| //! String manipulation. |
| //! |
| //! For more details, see the [`std::str`] module. |
| //! |
| //! [`std::str`]: ../../std/str/index.html |
| |
| #![stable(feature = "rust1", since = "1.0.0")] |
| |
| mod converts; |
| mod error; |
| mod iter; |
| mod traits; |
| mod validations; |
| |
| use self::pattern::Pattern; |
| use self::pattern::{DoubleEndedSearcher, ReverseSearcher, Searcher}; |
| |
| use crate::char::{self, EscapeDebugExtArgs}; |
| use crate::mem; |
| use crate::slice::{self, SliceIndex}; |
| |
| pub mod pattern; |
| |
| #[unstable(feature = "str_internals", issue = "none")] |
| #[allow(missing_docs)] |
| pub mod lossy; |
| |
| #[stable(feature = "rust1", since = "1.0.0")] |
| pub use converts::{from_utf8, from_utf8_unchecked}; |
| |
| #[stable(feature = "str_mut_extras", since = "1.20.0")] |
| pub use converts::{from_utf8_mut, from_utf8_unchecked_mut}; |
| |
| #[stable(feature = "rust1", since = "1.0.0")] |
| pub use error::{ParseBoolError, Utf8Error}; |
| |
| #[stable(feature = "rust1", since = "1.0.0")] |
| pub use traits::FromStr; |
| |
| #[stable(feature = "rust1", since = "1.0.0")] |
| pub use iter::{Bytes, CharIndices, Chars, Lines, SplitWhitespace}; |
| |
| #[stable(feature = "rust1", since = "1.0.0")] |
| #[allow(deprecated)] |
| pub use iter::LinesAny; |
| |
| #[stable(feature = "rust1", since = "1.0.0")] |
| pub use iter::{RSplit, RSplitTerminator, Split, SplitTerminator}; |
| |
| #[stable(feature = "rust1", since = "1.0.0")] |
| pub use iter::{RSplitN, SplitN}; |
| |
| #[stable(feature = "str_matches", since = "1.2.0")] |
| pub use iter::{Matches, RMatches}; |
| |
| #[stable(feature = "str_match_indices", since = "1.5.0")] |
| pub use iter::{MatchIndices, RMatchIndices}; |
| |
| #[stable(feature = "encode_utf16", since = "1.8.0")] |
| pub use iter::EncodeUtf16; |
| |
| #[stable(feature = "str_escape", since = "1.34.0")] |
| pub use iter::{EscapeDebug, EscapeDefault, EscapeUnicode}; |
| |
| #[stable(feature = "split_ascii_whitespace", since = "1.34.0")] |
| pub use iter::SplitAsciiWhitespace; |
| |
| #[stable(feature = "split_inclusive", since = "1.51.0")] |
| pub use iter::SplitInclusive; |
| |
| #[unstable(feature = "str_internals", issue = "none")] |
| pub use validations::next_code_point; |
| |
| use iter::MatchIndicesInternal; |
| use iter::SplitInternal; |
| use iter::{MatchesInternal, SplitNInternal}; |
| |
| use validations::truncate_to_char_boundary; |
| |
| #[inline(never)] |
| #[cold] |
| #[track_caller] |
| fn slice_error_fail(s: &str, begin: usize, end: usize) -> ! { |
| const MAX_DISPLAY_LENGTH: usize = 256; |
| let (truncated, s_trunc) = truncate_to_char_boundary(s, MAX_DISPLAY_LENGTH); |
| let ellipsis = if truncated { "[...]" } else { "" }; |
| |
| // 1. out of bounds |
| if begin > s.len() || end > s.len() { |
| let oob_index = if begin > s.len() { begin } else { end }; |
| panic!("byte index {} is out of bounds of `{}`{}", oob_index, s_trunc, ellipsis); |
| } |
| |
| // 2. begin <= end |
| assert!( |
| begin <= end, |
| "begin <= end ({} <= {}) when slicing `{}`{}", |
| begin, |
| end, |
| s_trunc, |
| ellipsis |
| ); |
| |
| // 3. character boundary |
| let index = if !s.is_char_boundary(begin) { begin } else { end }; |
| // find the character |
| let mut char_start = index; |
| while !s.is_char_boundary(char_start) { |
| char_start -= 1; |
| } |
| // `char_start` must be less than len and a char boundary |
| let ch = s[char_start..].chars().next().unwrap(); |
| let char_range = char_start..char_start + ch.len_utf8(); |
| panic!( |
| "byte index {} is not a char boundary; it is inside {:?} (bytes {:?}) of `{}`{}", |
| index, ch, char_range, s_trunc, ellipsis |
| ); |
| } |
| |
| #[lang = "str"] |
| #[cfg(not(test))] |
| impl str { |
| /// Returns the length of `self`. |
| /// |
| /// This length is in bytes, not [`char`]s or graphemes. In other words, |
| /// it may not be what a human considers the length of the string. |
| /// |
| /// [`char`]: prim@char |
| /// |
| /// # Examples |
| /// |
| /// Basic usage: |
| /// |
| /// ``` |
| /// let len = "foo".len(); |
| /// assert_eq!(3, len); |
| /// |
| /// assert_eq!("ƒoo".len(), 4); // fancy f! |
| /// assert_eq!("ƒoo".chars().count(), 3); |
| /// ``` |
| #[doc(alias = "length")] |
| #[stable(feature = "rust1", since = "1.0.0")] |
| #[rustc_const_stable(feature = "const_str_len", since = "1.39.0")] |
| #[inline] |
| pub const fn len(&self) -> usize { |
| self.as_bytes().len() |
| } |
| |
| /// Returns `true` if `self` has a length of zero bytes. |
| /// |
| /// # Examples |
| /// |
| /// Basic usage: |
| /// |
| /// ``` |
| /// let s = ""; |
| /// assert!(s.is_empty()); |
| /// |
| /// let s = "not empty"; |
| /// assert!(!s.is_empty()); |
| /// ``` |
| #[inline] |
| #[stable(feature = "rust1", since = "1.0.0")] |
| #[rustc_const_stable(feature = "const_str_is_empty", since = "1.39.0")] |
| pub const fn is_empty(&self) -> bool { |
| self.len() == 0 |
| } |
| |
| /// Checks that `index`-th byte is the first byte in a UTF-8 code point |
| /// sequence or the end of the string. |
| /// |
| /// The start and end of the string (when `index == self.len()`) are |
| /// considered to be boundaries. |
| /// |
| /// Returns `false` if `index` is greater than `self.len()`. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// let s = "Löwe 老虎 Léopard"; |
| /// assert!(s.is_char_boundary(0)); |
| /// // start of `老` |
| /// assert!(s.is_char_boundary(6)); |
| /// assert!(s.is_char_boundary(s.len())); |
| /// |
| /// // second byte of `ö` |
| /// assert!(!s.is_char_boundary(2)); |
| /// |
| /// // third byte of `老` |
| /// assert!(!s.is_char_boundary(8)); |
| /// ``` |
| #[stable(feature = "is_char_boundary", since = "1.9.0")] |
| #[inline] |
| pub fn is_char_boundary(&self, index: usize) -> bool { |
| // 0 and len are always ok. |
| // Test for 0 explicitly so that it can optimize out the check |
| // easily and skip reading string data for that case. |
| if index == 0 || index == self.len() { |
| return true; |
| } |
| match self.as_bytes().get(index) { |
| None => false, |
| // This is bit magic equivalent to: b < 128 || b >= 192 |
| Some(&b) => (b as i8) >= -0x40, |
| } |
| } |
| |
| /// Converts a string slice to a byte slice. To convert the byte slice back |
| /// into a string slice, use the [`from_utf8`] function. |
| /// |
| /// # Examples |
| /// |
| /// Basic usage: |
| /// |
| /// ``` |
| /// let bytes = "bors".as_bytes(); |
| /// assert_eq!(b"bors", bytes); |
| /// ``` |
| #[stable(feature = "rust1", since = "1.0.0")] |
| #[rustc_const_stable(feature = "str_as_bytes", since = "1.39.0")] |
| #[inline(always)] |
| #[allow(unused_attributes)] |
| #[rustc_allow_const_fn_unstable(const_fn_transmute)] |
| pub const fn as_bytes(&self) -> &[u8] { |
| // SAFETY: const sound because we transmute two types with the same layout |
| unsafe { mem::transmute(self) } |
| } |
| |
| /// Converts a mutable string slice to a mutable byte slice. |
| /// |
| /// # Safety |
| /// |
| /// The caller must ensure that the content of the slice is valid UTF-8 |
| /// before the borrow ends and the underlying `str` is used. |
| /// |
| /// Use of a `str` whose contents are not valid UTF-8 is undefined behavior. |
| /// |
| /// # Examples |
| /// |
| /// Basic usage: |
| /// |
| /// ``` |
| /// let mut s = String::from("Hello"); |
| /// let bytes = unsafe { s.as_bytes_mut() }; |
| /// |
| /// assert_eq!(b"Hello", bytes); |
| /// ``` |
| /// |
| /// Mutability: |
| /// |
| /// ``` |
| /// let mut s = String::from("🗻∈🌏"); |
| /// |
| /// unsafe { |
| /// let bytes = s.as_bytes_mut(); |
| /// |
| /// bytes[0] = 0xF0; |
| /// bytes[1] = 0x9F; |
| /// bytes[2] = 0x8D; |
| /// bytes[3] = 0x94; |
| /// } |
| /// |
| /// assert_eq!("🍔∈🌏", s); |
| /// ``` |
| #[stable(feature = "str_mut_extras", since = "1.20.0")] |
| #[inline(always)] |
| pub unsafe fn as_bytes_mut(&mut self) -> &mut [u8] { |
| // SAFETY: the cast from `&str` to `&[u8]` is safe since `str` |
| // has the same layout as `&[u8]` (only libstd can make this guarantee). |
| // The pointer dereference is safe since it comes from a mutable reference which |
| // is guaranteed to be valid for writes. |
| unsafe { &mut *(self as *mut str as *mut [u8]) } |
| } |
| |
| /// Converts a string slice to a raw pointer. |
| /// |
| /// As string slices are a slice of bytes, the raw pointer points to a |
| /// [`u8`]. This pointer will be pointing to the first byte of the string |
| /// slice. |
| /// |
| /// The caller must ensure that the returned pointer is never written to. |
| /// If you need to mutate the contents of the string slice, use [`as_mut_ptr`]. |
| /// |
| /// [`as_mut_ptr`]: str::as_mut_ptr |
| /// |
| /// # Examples |
| /// |
| /// Basic usage: |
| /// |
| /// ``` |
| /// let s = "Hello"; |
| /// let ptr = s.as_ptr(); |
| /// ``` |
| #[stable(feature = "rust1", since = "1.0.0")] |
| #[rustc_const_stable(feature = "rustc_str_as_ptr", since = "1.32.0")] |
| #[inline] |
| pub const fn as_ptr(&self) -> *const u8 { |
| self as *const str as *const u8 |
| } |
| |
| /// Converts a mutable string slice to a raw pointer. |
| /// |
| /// As string slices are a slice of bytes, the raw pointer points to a |
| /// [`u8`]. This pointer will be pointing to the first byte of the string |
| /// slice. |
| /// |
| /// It is your responsibility to make sure that the string slice only gets |
| /// modified in a way that it remains valid UTF-8. |
| #[stable(feature = "str_as_mut_ptr", since = "1.36.0")] |
| #[inline] |
| pub fn as_mut_ptr(&mut self) -> *mut u8 { |
| self as *mut str as *mut u8 |
| } |
| |
| /// Returns a subslice of `str`. |
| /// |
| /// This is the non-panicking alternative to indexing the `str`. Returns |
| /// [`None`] whenever equivalent indexing operation would panic. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// let v = String::from("🗻∈🌏"); |
| /// |
| /// assert_eq!(Some("🗻"), v.get(0..4)); |
| /// |
| /// // indices not on UTF-8 sequence boundaries |
| /// assert!(v.get(1..).is_none()); |
| /// assert!(v.get(..8).is_none()); |
| /// |
| /// // out of bounds |
| /// assert!(v.get(..42).is_none()); |
| /// ``` |
| #[stable(feature = "str_checked_slicing", since = "1.20.0")] |
| #[inline] |
| pub fn get<I: SliceIndex<str>>(&self, i: I) -> Option<&I::Output> { |
| i.get(self) |
| } |
| |
| /// Returns a mutable subslice of `str`. |
| /// |
| /// This is the non-panicking alternative to indexing the `str`. Returns |
| /// [`None`] whenever equivalent indexing operation would panic. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// let mut v = String::from("hello"); |
| /// // correct length |
| /// assert!(v.get_mut(0..5).is_some()); |
| /// // out of bounds |
| /// assert!(v.get_mut(..42).is_none()); |
| /// assert_eq!(Some("he"), v.get_mut(0..2).map(|v| &*v)); |
| /// |
| /// assert_eq!("hello", v); |
| /// { |
| /// let s = v.get_mut(0..2); |
| /// let s = s.map(|s| { |
| /// s.make_ascii_uppercase(); |
| /// &*s |
| /// }); |
| /// assert_eq!(Some("HE"), s); |
| /// } |
| /// assert_eq!("HEllo", v); |
| /// ``` |
| #[stable(feature = "str_checked_slicing", since = "1.20.0")] |
| #[inline] |
| pub fn get_mut<I: SliceIndex<str>>(&mut self, i: I) -> Option<&mut I::Output> { |
| i.get_mut(self) |
| } |
| |
| /// Returns an unchecked subslice of `str`. |
| /// |
| /// This is the unchecked alternative to indexing the `str`. |
| /// |
| /// # Safety |
| /// |
| /// Callers of this function are responsible that these preconditions are |
| /// satisfied: |
| /// |
| /// * The starting index must not exceed the ending index; |
| /// * Indexes must be within bounds of the original slice; |
| /// * Indexes must lie on UTF-8 sequence boundaries. |
| /// |
| /// Failing that, the returned string slice may reference invalid memory or |
| /// violate the invariants communicated by the `str` type. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// let v = "🗻∈🌏"; |
| /// unsafe { |
| /// assert_eq!("🗻", v.get_unchecked(0..4)); |
| /// assert_eq!("∈", v.get_unchecked(4..7)); |
| /// assert_eq!("🌏", v.get_unchecked(7..11)); |
| /// } |
| /// ``` |
| #[stable(feature = "str_checked_slicing", since = "1.20.0")] |
| #[inline] |
| pub unsafe fn get_unchecked<I: SliceIndex<str>>(&self, i: I) -> &I::Output { |
| // SAFETY: the caller must uphold the safety contract for `get_unchecked`; |
| // the slice is dereferencable because `self` is a safe reference. |
| // The returned pointer is safe because impls of `SliceIndex` have to guarantee that it is. |
| unsafe { &*i.get_unchecked(self) } |
| } |
| |
| /// Returns a mutable, unchecked subslice of `str`. |
| /// |
| /// This is the unchecked alternative to indexing the `str`. |
| /// |
| /// # Safety |
| /// |
| /// Callers of this function are responsible that these preconditions are |
| /// satisfied: |
| /// |
| /// * The starting index must not exceed the ending index; |
| /// * Indexes must be within bounds of the original slice; |
| /// * Indexes must lie on UTF-8 sequence boundaries. |
| /// |
| /// Failing that, the returned string slice may reference invalid memory or |
| /// violate the invariants communicated by the `str` type. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// let mut v = String::from("🗻∈🌏"); |
| /// unsafe { |
| /// assert_eq!("🗻", v.get_unchecked_mut(0..4)); |
| /// assert_eq!("∈", v.get_unchecked_mut(4..7)); |
| /// assert_eq!("🌏", v.get_unchecked_mut(7..11)); |
| /// } |
| /// ``` |
| #[stable(feature = "str_checked_slicing", since = "1.20.0")] |
| #[inline] |
| pub unsafe fn get_unchecked_mut<I: SliceIndex<str>>(&mut self, i: I) -> &mut I::Output { |
| // SAFETY: the caller must uphold the safety contract for `get_unchecked_mut`; |
| // the slice is dereferencable because `self` is a safe reference. |
| // The returned pointer is safe because impls of `SliceIndex` have to guarantee that it is. |
| unsafe { &mut *i.get_unchecked_mut(self) } |
| } |
| |
| /// Creates a string slice from another string slice, bypassing safety |
| /// checks. |
| /// |
| /// This is generally not recommended, use with caution! For a safe |
| /// alternative see [`str`] and [`Index`]. |
| /// |
| /// [`Index`]: crate::ops::Index |
| /// |
| /// This new slice goes from `begin` to `end`, including `begin` but |
| /// excluding `end`. |
| /// |
| /// To get a mutable string slice instead, see the |
| /// [`slice_mut_unchecked`] method. |
| /// |
| /// [`slice_mut_unchecked`]: str::slice_mut_unchecked |
| /// |
| /// # Safety |
| /// |
| /// Callers of this function are responsible that three preconditions are |
| /// satisfied: |
| /// |
| /// * `begin` must not exceed `end`. |
| /// * `begin` and `end` must be byte positions within the string slice. |
| /// * `begin` and `end` must lie on UTF-8 sequence boundaries. |
| /// |
| /// # Examples |
| /// |
| /// Basic usage: |
| /// |
| /// ``` |
| /// let s = "Löwe 老虎 Léopard"; |
| /// |
| /// unsafe { |
| /// assert_eq!("Löwe 老虎 Léopard", s.slice_unchecked(0, 21)); |
| /// } |
| /// |
| /// let s = "Hello, world!"; |
| /// |
| /// unsafe { |
| /// assert_eq!("world", s.slice_unchecked(7, 12)); |
| /// } |
| /// ``` |
| #[stable(feature = "rust1", since = "1.0.0")] |
| #[rustc_deprecated(since = "1.29.0", reason = "use `get_unchecked(begin..end)` instead")] |
| #[inline] |
| pub unsafe fn slice_unchecked(&self, begin: usize, end: usize) -> &str { |
| // SAFETY: the caller must uphold the safety contract for `get_unchecked`; |
| // the slice is dereferencable because `self` is a safe reference. |
| // The returned pointer is safe because impls of `SliceIndex` have to guarantee that it is. |
| unsafe { &*(begin..end).get_unchecked(self) } |
| } |
| |
| /// Creates a string slice from another string slice, bypassing safety |
| /// checks. |
| /// This is generally not recommended, use with caution! For a safe |
| /// alternative see [`str`] and [`IndexMut`]. |
| /// |
| /// [`IndexMut`]: crate::ops::IndexMut |
| /// |
| /// This new slice goes from `begin` to `end`, including `begin` but |
| /// excluding `end`. |
| /// |
| /// To get an immutable string slice instead, see the |
| /// [`slice_unchecked`] method. |
| /// |
| /// [`slice_unchecked`]: str::slice_unchecked |
| /// |
| /// # Safety |
| /// |
| /// Callers of this function are responsible that three preconditions are |
| /// satisfied: |
| /// |
| /// * `begin` must not exceed `end`. |
| /// * `begin` and `end` must be byte positions within the string slice. |
| /// * `begin` and `end` must lie on UTF-8 sequence boundaries. |
| #[stable(feature = "str_slice_mut", since = "1.5.0")] |
| #[rustc_deprecated(since = "1.29.0", reason = "use `get_unchecked_mut(begin..end)` instead")] |
| #[inline] |
| pub unsafe fn slice_mut_unchecked(&mut self, begin: usize, end: usize) -> &mut str { |
| // SAFETY: the caller must uphold the safety contract for `get_unchecked_mut`; |
| // the slice is dereferencable because `self` is a safe reference. |
| // The returned pointer is safe because impls of `SliceIndex` have to guarantee that it is. |
| unsafe { &mut *(begin..end).get_unchecked_mut(self) } |
| } |
| |
| /// Divide one string slice into two at an index. |
| /// |
| /// The argument, `mid`, should be a byte offset from the start of the |
| /// string. It must also be on the boundary of a UTF-8 code point. |
| /// |
| /// The two slices returned go from the start of the string slice to `mid`, |
| /// and from `mid` to the end of the string slice. |
| /// |
| /// To get mutable string slices instead, see the [`split_at_mut`] |
| /// method. |
| /// |
| /// [`split_at_mut`]: str::split_at_mut |
| /// |
| /// # Panics |
| /// |
| /// Panics if `mid` is not on a UTF-8 code point boundary, or if it is |
| /// past the end of the last code point of the string slice. |
| /// |
| /// # Examples |
| /// |
| /// Basic usage: |
| /// |
| /// ``` |
| /// let s = "Per Martin-Löf"; |
| /// |
| /// let (first, last) = s.split_at(3); |
| /// |
| /// assert_eq!("Per", first); |
| /// assert_eq!(" Martin-Löf", last); |
| /// ``` |
| #[inline] |
| #[stable(feature = "str_split_at", since = "1.4.0")] |
| pub fn split_at(&self, mid: usize) -> (&str, &str) { |
| // is_char_boundary checks that the index is in [0, .len()] |
| if self.is_char_boundary(mid) { |
| // SAFETY: just checked that `mid` is on a char boundary. |
| unsafe { (self.get_unchecked(0..mid), self.get_unchecked(mid..self.len())) } |
| } else { |
| slice_error_fail(self, 0, mid) |
| } |
| } |
| |
| /// Divide one mutable string slice into two at an index. |
| /// |
| /// The argument, `mid`, should be a byte offset from the start of the |
| /// string. It must also be on the boundary of a UTF-8 code point. |
| /// |
| /// The two slices returned go from the start of the string slice to `mid`, |
| /// and from `mid` to the end of the string slice. |
| /// |
| /// To get immutable string slices instead, see the [`split_at`] method. |
| /// |
| /// [`split_at`]: str::split_at |
| /// |
| /// # Panics |
| /// |
| /// Panics if `mid` is not on a UTF-8 code point boundary, or if it is |
| /// past the end of the last code point of the string slice. |
| /// |
| /// # Examples |
| /// |
| /// Basic usage: |
| /// |
| /// ``` |
| /// let mut s = "Per Martin-Löf".to_string(); |
| /// { |
| /// let (first, last) = s.split_at_mut(3); |
| /// first.make_ascii_uppercase(); |
| /// assert_eq!("PER", first); |
| /// assert_eq!(" Martin-Löf", last); |
| /// } |
| /// assert_eq!("PER Martin-Löf", s); |
| /// ``` |
| #[inline] |
| #[stable(feature = "str_split_at", since = "1.4.0")] |
| pub fn split_at_mut(&mut self, mid: usize) -> (&mut str, &mut str) { |
| // is_char_boundary checks that the index is in [0, .len()] |
| if self.is_char_boundary(mid) { |
| let len = self.len(); |
| let ptr = self.as_mut_ptr(); |
| // SAFETY: just checked that `mid` is on a char boundary. |
| unsafe { |
| ( |
| from_utf8_unchecked_mut(slice::from_raw_parts_mut(ptr, mid)), |
| from_utf8_unchecked_mut(slice::from_raw_parts_mut(ptr.add(mid), len - mid)), |
| ) |
| } |
| } else { |
| slice_error_fail(self, 0, mid) |
| } |
| } |
| |
| /// Returns an iterator over the [`char`]s of a string slice. |
| /// |
| /// As a string slice consists of valid UTF-8, we can iterate through a |
| /// string slice by [`char`]. This method returns such an iterator. |
| /// |
| /// It's important to remember that [`char`] represents a Unicode Scalar |
| /// Value, and may not match your idea of what a 'character' is. Iteration |
| /// over grapheme clusters may be what you actually want. This functionality |
| /// is not provided by Rust's standard library, check crates.io instead. |
| /// |
| /// # Examples |
| /// |
| /// Basic usage: |
| /// |
| /// ``` |
| /// let word = "goodbye"; |
| /// |
| /// let count = word.chars().count(); |
| /// assert_eq!(7, count); |
| /// |
| /// let mut chars = word.chars(); |
| /// |
| /// assert_eq!(Some('g'), chars.next()); |
| /// assert_eq!(Some('o'), chars.next()); |
| /// assert_eq!(Some('o'), chars.next()); |
| /// assert_eq!(Some('d'), chars.next()); |
| /// assert_eq!(Some('b'), chars.next()); |
| /// assert_eq!(Some('y'), chars.next()); |
| /// assert_eq!(Some('e'), chars.next()); |
| /// |
| /// assert_eq!(None, chars.next()); |
| /// ``` |
| /// |
| /// Remember, [`char`]s may not match your intuition about characters: |
| /// |
| /// [`char`]: prim@char |
| /// |
| /// ``` |
| /// let y = "y̆"; |
| /// |
| /// let mut chars = y.chars(); |
| /// |
| /// assert_eq!(Some('y'), chars.next()); // not 'y̆' |
| /// assert_eq!(Some('\u{0306}'), chars.next()); |
| /// |
| /// assert_eq!(None, chars.next()); |
| /// ``` |
| #[stable(feature = "rust1", since = "1.0.0")] |
| #[inline] |
| pub fn chars(&self) -> Chars<'_> { |
| Chars { iter: self.as_bytes().iter() } |
| } |
| |
| /// Returns an iterator over the [`char`]s of a string slice, and their |
| /// positions. |
| /// |
| /// As a string slice consists of valid UTF-8, we can iterate through a |
| /// string slice by [`char`]. This method returns an iterator of both |
| /// these [`char`]s, as well as their byte positions. |
| /// |
| /// The iterator yields tuples. The position is first, the [`char`] is |
| /// second. |
| /// |
| /// # Examples |
| /// |
| /// Basic usage: |
| /// |
| /// ``` |
| /// let word = "goodbye"; |
| /// |
| /// let count = word.char_indices().count(); |
| /// assert_eq!(7, count); |
| /// |
| /// let mut char_indices = word.char_indices(); |
| /// |
| /// assert_eq!(Some((0, 'g')), char_indices.next()); |
| /// assert_eq!(Some((1, 'o')), char_indices.next()); |
| /// assert_eq!(Some((2, 'o')), char_indices.next()); |
| /// assert_eq!(Some((3, 'd')), char_indices.next()); |
| /// assert_eq!(Some((4, 'b')), char_indices.next()); |
| /// assert_eq!(Some((5, 'y')), char_indices.next()); |
| /// assert_eq!(Some((6, 'e')), char_indices.next()); |
| /// |
| /// assert_eq!(None, char_indices.next()); |
| /// ``` |
| /// |
| /// Remember, [`char`]s may not match your intuition about characters: |
| /// |
| /// [`char`]: prim@char |
| /// |
| /// ``` |
| /// let yes = "y̆es"; |
| /// |
| /// let mut char_indices = yes.char_indices(); |
| /// |
| /// assert_eq!(Some((0, 'y')), char_indices.next()); // not (0, 'y̆') |
| /// assert_eq!(Some((1, '\u{0306}')), char_indices.next()); |
| /// |
| /// // note the 3 here - the last character took up two bytes |
| /// assert_eq!(Some((3, 'e')), char_indices.next()); |
| /// assert_eq!(Some((4, 's')), char_indices.next()); |
| /// |
| /// assert_eq!(None, char_indices.next()); |
| /// ``` |
| #[stable(feature = "rust1", since = "1.0.0")] |
| #[inline] |
| pub fn char_indices(&self) -> CharIndices<'_> { |
| CharIndices { front_offset: 0, iter: self.chars() } |
| } |
| |
| /// An iterator over the bytes of a string slice. |
| /// |
| /// As a string slice consists of a sequence of bytes, we can iterate |
| /// through a string slice by byte. This method returns such an iterator. |
| /// |
| /// # Examples |
| /// |
| /// Basic usage: |
| /// |
| /// ``` |
| /// let mut bytes = "bors".bytes(); |
| /// |
| /// assert_eq!(Some(b'b'), bytes.next()); |
| /// assert_eq!(Some(b'o'), bytes.next()); |
| /// assert_eq!(Some(b'r'), bytes.next()); |
| /// assert_eq!(Some(b's'), bytes.next()); |
| /// |
| /// assert_eq!(None, bytes.next()); |
| /// ``` |
| #[stable(feature = "rust1", since = "1.0.0")] |
| #[inline] |
| pub fn bytes(&self) -> Bytes<'_> { |
| Bytes(self.as_bytes().iter().copied()) |
| } |
| |
| /// Splits a string slice by whitespace. |
| /// |
| /// The iterator returned will return string slices that are sub-slices of |
| /// the original string slice, separated by any amount of whitespace. |
| /// |
| /// 'Whitespace' is defined according to the terms of the Unicode Derived |
| /// Core Property `White_Space`. If you only want to split on ASCII whitespace |
| /// instead, use [`split_ascii_whitespace`]. |
| /// |
| /// [`split_ascii_whitespace`]: str::split_ascii_whitespace |
| /// |
| /// # Examples |
| /// |
| /// Basic usage: |
| /// |
| /// ``` |
| /// let mut iter = "A few words".split_whitespace(); |
| /// |
| /// assert_eq!(Some("A"), iter.next()); |
| /// assert_eq!(Some("few"), iter.next()); |
| /// assert_eq!(Some("words"), iter.next()); |
| /// |
| /// assert_eq!(None, iter.next()); |
| /// ``` |
| /// |
| /// All kinds of whitespace are considered: |
| /// |
| /// ``` |
| /// let mut iter = " Mary had\ta\u{2009}little \n\t lamb".split_whitespace(); |
| /// assert_eq!(Some("Mary"), iter.next()); |
| /// assert_eq!(Some("had"), iter.next()); |
| /// assert_eq!(Some("a"), iter.next()); |
| /// assert_eq!(Some("little"), iter.next()); |
| /// assert_eq!(Some("lamb"), iter.next()); |
| /// |
| /// assert_eq!(None, iter.next()); |
| /// ``` |
| #[stable(feature = "split_whitespace", since = "1.1.0")] |
| #[inline] |
| pub fn split_whitespace(&self) -> SplitWhitespace<'_> { |
| SplitWhitespace { inner: self.split(IsWhitespace).filter(IsNotEmpty) } |
| } |
| |
| /// Splits a string slice by ASCII whitespace. |
| /// |
| /// The iterator returned will return string slices that are sub-slices of |
| /// the original string slice, separated by any amount of ASCII whitespace. |
| /// |
| /// To split by Unicode `Whitespace` instead, use [`split_whitespace`]. |
| /// |
| /// [`split_whitespace`]: str::split_whitespace |
| /// |
| /// # Examples |
| /// |
| /// Basic usage: |
| /// |
| /// ``` |
| /// let mut iter = "A few words".split_ascii_whitespace(); |
| /// |
| /// assert_eq!(Some("A"), iter.next()); |
| /// assert_eq!(Some("few"), iter.next()); |
| /// assert_eq!(Some("words"), iter.next()); |
| /// |
| /// assert_eq!(None, iter.next()); |
| /// ``` |
| /// |
| /// All kinds of ASCII whitespace are considered: |
| /// |
| /// ``` |
| /// let mut iter = " Mary had\ta little \n\t lamb".split_ascii_whitespace(); |
| /// assert_eq!(Some("Mary"), iter.next()); |
| /// assert_eq!(Some("had"), iter.next()); |
| /// assert_eq!(Some("a"), iter.next()); |
| /// assert_eq!(Some("little"), iter.next()); |
| /// assert_eq!(Some("lamb"), iter.next()); |
| /// |
| /// assert_eq!(None, iter.next()); |
| /// ``` |
| #[stable(feature = "split_ascii_whitespace", since = "1.34.0")] |
| #[inline] |
| pub fn split_ascii_whitespace(&self) -> SplitAsciiWhitespace<'_> { |
| let inner = |
| self.as_bytes().split(IsAsciiWhitespace).filter(BytesIsNotEmpty).map(UnsafeBytesToStr); |
| SplitAsciiWhitespace { inner } |
| } |
| |
| /// An iterator over the lines of a string, as string slices. |
| /// |
| /// Lines are ended with either a newline (`\n`) or a carriage return with |
| /// a line feed (`\r\n`). |
| /// |
| /// The final line ending is optional. A string that ends with a final line |
| /// ending will return the same lines as an otherwise identical string |
| /// without a final line ending. |
| /// |
| /// # Examples |
| /// |
| /// Basic usage: |
| /// |
| /// ``` |
| /// let text = "foo\r\nbar\n\nbaz\n"; |
| /// let mut lines = text.lines(); |
| /// |
| /// assert_eq!(Some("foo"), lines.next()); |
| /// assert_eq!(Some("bar"), lines.next()); |
| /// assert_eq!(Some(""), lines.next()); |
| /// assert_eq!(Some("baz"), lines.next()); |
| /// |
| /// assert_eq!(None, lines.next()); |
| /// ``` |
| /// |
| /// The final line ending isn't required: |
| /// |
| /// ``` |
| /// let text = "foo\nbar\n\r\nbaz"; |
| /// let mut lines = text.lines(); |
| /// |
| /// assert_eq!(Some("foo"), lines.next()); |
| /// assert_eq!(Some("bar"), lines.next()); |
| /// assert_eq!(Some(""), lines.next()); |
| /// assert_eq!(Some("baz"), lines.next()); |
| /// |
| /// assert_eq!(None, lines.next()); |
| /// ``` |
| #[stable(feature = "rust1", since = "1.0.0")] |
| #[inline] |
| pub fn lines(&self) -> Lines<'_> { |
| Lines(self.split_terminator('\n').map(LinesAnyMap)) |
| } |
| |
| /// An iterator over the lines of a string. |
| #[stable(feature = "rust1", since = "1.0.0")] |
| #[rustc_deprecated(since = "1.4.0", reason = "use lines() instead now")] |
| #[inline] |
| #[allow(deprecated)] |
| pub fn lines_any(&self) -> LinesAny<'_> { |
| LinesAny(self.lines()) |
| } |
| |
| /// Returns an iterator of `u16` over the string encoded as UTF-16. |
| /// |
| /// # Examples |
| /// |
| /// Basic usage: |
| /// |
| /// ``` |
| /// let text = "Zażółć gęślą jaźń"; |
| /// |
| /// let utf8_len = text.len(); |
| /// let utf16_len = text.encode_utf16().count(); |
| /// |
| /// assert!(utf16_len <= utf8_len); |
| /// ``` |
| #[stable(feature = "encode_utf16", since = "1.8.0")] |
| pub fn encode_utf16(&self) -> EncodeUtf16<'_> { |
| EncodeUtf16 { chars: self.chars(), extra: 0 } |
| } |
| |
| /// Returns `true` if the given pattern matches a sub-slice of |
| /// this string slice. |
| /// |
| /// Returns `false` if it does not. |
| /// |
| /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a |
| /// function or closure that determines if a character matches. |
| /// |
| /// [`char`]: prim@char |
| /// [pattern]: self::pattern |
| /// |
| /// # Examples |
| /// |
| /// Basic usage: |
| /// |
| /// ``` |
| /// let bananas = "bananas"; |
| /// |
| /// assert!(bananas.contains("nana")); |
| /// assert!(!bananas.contains("apples")); |
| /// ``` |
| #[stable(feature = "rust1", since = "1.0.0")] |
| #[inline] |
| pub fn contains<'a, P: Pattern<'a>>(&'a self, pat: P) -> bool { |
| pat.is_contained_in(self) |
| } |
| |
| /// Returns `true` if the given pattern matches a prefix of this |
| /// string slice. |
| /// |
| /// Returns `false` if it does not. |
| /// |
| /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a |
| /// function or closure that determines if a character matches. |
| /// |
| /// [`char`]: prim@char |
| /// [pattern]: self::pattern |
| /// |
| /// # Examples |
| /// |
| /// Basic usage: |
| /// |
| /// ``` |
| /// let bananas = "bananas"; |
| /// |
| /// assert!(bananas.starts_with("bana")); |
| /// assert!(!bananas.starts_with("nana")); |
| /// ``` |
| #[stable(feature = "rust1", since = "1.0.0")] |
| pub fn starts_with<'a, P: Pattern<'a>>(&'a self, pat: P) -> bool { |
| pat.is_prefix_of(self) |
| } |
| |
| /// Returns `true` if the given pattern matches a suffix of this |
| /// string slice. |
| /// |
| /// Returns `false` if it does not. |
| /// |
| /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a |
| /// function or closure that determines if a character matches. |
| /// |
| /// [`char`]: prim@char |
| /// [pattern]: self::pattern |
| /// |
| /// # Examples |
| /// |
| /// Basic usage: |
| /// |
| /// ``` |
| /// let bananas = "bananas"; |
| /// |
| /// assert!(bananas.ends_with("anas")); |
| /// assert!(!bananas.ends_with("nana")); |
| /// ``` |
| #[stable(feature = "rust1", since = "1.0.0")] |
| pub fn ends_with<'a, P>(&'a self, pat: P) -> bool |
| where |
| P: Pattern<'a, Searcher: ReverseSearcher<'a>>, |
| { |
| pat.is_suffix_of(self) |
| } |
| |
| /// Returns the byte index of the first character of this string slice that |
| /// matches the pattern. |
| /// |
| /// Returns [`None`] if the pattern doesn't match. |
| /// |
| /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a |
| /// function or closure that determines if a character matches. |
| /// |
| /// [`char`]: prim@char |
| /// [pattern]: self::pattern |
| /// |
| /// # Examples |
| /// |
| /// Simple patterns: |
| /// |
| /// ``` |
| /// let s = "Löwe 老虎 Léopard Gepardi"; |
| /// |
| /// assert_eq!(s.find('L'), Some(0)); |
| /// assert_eq!(s.find('é'), Some(14)); |
| /// assert_eq!(s.find("pard"), Some(17)); |
| /// ``` |
| /// |
| /// More complex patterns using point-free style and closures: |
| /// |
| /// ``` |
| /// let s = "Löwe 老虎 Léopard"; |
| /// |
| /// assert_eq!(s.find(char::is_whitespace), Some(5)); |
| /// assert_eq!(s.find(char::is_lowercase), Some(1)); |
| /// assert_eq!(s.find(|c: char| c.is_whitespace() || c.is_lowercase()), Some(1)); |
| /// assert_eq!(s.find(|c: char| (c < 'o') && (c > 'a')), Some(4)); |
| /// ``` |
| /// |
| /// Not finding the pattern: |
| /// |
| /// ``` |
| /// let s = "Löwe 老虎 Léopard"; |
| /// let x: &[_] = &['1', '2']; |
| /// |
| /// assert_eq!(s.find(x), None); |
| /// ``` |
| #[stable(feature = "rust1", since = "1.0.0")] |
| #[inline] |
| pub fn find<'a, P: Pattern<'a>>(&'a self, pat: P) -> Option<usize> { |
| pat.into_searcher(self).next_match().map(|(i, _)| i) |
| } |
| |
| /// Returns the byte index for the first character of the rightmost match of the pattern in |
| /// this string slice. |
| /// |
| /// Returns [`None`] if the pattern doesn't match. |
| /// |
| /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a |
| /// function or closure that determines if a character matches. |
| /// |
| /// [`char`]: prim@char |
| /// [pattern]: self::pattern |
| /// |
| /// # Examples |
| /// |
| /// Simple patterns: |
| /// |
| /// ``` |
| /// let s = "Löwe 老虎 Léopard Gepardi"; |
| /// |
| /// assert_eq!(s.rfind('L'), Some(13)); |
| /// assert_eq!(s.rfind('é'), Some(14)); |
| /// assert_eq!(s.rfind("pard"), Some(24)); |
| /// ``` |
| /// |
| /// More complex patterns with closures: |
| /// |
| /// ``` |
| /// let s = "Löwe 老虎 Léopard"; |
| /// |
| /// assert_eq!(s.rfind(char::is_whitespace), Some(12)); |
| /// assert_eq!(s.rfind(char::is_lowercase), Some(20)); |
| /// ``` |
| /// |
| /// Not finding the pattern: |
| /// |
| /// ``` |
| /// let s = "Löwe 老虎 Léopard"; |
| /// let x: &[_] = &['1', '2']; |
| /// |
| /// assert_eq!(s.rfind(x), None); |
| /// ``` |
| #[stable(feature = "rust1", since = "1.0.0")] |
| #[inline] |
| pub fn rfind<'a, P>(&'a self, pat: P) -> Option<usize> |
| where |
| P: Pattern<'a, Searcher: ReverseSearcher<'a>>, |
| { |
| pat.into_searcher(self).next_match_back().map(|(i, _)| i) |
| } |
| |
| /// An iterator over substrings of this string slice, separated by |
| /// characters matched by a pattern. |
| /// |
| /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a |
| /// function or closure that determines if a character matches. |
| /// |
| /// [`char`]: prim@char |
| /// [pattern]: self::pattern |
| /// |
| /// # Iterator behavior |
| /// |
| /// The returned iterator will be a [`DoubleEndedIterator`] if the pattern |
| /// allows a reverse search and forward/reverse search yields the same |
| /// elements. This is true for, e.g., [`char`], but not for `&str`. |
| /// |
| /// If the pattern allows a reverse search but its results might differ |
| /// from a forward search, the [`rsplit`] method can be used. |
| /// |
| /// [`rsplit`]: str::rsplit |
| /// |
| /// # Examples |
| /// |
| /// Simple patterns: |
| /// |
| /// ``` |
| /// let v: Vec<&str> = "Mary had a little lamb".split(' ').collect(); |
| /// assert_eq!(v, ["Mary", "had", "a", "little", "lamb"]); |
| /// |
| /// let v: Vec<&str> = "".split('X').collect(); |
| /// assert_eq!(v, [""]); |
| /// |
| /// let v: Vec<&str> = "lionXXtigerXleopard".split('X').collect(); |
| /// assert_eq!(v, ["lion", "", "tiger", "leopard"]); |
| /// |
| /// let v: Vec<&str> = "lion::tiger::leopard".split("::").collect(); |
| /// assert_eq!(v, ["lion", "tiger", "leopard"]); |
| /// |
| /// let v: Vec<&str> = "abc1def2ghi".split(char::is_numeric).collect(); |
| /// assert_eq!(v, ["abc", "def", "ghi"]); |
| /// |
| /// let v: Vec<&str> = "lionXtigerXleopard".split(char::is_uppercase).collect(); |
| /// assert_eq!(v, ["lion", "tiger", "leopard"]); |
| /// ``` |
| /// |
| /// If the pattern is a slice of chars, split on each occurrence of any of the characters: |
| /// |
| /// ``` |
| /// let v: Vec<&str> = "2020-11-03 23:59".split(&['-', ' ', ':', '@'][..]).collect(); |
| /// assert_eq!(v, ["2020", "11", "03", "23", "59"]); |
| /// ``` |
| /// |
| /// A more complex pattern, using a closure: |
| /// |
| /// ``` |
| /// let v: Vec<&str> = "abc1defXghi".split(|c| c == '1' || c == 'X').collect(); |
| /// assert_eq!(v, ["abc", "def", "ghi"]); |
| /// ``` |
| /// |
| /// If a string contains multiple contiguous separators, you will end up |
| /// with empty strings in the output: |
| /// |
| /// ``` |
| /// let x = "||||a||b|c".to_string(); |
| /// let d: Vec<_> = x.split('|').collect(); |
| /// |
| /// assert_eq!(d, &["", "", "", "", "a", "", "b", "c"]); |
| /// ``` |
| /// |
| /// Contiguous separators are separated by the empty string. |
| /// |
| /// ``` |
| /// let x = "(///)".to_string(); |
| /// let d: Vec<_> = x.split('/').collect(); |
| /// |
| /// assert_eq!(d, &["(", "", "", ")"]); |
| /// ``` |
| /// |
| /// Separators at the start or end of a string are neighbored |
| /// by empty strings. |
| /// |
| /// ``` |
| /// let d: Vec<_> = "010".split("0").collect(); |
| /// assert_eq!(d, &["", "1", ""]); |
| /// ``` |
| /// |
| /// When the empty string is used as a separator, it separates |
| /// every character in the string, along with the beginning |
| /// and end of the string. |
| /// |
| /// ``` |
| /// let f: Vec<_> = "rust".split("").collect(); |
| /// assert_eq!(f, &["", "r", "u", "s", "t", ""]); |
| /// ``` |
| /// |
| /// Contiguous separators can lead to possibly surprising behavior |
| /// when whitespace is used as the separator. This code is correct: |
| /// |
| /// ``` |
| /// let x = " a b c".to_string(); |
| /// let d: Vec<_> = x.split(' ').collect(); |
| /// |
| /// assert_eq!(d, &["", "", "", "", "a", "", "b", "c"]); |
| /// ``` |
| /// |
| /// It does _not_ give you: |
| /// |
| /// ```,ignore |
| /// assert_eq!(d, &["a", "b", "c"]); |
| /// ``` |
| /// |
| /// Use [`split_whitespace`] for this behavior. |
| /// |
| /// [`split_whitespace`]: str::split_whitespace |
| #[stable(feature = "rust1", since = "1.0.0")] |
| #[inline] |
| pub fn split<'a, P: Pattern<'a>>(&'a self, pat: P) -> Split<'a, P> { |
| Split(SplitInternal { |
| start: 0, |
| end: self.len(), |
| matcher: pat.into_searcher(self), |
| allow_trailing_empty: true, |
| finished: false, |
| }) |
| } |
| |
| /// An iterator over substrings of this string slice, separated by |
| /// characters matched by a pattern. Differs from the iterator produced by |
| /// `split` in that `split_inclusive` leaves the matched part as the |
| /// terminator of the substring. |
| /// |
| /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a |
| /// function or closure that determines if a character matches. |
| /// |
| /// [`char`]: prim@char |
| /// [pattern]: self::pattern |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// let v: Vec<&str> = "Mary had a little lamb\nlittle lamb\nlittle lamb." |
| /// .split_inclusive('\n').collect(); |
| /// assert_eq!(v, ["Mary had a little lamb\n", "little lamb\n", "little lamb."]); |
| /// ``` |
| /// |
| /// If the last element of the string is matched, |
| /// that element will be considered the terminator of the preceding substring. |
| /// That substring will be the last item returned by the iterator. |
| /// |
| /// ``` |
| /// let v: Vec<&str> = "Mary had a little lamb\nlittle lamb\nlittle lamb.\n" |
| /// .split_inclusive('\n').collect(); |
| /// assert_eq!(v, ["Mary had a little lamb\n", "little lamb\n", "little lamb.\n"]); |
| /// ``` |
| #[stable(feature = "split_inclusive", since = "1.51.0")] |
| #[inline] |
| pub fn split_inclusive<'a, P: Pattern<'a>>(&'a self, pat: P) -> SplitInclusive<'a, P> { |
| SplitInclusive(SplitInternal { |
| start: 0, |
| end: self.len(), |
| matcher: pat.into_searcher(self), |
| allow_trailing_empty: false, |
| finished: false, |
| }) |
| } |
| |
| /// An iterator over substrings of the given string slice, separated by |
| /// characters matched by a pattern and yielded in reverse order. |
| /// |
| /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a |
| /// function or closure that determines if a character matches. |
| /// |
| /// [`char`]: prim@char |
| /// [pattern]: self::pattern |
| /// |
| /// # Iterator behavior |
| /// |
| /// The returned iterator requires that the pattern supports a reverse |
| /// search, and it will be a [`DoubleEndedIterator`] if a forward/reverse |
| /// search yields the same elements. |
| /// |
| /// For iterating from the front, the [`split`] method can be used. |
| /// |
| /// [`split`]: str::split |
| /// |
| /// # Examples |
| /// |
| /// Simple patterns: |
| /// |
| /// ``` |
| /// let v: Vec<&str> = "Mary had a little lamb".rsplit(' ').collect(); |
| /// assert_eq!(v, ["lamb", "little", "a", "had", "Mary"]); |
| /// |
| /// let v: Vec<&str> = "".rsplit('X').collect(); |
| /// assert_eq!(v, [""]); |
| /// |
| /// let v: Vec<&str> = "lionXXtigerXleopard".rsplit('X').collect(); |
| /// assert_eq!(v, ["leopard", "tiger", "", "lion"]); |
| /// |
| /// let v: Vec<&str> = "lion::tiger::leopard".rsplit("::").collect(); |
| /// assert_eq!(v, ["leopard", "tiger", "lion"]); |
| /// ``` |
| /// |
| /// A more complex pattern, using a closure: |
| /// |
| /// ``` |
| /// let v: Vec<&str> = "abc1defXghi".rsplit(|c| c == '1' || c == 'X').collect(); |
| /// assert_eq!(v, ["ghi", "def", "abc"]); |
| /// ``` |
| #[stable(feature = "rust1", since = "1.0.0")] |
| #[inline] |
| pub fn rsplit<'a, P>(&'a self, pat: P) -> RSplit<'a, P> |
| where |
| P: Pattern<'a, Searcher: ReverseSearcher<'a>>, |
| { |
| RSplit(self.split(pat).0) |
| } |
| |
| /// An iterator over substrings of the given string slice, separated by |
| /// characters matched by a pattern. |
| /// |
| /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a |
| /// function or closure that determines if a character matches. |
| /// |
| /// [`char`]: prim@char |
| /// [pattern]: self::pattern |
| /// |
| /// Equivalent to [`split`], except that the trailing substring |
| /// is skipped if empty. |
| /// |
| /// [`split`]: str::split |
| /// |
| /// This method can be used for string data that is _terminated_, |
| /// rather than _separated_ by a pattern. |
| /// |
| /// # Iterator behavior |
| /// |
| /// The returned iterator will be a [`DoubleEndedIterator`] if the pattern |
| /// allows a reverse search and forward/reverse search yields the same |
| /// elements. This is true for, e.g., [`char`], but not for `&str`. |
| /// |
| /// If the pattern allows a reverse search but its results might differ |
| /// from a forward search, the [`rsplit_terminator`] method can be used. |
| /// |
| /// [`rsplit_terminator`]: str::rsplit_terminator |
| /// |
| /// # Examples |
| /// |
| /// Basic usage: |
| /// |
| /// ``` |
| /// let v: Vec<&str> = "A.B.".split_terminator('.').collect(); |
| /// assert_eq!(v, ["A", "B"]); |
| /// |
| /// let v: Vec<&str> = "A..B..".split_terminator(".").collect(); |
| /// assert_eq!(v, ["A", "", "B", ""]); |
| /// ``` |
| #[stable(feature = "rust1", since = "1.0.0")] |
| #[inline] |
| pub fn split_terminator<'a, P: Pattern<'a>>(&'a self, pat: P) -> SplitTerminator<'a, P> { |
| SplitTerminator(SplitInternal { allow_trailing_empty: false, ..self.split(pat).0 }) |
| } |
| |
| /// An iterator over substrings of `self`, separated by characters |
| /// matched by a pattern and yielded in reverse order. |
| /// |
| /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a |
| /// function or closure that determines if a character matches. |
| /// |
| /// [`char`]: prim@char |
| /// [pattern]: self::pattern |
| /// |
| /// Equivalent to [`split`], except that the trailing substring is |
| /// skipped if empty. |
| /// |
| /// [`split`]: str::split |
| /// |
| /// This method can be used for string data that is _terminated_, |
| /// rather than _separated_ by a pattern. |
| /// |
| /// # Iterator behavior |
| /// |
| /// The returned iterator requires that the pattern supports a |
| /// reverse search, and it will be double ended if a forward/reverse |
| /// search yields the same elements. |
| /// |
| /// For iterating from the front, the [`split_terminator`] method can be |
| /// used. |
| /// |
| /// [`split_terminator`]: str::split_terminator |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// let v: Vec<&str> = "A.B.".rsplit_terminator('.').collect(); |
| /// assert_eq!(v, ["B", "A"]); |
| /// |
| /// let v: Vec<&str> = "A..B..".rsplit_terminator(".").collect(); |
| /// assert_eq!(v, ["", "B", "", "A"]); |
| /// ``` |
| #[stable(feature = "rust1", since = "1.0.0")] |
| #[inline] |
| pub fn rsplit_terminator<'a, P>(&'a self, pat: P) -> RSplitTerminator<'a, P> |
| where |
| P: Pattern<'a, Searcher: ReverseSearcher<'a>>, |
| { |
| RSplitTerminator(self.split_terminator(pat).0) |
| } |
| |
| /// An iterator over substrings of the given string slice, separated by a |
| /// pattern, restricted to returning at most `n` items. |
| /// |
| /// If `n` substrings are returned, the last substring (the `n`th substring) |
| /// will contain the remainder of the string. |
| /// |
| /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a |
| /// function or closure that determines if a character matches. |
| /// |
| /// [`char`]: prim@char |
| /// [pattern]: self::pattern |
| /// |
| /// # Iterator behavior |
| /// |
| /// The returned iterator will not be double ended, because it is |
| /// not efficient to support. |
| /// |
| /// If the pattern allows a reverse search, the [`rsplitn`] method can be |
| /// used. |
| /// |
| /// [`rsplitn`]: str::rsplitn |
| /// |
| /// # Examples |
| /// |
| /// Simple patterns: |
| /// |
| /// ``` |
| /// let v: Vec<&str> = "Mary had a little lambda".splitn(3, ' ').collect(); |
| /// assert_eq!(v, ["Mary", "had", "a little lambda"]); |
| /// |
| /// let v: Vec<&str> = "lionXXtigerXleopard".splitn(3, "X").collect(); |
| /// assert_eq!(v, ["lion", "", "tigerXleopard"]); |
| /// |
| /// let v: Vec<&str> = "abcXdef".splitn(1, 'X').collect(); |
| /// assert_eq!(v, ["abcXdef"]); |
| /// |
| /// let v: Vec<&str> = "".splitn(1, 'X').collect(); |
| /// assert_eq!(v, [""]); |
| /// ``` |
| /// |
| /// A more complex pattern, using a closure: |
| /// |
| /// ``` |
| /// let v: Vec<&str> = "abc1defXghi".splitn(2, |c| c == '1' || c == 'X').collect(); |
| /// assert_eq!(v, ["abc", "defXghi"]); |
| /// ``` |
| #[stable(feature = "rust1", since = "1.0.0")] |
| #[inline] |
| pub fn splitn<'a, P: Pattern<'a>>(&'a self, n: usize, pat: P) -> SplitN<'a, P> { |
| SplitN(SplitNInternal { iter: self.split(pat).0, count: n }) |
| } |
| |
| /// An iterator over substrings of this string slice, separated by a |
| /// pattern, starting from the end of the string, restricted to returning |
| /// at most `n` items. |
| /// |
| /// If `n` substrings are returned, the last substring (the `n`th substring) |
| /// will contain the remainder of the string. |
| /// |
| /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a |
| /// function or closure that determines if a character matches. |
| /// |
| /// [`char`]: prim@char |
| /// [pattern]: self::pattern |
| /// |
| /// # Iterator behavior |
| /// |
| /// The returned iterator will not be double ended, because it is not |
| /// efficient to support. |
| /// |
| /// For splitting from the front, the [`splitn`] method can be used. |
| /// |
| /// [`splitn`]: str::splitn |
| /// |
| /// # Examples |
| /// |
| /// Simple patterns: |
| /// |
| /// ``` |
| /// let v: Vec<&str> = "Mary had a little lamb".rsplitn(3, ' ').collect(); |
| /// assert_eq!(v, ["lamb", "little", "Mary had a"]); |
| /// |
| /// let v: Vec<&str> = "lionXXtigerXleopard".rsplitn(3, 'X').collect(); |
| /// assert_eq!(v, ["leopard", "tiger", "lionX"]); |
| /// |
| /// let v: Vec<&str> = "lion::tiger::leopard".rsplitn(2, "::").collect(); |
| /// assert_eq!(v, ["leopard", "lion::tiger"]); |
| /// ``` |
| /// |
| /// A more complex pattern, using a closure: |
| /// |
| /// ``` |
| /// let v: Vec<&str> = "abc1defXghi".rsplitn(2, |c| c == '1' || c == 'X').collect(); |
| /// assert_eq!(v, ["ghi", "abc1def"]); |
| /// ``` |
| #[stable(feature = "rust1", since = "1.0.0")] |
| #[inline] |
| pub fn rsplitn<'a, P>(&'a self, n: usize, pat: P) -> RSplitN<'a, P> |
| where |
| P: Pattern<'a, Searcher: ReverseSearcher<'a>>, |
| { |
| RSplitN(self.splitn(n, pat).0) |
| } |
| |
| /// Splits the string on the first occurrence of the specified delimiter and |
| /// returns prefix before delimiter and suffix after delimiter. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// assert_eq!("cfg".split_once('='), None); |
| /// assert_eq!("cfg=foo".split_once('='), Some(("cfg", "foo"))); |
| /// assert_eq!("cfg=foo=bar".split_once('='), Some(("cfg", "foo=bar"))); |
| /// ``` |
| #[stable(feature = "str_split_once", since = "1.52.0")] |
| #[inline] |
| pub fn split_once<'a, P: Pattern<'a>>(&'a self, delimiter: P) -> Option<(&'a str, &'a str)> { |
| let (start, end) = delimiter.into_searcher(self).next_match()?; |
| Some((&self[..start], &self[end..])) |
| } |
| |
| /// Splits the string on the last occurrence of the specified delimiter and |
| /// returns prefix before delimiter and suffix after delimiter. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// assert_eq!("cfg".rsplit_once('='), None); |
| /// assert_eq!("cfg=foo".rsplit_once('='), Some(("cfg", "foo"))); |
| /// assert_eq!("cfg=foo=bar".rsplit_once('='), Some(("cfg=foo", "bar"))); |
| /// ``` |
| #[stable(feature = "str_split_once", since = "1.52.0")] |
| #[inline] |
| pub fn rsplit_once<'a, P>(&'a self, delimiter: P) -> Option<(&'a str, &'a str)> |
| where |
| P: Pattern<'a, Searcher: ReverseSearcher<'a>>, |
| { |
| let (start, end) = delimiter.into_searcher(self).next_match_back()?; |
| Some((&self[..start], &self[end..])) |
| } |
| |
| /// An iterator over the disjoint matches of a pattern within the given string |
| /// slice. |
| /// |
| /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a |
| /// function or closure that determines if a character matches. |
| /// |
| /// [`char`]: prim@char |
| /// [pattern]: self::pattern |
| /// |
| /// # Iterator behavior |
| /// |
| /// The returned iterator will be a [`DoubleEndedIterator`] if the pattern |
| /// allows a reverse search and forward/reverse search yields the same |
| /// elements. This is true for, e.g., [`char`], but not for `&str`. |
| /// |
| /// If the pattern allows a reverse search but its results might differ |
| /// from a forward search, the [`rmatches`] method can be used. |
| /// |
| /// [`rmatches`]: str::matches |
| /// |
| /// # Examples |
| /// |
| /// Basic usage: |
| /// |
| /// ``` |
| /// let v: Vec<&str> = "abcXXXabcYYYabc".matches("abc").collect(); |
| /// assert_eq!(v, ["abc", "abc", "abc"]); |
| /// |
| /// let v: Vec<&str> = "1abc2abc3".matches(char::is_numeric).collect(); |
| /// assert_eq!(v, ["1", "2", "3"]); |
| /// ``` |
| #[stable(feature = "str_matches", since = "1.2.0")] |
| #[inline] |
| pub fn matches<'a, P: Pattern<'a>>(&'a self, pat: P) -> Matches<'a, P> { |
| Matches(MatchesInternal(pat.into_searcher(self))) |
| } |
| |
| /// An iterator over the disjoint matches of a pattern within this string slice, |
| /// yielded in reverse order. |
| /// |
| /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a |
| /// function or closure that determines if a character matches. |
| /// |
| /// [`char`]: prim@char |
| /// [pattern]: self::pattern |
| /// |
| /// # Iterator behavior |
| /// |
| /// The returned iterator requires that the pattern supports a reverse |
| /// search, and it will be a [`DoubleEndedIterator`] if a forward/reverse |
| /// search yields the same elements. |
| /// |
| /// For iterating from the front, the [`matches`] method can be used. |
| /// |
| /// [`matches`]: str::matches |
| /// |
| /// # Examples |
| /// |
| /// Basic usage: |
| /// |
| /// ``` |
| /// let v: Vec<&str> = "abcXXXabcYYYabc".rmatches("abc").collect(); |
| /// assert_eq!(v, ["abc", "abc", "abc"]); |
| /// |
| /// let v: Vec<&str> = "1abc2abc3".rmatches(char::is_numeric).collect(); |
| /// assert_eq!(v, ["3", "2", "1"]); |
| /// ``` |
| #[stable(feature = "str_matches", since = "1.2.0")] |
| #[inline] |
| pub fn rmatches<'a, P>(&'a self, pat: P) -> RMatches<'a, P> |
| where |
| P: Pattern<'a, Searcher: ReverseSearcher<'a>>, |
| { |
| RMatches(self.matches(pat).0) |
| } |
| |
| /// An iterator over the disjoint matches of a pattern within this string |
| /// slice as well as the index that the match starts at. |
| /// |
| /// For matches of `pat` within `self` that overlap, only the indices |
| /// corresponding to the first match are returned. |
| /// |
| /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a |
| /// function or closure that determines if a character matches. |
| /// |
| /// [`char`]: prim@char |
| /// [pattern]: self::pattern |
| /// |
| /// # Iterator behavior |
| /// |
| /// The returned iterator will be a [`DoubleEndedIterator`] if the pattern |
| /// allows a reverse search and forward/reverse search yields the same |
| /// elements. This is true for, e.g., [`char`], but not for `&str`. |
| /// |
| /// If the pattern allows a reverse search but its results might differ |
| /// from a forward search, the [`rmatch_indices`] method can be used. |
| /// |
| /// [`rmatch_indices`]: str::match_indices |
| /// |
| /// # Examples |
| /// |
| /// Basic usage: |
| /// |
| /// ``` |
| /// let v: Vec<_> = "abcXXXabcYYYabc".match_indices("abc").collect(); |
| /// assert_eq!(v, [(0, "abc"), (6, "abc"), (12, "abc")]); |
| /// |
| /// let v: Vec<_> = "1abcabc2".match_indices("abc").collect(); |
| /// assert_eq!(v, [(1, "abc"), (4, "abc")]); |
| /// |
| /// let v: Vec<_> = "ababa".match_indices("aba").collect(); |
| /// assert_eq!(v, [(0, "aba")]); // only the first `aba` |
| /// ``` |
| #[stable(feature = "str_match_indices", since = "1.5.0")] |
| #[inline] |
| pub fn match_indices<'a, P: Pattern<'a>>(&'a self, pat: P) -> MatchIndices<'a, P> { |
| MatchIndices(MatchIndicesInternal(pat.into_searcher(self))) |
| } |
| |
| /// An iterator over the disjoint matches of a pattern within `self`, |
| /// yielded in reverse order along with the index of the match. |
| /// |
| /// For matches of `pat` within `self` that overlap, only the indices |
| /// corresponding to the last match are returned. |
| /// |
| /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a |
| /// function or closure that determines if a character matches. |
| /// |
| /// [`char`]: prim@char |
| /// [pattern]: self::pattern |
| /// |
| /// # Iterator behavior |
| /// |
| /// The returned iterator requires that the pattern supports a reverse |
| /// search, and it will be a [`DoubleEndedIterator`] if a forward/reverse |
| /// search yields the same elements. |
| /// |
| /// For iterating from the front, the [`match_indices`] method can be used. |
| /// |
| /// [`match_indices`]: str::match_indices |
| /// |
| /// # Examples |
| /// |
| /// Basic usage: |
| /// |
| /// ``` |
| /// let v: Vec<_> = "abcXXXabcYYYabc".rmatch_indices("abc").collect(); |
| /// assert_eq!(v, [(12, "abc"), (6, "abc"), (0, "abc")]); |
| /// |
| /// let v: Vec<_> = "1abcabc2".rmatch_indices("abc").collect(); |
| /// assert_eq!(v, [(4, "abc"), (1, "abc")]); |
| /// |
| /// let v: Vec<_> = "ababa".rmatch_indices("aba").collect(); |
| /// assert_eq!(v, [(2, "aba")]); // only the last `aba` |
| /// ``` |
| #[stable(feature = "str_match_indices", since = "1.5.0")] |
| #[inline] |
| pub fn rmatch_indices<'a, P>(&'a self, pat: P) -> RMatchIndices<'a, P> |
| where |
| P: Pattern<'a, Searcher: ReverseSearcher<'a>>, |
| { |
| RMatchIndices(self.match_indices(pat).0) |
| } |
| |
| /// Returns a string slice with leading and trailing whitespace removed. |
| /// |
| /// 'Whitespace' is defined according to the terms of the Unicode Derived |
| /// Core Property `White_Space`. |
| /// |
| /// # Examples |
| /// |
| /// Basic usage: |
| /// |
| /// ``` |
| /// let s = " Hello\tworld\t"; |
| /// |
| /// assert_eq!("Hello\tworld", s.trim()); |
| /// ``` |
| #[inline] |
| #[must_use = "this returns the trimmed string as a slice, \ |
| without modifying the original"] |
| #[stable(feature = "rust1", since = "1.0.0")] |
| pub fn trim(&self) -> &str { |
| self.trim_matches(|c: char| c.is_whitespace()) |
| } |
| |
| /// Returns a string slice with leading whitespace removed. |
| /// |
| /// 'Whitespace' is defined according to the terms of the Unicode Derived |
| /// Core Property `White_Space`. |
| /// |
| /// # Text directionality |
| /// |
| /// A string is a sequence of bytes. `start` in this context means the first |
| /// position of that byte string; for a left-to-right language like English or |
| /// Russian, this will be left side, and for right-to-left languages like |
| /// Arabic or Hebrew, this will be the right side. |
| /// |
| /// # Examples |
| /// |
| /// Basic usage: |
| /// |
| /// ``` |
| /// let s = " Hello\tworld\t"; |
| /// assert_eq!("Hello\tworld\t", s.trim_start()); |
| /// ``` |
| /// |
| /// Directionality: |
| /// |
| /// ``` |
| /// let s = " English "; |
| /// assert!(Some('E') == s.trim_start().chars().next()); |
| /// |
| /// let s = " עברית "; |
| /// assert!(Some('ע') == s.trim_start().chars().next()); |
| /// ``` |
| #[inline] |
| #[must_use = "this returns the trimmed string as a new slice, \ |
| without modifying the original"] |
| #[stable(feature = "trim_direction", since = "1.30.0")] |
| pub fn trim_start(&self) -> &str { |
| self.trim_start_matches(|c: char| c.is_whitespace()) |
| } |
| |
| /// Returns a string slice with trailing whitespace removed. |
| /// |
| /// 'Whitespace' is defined according to the terms of the Unicode Derived |
| /// Core Property `White_Space`. |
| /// |
| /// # Text directionality |
| /// |
| /// A string is a sequence of bytes. `end` in this context means the last |
| /// position of that byte string; for a left-to-right language like English or |
| /// Russian, this will be right side, and for right-to-left languages like |
| /// Arabic or Hebrew, this will be the left side. |
| /// |
| /// # Examples |
| /// |
| /// Basic usage: |
| /// |
| /// ``` |
| /// let s = " Hello\tworld\t"; |
| /// assert_eq!(" Hello\tworld", s.trim_end()); |
| /// ``` |
| /// |
| /// Directionality: |
| /// |
| /// ``` |
| /// let s = " English "; |
| /// assert!(Some('h') == s.trim_end().chars().rev().next()); |
| /// |
| /// let s = " עברית "; |
| /// assert!(Some('ת') == s.trim_end().chars().rev().next()); |
| /// ``` |
| #[inline] |
| #[must_use = "this returns the trimmed string as a new slice, \ |
| without modifying the original"] |
| #[stable(feature = "trim_direction", since = "1.30.0")] |
| pub fn trim_end(&self) -> &str { |
| self.trim_end_matches(|c: char| c.is_whitespace()) |
| } |
| |
| /// Returns a string slice with leading whitespace removed. |
| /// |
| /// 'Whitespace' is defined according to the terms of the Unicode Derived |
| /// Core Property `White_Space`. |
| /// |
| /// # Text directionality |
| /// |
| /// A string is a sequence of bytes. 'Left' in this context means the first |
| /// position of that byte string; for a language like Arabic or Hebrew |
| /// which are 'right to left' rather than 'left to right', this will be |
| /// the _right_ side, not the left. |
| /// |
| /// # Examples |
| /// |
| /// Basic usage: |
| /// |
| /// ``` |
| /// let s = " Hello\tworld\t"; |
| /// |
| /// assert_eq!("Hello\tworld\t", s.trim_left()); |
| /// ``` |
| /// |
| /// Directionality: |
| /// |
| /// ``` |
| /// let s = " English"; |
| /// assert!(Some('E') == s.trim_left().chars().next()); |
| /// |
| /// let s = " עברית"; |
| /// assert!(Some('ע') == s.trim_left().chars().next()); |
| /// ``` |
| #[inline] |
| #[stable(feature = "rust1", since = "1.0.0")] |
| #[rustc_deprecated( |
| since = "1.33.0", |
| reason = "superseded by `trim_start`", |
| suggestion = "trim_start" |
| )] |
| pub fn trim_left(&self) -> &str { |
| self.trim_start() |
| } |
| |
| /// Returns a string slice with trailing whitespace removed. |
| /// |
| /// 'Whitespace' is defined according to the terms of the Unicode Derived |
| /// Core Property `White_Space`. |
| /// |
| /// # Text directionality |
| /// |
| /// A string is a sequence of bytes. 'Right' in this context means the last |
| /// position of that byte string; for a language like Arabic or Hebrew |
| /// which are 'right to left' rather than 'left to right', this will be |
| /// the _left_ side, not the right. |
| /// |
| /// # Examples |
| /// |
| /// Basic usage: |
| /// |
| /// ``` |
| /// let s = " Hello\tworld\t"; |
| /// |
| /// assert_eq!(" Hello\tworld", s.trim_right()); |
| /// ``` |
| /// |
| /// Directionality: |
| /// |
| /// ``` |
| /// let s = "English "; |
| /// assert!(Some('h') == s.trim_right().chars().rev().next()); |
| /// |
| /// let s = "עברית "; |
| /// assert!(Some('ת') == s.trim_right().chars().rev().next()); |
| /// ``` |
| #[inline] |
| #[stable(feature = "rust1", since = "1.0.0")] |
| #[rustc_deprecated( |
| since = "1.33.0", |
| reason = "superseded by `trim_end`", |
| suggestion = "trim_end" |
| )] |
| pub fn trim_right(&self) -> &str { |
| self.trim_end() |
| } |
| |
| /// Returns a string slice with all prefixes and suffixes that match a |
| /// pattern repeatedly removed. |
| /// |
| /// The [pattern] can be a [`char`], a slice of [`char`]s, or a function |
| /// or closure that determines if a character matches. |
| /// |
| /// [`char`]: prim@char |
| /// [pattern]: self::pattern |
| /// |
| /// # Examples |
| /// |
| /// Simple patterns: |
| /// |
| /// ``` |
| /// assert_eq!("11foo1bar11".trim_matches('1'), "foo1bar"); |
| /// assert_eq!("123foo1bar123".trim_matches(char::is_numeric), "foo1bar"); |
| /// |
| /// let x: &[_] = &['1', '2']; |
| /// assert_eq!("12foo1bar12".trim_matches(x), "foo1bar"); |
| /// ``` |
| /// |
| /// A more complex pattern, using a closure: |
| /// |
| /// ``` |
| /// assert_eq!("1foo1barXX".trim_matches(|c| c == '1' || c == 'X'), "foo1bar"); |
| /// ``` |
| #[must_use = "this returns the trimmed string as a new slice, \ |
| without modifying the original"] |
| #[stable(feature = "rust1", since = "1.0.0")] |
| pub fn trim_matches<'a, P>(&'a self, pat: P) -> &'a str |
| where |
| P: Pattern<'a, Searcher: DoubleEndedSearcher<'a>>, |
| { |
| let mut i = 0; |
| let mut j = 0; |
| let mut matcher = pat.into_searcher(self); |
| if let Some((a, b)) = matcher.next_reject() { |
| i = a; |
| j = b; // Remember earliest known match, correct it below if |
| // last match is different |
| } |
| if let Some((_, b)) = matcher.next_reject_back() { |
| j = b; |
| } |
| // SAFETY: `Searcher` is known to return valid indices. |
| unsafe { self.get_unchecked(i..j) } |
| } |
| |
| /// Returns a string slice with all prefixes that match a pattern |
| /// repeatedly removed. |
| /// |
| /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a |
| /// function or closure that determines if a character matches. |
| /// |
| /// [`char`]: prim@char |
| /// [pattern]: self::pattern |
| /// |
| /// # Text directionality |
| /// |
| /// A string is a sequence of bytes. `start` in this context means the first |
| /// position of that byte string; for a left-to-right language like English or |
| /// Russian, this will be left side, and for right-to-left languages like |
| /// Arabic or Hebrew, this will be the right side. |
| /// |
| /// # Examples |
| /// |
| /// Basic usage: |
| /// |
| /// ``` |
| /// assert_eq!("11foo1bar11".trim_start_matches('1'), "foo1bar11"); |
| /// assert_eq!("123foo1bar123".trim_start_matches(char::is_numeric), "foo1bar123"); |
| /// |
| /// let x: &[_] = &['1', '2']; |
| /// assert_eq!("12foo1bar12".trim_start_matches(x), "foo1bar12"); |
| /// ``` |
| #[must_use = "this returns the trimmed string as a new slice, \ |
| without modifying the original"] |
| #[stable(feature = "trim_direction", since = "1.30.0")] |
| pub fn trim_start_matches<'a, P: Pattern<'a>>(&'a self, pat: P) -> &'a str { |
| let mut i = self.len(); |
| let mut matcher = pat.into_searcher(self); |
| if let Some((a, _)) = matcher.next_reject() { |
| i = a; |
| } |
| // SAFETY: `Searcher` is known to return valid indices. |
| unsafe { self.get_unchecked(i..self.len()) } |
| } |
| |
| /// Returns a string slice with the prefix removed. |
| /// |
| /// If the string starts with the pattern `prefix`, returns substring after the prefix, wrapped |
| /// in `Some`. Unlike `trim_start_matches`, this method removes the prefix exactly once. |
| /// |
| /// If the string does not start with `prefix`, returns `None`. |
| /// |
| /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a |
| /// function or closure that determines if a character matches. |
| /// |
| /// [`char`]: prim@char |
| /// [pattern]: self::pattern |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// assert_eq!("foo:bar".strip_prefix("foo:"), Some("bar")); |
| /// assert_eq!("foo:bar".strip_prefix("bar"), None); |
| /// assert_eq!("foofoo".strip_prefix("foo"), Some("foo")); |
| /// ``` |
| #[must_use = "this returns the remaining substring as a new slice, \ |
| without modifying the original"] |
| #[stable(feature = "str_strip", since = "1.45.0")] |
| pub fn strip_prefix<'a, P: Pattern<'a>>(&'a self, prefix: P) -> Option<&'a str> { |
| prefix.strip_prefix_of(self) |
| } |
| |
| /// Returns a string slice with the suffix removed. |
| /// |
| /// If the string ends with the pattern `suffix`, returns the substring before the suffix, |
| /// wrapped in `Some`. Unlike `trim_end_matches`, this method removes the suffix exactly once. |
| /// |
| /// If the string does not end with `suffix`, returns `None`. |
| /// |
| /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a |
| /// function or closure that determines if a character matches. |
| /// |
| /// [`char`]: prim@char |
| /// [pattern]: self::pattern |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// assert_eq!("bar:foo".strip_suffix(":foo"), Some("bar")); |
| /// assert_eq!("bar:foo".strip_suffix("bar"), None); |
| /// assert_eq!("foofoo".strip_suffix("foo"), Some("foo")); |
| /// ``` |
| #[must_use = "this returns the remaining substring as a new slice, \ |
| without modifying the original"] |
| #[stable(feature = "str_strip", since = "1.45.0")] |
| pub fn strip_suffix<'a, P>(&'a self, suffix: P) -> Option<&'a str> |
| where |
| P: Pattern<'a>, |
| <P as Pattern<'a>>::Searcher: ReverseSearcher<'a>, |
| { |
| suffix.strip_suffix_of(self) |
| } |
| |
| /// Returns a string slice with all suffixes that match a pattern |
| /// repeatedly removed. |
| /// |
| /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a |
| /// function or closure that determines if a character matches. |
| /// |
| /// [`char`]: prim@char |
| /// [pattern]: self::pattern |
| /// |
| /// # Text directionality |
| /// |
| /// A string is a sequence of bytes. `end` in this context means the last |
| /// position of that byte string; for a left-to-right language like English or |
| /// Russian, this will be right side, and for right-to-left languages like |
| /// Arabic or Hebrew, this will be the left side. |
| /// |
| /// # Examples |
| /// |
| /// Simple patterns: |
| /// |
| /// ``` |
| /// assert_eq!("11foo1bar11".trim_end_matches('1'), "11foo1bar"); |
| /// assert_eq!("123foo1bar123".trim_end_matches(char::is_numeric), "123foo1bar"); |
| /// |
| /// let x: &[_] = &['1', '2']; |
| /// assert_eq!("12foo1bar12".trim_end_matches(x), "12foo1bar"); |
| /// ``` |
| /// |
| /// A more complex pattern, using a closure: |
| /// |
| /// ``` |
| /// assert_eq!("1fooX".trim_end_matches(|c| c == '1' || c == 'X'), "1foo"); |
| /// ``` |
| #[must_use = "this returns the trimmed string as a new slice, \ |
| without modifying the original"] |
| #[stable(feature = "trim_direction", since = "1.30.0")] |
| pub fn trim_end_matches<'a, P>(&'a self, pat: P) -> &'a str |
| where |
| P: Pattern<'a, Searcher: ReverseSearcher<'a>>, |
| { |
| let mut j = 0; |
| let mut matcher = pat.into_searcher(self); |
| if let Some((_, b)) = matcher.next_reject_back() { |
| j = b; |
| } |
| // SAFETY: `Searcher` is known to return valid indices. |
| unsafe { self.get_unchecked(0..j) } |
| } |
| |
| /// Returns a string slice with all prefixes that match a pattern |
| /// repeatedly removed. |
| /// |
| /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a |
| /// function or closure that determines if a character matches. |
| /// |
| /// [`char`]: prim@char |
| /// [pattern]: self::pattern |
| /// |
| /// # Text directionality |
| /// |
| /// A string is a sequence of bytes. 'Left' in this context means the first |
| /// position of that byte string; for a language like Arabic or Hebrew |
| /// which are 'right to left' rather than 'left to right', this will be |
| /// the _right_ side, not the left. |
| /// |
| /// # Examples |
| /// |
| /// Basic usage: |
| /// |
| /// ``` |
| /// assert_eq!("11foo1bar11".trim_left_matches('1'), "foo1bar11"); |
| /// assert_eq!("123foo1bar123".trim_left_matches(char::is_numeric), "foo1bar123"); |
| /// |
| /// let x: &[_] = &['1', '2']; |
| /// assert_eq!("12foo1bar12".trim_left_matches(x), "foo1bar12"); |
| /// ``` |
| #[stable(feature = "rust1", since = "1.0.0")] |
| #[rustc_deprecated( |
| since = "1.33.0", |
| reason = "superseded by `trim_start_matches`", |
| suggestion = "trim_start_matches" |
| )] |
| pub fn trim_left_matches<'a, P: Pattern<'a>>(&'a self, pat: P) -> &'a str { |
| self.trim_start_matches(pat) |
| } |
| |
| /// Returns a string slice with all suffixes that match a pattern |
| /// repeatedly removed. |
| /// |
| /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a |
| /// function or closure that determines if a character matches. |
| /// |
| /// [`char`]: prim@char |
| /// [pattern]: self::pattern |
| /// |
| /// # Text directionality |
| /// |
| /// A string is a sequence of bytes. 'Right' in this context means the last |
| /// position of that byte string; for a language like Arabic or Hebrew |
| /// which are 'right to left' rather than 'left to right', this will be |
| /// the _left_ side, not the right. |
| /// |
| /// # Examples |
| /// |
| /// Simple patterns: |
| /// |
| /// ``` |
| /// assert_eq!("11foo1bar11".trim_right_matches('1'), "11foo1bar"); |
| /// assert_eq!("123foo1bar123".trim_right_matches(char::is_numeric), "123foo1bar"); |
| /// |
| /// let x: &[_] = &['1', '2']; |
| /// assert_eq!("12foo1bar12".trim_right_matches(x), "12foo1bar"); |
| /// ``` |
| /// |
| /// A more complex pattern, using a closure: |
| /// |
| /// ``` |
| /// assert_eq!("1fooX".trim_right_matches(|c| c == '1' || c == 'X'), "1foo"); |
| /// ``` |
| #[stable(feature = "rust1", since = "1.0.0")] |
| #[rustc_deprecated( |
| since = "1.33.0", |
| reason = "superseded by `trim_end_matches`", |
| suggestion = "trim_end_matches" |
| )] |
| pub fn trim_right_matches<'a, P>(&'a self, pat: P) -> &'a str |
| where |
| P: Pattern<'a, Searcher: ReverseSearcher<'a>>, |
| { |
| self.trim_end_matches(pat) |
| } |
| |
| /// Parses this string slice into another type. |
| /// |
| /// Because `parse` is so general, it can cause problems with type |
| /// inference. As such, `parse` is one of the few times you'll see |
| /// the syntax affectionately known as the 'turbofish': `::<>`. This |
| /// helps the inference algorithm understand specifically which type |
| /// you're trying to parse into. |
| /// |
| /// `parse` can parse into any type that implements the [`FromStr`] trait. |
| |
| /// |
| /// # Errors |
| /// |
| /// Will return [`Err`] if it's not possible to parse this string slice into |
| /// the desired type. |
| /// |
| /// [`Err`]: FromStr::Err |
| /// |
| /// # Examples |
| /// |
| /// Basic usage |
| /// |
| /// ``` |
| /// let four: u32 = "4".parse().unwrap(); |
| /// |
| /// assert_eq!(4, four); |
| /// ``` |
| /// |
| /// Using the 'turbofish' instead of annotating `four`: |
| /// |
| /// ``` |
| /// let four = "4".parse::<u32>(); |
| /// |
| /// assert_eq!(Ok(4), four); |
| /// ``` |
| /// |
| /// Failing to parse: |
| /// |
| /// ``` |
| /// let nope = "j".parse::<u32>(); |
| /// |
| /// assert!(nope.is_err()); |
| /// ``` |
| #[inline] |
| #[stable(feature = "rust1", since = "1.0.0")] |
| pub fn parse<F: FromStr>(&self) -> Result<F, F::Err> { |
| FromStr::from_str(self) |
| } |
| |
| /// Checks if all characters in this string are within the ASCII range. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// let ascii = "hello!\n"; |
| /// let non_ascii = "Grüße, Jürgen ❤"; |
| /// |
| /// assert!(ascii.is_ascii()); |
| /// assert!(!non_ascii.is_ascii()); |
| /// ``` |
| #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")] |
| #[inline] |
| pub fn is_ascii(&self) -> bool { |
| // We can treat each byte as character here: all multibyte characters |
| // start with a byte that is not in the ascii range, so we will stop |
| // there already. |
| self.as_bytes().is_ascii() |
| } |
| |
| /// Checks that two strings are an ASCII case-insensitive match. |
| /// |
| /// Same as `to_ascii_lowercase(a) == to_ascii_lowercase(b)`, |
| /// but without allocating and copying temporaries. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// assert!("Ferris".eq_ignore_ascii_case("FERRIS")); |
| /// assert!("Ferrös".eq_ignore_ascii_case("FERRöS")); |
| /// assert!(!"Ferrös".eq_ignore_ascii_case("FERRÖS")); |
| /// ``` |
| #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")] |
| #[inline] |
| pub fn eq_ignore_ascii_case(&self, other: &str) -> bool { |
| self.as_bytes().eq_ignore_ascii_case(other.as_bytes()) |
| } |
| |
| /// Converts this string to its ASCII upper case equivalent in-place. |
| /// |
| /// ASCII letters 'a' to 'z' are mapped to 'A' to 'Z', |
| /// but non-ASCII letters are unchanged. |
| /// |
| /// To return a new uppercased value without modifying the existing one, use |
| /// [`to_ascii_uppercase()`]. |
| /// |
| /// [`to_ascii_uppercase()`]: #method.to_ascii_uppercase |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// let mut s = String::from("Grüße, Jürgen ❤"); |
| /// |
| /// s.make_ascii_uppercase(); |
| /// |
| /// assert_eq!("GRüßE, JüRGEN ❤", s); |
| /// ``` |
| #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")] |
| #[inline] |
| pub fn make_ascii_uppercase(&mut self) { |
| // SAFETY: safe because we transmute two types with the same layout. |
| let me = unsafe { self.as_bytes_mut() }; |
| me.make_ascii_uppercase() |
| } |
| |
| /// Converts this string to its ASCII lower case equivalent in-place. |
| /// |
| /// ASCII letters 'A' to 'Z' are mapped to 'a' to 'z', |
| /// but non-ASCII letters are unchanged. |
| /// |
| /// To return a new lowercased value without modifying the existing one, use |
| /// [`to_ascii_lowercase()`]. |
| /// |
| /// [`to_ascii_lowercase()`]: #method.to_ascii_lowercase |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// let mut s = String::from("GRÜßE, JÜRGEN ❤"); |
| /// |
| /// s.make_ascii_lowercase(); |
| /// |
| /// assert_eq!("grÜße, jÜrgen ❤", s); |
| /// ``` |
| #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")] |
| #[inline] |
| pub fn make_ascii_lowercase(&mut self) { |
| // SAFETY: safe because we transmute two types with the same layout. |
| let me = unsafe { self.as_bytes_mut() }; |
| me.make_ascii_lowercase() |
| } |
| |
| /// Return an iterator that escapes each char in `self` with [`char::escape_debug`]. |
| /// |
| /// Note: only extended grapheme codepoints that begin the string will be |
| /// escaped. |
| /// |
| /// # Examples |
| /// |
| /// As an iterator: |
| /// |
| /// ``` |
| /// for c in "❤\n!".escape_debug() { |
| /// print!("{}", c); |
| /// } |
| /// println!(); |
| /// ``` |
| /// |
| /// Using `println!` directly: |
| /// |
| /// ``` |
| /// println!("{}", "❤\n!".escape_debug()); |
| /// ``` |
| /// |
| /// |
| /// Both are equivalent to: |
| /// |
| /// ``` |
| /// println!("❤\\n!"); |
| /// ``` |
| /// |
| /// Using `to_string`: |
| /// |
| /// ``` |
| /// assert_eq!("❤\n!".escape_debug().to_string(), "❤\\n!"); |
| /// ``` |
| #[stable(feature = "str_escape", since = "1.34.0")] |
| pub fn escape_debug(&self) -> EscapeDebug<'_> { |
| let mut chars = self.chars(); |
| EscapeDebug { |
| inner: chars |
| .next() |
| .map(|first| first.escape_debug_ext(EscapeDebugExtArgs::ESCAPE_ALL)) |
| .into_iter() |
| .flatten() |
| .chain(chars.flat_map(CharEscapeDebugContinue)), |
| } |
| } |
| |
| /// Return an iterator that escapes each char in `self` with [`char::escape_default`]. |
| /// |
| /// # Examples |
| /// |
| /// As an iterator: |
| /// |
| /// ``` |
| /// for c in "❤\n!".escape_default() { |
| /// print!("{}", c); |
| /// } |
| /// println!(); |
| /// ``` |
| /// |
| /// Using `println!` directly: |
| /// |
| /// ``` |
| /// println!("{}", "❤\n!".escape_default()); |
| /// ``` |
| /// |
| /// |
| /// Both are equivalent to: |
| /// |
| /// ``` |
| /// println!("\\u{{2764}}\\n!"); |
| /// ``` |
| /// |
| /// Using `to_string`: |
| /// |
| /// ``` |
| /// assert_eq!("❤\n!".escape_default().to_string(), "\\u{2764}\\n!"); |
| /// ``` |
| #[stable(feature = "str_escape", since = "1.34.0")] |
| pub fn escape_default(&self) -> EscapeDefault<'_> { |
| EscapeDefault { inner: self.chars().flat_map(CharEscapeDefault) } |
| } |
| |
| /// Return an iterator that escapes each char in `self` with [`char::escape_unicode`]. |
| /// |
| /// # Examples |
| /// |
| /// As an iterator: |
| /// |
| /// ``` |
| /// for c in "❤\n!".escape_unicode() { |
| /// print!("{}", c); |
| /// } |
| /// println!(); |
| /// ``` |
| /// |
| /// Using `println!` directly: |
| /// |
| /// ``` |
| /// println!("{}", "❤\n!".escape_unicode()); |
| /// ``` |
| /// |
| /// |
| /// Both are equivalent to: |
| /// |
| /// ``` |
| /// println!("\\u{{2764}}\\u{{a}}\\u{{21}}"); |
| /// ``` |
| /// |
| /// Using `to_string`: |
| /// |
| /// ``` |
| /// assert_eq!("❤\n!".escape_unicode().to_string(), "\\u{2764}\\u{a}\\u{21}"); |
| /// ``` |
| #[stable(feature = "str_escape", since = "1.34.0")] |
| pub fn escape_unicode(&self) -> EscapeUnicode<'_> { |
| EscapeUnicode { inner: self.chars().flat_map(CharEscapeUnicode) } |
| } |
| } |
| |
| #[stable(feature = "rust1", since = "1.0.0")] |
| impl AsRef<[u8]> for str { |
| #[inline] |
| fn as_ref(&self) -> &[u8] { |
| self.as_bytes() |
| } |
| } |
| |
| #[stable(feature = "rust1", since = "1.0.0")] |
| impl Default for &str { |
| /// Creates an empty str |
| #[inline] |
| fn default() -> Self { |
| "" |
| } |
| } |
| |
| #[stable(feature = "default_mut_str", since = "1.28.0")] |
| impl Default for &mut str { |
| /// Creates an empty mutable str |
| #[inline] |
| fn default() -> Self { |
| // SAFETY: The empty string is valid UTF-8. |
| unsafe { from_utf8_unchecked_mut(&mut []) } |
| } |
| } |
| |
| impl_fn_for_zst! { |
| /// A nameable, cloneable fn type |
| #[derive(Clone)] |
| struct LinesAnyMap impl<'a> Fn = |line: &'a str| -> &'a str { |
| let l = line.len(); |
| if l > 0 && line.as_bytes()[l - 1] == b'\r' { &line[0 .. l - 1] } |
| else { line } |
| }; |
| |
| #[derive(Clone)] |
| struct CharEscapeDebugContinue impl Fn = |c: char| -> char::EscapeDebug { |
| c.escape_debug_ext(EscapeDebugExtArgs { |
| escape_grapheme_extended: false, |
| escape_single_quote: true, |
| escape_double_quote: true |
| }) |
| }; |
| |
| #[derive(Clone)] |
| struct CharEscapeUnicode impl Fn = |c: char| -> char::EscapeUnicode { |
| c.escape_unicode() |
| }; |
| #[derive(Clone)] |
| struct CharEscapeDefault impl Fn = |c: char| -> char::EscapeDefault { |
| c.escape_default() |
| }; |
| |
| #[derive(Clone)] |
| struct IsWhitespace impl Fn = |c: char| -> bool { |
| c.is_whitespace() |
| }; |
| |
| #[derive(Clone)] |
| struct IsAsciiWhitespace impl Fn = |byte: &u8| -> bool { |
| byte.is_ascii_whitespace() |
| }; |
| |
| #[derive(Clone)] |
| struct IsNotEmpty impl<'a, 'b> Fn = |s: &'a &'b str| -> bool { |
| !s.is_empty() |
| }; |
| |
| #[derive(Clone)] |
| struct BytesIsNotEmpty impl<'a, 'b> Fn = |s: &'a &'b [u8]| -> bool { |
| !s.is_empty() |
| }; |
| |
| #[derive(Clone)] |
| struct UnsafeBytesToStr impl<'a> Fn = |bytes: &'a [u8]| -> &'a str { |
| // SAFETY: not safe |
| unsafe { from_utf8_unchecked(bytes) } |
| }; |
| } |