blob: 2b14e16150317f3be9c5c0a2c6576e83b6fddf87 [file] [log] [blame]
use super::{repeat, Cursor, SeekFrom};
use crate::cmp::{self, min};
use crate::io::{self, IoSlice, IoSliceMut};
use crate::io::{BufRead, BufReader, Read, Seek, Write};
use crate::ops::Deref;
#[test]
#[cfg_attr(target_os = "emscripten", ignore)]
fn read_until() {
let mut buf = Cursor::new(&b"12"[..]);
let mut v = Vec::new();
assert_eq!(buf.read_until(b'3', &mut v).unwrap(), 2);
assert_eq!(v, b"12");
let mut buf = Cursor::new(&b"1233"[..]);
let mut v = Vec::new();
assert_eq!(buf.read_until(b'3', &mut v).unwrap(), 3);
assert_eq!(v, b"123");
v.truncate(0);
assert_eq!(buf.read_until(b'3', &mut v).unwrap(), 1);
assert_eq!(v, b"3");
v.truncate(0);
assert_eq!(buf.read_until(b'3', &mut v).unwrap(), 0);
assert_eq!(v, []);
}
#[test]
fn split() {
let buf = Cursor::new(&b"12"[..]);
let mut s = buf.split(b'3');
assert_eq!(s.next().unwrap().unwrap(), vec![b'1', b'2']);
assert!(s.next().is_none());
let buf = Cursor::new(&b"1233"[..]);
let mut s = buf.split(b'3');
assert_eq!(s.next().unwrap().unwrap(), vec![b'1', b'2']);
assert_eq!(s.next().unwrap().unwrap(), vec![]);
assert!(s.next().is_none());
}
#[test]
fn read_line() {
let mut buf = Cursor::new(&b"12"[..]);
let mut v = String::new();
assert_eq!(buf.read_line(&mut v).unwrap(), 2);
assert_eq!(v, "12");
let mut buf = Cursor::new(&b"12\n\n"[..]);
let mut v = String::new();
assert_eq!(buf.read_line(&mut v).unwrap(), 3);
assert_eq!(v, "12\n");
v.truncate(0);
assert_eq!(buf.read_line(&mut v).unwrap(), 1);
assert_eq!(v, "\n");
v.truncate(0);
assert_eq!(buf.read_line(&mut v).unwrap(), 0);
assert_eq!(v, "");
}
#[test]
fn lines() {
let buf = Cursor::new(&b"12\r"[..]);
let mut s = buf.lines();
assert_eq!(s.next().unwrap().unwrap(), "12\r".to_string());
assert!(s.next().is_none());
let buf = Cursor::new(&b"12\r\n\n"[..]);
let mut s = buf.lines();
assert_eq!(s.next().unwrap().unwrap(), "12".to_string());
assert_eq!(s.next().unwrap().unwrap(), "".to_string());
assert!(s.next().is_none());
}
#[test]
fn read_to_end() {
let mut c = Cursor::new(&b""[..]);
let mut v = Vec::new();
assert_eq!(c.read_to_end(&mut v).unwrap(), 0);
assert_eq!(v, []);
let mut c = Cursor::new(&b"1"[..]);
let mut v = Vec::new();
assert_eq!(c.read_to_end(&mut v).unwrap(), 1);
assert_eq!(v, b"1");
let cap = 1024 * 1024;
let data = (0..cap).map(|i| (i / 3) as u8).collect::<Vec<_>>();
let mut v = Vec::new();
let (a, b) = data.split_at(data.len() / 2);
assert_eq!(Cursor::new(a).read_to_end(&mut v).unwrap(), a.len());
assert_eq!(Cursor::new(b).read_to_end(&mut v).unwrap(), b.len());
assert_eq!(v, data);
}
#[test]
fn read_to_string() {
let mut c = Cursor::new(&b""[..]);
let mut v = String::new();
assert_eq!(c.read_to_string(&mut v).unwrap(), 0);
assert_eq!(v, "");
let mut c = Cursor::new(&b"1"[..]);
let mut v = String::new();
assert_eq!(c.read_to_string(&mut v).unwrap(), 1);
assert_eq!(v, "1");
let mut c = Cursor::new(&b"\xff"[..]);
let mut v = String::new();
assert!(c.read_to_string(&mut v).is_err());
}
#[test]
fn read_exact() {
let mut buf = [0; 4];
let mut c = Cursor::new(&b""[..]);
assert_eq!(c.read_exact(&mut buf).unwrap_err().kind(), io::ErrorKind::UnexpectedEof);
let mut c = Cursor::new(&b"123"[..]).chain(Cursor::new(&b"456789"[..]));
c.read_exact(&mut buf).unwrap();
assert_eq!(&buf, b"1234");
c.read_exact(&mut buf).unwrap();
assert_eq!(&buf, b"5678");
assert_eq!(c.read_exact(&mut buf).unwrap_err().kind(), io::ErrorKind::UnexpectedEof);
}
#[test]
fn read_exact_slice() {
let mut buf = [0; 4];
let mut c = &b""[..];
assert_eq!(c.read_exact(&mut buf).unwrap_err().kind(), io::ErrorKind::UnexpectedEof);
let mut c = &b"123"[..];
assert_eq!(c.read_exact(&mut buf).unwrap_err().kind(), io::ErrorKind::UnexpectedEof);
// make sure the optimized (early returning) method is being used
assert_eq!(&buf, &[0; 4]);
let mut c = &b"1234"[..];
c.read_exact(&mut buf).unwrap();
assert_eq!(&buf, b"1234");
let mut c = &b"56789"[..];
c.read_exact(&mut buf).unwrap();
assert_eq!(&buf, b"5678");
assert_eq!(c, b"9");
}
#[test]
fn take_eof() {
struct R;
impl Read for R {
fn read(&mut self, _: &mut [u8]) -> io::Result<usize> {
Err(io::Error::new_const(io::ErrorKind::Other, &""))
}
}
impl BufRead for R {
fn fill_buf(&mut self) -> io::Result<&[u8]> {
Err(io::Error::new_const(io::ErrorKind::Other, &""))
}
fn consume(&mut self, _amt: usize) {}
}
let mut buf = [0; 1];
assert_eq!(0, R.take(0).read(&mut buf).unwrap());
assert_eq!(b"", R.take(0).fill_buf().unwrap());
}
fn cmp_bufread<Br1: BufRead, Br2: BufRead>(mut br1: Br1, mut br2: Br2, exp: &[u8]) {
let mut cat = Vec::new();
loop {
let consume = {
let buf1 = br1.fill_buf().unwrap();
let buf2 = br2.fill_buf().unwrap();
let minlen = if buf1.len() < buf2.len() { buf1.len() } else { buf2.len() };
assert_eq!(buf1[..minlen], buf2[..minlen]);
cat.extend_from_slice(&buf1[..minlen]);
minlen
};
if consume == 0 {
break;
}
br1.consume(consume);
br2.consume(consume);
}
assert_eq!(br1.fill_buf().unwrap().len(), 0);
assert_eq!(br2.fill_buf().unwrap().len(), 0);
assert_eq!(&cat[..], &exp[..])
}
#[test]
fn chain_bufread() {
let testdata = b"ABCDEFGHIJKL";
let chain1 =
(&testdata[..3]).chain(&testdata[3..6]).chain(&testdata[6..9]).chain(&testdata[9..]);
let chain2 = (&testdata[..4]).chain(&testdata[4..8]).chain(&testdata[8..]);
cmp_bufread(chain1, chain2, &testdata[..]);
}
#[test]
fn bufreader_size_hint() {
let testdata = b"ABCDEFGHIJKL";
let mut buf_reader = BufReader::new(&testdata[..]);
assert_eq!(buf_reader.buffer().len(), 0);
let buffer_length = testdata.len();
buf_reader.fill_buf().unwrap();
// Check that size hint matches buffer contents
let mut buffered_bytes = buf_reader.bytes();
let (lower_bound, _upper_bound) = buffered_bytes.size_hint();
assert_eq!(lower_bound, buffer_length);
// Check that size hint matches buffer contents after advancing
buffered_bytes.next().unwrap().unwrap();
let (lower_bound, _upper_bound) = buffered_bytes.size_hint();
assert_eq!(lower_bound, buffer_length - 1);
}
#[test]
fn empty_size_hint() {
let size_hint = io::empty().bytes().size_hint();
assert_eq!(size_hint, (0, Some(0)));
}
#[test]
fn chain_empty_size_hint() {
let chain = io::empty().chain(io::empty());
let size_hint = chain.bytes().size_hint();
assert_eq!(size_hint, (0, Some(0)));
}
#[test]
fn chain_size_hint() {
let testdata = b"ABCDEFGHIJKL";
let mut buf_reader_1 = BufReader::new(&testdata[..6]);
let mut buf_reader_2 = BufReader::new(&testdata[6..]);
buf_reader_1.fill_buf().unwrap();
buf_reader_2.fill_buf().unwrap();
let chain = buf_reader_1.chain(buf_reader_2);
let size_hint = chain.bytes().size_hint();
assert_eq!(size_hint, (testdata.len(), None));
}
#[test]
fn chain_zero_length_read_is_not_eof() {
let a = b"A";
let b = b"B";
let mut s = String::new();
let mut chain = (&a[..]).chain(&b[..]);
chain.read(&mut []).unwrap();
chain.read_to_string(&mut s).unwrap();
assert_eq!("AB", s);
}
#[bench]
#[cfg_attr(target_os = "emscripten", ignore)]
fn bench_read_to_end(b: &mut test::Bencher) {
b.iter(|| {
let mut lr = repeat(1).take(10000000);
let mut vec = Vec::with_capacity(1024);
super::read_to_end(&mut lr, &mut vec)
});
}
#[test]
fn seek_len() -> io::Result<()> {
let mut c = Cursor::new(vec![0; 15]);
assert_eq!(c.stream_len()?, 15);
c.seek(SeekFrom::End(0))?;
let old_pos = c.stream_position()?;
assert_eq!(c.stream_len()?, 15);
assert_eq!(c.stream_position()?, old_pos);
c.seek(SeekFrom::Start(7))?;
c.seek(SeekFrom::Current(2))?;
let old_pos = c.stream_position()?;
assert_eq!(c.stream_len()?, 15);
assert_eq!(c.stream_position()?, old_pos);
Ok(())
}
#[test]
fn seek_position() -> io::Result<()> {
// All `asserts` are duplicated here to make sure the method does not
// change anything about the seek state.
let mut c = Cursor::new(vec![0; 15]);
assert_eq!(c.stream_position()?, 0);
assert_eq!(c.stream_position()?, 0);
c.seek(SeekFrom::End(0))?;
assert_eq!(c.stream_position()?, 15);
assert_eq!(c.stream_position()?, 15);
c.seek(SeekFrom::Start(7))?;
c.seek(SeekFrom::Current(2))?;
assert_eq!(c.stream_position()?, 9);
assert_eq!(c.stream_position()?, 9);
c.seek(SeekFrom::End(-3))?;
c.seek(SeekFrom::Current(1))?;
c.seek(SeekFrom::Current(-5))?;
assert_eq!(c.stream_position()?, 8);
assert_eq!(c.stream_position()?, 8);
Ok(())
}
// A simple example reader which uses the default implementation of
// read_to_end.
struct ExampleSliceReader<'a> {
slice: &'a [u8],
}
impl<'a> Read for ExampleSliceReader<'a> {
fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
let len = cmp::min(self.slice.len(), buf.len());
buf[..len].copy_from_slice(&self.slice[..len]);
self.slice = &self.slice[len..];
Ok(len)
}
}
#[test]
fn test_read_to_end_capacity() -> io::Result<()> {
let input = &b"foo"[..];
// read_to_end() generally needs to over-allocate, both for efficiency
// and so that it can distinguish EOF. Assert that this is the case
// with this simple ExampleSliceReader struct, which uses the default
// implementation of read_to_end. Even though vec1 is allocated with
// exactly enough capacity for the read, read_to_end will allocate more
// space here.
let mut vec1 = Vec::with_capacity(input.len());
ExampleSliceReader { slice: input }.read_to_end(&mut vec1)?;
assert_eq!(vec1.len(), input.len());
assert!(vec1.capacity() > input.len(), "allocated more");
// However, std::io::Take includes an implementation of read_to_end
// that will not allocate when the limit has already been reached. In
// this case, vec2 never grows.
let mut vec2 = Vec::with_capacity(input.len());
ExampleSliceReader { slice: input }.take(input.len() as u64).read_to_end(&mut vec2)?;
assert_eq!(vec2.len(), input.len());
assert_eq!(vec2.capacity(), input.len(), "did not allocate more");
Ok(())
}
#[test]
fn io_slice_mut_advance() {
let mut buf1 = [1; 8];
let mut buf2 = [2; 16];
let mut buf3 = [3; 8];
let mut bufs = &mut [
IoSliceMut::new(&mut buf1),
IoSliceMut::new(&mut buf2),
IoSliceMut::new(&mut buf3),
][..];
// Only in a single buffer..
bufs = IoSliceMut::advance(bufs, 1);
assert_eq!(bufs[0].deref(), [1; 7].as_ref());
assert_eq!(bufs[1].deref(), [2; 16].as_ref());
assert_eq!(bufs[2].deref(), [3; 8].as_ref());
// Removing a buffer, leaving others as is.
bufs = IoSliceMut::advance(bufs, 7);
assert_eq!(bufs[0].deref(), [2; 16].as_ref());
assert_eq!(bufs[1].deref(), [3; 8].as_ref());
// Removing a buffer and removing from the next buffer.
bufs = IoSliceMut::advance(bufs, 18);
assert_eq!(bufs[0].deref(), [3; 6].as_ref());
}
#[test]
fn io_slice_mut_advance_empty_slice() {
let empty_bufs = &mut [][..];
// Shouldn't panic.
IoSliceMut::advance(empty_bufs, 1);
}
#[test]
fn io_slice_mut_advance_beyond_total_length() {
let mut buf1 = [1; 8];
let mut bufs = &mut [IoSliceMut::new(&mut buf1)][..];
// Going beyond the total length should be ok.
bufs = IoSliceMut::advance(bufs, 9);
assert!(bufs.is_empty());
}
#[test]
fn io_slice_advance() {
let buf1 = [1; 8];
let buf2 = [2; 16];
let buf3 = [3; 8];
let mut bufs = &mut [IoSlice::new(&buf1), IoSlice::new(&buf2), IoSlice::new(&buf3)][..];
// Only in a single buffer..
bufs = IoSlice::advance(bufs, 1);
assert_eq!(bufs[0].deref(), [1; 7].as_ref());
assert_eq!(bufs[1].deref(), [2; 16].as_ref());
assert_eq!(bufs[2].deref(), [3; 8].as_ref());
// Removing a buffer, leaving others as is.
bufs = IoSlice::advance(bufs, 7);
assert_eq!(bufs[0].deref(), [2; 16].as_ref());
assert_eq!(bufs[1].deref(), [3; 8].as_ref());
// Removing a buffer and removing from the next buffer.
bufs = IoSlice::advance(bufs, 18);
assert_eq!(bufs[0].deref(), [3; 6].as_ref());
}
#[test]
fn io_slice_advance_empty_slice() {
let empty_bufs = &mut [][..];
// Shouldn't panic.
IoSlice::advance(empty_bufs, 1);
}
#[test]
fn io_slice_advance_beyond_total_length() {
let buf1 = [1; 8];
let mut bufs = &mut [IoSlice::new(&buf1)][..];
// Going beyond the total length should be ok.
bufs = IoSlice::advance(bufs, 9);
assert!(bufs.is_empty());
}
/// Create a new writer that reads from at most `n_bufs` and reads
/// `per_call` bytes (in total) per call to write.
fn test_writer(n_bufs: usize, per_call: usize) -> TestWriter {
TestWriter { n_bufs, per_call, written: Vec::new() }
}
struct TestWriter {
n_bufs: usize,
per_call: usize,
written: Vec<u8>,
}
impl Write for TestWriter {
fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
self.write_vectored(&[IoSlice::new(buf)])
}
fn write_vectored(&mut self, bufs: &[IoSlice<'_>]) -> io::Result<usize> {
let mut left = self.per_call;
let mut written = 0;
for buf in bufs.iter().take(self.n_bufs) {
let n = min(left, buf.len());
self.written.extend_from_slice(&buf[0..n]);
left -= n;
written += n;
}
Ok(written)
}
fn flush(&mut self) -> io::Result<()> {
Ok(())
}
}
#[test]
fn test_writer_read_from_one_buf() {
let mut writer = test_writer(1, 2);
assert_eq!(writer.write(&[]).unwrap(), 0);
assert_eq!(writer.write_vectored(&[]).unwrap(), 0);
// Read at most 2 bytes.
assert_eq!(writer.write(&[1, 1, 1]).unwrap(), 2);
let bufs = &[IoSlice::new(&[2, 2, 2])];
assert_eq!(writer.write_vectored(bufs).unwrap(), 2);
// Only read from first buf.
let bufs = &[IoSlice::new(&[3]), IoSlice::new(&[4, 4])];
assert_eq!(writer.write_vectored(bufs).unwrap(), 1);
assert_eq!(writer.written, &[1, 1, 2, 2, 3]);
}
#[test]
fn test_writer_read_from_multiple_bufs() {
let mut writer = test_writer(3, 3);
// Read at most 3 bytes from two buffers.
let bufs = &[IoSlice::new(&[1]), IoSlice::new(&[2, 2, 2])];
assert_eq!(writer.write_vectored(bufs).unwrap(), 3);
// Read at most 3 bytes from three buffers.
let bufs = &[IoSlice::new(&[3]), IoSlice::new(&[4]), IoSlice::new(&[5, 5])];
assert_eq!(writer.write_vectored(bufs).unwrap(), 3);
assert_eq!(writer.written, &[1, 2, 2, 3, 4, 5]);
}
#[test]
fn test_write_all_vectored() {
#[rustfmt::skip] // Becomes unreadable otherwise.
let tests: Vec<(_, &'static [u8])> = vec![
(vec![], &[]),
(vec![IoSlice::new(&[]), IoSlice::new(&[])], &[]),
(vec![IoSlice::new(&[1])], &[1]),
(vec![IoSlice::new(&[1, 2])], &[1, 2]),
(vec![IoSlice::new(&[1, 2, 3])], &[1, 2, 3]),
(vec![IoSlice::new(&[1, 2, 3, 4])], &[1, 2, 3, 4]),
(vec![IoSlice::new(&[1, 2, 3, 4, 5])], &[1, 2, 3, 4, 5]),
(vec![IoSlice::new(&[1]), IoSlice::new(&[2])], &[1, 2]),
(vec![IoSlice::new(&[1]), IoSlice::new(&[2, 2])], &[1, 2, 2]),
(vec![IoSlice::new(&[1, 1]), IoSlice::new(&[2, 2])], &[1, 1, 2, 2]),
(vec![IoSlice::new(&[1, 1]), IoSlice::new(&[2, 2, 2])], &[1, 1, 2, 2, 2]),
(vec![IoSlice::new(&[1, 1]), IoSlice::new(&[2, 2, 2])], &[1, 1, 2, 2, 2]),
(vec![IoSlice::new(&[1, 1, 1]), IoSlice::new(&[2, 2, 2])], &[1, 1, 1, 2, 2, 2]),
(vec![IoSlice::new(&[1, 1, 1]), IoSlice::new(&[2, 2, 2, 2])], &[1, 1, 1, 2, 2, 2, 2]),
(vec![IoSlice::new(&[1, 1, 1, 1]), IoSlice::new(&[2, 2, 2, 2])], &[1, 1, 1, 1, 2, 2, 2, 2]),
(vec![IoSlice::new(&[1]), IoSlice::new(&[2]), IoSlice::new(&[3])], &[1, 2, 3]),
(vec![IoSlice::new(&[1, 1]), IoSlice::new(&[2, 2]), IoSlice::new(&[3, 3])], &[1, 1, 2, 2, 3, 3]),
(vec![IoSlice::new(&[1]), IoSlice::new(&[2, 2]), IoSlice::new(&[3, 3, 3])], &[1, 2, 2, 3, 3, 3]),
(vec![IoSlice::new(&[1, 1, 1]), IoSlice::new(&[2, 2, 2]), IoSlice::new(&[3, 3, 3])], &[1, 1, 1, 2, 2, 2, 3, 3, 3]),
];
let writer_configs = &[(1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 3)];
for (n_bufs, per_call) in writer_configs.iter().copied() {
for (mut input, wanted) in tests.clone().into_iter() {
let mut writer = test_writer(n_bufs, per_call);
assert!(writer.write_all_vectored(&mut *input).is_ok());
assert_eq!(&*writer.written, &*wanted);
}
}
}