| #![unstable( |
| feature = "ip", |
| reason = "extra functionality has not been \ |
| scrutinized to the level that it should \ |
| be to be stable", |
| issue = "27709" |
| )] |
| |
| // Tests for this module |
| #[cfg(all(test, not(target_os = "emscripten")))] |
| mod tests; |
| |
| use crate::cmp::Ordering; |
| use crate::fmt::{self, Write as FmtWrite}; |
| use crate::hash; |
| use crate::io::Write as IoWrite; |
| use crate::mem::transmute; |
| use crate::sys::net::netc as c; |
| use crate::sys_common::{AsInner, FromInner, IntoInner}; |
| |
| /// An IP address, either IPv4 or IPv6. |
| /// |
| /// This enum can contain either an [`Ipv4Addr`] or an [`Ipv6Addr`], see their |
| /// respective documentation for more details. |
| /// |
| /// The size of an `IpAddr` instance may vary depending on the target operating |
| /// system. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use std::net::{IpAddr, Ipv4Addr, Ipv6Addr}; |
| /// |
| /// let localhost_v4 = IpAddr::V4(Ipv4Addr::new(127, 0, 0, 1)); |
| /// let localhost_v6 = IpAddr::V6(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1)); |
| /// |
| /// assert_eq!("127.0.0.1".parse(), Ok(localhost_v4)); |
| /// assert_eq!("::1".parse(), Ok(localhost_v6)); |
| /// |
| /// assert_eq!(localhost_v4.is_ipv6(), false); |
| /// assert_eq!(localhost_v4.is_ipv4(), true); |
| /// ``` |
| #[stable(feature = "ip_addr", since = "1.7.0")] |
| #[derive(Copy, Clone, Eq, PartialEq, Hash, PartialOrd, Ord)] |
| pub enum IpAddr { |
| /// An IPv4 address. |
| #[stable(feature = "ip_addr", since = "1.7.0")] |
| V4(#[stable(feature = "ip_addr", since = "1.7.0")] Ipv4Addr), |
| /// An IPv6 address. |
| #[stable(feature = "ip_addr", since = "1.7.0")] |
| V6(#[stable(feature = "ip_addr", since = "1.7.0")] Ipv6Addr), |
| } |
| |
| /// An IPv4 address. |
| /// |
| /// IPv4 addresses are defined as 32-bit integers in [IETF RFC 791]. |
| /// They are usually represented as four octets. |
| /// |
| /// See [`IpAddr`] for a type encompassing both IPv4 and IPv6 addresses. |
| /// |
| /// The size of an `Ipv4Addr` struct may vary depending on the target operating |
| /// system. |
| /// |
| /// [IETF RFC 791]: https://tools.ietf.org/html/rfc791 |
| /// |
| /// # Textual representation |
| /// |
| /// `Ipv4Addr` provides a [`FromStr`] implementation. The four octets are in decimal |
| /// notation, divided by `.` (this is called "dot-decimal notation"). |
| /// Notably, octal numbers and hexadecimal numbers are not allowed per [IETF RFC 6943]. |
| /// |
| /// [IETF RFC 6943]: https://tools.ietf.org/html/rfc6943#section-3.1.1 |
| /// [`FromStr`]: crate::str::FromStr |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use std::net::Ipv4Addr; |
| /// |
| /// let localhost = Ipv4Addr::new(127, 0, 0, 1); |
| /// assert_eq!("127.0.0.1".parse(), Ok(localhost)); |
| /// assert_eq!(localhost.is_loopback(), true); |
| /// ``` |
| #[derive(Copy)] |
| #[stable(feature = "rust1", since = "1.0.0")] |
| pub struct Ipv4Addr { |
| inner: c::in_addr, |
| } |
| |
| /// An IPv6 address. |
| /// |
| /// IPv6 addresses are defined as 128-bit integers in [IETF RFC 4291]. |
| /// They are usually represented as eight 16-bit segments. |
| /// |
| /// See [`IpAddr`] for a type encompassing both IPv4 and IPv6 addresses. |
| /// |
| /// The size of an `Ipv6Addr` struct may vary depending on the target operating |
| /// system. |
| /// |
| /// [IETF RFC 4291]: https://tools.ietf.org/html/rfc4291 |
| /// |
| /// # Textual representation |
| /// |
| /// `Ipv6Addr` provides a [`FromStr`] implementation. There are many ways to represent |
| /// an IPv6 address in text, but in general, each segments is written in hexadecimal |
| /// notation, and segments are separated by `:`. For more information, see |
| /// [IETF RFC 5952]. |
| /// |
| /// [`FromStr`]: crate::str::FromStr |
| /// [IETF RFC 5952]: https://tools.ietf.org/html/rfc5952 |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use std::net::Ipv6Addr; |
| /// |
| /// let localhost = Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1); |
| /// assert_eq!("::1".parse(), Ok(localhost)); |
| /// assert_eq!(localhost.is_loopback(), true); |
| /// ``` |
| #[derive(Copy)] |
| #[stable(feature = "rust1", since = "1.0.0")] |
| pub struct Ipv6Addr { |
| inner: c::in6_addr, |
| } |
| |
| #[allow(missing_docs)] |
| #[derive(Copy, PartialEq, Eq, Clone, Hash, Debug)] |
| pub enum Ipv6MulticastScope { |
| InterfaceLocal, |
| LinkLocal, |
| RealmLocal, |
| AdminLocal, |
| SiteLocal, |
| OrganizationLocal, |
| Global, |
| } |
| |
| impl IpAddr { |
| /// Returns [`true`] for the special 'unspecified' address. |
| /// |
| /// See the documentation for [`Ipv4Addr::is_unspecified()`] and |
| /// [`Ipv6Addr::is_unspecified()`] for more details. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use std::net::{IpAddr, Ipv4Addr, Ipv6Addr}; |
| /// |
| /// assert_eq!(IpAddr::V4(Ipv4Addr::new(0, 0, 0, 0)).is_unspecified(), true); |
| /// assert_eq!(IpAddr::V6(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0)).is_unspecified(), true); |
| /// ``` |
| #[rustc_const_stable(feature = "const_ip", since = "1.50.0")] |
| #[stable(feature = "ip_shared", since = "1.12.0")] |
| #[inline] |
| pub const fn is_unspecified(&self) -> bool { |
| match self { |
| IpAddr::V4(ip) => ip.is_unspecified(), |
| IpAddr::V6(ip) => ip.is_unspecified(), |
| } |
| } |
| |
| /// Returns [`true`] if this is a loopback address. |
| /// |
| /// See the documentation for [`Ipv4Addr::is_loopback()`] and |
| /// [`Ipv6Addr::is_loopback()`] for more details. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use std::net::{IpAddr, Ipv4Addr, Ipv6Addr}; |
| /// |
| /// assert_eq!(IpAddr::V4(Ipv4Addr::new(127, 0, 0, 1)).is_loopback(), true); |
| /// assert_eq!(IpAddr::V6(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0x1)).is_loopback(), true); |
| /// ``` |
| #[rustc_const_stable(feature = "const_ip", since = "1.50.0")] |
| #[stable(feature = "ip_shared", since = "1.12.0")] |
| #[inline] |
| pub const fn is_loopback(&self) -> bool { |
| match self { |
| IpAddr::V4(ip) => ip.is_loopback(), |
| IpAddr::V6(ip) => ip.is_loopback(), |
| } |
| } |
| |
| /// Returns [`true`] if the address appears to be globally routable. |
| /// |
| /// See the documentation for [`Ipv4Addr::is_global()`] and |
| /// [`Ipv6Addr::is_global()`] for more details. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// #![feature(ip)] |
| /// |
| /// use std::net::{IpAddr, Ipv4Addr, Ipv6Addr}; |
| /// |
| /// assert_eq!(IpAddr::V4(Ipv4Addr::new(80, 9, 12, 3)).is_global(), true); |
| /// assert_eq!(IpAddr::V6(Ipv6Addr::new(0, 0, 0x1c9, 0, 0, 0xafc8, 0, 0x1)).is_global(), true); |
| /// ``` |
| #[rustc_const_unstable(feature = "const_ip", issue = "76205")] |
| #[inline] |
| pub const fn is_global(&self) -> bool { |
| match self { |
| IpAddr::V4(ip) => ip.is_global(), |
| IpAddr::V6(ip) => ip.is_global(), |
| } |
| } |
| |
| /// Returns [`true`] if this is a multicast address. |
| /// |
| /// See the documentation for [`Ipv4Addr::is_multicast()`] and |
| /// [`Ipv6Addr::is_multicast()`] for more details. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use std::net::{IpAddr, Ipv4Addr, Ipv6Addr}; |
| /// |
| /// assert_eq!(IpAddr::V4(Ipv4Addr::new(224, 254, 0, 0)).is_multicast(), true); |
| /// assert_eq!(IpAddr::V6(Ipv6Addr::new(0xff00, 0, 0, 0, 0, 0, 0, 0)).is_multicast(), true); |
| /// ``` |
| #[rustc_const_stable(feature = "const_ip", since = "1.50.0")] |
| #[stable(feature = "ip_shared", since = "1.12.0")] |
| #[inline] |
| pub const fn is_multicast(&self) -> bool { |
| match self { |
| IpAddr::V4(ip) => ip.is_multicast(), |
| IpAddr::V6(ip) => ip.is_multicast(), |
| } |
| } |
| |
| /// Returns [`true`] if this address is in a range designated for documentation. |
| /// |
| /// See the documentation for [`Ipv4Addr::is_documentation()`] and |
| /// [`Ipv6Addr::is_documentation()`] for more details. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// #![feature(ip)] |
| /// |
| /// use std::net::{IpAddr, Ipv4Addr, Ipv6Addr}; |
| /// |
| /// assert_eq!(IpAddr::V4(Ipv4Addr::new(203, 0, 113, 6)).is_documentation(), true); |
| /// assert_eq!( |
| /// IpAddr::V6(Ipv6Addr::new(0x2001, 0xdb8, 0, 0, 0, 0, 0, 0)).is_documentation(), |
| /// true |
| /// ); |
| /// ``` |
| #[rustc_const_unstable(feature = "const_ip", issue = "76205")] |
| #[inline] |
| pub const fn is_documentation(&self) -> bool { |
| match self { |
| IpAddr::V4(ip) => ip.is_documentation(), |
| IpAddr::V6(ip) => ip.is_documentation(), |
| } |
| } |
| |
| /// Returns [`true`] if this address is an [`IPv4` address], and [`false`] |
| /// otherwise. |
| /// |
| /// [`IPv4` address]: IpAddr::V4 |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use std::net::{IpAddr, Ipv4Addr, Ipv6Addr}; |
| /// |
| /// assert_eq!(IpAddr::V4(Ipv4Addr::new(203, 0, 113, 6)).is_ipv4(), true); |
| /// assert_eq!(IpAddr::V6(Ipv6Addr::new(0x2001, 0xdb8, 0, 0, 0, 0, 0, 0)).is_ipv4(), false); |
| /// ``` |
| #[rustc_const_stable(feature = "const_ip", since = "1.50.0")] |
| #[stable(feature = "ipaddr_checker", since = "1.16.0")] |
| #[inline] |
| pub const fn is_ipv4(&self) -> bool { |
| matches!(self, IpAddr::V4(_)) |
| } |
| |
| /// Returns [`true`] if this address is an [`IPv6` address], and [`false`] |
| /// otherwise. |
| /// |
| /// [`IPv6` address]: IpAddr::V6 |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use std::net::{IpAddr, Ipv4Addr, Ipv6Addr}; |
| /// |
| /// assert_eq!(IpAddr::V4(Ipv4Addr::new(203, 0, 113, 6)).is_ipv6(), false); |
| /// assert_eq!(IpAddr::V6(Ipv6Addr::new(0x2001, 0xdb8, 0, 0, 0, 0, 0, 0)).is_ipv6(), true); |
| /// ``` |
| #[rustc_const_stable(feature = "const_ip", since = "1.50.0")] |
| #[stable(feature = "ipaddr_checker", since = "1.16.0")] |
| #[inline] |
| pub const fn is_ipv6(&self) -> bool { |
| matches!(self, IpAddr::V6(_)) |
| } |
| } |
| |
| impl Ipv4Addr { |
| /// Creates a new IPv4 address from four eight-bit octets. |
| /// |
| /// The result will represent the IP address `a`.`b`.`c`.`d`. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use std::net::Ipv4Addr; |
| /// |
| /// let addr = Ipv4Addr::new(127, 0, 0, 1); |
| /// ``` |
| #[rustc_const_stable(feature = "const_ipv4", since = "1.32.0")] |
| #[stable(feature = "rust1", since = "1.0.0")] |
| #[inline] |
| pub const fn new(a: u8, b: u8, c: u8, d: u8) -> Ipv4Addr { |
| // `s_addr` is stored as BE on all machine and the array is in BE order. |
| // So the native endian conversion method is used so that it's never swapped. |
| Ipv4Addr { inner: c::in_addr { s_addr: u32::from_ne_bytes([a, b, c, d]) } } |
| } |
| |
| /// An IPv4 address with the address pointing to localhost: 127.0.0.1. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use std::net::Ipv4Addr; |
| /// |
| /// let addr = Ipv4Addr::LOCALHOST; |
| /// assert_eq!(addr, Ipv4Addr::new(127, 0, 0, 1)); |
| /// ``` |
| #[stable(feature = "ip_constructors", since = "1.30.0")] |
| pub const LOCALHOST: Self = Ipv4Addr::new(127, 0, 0, 1); |
| |
| /// An IPv4 address representing an unspecified address: 0.0.0.0 |
| /// |
| /// This corresponds to the constant `INADDR_ANY` in other languages. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use std::net::Ipv4Addr; |
| /// |
| /// let addr = Ipv4Addr::UNSPECIFIED; |
| /// assert_eq!(addr, Ipv4Addr::new(0, 0, 0, 0)); |
| /// ``` |
| #[doc(alias = "INADDR_ANY")] |
| #[stable(feature = "ip_constructors", since = "1.30.0")] |
| pub const UNSPECIFIED: Self = Ipv4Addr::new(0, 0, 0, 0); |
| |
| /// An IPv4 address representing the broadcast address: 255.255.255.255 |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use std::net::Ipv4Addr; |
| /// |
| /// let addr = Ipv4Addr::BROADCAST; |
| /// assert_eq!(addr, Ipv4Addr::new(255, 255, 255, 255)); |
| /// ``` |
| #[stable(feature = "ip_constructors", since = "1.30.0")] |
| pub const BROADCAST: Self = Ipv4Addr::new(255, 255, 255, 255); |
| |
| /// Returns the four eight-bit integers that make up this address. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use std::net::Ipv4Addr; |
| /// |
| /// let addr = Ipv4Addr::new(127, 0, 0, 1); |
| /// assert_eq!(addr.octets(), [127, 0, 0, 1]); |
| /// ``` |
| #[rustc_const_stable(feature = "const_ipv4", since = "1.50.0")] |
| #[stable(feature = "rust1", since = "1.0.0")] |
| #[inline] |
| pub const fn octets(&self) -> [u8; 4] { |
| // This returns the order we want because s_addr is stored in big-endian. |
| self.inner.s_addr.to_ne_bytes() |
| } |
| |
| /// Returns [`true`] for the special 'unspecified' address (0.0.0.0). |
| /// |
| /// This property is defined in _UNIX Network Programming, Second Edition_, |
| /// W. Richard Stevens, p. 891; see also [ip7]. |
| /// |
| /// [ip7]: http://man7.org/linux/man-pages/man7/ip.7.html |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use std::net::Ipv4Addr; |
| /// |
| /// assert_eq!(Ipv4Addr::new(0, 0, 0, 0).is_unspecified(), true); |
| /// assert_eq!(Ipv4Addr::new(45, 22, 13, 197).is_unspecified(), false); |
| /// ``` |
| #[rustc_const_stable(feature = "const_ipv4", since = "1.32.0")] |
| #[stable(feature = "ip_shared", since = "1.12.0")] |
| #[inline] |
| pub const fn is_unspecified(&self) -> bool { |
| self.inner.s_addr == 0 |
| } |
| |
| /// Returns [`true`] if this is a loopback address (127.0.0.0/8). |
| /// |
| /// This property is defined by [IETF RFC 1122]. |
| /// |
| /// [IETF RFC 1122]: https://tools.ietf.org/html/rfc1122 |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use std::net::Ipv4Addr; |
| /// |
| /// assert_eq!(Ipv4Addr::new(127, 0, 0, 1).is_loopback(), true); |
| /// assert_eq!(Ipv4Addr::new(45, 22, 13, 197).is_loopback(), false); |
| /// ``` |
| #[rustc_const_stable(feature = "const_ipv4", since = "1.50.0")] |
| #[stable(since = "1.7.0", feature = "ip_17")] |
| #[inline] |
| pub const fn is_loopback(&self) -> bool { |
| self.octets()[0] == 127 |
| } |
| |
| /// Returns [`true`] if this is a private address. |
| /// |
| /// The private address ranges are defined in [IETF RFC 1918] and include: |
| /// |
| /// - 10.0.0.0/8 |
| /// - 172.16.0.0/12 |
| /// - 192.168.0.0/16 |
| /// |
| /// [IETF RFC 1918]: https://tools.ietf.org/html/rfc1918 |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use std::net::Ipv4Addr; |
| /// |
| /// assert_eq!(Ipv4Addr::new(10, 0, 0, 1).is_private(), true); |
| /// assert_eq!(Ipv4Addr::new(10, 10, 10, 10).is_private(), true); |
| /// assert_eq!(Ipv4Addr::new(172, 16, 10, 10).is_private(), true); |
| /// assert_eq!(Ipv4Addr::new(172, 29, 45, 14).is_private(), true); |
| /// assert_eq!(Ipv4Addr::new(172, 32, 0, 2).is_private(), false); |
| /// assert_eq!(Ipv4Addr::new(192, 168, 0, 2).is_private(), true); |
| /// assert_eq!(Ipv4Addr::new(192, 169, 0, 2).is_private(), false); |
| /// ``` |
| #[rustc_const_stable(feature = "const_ipv4", since = "1.50.0")] |
| #[stable(since = "1.7.0", feature = "ip_17")] |
| #[inline] |
| pub const fn is_private(&self) -> bool { |
| match self.octets() { |
| [10, ..] => true, |
| [172, b, ..] if b >= 16 && b <= 31 => true, |
| [192, 168, ..] => true, |
| _ => false, |
| } |
| } |
| |
| /// Returns [`true`] if the address is link-local (169.254.0.0/16). |
| /// |
| /// This property is defined by [IETF RFC 3927]. |
| /// |
| /// [IETF RFC 3927]: https://tools.ietf.org/html/rfc3927 |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use std::net::Ipv4Addr; |
| /// |
| /// assert_eq!(Ipv4Addr::new(169, 254, 0, 0).is_link_local(), true); |
| /// assert_eq!(Ipv4Addr::new(169, 254, 10, 65).is_link_local(), true); |
| /// assert_eq!(Ipv4Addr::new(16, 89, 10, 65).is_link_local(), false); |
| /// ``` |
| #[rustc_const_stable(feature = "const_ipv4", since = "1.50.0")] |
| #[stable(since = "1.7.0", feature = "ip_17")] |
| #[inline] |
| pub const fn is_link_local(&self) -> bool { |
| matches!(self.octets(), [169, 254, ..]) |
| } |
| |
| /// Returns [`true`] if the address appears to be globally routable. |
| /// See [iana-ipv4-special-registry][ipv4-sr]. |
| /// |
| /// The following return [`false`]: |
| /// |
| /// - private addresses (see [`Ipv4Addr::is_private()`]) |
| /// - the loopback address (see [`Ipv4Addr::is_loopback()`]) |
| /// - the link-local address (see [`Ipv4Addr::is_link_local()`]) |
| /// - the broadcast address (see [`Ipv4Addr::is_broadcast()`]) |
| /// - addresses used for documentation (see [`Ipv4Addr::is_documentation()`]) |
| /// - the unspecified address (see [`Ipv4Addr::is_unspecified()`]), and the whole |
| /// 0.0.0.0/8 block |
| /// - addresses reserved for future protocols (see |
| /// [`Ipv4Addr::is_ietf_protocol_assignment()`], except |
| /// `192.0.0.9/32` and `192.0.0.10/32` which are globally routable |
| /// - addresses reserved for future use (see [`Ipv4Addr::is_reserved()`] |
| /// - addresses reserved for networking devices benchmarking (see |
| /// [`Ipv4Addr::is_benchmarking()`]) |
| /// |
| /// [ipv4-sr]: https://www.iana.org/assignments/iana-ipv4-special-registry/iana-ipv4-special-registry.xhtml |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// #![feature(ip)] |
| /// |
| /// use std::net::Ipv4Addr; |
| /// |
| /// // private addresses are not global |
| /// assert_eq!(Ipv4Addr::new(10, 254, 0, 0).is_global(), false); |
| /// assert_eq!(Ipv4Addr::new(192, 168, 10, 65).is_global(), false); |
| /// assert_eq!(Ipv4Addr::new(172, 16, 10, 65).is_global(), false); |
| /// |
| /// // the 0.0.0.0/8 block is not global |
| /// assert_eq!(Ipv4Addr::new(0, 1, 2, 3).is_global(), false); |
| /// // in particular, the unspecified address is not global |
| /// assert_eq!(Ipv4Addr::new(0, 0, 0, 0).is_global(), false); |
| /// |
| /// // the loopback address is not global |
| /// assert_eq!(Ipv4Addr::new(127, 0, 0, 1).is_global(), false); |
| /// |
| /// // link local addresses are not global |
| /// assert_eq!(Ipv4Addr::new(169, 254, 45, 1).is_global(), false); |
| /// |
| /// // the broadcast address is not global |
| /// assert_eq!(Ipv4Addr::new(255, 255, 255, 255).is_global(), false); |
| /// |
| /// // the address space designated for documentation is not global |
| /// assert_eq!(Ipv4Addr::new(192, 0, 2, 255).is_global(), false); |
| /// assert_eq!(Ipv4Addr::new(198, 51, 100, 65).is_global(), false); |
| /// assert_eq!(Ipv4Addr::new(203, 0, 113, 6).is_global(), false); |
| /// |
| /// // shared addresses are not global |
| /// assert_eq!(Ipv4Addr::new(100, 100, 0, 0).is_global(), false); |
| /// |
| /// // addresses reserved for protocol assignment are not global |
| /// assert_eq!(Ipv4Addr::new(192, 0, 0, 0).is_global(), false); |
| /// assert_eq!(Ipv4Addr::new(192, 0, 0, 255).is_global(), false); |
| /// |
| /// // addresses reserved for future use are not global |
| /// assert_eq!(Ipv4Addr::new(250, 10, 20, 30).is_global(), false); |
| /// |
| /// // addresses reserved for network devices benchmarking are not global |
| /// assert_eq!(Ipv4Addr::new(198, 18, 0, 0).is_global(), false); |
| /// |
| /// // All the other addresses are global |
| /// assert_eq!(Ipv4Addr::new(1, 1, 1, 1).is_global(), true); |
| /// assert_eq!(Ipv4Addr::new(80, 9, 12, 3).is_global(), true); |
| /// ``` |
| #[rustc_const_unstable(feature = "const_ipv4", issue = "76205")] |
| #[inline] |
| pub const fn is_global(&self) -> bool { |
| // check if this address is 192.0.0.9 or 192.0.0.10. These addresses are the only two |
| // globally routable addresses in the 192.0.0.0/24 range. |
| if u32::from_be_bytes(self.octets()) == 0xc0000009 |
| || u32::from_be_bytes(self.octets()) == 0xc000000a |
| { |
| return true; |
| } |
| !self.is_private() |
| && !self.is_loopback() |
| && !self.is_link_local() |
| && !self.is_broadcast() |
| && !self.is_documentation() |
| && !self.is_shared() |
| && !self.is_ietf_protocol_assignment() |
| && !self.is_reserved() |
| && !self.is_benchmarking() |
| // Make sure the address is not in 0.0.0.0/8 |
| && self.octets()[0] != 0 |
| } |
| |
| /// Returns [`true`] if this address is part of the Shared Address Space defined in |
| /// [IETF RFC 6598] (`100.64.0.0/10`). |
| /// |
| /// [IETF RFC 6598]: https://tools.ietf.org/html/rfc6598 |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// #![feature(ip)] |
| /// use std::net::Ipv4Addr; |
| /// |
| /// assert_eq!(Ipv4Addr::new(100, 64, 0, 0).is_shared(), true); |
| /// assert_eq!(Ipv4Addr::new(100, 127, 255, 255).is_shared(), true); |
| /// assert_eq!(Ipv4Addr::new(100, 128, 0, 0).is_shared(), false); |
| /// ``` |
| #[rustc_const_unstable(feature = "const_ipv4", issue = "76205")] |
| #[inline] |
| pub const fn is_shared(&self) -> bool { |
| self.octets()[0] == 100 && (self.octets()[1] & 0b1100_0000 == 0b0100_0000) |
| } |
| |
| /// Returns [`true`] if this address is part of `192.0.0.0/24`, which is reserved to |
| /// IANA for IETF protocol assignments, as documented in [IETF RFC 6890]. |
| /// |
| /// Note that parts of this block are in use: |
| /// |
| /// - `192.0.0.8/32` is the "IPv4 dummy address" (see [IETF RFC 7600]) |
| /// - `192.0.0.9/32` is the "Port Control Protocol Anycast" (see [IETF RFC 7723]) |
| /// - `192.0.0.10/32` is used for NAT traversal (see [IETF RFC 8155]) |
| /// |
| /// [IETF RFC 6890]: https://tools.ietf.org/html/rfc6890 |
| /// [IETF RFC 7600]: https://tools.ietf.org/html/rfc7600 |
| /// [IETF RFC 7723]: https://tools.ietf.org/html/rfc7723 |
| /// [IETF RFC 8155]: https://tools.ietf.org/html/rfc8155 |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// #![feature(ip)] |
| /// use std::net::Ipv4Addr; |
| /// |
| /// assert_eq!(Ipv4Addr::new(192, 0, 0, 0).is_ietf_protocol_assignment(), true); |
| /// assert_eq!(Ipv4Addr::new(192, 0, 0, 8).is_ietf_protocol_assignment(), true); |
| /// assert_eq!(Ipv4Addr::new(192, 0, 0, 9).is_ietf_protocol_assignment(), true); |
| /// assert_eq!(Ipv4Addr::new(192, 0, 0, 255).is_ietf_protocol_assignment(), true); |
| /// assert_eq!(Ipv4Addr::new(192, 0, 1, 0).is_ietf_protocol_assignment(), false); |
| /// assert_eq!(Ipv4Addr::new(191, 255, 255, 255).is_ietf_protocol_assignment(), false); |
| /// ``` |
| #[rustc_const_unstable(feature = "const_ipv4", issue = "76205")] |
| #[inline] |
| pub const fn is_ietf_protocol_assignment(&self) -> bool { |
| self.octets()[0] == 192 && self.octets()[1] == 0 && self.octets()[2] == 0 |
| } |
| |
| /// Returns [`true`] if this address part of the `198.18.0.0/15` range, which is reserved for |
| /// network devices benchmarking. This range is defined in [IETF RFC 2544] as `192.18.0.0` |
| /// through `198.19.255.255` but [errata 423] corrects it to `198.18.0.0/15`. |
| /// |
| /// [IETF RFC 2544]: https://tools.ietf.org/html/rfc2544 |
| /// [errata 423]: https://www.rfc-editor.org/errata/eid423 |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// #![feature(ip)] |
| /// use std::net::Ipv4Addr; |
| /// |
| /// assert_eq!(Ipv4Addr::new(198, 17, 255, 255).is_benchmarking(), false); |
| /// assert_eq!(Ipv4Addr::new(198, 18, 0, 0).is_benchmarking(), true); |
| /// assert_eq!(Ipv4Addr::new(198, 19, 255, 255).is_benchmarking(), true); |
| /// assert_eq!(Ipv4Addr::new(198, 20, 0, 0).is_benchmarking(), false); |
| /// ``` |
| #[rustc_const_unstable(feature = "const_ipv4", issue = "76205")] |
| #[inline] |
| pub const fn is_benchmarking(&self) -> bool { |
| self.octets()[0] == 198 && (self.octets()[1] & 0xfe) == 18 |
| } |
| |
| /// Returns [`true`] if this address is reserved by IANA for future use. [IETF RFC 1112] |
| /// defines the block of reserved addresses as `240.0.0.0/4`. This range normally includes the |
| /// broadcast address `255.255.255.255`, but this implementation explicitly excludes it, since |
| /// it is obviously not reserved for future use. |
| /// |
| /// [IETF RFC 1112]: https://tools.ietf.org/html/rfc1112 |
| /// |
| /// # Warning |
| /// |
| /// As IANA assigns new addresses, this method will be |
| /// updated. This may result in non-reserved addresses being |
| /// treated as reserved in code that relies on an outdated version |
| /// of this method. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// #![feature(ip)] |
| /// use std::net::Ipv4Addr; |
| /// |
| /// assert_eq!(Ipv4Addr::new(240, 0, 0, 0).is_reserved(), true); |
| /// assert_eq!(Ipv4Addr::new(255, 255, 255, 254).is_reserved(), true); |
| /// |
| /// assert_eq!(Ipv4Addr::new(239, 255, 255, 255).is_reserved(), false); |
| /// // The broadcast address is not considered as reserved for future use by this implementation |
| /// assert_eq!(Ipv4Addr::new(255, 255, 255, 255).is_reserved(), false); |
| /// ``` |
| #[rustc_const_unstable(feature = "const_ipv4", issue = "76205")] |
| #[inline] |
| pub const fn is_reserved(&self) -> bool { |
| self.octets()[0] & 240 == 240 && !self.is_broadcast() |
| } |
| |
| /// Returns [`true`] if this is a multicast address (224.0.0.0/4). |
| /// |
| /// Multicast addresses have a most significant octet between 224 and 239, |
| /// and is defined by [IETF RFC 5771]. |
| /// |
| /// [IETF RFC 5771]: https://tools.ietf.org/html/rfc5771 |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use std::net::Ipv4Addr; |
| /// |
| /// assert_eq!(Ipv4Addr::new(224, 254, 0, 0).is_multicast(), true); |
| /// assert_eq!(Ipv4Addr::new(236, 168, 10, 65).is_multicast(), true); |
| /// assert_eq!(Ipv4Addr::new(172, 16, 10, 65).is_multicast(), false); |
| /// ``` |
| #[rustc_const_stable(feature = "const_ipv4", since = "1.50.0")] |
| #[stable(since = "1.7.0", feature = "ip_17")] |
| #[inline] |
| pub const fn is_multicast(&self) -> bool { |
| self.octets()[0] >= 224 && self.octets()[0] <= 239 |
| } |
| |
| /// Returns [`true`] if this is a broadcast address (255.255.255.255). |
| /// |
| /// A broadcast address has all octets set to 255 as defined in [IETF RFC 919]. |
| /// |
| /// [IETF RFC 919]: https://tools.ietf.org/html/rfc919 |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use std::net::Ipv4Addr; |
| /// |
| /// assert_eq!(Ipv4Addr::new(255, 255, 255, 255).is_broadcast(), true); |
| /// assert_eq!(Ipv4Addr::new(236, 168, 10, 65).is_broadcast(), false); |
| /// ``` |
| #[rustc_const_stable(feature = "const_ipv4", since = "1.50.0")] |
| #[stable(since = "1.7.0", feature = "ip_17")] |
| #[inline] |
| pub const fn is_broadcast(&self) -> bool { |
| u32::from_be_bytes(self.octets()) == u32::from_be_bytes(Self::BROADCAST.octets()) |
| } |
| |
| /// Returns [`true`] if this address is in a range designated for documentation. |
| /// |
| /// This is defined in [IETF RFC 5737]: |
| /// |
| /// - 192.0.2.0/24 (TEST-NET-1) |
| /// - 198.51.100.0/24 (TEST-NET-2) |
| /// - 203.0.113.0/24 (TEST-NET-3) |
| /// |
| /// [IETF RFC 5737]: https://tools.ietf.org/html/rfc5737 |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use std::net::Ipv4Addr; |
| /// |
| /// assert_eq!(Ipv4Addr::new(192, 0, 2, 255).is_documentation(), true); |
| /// assert_eq!(Ipv4Addr::new(198, 51, 100, 65).is_documentation(), true); |
| /// assert_eq!(Ipv4Addr::new(203, 0, 113, 6).is_documentation(), true); |
| /// assert_eq!(Ipv4Addr::new(193, 34, 17, 19).is_documentation(), false); |
| /// ``` |
| #[rustc_const_stable(feature = "const_ipv4", since = "1.50.0")] |
| #[stable(since = "1.7.0", feature = "ip_17")] |
| #[inline] |
| pub const fn is_documentation(&self) -> bool { |
| match self.octets() { |
| [192, 0, 2, _] => true, |
| [198, 51, 100, _] => true, |
| [203, 0, 113, _] => true, |
| _ => false, |
| } |
| } |
| |
| /// Converts this address to an IPv4-compatible [`IPv6` address]. |
| /// |
| /// a.b.c.d becomes ::a.b.c.d |
| /// |
| /// This isn't typically the method you want; these addresses don't typically |
| /// function on modern systems. Use `to_ipv6_mapped` instead. |
| /// |
| /// [`IPv6` address]: Ipv6Addr |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use std::net::{Ipv4Addr, Ipv6Addr}; |
| /// |
| /// assert_eq!( |
| /// Ipv4Addr::new(192, 0, 2, 255).to_ipv6_compatible(), |
| /// Ipv6Addr::new(0, 0, 0, 0, 0, 0, 49152, 767) |
| /// ); |
| /// ``` |
| #[rustc_const_stable(feature = "const_ipv4", since = "1.50.0")] |
| #[stable(feature = "rust1", since = "1.0.0")] |
| #[inline] |
| pub const fn to_ipv6_compatible(&self) -> Ipv6Addr { |
| let [a, b, c, d] = self.octets(); |
| Ipv6Addr { |
| inner: c::in6_addr { s6_addr: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, a, b, c, d] }, |
| } |
| } |
| |
| /// Converts this address to an IPv4-mapped [`IPv6` address]. |
| /// |
| /// a.b.c.d becomes ::ffff:a.b.c.d |
| /// |
| /// [`IPv6` address]: Ipv6Addr |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use std::net::{Ipv4Addr, Ipv6Addr}; |
| /// |
| /// assert_eq!(Ipv4Addr::new(192, 0, 2, 255).to_ipv6_mapped(), |
| /// Ipv6Addr::new(0, 0, 0, 0, 0, 65535, 49152, 767)); |
| /// ``` |
| #[rustc_const_stable(feature = "const_ipv4", since = "1.50.0")] |
| #[stable(feature = "rust1", since = "1.0.0")] |
| #[inline] |
| pub const fn to_ipv6_mapped(&self) -> Ipv6Addr { |
| let [a, b, c, d] = self.octets(); |
| Ipv6Addr { |
| inner: c::in6_addr { s6_addr: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0xFF, 0xFF, a, b, c, d] }, |
| } |
| } |
| } |
| |
| #[stable(feature = "ip_addr", since = "1.7.0")] |
| impl fmt::Display for IpAddr { |
| fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result { |
| match self { |
| IpAddr::V4(ip) => ip.fmt(fmt), |
| IpAddr::V6(ip) => ip.fmt(fmt), |
| } |
| } |
| } |
| |
| #[stable(feature = "ip_addr", since = "1.7.0")] |
| impl fmt::Debug for IpAddr { |
| fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result { |
| fmt::Display::fmt(self, fmt) |
| } |
| } |
| |
| #[stable(feature = "ip_from_ip", since = "1.16.0")] |
| impl From<Ipv4Addr> for IpAddr { |
| /// Copies this address to a new `IpAddr::V4`. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use std::net::{IpAddr, Ipv4Addr}; |
| /// |
| /// let addr = Ipv4Addr::new(127, 0, 0, 1); |
| /// |
| /// assert_eq!( |
| /// IpAddr::V4(addr), |
| /// IpAddr::from(addr) |
| /// ) |
| /// ``` |
| #[inline] |
| fn from(ipv4: Ipv4Addr) -> IpAddr { |
| IpAddr::V4(ipv4) |
| } |
| } |
| |
| #[stable(feature = "ip_from_ip", since = "1.16.0")] |
| impl From<Ipv6Addr> for IpAddr { |
| /// Copies this address to a new `IpAddr::V6`. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use std::net::{IpAddr, Ipv6Addr}; |
| /// |
| /// let addr = Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff); |
| /// |
| /// assert_eq!( |
| /// IpAddr::V6(addr), |
| /// IpAddr::from(addr) |
| /// ); |
| /// ``` |
| #[inline] |
| fn from(ipv6: Ipv6Addr) -> IpAddr { |
| IpAddr::V6(ipv6) |
| } |
| } |
| |
| #[stable(feature = "rust1", since = "1.0.0")] |
| impl fmt::Display for Ipv4Addr { |
| fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result { |
| let octets = self.octets(); |
| // Fast Path: if there's no alignment stuff, write directly to the buffer |
| if fmt.precision().is_none() && fmt.width().is_none() { |
| write!(fmt, "{}.{}.{}.{}", octets[0], octets[1], octets[2], octets[3]) |
| } else { |
| const IPV4_BUF_LEN: usize = 15; // Long enough for the longest possible IPv4 address |
| let mut buf = [0u8; IPV4_BUF_LEN]; |
| let mut buf_slice = &mut buf[..]; |
| |
| // Note: The call to write should never fail, hence the unwrap |
| write!(buf_slice, "{}.{}.{}.{}", octets[0], octets[1], octets[2], octets[3]).unwrap(); |
| let len = IPV4_BUF_LEN - buf_slice.len(); |
| |
| // This unsafe is OK because we know what is being written to the buffer |
| let buf = unsafe { crate::str::from_utf8_unchecked(&buf[..len]) }; |
| fmt.pad(buf) |
| } |
| } |
| } |
| |
| #[stable(feature = "rust1", since = "1.0.0")] |
| impl fmt::Debug for Ipv4Addr { |
| fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result { |
| fmt::Display::fmt(self, fmt) |
| } |
| } |
| |
| #[stable(feature = "rust1", since = "1.0.0")] |
| impl Clone for Ipv4Addr { |
| #[inline] |
| fn clone(&self) -> Ipv4Addr { |
| *self |
| } |
| } |
| |
| #[stable(feature = "rust1", since = "1.0.0")] |
| impl PartialEq for Ipv4Addr { |
| #[inline] |
| fn eq(&self, other: &Ipv4Addr) -> bool { |
| self.inner.s_addr == other.inner.s_addr |
| } |
| } |
| |
| #[stable(feature = "ip_cmp", since = "1.16.0")] |
| impl PartialEq<Ipv4Addr> for IpAddr { |
| #[inline] |
| fn eq(&self, other: &Ipv4Addr) -> bool { |
| match self { |
| IpAddr::V4(v4) => v4 == other, |
| IpAddr::V6(_) => false, |
| } |
| } |
| } |
| |
| #[stable(feature = "ip_cmp", since = "1.16.0")] |
| impl PartialEq<IpAddr> for Ipv4Addr { |
| #[inline] |
| fn eq(&self, other: &IpAddr) -> bool { |
| match other { |
| IpAddr::V4(v4) => self == v4, |
| IpAddr::V6(_) => false, |
| } |
| } |
| } |
| |
| #[stable(feature = "rust1", since = "1.0.0")] |
| impl Eq for Ipv4Addr {} |
| |
| #[stable(feature = "rust1", since = "1.0.0")] |
| impl hash::Hash for Ipv4Addr { |
| #[inline] |
| fn hash<H: hash::Hasher>(&self, s: &mut H) { |
| // NOTE: |
| // * hash in big endian order |
| // * in netbsd, `in_addr` has `repr(packed)`, we need to |
| // copy `s_addr` to avoid unsafe borrowing |
| { self.inner.s_addr }.hash(s) |
| } |
| } |
| |
| #[stable(feature = "rust1", since = "1.0.0")] |
| impl PartialOrd for Ipv4Addr { |
| #[inline] |
| fn partial_cmp(&self, other: &Ipv4Addr) -> Option<Ordering> { |
| Some(self.cmp(other)) |
| } |
| } |
| |
| #[stable(feature = "ip_cmp", since = "1.16.0")] |
| impl PartialOrd<Ipv4Addr> for IpAddr { |
| #[inline] |
| fn partial_cmp(&self, other: &Ipv4Addr) -> Option<Ordering> { |
| match self { |
| IpAddr::V4(v4) => v4.partial_cmp(other), |
| IpAddr::V6(_) => Some(Ordering::Greater), |
| } |
| } |
| } |
| |
| #[stable(feature = "ip_cmp", since = "1.16.0")] |
| impl PartialOrd<IpAddr> for Ipv4Addr { |
| #[inline] |
| fn partial_cmp(&self, other: &IpAddr) -> Option<Ordering> { |
| match other { |
| IpAddr::V4(v4) => self.partial_cmp(v4), |
| IpAddr::V6(_) => Some(Ordering::Less), |
| } |
| } |
| } |
| |
| #[stable(feature = "rust1", since = "1.0.0")] |
| impl Ord for Ipv4Addr { |
| #[inline] |
| fn cmp(&self, other: &Ipv4Addr) -> Ordering { |
| // Compare as native endian |
| u32::from_be(self.inner.s_addr).cmp(&u32::from_be(other.inner.s_addr)) |
| } |
| } |
| |
| impl IntoInner<c::in_addr> for Ipv4Addr { |
| #[inline] |
| fn into_inner(self) -> c::in_addr { |
| self.inner |
| } |
| } |
| |
| #[stable(feature = "ip_u32", since = "1.1.0")] |
| impl From<Ipv4Addr> for u32 { |
| /// Converts an `Ipv4Addr` into a host byte order `u32`. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use std::net::Ipv4Addr; |
| /// |
| /// let addr = Ipv4Addr::new(0xca, 0xfe, 0xba, 0xbe); |
| /// assert_eq!(0xcafebabe, u32::from(addr)); |
| /// ``` |
| #[inline] |
| fn from(ip: Ipv4Addr) -> u32 { |
| let ip = ip.octets(); |
| u32::from_be_bytes(ip) |
| } |
| } |
| |
| #[stable(feature = "ip_u32", since = "1.1.0")] |
| impl From<u32> for Ipv4Addr { |
| /// Converts a host byte order `u32` into an `Ipv4Addr`. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use std::net::Ipv4Addr; |
| /// |
| /// let addr = Ipv4Addr::from(0xcafebabe); |
| /// assert_eq!(Ipv4Addr::new(0xca, 0xfe, 0xba, 0xbe), addr); |
| /// ``` |
| #[inline] |
| fn from(ip: u32) -> Ipv4Addr { |
| Ipv4Addr::from(ip.to_be_bytes()) |
| } |
| } |
| |
| #[stable(feature = "from_slice_v4", since = "1.9.0")] |
| impl From<[u8; 4]> for Ipv4Addr { |
| /// Creates an `Ipv4Addr` from a four element byte array. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use std::net::Ipv4Addr; |
| /// |
| /// let addr = Ipv4Addr::from([13u8, 12u8, 11u8, 10u8]); |
| /// assert_eq!(Ipv4Addr::new(13, 12, 11, 10), addr); |
| /// ``` |
| #[inline] |
| fn from(octets: [u8; 4]) -> Ipv4Addr { |
| Ipv4Addr::new(octets[0], octets[1], octets[2], octets[3]) |
| } |
| } |
| |
| #[stable(feature = "ip_from_slice", since = "1.17.0")] |
| impl From<[u8; 4]> for IpAddr { |
| /// Creates an `IpAddr::V4` from a four element byte array. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use std::net::{IpAddr, Ipv4Addr}; |
| /// |
| /// let addr = IpAddr::from([13u8, 12u8, 11u8, 10u8]); |
| /// assert_eq!(IpAddr::V4(Ipv4Addr::new(13, 12, 11, 10)), addr); |
| /// ``` |
| #[inline] |
| fn from(octets: [u8; 4]) -> IpAddr { |
| IpAddr::V4(Ipv4Addr::from(octets)) |
| } |
| } |
| |
| impl Ipv6Addr { |
| /// Creates a new IPv6 address from eight 16-bit segments. |
| /// |
| /// The result will represent the IP address `a:b:c:d:e:f:g:h`. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use std::net::Ipv6Addr; |
| /// |
| /// let addr = Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff); |
| /// ``` |
| #[rustc_allow_const_fn_unstable(const_fn_transmute)] |
| #[rustc_const_stable(feature = "const_ipv6", since = "1.32.0")] |
| #[stable(feature = "rust1", since = "1.0.0")] |
| #[inline] |
| pub const fn new(a: u16, b: u16, c: u16, d: u16, e: u16, f: u16, g: u16, h: u16) -> Ipv6Addr { |
| let addr16 = [ |
| a.to_be(), |
| b.to_be(), |
| c.to_be(), |
| d.to_be(), |
| e.to_be(), |
| f.to_be(), |
| g.to_be(), |
| h.to_be(), |
| ]; |
| Ipv6Addr { |
| inner: c::in6_addr { |
| // All elements in `addr16` are big endian. |
| // SAFETY: `[u16; 8]` is always safe to transmute to `[u8; 16]`. |
| // rustc_allow_const_fn_unstable: the transmute could be written as stable const |
| // code, but that leads to worse code generation (#75085) |
| s6_addr: unsafe { transmute::<_, [u8; 16]>(addr16) }, |
| }, |
| } |
| } |
| |
| /// An IPv6 address representing localhost: `::1`. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use std::net::Ipv6Addr; |
| /// |
| /// let addr = Ipv6Addr::LOCALHOST; |
| /// assert_eq!(addr, Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1)); |
| /// ``` |
| #[stable(feature = "ip_constructors", since = "1.30.0")] |
| pub const LOCALHOST: Self = Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1); |
| |
| /// An IPv6 address representing the unspecified address: `::` |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use std::net::Ipv6Addr; |
| /// |
| /// let addr = Ipv6Addr::UNSPECIFIED; |
| /// assert_eq!(addr, Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0)); |
| /// ``` |
| #[stable(feature = "ip_constructors", since = "1.30.0")] |
| pub const UNSPECIFIED: Self = Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0); |
| |
| /// Returns the eight 16-bit segments that make up this address. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use std::net::Ipv6Addr; |
| /// |
| /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).segments(), |
| /// [0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff]); |
| /// ``` |
| #[rustc_allow_const_fn_unstable(const_fn_transmute)] |
| #[rustc_const_stable(feature = "const_ipv6", since = "1.50.0")] |
| #[stable(feature = "rust1", since = "1.0.0")] |
| #[inline] |
| pub const fn segments(&self) -> [u16; 8] { |
| // All elements in `s6_addr` must be big endian. |
| // SAFETY: `[u8; 16]` is always safe to transmute to `[u16; 8]`. |
| // rustc_allow_const_fn_unstable: the transmute could be written as stable const code, but |
| // that leads to worse code generation (#75085) |
| let [a, b, c, d, e, f, g, h] = unsafe { transmute::<_, [u16; 8]>(self.inner.s6_addr) }; |
| // We want native endian u16 |
| [ |
| u16::from_be(a), |
| u16::from_be(b), |
| u16::from_be(c), |
| u16::from_be(d), |
| u16::from_be(e), |
| u16::from_be(f), |
| u16::from_be(g), |
| u16::from_be(h), |
| ] |
| } |
| |
| /// Returns [`true`] for the special 'unspecified' address (::). |
| /// |
| /// This property is defined in [IETF RFC 4291]. |
| /// |
| /// [IETF RFC 4291]: https://tools.ietf.org/html/rfc4291 |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use std::net::Ipv6Addr; |
| /// |
| /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).is_unspecified(), false); |
| /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0).is_unspecified(), true); |
| /// ``` |
| #[rustc_const_stable(feature = "const_ipv6", since = "1.50.0")] |
| #[stable(since = "1.7.0", feature = "ip_17")] |
| #[inline] |
| pub const fn is_unspecified(&self) -> bool { |
| u128::from_be_bytes(self.octets()) == u128::from_be_bytes(Ipv6Addr::UNSPECIFIED.octets()) |
| } |
| |
| /// Returns [`true`] if this is a loopback address (::1). |
| /// |
| /// This property is defined in [IETF RFC 4291]. |
| /// |
| /// [IETF RFC 4291]: https://tools.ietf.org/html/rfc4291 |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use std::net::Ipv6Addr; |
| /// |
| /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).is_loopback(), false); |
| /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0x1).is_loopback(), true); |
| /// ``` |
| #[rustc_const_stable(feature = "const_ipv6", since = "1.50.0")] |
| #[stable(since = "1.7.0", feature = "ip_17")] |
| #[inline] |
| pub const fn is_loopback(&self) -> bool { |
| u128::from_be_bytes(self.octets()) == u128::from_be_bytes(Ipv6Addr::LOCALHOST.octets()) |
| } |
| |
| /// Returns [`true`] if the address appears to be globally routable. |
| /// |
| /// The following return [`false`]: |
| /// |
| /// - the loopback address |
| /// - link-local and unique local unicast addresses |
| /// - interface-, link-, realm-, admin- and site-local multicast addresses |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// #![feature(ip)] |
| /// |
| /// use std::net::Ipv6Addr; |
| /// |
| /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).is_global(), true); |
| /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0x1).is_global(), false); |
| /// assert_eq!(Ipv6Addr::new(0, 0, 0x1c9, 0, 0, 0xafc8, 0, 0x1).is_global(), true); |
| /// ``` |
| #[rustc_const_unstable(feature = "const_ipv6", issue = "76205")] |
| #[inline] |
| pub const fn is_global(&self) -> bool { |
| match self.multicast_scope() { |
| Some(Ipv6MulticastScope::Global) => true, |
| None => self.is_unicast_global(), |
| _ => false, |
| } |
| } |
| |
| /// Returns [`true`] if this is a unique local address (`fc00::/7`). |
| /// |
| /// This property is defined in [IETF RFC 4193]. |
| /// |
| /// [IETF RFC 4193]: https://tools.ietf.org/html/rfc4193 |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// #![feature(ip)] |
| /// |
| /// use std::net::Ipv6Addr; |
| /// |
| /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).is_unique_local(), false); |
| /// assert_eq!(Ipv6Addr::new(0xfc02, 0, 0, 0, 0, 0, 0, 0).is_unique_local(), true); |
| /// ``` |
| #[rustc_const_unstable(feature = "const_ipv6", issue = "76205")] |
| #[inline] |
| pub const fn is_unique_local(&self) -> bool { |
| (self.segments()[0] & 0xfe00) == 0xfc00 |
| } |
| |
| /// Returns [`true`] if the address is a unicast link-local address (`fe80::/64`). |
| /// |
| /// A common misconception is to think that "unicast link-local addresses start with |
| /// `fe80::`", but [IETF RFC 4291] actually defines a stricter format for these addresses: |
| /// |
| /// ```no_rust |
| /// | 10 | |
| /// | bits | 54 bits | 64 bits | |
| /// +----------+-------------------------+----------------------------+ |
| /// |1111111010| 0 | interface ID | |
| /// +----------+-------------------------+----------------------------+ |
| /// ``` |
| /// |
| /// This method validates the format defined in the RFC and won't recognize addresses |
| /// like `fe80:0:0:1::` or `fe81::` as unicast link-local addresses. |
| /// If you need a less strict validation, use [`Ipv6Addr::is_unicast_link_local()`] instead. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// #![feature(ip)] |
| /// |
| /// use std::net::Ipv6Addr; |
| /// |
| /// let ip = Ipv6Addr::new(0xfe80, 0, 0, 0, 0, 0, 0, 0); |
| /// assert!(ip.is_unicast_link_local_strict()); |
| /// |
| /// let ip = Ipv6Addr::new(0xfe80, 0, 0, 0, 0xffff, 0xffff, 0xffff, 0xffff); |
| /// assert!(ip.is_unicast_link_local_strict()); |
| /// |
| /// let ip = Ipv6Addr::new(0xfe80, 0, 0, 1, 0, 0, 0, 0); |
| /// assert!(!ip.is_unicast_link_local_strict()); |
| /// assert!(ip.is_unicast_link_local()); |
| /// |
| /// let ip = Ipv6Addr::new(0xfe81, 0, 0, 0, 0, 0, 0, 0); |
| /// assert!(!ip.is_unicast_link_local_strict()); |
| /// assert!(ip.is_unicast_link_local()); |
| /// ``` |
| /// |
| /// # See also |
| /// |
| /// - [IETF RFC 4291 section 2.5.6] |
| /// - [RFC 4291 errata 4406] (which has been rejected but provides useful |
| /// insight) |
| /// - [`Ipv6Addr::is_unicast_link_local()`] |
| /// |
| /// [IETF RFC 4291]: https://tools.ietf.org/html/rfc4291 |
| /// [IETF RFC 4291 section 2.5.6]: https://tools.ietf.org/html/rfc4291#section-2.5.6 |
| /// [RFC 4291 errata 4406]: https://www.rfc-editor.org/errata/eid4406 |
| #[rustc_const_unstable(feature = "const_ipv6", issue = "76205")] |
| #[inline] |
| pub const fn is_unicast_link_local_strict(&self) -> bool { |
| matches!(self.segments(), [0xfe80, 0, 0, 0, ..]) |
| } |
| |
| /// Returns [`true`] if the address is a unicast link-local address (`fe80::/10`). |
| /// |
| /// This method returns [`true`] for addresses in the range reserved by [RFC 4291 section 2.4], |
| /// i.e. addresses with the following format: |
| /// |
| /// ```no_rust |
| /// | 10 | |
| /// | bits | 54 bits | 64 bits | |
| /// +----------+-------------------------+----------------------------+ |
| /// |1111111010| arbitratry value | interface ID | |
| /// +----------+-------------------------+----------------------------+ |
| /// ``` |
| /// |
| /// As a result, this method considers addresses such as `fe80:0:0:1::` or `fe81::` to be |
| /// unicast link-local addresses, whereas [`Ipv6Addr::is_unicast_link_local_strict()`] does not. |
| /// If you need a strict validation fully compliant with the RFC, use |
| /// [`Ipv6Addr::is_unicast_link_local_strict()`] instead. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// #![feature(ip)] |
| /// |
| /// use std::net::Ipv6Addr; |
| /// |
| /// let ip = Ipv6Addr::new(0xfe80, 0, 0, 0, 0, 0, 0, 0); |
| /// assert!(ip.is_unicast_link_local()); |
| /// |
| /// let ip = Ipv6Addr::new(0xfe80, 0, 0, 0, 0xffff, 0xffff, 0xffff, 0xffff); |
| /// assert!(ip.is_unicast_link_local()); |
| /// |
| /// let ip = Ipv6Addr::new(0xfe80, 0, 0, 1, 0, 0, 0, 0); |
| /// assert!(ip.is_unicast_link_local()); |
| /// assert!(!ip.is_unicast_link_local_strict()); |
| /// |
| /// let ip = Ipv6Addr::new(0xfe81, 0, 0, 0, 0, 0, 0, 0); |
| /// assert!(ip.is_unicast_link_local()); |
| /// assert!(!ip.is_unicast_link_local_strict()); |
| /// ``` |
| /// |
| /// # See also |
| /// |
| /// - [IETF RFC 4291 section 2.4] |
| /// - [RFC 4291 errata 4406] (which has been rejected but provides useful |
| /// insight) |
| /// |
| /// [IETF RFC 4291 section 2.4]: https://tools.ietf.org/html/rfc4291#section-2.4 |
| /// [RFC 4291 errata 4406]: https://www.rfc-editor.org/errata/eid4406 |
| #[rustc_const_unstable(feature = "const_ipv6", issue = "76205")] |
| #[inline] |
| pub const fn is_unicast_link_local(&self) -> bool { |
| (self.segments()[0] & 0xffc0) == 0xfe80 |
| } |
| |
| /// Returns [`true`] if this is a deprecated unicast site-local address (fec0::/10). The |
| /// unicast site-local address format is defined in [RFC 4291 section 2.5.7] as: |
| /// |
| /// ```no_rust |
| /// | 10 | |
| /// | bits | 54 bits | 64 bits | |
| /// +----------+-------------------------+----------------------------+ |
| /// |1111111011| subnet ID | interface ID | |
| /// +----------+-------------------------+----------------------------+ |
| /// ``` |
| /// |
| /// [RFC 4291 section 2.5.7]: https://tools.ietf.org/html/rfc4291#section-2.5.7 |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// #![feature(ip)] |
| /// |
| /// use std::net::Ipv6Addr; |
| /// |
| /// assert_eq!( |
| /// Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).is_unicast_site_local(), |
| /// false |
| /// ); |
| /// assert_eq!(Ipv6Addr::new(0xfec2, 0, 0, 0, 0, 0, 0, 0).is_unicast_site_local(), true); |
| /// ``` |
| /// |
| /// # Warning |
| /// |
| /// As per [RFC 3879], the whole `FEC0::/10` prefix is |
| /// deprecated. New software must not support site-local |
| /// addresses. |
| /// |
| /// [RFC 3879]: https://tools.ietf.org/html/rfc3879 |
| #[rustc_const_unstable(feature = "const_ipv6", issue = "76205")] |
| #[inline] |
| pub const fn is_unicast_site_local(&self) -> bool { |
| (self.segments()[0] & 0xffc0) == 0xfec0 |
| } |
| |
| /// Returns [`true`] if this is an address reserved for documentation |
| /// (`2001:db8::/32`). |
| /// |
| /// This property is defined in [IETF RFC 3849]. |
| /// |
| /// [IETF RFC 3849]: https://tools.ietf.org/html/rfc3849 |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// #![feature(ip)] |
| /// |
| /// use std::net::Ipv6Addr; |
| /// |
| /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).is_documentation(), false); |
| /// assert_eq!(Ipv6Addr::new(0x2001, 0xdb8, 0, 0, 0, 0, 0, 0).is_documentation(), true); |
| /// ``` |
| #[rustc_const_unstable(feature = "const_ipv6", issue = "76205")] |
| #[inline] |
| pub const fn is_documentation(&self) -> bool { |
| (self.segments()[0] == 0x2001) && (self.segments()[1] == 0xdb8) |
| } |
| |
| /// Returns [`true`] if the address is a globally routable unicast address. |
| /// |
| /// The following return false: |
| /// |
| /// - the loopback address |
| /// - the link-local addresses |
| /// - unique local addresses |
| /// - the unspecified address |
| /// - the address range reserved for documentation |
| /// |
| /// This method returns [`true`] for site-local addresses as per [RFC 4291 section 2.5.7] |
| /// |
| /// ```no_rust |
| /// The special behavior of [the site-local unicast] prefix defined in [RFC3513] must no longer |
| /// be supported in new implementations (i.e., new implementations must treat this prefix as |
| /// Global Unicast). |
| /// ``` |
| /// |
| /// [RFC 4291 section 2.5.7]: https://tools.ietf.org/html/rfc4291#section-2.5.7 |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// #![feature(ip)] |
| /// |
| /// use std::net::Ipv6Addr; |
| /// |
| /// assert_eq!(Ipv6Addr::new(0x2001, 0xdb8, 0, 0, 0, 0, 0, 0).is_unicast_global(), false); |
| /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).is_unicast_global(), true); |
| /// ``` |
| #[rustc_const_unstable(feature = "const_ipv6", issue = "76205")] |
| #[inline] |
| pub const fn is_unicast_global(&self) -> bool { |
| !self.is_multicast() |
| && !self.is_loopback() |
| && !self.is_unicast_link_local() |
| && !self.is_unique_local() |
| && !self.is_unspecified() |
| && !self.is_documentation() |
| } |
| |
| /// Returns the address's multicast scope if the address is multicast. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// #![feature(ip)] |
| /// |
| /// use std::net::{Ipv6Addr, Ipv6MulticastScope}; |
| /// |
| /// assert_eq!( |
| /// Ipv6Addr::new(0xff0e, 0, 0, 0, 0, 0, 0, 0).multicast_scope(), |
| /// Some(Ipv6MulticastScope::Global) |
| /// ); |
| /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).multicast_scope(), None); |
| /// ``` |
| #[rustc_const_unstable(feature = "const_ipv6", issue = "76205")] |
| #[inline] |
| pub const fn multicast_scope(&self) -> Option<Ipv6MulticastScope> { |
| if self.is_multicast() { |
| match self.segments()[0] & 0x000f { |
| 1 => Some(Ipv6MulticastScope::InterfaceLocal), |
| 2 => Some(Ipv6MulticastScope::LinkLocal), |
| 3 => Some(Ipv6MulticastScope::RealmLocal), |
| 4 => Some(Ipv6MulticastScope::AdminLocal), |
| 5 => Some(Ipv6MulticastScope::SiteLocal), |
| 8 => Some(Ipv6MulticastScope::OrganizationLocal), |
| 14 => Some(Ipv6MulticastScope::Global), |
| _ => None, |
| } |
| } else { |
| None |
| } |
| } |
| |
| /// Returns [`true`] if this is a multicast address (ff00::/8). |
| /// |
| /// This property is defined by [IETF RFC 4291]. |
| /// |
| /// [IETF RFC 4291]: https://tools.ietf.org/html/rfc4291 |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use std::net::Ipv6Addr; |
| /// |
| /// assert_eq!(Ipv6Addr::new(0xff00, 0, 0, 0, 0, 0, 0, 0).is_multicast(), true); |
| /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).is_multicast(), false); |
| /// ``` |
| #[rustc_const_stable(feature = "const_ipv6", since = "1.50.0")] |
| #[stable(since = "1.7.0", feature = "ip_17")] |
| #[inline] |
| pub const fn is_multicast(&self) -> bool { |
| (self.segments()[0] & 0xff00) == 0xff00 |
| } |
| |
| /// Converts this address to an [`IPv4` address] if it's an "IPv4-mapped IPv6 address" |
| /// defined in [IETF RFC 4291 section 2.5.5.2], otherwise returns [`None`]. |
| /// |
| /// `::ffff:a.b.c.d` becomes `a.b.c.d`. |
| /// All addresses *not* starting with `::ffff` will return `None`. |
| /// |
| /// [`IPv4` address]: Ipv4Addr |
| /// [IETF RFC 4291 section 2.5.5.2]: https://tools.ietf.org/html/rfc4291#section-2.5.5.2 |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// #![feature(ip)] |
| /// |
| /// use std::net::{Ipv4Addr, Ipv6Addr}; |
| /// |
| /// assert_eq!(Ipv6Addr::new(0xff00, 0, 0, 0, 0, 0, 0, 0).to_ipv4_mapped(), None); |
| /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).to_ipv4_mapped(), |
| /// Some(Ipv4Addr::new(192, 10, 2, 255))); |
| /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1).to_ipv4_mapped(), None); |
| /// ``` |
| #[rustc_const_unstable(feature = "const_ipv6", issue = "76205")] |
| #[inline] |
| pub const fn to_ipv4_mapped(&self) -> Option<Ipv4Addr> { |
| match self.octets() { |
| [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0xff, 0xff, a, b, c, d] => { |
| Some(Ipv4Addr::new(a, b, c, d)) |
| } |
| _ => None, |
| } |
| } |
| |
| /// Converts this address to an [`IPv4` address]. Returns [`None`] if this address is |
| /// neither IPv4-compatible or IPv4-mapped. |
| /// |
| /// ::a.b.c.d and ::ffff:a.b.c.d become a.b.c.d |
| /// |
| /// [`IPv4` address]: Ipv4Addr |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use std::net::{Ipv4Addr, Ipv6Addr}; |
| /// |
| /// assert_eq!(Ipv6Addr::new(0xff00, 0, 0, 0, 0, 0, 0, 0).to_ipv4(), None); |
| /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).to_ipv4(), |
| /// Some(Ipv4Addr::new(192, 10, 2, 255))); |
| /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1).to_ipv4(), |
| /// Some(Ipv4Addr::new(0, 0, 0, 1))); |
| /// ``` |
| #[rustc_const_stable(feature = "const_ipv6", since = "1.50.0")] |
| #[stable(feature = "rust1", since = "1.0.0")] |
| #[inline] |
| pub const fn to_ipv4(&self) -> Option<Ipv4Addr> { |
| if let [0, 0, 0, 0, 0, 0 | 0xffff, ab, cd] = self.segments() { |
| let [a, b] = ab.to_be_bytes(); |
| let [c, d] = cd.to_be_bytes(); |
| Some(Ipv4Addr::new(a, b, c, d)) |
| } else { |
| None |
| } |
| } |
| |
| /// Returns the sixteen eight-bit integers the IPv6 address consists of. |
| /// |
| /// ``` |
| /// use std::net::Ipv6Addr; |
| /// |
| /// assert_eq!(Ipv6Addr::new(0xff00, 0, 0, 0, 0, 0, 0, 0).octets(), |
| /// [255, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]); |
| /// ``` |
| #[rustc_const_stable(feature = "const_ipv6", since = "1.32.0")] |
| #[stable(feature = "ipv6_to_octets", since = "1.12.0")] |
| #[inline] |
| pub const fn octets(&self) -> [u8; 16] { |
| self.inner.s6_addr |
| } |
| } |
| |
| /// Write an Ipv6Addr, conforming to the canonical style described by |
| /// [RFC 5952](https://tools.ietf.org/html/rfc5952). |
| #[stable(feature = "rust1", since = "1.0.0")] |
| impl fmt::Display for Ipv6Addr { |
| fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| // If there are no alignment requirements, write out the IP address to |
| // f. Otherwise, write it to a local buffer, then use f.pad. |
| if f.precision().is_none() && f.width().is_none() { |
| let segments = self.segments(); |
| |
| // Special case for :: and ::1; otherwise they get written with the |
| // IPv4 formatter |
| if self.is_unspecified() { |
| f.write_str("::") |
| } else if self.is_loopback() { |
| f.write_str("::1") |
| } else if let Some(ipv4) = self.to_ipv4() { |
| match segments[5] { |
| // IPv4 Compatible address |
| 0 => write!(f, "::{}", ipv4), |
| // IPv4 Mapped address |
| 0xffff => write!(f, "::ffff:{}", ipv4), |
| _ => unreachable!(), |
| } |
| } else { |
| #[derive(Copy, Clone, Default)] |
| struct Span { |
| start: usize, |
| len: usize, |
| } |
| |
| // Find the inner 0 span |
| let zeroes = { |
| let mut longest = Span::default(); |
| let mut current = Span::default(); |
| |
| for (i, &segment) in segments.iter().enumerate() { |
| if segment == 0 { |
| if current.len == 0 { |
| current.start = i; |
| } |
| |
| current.len += 1; |
| |
| if current.len > longest.len { |
| longest = current; |
| } |
| } else { |
| current = Span::default(); |
| } |
| } |
| |
| longest |
| }; |
| |
| /// Write a colon-separated part of the address |
| #[inline] |
| fn fmt_subslice(f: &mut fmt::Formatter<'_>, chunk: &[u16]) -> fmt::Result { |
| if let Some((first, tail)) = chunk.split_first() { |
| write!(f, "{:x}", first)?; |
| for segment in tail { |
| f.write_char(':')?; |
| write!(f, "{:x}", segment)?; |
| } |
| } |
| Ok(()) |
| } |
| |
| if zeroes.len > 1 { |
| fmt_subslice(f, &segments[..zeroes.start])?; |
| f.write_str("::")?; |
| fmt_subslice(f, &segments[zeroes.start + zeroes.len..]) |
| } else { |
| fmt_subslice(f, &segments) |
| } |
| } |
| } else { |
| // Slow path: write the address to a local buffer, the use f.pad. |
| // Defined recursively by using the fast path to write to the |
| // buffer. |
| |
| // This is the largest possible size of an IPv6 address |
| const IPV6_BUF_LEN: usize = (4 * 8) + 7; |
| let mut buf = [0u8; IPV6_BUF_LEN]; |
| let mut buf_slice = &mut buf[..]; |
| |
| // Note: This call to write should never fail, so unwrap is okay. |
| write!(buf_slice, "{}", self).unwrap(); |
| let len = IPV6_BUF_LEN - buf_slice.len(); |
| |
| // This is safe because we know exactly what can be in this buffer |
| let buf = unsafe { crate::str::from_utf8_unchecked(&buf[..len]) }; |
| f.pad(buf) |
| } |
| } |
| } |
| |
| #[stable(feature = "rust1", since = "1.0.0")] |
| impl fmt::Debug for Ipv6Addr { |
| fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result { |
| fmt::Display::fmt(self, fmt) |
| } |
| } |
| |
| #[stable(feature = "rust1", since = "1.0.0")] |
| impl Clone for Ipv6Addr { |
| #[inline] |
| fn clone(&self) -> Ipv6Addr { |
| *self |
| } |
| } |
| |
| #[stable(feature = "rust1", since = "1.0.0")] |
| impl PartialEq for Ipv6Addr { |
| #[inline] |
| fn eq(&self, other: &Ipv6Addr) -> bool { |
| self.inner.s6_addr == other.inner.s6_addr |
| } |
| } |
| |
| #[stable(feature = "ip_cmp", since = "1.16.0")] |
| impl PartialEq<IpAddr> for Ipv6Addr { |
| #[inline] |
| fn eq(&self, other: &IpAddr) -> bool { |
| match other { |
| IpAddr::V4(_) => false, |
| IpAddr::V6(v6) => self == v6, |
| } |
| } |
| } |
| |
| #[stable(feature = "ip_cmp", since = "1.16.0")] |
| impl PartialEq<Ipv6Addr> for IpAddr { |
| #[inline] |
| fn eq(&self, other: &Ipv6Addr) -> bool { |
| match self { |
| IpAddr::V4(_) => false, |
| IpAddr::V6(v6) => v6 == other, |
| } |
| } |
| } |
| |
| #[stable(feature = "rust1", since = "1.0.0")] |
| impl Eq for Ipv6Addr {} |
| |
| #[stable(feature = "rust1", since = "1.0.0")] |
| impl hash::Hash for Ipv6Addr { |
| #[inline] |
| fn hash<H: hash::Hasher>(&self, s: &mut H) { |
| self.inner.s6_addr.hash(s) |
| } |
| } |
| |
| #[stable(feature = "rust1", since = "1.0.0")] |
| impl PartialOrd for Ipv6Addr { |
| #[inline] |
| fn partial_cmp(&self, other: &Ipv6Addr) -> Option<Ordering> { |
| Some(self.cmp(other)) |
| } |
| } |
| |
| #[stable(feature = "ip_cmp", since = "1.16.0")] |
| impl PartialOrd<Ipv6Addr> for IpAddr { |
| #[inline] |
| fn partial_cmp(&self, other: &Ipv6Addr) -> Option<Ordering> { |
| match self { |
| IpAddr::V4(_) => Some(Ordering::Less), |
| IpAddr::V6(v6) => v6.partial_cmp(other), |
| } |
| } |
| } |
| |
| #[stable(feature = "ip_cmp", since = "1.16.0")] |
| impl PartialOrd<IpAddr> for Ipv6Addr { |
| #[inline] |
| fn partial_cmp(&self, other: &IpAddr) -> Option<Ordering> { |
| match other { |
| IpAddr::V4(_) => Some(Ordering::Greater), |
| IpAddr::V6(v6) => self.partial_cmp(v6), |
| } |
| } |
| } |
| |
| #[stable(feature = "rust1", since = "1.0.0")] |
| impl Ord for Ipv6Addr { |
| #[inline] |
| fn cmp(&self, other: &Ipv6Addr) -> Ordering { |
| self.segments().cmp(&other.segments()) |
| } |
| } |
| |
| impl AsInner<c::in6_addr> for Ipv6Addr { |
| #[inline] |
| fn as_inner(&self) -> &c::in6_addr { |
| &self.inner |
| } |
| } |
| impl FromInner<c::in6_addr> for Ipv6Addr { |
| #[inline] |
| fn from_inner(addr: c::in6_addr) -> Ipv6Addr { |
| Ipv6Addr { inner: addr } |
| } |
| } |
| |
| #[stable(feature = "i128", since = "1.26.0")] |
| impl From<Ipv6Addr> for u128 { |
| /// Convert an `Ipv6Addr` into a host byte order `u128`. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use std::net::Ipv6Addr; |
| /// |
| /// let addr = Ipv6Addr::new( |
| /// 0x1020, 0x3040, 0x5060, 0x7080, |
| /// 0x90A0, 0xB0C0, 0xD0E0, 0xF00D, |
| /// ); |
| /// assert_eq!(0x102030405060708090A0B0C0D0E0F00D_u128, u128::from(addr)); |
| /// ``` |
| #[inline] |
| fn from(ip: Ipv6Addr) -> u128 { |
| let ip = ip.octets(); |
| u128::from_be_bytes(ip) |
| } |
| } |
| #[stable(feature = "i128", since = "1.26.0")] |
| impl From<u128> for Ipv6Addr { |
| /// Convert a host byte order `u128` into an `Ipv6Addr`. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use std::net::Ipv6Addr; |
| /// |
| /// let addr = Ipv6Addr::from(0x102030405060708090A0B0C0D0E0F00D_u128); |
| /// assert_eq!( |
| /// Ipv6Addr::new( |
| /// 0x1020, 0x3040, 0x5060, 0x7080, |
| /// 0x90A0, 0xB0C0, 0xD0E0, 0xF00D, |
| /// ), |
| /// addr); |
| /// ``` |
| #[inline] |
| fn from(ip: u128) -> Ipv6Addr { |
| Ipv6Addr::from(ip.to_be_bytes()) |
| } |
| } |
| |
| #[stable(feature = "ipv6_from_octets", since = "1.9.0")] |
| impl From<[u8; 16]> for Ipv6Addr { |
| /// Creates an `Ipv6Addr` from a sixteen element byte array. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use std::net::Ipv6Addr; |
| /// |
| /// let addr = Ipv6Addr::from([ |
| /// 25u8, 24u8, 23u8, 22u8, 21u8, 20u8, 19u8, 18u8, |
| /// 17u8, 16u8, 15u8, 14u8, 13u8, 12u8, 11u8, 10u8, |
| /// ]); |
| /// assert_eq!( |
| /// Ipv6Addr::new( |
| /// 0x1918, 0x1716, |
| /// 0x1514, 0x1312, |
| /// 0x1110, 0x0f0e, |
| /// 0x0d0c, 0x0b0a |
| /// ), |
| /// addr |
| /// ); |
| /// ``` |
| #[inline] |
| fn from(octets: [u8; 16]) -> Ipv6Addr { |
| let inner = c::in6_addr { s6_addr: octets }; |
| Ipv6Addr::from_inner(inner) |
| } |
| } |
| |
| #[stable(feature = "ipv6_from_segments", since = "1.16.0")] |
| impl From<[u16; 8]> for Ipv6Addr { |
| /// Creates an `Ipv6Addr` from an eight element 16-bit array. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use std::net::Ipv6Addr; |
| /// |
| /// let addr = Ipv6Addr::from([ |
| /// 525u16, 524u16, 523u16, 522u16, |
| /// 521u16, 520u16, 519u16, 518u16, |
| /// ]); |
| /// assert_eq!( |
| /// Ipv6Addr::new( |
| /// 0x20d, 0x20c, |
| /// 0x20b, 0x20a, |
| /// 0x209, 0x208, |
| /// 0x207, 0x206 |
| /// ), |
| /// addr |
| /// ); |
| /// ``` |
| #[inline] |
| fn from(segments: [u16; 8]) -> Ipv6Addr { |
| let [a, b, c, d, e, f, g, h] = segments; |
| Ipv6Addr::new(a, b, c, d, e, f, g, h) |
| } |
| } |
| |
| #[stable(feature = "ip_from_slice", since = "1.17.0")] |
| impl From<[u8; 16]> for IpAddr { |
| /// Creates an `IpAddr::V6` from a sixteen element byte array. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use std::net::{IpAddr, Ipv6Addr}; |
| /// |
| /// let addr = IpAddr::from([ |
| /// 25u8, 24u8, 23u8, 22u8, 21u8, 20u8, 19u8, 18u8, |
| /// 17u8, 16u8, 15u8, 14u8, 13u8, 12u8, 11u8, 10u8, |
| /// ]); |
| /// assert_eq!( |
| /// IpAddr::V6(Ipv6Addr::new( |
| /// 0x1918, 0x1716, |
| /// 0x1514, 0x1312, |
| /// 0x1110, 0x0f0e, |
| /// 0x0d0c, 0x0b0a |
| /// )), |
| /// addr |
| /// ); |
| /// ``` |
| #[inline] |
| fn from(octets: [u8; 16]) -> IpAddr { |
| IpAddr::V6(Ipv6Addr::from(octets)) |
| } |
| } |
| |
| #[stable(feature = "ip_from_slice", since = "1.17.0")] |
| impl From<[u16; 8]> for IpAddr { |
| /// Creates an `IpAddr::V6` from an eight element 16-bit array. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use std::net::{IpAddr, Ipv6Addr}; |
| /// |
| /// let addr = IpAddr::from([ |
| /// 525u16, 524u16, 523u16, 522u16, |
| /// 521u16, 520u16, 519u16, 518u16, |
| /// ]); |
| /// assert_eq!( |
| /// IpAddr::V6(Ipv6Addr::new( |
| /// 0x20d, 0x20c, |
| /// 0x20b, 0x20a, |
| /// 0x209, 0x208, |
| /// 0x207, 0x206 |
| /// )), |
| /// addr |
| /// ); |
| /// ``` |
| #[inline] |
| fn from(segments: [u16; 8]) -> IpAddr { |
| IpAddr::V6(Ipv6Addr::from(segments)) |
| } |
| } |