| //===-- ConstraintElimination.cpp - Eliminate conds using constraints. ----===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // Eliminate conditions based on constraints collected from dominating |
| // conditions. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Transforms/Scalar/ConstraintElimination.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/Analysis/ConstraintSystem.h" |
| #include "llvm/Analysis/GlobalsModRef.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/IR/Dominators.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/PatternMatch.h" |
| #include "llvm/InitializePasses.h" |
| #include "llvm/Pass.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/DebugCounter.h" |
| #include "llvm/Transforms/Scalar.h" |
| |
| using namespace llvm; |
| using namespace PatternMatch; |
| |
| #define DEBUG_TYPE "constraint-elimination" |
| |
| STATISTIC(NumCondsRemoved, "Number of instructions removed"); |
| DEBUG_COUNTER(EliminatedCounter, "conds-eliminated", |
| "Controls which conditions are eliminated"); |
| |
| static int64_t MaxConstraintValue = std::numeric_limits<int64_t>::max(); |
| |
| // Decomposes \p V into a vector of pairs of the form { c, X } where c * X. The |
| // sum of the pairs equals \p V. The first pair is the constant-factor and X |
| // must be nullptr. If the expression cannot be decomposed, returns an empty |
| // vector. |
| static SmallVector<std::pair<int64_t, Value *>, 4> decompose(Value *V) { |
| if (auto *CI = dyn_cast<ConstantInt>(V)) { |
| if (CI->isNegative() || CI->uge(MaxConstraintValue)) |
| return {}; |
| return {{CI->getSExtValue(), nullptr}}; |
| } |
| auto *GEP = dyn_cast<GetElementPtrInst>(V); |
| if (GEP && GEP->getNumOperands() == 2) { |
| if (isa<ConstantInt>(GEP->getOperand(GEP->getNumOperands() - 1))) { |
| return {{cast<ConstantInt>(GEP->getOperand(GEP->getNumOperands() - 1)) |
| ->getSExtValue(), |
| nullptr}, |
| {1, GEP->getPointerOperand()}}; |
| } |
| Value *Op0; |
| ConstantInt *CI; |
| if (match(GEP->getOperand(GEP->getNumOperands() - 1), |
| m_NUWShl(m_Value(Op0), m_ConstantInt(CI)))) |
| return {{0, nullptr}, |
| {1, GEP->getPointerOperand()}, |
| {std::pow(int64_t(2), CI->getSExtValue()), Op0}}; |
| if (match(GEP->getOperand(GEP->getNumOperands() - 1), |
| m_ZExt(m_NUWShl(m_Value(Op0), m_ConstantInt(CI))))) |
| return {{0, nullptr}, |
| {1, GEP->getPointerOperand()}, |
| {std::pow(int64_t(2), CI->getSExtValue()), Op0}}; |
| |
| return {{0, nullptr}, |
| {1, GEP->getPointerOperand()}, |
| {1, GEP->getOperand(GEP->getNumOperands() - 1)}}; |
| } |
| |
| Value *Op0; |
| Value *Op1; |
| ConstantInt *CI; |
| if (match(V, m_NUWAdd(m_Value(Op0), m_ConstantInt(CI)))) |
| return {{CI->getSExtValue(), nullptr}, {1, Op0}}; |
| if (match(V, m_NUWAdd(m_Value(Op0), m_Value(Op1)))) |
| return {{0, nullptr}, {1, Op0}, {1, Op1}}; |
| |
| if (match(V, m_NUWSub(m_Value(Op0), m_ConstantInt(CI)))) |
| return {{-1 * CI->getSExtValue(), nullptr}, {1, Op0}}; |
| if (match(V, m_NUWSub(m_Value(Op0), m_Value(Op1)))) |
| return {{0, nullptr}, {1, Op0}, {1, Op1}}; |
| |
| return {{0, nullptr}, {1, V}}; |
| } |
| |
| /// Turn a condition \p CmpI into a constraint vector, using indices from \p |
| /// Value2Index. If \p ShouldAdd is true, new indices are added for values not |
| /// yet in \p Value2Index. |
| static SmallVector<int64_t, 8> |
| getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1, |
| DenseMap<Value *, unsigned> &Value2Index, bool ShouldAdd) { |
| int64_t Offset1 = 0; |
| int64_t Offset2 = 0; |
| |
| auto TryToGetIndex = [ShouldAdd, |
| &Value2Index](Value *V) -> Optional<unsigned> { |
| if (ShouldAdd) { |
| Value2Index.insert({V, Value2Index.size() + 1}); |
| return Value2Index[V]; |
| } |
| auto I = Value2Index.find(V); |
| if (I == Value2Index.end()) |
| return None; |
| return I->second; |
| }; |
| |
| if (Pred == CmpInst::ICMP_UGT || Pred == CmpInst::ICMP_UGE) |
| return getConstraint(CmpInst::getSwappedPredicate(Pred), Op1, Op0, |
| Value2Index, ShouldAdd); |
| |
| // Only ULE and ULT predicates are supported at the moment. |
| if (Pred != CmpInst::ICMP_ULE && Pred != CmpInst::ICMP_ULT) |
| return {}; |
| |
| auto ADec = decompose(Op0); |
| auto BDec = decompose(Op1); |
| // Skip if decomposing either of the values failed. |
| if (ADec.empty() || BDec.empty()) |
| return {}; |
| |
| // Skip trivial constraints without any variables. |
| if (ADec.size() == 1 && BDec.size() == 1) |
| return {}; |
| |
| Offset1 = ADec[0].first; |
| Offset2 = BDec[0].first; |
| Offset1 *= -1; |
| |
| // Create iterator ranges that skip the constant-factor. |
| auto VariablesA = make_range(std::next(ADec.begin()), ADec.end()); |
| auto VariablesB = make_range(std::next(BDec.begin()), BDec.end()); |
| |
| // Check if each referenced value in the constraint is already in the system |
| // or can be added (if ShouldAdd is true). |
| for (const auto &KV : |
| concat<std::pair<int64_t, Value *>>(VariablesA, VariablesB)) |
| if (!TryToGetIndex(KV.second)) |
| return {}; |
| |
| // Build result constraint, by first adding all coefficients from A and then |
| // subtracting all coefficients from B. |
| SmallVector<int64_t, 8> R(Value2Index.size() + 1, 0); |
| for (const auto &KV : VariablesA) |
| R[Value2Index[KV.second]] += KV.first; |
| |
| for (const auto &KV : VariablesB) |
| R[Value2Index[KV.second]] -= KV.first; |
| |
| R[0] = Offset1 + Offset2 + (Pred == CmpInst::ICMP_ULT ? -1 : 0); |
| return R; |
| } |
| |
| static SmallVector<int64_t, 8> |
| getConstraint(CmpInst *Cmp, DenseMap<Value *, unsigned> &Value2Index, |
| bool ShouldAdd) { |
| return getConstraint(Cmp->getPredicate(), Cmp->getOperand(0), |
| Cmp->getOperand(1), Value2Index, ShouldAdd); |
| } |
| |
| namespace { |
| /// Represents either a condition that holds on entry to a block or a basic |
| /// block, with their respective Dominator DFS in and out numbers. |
| struct ConstraintOrBlock { |
| unsigned NumIn; |
| unsigned NumOut; |
| bool IsBlock; |
| bool Not; |
| union { |
| BasicBlock *BB; |
| CmpInst *Condition; |
| }; |
| |
| ConstraintOrBlock(DomTreeNode *DTN) |
| : NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), IsBlock(true), |
| BB(DTN->getBlock()) {} |
| ConstraintOrBlock(DomTreeNode *DTN, CmpInst *Condition, bool Not) |
| : NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), IsBlock(false), |
| Not(Not), Condition(Condition) {} |
| }; |
| |
| struct StackEntry { |
| unsigned NumIn; |
| unsigned NumOut; |
| CmpInst *Condition; |
| bool IsNot; |
| |
| StackEntry(unsigned NumIn, unsigned NumOut, CmpInst *Condition, bool IsNot) |
| : NumIn(NumIn), NumOut(NumOut), Condition(Condition), IsNot(IsNot) {} |
| }; |
| } // namespace |
| |
| static bool eliminateConstraints(Function &F, DominatorTree &DT) { |
| bool Changed = false; |
| DT.updateDFSNumbers(); |
| ConstraintSystem CS; |
| |
| SmallVector<ConstraintOrBlock, 64> WorkList; |
| |
| // First, collect conditions implied by branches and blocks with their |
| // Dominator DFS in and out numbers. |
| for (BasicBlock &BB : F) { |
| if (!DT.getNode(&BB)) |
| continue; |
| WorkList.emplace_back(DT.getNode(&BB)); |
| |
| auto *Br = dyn_cast<BranchInst>(BB.getTerminator()); |
| if (!Br || !Br->isConditional()) |
| continue; |
| |
| // If the condition is an OR of 2 compares and the false successor only has |
| // the current block as predecessor, queue both negated conditions for the |
| // false successor. |
| Value *Op0, *Op1; |
| if (match(Br->getCondition(), m_LogicalOr(m_Value(Op0), m_Value(Op1))) && |
| match(Op0, m_Cmp()) && match(Op1, m_Cmp())) { |
| BasicBlock *FalseSuccessor = Br->getSuccessor(1); |
| if (FalseSuccessor->getSinglePredecessor()) { |
| WorkList.emplace_back(DT.getNode(FalseSuccessor), cast<CmpInst>(Op0), |
| true); |
| WorkList.emplace_back(DT.getNode(FalseSuccessor), cast<CmpInst>(Op1), |
| true); |
| } |
| continue; |
| } |
| |
| // If the condition is an AND of 2 compares and the true successor only has |
| // the current block as predecessor, queue both conditions for the true |
| // successor. |
| if (match(Br->getCondition(), m_LogicalAnd(m_Value(Op0), m_Value(Op1))) && |
| match(Op0, m_Cmp()) && match(Op1, m_Cmp())) { |
| BasicBlock *TrueSuccessor = Br->getSuccessor(0); |
| if (TrueSuccessor->getSinglePredecessor()) { |
| WorkList.emplace_back(DT.getNode(TrueSuccessor), cast<CmpInst>(Op0), |
| false); |
| WorkList.emplace_back(DT.getNode(TrueSuccessor), cast<CmpInst>(Op1), |
| false); |
| } |
| continue; |
| } |
| |
| auto *CmpI = dyn_cast<CmpInst>(Br->getCondition()); |
| if (!CmpI) |
| continue; |
| if (Br->getSuccessor(0)->getSinglePredecessor()) |
| WorkList.emplace_back(DT.getNode(Br->getSuccessor(0)), CmpI, false); |
| if (Br->getSuccessor(1)->getSinglePredecessor()) |
| WorkList.emplace_back(DT.getNode(Br->getSuccessor(1)), CmpI, true); |
| } |
| |
| // Next, sort worklist by dominance, so that dominating blocks and conditions |
| // come before blocks and conditions dominated by them. If a block and a |
| // condition have the same numbers, the condition comes before the block, as |
| // it holds on entry to the block. |
| sort(WorkList, [](const ConstraintOrBlock &A, const ConstraintOrBlock &B) { |
| return std::tie(A.NumIn, A.IsBlock) < std::tie(B.NumIn, B.IsBlock); |
| }); |
| |
| // Finally, process ordered worklist and eliminate implied conditions. |
| SmallVector<StackEntry, 16> DFSInStack; |
| DenseMap<Value *, unsigned> Value2Index; |
| for (ConstraintOrBlock &CB : WorkList) { |
| // First, pop entries from the stack that are out-of-scope for CB. Remove |
| // the corresponding entry from the constraint system. |
| while (!DFSInStack.empty()) { |
| auto &E = DFSInStack.back(); |
| LLVM_DEBUG(dbgs() << "Top of stack : " << E.NumIn << " " << E.NumOut |
| << "\n"); |
| LLVM_DEBUG(dbgs() << "CB: " << CB.NumIn << " " << CB.NumOut << "\n"); |
| assert(E.NumIn <= CB.NumIn); |
| if (CB.NumOut <= E.NumOut) |
| break; |
| LLVM_DEBUG(dbgs() << "Removing " << *E.Condition << " " << E.IsNot |
| << "\n"); |
| DFSInStack.pop_back(); |
| CS.popLastConstraint(); |
| } |
| |
| LLVM_DEBUG({ |
| dbgs() << "Processing "; |
| if (CB.IsBlock) |
| dbgs() << *CB.BB; |
| else |
| dbgs() << *CB.Condition; |
| dbgs() << "\n"; |
| }); |
| |
| // For a block, check if any CmpInsts become known based on the current set |
| // of constraints. |
| if (CB.IsBlock) { |
| for (Instruction &I : *CB.BB) { |
| auto *Cmp = dyn_cast<CmpInst>(&I); |
| if (!Cmp) |
| continue; |
| auto R = getConstraint(Cmp, Value2Index, false); |
| if (R.empty() || R.size() == 1) |
| continue; |
| if (CS.isConditionImplied(R)) { |
| if (!DebugCounter::shouldExecute(EliminatedCounter)) |
| continue; |
| |
| LLVM_DEBUG(dbgs() << "Condition " << *Cmp |
| << " implied by dominating constraints\n"); |
| LLVM_DEBUG({ |
| for (auto &E : reverse(DFSInStack)) |
| dbgs() << " C " << *E.Condition << " " << E.IsNot << "\n"; |
| }); |
| Cmp->replaceAllUsesWith( |
| ConstantInt::getTrue(F.getParent()->getContext())); |
| NumCondsRemoved++; |
| Changed = true; |
| } |
| if (CS.isConditionImplied(ConstraintSystem::negate(R))) { |
| if (!DebugCounter::shouldExecute(EliminatedCounter)) |
| continue; |
| |
| LLVM_DEBUG(dbgs() << "Condition !" << *Cmp |
| << " implied by dominating constraints\n"); |
| LLVM_DEBUG({ |
| for (auto &E : reverse(DFSInStack)) |
| dbgs() << " C " << *E.Condition << " " << E.IsNot << "\n"; |
| }); |
| Cmp->replaceAllUsesWith( |
| ConstantInt::getFalse(F.getParent()->getContext())); |
| NumCondsRemoved++; |
| Changed = true; |
| } |
| } |
| continue; |
| } |
| |
| // Otherwise, add the condition to the system and stack, if we can transform |
| // it into a constraint. |
| auto R = getConstraint(CB.Condition, Value2Index, true); |
| if (R.empty()) |
| continue; |
| |
| LLVM_DEBUG(dbgs() << "Adding " << *CB.Condition << " " << CB.Not << "\n"); |
| if (CB.Not) |
| R = ConstraintSystem::negate(R); |
| |
| // If R has been added to the system, queue it for removal once it goes |
| // out-of-scope. |
| if (CS.addVariableRowFill(R)) |
| DFSInStack.emplace_back(CB.NumIn, CB.NumOut, CB.Condition, CB.Not); |
| } |
| |
| return Changed; |
| } |
| |
| PreservedAnalyses ConstraintEliminationPass::run(Function &F, |
| FunctionAnalysisManager &AM) { |
| auto &DT = AM.getResult<DominatorTreeAnalysis>(F); |
| if (!eliminateConstraints(F, DT)) |
| return PreservedAnalyses::all(); |
| |
| PreservedAnalyses PA; |
| PA.preserve<DominatorTreeAnalysis>(); |
| PA.preserve<GlobalsAA>(); |
| PA.preserveSet<CFGAnalyses>(); |
| return PA; |
| } |
| |
| namespace { |
| |
| class ConstraintElimination : public FunctionPass { |
| public: |
| static char ID; |
| |
| ConstraintElimination() : FunctionPass(ID) { |
| initializeConstraintEliminationPass(*PassRegistry::getPassRegistry()); |
| } |
| |
| bool runOnFunction(Function &F) override { |
| auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); |
| return eliminateConstraints(F, DT); |
| } |
| |
| void getAnalysisUsage(AnalysisUsage &AU) const override { |
| AU.setPreservesCFG(); |
| AU.addRequired<DominatorTreeWrapperPass>(); |
| AU.addPreserved<GlobalsAAWrapperPass>(); |
| AU.addPreserved<DominatorTreeWrapperPass>(); |
| } |
| }; |
| |
| } // end anonymous namespace |
| |
| char ConstraintElimination::ID = 0; |
| |
| INITIALIZE_PASS_BEGIN(ConstraintElimination, "constraint-elimination", |
| "Constraint Elimination", false, false) |
| INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) |
| INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass) |
| INITIALIZE_PASS_END(ConstraintElimination, "constraint-elimination", |
| "Constraint Elimination", false, false) |
| |
| FunctionPass *llvm::createConstraintEliminationPass() { |
| return new ConstraintElimination(); |
| } |