| //! Defines how the compiler represents types internally. |
| //! |
| //! Two important entities in this module are: |
| //! |
| //! - [`rustc_middle::ty::Ty`], used to represent the semantics of a type. |
| //! - [`rustc_middle::ty::TyCtxt`], the central data structure in the compiler. |
| //! |
| //! For more information, see ["The `ty` module: representing types"] in the ructc-dev-guide. |
| //! |
| //! ["The `ty` module: representing types"]: https://rustc-dev-guide.rust-lang.org/ty.html |
| |
| pub use self::fold::{TypeFoldable, TypeFolder, TypeVisitor}; |
| pub use self::AssocItemContainer::*; |
| pub use self::BorrowKind::*; |
| pub use self::IntVarValue::*; |
| pub use self::Variance::*; |
| pub use adt::*; |
| pub use assoc::*; |
| pub use closure::*; |
| pub use generics::*; |
| |
| use crate::hir::exports::ExportMap; |
| use crate::ich::StableHashingContext; |
| use crate::middle::cstore::CrateStoreDyn; |
| use crate::mir::{Body, GeneratorLayout}; |
| use crate::traits::{self, Reveal}; |
| use crate::ty; |
| use crate::ty::subst::{GenericArg, InternalSubsts, Subst, SubstsRef}; |
| use crate::ty::util::Discr; |
| use rustc_ast as ast; |
| use rustc_attr as attr; |
| use rustc_data_structures::captures::Captures; |
| use rustc_data_structures::fx::{FxHashMap, FxHashSet}; |
| use rustc_data_structures::stable_hasher::{HashStable, StableHasher}; |
| use rustc_data_structures::sync::{self, par_iter, ParallelIterator}; |
| use rustc_data_structures::tagged_ptr::CopyTaggedPtr; |
| use rustc_hir as hir; |
| use rustc_hir::def::{CtorKind, CtorOf, DefKind, Res}; |
| use rustc_hir::def_id::{CrateNum, DefId, DefIdMap, LocalDefId, CRATE_DEF_INDEX}; |
| use rustc_hir::{Constness, Node}; |
| use rustc_macros::HashStable; |
| use rustc_span::hygiene::ExpnId; |
| use rustc_span::symbol::{kw, Ident, Symbol}; |
| use rustc_span::Span; |
| use rustc_target::abi::Align; |
| |
| use std::cmp::Ordering; |
| use std::hash::{Hash, Hasher}; |
| use std::ops::ControlFlow; |
| use std::{fmt, ptr, str}; |
| |
| pub use crate::ty::diagnostics::*; |
| pub use rustc_type_ir::InferTy::*; |
| pub use rustc_type_ir::*; |
| |
| pub use self::binding::BindingMode; |
| pub use self::binding::BindingMode::*; |
| pub use self::consts::{Const, ConstInt, ConstKind, InferConst, ScalarInt, Unevaluated, ValTree}; |
| pub use self::context::{ |
| tls, CanonicalUserType, CanonicalUserTypeAnnotation, CanonicalUserTypeAnnotations, |
| CtxtInterners, DelaySpanBugEmitted, FreeRegionInfo, GeneratorInteriorTypeCause, GlobalCtxt, |
| Lift, ResolvedOpaqueTy, TyCtxt, TypeckResults, UserType, UserTypeAnnotationIndex, |
| }; |
| pub use self::instance::{Instance, InstanceDef}; |
| pub use self::list::List; |
| pub use self::sty::BoundRegionKind::*; |
| pub use self::sty::RegionKind::*; |
| pub use self::sty::TyKind::*; |
| pub use self::sty::{ |
| Binder, BoundRegion, BoundRegionKind, BoundTy, BoundTyKind, BoundVar, BoundVariableKind, |
| CanonicalPolyFnSig, ClosureSubsts, ClosureSubstsParts, ConstVid, EarlyBoundRegion, |
| ExistentialPredicate, ExistentialProjection, ExistentialTraitRef, FnSig, FreeRegion, GenSig, |
| GeneratorSubsts, GeneratorSubstsParts, ParamConst, ParamTy, PolyExistentialProjection, |
| PolyExistentialTraitRef, PolyFnSig, PolyGenSig, PolyTraitRef, ProjectionTy, Region, RegionKind, |
| RegionVid, TraitRef, TyKind, TypeAndMut, UpvarSubsts, |
| }; |
| pub use self::trait_def::TraitDef; |
| |
| pub mod _match; |
| pub mod adjustment; |
| pub mod binding; |
| pub mod cast; |
| pub mod codec; |
| pub mod error; |
| pub mod fast_reject; |
| pub mod flags; |
| pub mod fold; |
| pub mod inhabitedness; |
| pub mod layout; |
| pub mod normalize_erasing_regions; |
| pub mod outlives; |
| pub mod print; |
| pub mod query; |
| pub mod relate; |
| pub mod subst; |
| pub mod trait_def; |
| pub mod util; |
| pub mod walk; |
| |
| mod adt; |
| mod assoc; |
| mod closure; |
| mod consts; |
| mod context; |
| mod diagnostics; |
| mod erase_regions; |
| mod generics; |
| mod instance; |
| mod list; |
| mod structural_impls; |
| mod sty; |
| |
| // Data types |
| |
| pub struct ResolverOutputs { |
| pub definitions: rustc_hir::definitions::Definitions, |
| pub cstore: Box<CrateStoreDyn>, |
| pub visibilities: FxHashMap<LocalDefId, Visibility>, |
| pub extern_crate_map: FxHashMap<LocalDefId, CrateNum>, |
| pub maybe_unused_trait_imports: FxHashSet<LocalDefId>, |
| pub maybe_unused_extern_crates: Vec<(LocalDefId, Span)>, |
| pub export_map: ExportMap<LocalDefId>, |
| pub glob_map: FxHashMap<LocalDefId, FxHashSet<Symbol>>, |
| /// Extern prelude entries. The value is `true` if the entry was introduced |
| /// via `extern crate` item and not `--extern` option or compiler built-in. |
| pub extern_prelude: FxHashMap<Symbol, bool>, |
| pub main_def: Option<MainDefinition>, |
| } |
| |
| #[derive(Clone, Copy)] |
| pub struct MainDefinition { |
| pub res: Res<ast::NodeId>, |
| pub is_import: bool, |
| pub span: Span, |
| } |
| |
| impl MainDefinition { |
| pub fn opt_fn_def_id(self) -> Option<DefId> { |
| if let Res::Def(DefKind::Fn, def_id) = self.res { Some(def_id) } else { None } |
| } |
| } |
| |
| /// The "header" of an impl is everything outside the body: a Self type, a trait |
| /// ref (in the case of a trait impl), and a set of predicates (from the |
| /// bounds / where-clauses). |
| #[derive(Clone, Debug, TypeFoldable)] |
| pub struct ImplHeader<'tcx> { |
| pub impl_def_id: DefId, |
| pub self_ty: Ty<'tcx>, |
| pub trait_ref: Option<TraitRef<'tcx>>, |
| pub predicates: Vec<Predicate<'tcx>>, |
| } |
| |
| #[derive(Copy, Clone, PartialEq, TyEncodable, TyDecodable, HashStable, Debug)] |
| pub enum ImplPolarity { |
| /// `impl Trait for Type` |
| Positive, |
| /// `impl !Trait for Type` |
| Negative, |
| /// `#[rustc_reservation_impl] impl Trait for Type` |
| /// |
| /// This is a "stability hack", not a real Rust feature. |
| /// See #64631 for details. |
| Reservation, |
| } |
| |
| #[derive(Clone, Debug, PartialEq, Eq, Copy, Hash, TyEncodable, TyDecodable, HashStable)] |
| pub enum Visibility { |
| /// Visible everywhere (including in other crates). |
| Public, |
| /// Visible only in the given crate-local module. |
| Restricted(DefId), |
| /// Not visible anywhere in the local crate. This is the visibility of private external items. |
| Invisible, |
| } |
| |
| pub trait DefIdTree: Copy { |
| fn parent(self, id: DefId) -> Option<DefId>; |
| |
| fn is_descendant_of(self, mut descendant: DefId, ancestor: DefId) -> bool { |
| if descendant.krate != ancestor.krate { |
| return false; |
| } |
| |
| while descendant != ancestor { |
| match self.parent(descendant) { |
| Some(parent) => descendant = parent, |
| None => return false, |
| } |
| } |
| true |
| } |
| } |
| |
| impl<'tcx> DefIdTree for TyCtxt<'tcx> { |
| fn parent(self, id: DefId) -> Option<DefId> { |
| self.def_key(id).parent.map(|index| DefId { index, ..id }) |
| } |
| } |
| |
| impl Visibility { |
| pub fn from_hir(visibility: &hir::Visibility<'_>, id: hir::HirId, tcx: TyCtxt<'_>) -> Self { |
| match visibility.node { |
| hir::VisibilityKind::Public => Visibility::Public, |
| hir::VisibilityKind::Crate(_) => Visibility::Restricted(DefId::local(CRATE_DEF_INDEX)), |
| hir::VisibilityKind::Restricted { ref path, .. } => match path.res { |
| // If there is no resolution, `resolve` will have already reported an error, so |
| // assume that the visibility is public to avoid reporting more privacy errors. |
| Res::Err => Visibility::Public, |
| def => Visibility::Restricted(def.def_id()), |
| }, |
| hir::VisibilityKind::Inherited => { |
| Visibility::Restricted(tcx.parent_module(id).to_def_id()) |
| } |
| } |
| } |
| |
| /// Returns `true` if an item with this visibility is accessible from the given block. |
| pub fn is_accessible_from<T: DefIdTree>(self, module: DefId, tree: T) -> bool { |
| let restriction = match self { |
| // Public items are visible everywhere. |
| Visibility::Public => return true, |
| // Private items from other crates are visible nowhere. |
| Visibility::Invisible => return false, |
| // Restricted items are visible in an arbitrary local module. |
| Visibility::Restricted(other) if other.krate != module.krate => return false, |
| Visibility::Restricted(module) => module, |
| }; |
| |
| tree.is_descendant_of(module, restriction) |
| } |
| |
| /// Returns `true` if this visibility is at least as accessible as the given visibility |
| pub fn is_at_least<T: DefIdTree>(self, vis: Visibility, tree: T) -> bool { |
| let vis_restriction = match vis { |
| Visibility::Public => return self == Visibility::Public, |
| Visibility::Invisible => return true, |
| Visibility::Restricted(module) => module, |
| }; |
| |
| self.is_accessible_from(vis_restriction, tree) |
| } |
| |
| // Returns `true` if this item is visible anywhere in the local crate. |
| pub fn is_visible_locally(self) -> bool { |
| match self { |
| Visibility::Public => true, |
| Visibility::Restricted(def_id) => def_id.is_local(), |
| Visibility::Invisible => false, |
| } |
| } |
| } |
| |
| /// The crate variances map is computed during typeck and contains the |
| /// variance of every item in the local crate. You should not use it |
| /// directly, because to do so will make your pass dependent on the |
| /// HIR of every item in the local crate. Instead, use |
| /// `tcx.variances_of()` to get the variance for a *particular* |
| /// item. |
| #[derive(HashStable, Debug)] |
| pub struct CrateVariancesMap<'tcx> { |
| /// For each item with generics, maps to a vector of the variance |
| /// of its generics. If an item has no generics, it will have no |
| /// entry. |
| pub variances: FxHashMap<DefId, &'tcx [ty::Variance]>, |
| } |
| |
| // Contains information needed to resolve types and (in the future) look up |
| // the types of AST nodes. |
| #[derive(Copy, Clone, PartialEq, Eq, Hash)] |
| pub struct CReaderCacheKey { |
| pub cnum: CrateNum, |
| pub pos: usize, |
| } |
| |
| #[allow(rustc::usage_of_ty_tykind)] |
| pub struct TyS<'tcx> { |
| /// This field shouldn't be used directly and may be removed in the future. |
| /// Use `TyS::kind()` instead. |
| kind: TyKind<'tcx>, |
| /// This field shouldn't be used directly and may be removed in the future. |
| /// Use `TyS::flags()` instead. |
| flags: TypeFlags, |
| |
| /// This is a kind of confusing thing: it stores the smallest |
| /// binder such that |
| /// |
| /// (a) the binder itself captures nothing but |
| /// (b) all the late-bound things within the type are captured |
| /// by some sub-binder. |
| /// |
| /// So, for a type without any late-bound things, like `u32`, this |
| /// will be *innermost*, because that is the innermost binder that |
| /// captures nothing. But for a type `&'D u32`, where `'D` is a |
| /// late-bound region with De Bruijn index `D`, this would be `D + 1` |
| /// -- the binder itself does not capture `D`, but `D` is captured |
| /// by an inner binder. |
| /// |
| /// We call this concept an "exclusive" binder `D` because all |
| /// De Bruijn indices within the type are contained within `0..D` |
| /// (exclusive). |
| outer_exclusive_binder: ty::DebruijnIndex, |
| } |
| |
| impl<'tcx> TyS<'tcx> { |
| /// A constructor used only for internal testing. |
| #[allow(rustc::usage_of_ty_tykind)] |
| pub fn make_for_test( |
| kind: TyKind<'tcx>, |
| flags: TypeFlags, |
| outer_exclusive_binder: ty::DebruijnIndex, |
| ) -> TyS<'tcx> { |
| TyS { kind, flags, outer_exclusive_binder } |
| } |
| } |
| |
| // `TyS` is used a lot. Make sure it doesn't unintentionally get bigger. |
| #[cfg(all(target_arch = "x86_64", target_pointer_width = "64"))] |
| static_assert_size!(TyS<'_>, 40); |
| |
| impl<'tcx> Ord for TyS<'tcx> { |
| fn cmp(&self, other: &TyS<'tcx>) -> Ordering { |
| self.kind().cmp(other.kind()) |
| } |
| } |
| |
| impl<'tcx> PartialOrd for TyS<'tcx> { |
| fn partial_cmp(&self, other: &TyS<'tcx>) -> Option<Ordering> { |
| Some(self.kind().cmp(other.kind())) |
| } |
| } |
| |
| impl<'tcx> PartialEq for TyS<'tcx> { |
| #[inline] |
| fn eq(&self, other: &TyS<'tcx>) -> bool { |
| ptr::eq(self, other) |
| } |
| } |
| impl<'tcx> Eq for TyS<'tcx> {} |
| |
| impl<'tcx> Hash for TyS<'tcx> { |
| fn hash<H: Hasher>(&self, s: &mut H) { |
| (self as *const TyS<'_>).hash(s) |
| } |
| } |
| |
| impl<'a, 'tcx> HashStable<StableHashingContext<'a>> for TyS<'tcx> { |
| fn hash_stable(&self, hcx: &mut StableHashingContext<'a>, hasher: &mut StableHasher) { |
| let ty::TyS { |
| ref kind, |
| |
| // The other fields just provide fast access to information that is |
| // also contained in `kind`, so no need to hash them. |
| flags: _, |
| |
| outer_exclusive_binder: _, |
| } = *self; |
| |
| kind.hash_stable(hcx, hasher); |
| } |
| } |
| |
| #[rustc_diagnostic_item = "Ty"] |
| pub type Ty<'tcx> = &'tcx TyS<'tcx>; |
| |
| impl ty::EarlyBoundRegion { |
| /// Does this early bound region have a name? Early bound regions normally |
| /// always have names except when using anonymous lifetimes (`'_`). |
| pub fn has_name(&self) -> bool { |
| self.name != kw::UnderscoreLifetime |
| } |
| } |
| |
| #[derive(Debug)] |
| crate struct PredicateInner<'tcx> { |
| kind: Binder<'tcx, PredicateKind<'tcx>>, |
| flags: TypeFlags, |
| /// See the comment for the corresponding field of [TyS]. |
| outer_exclusive_binder: ty::DebruijnIndex, |
| } |
| |
| #[cfg(all(target_arch = "x86_64", target_pointer_width = "64"))] |
| static_assert_size!(PredicateInner<'_>, 48); |
| |
| #[derive(Clone, Copy, Lift)] |
| pub struct Predicate<'tcx> { |
| inner: &'tcx PredicateInner<'tcx>, |
| } |
| |
| impl<'tcx> PartialEq for Predicate<'tcx> { |
| fn eq(&self, other: &Self) -> bool { |
| // `self.kind` is always interned. |
| ptr::eq(self.inner, other.inner) |
| } |
| } |
| |
| impl Hash for Predicate<'_> { |
| fn hash<H: Hasher>(&self, s: &mut H) { |
| (self.inner as *const PredicateInner<'_>).hash(s) |
| } |
| } |
| |
| impl<'tcx> Eq for Predicate<'tcx> {} |
| |
| impl<'tcx> Predicate<'tcx> { |
| /// Gets the inner `Binder<'tcx, PredicateKind<'tcx>>`. |
| #[inline] |
| pub fn kind(self) -> Binder<'tcx, PredicateKind<'tcx>> { |
| self.inner.kind |
| } |
| } |
| |
| impl<'a, 'tcx> HashStable<StableHashingContext<'a>> for Predicate<'tcx> { |
| fn hash_stable(&self, hcx: &mut StableHashingContext<'a>, hasher: &mut StableHasher) { |
| let PredicateInner { |
| ref kind, |
| |
| // The other fields just provide fast access to information that is |
| // also contained in `kind`, so no need to hash them. |
| flags: _, |
| outer_exclusive_binder: _, |
| } = self.inner; |
| |
| kind.hash_stable(hcx, hasher); |
| } |
| } |
| |
| #[derive(Clone, Copy, PartialEq, Eq, Hash, TyEncodable, TyDecodable)] |
| #[derive(HashStable, TypeFoldable)] |
| pub enum PredicateKind<'tcx> { |
| /// Corresponds to `where Foo: Bar<A, B, C>`. `Foo` here would be |
| /// the `Self` type of the trait reference and `A`, `B`, and `C` |
| /// would be the type parameters. |
| /// |
| /// A trait predicate will have `Constness::Const` if it originates |
| /// from a bound on a `const fn` without the `?const` opt-out (e.g., |
| /// `const fn foobar<Foo: Bar>() {}`). |
| Trait(TraitPredicate<'tcx>, Constness), |
| |
| /// `where 'a: 'b` |
| RegionOutlives(RegionOutlivesPredicate<'tcx>), |
| |
| /// `where T: 'a` |
| TypeOutlives(TypeOutlivesPredicate<'tcx>), |
| |
| /// `where <T as TraitRef>::Name == X`, approximately. |
| /// See the `ProjectionPredicate` struct for details. |
| Projection(ProjectionPredicate<'tcx>), |
| |
| /// No syntax: `T` well-formed. |
| WellFormed(GenericArg<'tcx>), |
| |
| /// Trait must be object-safe. |
| ObjectSafe(DefId), |
| |
| /// No direct syntax. May be thought of as `where T: FnFoo<...>` |
| /// for some substitutions `...` and `T` being a closure type. |
| /// Satisfied (or refuted) once we know the closure's kind. |
| ClosureKind(DefId, SubstsRef<'tcx>, ClosureKind), |
| |
| /// `T1 <: T2` |
| Subtype(SubtypePredicate<'tcx>), |
| |
| /// Constant initializer must evaluate successfully. |
| ConstEvaluatable(ty::WithOptConstParam<DefId>, SubstsRef<'tcx>), |
| |
| /// Constants must be equal. The first component is the const that is expected. |
| ConstEquate(&'tcx Const<'tcx>, &'tcx Const<'tcx>), |
| |
| /// Represents a type found in the environment that we can use for implied bounds. |
| /// |
| /// Only used for Chalk. |
| TypeWellFormedFromEnv(Ty<'tcx>), |
| } |
| |
| /// The crate outlives map is computed during typeck and contains the |
| /// outlives of every item in the local crate. You should not use it |
| /// directly, because to do so will make your pass dependent on the |
| /// HIR of every item in the local crate. Instead, use |
| /// `tcx.inferred_outlives_of()` to get the outlives for a *particular* |
| /// item. |
| #[derive(HashStable, Debug)] |
| pub struct CratePredicatesMap<'tcx> { |
| /// For each struct with outlive bounds, maps to a vector of the |
| /// predicate of its outlive bounds. If an item has no outlives |
| /// bounds, it will have no entry. |
| pub predicates: FxHashMap<DefId, &'tcx [(Predicate<'tcx>, Span)]>, |
| } |
| |
| impl<'tcx> Predicate<'tcx> { |
| /// Performs a substitution suitable for going from a |
| /// poly-trait-ref to supertraits that must hold if that |
| /// poly-trait-ref holds. This is slightly different from a normal |
| /// substitution in terms of what happens with bound regions. See |
| /// lengthy comment below for details. |
| pub fn subst_supertrait( |
| self, |
| tcx: TyCtxt<'tcx>, |
| trait_ref: &ty::PolyTraitRef<'tcx>, |
| ) -> Predicate<'tcx> { |
| // The interaction between HRTB and supertraits is not entirely |
| // obvious. Let me walk you (and myself) through an example. |
| // |
| // Let's start with an easy case. Consider two traits: |
| // |
| // trait Foo<'a>: Bar<'a,'a> { } |
| // trait Bar<'b,'c> { } |
| // |
| // Now, if we have a trait reference `for<'x> T: Foo<'x>`, then |
| // we can deduce that `for<'x> T: Bar<'x,'x>`. Basically, if we |
| // knew that `Foo<'x>` (for any 'x) then we also know that |
| // `Bar<'x,'x>` (for any 'x). This more-or-less falls out from |
| // normal substitution. |
| // |
| // In terms of why this is sound, the idea is that whenever there |
| // is an impl of `T:Foo<'a>`, it must show that `T:Bar<'a,'a>` |
| // holds. So if there is an impl of `T:Foo<'a>` that applies to |
| // all `'a`, then we must know that `T:Bar<'a,'a>` holds for all |
| // `'a`. |
| // |
| // Another example to be careful of is this: |
| // |
| // trait Foo1<'a>: for<'b> Bar1<'a,'b> { } |
| // trait Bar1<'b,'c> { } |
| // |
| // Here, if we have `for<'x> T: Foo1<'x>`, then what do we know? |
| // The answer is that we know `for<'x,'b> T: Bar1<'x,'b>`. The |
| // reason is similar to the previous example: any impl of |
| // `T:Foo1<'x>` must show that `for<'b> T: Bar1<'x, 'b>`. So |
| // basically we would want to collapse the bound lifetimes from |
| // the input (`trait_ref`) and the supertraits. |
| // |
| // To achieve this in practice is fairly straightforward. Let's |
| // consider the more complicated scenario: |
| // |
| // - We start out with `for<'x> T: Foo1<'x>`. In this case, `'x` |
| // has a De Bruijn index of 1. We want to produce `for<'x,'b> T: Bar1<'x,'b>`, |
| // where both `'x` and `'b` would have a DB index of 1. |
| // The substitution from the input trait-ref is therefore going to be |
| // `'a => 'x` (where `'x` has a DB index of 1). |
| // - The super-trait-ref is `for<'b> Bar1<'a,'b>`, where `'a` is an |
| // early-bound parameter and `'b' is a late-bound parameter with a |
| // DB index of 1. |
| // - If we replace `'a` with `'x` from the input, it too will have |
| // a DB index of 1, and thus we'll have `for<'x,'b> Bar1<'x,'b>` |
| // just as we wanted. |
| // |
| // There is only one catch. If we just apply the substitution `'a |
| // => 'x` to `for<'b> Bar1<'a,'b>`, the substitution code will |
| // adjust the DB index because we substituting into a binder (it |
| // tries to be so smart...) resulting in `for<'x> for<'b> |
| // Bar1<'x,'b>` (we have no syntax for this, so use your |
| // imagination). Basically the 'x will have DB index of 2 and 'b |
| // will have DB index of 1. Not quite what we want. So we apply |
| // the substitution to the *contents* of the trait reference, |
| // rather than the trait reference itself (put another way, the |
| // substitution code expects equal binding levels in the values |
| // from the substitution and the value being substituted into, and |
| // this trick achieves that). |
| |
| // Working through the second example: |
| // trait_ref: for<'x> T: Foo1<'^0.0>; substs: [T, '^0.0] |
| // predicate: for<'b> Self: Bar1<'a, '^0.0>; substs: [Self, 'a, '^0.0] |
| // We want to end up with: |
| // for<'x, 'b> T: Bar1<'^0.0, '^0.1> |
| // To do this: |
| // 1) We must shift all bound vars in predicate by the length |
| // of trait ref's bound vars. So, we would end up with predicate like |
| // Self: Bar1<'a, '^0.1> |
| // 2) We can then apply the trait substs to this, ending up with |
| // T: Bar1<'^0.0, '^0.1> |
| // 3) Finally, to create the final bound vars, we concatenate the bound |
| // vars of the trait ref with those of the predicate: |
| // ['x, 'b] |
| let bound_pred = self.kind(); |
| let pred_bound_vars = bound_pred.bound_vars(); |
| let trait_bound_vars = trait_ref.bound_vars(); |
| // 1) Self: Bar1<'a, '^0.0> -> Self: Bar1<'a, '^0.1> |
| let shifted_pred = |
| tcx.shift_bound_var_indices(trait_bound_vars.len(), bound_pred.skip_binder()); |
| // 2) Self: Bar1<'a, '^0.1> -> T: Bar1<'^0.0, '^0.1> |
| let new = shifted_pred.subst(tcx, trait_ref.skip_binder().substs); |
| // 3) ['x] + ['b] -> ['x, 'b] |
| let bound_vars = |
| tcx.mk_bound_variable_kinds(trait_bound_vars.iter().chain(pred_bound_vars)); |
| tcx.reuse_or_mk_predicate(self, ty::Binder::bind_with_vars(new, bound_vars)) |
| } |
| } |
| |
| #[derive(Clone, Copy, PartialEq, Eq, Hash, TyEncodable, TyDecodable)] |
| #[derive(HashStable, TypeFoldable)] |
| pub struct TraitPredicate<'tcx> { |
| pub trait_ref: TraitRef<'tcx>, |
| } |
| |
| pub type PolyTraitPredicate<'tcx> = ty::Binder<'tcx, TraitPredicate<'tcx>>; |
| |
| impl<'tcx> TraitPredicate<'tcx> { |
| pub fn def_id(self) -> DefId { |
| self.trait_ref.def_id |
| } |
| |
| pub fn self_ty(self) -> Ty<'tcx> { |
| self.trait_ref.self_ty() |
| } |
| } |
| |
| impl<'tcx> PolyTraitPredicate<'tcx> { |
| pub fn def_id(self) -> DefId { |
| // Ok to skip binder since trait `DefId` does not care about regions. |
| self.skip_binder().def_id() |
| } |
| |
| pub fn self_ty(self) -> ty::Binder<'tcx, Ty<'tcx>> { |
| self.map_bound(|trait_ref| trait_ref.self_ty()) |
| } |
| } |
| |
| #[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, Debug, TyEncodable, TyDecodable)] |
| #[derive(HashStable, TypeFoldable)] |
| pub struct OutlivesPredicate<A, B>(pub A, pub B); // `A: B` |
| pub type RegionOutlivesPredicate<'tcx> = OutlivesPredicate<ty::Region<'tcx>, ty::Region<'tcx>>; |
| pub type TypeOutlivesPredicate<'tcx> = OutlivesPredicate<Ty<'tcx>, ty::Region<'tcx>>; |
| pub type PolyRegionOutlivesPredicate<'tcx> = ty::Binder<'tcx, RegionOutlivesPredicate<'tcx>>; |
| pub type PolyTypeOutlivesPredicate<'tcx> = ty::Binder<'tcx, TypeOutlivesPredicate<'tcx>>; |
| |
| #[derive(Clone, Copy, PartialEq, Eq, Hash, Debug, TyEncodable, TyDecodable)] |
| #[derive(HashStable, TypeFoldable)] |
| pub struct SubtypePredicate<'tcx> { |
| pub a_is_expected: bool, |
| pub a: Ty<'tcx>, |
| pub b: Ty<'tcx>, |
| } |
| pub type PolySubtypePredicate<'tcx> = ty::Binder<'tcx, SubtypePredicate<'tcx>>; |
| |
| /// This kind of predicate has no *direct* correspondent in the |
| /// syntax, but it roughly corresponds to the syntactic forms: |
| /// |
| /// 1. `T: TraitRef<..., Item = Type>` |
| /// 2. `<T as TraitRef<...>>::Item == Type` (NYI) |
| /// |
| /// In particular, form #1 is "desugared" to the combination of a |
| /// normal trait predicate (`T: TraitRef<...>`) and one of these |
| /// predicates. Form #2 is a broader form in that it also permits |
| /// equality between arbitrary types. Processing an instance of |
| /// Form #2 eventually yields one of these `ProjectionPredicate` |
| /// instances to normalize the LHS. |
| #[derive(Copy, Clone, PartialEq, Eq, Hash, TyEncodable, TyDecodable)] |
| #[derive(HashStable, TypeFoldable)] |
| pub struct ProjectionPredicate<'tcx> { |
| pub projection_ty: ProjectionTy<'tcx>, |
| pub ty: Ty<'tcx>, |
| } |
| |
| pub type PolyProjectionPredicate<'tcx> = Binder<'tcx, ProjectionPredicate<'tcx>>; |
| |
| impl<'tcx> PolyProjectionPredicate<'tcx> { |
| /// Returns the `DefId` of the trait of the associated item being projected. |
| #[inline] |
| pub fn trait_def_id(&self, tcx: TyCtxt<'tcx>) -> DefId { |
| self.skip_binder().projection_ty.trait_def_id(tcx) |
| } |
| |
| /// Get the [PolyTraitRef] required for this projection to be well formed. |
| /// Note that for generic associated types the predicates of the associated |
| /// type also need to be checked. |
| #[inline] |
| pub fn required_poly_trait_ref(&self, tcx: TyCtxt<'tcx>) -> PolyTraitRef<'tcx> { |
| // Note: unlike with `TraitRef::to_poly_trait_ref()`, |
| // `self.0.trait_ref` is permitted to have escaping regions. |
| // This is because here `self` has a `Binder` and so does our |
| // return value, so we are preserving the number of binding |
| // levels. |
| self.map_bound(|predicate| predicate.projection_ty.trait_ref(tcx)) |
| } |
| |
| pub fn ty(&self) -> Binder<'tcx, Ty<'tcx>> { |
| self.map_bound(|predicate| predicate.ty) |
| } |
| |
| /// The `DefId` of the `TraitItem` for the associated type. |
| /// |
| /// Note that this is not the `DefId` of the `TraitRef` containing this |
| /// associated type, which is in `tcx.associated_item(projection_def_id()).container`. |
| pub fn projection_def_id(&self) -> DefId { |
| // Ok to skip binder since trait `DefId` does not care about regions. |
| self.skip_binder().projection_ty.item_def_id |
| } |
| } |
| |
| pub trait ToPolyTraitRef<'tcx> { |
| fn to_poly_trait_ref(&self) -> PolyTraitRef<'tcx>; |
| } |
| |
| impl<'tcx> ToPolyTraitRef<'tcx> for TraitRef<'tcx> { |
| fn to_poly_trait_ref(&self) -> PolyTraitRef<'tcx> { |
| ty::Binder::dummy(*self) |
| } |
| } |
| |
| impl<'tcx> ToPolyTraitRef<'tcx> for PolyTraitPredicate<'tcx> { |
| fn to_poly_trait_ref(&self) -> PolyTraitRef<'tcx> { |
| self.map_bound_ref(|trait_pred| trait_pred.trait_ref) |
| } |
| } |
| |
| pub trait ToPredicate<'tcx> { |
| fn to_predicate(self, tcx: TyCtxt<'tcx>) -> Predicate<'tcx>; |
| } |
| |
| impl ToPredicate<'tcx> for Binder<'tcx, PredicateKind<'tcx>> { |
| #[inline(always)] |
| fn to_predicate(self, tcx: TyCtxt<'tcx>) -> Predicate<'tcx> { |
| tcx.mk_predicate(self) |
| } |
| } |
| |
| impl ToPredicate<'tcx> for PredicateKind<'tcx> { |
| #[inline(always)] |
| fn to_predicate(self, tcx: TyCtxt<'tcx>) -> Predicate<'tcx> { |
| tcx.mk_predicate(Binder::dummy(self)) |
| } |
| } |
| |
| impl<'tcx> ToPredicate<'tcx> for ConstnessAnd<TraitRef<'tcx>> { |
| fn to_predicate(self, tcx: TyCtxt<'tcx>) -> Predicate<'tcx> { |
| PredicateKind::Trait(ty::TraitPredicate { trait_ref: self.value }, self.constness) |
| .to_predicate(tcx) |
| } |
| } |
| |
| impl<'tcx> ToPredicate<'tcx> for ConstnessAnd<PolyTraitRef<'tcx>> { |
| fn to_predicate(self, tcx: TyCtxt<'tcx>) -> Predicate<'tcx> { |
| self.value |
| .map_bound(|trait_ref| { |
| PredicateKind::Trait(ty::TraitPredicate { trait_ref }, self.constness) |
| }) |
| .to_predicate(tcx) |
| } |
| } |
| |
| impl<'tcx> ToPredicate<'tcx> for ConstnessAnd<PolyTraitPredicate<'tcx>> { |
| fn to_predicate(self, tcx: TyCtxt<'tcx>) -> Predicate<'tcx> { |
| self.value.map_bound(|value| PredicateKind::Trait(value, self.constness)).to_predicate(tcx) |
| } |
| } |
| |
| impl<'tcx> ToPredicate<'tcx> for PolyRegionOutlivesPredicate<'tcx> { |
| fn to_predicate(self, tcx: TyCtxt<'tcx>) -> Predicate<'tcx> { |
| self.map_bound(PredicateKind::RegionOutlives).to_predicate(tcx) |
| } |
| } |
| |
| impl<'tcx> ToPredicate<'tcx> for PolyTypeOutlivesPredicate<'tcx> { |
| fn to_predicate(self, tcx: TyCtxt<'tcx>) -> Predicate<'tcx> { |
| self.map_bound(PredicateKind::TypeOutlives).to_predicate(tcx) |
| } |
| } |
| |
| impl<'tcx> ToPredicate<'tcx> for PolyProjectionPredicate<'tcx> { |
| fn to_predicate(self, tcx: TyCtxt<'tcx>) -> Predicate<'tcx> { |
| self.map_bound(PredicateKind::Projection).to_predicate(tcx) |
| } |
| } |
| |
| impl<'tcx> Predicate<'tcx> { |
| pub fn to_opt_poly_trait_ref(self) -> Option<ConstnessAnd<PolyTraitRef<'tcx>>> { |
| let predicate = self.kind(); |
| match predicate.skip_binder() { |
| PredicateKind::Trait(t, constness) => { |
| Some(ConstnessAnd { constness, value: predicate.rebind(t.trait_ref) }) |
| } |
| PredicateKind::Projection(..) |
| | PredicateKind::Subtype(..) |
| | PredicateKind::RegionOutlives(..) |
| | PredicateKind::WellFormed(..) |
| | PredicateKind::ObjectSafe(..) |
| | PredicateKind::ClosureKind(..) |
| | PredicateKind::TypeOutlives(..) |
| | PredicateKind::ConstEvaluatable(..) |
| | PredicateKind::ConstEquate(..) |
| | PredicateKind::TypeWellFormedFromEnv(..) => None, |
| } |
| } |
| |
| pub fn to_opt_type_outlives(self) -> Option<PolyTypeOutlivesPredicate<'tcx>> { |
| let predicate = self.kind(); |
| match predicate.skip_binder() { |
| PredicateKind::TypeOutlives(data) => Some(predicate.rebind(data)), |
| PredicateKind::Trait(..) |
| | PredicateKind::Projection(..) |
| | PredicateKind::Subtype(..) |
| | PredicateKind::RegionOutlives(..) |
| | PredicateKind::WellFormed(..) |
| | PredicateKind::ObjectSafe(..) |
| | PredicateKind::ClosureKind(..) |
| | PredicateKind::ConstEvaluatable(..) |
| | PredicateKind::ConstEquate(..) |
| | PredicateKind::TypeWellFormedFromEnv(..) => None, |
| } |
| } |
| } |
| |
| /// Represents the bounds declared on a particular set of type |
| /// parameters. Should eventually be generalized into a flag list of |
| /// where-clauses. You can obtain a `InstantiatedPredicates` list from a |
| /// `GenericPredicates` by using the `instantiate` method. Note that this method |
| /// reflects an important semantic invariant of `InstantiatedPredicates`: while |
| /// the `GenericPredicates` are expressed in terms of the bound type |
| /// parameters of the impl/trait/whatever, an `InstantiatedPredicates` instance |
| /// represented a set of bounds for some particular instantiation, |
| /// meaning that the generic parameters have been substituted with |
| /// their values. |
| /// |
| /// Example: |
| /// |
| /// struct Foo<T, U: Bar<T>> { ... } |
| /// |
| /// Here, the `GenericPredicates` for `Foo` would contain a list of bounds like |
| /// `[[], [U:Bar<T>]]`. Now if there were some particular reference |
| /// like `Foo<isize,usize>`, then the `InstantiatedPredicates` would be `[[], |
| /// [usize:Bar<isize>]]`. |
| #[derive(Clone, Debug, TypeFoldable)] |
| pub struct InstantiatedPredicates<'tcx> { |
| pub predicates: Vec<Predicate<'tcx>>, |
| pub spans: Vec<Span>, |
| } |
| |
| impl<'tcx> InstantiatedPredicates<'tcx> { |
| pub fn empty() -> InstantiatedPredicates<'tcx> { |
| InstantiatedPredicates { predicates: vec![], spans: vec![] } |
| } |
| |
| pub fn is_empty(&self) -> bool { |
| self.predicates.is_empty() |
| } |
| } |
| |
| rustc_index::newtype_index! { |
| /// "Universes" are used during type- and trait-checking in the |
| /// presence of `for<..>` binders to control what sets of names are |
| /// visible. Universes are arranged into a tree: the root universe |
| /// contains names that are always visible. Each child then adds a new |
| /// set of names that are visible, in addition to those of its parent. |
| /// We say that the child universe "extends" the parent universe with |
| /// new names. |
| /// |
| /// To make this more concrete, consider this program: |
| /// |
| /// ``` |
| /// struct Foo { } |
| /// fn bar<T>(x: T) { |
| /// let y: for<'a> fn(&'a u8, Foo) = ...; |
| /// } |
| /// ``` |
| /// |
| /// The struct name `Foo` is in the root universe U0. But the type |
| /// parameter `T`, introduced on `bar`, is in an extended universe U1 |
| /// -- i.e., within `bar`, we can name both `T` and `Foo`, but outside |
| /// of `bar`, we cannot name `T`. Then, within the type of `y`, the |
| /// region `'a` is in a universe U2 that extends U1, because we can |
| /// name it inside the fn type but not outside. |
| /// |
| /// Universes are used to do type- and trait-checking around these |
| /// "forall" binders (also called **universal quantification**). The |
| /// idea is that when, in the body of `bar`, we refer to `T` as a |
| /// type, we aren't referring to any type in particular, but rather a |
| /// kind of "fresh" type that is distinct from all other types we have |
| /// actually declared. This is called a **placeholder** type, and we |
| /// use universes to talk about this. In other words, a type name in |
| /// universe 0 always corresponds to some "ground" type that the user |
| /// declared, but a type name in a non-zero universe is a placeholder |
| /// type -- an idealized representative of "types in general" that we |
| /// use for checking generic functions. |
| pub struct UniverseIndex { |
| derive [HashStable] |
| DEBUG_FORMAT = "U{}", |
| } |
| } |
| |
| impl UniverseIndex { |
| pub const ROOT: UniverseIndex = UniverseIndex::from_u32(0); |
| |
| /// Returns the "next" universe index in order -- this new index |
| /// is considered to extend all previous universes. This |
| /// corresponds to entering a `forall` quantifier. So, for |
| /// example, suppose we have this type in universe `U`: |
| /// |
| /// ``` |
| /// for<'a> fn(&'a u32) |
| /// ``` |
| /// |
| /// Once we "enter" into this `for<'a>` quantifier, we are in a |
| /// new universe that extends `U` -- in this new universe, we can |
| /// name the region `'a`, but that region was not nameable from |
| /// `U` because it was not in scope there. |
| pub fn next_universe(self) -> UniverseIndex { |
| UniverseIndex::from_u32(self.private.checked_add(1).unwrap()) |
| } |
| |
| /// Returns `true` if `self` can name a name from `other` -- in other words, |
| /// if the set of names in `self` is a superset of those in |
| /// `other` (`self >= other`). |
| pub fn can_name(self, other: UniverseIndex) -> bool { |
| self.private >= other.private |
| } |
| |
| /// Returns `true` if `self` cannot name some names from `other` -- in other |
| /// words, if the set of names in `self` is a strict subset of |
| /// those in `other` (`self < other`). |
| pub fn cannot_name(self, other: UniverseIndex) -> bool { |
| self.private < other.private |
| } |
| } |
| |
| /// The "placeholder index" fully defines a placeholder region, type, or const. Placeholders are |
| /// identified by both a universe, as well as a name residing within that universe. Distinct bound |
| /// regions/types/consts within the same universe simply have an unknown relationship to one |
| /// another. |
| #[derive(Copy, Clone, Debug, PartialEq, Eq, Hash, TyEncodable, TyDecodable, PartialOrd, Ord)] |
| pub struct Placeholder<T> { |
| pub universe: UniverseIndex, |
| pub name: T, |
| } |
| |
| impl<'a, T> HashStable<StableHashingContext<'a>> for Placeholder<T> |
| where |
| T: HashStable<StableHashingContext<'a>>, |
| { |
| fn hash_stable(&self, hcx: &mut StableHashingContext<'a>, hasher: &mut StableHasher) { |
| self.universe.hash_stable(hcx, hasher); |
| self.name.hash_stable(hcx, hasher); |
| } |
| } |
| |
| pub type PlaceholderRegion = Placeholder<BoundRegionKind>; |
| |
| pub type PlaceholderType = Placeholder<BoundVar>; |
| |
| #[derive(Copy, Clone, Debug, PartialEq, Eq, Hash, HashStable)] |
| #[derive(TyEncodable, TyDecodable, PartialOrd, Ord)] |
| pub struct BoundConst<'tcx> { |
| pub var: BoundVar, |
| pub ty: Ty<'tcx>, |
| } |
| |
| pub type PlaceholderConst<'tcx> = Placeholder<BoundConst<'tcx>>; |
| |
| /// A `DefId` which, in case it is a const argument, is potentially bundled with |
| /// the `DefId` of the generic parameter it instantiates. |
| /// |
| /// This is used to avoid calls to `type_of` for const arguments during typeck |
| /// which cause cycle errors. |
| /// |
| /// ```rust |
| /// struct A; |
| /// impl A { |
| /// fn foo<const N: usize>(&self) -> [u8; N] { [0; N] } |
| /// // ^ const parameter |
| /// } |
| /// struct B; |
| /// impl B { |
| /// fn foo<const M: u8>(&self) -> usize { 42 } |
| /// // ^ const parameter |
| /// } |
| /// |
| /// fn main() { |
| /// let a = A; |
| /// let _b = a.foo::<{ 3 + 7 }>(); |
| /// // ^^^^^^^^^ const argument |
| /// } |
| /// ``` |
| /// |
| /// Let's look at the call `a.foo::<{ 3 + 7 }>()` here. We do not know |
| /// which `foo` is used until we know the type of `a`. |
| /// |
| /// We only know the type of `a` once we are inside of `typeck(main)`. |
| /// We also end up normalizing the type of `_b` during `typeck(main)` which |
| /// requires us to evaluate the const argument. |
| /// |
| /// To evaluate that const argument we need to know its type, |
| /// which we would get using `type_of(const_arg)`. This requires us to |
| /// resolve `foo` as it can be either `usize` or `u8` in this example. |
| /// However, resolving `foo` once again requires `typeck(main)` to get the type of `a`, |
| /// which results in a cycle. |
| /// |
| /// In short we must not call `type_of(const_arg)` during `typeck(main)`. |
| /// |
| /// When first creating the `ty::Const` of the const argument inside of `typeck` we have |
| /// already resolved `foo` so we know which const parameter this argument instantiates. |
| /// This means that we also know the expected result of `type_of(const_arg)` even if we |
| /// aren't allowed to call that query: it is equal to `type_of(const_param)` which is |
| /// trivial to compute. |
| /// |
| /// If we now want to use that constant in a place which potentionally needs its type |
| /// we also pass the type of its `const_param`. This is the point of `WithOptConstParam`, |
| /// except that instead of a `Ty` we bundle the `DefId` of the const parameter. |
| /// Meaning that we need to use `type_of(const_param_did)` if `const_param_did` is `Some` |
| /// to get the type of `did`. |
| #[derive(Copy, Clone, Debug, TypeFoldable, Lift, TyEncodable, TyDecodable)] |
| #[derive(PartialEq, Eq, PartialOrd, Ord)] |
| #[derive(Hash, HashStable)] |
| pub struct WithOptConstParam<T> { |
| pub did: T, |
| /// The `DefId` of the corresponding generic parameter in case `did` is |
| /// a const argument. |
| /// |
| /// Note that even if `did` is a const argument, this may still be `None`. |
| /// All queries taking `WithOptConstParam` start by calling `tcx.opt_const_param_of(def.did)` |
| /// to potentially update `param_did` in the case it is `None`. |
| pub const_param_did: Option<DefId>, |
| } |
| |
| impl<T> WithOptConstParam<T> { |
| /// Creates a new `WithOptConstParam` setting `const_param_did` to `None`. |
| #[inline(always)] |
| pub fn unknown(did: T) -> WithOptConstParam<T> { |
| WithOptConstParam { did, const_param_did: None } |
| } |
| } |
| |
| impl WithOptConstParam<LocalDefId> { |
| /// Returns `Some((did, param_did))` if `def_id` is a const argument, |
| /// `None` otherwise. |
| #[inline(always)] |
| pub fn try_lookup(did: LocalDefId, tcx: TyCtxt<'_>) -> Option<(LocalDefId, DefId)> { |
| tcx.opt_const_param_of(did).map(|param_did| (did, param_did)) |
| } |
| |
| /// In case `self` is unknown but `self.did` is a const argument, this returns |
| /// a `WithOptConstParam` with the correct `const_param_did`. |
| #[inline(always)] |
| pub fn try_upgrade(self, tcx: TyCtxt<'_>) -> Option<WithOptConstParam<LocalDefId>> { |
| if self.const_param_did.is_none() { |
| if let const_param_did @ Some(_) = tcx.opt_const_param_of(self.did) { |
| return Some(WithOptConstParam { did: self.did, const_param_did }); |
| } |
| } |
| |
| None |
| } |
| |
| pub fn to_global(self) -> WithOptConstParam<DefId> { |
| WithOptConstParam { did: self.did.to_def_id(), const_param_did: self.const_param_did } |
| } |
| |
| pub fn def_id_for_type_of(self) -> DefId { |
| if let Some(did) = self.const_param_did { did } else { self.did.to_def_id() } |
| } |
| } |
| |
| impl WithOptConstParam<DefId> { |
| pub fn as_local(self) -> Option<WithOptConstParam<LocalDefId>> { |
| self.did |
| .as_local() |
| .map(|did| WithOptConstParam { did, const_param_did: self.const_param_did }) |
| } |
| |
| pub fn as_const_arg(self) -> Option<(LocalDefId, DefId)> { |
| if let Some(param_did) = self.const_param_did { |
| if let Some(did) = self.did.as_local() { |
| return Some((did, param_did)); |
| } |
| } |
| |
| None |
| } |
| |
| pub fn is_local(self) -> bool { |
| self.did.is_local() |
| } |
| |
| pub fn def_id_for_type_of(self) -> DefId { |
| self.const_param_did.unwrap_or(self.did) |
| } |
| } |
| |
| /// When type checking, we use the `ParamEnv` to track |
| /// details about the set of where-clauses that are in scope at this |
| /// particular point. |
| #[derive(Copy, Clone, Hash, PartialEq, Eq)] |
| pub struct ParamEnv<'tcx> { |
| /// This packs both caller bounds and the reveal enum into one pointer. |
| /// |
| /// Caller bounds are `Obligation`s that the caller must satisfy. This is |
| /// basically the set of bounds on the in-scope type parameters, translated |
| /// into `Obligation`s, and elaborated and normalized. |
| /// |
| /// Use the `caller_bounds()` method to access. |
| /// |
| /// Typically, this is `Reveal::UserFacing`, but during codegen we |
| /// want `Reveal::All`. |
| /// |
| /// Note: This is packed, use the reveal() method to access it. |
| packed: CopyTaggedPtr<&'tcx List<Predicate<'tcx>>, traits::Reveal, true>, |
| } |
| |
| unsafe impl rustc_data_structures::tagged_ptr::Tag for traits::Reveal { |
| const BITS: usize = 1; |
| fn into_usize(self) -> usize { |
| match self { |
| traits::Reveal::UserFacing => 0, |
| traits::Reveal::All => 1, |
| } |
| } |
| unsafe fn from_usize(ptr: usize) -> Self { |
| match ptr { |
| 0 => traits::Reveal::UserFacing, |
| 1 => traits::Reveal::All, |
| _ => std::hint::unreachable_unchecked(), |
| } |
| } |
| } |
| |
| impl<'tcx> fmt::Debug for ParamEnv<'tcx> { |
| fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| f.debug_struct("ParamEnv") |
| .field("caller_bounds", &self.caller_bounds()) |
| .field("reveal", &self.reveal()) |
| .finish() |
| } |
| } |
| |
| impl<'a, 'tcx> HashStable<StableHashingContext<'a>> for ParamEnv<'tcx> { |
| fn hash_stable(&self, hcx: &mut StableHashingContext<'a>, hasher: &mut StableHasher) { |
| self.caller_bounds().hash_stable(hcx, hasher); |
| self.reveal().hash_stable(hcx, hasher); |
| } |
| } |
| |
| impl<'tcx> TypeFoldable<'tcx> for ParamEnv<'tcx> { |
| fn super_fold_with<F: ty::fold::TypeFolder<'tcx>>(self, folder: &mut F) -> Self { |
| ParamEnv::new(self.caller_bounds().fold_with(folder), self.reveal().fold_with(folder)) |
| } |
| |
| fn super_visit_with<V: TypeVisitor<'tcx>>(&self, visitor: &mut V) -> ControlFlow<V::BreakTy> { |
| self.caller_bounds().visit_with(visitor)?; |
| self.reveal().visit_with(visitor) |
| } |
| } |
| |
| impl<'tcx> ParamEnv<'tcx> { |
| /// Construct a trait environment suitable for contexts where |
| /// there are no where-clauses in scope. Hidden types (like `impl |
| /// Trait`) are left hidden, so this is suitable for ordinary |
| /// type-checking. |
| #[inline] |
| pub fn empty() -> Self { |
| Self::new(List::empty(), Reveal::UserFacing) |
| } |
| |
| #[inline] |
| pub fn caller_bounds(self) -> &'tcx List<Predicate<'tcx>> { |
| self.packed.pointer() |
| } |
| |
| #[inline] |
| pub fn reveal(self) -> traits::Reveal { |
| self.packed.tag() |
| } |
| |
| /// Construct a trait environment with no where-clauses in scope |
| /// where the values of all `impl Trait` and other hidden types |
| /// are revealed. This is suitable for monomorphized, post-typeck |
| /// environments like codegen or doing optimizations. |
| /// |
| /// N.B., if you want to have predicates in scope, use `ParamEnv::new`, |
| /// or invoke `param_env.with_reveal_all()`. |
| #[inline] |
| pub fn reveal_all() -> Self { |
| Self::new(List::empty(), Reveal::All) |
| } |
| |
| /// Construct a trait environment with the given set of predicates. |
| #[inline] |
| pub fn new(caller_bounds: &'tcx List<Predicate<'tcx>>, reveal: Reveal) -> Self { |
| ty::ParamEnv { packed: CopyTaggedPtr::new(caller_bounds, reveal) } |
| } |
| |
| pub fn with_user_facing(mut self) -> Self { |
| self.packed.set_tag(Reveal::UserFacing); |
| self |
| } |
| |
| /// Returns a new parameter environment with the same clauses, but |
| /// which "reveals" the true results of projections in all cases |
| /// (even for associated types that are specializable). This is |
| /// the desired behavior during codegen and certain other special |
| /// contexts; normally though we want to use `Reveal::UserFacing`, |
| /// which is the default. |
| /// All opaque types in the caller_bounds of the `ParamEnv` |
| /// will be normalized to their underlying types. |
| /// See PR #65989 and issue #65918 for more details |
| pub fn with_reveal_all_normalized(self, tcx: TyCtxt<'tcx>) -> Self { |
| if self.packed.tag() == traits::Reveal::All { |
| return self; |
| } |
| |
| ParamEnv::new(tcx.normalize_opaque_types(self.caller_bounds()), Reveal::All) |
| } |
| |
| /// Returns this same environment but with no caller bounds. |
| pub fn without_caller_bounds(self) -> Self { |
| Self::new(List::empty(), self.reveal()) |
| } |
| |
| /// Creates a suitable environment in which to perform trait |
| /// queries on the given value. When type-checking, this is simply |
| /// the pair of the environment plus value. But when reveal is set to |
| /// All, then if `value` does not reference any type parameters, we will |
| /// pair it with the empty environment. This improves caching and is generally |
| /// invisible. |
| /// |
| /// N.B., we preserve the environment when type-checking because it |
| /// is possible for the user to have wacky where-clauses like |
| /// `where Box<u32>: Copy`, which are clearly never |
| /// satisfiable. We generally want to behave as if they were true, |
| /// although the surrounding function is never reachable. |
| pub fn and<T: TypeFoldable<'tcx>>(self, value: T) -> ParamEnvAnd<'tcx, T> { |
| match self.reveal() { |
| Reveal::UserFacing => ParamEnvAnd { param_env: self, value }, |
| |
| Reveal::All => { |
| if value.is_global() { |
| ParamEnvAnd { param_env: self.without_caller_bounds(), value } |
| } else { |
| ParamEnvAnd { param_env: self, value } |
| } |
| } |
| } |
| } |
| } |
| |
| #[derive(Copy, Clone, Debug, PartialEq, Eq, Hash, TypeFoldable)] |
| pub struct ConstnessAnd<T> { |
| pub constness: Constness, |
| pub value: T, |
| } |
| |
| // FIXME(ecstaticmorse): Audit all occurrences of `without_const().to_predicate(tcx)` to ensure that |
| // the constness of trait bounds is being propagated correctly. |
| pub trait WithConstness: Sized { |
| #[inline] |
| fn with_constness(self, constness: Constness) -> ConstnessAnd<Self> { |
| ConstnessAnd { constness, value: self } |
| } |
| |
| #[inline] |
| fn with_const(self) -> ConstnessAnd<Self> { |
| self.with_constness(Constness::Const) |
| } |
| |
| #[inline] |
| fn without_const(self) -> ConstnessAnd<Self> { |
| self.with_constness(Constness::NotConst) |
| } |
| } |
| |
| impl<T> WithConstness for T {} |
| |
| #[derive(Copy, Clone, Debug, PartialEq, Eq, Hash, TypeFoldable)] |
| pub struct ParamEnvAnd<'tcx, T> { |
| pub param_env: ParamEnv<'tcx>, |
| pub value: T, |
| } |
| |
| impl<'tcx, T> ParamEnvAnd<'tcx, T> { |
| pub fn into_parts(self) -> (ParamEnv<'tcx>, T) { |
| (self.param_env, self.value) |
| } |
| } |
| |
| impl<'a, 'tcx, T> HashStable<StableHashingContext<'a>> for ParamEnvAnd<'tcx, T> |
| where |
| T: HashStable<StableHashingContext<'a>>, |
| { |
| fn hash_stable(&self, hcx: &mut StableHashingContext<'a>, hasher: &mut StableHasher) { |
| let ParamEnvAnd { ref param_env, ref value } = *self; |
| |
| param_env.hash_stable(hcx, hasher); |
| value.hash_stable(hcx, hasher); |
| } |
| } |
| |
| #[derive(Copy, Clone, Debug, HashStable)] |
| pub struct Destructor { |
| /// The `DefId` of the destructor method |
| pub did: DefId, |
| } |
| |
| bitflags! { |
| #[derive(HashStable)] |
| pub struct VariantFlags: u32 { |
| const NO_VARIANT_FLAGS = 0; |
| /// Indicates whether the field list of this variant is `#[non_exhaustive]`. |
| const IS_FIELD_LIST_NON_EXHAUSTIVE = 1 << 0; |
| /// Indicates whether this variant was obtained as part of recovering from |
| /// a syntactic error. May be incomplete or bogus. |
| const IS_RECOVERED = 1 << 1; |
| } |
| } |
| |
| /// Definition of a variant -- a struct's fields or a enum variant. |
| #[derive(Debug, HashStable)] |
| pub struct VariantDef { |
| /// `DefId` that identifies the variant itself. |
| /// If this variant belongs to a struct or union, then this is a copy of its `DefId`. |
| pub def_id: DefId, |
| /// `DefId` that identifies the variant's constructor. |
| /// If this variant is a struct variant, then this is `None`. |
| pub ctor_def_id: Option<DefId>, |
| /// Variant or struct name. |
| #[stable_hasher(project(name))] |
| pub ident: Ident, |
| /// Discriminant of this variant. |
| pub discr: VariantDiscr, |
| /// Fields of this variant. |
| pub fields: Vec<FieldDef>, |
| /// Type of constructor of variant. |
| pub ctor_kind: CtorKind, |
| /// Flags of the variant (e.g. is field list non-exhaustive)? |
| flags: VariantFlags, |
| } |
| |
| impl VariantDef { |
| /// Creates a new `VariantDef`. |
| /// |
| /// `variant_did` is the `DefId` that identifies the enum variant (if this `VariantDef` |
| /// represents an enum variant). |
| /// |
| /// `ctor_did` is the `DefId` that identifies the constructor of unit or |
| /// tuple-variants/structs. If this is a `struct`-variant then this should be `None`. |
| /// |
| /// `parent_did` is the `DefId` of the `AdtDef` representing the enum or struct that |
| /// owns this variant. It is used for checking if a struct has `#[non_exhaustive]` w/out having |
| /// to go through the redirect of checking the ctor's attributes - but compiling a small crate |
| /// requires loading the `AdtDef`s for all the structs in the universe (e.g., coherence for any |
| /// built-in trait), and we do not want to load attributes twice. |
| /// |
| /// If someone speeds up attribute loading to not be a performance concern, they can |
| /// remove this hack and use the constructor `DefId` everywhere. |
| pub fn new( |
| ident: Ident, |
| variant_did: Option<DefId>, |
| ctor_def_id: Option<DefId>, |
| discr: VariantDiscr, |
| fields: Vec<FieldDef>, |
| ctor_kind: CtorKind, |
| adt_kind: AdtKind, |
| parent_did: DefId, |
| recovered: bool, |
| is_field_list_non_exhaustive: bool, |
| ) -> Self { |
| debug!( |
| "VariantDef::new(ident = {:?}, variant_did = {:?}, ctor_def_id = {:?}, discr = {:?}, |
| fields = {:?}, ctor_kind = {:?}, adt_kind = {:?}, parent_did = {:?})", |
| ident, variant_did, ctor_def_id, discr, fields, ctor_kind, adt_kind, parent_did, |
| ); |
| |
| let mut flags = VariantFlags::NO_VARIANT_FLAGS; |
| if is_field_list_non_exhaustive { |
| flags |= VariantFlags::IS_FIELD_LIST_NON_EXHAUSTIVE; |
| } |
| |
| if recovered { |
| flags |= VariantFlags::IS_RECOVERED; |
| } |
| |
| VariantDef { |
| def_id: variant_did.unwrap_or(parent_did), |
| ctor_def_id, |
| ident, |
| discr, |
| fields, |
| ctor_kind, |
| flags, |
| } |
| } |
| |
| /// Is this field list non-exhaustive? |
| #[inline] |
| pub fn is_field_list_non_exhaustive(&self) -> bool { |
| self.flags.intersects(VariantFlags::IS_FIELD_LIST_NON_EXHAUSTIVE) |
| } |
| |
| /// Was this variant obtained as part of recovering from a syntactic error? |
| #[inline] |
| pub fn is_recovered(&self) -> bool { |
| self.flags.intersects(VariantFlags::IS_RECOVERED) |
| } |
| } |
| |
| #[derive(Copy, Clone, Debug, PartialEq, Eq, TyEncodable, TyDecodable, HashStable)] |
| pub enum VariantDiscr { |
| /// Explicit value for this variant, i.e., `X = 123`. |
| /// The `DefId` corresponds to the embedded constant. |
| Explicit(DefId), |
| |
| /// The previous variant's discriminant plus one. |
| /// For efficiency reasons, the distance from the |
| /// last `Explicit` discriminant is being stored, |
| /// or `0` for the first variant, if it has none. |
| Relative(u32), |
| } |
| |
| #[derive(Debug, HashStable)] |
| pub struct FieldDef { |
| pub did: DefId, |
| #[stable_hasher(project(name))] |
| pub ident: Ident, |
| pub vis: Visibility, |
| } |
| |
| bitflags! { |
| #[derive(TyEncodable, TyDecodable, Default, HashStable)] |
| pub struct ReprFlags: u8 { |
| const IS_C = 1 << 0; |
| const IS_SIMD = 1 << 1; |
| const IS_TRANSPARENT = 1 << 2; |
| // Internal only for now. If true, don't reorder fields. |
| const IS_LINEAR = 1 << 3; |
| // If true, don't expose any niche to type's context. |
| const HIDE_NICHE = 1 << 4; |
| // Any of these flags being set prevent field reordering optimisation. |
| const IS_UNOPTIMISABLE = ReprFlags::IS_C.bits | |
| ReprFlags::IS_SIMD.bits | |
| ReprFlags::IS_LINEAR.bits; |
| } |
| } |
| |
| /// Represents the repr options provided by the user, |
| #[derive(Copy, Clone, Debug, Eq, PartialEq, TyEncodable, TyDecodable, Default, HashStable)] |
| pub struct ReprOptions { |
| pub int: Option<attr::IntType>, |
| pub align: Option<Align>, |
| pub pack: Option<Align>, |
| pub flags: ReprFlags, |
| } |
| |
| impl ReprOptions { |
| pub fn new(tcx: TyCtxt<'_>, did: DefId) -> ReprOptions { |
| let mut flags = ReprFlags::empty(); |
| let mut size = None; |
| let mut max_align: Option<Align> = None; |
| let mut min_pack: Option<Align> = None; |
| for attr in tcx.get_attrs(did).iter() { |
| for r in attr::find_repr_attrs(&tcx.sess, attr) { |
| flags.insert(match r { |
| attr::ReprC => ReprFlags::IS_C, |
| attr::ReprPacked(pack) => { |
| let pack = Align::from_bytes(pack as u64).unwrap(); |
| min_pack = Some(if let Some(min_pack) = min_pack { |
| min_pack.min(pack) |
| } else { |
| pack |
| }); |
| ReprFlags::empty() |
| } |
| attr::ReprTransparent => ReprFlags::IS_TRANSPARENT, |
| attr::ReprNoNiche => ReprFlags::HIDE_NICHE, |
| attr::ReprSimd => ReprFlags::IS_SIMD, |
| attr::ReprInt(i) => { |
| size = Some(i); |
| ReprFlags::empty() |
| } |
| attr::ReprAlign(align) => { |
| max_align = max_align.max(Some(Align::from_bytes(align as u64).unwrap())); |
| ReprFlags::empty() |
| } |
| }); |
| } |
| } |
| |
| // This is here instead of layout because the choice must make it into metadata. |
| if !tcx.consider_optimizing(|| format!("Reorder fields of {:?}", tcx.def_path_str(did))) { |
| flags.insert(ReprFlags::IS_LINEAR); |
| } |
| ReprOptions { int: size, align: max_align, pack: min_pack, flags } |
| } |
| |
| #[inline] |
| pub fn simd(&self) -> bool { |
| self.flags.contains(ReprFlags::IS_SIMD) |
| } |
| #[inline] |
| pub fn c(&self) -> bool { |
| self.flags.contains(ReprFlags::IS_C) |
| } |
| #[inline] |
| pub fn packed(&self) -> bool { |
| self.pack.is_some() |
| } |
| #[inline] |
| pub fn transparent(&self) -> bool { |
| self.flags.contains(ReprFlags::IS_TRANSPARENT) |
| } |
| #[inline] |
| pub fn linear(&self) -> bool { |
| self.flags.contains(ReprFlags::IS_LINEAR) |
| } |
| #[inline] |
| pub fn hide_niche(&self) -> bool { |
| self.flags.contains(ReprFlags::HIDE_NICHE) |
| } |
| |
| /// Returns the discriminant type, given these `repr` options. |
| /// This must only be called on enums! |
| pub fn discr_type(&self) -> attr::IntType { |
| self.int.unwrap_or(attr::SignedInt(ast::IntTy::Isize)) |
| } |
| |
| /// Returns `true` if this `#[repr()]` should inhabit "smart enum |
| /// layout" optimizations, such as representing `Foo<&T>` as a |
| /// single pointer. |
| pub fn inhibit_enum_layout_opt(&self) -> bool { |
| self.c() || self.int.is_some() |
| } |
| |
| /// Returns `true` if this `#[repr()]` should inhibit struct field reordering |
| /// optimizations, such as with `repr(C)`, `repr(packed(1))`, or `repr(<int>)`. |
| pub fn inhibit_struct_field_reordering_opt(&self) -> bool { |
| if let Some(pack) = self.pack { |
| if pack.bytes() == 1 { |
| return true; |
| } |
| } |
| self.flags.intersects(ReprFlags::IS_UNOPTIMISABLE) || self.int.is_some() |
| } |
| |
| /// Returns `true` if this `#[repr()]` should inhibit union ABI optimisations. |
| pub fn inhibit_union_abi_opt(&self) -> bool { |
| self.c() |
| } |
| } |
| |
| impl<'tcx> FieldDef { |
| /// Returns the type of this field. The `subst` is typically obtained |
| /// via the second field of `TyKind::AdtDef`. |
| pub fn ty(&self, tcx: TyCtxt<'tcx>, subst: SubstsRef<'tcx>) -> Ty<'tcx> { |
| tcx.type_of(self.did).subst(tcx, subst) |
| } |
| } |
| |
| pub type Attributes<'tcx> = &'tcx [ast::Attribute]; |
| |
| #[derive(Debug, PartialEq, Eq)] |
| pub enum ImplOverlapKind { |
| /// These impls are always allowed to overlap. |
| Permitted { |
| /// Whether or not the impl is permitted due to the trait being a `#[marker]` trait |
| marker: bool, |
| }, |
| /// These impls are allowed to overlap, but that raises |
| /// an issue #33140 future-compatibility warning. |
| /// |
| /// Some background: in Rust 1.0, the trait-object types `Send + Sync` (today's |
| /// `dyn Send + Sync`) and `Sync + Send` (now `dyn Sync + Send`) were different. |
| /// |
| /// The widely-used version 0.1.0 of the crate `traitobject` had accidentally relied |
| /// that difference, making what reduces to the following set of impls: |
| /// |
| /// ``` |
| /// trait Trait {} |
| /// impl Trait for dyn Send + Sync {} |
| /// impl Trait for dyn Sync + Send {} |
| /// ``` |
| /// |
| /// Obviously, once we made these types be identical, that code causes a coherence |
| /// error and a fairly big headache for us. However, luckily for us, the trait |
| /// `Trait` used in this case is basically a marker trait, and therefore having |
| /// overlapping impls for it is sound. |
| /// |
| /// To handle this, we basically regard the trait as a marker trait, with an additional |
| /// future-compatibility warning. To avoid accidentally "stabilizing" this feature, |
| /// it has the following restrictions: |
| /// |
| /// 1. The trait must indeed be a marker-like trait (i.e., no items), and must be |
| /// positive impls. |
| /// 2. The trait-ref of both impls must be equal. |
| /// 3. The trait-ref of both impls must be a trait object type consisting only of |
| /// marker traits. |
| /// 4. Neither of the impls can have any where-clauses. |
| /// |
| /// Once `traitobject` 0.1.0 is no longer an active concern, this hack can be removed. |
| Issue33140, |
| } |
| |
| impl<'tcx> TyCtxt<'tcx> { |
| pub fn typeck_body(self, body: hir::BodyId) -> &'tcx TypeckResults<'tcx> { |
| self.typeck(self.hir().body_owner_def_id(body)) |
| } |
| |
| /// Returns an iterator of the `DefId`s for all body-owners in this |
| /// crate. If you would prefer to iterate over the bodies |
| /// themselves, you can do `self.hir().krate().body_ids.iter()`. |
| pub fn body_owners(self) -> impl Iterator<Item = LocalDefId> + Captures<'tcx> + 'tcx { |
| self.hir() |
| .krate() |
| .body_ids |
| .iter() |
| .map(move |&body_id| self.hir().body_owner_def_id(body_id)) |
| } |
| |
| pub fn par_body_owners<F: Fn(LocalDefId) + sync::Sync + sync::Send>(self, f: F) { |
| par_iter(&self.hir().krate().body_ids) |
| .for_each(|&body_id| f(self.hir().body_owner_def_id(body_id))); |
| } |
| |
| pub fn provided_trait_methods(self, id: DefId) -> impl 'tcx + Iterator<Item = &'tcx AssocItem> { |
| self.associated_items(id) |
| .in_definition_order() |
| .filter(|item| item.kind == AssocKind::Fn && item.defaultness.has_value()) |
| } |
| |
| fn item_name_from_hir(self, def_id: DefId) -> Option<Ident> { |
| self.hir().get_if_local(def_id).and_then(|node| node.ident()) |
| } |
| |
| fn item_name_from_def_id(self, def_id: DefId) -> Option<Symbol> { |
| if def_id.index == CRATE_DEF_INDEX { |
| Some(self.original_crate_name(def_id.krate)) |
| } else { |
| let def_key = self.def_key(def_id); |
| match def_key.disambiguated_data.data { |
| // The name of a constructor is that of its parent. |
| rustc_hir::definitions::DefPathData::Ctor => self.item_name_from_def_id(DefId { |
| krate: def_id.krate, |
| index: def_key.parent.unwrap(), |
| }), |
| _ => def_key.disambiguated_data.data.get_opt_name(), |
| } |
| } |
| } |
| |
| /// Look up the name of an item across crates. This does not look at HIR. |
| /// |
| /// When possible, this function should be used for cross-crate lookups over |
| /// [`opt_item_name`] to avoid invalidating the incremental cache. If you |
| /// need to handle items without a name, or HIR items that will not be |
| /// serialized cross-crate, or if you need the span of the item, use |
| /// [`opt_item_name`] instead. |
| /// |
| /// [`opt_item_name`]: Self::opt_item_name |
| pub fn item_name(self, id: DefId) -> Symbol { |
| // Look at cross-crate items first to avoid invalidating the incremental cache |
| // unless we have to. |
| self.item_name_from_def_id(id).unwrap_or_else(|| { |
| bug!("item_name: no name for {:?}", self.def_path(id)); |
| }) |
| } |
| |
| /// Look up the name and span of an item or [`Node`]. |
| /// |
| /// See [`item_name`][Self::item_name] for more information. |
| pub fn opt_item_name(self, def_id: DefId) -> Option<Ident> { |
| // Look at the HIR first so the span will be correct if this is a local item. |
| self.item_name_from_hir(def_id) |
| .or_else(|| self.item_name_from_def_id(def_id).map(Ident::with_dummy_span)) |
| } |
| |
| pub fn opt_associated_item(self, def_id: DefId) -> Option<&'tcx AssocItem> { |
| if let DefKind::AssocConst | DefKind::AssocFn | DefKind::AssocTy = self.def_kind(def_id) { |
| Some(self.associated_item(def_id)) |
| } else { |
| None |
| } |
| } |
| |
| pub fn field_index(self, hir_id: hir::HirId, typeck_results: &TypeckResults<'_>) -> usize { |
| typeck_results.field_indices().get(hir_id).cloned().expect("no index for a field") |
| } |
| |
| pub fn find_field_index(self, ident: Ident, variant: &VariantDef) -> Option<usize> { |
| variant.fields.iter().position(|field| self.hygienic_eq(ident, field.ident, variant.def_id)) |
| } |
| |
| /// Returns `true` if the impls are the same polarity and the trait either |
| /// has no items or is annotated `#[marker]` and prevents item overrides. |
| pub fn impls_are_allowed_to_overlap( |
| self, |
| def_id1: DefId, |
| def_id2: DefId, |
| ) -> Option<ImplOverlapKind> { |
| // If either trait impl references an error, they're allowed to overlap, |
| // as one of them essentially doesn't exist. |
| if self.impl_trait_ref(def_id1).map_or(false, |tr| tr.references_error()) |
| || self.impl_trait_ref(def_id2).map_or(false, |tr| tr.references_error()) |
| { |
| return Some(ImplOverlapKind::Permitted { marker: false }); |
| } |
| |
| match (self.impl_polarity(def_id1), self.impl_polarity(def_id2)) { |
| (ImplPolarity::Reservation, _) | (_, ImplPolarity::Reservation) => { |
| // `#[rustc_reservation_impl]` impls don't overlap with anything |
| debug!( |
| "impls_are_allowed_to_overlap({:?}, {:?}) = Some(Permitted) (reservations)", |
| def_id1, def_id2 |
| ); |
| return Some(ImplOverlapKind::Permitted { marker: false }); |
| } |
| (ImplPolarity::Positive, ImplPolarity::Negative) |
| | (ImplPolarity::Negative, ImplPolarity::Positive) => { |
| // `impl AutoTrait for Type` + `impl !AutoTrait for Type` |
| debug!( |
| "impls_are_allowed_to_overlap({:?}, {:?}) - None (differing polarities)", |
| def_id1, def_id2 |
| ); |
| return None; |
| } |
| (ImplPolarity::Positive, ImplPolarity::Positive) |
| | (ImplPolarity::Negative, ImplPolarity::Negative) => {} |
| }; |
| |
| let is_marker_overlap = { |
| let is_marker_impl = |def_id: DefId| -> bool { |
| let trait_ref = self.impl_trait_ref(def_id); |
| trait_ref.map_or(false, |tr| self.trait_def(tr.def_id).is_marker) |
| }; |
| is_marker_impl(def_id1) && is_marker_impl(def_id2) |
| }; |
| |
| if is_marker_overlap { |
| debug!( |
| "impls_are_allowed_to_overlap({:?}, {:?}) = Some(Permitted) (marker overlap)", |
| def_id1, def_id2 |
| ); |
| Some(ImplOverlapKind::Permitted { marker: true }) |
| } else { |
| if let Some(self_ty1) = self.issue33140_self_ty(def_id1) { |
| if let Some(self_ty2) = self.issue33140_self_ty(def_id2) { |
| if self_ty1 == self_ty2 { |
| debug!( |
| "impls_are_allowed_to_overlap({:?}, {:?}) - issue #33140 HACK", |
| def_id1, def_id2 |
| ); |
| return Some(ImplOverlapKind::Issue33140); |
| } else { |
| debug!( |
| "impls_are_allowed_to_overlap({:?}, {:?}) - found {:?} != {:?}", |
| def_id1, def_id2, self_ty1, self_ty2 |
| ); |
| } |
| } |
| } |
| |
| debug!("impls_are_allowed_to_overlap({:?}, {:?}) = None", def_id1, def_id2); |
| None |
| } |
| } |
| |
| /// Returns `ty::VariantDef` if `res` refers to a struct, |
| /// or variant or their constructors, panics otherwise. |
| pub fn expect_variant_res(self, res: Res) -> &'tcx VariantDef { |
| match res { |
| Res::Def(DefKind::Variant, did) => { |
| let enum_did = self.parent(did).unwrap(); |
| self.adt_def(enum_did).variant_with_id(did) |
| } |
| Res::Def(DefKind::Struct | DefKind::Union, did) => self.adt_def(did).non_enum_variant(), |
| Res::Def(DefKind::Ctor(CtorOf::Variant, ..), variant_ctor_did) => { |
| let variant_did = self.parent(variant_ctor_did).unwrap(); |
| let enum_did = self.parent(variant_did).unwrap(); |
| self.adt_def(enum_did).variant_with_ctor_id(variant_ctor_did) |
| } |
| Res::Def(DefKind::Ctor(CtorOf::Struct, ..), ctor_did) => { |
| let struct_did = self.parent(ctor_did).expect("struct ctor has no parent"); |
| self.adt_def(struct_did).non_enum_variant() |
| } |
| _ => bug!("expect_variant_res used with unexpected res {:?}", res), |
| } |
| } |
| |
| /// Returns the possibly-auto-generated MIR of a `(DefId, Subst)` pair. |
| pub fn instance_mir(self, instance: ty::InstanceDef<'tcx>) -> &'tcx Body<'tcx> { |
| match instance { |
| ty::InstanceDef::Item(def) => match self.def_kind(def.did) { |
| DefKind::Const |
| | DefKind::Static |
| | DefKind::AssocConst |
| | DefKind::Ctor(..) |
| | DefKind::AnonConst => self.mir_for_ctfe_opt_const_arg(def), |
| // If the caller wants `mir_for_ctfe` of a function they should not be using |
| // `instance_mir`, so we'll assume const fn also wants the optimized version. |
| _ => { |
| assert_eq!(def.const_param_did, None); |
| self.optimized_mir(def.did) |
| } |
| }, |
| ty::InstanceDef::VtableShim(..) |
| | ty::InstanceDef::ReifyShim(..) |
| | ty::InstanceDef::Intrinsic(..) |
| | ty::InstanceDef::FnPtrShim(..) |
| | ty::InstanceDef::Virtual(..) |
| | ty::InstanceDef::ClosureOnceShim { .. } |
| | ty::InstanceDef::DropGlue(..) |
| | ty::InstanceDef::CloneShim(..) => self.mir_shims(instance), |
| } |
| } |
| |
| /// Gets the attributes of a definition. |
| pub fn get_attrs(self, did: DefId) -> Attributes<'tcx> { |
| if let Some(did) = did.as_local() { |
| self.hir().attrs(self.hir().local_def_id_to_hir_id(did)) |
| } else { |
| self.item_attrs(did) |
| } |
| } |
| |
| /// Determines whether an item is annotated with an attribute. |
| pub fn has_attr(self, did: DefId, attr: Symbol) -> bool { |
| self.sess.contains_name(&self.get_attrs(did), attr) |
| } |
| |
| /// Returns `true` if this is an `auto trait`. |
| pub fn trait_is_auto(self, trait_def_id: DefId) -> bool { |
| self.trait_def(trait_def_id).has_auto_impl |
| } |
| |
| /// Returns layout of a generator. Layout might be unavailable if the |
| /// generator is tainted by errors. |
| pub fn generator_layout(self, def_id: DefId) -> Option<&'tcx GeneratorLayout<'tcx>> { |
| self.optimized_mir(def_id).generator_layout() |
| } |
| |
| /// Given the `DefId` of an impl, returns the `DefId` of the trait it implements. |
| /// If it implements no trait, returns `None`. |
| pub fn trait_id_of_impl(self, def_id: DefId) -> Option<DefId> { |
| self.impl_trait_ref(def_id).map(|tr| tr.def_id) |
| } |
| |
| /// If the given defid describes a method belonging to an impl, returns the |
| /// `DefId` of the impl that the method belongs to; otherwise, returns `None`. |
| pub fn impl_of_method(self, def_id: DefId) -> Option<DefId> { |
| self.opt_associated_item(def_id).and_then(|trait_item| match trait_item.container { |
| TraitContainer(_) => None, |
| ImplContainer(def_id) => Some(def_id), |
| }) |
| } |
| |
| /// Looks up the span of `impl_did` if the impl is local; otherwise returns `Err` |
| /// with the name of the crate containing the impl. |
| pub fn span_of_impl(self, impl_did: DefId) -> Result<Span, Symbol> { |
| if let Some(impl_did) = impl_did.as_local() { |
| let hir_id = self.hir().local_def_id_to_hir_id(impl_did); |
| Ok(self.hir().span(hir_id)) |
| } else { |
| Err(self.crate_name(impl_did.krate)) |
| } |
| } |
| |
| /// Hygienically compares a use-site name (`use_name`) for a field or an associated item with |
| /// its supposed definition name (`def_name`). The method also needs `DefId` of the supposed |
| /// definition's parent/scope to perform comparison. |
| pub fn hygienic_eq(self, use_name: Ident, def_name: Ident, def_parent_def_id: DefId) -> bool { |
| // We could use `Ident::eq` here, but we deliberately don't. The name |
| // comparison fails frequently, and we want to avoid the expensive |
| // `normalize_to_macros_2_0()` calls required for the span comparison whenever possible. |
| use_name.name == def_name.name |
| && use_name |
| .span |
| .ctxt() |
| .hygienic_eq(def_name.span.ctxt(), self.expansion_that_defined(def_parent_def_id)) |
| } |
| |
| pub fn expansion_that_defined(self, scope: DefId) -> ExpnId { |
| match scope.as_local() { |
| // Parsing and expansion aren't incremental, so we don't |
| // need to go through a query for the same-crate case. |
| Some(scope) => self.hir().definitions().expansion_that_defined(scope), |
| None => self.expn_that_defined(scope), |
| } |
| } |
| |
| pub fn adjust_ident(self, mut ident: Ident, scope: DefId) -> Ident { |
| ident.span.normalize_to_macros_2_0_and_adjust(self.expansion_that_defined(scope)); |
| ident |
| } |
| |
| pub fn adjust_ident_and_get_scope( |
| self, |
| mut ident: Ident, |
| scope: DefId, |
| block: hir::HirId, |
| ) -> (Ident, DefId) { |
| let scope = |
| match ident.span.normalize_to_macros_2_0_and_adjust(self.expansion_that_defined(scope)) |
| { |
| Some(actual_expansion) => { |
| self.hir().definitions().parent_module_of_macro_def(actual_expansion) |
| } |
| None => self.parent_module(block).to_def_id(), |
| }; |
| (ident, scope) |
| } |
| |
| pub fn is_object_safe(self, key: DefId) -> bool { |
| self.object_safety_violations(key).is_empty() |
| } |
| } |
| |
| /// Yields the parent function's `DefId` if `def_id` is an `impl Trait` definition. |
| pub fn is_impl_trait_defn(tcx: TyCtxt<'_>, def_id: DefId) -> Option<DefId> { |
| if let Some(def_id) = def_id.as_local() { |
| if let Node::Item(item) = tcx.hir().get(tcx.hir().local_def_id_to_hir_id(def_id)) { |
| if let hir::ItemKind::OpaqueTy(ref opaque_ty) = item.kind { |
| return opaque_ty.impl_trait_fn; |
| } |
| } |
| } |
| None |
| } |
| |
| pub fn int_ty(ity: ast::IntTy) -> IntTy { |
| match ity { |
| ast::IntTy::Isize => IntTy::Isize, |
| ast::IntTy::I8 => IntTy::I8, |
| ast::IntTy::I16 => IntTy::I16, |
| ast::IntTy::I32 => IntTy::I32, |
| ast::IntTy::I64 => IntTy::I64, |
| ast::IntTy::I128 => IntTy::I128, |
| } |
| } |
| |
| pub fn uint_ty(uty: ast::UintTy) -> UintTy { |
| match uty { |
| ast::UintTy::Usize => UintTy::Usize, |
| ast::UintTy::U8 => UintTy::U8, |
| ast::UintTy::U16 => UintTy::U16, |
| ast::UintTy::U32 => UintTy::U32, |
| ast::UintTy::U64 => UintTy::U64, |
| ast::UintTy::U128 => UintTy::U128, |
| } |
| } |
| |
| pub fn float_ty(fty: ast::FloatTy) -> FloatTy { |
| match fty { |
| ast::FloatTy::F32 => FloatTy::F32, |
| ast::FloatTy::F64 => FloatTy::F64, |
| } |
| } |
| |
| pub fn ast_int_ty(ity: IntTy) -> ast::IntTy { |
| match ity { |
| IntTy::Isize => ast::IntTy::Isize, |
| IntTy::I8 => ast::IntTy::I8, |
| IntTy::I16 => ast::IntTy::I16, |
| IntTy::I32 => ast::IntTy::I32, |
| IntTy::I64 => ast::IntTy::I64, |
| IntTy::I128 => ast::IntTy::I128, |
| } |
| } |
| |
| pub fn ast_uint_ty(uty: UintTy) -> ast::UintTy { |
| match uty { |
| UintTy::Usize => ast::UintTy::Usize, |
| UintTy::U8 => ast::UintTy::U8, |
| UintTy::U16 => ast::UintTy::U16, |
| UintTy::U32 => ast::UintTy::U32, |
| UintTy::U64 => ast::UintTy::U64, |
| UintTy::U128 => ast::UintTy::U128, |
| } |
| } |
| |
| pub fn provide(providers: &mut ty::query::Providers) { |
| context::provide(providers); |
| erase_regions::provide(providers); |
| layout::provide(providers); |
| util::provide(providers); |
| print::provide(providers); |
| super::util::bug::provide(providers); |
| *providers = ty::query::Providers { |
| trait_impls_of: trait_def::trait_impls_of_provider, |
| all_local_trait_impls: trait_def::all_local_trait_impls, |
| type_uninhabited_from: inhabitedness::type_uninhabited_from, |
| const_param_default: consts::const_param_default, |
| ..*providers |
| }; |
| } |
| |
| /// A map for the local crate mapping each type to a vector of its |
| /// inherent impls. This is not meant to be used outside of coherence; |
| /// rather, you should request the vector for a specific type via |
| /// `tcx.inherent_impls(def_id)` so as to minimize your dependencies |
| /// (constructing this map requires touching the entire crate). |
| #[derive(Clone, Debug, Default, HashStable)] |
| pub struct CrateInherentImpls { |
| pub inherent_impls: DefIdMap<Vec<DefId>>, |
| } |
| |
| #[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, TyEncodable, HashStable)] |
| pub struct SymbolName<'tcx> { |
| /// `&str` gives a consistent ordering, which ensures reproducible builds. |
| pub name: &'tcx str, |
| } |
| |
| impl<'tcx> SymbolName<'tcx> { |
| pub fn new(tcx: TyCtxt<'tcx>, name: &str) -> SymbolName<'tcx> { |
| SymbolName { |
| name: unsafe { str::from_utf8_unchecked(tcx.arena.alloc_slice(name.as_bytes())) }, |
| } |
| } |
| } |
| |
| impl<'tcx> fmt::Display for SymbolName<'tcx> { |
| fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result { |
| fmt::Display::fmt(&self.name, fmt) |
| } |
| } |
| |
| impl<'tcx> fmt::Debug for SymbolName<'tcx> { |
| fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result { |
| fmt::Display::fmt(&self.name, fmt) |
| } |
| } |