty(ty); |
| let tcx = cx.tcx(); |
| let kind = if tcx.sess.opts.optimize == OptLevel::No { |
| // Use conservative pointer kind if not optimizing. This saves us the |
| // Freeze/Unpin queries, and can save time in the codegen backend (noalias |
| // attributes in LLVM have compile-time cost even in unoptimized builds). |
| PointerKind::Shared |
| } else { |
| match mt { |
| hir::Mutability::Not => { |
| if ty.is_freeze(tcx.at(DUMMY_SP), cx.param_env()) { |
| PointerKind::Frozen |
| } else { |
| PointerKind::Shared |
| } |
| } |
| hir::Mutability::Mut => { |
| // References to self-referential structures should not be considered |
| // noalias, as another pointer to the structure can be obtained, that |
| // is not based-on the original reference. We consider all !Unpin |
| // types to be potentially self-referential here. |
| if ty.is_unpin(tcx.at(DUMMY_SP), cx.param_env()) { |
| PointerKind::UniqueBorrowed |
| } else { |
| PointerKind::Shared |
| } |
| } |
| } |
| }; |
| |
| cx.layout_of(ty).to_result().ok().map(|layout| PointeeInfo { |
| size: layout.size, |
| align: layout.align.abi, |
| safe: Some(kind), |
| address_space, |
| }) |
| } |
| |
| _ => { |
| let mut data_variant = match this.variants { |
| // Within the discriminant field, only the niche itself is |
| // always initialized, so we only check for a pointer at its |
| // offset. |
| // |
| // If the niche is a pointer, it's either valid (according |
| // to its type), or null (which the niche field's scalar |
| // validity range encodes). This allows using |
| // `dereferenceable_or_null` for e.g., `Option<&T>`, and |
| // this will continue to work as long as we don't start |
| // using more niches than just null (e.g., the first page of |
| // the address space, or unaligned pointers). |
| Variants::Multiple { |
| tag_encoding: TagEncoding::Niche { dataful_variant, .. }, |
| tag_field, |
| .. |
| } if this.fields.offset(tag_field) == offset => { |
| Some(this.for_variant(cx, dataful_variant)) |
| } |
| _ => Some(this), |
| }; |
| |
| if let Some(variant) = data_variant { |
| // We're not interested in any unions. |
| if let FieldsShape::Union(_) = variant.fields { |
| data_variant = None; |
| } |
| } |
| |
| let mut result = None; |
| |
| if let Some(variant) = data_variant { |
| let ptr_end = offset + Pointer.size(cx); |
| for i in 0..variant.fields.count() { |
| let field_start = variant.fields.offset(i); |
| if field_start <= offset { |
| let field = variant.field(cx, i); |
| result = field.to_result().ok().and_then(|field| { |
| if ptr_end <= field_start + field.size { |
| // We found the right field, look inside it. |
| let field_info = |
| field.pointee_info_at(cx, offset - field_start); |
| field_info |
| } else { |
| None |
| } |
| }); |
| if result.is_some() { |
| break; |
| } |
| } |
| } |
| } |
| |
| // FIXME(eddyb) This should be for `ptr::Unique<T>`, not `Box<T>`. |
| if let Some(ref mut pointee) = result { |
| if let ty::Adt(def, _) = this.ty.kind() { |
| if def.is_box() && offset.bytes() == 0 { |
| pointee.safe = Some(PointerKind::UniqueOwned); |
| } |
| } |
| } |
| |
| result |
| } |
| }; |
| |
| debug!( |
| "pointee_info_at (offset={:?}, type kind: {:?}) => {:?}", |
| offset, |
| this.ty.kind(), |
| pointee_info |
| ); |
| |
| pointee_info |
| } |
| } |
| |
| impl<'a, 'tcx> HashStable<StableHashingContext<'a>> for LayoutError<'tcx> { |
| fn hash_stable(&self, hcx: &mut StableHashingContext<'a>, hasher: &mut StableHasher) { |
| use crate::ty::layout::LayoutError::*; |
| mem::discriminant(self).hash_stable(hcx, hasher); |
| |
| match *self { |
| Unknown(t) | SizeOverflow(t) => t.hash_stable(hcx, hasher), |
| } |
| } |
| } |
| |
| impl<'tcx> ty::Instance<'tcx> { |
| // NOTE(eddyb) this is private to avoid using it from outside of |
| // `FnAbi::of_instance` - any other uses are either too high-level |
| // for `Instance` (e.g. typeck would use `Ty::fn_sig` instead), |
| // or should go through `FnAbi` instead, to avoid losing any |
| // adjustments `FnAbi::of_instance` might be performing. |
| fn fn_sig_for_fn_abi(&self, tcx: TyCtxt<'tcx>) -> ty::PolyFnSig<'tcx> { |
| // FIXME(davidtwco,eddyb): A `ParamEnv` should be passed through to this function. |
| let ty = self.ty(tcx, ty::ParamEnv::reveal_all()); |
| match *ty.kind() { |
| ty::FnDef(..) => { |
| // HACK(davidtwco,eddyb): This is a workaround for polymorphization considering |
| // parameters unused if they show up in the signature, but not in the `mir::Body` |
| // (i.e. due to being inside a projection that got normalized, see |
| // `src/test/ui/polymorphization/normalized_sig_types.rs`), and codegen not keeping |
| // track of a polymorphization `ParamEnv` to allow normalizing later. |
| let mut sig = match *ty.kind() { |
| ty::FnDef(def_id, substs) => tcx |
| .normalize_erasing_regions(tcx.param_env(def_id), tcx.fn_sig(def_id)) |
| .subst(tcx, substs), |
| _ => unreachable!(), |
| }; |
| |
| if let ty::InstanceDef::VtableShim(..) = self.def { |
| // Modify `fn(self, ...)` to `fn(self: *mut Self, ...)`. |
| sig = sig.map_bound(|mut sig| { |
| let mut inputs_and_output = sig.inputs_and_output.to_vec(); |
| inputs_and_output[0] = tcx.mk_mut_ptr(inputs_and_output[0]); |
| sig.inputs_and_output = tcx.intern_type_list(&inputs_and_output); |
| sig |
| }); |
| } |
| sig |
| } |
| ty::Closure(def_id, substs) => { |
| let sig = substs.as_closure().sig(); |
| |
| let bound_vars = tcx.mk_bound_variable_kinds( |
| sig.bound_vars() |
| .iter() |
| .chain(iter::once(ty::BoundVariableKind::Region(ty::BrEnv))), |
| ); |
| let br = ty::BoundRegion { |
| var: ty::BoundVar::from_usize(bound_vars.len() - 1), |
| kind: ty::BoundRegionKind::BrEnv, |
| }; |
| let env_region = ty::ReLateBound(ty::INNERMOST, br); |
| let env_ty = tcx.closure_env_ty(def_id, substs, env_region).unwrap(); |
| |
| let sig = sig.skip_binder(); |
| ty::Binder::bind_with_vars( |
| tcx.mk_fn_sig( |
| iter::once(env_ty).chain(sig.inputs().iter().cloned()), |
| sig.output(), |
| sig.c_variadic, |
| sig.unsafety, |
| sig.abi, |
| ), |
| bound_vars, |
| ) |
| } |
| ty::Generator(_, substs, _) => { |
| let sig = substs.as_generator().poly_sig(); |
| |
| let bound_vars = tcx.mk_bound_variable_kinds( |
| sig.bound_vars() |
| .iter() |
| .chain(iter::once(ty::BoundVariableKind::Region(ty::BrEnv))), |
| ); |
| let br = ty::BoundRegion { |
| var: ty::BoundVar::from_usize(bound_vars.len() - 1), |
| kind: ty::BoundRegionKind::BrEnv, |
| }; |
| let env_region = ty::ReLateBound(ty::INNERMOST, br); |
| let env_ty = tcx.mk_mut_ref(tcx.mk_region(env_region), ty); |
| |
| let pin_did = tcx.require_lang_item(LangItem::Pin, None); |
| let pin_adt_ref = tcx.adt_def(pin_did); |
| let pin_substs = tcx.intern_substs(&[env_ty.into()]); |
| let env_ty = tcx.mk_adt(pin_adt_ref, pin_substs); |
| |
| let sig = sig.skip_binder(); |
| let state_did = tcx.require_lang_item(LangItem::GeneratorState, None); |
| let state_adt_ref = tcx.adt_def(state_did); |
| let state_substs = tcx.intern_substs(&[sig.yield_ty.into(), sig.return_ty.into()]); |
| let ret_ty = tcx.mk_adt(state_adt_ref, state_substs); |
| ty::Binder::bind_with_vars( |
| tcx.mk_fn_sig( |
| [env_ty, sig.resume_ty].iter(), |
| &ret_ty, |
| false, |
| hir::Unsafety::Normal, |
| rustc_target::spec::abi::Abi::Rust, |
| ), |
| bound_vars, |
| ) |
| } |
| _ => bug!("unexpected type {:?} in Instance::fn_sig", ty), |
| } |
| } |
| } |
| |
| pub trait FnAbiExt<'tcx, C> |
| where |
| C: LayoutOf<Ty = Ty<'tcx>, TyAndLayout = TyAndLayout<'tcx>> |
| + HasDataLayout |
| + HasTargetSpec |
| + HasTyCtxt<'tcx> |
| + HasParamEnv<'tcx>, |
| { |
| /// Compute a `FnAbi` suitable for indirect calls, i.e. to `fn` pointers. |
| /// |
| /// NB: this doesn't handle virtual calls - those should use `FnAbi::of_instance` |
| /// instead, where the instance is a `InstanceDef::Virtual`. |
| fn of_fn_ptr(cx: &C, sig: ty::PolyFnSig<'tcx>, extra_args: &[Ty<'tcx>]) -> Self; |
| |
| /// Compute a `FnAbi` suitable for declaring/defining an `fn` instance, and for |
| /// direct calls to an `fn`. |
| /// |
| /// NB: that includes virtual calls, which are represented by "direct calls" |
| /// to a `InstanceDef::Virtual` instance (of `<dyn Trait as Trait>::fn`). |
| fn of_instance(cx: &C, instance: ty::Instance<'tcx>, extra_args: &[Ty<'tcx>]) -> Self; |
| |
| fn new_internal( |
| cx: &C, |
| sig: ty::PolyFnSig<'tcx>, |
| extra_args: &[Ty<'tcx>], |
| caller_location: Option<Ty<'tcx>>, |
| codegen_fn_attr_flags: CodegenFnAttrFlags, |
| make_self_ptr_thin: bool, |
| ) -> Self; |
| fn adjust_for_abi(&mut self, cx: &C, abi: SpecAbi); |
| } |
| |
| fn fn_can_unwind( |
| panic_strategy: PanicStrategy, |
| codegen_fn_attr_flags: CodegenFnAttrFlags, |
| call_conv: Conv, |
| abi: SpecAbi, |
| ) -> bool { |
| if panic_strategy != PanicStrategy::Unwind { |
| // In panic=abort mode we assume nothing can unwind anywhere, so |
| // optimize based on this! |
| false |
| } else if codegen_fn_attr_flags.contains(CodegenFnAttrFlags::UNWIND) { |
| // If a specific #[unwind] attribute is present, use that. |
| true |
| } else if codegen_fn_attr_flags.contains(CodegenFnAttrFlags::RUSTC_ALLOCATOR_NOUNWIND) { |
| // Special attribute for allocator functions, which can't unwind. |
| false |
| } else { |
| if call_conv == Conv::Rust { |
| // Any Rust method (or `extern "Rust" fn` or `extern |
| // "rust-call" fn`) is explicitly allowed to unwind |
| // (unless it has no-unwind attribute, handled above). |
| true |
| } else { |
| // Anything else is either: |
| // |
| // 1. A foreign item using a non-Rust ABI (like `extern "C" { fn foo(); }`), or |
| // |
| // 2. A Rust item using a non-Rust ABI (like `extern "C" fn foo() { ... }`). |
| // |
| // In both of these cases, we should refer to the ABI to determine whether or not we |
| // should unwind. See Rust RFC 2945 for more information on this behavior, here: |
| // https://github.com/rust-lang/rfcs/blob/master/text/2945-c-unwind-abi.md |
| use SpecAbi::*; |
| match abi { |
| C { unwind } | Stdcall { unwind } | System { unwind } | Thiscall { unwind } => { |
| unwind |
| } |
| Cdecl |
| | Fastcall |
| | Vectorcall |
| | Aapcs |
| | Win64 |
| | SysV64 |
| | PtxKernel |
| | Msp430Interrupt |
| | X86Interrupt |
| | AmdGpuKernel |
| | EfiApi |
| | AvrInterrupt |
| | AvrNonBlockingInterrupt |
| | CCmseNonSecureCall |
| | Wasm |
| | RustIntrinsic |
| | PlatformIntrinsic |
| | Unadjusted => false, |
| // In the `if` above, we checked for functions with the Rust calling convention. |
| Rust | RustCall => unreachable!(), |
| } |
| } |
| } |
| } |
| |
| impl<'tcx, C> FnAbiExt<'tcx, C> for call::FnAbi<'tcx, Ty<'tcx>> |
| where |
| C: LayoutOf<Ty = Ty<'tcx>, TyAndLayout = TyAndLayout<'tcx>> |
| + HasDataLayout |
| + HasTargetSpec |
| + HasTyCtxt<'tcx> |
| + HasParamEnv<'tcx>, |
| { |
| fn of_fn_ptr(cx: &C, sig: ty::PolyFnSig<'tcx>, extra_args: &[Ty<'tcx>]) -> Self { |
| // Assume that fn pointers may always unwind |
| let codegen_fn_attr_flags = CodegenFnAttrFlags::UNWIND; |
| |
| call::FnAbi::new_internal(cx, sig, extra_args, None, codegen_fn_attr_flags, false) |
| } |
| |
| fn of_instance(cx: &C, instance: ty::Instance<'tcx>, extra_args: &[Ty<'tcx>]) -> Self { |
| let sig = instance.fn_sig_for_fn_abi(cx.tcx()); |
| |
| let caller_location = if instance.def.requires_caller_location(cx.tcx()) { |
| Some(cx.tcx().caller_location_ty()) |
| } else { |
| None |
| }; |
| |
| let attrs = cx.tcx().codegen_fn_attrs(instance.def_id()).flags; |
| |
| call::FnAbi::new_internal( |
| cx, |
| sig, |
| extra_args, |
| caller_location, |
| attrs, |
| matches!(instance.def, ty::InstanceDef::Virtual(..)), |
| ) |
| } |
| |
| fn new_internal( |
| cx: &C, |
| sig: ty::PolyFnSig<'tcx>, |
| extra_args: &[Ty<'tcx>], |
| caller_location: Option<Ty<'tcx>>, |
| codegen_fn_attr_flags: CodegenFnAttrFlags, |
| force_thin_self_ptr: bool, |
| ) -> Self { |
| debug!("FnAbi::new_internal({:?}, {:?})", sig, extra_args); |
| |
| let sig = cx.tcx().normalize_erasing_late_bound_regions(ty::ParamEnv::reveal_all(), sig); |
| |
| use rustc_target::spec::abi::Abi::*; |
| let conv = match cx.tcx().sess.target.adjust_abi(sig.abi) { |
| RustIntrinsic | PlatformIntrinsic | Rust | RustCall => Conv::Rust, |
| |
| // It's the ABI's job to select this, not ours. |
| System { .. } => bug!("system abi should be selected elsewhere"), |
| EfiApi => bug!("eficall abi should be selected elsewhere"), |
| |
| Stdcall { .. } => Conv::X86Stdcall, |
| Fastcall => Conv::X86Fastcall, |
| Vectorcall => Conv::X86VectorCall, |
| Thiscall { .. } => Conv::X86ThisCall, |
| C { .. } => Conv::C, |
| Unadjusted => Conv::C, |
| Win64 => Conv::X86_64Win64, |
| SysV64 => Conv::X86_64SysV, |
| Aapcs => Conv::ArmAapcs, |
| CCmseNonSecureCall => Conv::CCmseNonSecureCall, |
| PtxKernel => Conv::PtxKernel, |
| Msp430Interrupt => Conv::Msp430Intr, |
| X86Interrupt => Conv::X86Intr, |
| AmdGpuKernel => Conv::AmdGpuKernel, |
| AvrInterrupt => Conv::AvrInterrupt, |
| AvrNonBlockingInterrupt => Conv::AvrNonBlockingInterrupt, |
| Wasm => Conv::C, |
| |
| // These API constants ought to be more specific... |
| Cdecl => Conv::C, |
| }; |
| |
| let mut inputs = sig.inputs(); |
| let extra_args = if sig.abi == RustCall { |
| assert!(!sig.c_variadic && extra_args.is_empty()); |
| |
| if let Some(input) = sig.inputs().last() { |
| if let ty::Tuple(tupled_arguments) = input.kind() { |
| inputs = &sig.inputs()[0..sig.inputs().len() - 1]; |
| tupled_arguments.iter().map(|k| k.expect_ty()).collect() |
| } else { |
| bug!( |
| "argument to function with \"rust-call\" ABI \ |
| is not a tuple" |
| ); |
| } |
| } else { |
| bug!( |
| "argument to function with \"rust-call\" ABI \ |
| is not a tuple" |
| ); |
| } |
| } else { |
| assert!(sig.c_variadic || extra_args.is_empty()); |
| extra_args.to_vec() |
| }; |
| |
| let target = &cx.tcx().sess.target; |
| let target_env_gnu_like = matches!(&target.env[..], "gnu" | "musl"); |
| let win_x64_gnu = target.os == "windows" && target.arch == "x86_64" && target.env == "gnu"; |
| let linux_s390x_gnu_like = |
| target.os == "linux" && target.arch == "s390x" && target_env_gnu_like; |
| let linux_sparc64_gnu_like = |
| target.os == "linux" && target.arch == "sparc64" && target_env_gnu_like; |
| let linux_powerpc_gnu_like = |
| target.os == "linux" && target.arch == "powerpc" && target_env_gnu_like; |
| let rust_abi = matches!(sig.abi, RustIntrinsic | PlatformIntrinsic | Rust | RustCall); |
| |
| // Handle safe Rust thin and fat pointers. |
| let adjust_for_rust_scalar = |attrs: &mut ArgAttributes, |
| scalar: &Scalar, |
| layout: TyAndLayout<'tcx>, |
| offset: Size, |
| is_return: bool| { |
| // Booleans are always an i1 that needs to be zero-extended. |
| if scalar.is_bool() { |
| attrs.ext(ArgExtension::Zext); |
| return; |
| } |
| |
| // Only pointer types handled below. |
| if scalar.value != Pointer { |
| return; |
| } |
| |
| if scalar.valid_range.start() < scalar.valid_range.end() { |
| if *scalar.valid_range.start() > 0 { |
| attrs.set(ArgAttribute::NonNull); |
| } |
| } |
| |
| if let Some(pointee) = layout.pointee_info_at(cx, offset) { |
| if let Some(kind) = pointee.safe { |
| attrs.pointee_align = Some(pointee.align); |
| |
| // `Box` (`UniqueBorrowed`) are not necessarily dereferenceable |
| // for the entire duration of the function as they can be deallocated |
| // at any time. Set their valid size to 0. |
| attrs.pointee_size = match kind { |
| PointerKind::UniqueOwned => Size::ZERO, |
| _ => pointee.size, |
| }; |
| |
| // `Box` pointer parameters never alias because ownership is transferred |
| // `&mut` pointer parameters never alias other parameters, |
| // or mutable global data |
| // |
| // `&T` where `T` contains no `UnsafeCell<U>` is immutable, |
| // and can be marked as both `readonly` and `noalias`, as |
| // LLVM's definition of `noalias` is based solely on memory |
| // dependencies rather than pointer equality |
| // |
| // Due to miscompiles in LLVM < 12, we apply a separate NoAliasMutRef attribute |
| // for UniqueBorrowed arguments, so that the codegen backend can decide |
| // whether or not to actually emit the attribute. |
| let no_alias = match kind { |
| PointerKind::Shared | PointerKind::UniqueBorrowed => false, |
| PointerKind::UniqueOwned => true, |
| PointerKind::Frozen => !is_return, |
| }; |
| if no_alias { |
| attrs.set(ArgAttribute::NoAlias); |
| } |
| |
| if kind == PointerKind::Frozen && !is_return { |
| attrs.set(ArgAttribute::ReadOnly); |
| } |
| |
| if kind == PointerKind::UniqueBorrowed && !is_return { |
| attrs.set(ArgAttribute::NoAliasMutRef); |
| } |
| } |
| } |
| }; |
| |
| let arg_of = |ty: Ty<'tcx>, arg_idx: Option<usize>| { |
| let is_return = arg_idx.is_none(); |
| |
| let layout = cx.layout_of(ty); |
| let layout = if force_thin_self_ptr && arg_idx == Some(0) { |
| // Don't pass the vtable, it's not an argument of the virtual fn. |
| // Instead, pass just the data pointer, but give it the type `*const/mut dyn Trait` |
| // or `&/&mut dyn Trait` because this is special-cased elsewhere in codegen |
| make_thin_self_ptr(cx, layout) |
| } else { |
| layout |
| }; |
| |
| let mut arg = ArgAbi::new(cx, layout, |layout, scalar, offset| { |
| let mut attrs = ArgAttributes::new(); |
| adjust_for_rust_scalar(&mut attrs, scalar, *layout, offset, is_return); |
| attrs |
| }); |
| |
| if arg.layout.is_zst() { |
| // For some forsaken reason, x86_64-pc-windows-gnu |
| // doesn't ignore zero-sized struct arguments. |
| // The same is true for {s390x,sparc64,powerpc}-unknown-linux-{gnu,musl}. |
| if is_return |
| || rust_abi |
| || (!win_x64_gnu |
| && !linux_s390x_gnu_like |
| && !linux_sparc64_gnu_like |
| && !linux_powerpc_gnu_like) |
| { |
| arg.mode = PassMode::Ignore; |
| } |
| } |
| |
| arg |
| }; |
| |
| let mut fn_abi = FnAbi { |
| ret: arg_of(sig.output(), None), |
| args: inputs |
| .iter() |
| .cloned() |
| .chain(extra_args) |
| .chain(caller_location) |
| .enumerate() |
| .map(|(i, ty)| arg_of(ty, Some(i))) |
| .collect(), |
| c_variadic: sig.c_variadic, |
| fixed_count: inputs.len(), |
| conv, |
| can_unwind: fn_can_unwind( |
| cx.tcx().sess.panic_strategy(), |
| codegen_fn_attr_flags, |
| conv, |
| sig.abi, |
| ), |
| }; |
| fn_abi.adjust_for_abi(cx, sig.abi); |
| debug!("FnAbi::new_internal = {:?}", fn_abi); |
| fn_abi |
| } |
| |
| fn adjust_for_abi(&mut self, cx: &C, abi: SpecAbi) { |
| if abi == SpecAbi::Unadjusted { |
| return; |
| } |
| |
| if abi == SpecAbi::Rust |
| || abi == SpecAbi::RustCall |
| || abi == SpecAbi::RustIntrinsic |
| || abi == SpecAbi::PlatformIntrinsic |
| { |
| let fixup = |arg: &mut ArgAbi<'tcx, Ty<'tcx>>| { |
| if arg.is_ignore() { |
| return; |
| } |
| |
| match arg.layout.abi { |
| Abi::Aggregate { .. } => {} |
| |
| // This is a fun case! The gist of what this is doing is |
| // that we want callers and callees to always agree on the |
| // ABI of how they pass SIMD arguments. If we were to *not* |
| // make these arguments indirect then they'd be immediates |
| // in LLVM, which means that they'd used whatever the |
| // appropriate ABI is for the callee and the caller. That |
| // means, for example, if the caller doesn't have AVX |
| // enabled but the callee does, then passing an AVX argument |
| // across this boundary would cause corrupt data to show up. |
| // |
| // This problem is fixed by unconditionally passing SIMD |
| // arguments through memory between callers and callees |
| // which should get them all to agree on ABI regardless of |
| // target feature sets. Some more information about this |
| // issue can be found in #44367. |
| // |
| // Note that the platform intrinsic ABI is exempt here as |
| // that's how we connect up to LLVM and it's unstable |
| // anyway, we control all calls to it in libstd. |
| Abi::Vector { .. } |
| if abi != SpecAbi::PlatformIntrinsic |
| && cx.tcx().sess.target.simd_types_indirect => |
| { |
| arg.make_indirect(); |
| return; |
| } |
| |
| _ => return, |
| } |
| |
| // Pass and return structures up to 2 pointers in size by value, matching `ScalarPair`. |
| // LLVM will usually pass these in 2 registers, which is more efficient than by-ref. |
| let max_by_val_size = Pointer.size(cx) * 2; |
| let size = arg.layout.size; |
| |
| if arg.layout.is_unsized() || size > max_by_val_size { |
| arg.make_indirect(); |
| } else { |
| // We want to pass small aggregates as immediates, but using |
| // a LLVM aggregate type for this leads to bad optimizations, |
| // so we pick an appropriately sized integer type instead. |
| arg.cast_to(Reg { kind: RegKind::Integer, size }); |
| } |
| }; |
| fixup(&mut self.ret); |
| for arg in &mut self.args { |
| fixup(arg); |
| } |
| return; |
| } |
| |
| if let Err(msg) = self.adjust_for_cabi(cx, abi) { |
| cx.tcx().sess.fatal(&msg); |
| } |
| } |
| } |
| |
| fn make_thin_self_ptr<'tcx, C>(cx: &C, mut layout: TyAndLayout<'tcx>) -> TyAndLayout<'tcx> |
| where |
| C: LayoutOf<Ty = Ty<'tcx>, TyAndLayout = TyAndLayout<'tcx>> |
| + HasTyCtxt<'tcx> |
| + HasParamEnv<'tcx>, |
| { |
| let fat_pointer_ty = if layout.is_unsized() { |
| // unsized `self` is passed as a pointer to `self` |
| // FIXME (mikeyhew) change this to use &own if it is ever added to the language |
| cx.tcx().mk_mut_ptr(layout.ty) |
| } else { |
| match layout.abi { |
| Abi::ScalarPair(..) => (), |
| _ => bug!("receiver type has unsupported layout: {:?}", layout), |
| } |
| |
| // In the case of Rc<Self>, we need to explicitly pass a *mut RcBox<Self> |
| // with a Scalar (not ScalarPair) ABI. This is a hack that is understood |
| // elsewhere in the compiler as a method on a `dyn Trait`. |
| // To get the type `*mut RcBox<Self>`, we just keep unwrapping newtypes until we |
| // get a built-in pointer type |
| let mut fat_pointer_layout = layout; |
| 'descend_newtypes: while !fat_pointer_layout.ty.is_unsafe_ptr() |
| && !fat_pointer_layout.ty.is_region_ptr() |
| { |
| for i in 0..fat_pointer_layout.fields.count() { |
| let field_layout = fat_pointer_layout.field(cx, i); |
| |
| if !field_layout.is_zst() { |
| fat_pointer_layout = field_layout; |
| continue 'descend_newtypes; |
| } |
| } |
| |
| bug!("receiver has no non-zero-sized fields {:?}", fat_pointer_layout); |
| } |
| |
| fat_pointer_layout.ty |
| }; |
| |
| // we now have a type like `*mut RcBox<dyn Trait>` |
| // change its layout to that of `*mut ()`, a thin pointer, but keep the same type |
| // this is understood as a special case elsewhere in the compiler |
| let unit_pointer_ty = cx.tcx().mk_mut_ptr(cx.tcx().mk_unit()); |
| layout = cx.layout_of(unit_pointer_ty); |
| layout.ty = fat_pointer_ty; |
| layout |
| } |