| //===- MergeICmps.cpp - Optimize chains of integer comparisons ------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This pass turns chains of integer comparisons into memcmp (the memcmp is |
| // later typically inlined as a chain of efficient hardware comparisons). This |
| // typically benefits c++ member or nonmember operator==(). |
| // |
| // The basic idea is to replace a longer chain of integer comparisons loaded |
| // from contiguous memory locations into a shorter chain of larger integer |
| // comparisons. Benefits are double: |
| // - There are less jumps, and therefore less opportunities for mispredictions |
| // and I-cache misses. |
| // - Code size is smaller, both because jumps are removed and because the |
| // encoding of a 2*n byte compare is smaller than that of two n-byte |
| // compares. |
| // |
| // Example: |
| // |
| // struct S { |
| // int a; |
| // char b; |
| // char c; |
| // uint16_t d; |
| // bool operator==(const S& o) const { |
| // return a == o.a && b == o.b && c == o.c && d == o.d; |
| // } |
| // }; |
| // |
| // Is optimized as : |
| // |
| // bool S::operator==(const S& o) const { |
| // return memcmp(this, &o, 8) == 0; |
| // } |
| // |
| // Which will later be expanded (ExpandMemCmp) as a single 8-bytes icmp. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Transforms/Scalar/MergeICmps.h" |
| #include "llvm/Analysis/DomTreeUpdater.h" |
| #include "llvm/Analysis/GlobalsModRef.h" |
| #include "llvm/Analysis/Loads.h" |
| #include "llvm/Analysis/TargetLibraryInfo.h" |
| #include "llvm/Analysis/TargetTransformInfo.h" |
| #include "llvm/IR/Dominators.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/IRBuilder.h" |
| #include "llvm/InitializePasses.h" |
| #include "llvm/Pass.h" |
| #include "llvm/Transforms/Scalar.h" |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
| #include "llvm/Transforms/Utils/BuildLibCalls.h" |
| #include <algorithm> |
| #include <numeric> |
| #include <utility> |
| #include <vector> |
| |
| using namespace llvm; |
| |
| namespace { |
| |
| #define DEBUG_TYPE "mergeicmps" |
| |
| // Returns true if the instruction is a simple load or a simple store |
| static bool isSimpleLoadOrStore(const Instruction *I) { |
| if (const LoadInst *LI = dyn_cast<LoadInst>(I)) |
| return LI->isSimple(); |
| if (const StoreInst *SI = dyn_cast<StoreInst>(I)) |
| return SI->isSimple(); |
| return false; |
| } |
| |
| // A BCE atom "Binary Compare Expression Atom" represents an integer load |
| // that is a constant offset from a base value, e.g. `a` or `o.c` in the example |
| // at the top. |
| struct BCEAtom { |
| BCEAtom() = default; |
| BCEAtom(GetElementPtrInst *GEP, LoadInst *LoadI, int BaseId, APInt Offset) |
| : GEP(GEP), LoadI(LoadI), BaseId(BaseId), Offset(Offset) {} |
| |
| BCEAtom(const BCEAtom &) = delete; |
| BCEAtom &operator=(const BCEAtom &) = delete; |
| |
| BCEAtom(BCEAtom &&that) = default; |
| BCEAtom &operator=(BCEAtom &&that) { |
| if (this == &that) |
| return *this; |
| GEP = that.GEP; |
| LoadI = that.LoadI; |
| BaseId = that.BaseId; |
| Offset = std::move(that.Offset); |
| return *this; |
| } |
| |
| // We want to order BCEAtoms by (Base, Offset). However we cannot use |
| // the pointer values for Base because these are non-deterministic. |
| // To make sure that the sort order is stable, we first assign to each atom |
| // base value an index based on its order of appearance in the chain of |
| // comparisons. We call this index `BaseOrdering`. For example, for: |
| // b[3] == c[2] && a[1] == d[1] && b[4] == c[3] |
| // | block 1 | | block 2 | | block 3 | |
| // b gets assigned index 0 and a index 1, because b appears as LHS in block 1, |
| // which is before block 2. |
| // We then sort by (BaseOrdering[LHS.Base()], LHS.Offset), which is stable. |
| bool operator<(const BCEAtom &O) const { |
| return BaseId != O.BaseId ? BaseId < O.BaseId : Offset.slt(O.Offset); |
| } |
| |
| GetElementPtrInst *GEP = nullptr; |
| LoadInst *LoadI = nullptr; |
| unsigned BaseId = 0; |
| APInt Offset; |
| }; |
| |
| // A class that assigns increasing ids to values in the order in which they are |
| // seen. See comment in `BCEAtom::operator<()``. |
| class BaseIdentifier { |
| public: |
| // Returns the id for value `Base`, after assigning one if `Base` has not been |
| // seen before. |
| int getBaseId(const Value *Base) { |
| assert(Base && "invalid base"); |
| const auto Insertion = BaseToIndex.try_emplace(Base, Order); |
| if (Insertion.second) |
| ++Order; |
| return Insertion.first->second; |
| } |
| |
| private: |
| unsigned Order = 1; |
| DenseMap<const Value*, int> BaseToIndex; |
| }; |
| |
| // If this value is a load from a constant offset w.r.t. a base address, and |
| // there are no other users of the load or address, returns the base address and |
| // the offset. |
| BCEAtom visitICmpLoadOperand(Value *const Val, BaseIdentifier &BaseId) { |
| auto *const LoadI = dyn_cast<LoadInst>(Val); |
| if (!LoadI) |
| return {}; |
| LLVM_DEBUG(dbgs() << "load\n"); |
| if (LoadI->isUsedOutsideOfBlock(LoadI->getParent())) { |
| LLVM_DEBUG(dbgs() << "used outside of block\n"); |
| return {}; |
| } |
| // Do not optimize atomic loads to non-atomic memcmp |
| if (!LoadI->isSimple()) { |
| LLVM_DEBUG(dbgs() << "volatile or atomic\n"); |
| return {}; |
| } |
| Value *const Addr = LoadI->getOperand(0); |
| auto *const GEP = dyn_cast<GetElementPtrInst>(Addr); |
| if (!GEP) |
| return {}; |
| LLVM_DEBUG(dbgs() << "GEP\n"); |
| if (GEP->isUsedOutsideOfBlock(LoadI->getParent())) { |
| LLVM_DEBUG(dbgs() << "used outside of block\n"); |
| return {}; |
| } |
| const auto &DL = GEP->getModule()->getDataLayout(); |
| if (!isDereferenceablePointer(GEP, LoadI->getType(), DL)) { |
| LLVM_DEBUG(dbgs() << "not dereferenceable\n"); |
| // We need to make sure that we can do comparison in any order, so we |
| // require memory to be unconditionnally dereferencable. |
| return {}; |
| } |
| APInt Offset = APInt(DL.getPointerTypeSizeInBits(GEP->getType()), 0); |
| if (!GEP->accumulateConstantOffset(DL, Offset)) |
| return {}; |
| return BCEAtom(GEP, LoadI, BaseId.getBaseId(GEP->getPointerOperand()), |
| Offset); |
| } |
| |
| // A basic block with a comparison between two BCE atoms, e.g. `a == o.a` in the |
| // example at the top. |
| // The block might do extra work besides the atom comparison, in which case |
| // doesOtherWork() returns true. Under some conditions, the block can be |
| // split into the atom comparison part and the "other work" part |
| // (see canSplit()). |
| // Note: the terminology is misleading: the comparison is symmetric, so there |
| // is no real {l/r}hs. What we want though is to have the same base on the |
| // left (resp. right), so that we can detect consecutive loads. To ensure this |
| // we put the smallest atom on the left. |
| class BCECmpBlock { |
| public: |
| BCECmpBlock() {} |
| |
| BCECmpBlock(BCEAtom L, BCEAtom R, int SizeBits) |
| : Lhs_(std::move(L)), Rhs_(std::move(R)), SizeBits_(SizeBits) { |
| if (Rhs_ < Lhs_) std::swap(Rhs_, Lhs_); |
| } |
| |
| bool IsValid() const { return Lhs_.BaseId != 0 && Rhs_.BaseId != 0; } |
| |
| // Assert the block is consistent: If valid, it should also have |
| // non-null members besides Lhs_ and Rhs_. |
| void AssertConsistent() const { |
| if (IsValid()) { |
| assert(BB); |
| assert(CmpI); |
| assert(BranchI); |
| } |
| } |
| |
| const BCEAtom &Lhs() const { return Lhs_; } |
| const BCEAtom &Rhs() const { return Rhs_; } |
| int SizeBits() const { return SizeBits_; } |
| |
| // Returns true if the block does other works besides comparison. |
| bool doesOtherWork() const; |
| |
| // Returns true if the non-BCE-cmp instructions can be separated from BCE-cmp |
| // instructions in the block. |
| bool canSplit(AliasAnalysis &AA) const; |
| |
| // Return true if this all the relevant instructions in the BCE-cmp-block can |
| // be sunk below this instruction. By doing this, we know we can separate the |
| // BCE-cmp-block instructions from the non-BCE-cmp-block instructions in the |
| // block. |
| bool canSinkBCECmpInst(const Instruction *, DenseSet<Instruction *> &, |
| AliasAnalysis &AA) const; |
| |
| // We can separate the BCE-cmp-block instructions and the non-BCE-cmp-block |
| // instructions. Split the old block and move all non-BCE-cmp-insts into the |
| // new parent block. |
| void split(BasicBlock *NewParent, AliasAnalysis &AA) const; |
| |
| // The basic block where this comparison happens. |
| BasicBlock *BB = nullptr; |
| // The ICMP for this comparison. |
| ICmpInst *CmpI = nullptr; |
| // The terminating branch. |
| BranchInst *BranchI = nullptr; |
| // The block requires splitting. |
| bool RequireSplit = false; |
| |
| private: |
| BCEAtom Lhs_; |
| BCEAtom Rhs_; |
| int SizeBits_ = 0; |
| }; |
| |
| bool BCECmpBlock::canSinkBCECmpInst(const Instruction *Inst, |
| DenseSet<Instruction *> &BlockInsts, |
| AliasAnalysis &AA) const { |
| // If this instruction has side effects and its in middle of the BCE cmp block |
| // instructions, then bail for now. |
| if (Inst->mayHaveSideEffects()) { |
| // Bail if this is not a simple load or store |
| if (!isSimpleLoadOrStore(Inst)) |
| return false; |
| // Disallow stores that might alias the BCE operands |
| MemoryLocation LLoc = MemoryLocation::get(Lhs_.LoadI); |
| MemoryLocation RLoc = MemoryLocation::get(Rhs_.LoadI); |
| if (isModSet(AA.getModRefInfo(Inst, LLoc)) || |
| isModSet(AA.getModRefInfo(Inst, RLoc))) |
| return false; |
| } |
| // Make sure this instruction does not use any of the BCE cmp block |
| // instructions as operand. |
| for (auto BI : BlockInsts) { |
| if (is_contained(Inst->operands(), BI)) |
| return false; |
| } |
| return true; |
| } |
| |
| void BCECmpBlock::split(BasicBlock *NewParent, AliasAnalysis &AA) const { |
| DenseSet<Instruction *> BlockInsts( |
| {Lhs_.GEP, Rhs_.GEP, Lhs_.LoadI, Rhs_.LoadI, CmpI, BranchI}); |
| llvm::SmallVector<Instruction *, 4> OtherInsts; |
| for (Instruction &Inst : *BB) { |
| if (BlockInsts.count(&Inst)) |
| continue; |
| assert(canSinkBCECmpInst(&Inst, BlockInsts, AA) && |
| "Split unsplittable block"); |
| // This is a non-BCE-cmp-block instruction. And it can be separated |
| // from the BCE-cmp-block instruction. |
| OtherInsts.push_back(&Inst); |
| } |
| |
| // Do the actual spliting. |
| for (Instruction *Inst : reverse(OtherInsts)) { |
| Inst->moveBefore(&*NewParent->begin()); |
| } |
| } |
| |
| bool BCECmpBlock::canSplit(AliasAnalysis &AA) const { |
| DenseSet<Instruction *> BlockInsts( |
| {Lhs_.GEP, Rhs_.GEP, Lhs_.LoadI, Rhs_.LoadI, CmpI, BranchI}); |
| for (Instruction &Inst : *BB) { |
| if (!BlockInsts.count(&Inst)) { |
| if (!canSinkBCECmpInst(&Inst, BlockInsts, AA)) |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| bool BCECmpBlock::doesOtherWork() const { |
| AssertConsistent(); |
| // All the instructions we care about in the BCE cmp block. |
| DenseSet<Instruction *> BlockInsts( |
| {Lhs_.GEP, Rhs_.GEP, Lhs_.LoadI, Rhs_.LoadI, CmpI, BranchI}); |
| // TODO(courbet): Can we allow some other things ? This is very conservative. |
| // We might be able to get away with anything does not have any side |
| // effects outside of the basic block. |
| // Note: The GEPs and/or loads are not necessarily in the same block. |
| for (const Instruction &Inst : *BB) { |
| if (!BlockInsts.count(&Inst)) |
| return true; |
| } |
| return false; |
| } |
| |
| // Visit the given comparison. If this is a comparison between two valid |
| // BCE atoms, returns the comparison. |
| BCECmpBlock visitICmp(const ICmpInst *const CmpI, |
| const ICmpInst::Predicate ExpectedPredicate, |
| BaseIdentifier &BaseId) { |
| // The comparison can only be used once: |
| // - For intermediate blocks, as a branch condition. |
| // - For the final block, as an incoming value for the Phi. |
| // If there are any other uses of the comparison, we cannot merge it with |
| // other comparisons as we would create an orphan use of the value. |
| if (!CmpI->hasOneUse()) { |
| LLVM_DEBUG(dbgs() << "cmp has several uses\n"); |
| return {}; |
| } |
| if (CmpI->getPredicate() != ExpectedPredicate) |
| return {}; |
| LLVM_DEBUG(dbgs() << "cmp " |
| << (ExpectedPredicate == ICmpInst::ICMP_EQ ? "eq" : "ne") |
| << "\n"); |
| auto Lhs = visitICmpLoadOperand(CmpI->getOperand(0), BaseId); |
| if (!Lhs.BaseId) |
| return {}; |
| auto Rhs = visitICmpLoadOperand(CmpI->getOperand(1), BaseId); |
| if (!Rhs.BaseId) |
| return {}; |
| const auto &DL = CmpI->getModule()->getDataLayout(); |
| return BCECmpBlock(std::move(Lhs), std::move(Rhs), |
| DL.getTypeSizeInBits(CmpI->getOperand(0)->getType())); |
| } |
| |
| // Visit the given comparison block. If this is a comparison between two valid |
| // BCE atoms, returns the comparison. |
| BCECmpBlock visitCmpBlock(Value *const Val, BasicBlock *const Block, |
| const BasicBlock *const PhiBlock, |
| BaseIdentifier &BaseId) { |
| if (Block->empty()) return {}; |
| auto *const BranchI = dyn_cast<BranchInst>(Block->getTerminator()); |
| if (!BranchI) return {}; |
| LLVM_DEBUG(dbgs() << "branch\n"); |
| if (BranchI->isUnconditional()) { |
| // In this case, we expect an incoming value which is the result of the |
| // comparison. This is the last link in the chain of comparisons (note |
| // that this does not mean that this is the last incoming value, blocks |
| // can be reordered). |
| auto *const CmpI = dyn_cast<ICmpInst>(Val); |
| if (!CmpI) return {}; |
| LLVM_DEBUG(dbgs() << "icmp\n"); |
| auto Result = visitICmp(CmpI, ICmpInst::ICMP_EQ, BaseId); |
| Result.CmpI = CmpI; |
| Result.BranchI = BranchI; |
| return Result; |
| } else { |
| // In this case, we expect a constant incoming value (the comparison is |
| // chained). |
| const auto *const Const = cast<ConstantInt>(Val); |
| LLVM_DEBUG(dbgs() << "const\n"); |
| if (!Const->isZero()) return {}; |
| LLVM_DEBUG(dbgs() << "false\n"); |
| auto *const CmpI = dyn_cast<ICmpInst>(BranchI->getCondition()); |
| if (!CmpI) return {}; |
| LLVM_DEBUG(dbgs() << "icmp\n"); |
| assert(BranchI->getNumSuccessors() == 2 && "expecting a cond branch"); |
| BasicBlock *const FalseBlock = BranchI->getSuccessor(1); |
| auto Result = visitICmp( |
| CmpI, FalseBlock == PhiBlock ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE, |
| BaseId); |
| Result.CmpI = CmpI; |
| Result.BranchI = BranchI; |
| return Result; |
| } |
| return {}; |
| } |
| |
| static inline void enqueueBlock(std::vector<BCECmpBlock> &Comparisons, |
| BCECmpBlock &&Comparison) { |
| LLVM_DEBUG(dbgs() << "Block '" << Comparison.BB->getName() |
| << "': Found cmp of " << Comparison.SizeBits() |
| << " bits between " << Comparison.Lhs().BaseId << " + " |
| << Comparison.Lhs().Offset << " and " |
| << Comparison.Rhs().BaseId << " + " |
| << Comparison.Rhs().Offset << "\n"); |
| LLVM_DEBUG(dbgs() << "\n"); |
| Comparisons.push_back(std::move(Comparison)); |
| } |
| |
| // A chain of comparisons. |
| class BCECmpChain { |
| public: |
| BCECmpChain(const std::vector<BasicBlock *> &Blocks, PHINode &Phi, |
| AliasAnalysis &AA); |
| |
| int size() const { return Comparisons_.size(); } |
| |
| #ifdef MERGEICMPS_DOT_ON |
| void dump() const; |
| #endif // MERGEICMPS_DOT_ON |
| |
| bool simplify(const TargetLibraryInfo &TLI, AliasAnalysis &AA, |
| DomTreeUpdater &DTU); |
| |
| private: |
| static bool IsContiguous(const BCECmpBlock &First, |
| const BCECmpBlock &Second) { |
| return First.Lhs().BaseId == Second.Lhs().BaseId && |
| First.Rhs().BaseId == Second.Rhs().BaseId && |
| First.Lhs().Offset + First.SizeBits() / 8 == Second.Lhs().Offset && |
| First.Rhs().Offset + First.SizeBits() / 8 == Second.Rhs().Offset; |
| } |
| |
| PHINode &Phi_; |
| std::vector<BCECmpBlock> Comparisons_; |
| // The original entry block (before sorting); |
| BasicBlock *EntryBlock_; |
| }; |
| |
| BCECmpChain::BCECmpChain(const std::vector<BasicBlock *> &Blocks, PHINode &Phi, |
| AliasAnalysis &AA) |
| : Phi_(Phi) { |
| assert(!Blocks.empty() && "a chain should have at least one block"); |
| // Now look inside blocks to check for BCE comparisons. |
| std::vector<BCECmpBlock> Comparisons; |
| BaseIdentifier BaseId; |
| for (size_t BlockIdx = 0; BlockIdx < Blocks.size(); ++BlockIdx) { |
| BasicBlock *const Block = Blocks[BlockIdx]; |
| assert(Block && "invalid block"); |
| BCECmpBlock Comparison = visitCmpBlock(Phi.getIncomingValueForBlock(Block), |
| Block, Phi.getParent(), BaseId); |
| Comparison.BB = Block; |
| if (!Comparison.IsValid()) { |
| LLVM_DEBUG(dbgs() << "chain with invalid BCECmpBlock, no merge.\n"); |
| return; |
| } |
| if (Comparison.doesOtherWork()) { |
| LLVM_DEBUG(dbgs() << "block '" << Comparison.BB->getName() |
| << "' does extra work besides compare\n"); |
| if (Comparisons.empty()) { |
| // This is the initial block in the chain, in case this block does other |
| // work, we can try to split the block and move the irrelevant |
| // instructions to the predecessor. |
| // |
| // If this is not the initial block in the chain, splitting it wont |
| // work. |
| // |
| // As once split, there will still be instructions before the BCE cmp |
| // instructions that do other work in program order, i.e. within the |
| // chain before sorting. Unless we can abort the chain at this point |
| // and start anew. |
| // |
| // NOTE: we only handle blocks a with single predecessor for now. |
| if (Comparison.canSplit(AA)) { |
| LLVM_DEBUG(dbgs() |
| << "Split initial block '" << Comparison.BB->getName() |
| << "' that does extra work besides compare\n"); |
| Comparison.RequireSplit = true; |
| enqueueBlock(Comparisons, std::move(Comparison)); |
| } else { |
| LLVM_DEBUG(dbgs() |
| << "ignoring initial block '" << Comparison.BB->getName() |
| << "' that does extra work besides compare\n"); |
| } |
| continue; |
| } |
| // TODO(courbet): Right now we abort the whole chain. We could be |
| // merging only the blocks that don't do other work and resume the |
| // chain from there. For example: |
| // if (a[0] == b[0]) { // bb1 |
| // if (a[1] == b[1]) { // bb2 |
| // some_value = 3; //bb3 |
| // if (a[2] == b[2]) { //bb3 |
| // do a ton of stuff //bb4 |
| // } |
| // } |
| // } |
| // |
| // This is: |
| // |
| // bb1 --eq--> bb2 --eq--> bb3* -eq--> bb4 --+ |
| // \ \ \ \ |
| // ne ne ne \ |
| // \ \ \ v |
| // +------------+-----------+----------> bb_phi |
| // |
| // We can only merge the first two comparisons, because bb3* does |
| // "other work" (setting some_value to 3). |
| // We could still merge bb1 and bb2 though. |
| return; |
| } |
| enqueueBlock(Comparisons, std::move(Comparison)); |
| } |
| |
| // It is possible we have no suitable comparison to merge. |
| if (Comparisons.empty()) { |
| LLVM_DEBUG(dbgs() << "chain with no BCE basic blocks, no merge\n"); |
| return; |
| } |
| EntryBlock_ = Comparisons[0].BB; |
| Comparisons_ = std::move(Comparisons); |
| #ifdef MERGEICMPS_DOT_ON |
| errs() << "BEFORE REORDERING:\n\n"; |
| dump(); |
| #endif // MERGEICMPS_DOT_ON |
| // Reorder blocks by LHS. We can do that without changing the |
| // semantics because we are only accessing dereferencable memory. |
| llvm::sort(Comparisons_, |
| [](const BCECmpBlock &LhsBlock, const BCECmpBlock &RhsBlock) { |
| return std::tie(LhsBlock.Lhs(), LhsBlock.Rhs()) < |
| std::tie(RhsBlock.Lhs(), RhsBlock.Rhs()); |
| }); |
| #ifdef MERGEICMPS_DOT_ON |
| errs() << "AFTER REORDERING:\n\n"; |
| dump(); |
| #endif // MERGEICMPS_DOT_ON |
| } |
| |
| #ifdef MERGEICMPS_DOT_ON |
| void BCECmpChain::dump() const { |
| errs() << "digraph dag {\n"; |
| errs() << " graph [bgcolor=transparent];\n"; |
| errs() << " node [color=black,style=filled,fillcolor=lightyellow];\n"; |
| errs() << " edge [color=black];\n"; |
| for (size_t I = 0; I < Comparisons_.size(); ++I) { |
| const auto &Comparison = Comparisons_[I]; |
| errs() << " \"" << I << "\" [label=\"%" |
| << Comparison.Lhs().Base()->getName() << " + " |
| << Comparison.Lhs().Offset << " == %" |
| << Comparison.Rhs().Base()->getName() << " + " |
| << Comparison.Rhs().Offset << " (" << (Comparison.SizeBits() / 8) |
| << " bytes)\"];\n"; |
| const Value *const Val = Phi_.getIncomingValueForBlock(Comparison.BB); |
| if (I > 0) errs() << " \"" << (I - 1) << "\" -> \"" << I << "\";\n"; |
| errs() << " \"" << I << "\" -> \"Phi\" [label=\"" << *Val << "\"];\n"; |
| } |
| errs() << " \"Phi\" [label=\"Phi\"];\n"; |
| errs() << "}\n\n"; |
| } |
| #endif // MERGEICMPS_DOT_ON |
| |
| namespace { |
| |
| // A class to compute the name of a set of merged basic blocks. |
| // This is optimized for the common case of no block names. |
| class MergedBlockName { |
| // Storage for the uncommon case of several named blocks. |
| SmallString<16> Scratch; |
| |
| public: |
| explicit MergedBlockName(ArrayRef<BCECmpBlock> Comparisons) |
| : Name(makeName(Comparisons)) {} |
| const StringRef Name; |
| |
| private: |
| StringRef makeName(ArrayRef<BCECmpBlock> Comparisons) { |
| assert(!Comparisons.empty() && "no basic block"); |
| // Fast path: only one block, or no names at all. |
| if (Comparisons.size() == 1) |
| return Comparisons[0].BB->getName(); |
| const int size = std::accumulate(Comparisons.begin(), Comparisons.end(), 0, |
| [](int i, const BCECmpBlock &Cmp) { |
| return i + Cmp.BB->getName().size(); |
| }); |
| if (size == 0) |
| return StringRef("", 0); |
| |
| // Slow path: at least two blocks, at least one block with a name. |
| Scratch.clear(); |
| // We'll have `size` bytes for name and `Comparisons.size() - 1` bytes for |
| // separators. |
| Scratch.reserve(size + Comparisons.size() - 1); |
| const auto append = [this](StringRef str) { |
| Scratch.append(str.begin(), str.end()); |
| }; |
| append(Comparisons[0].BB->getName()); |
| for (int I = 1, E = Comparisons.size(); I < E; ++I) { |
| const BasicBlock *const BB = Comparisons[I].BB; |
| if (!BB->getName().empty()) { |
| append("+"); |
| append(BB->getName()); |
| } |
| } |
| return StringRef(Scratch); |
| } |
| }; |
| } // namespace |
| |
| // Merges the given contiguous comparison blocks into one memcmp block. |
| static BasicBlock *mergeComparisons(ArrayRef<BCECmpBlock> Comparisons, |
| BasicBlock *const InsertBefore, |
| BasicBlock *const NextCmpBlock, |
| PHINode &Phi, const TargetLibraryInfo &TLI, |
| AliasAnalysis &AA, DomTreeUpdater &DTU) { |
| assert(!Comparisons.empty() && "merging zero comparisons"); |
| LLVMContext &Context = NextCmpBlock->getContext(); |
| const BCECmpBlock &FirstCmp = Comparisons[0]; |
| |
| // Create a new cmp block before next cmp block. |
| BasicBlock *const BB = |
| BasicBlock::Create(Context, MergedBlockName(Comparisons).Name, |
| NextCmpBlock->getParent(), InsertBefore); |
| IRBuilder<> Builder(BB); |
| // Add the GEPs from the first BCECmpBlock. |
| Value *const Lhs = Builder.Insert(FirstCmp.Lhs().GEP->clone()); |
| Value *const Rhs = Builder.Insert(FirstCmp.Rhs().GEP->clone()); |
| |
| Value *IsEqual = nullptr; |
| LLVM_DEBUG(dbgs() << "Merging " << Comparisons.size() << " comparisons -> " |
| << BB->getName() << "\n"); |
| |
| // If there is one block that requires splitting, we do it now, i.e. |
| // just before we know we will collapse the chain. The instructions |
| // can be executed before any of the instructions in the chain. |
| const auto ToSplit = llvm::find_if( |
| Comparisons, [](const BCECmpBlock &B) { return B.RequireSplit; }); |
| if (ToSplit != Comparisons.end()) { |
| LLVM_DEBUG(dbgs() << "Splitting non_BCE work to header\n"); |
| ToSplit->split(BB, AA); |
| } |
| |
| if (Comparisons.size() == 1) { |
| LLVM_DEBUG(dbgs() << "Only one comparison, updating branches\n"); |
| Value *const LhsLoad = |
| Builder.CreateLoad(FirstCmp.Lhs().LoadI->getType(), Lhs); |
| Value *const RhsLoad = |
| Builder.CreateLoad(FirstCmp.Rhs().LoadI->getType(), Rhs); |
| // There are no blocks to merge, just do the comparison. |
| IsEqual = Builder.CreateICmpEQ(LhsLoad, RhsLoad); |
| } else { |
| const unsigned TotalSizeBits = std::accumulate( |
| Comparisons.begin(), Comparisons.end(), 0u, |
| [](int Size, const BCECmpBlock &C) { return Size + C.SizeBits(); }); |
| |
| // Create memcmp() == 0. |
| const auto &DL = Phi.getModule()->getDataLayout(); |
| Value *const MemCmpCall = emitMemCmp( |
| Lhs, Rhs, |
| ConstantInt::get(DL.getIntPtrType(Context), TotalSizeBits / 8), Builder, |
| DL, &TLI); |
| IsEqual = Builder.CreateICmpEQ( |
| MemCmpCall, ConstantInt::get(Type::getInt32Ty(Context), 0)); |
| } |
| |
| BasicBlock *const PhiBB = Phi.getParent(); |
| // Add a branch to the next basic block in the chain. |
| if (NextCmpBlock == PhiBB) { |
| // Continue to phi, passing it the comparison result. |
| Builder.CreateBr(PhiBB); |
| Phi.addIncoming(IsEqual, BB); |
| DTU.applyUpdates({{DominatorTree::Insert, BB, PhiBB}}); |
| } else { |
| // Continue to next block if equal, exit to phi else. |
| Builder.CreateCondBr(IsEqual, NextCmpBlock, PhiBB); |
| Phi.addIncoming(ConstantInt::getFalse(Context), BB); |
| DTU.applyUpdates({{DominatorTree::Insert, BB, NextCmpBlock}, |
| {DominatorTree::Insert, BB, PhiBB}}); |
| } |
| return BB; |
| } |
| |
| bool BCECmpChain::simplify(const TargetLibraryInfo &TLI, AliasAnalysis &AA, |
| DomTreeUpdater &DTU) { |
| assert(Comparisons_.size() >= 2 && "simplifying trivial BCECmpChain"); |
| // First pass to check if there is at least one merge. If not, we don't do |
| // anything and we keep analysis passes intact. |
| const auto AtLeastOneMerged = [this]() { |
| for (size_t I = 1; I < Comparisons_.size(); ++I) { |
| if (IsContiguous(Comparisons_[I - 1], Comparisons_[I])) |
| return true; |
| } |
| return false; |
| }; |
| if (!AtLeastOneMerged()) |
| return false; |
| |
| LLVM_DEBUG(dbgs() << "Simplifying comparison chain starting at block " |
| << EntryBlock_->getName() << "\n"); |
| |
| // Effectively merge blocks. We go in the reverse direction from the phi block |
| // so that the next block is always available to branch to. |
| const auto mergeRange = [this, &TLI, &AA, &DTU](int I, int Num, |
| BasicBlock *InsertBefore, |
| BasicBlock *Next) { |
| return mergeComparisons(makeArrayRef(Comparisons_).slice(I, Num), |
| InsertBefore, Next, Phi_, TLI, AA, DTU); |
| }; |
| int NumMerged = 1; |
| BasicBlock *NextCmpBlock = Phi_.getParent(); |
| for (int I = static_cast<int>(Comparisons_.size()) - 2; I >= 0; --I) { |
| if (IsContiguous(Comparisons_[I], Comparisons_[I + 1])) { |
| LLVM_DEBUG(dbgs() << "Merging block " << Comparisons_[I].BB->getName() |
| << " into " << Comparisons_[I + 1].BB->getName() |
| << "\n"); |
| ++NumMerged; |
| } else { |
| NextCmpBlock = mergeRange(I + 1, NumMerged, NextCmpBlock, NextCmpBlock); |
| NumMerged = 1; |
| } |
| } |
| // Insert the entry block for the new chain before the old entry block. |
| // If the old entry block was the function entry, this ensures that the new |
| // entry can become the function entry. |
| NextCmpBlock = mergeRange(0, NumMerged, EntryBlock_, NextCmpBlock); |
| |
| // Replace the original cmp chain with the new cmp chain by pointing all |
| // predecessors of EntryBlock_ to NextCmpBlock instead. This makes all cmp |
| // blocks in the old chain unreachable. |
| while (!pred_empty(EntryBlock_)) { |
| BasicBlock* const Pred = *pred_begin(EntryBlock_); |
| LLVM_DEBUG(dbgs() << "Updating jump into old chain from " << Pred->getName() |
| << "\n"); |
| Pred->getTerminator()->replaceUsesOfWith(EntryBlock_, NextCmpBlock); |
| DTU.applyUpdates({{DominatorTree::Delete, Pred, EntryBlock_}, |
| {DominatorTree::Insert, Pred, NextCmpBlock}}); |
| } |
| |
| // If the old cmp chain was the function entry, we need to update the function |
| // entry. |
| const bool ChainEntryIsFnEntry = |
| (EntryBlock_ == &EntryBlock_->getParent()->getEntryBlock()); |
| if (ChainEntryIsFnEntry && DTU.hasDomTree()) { |
| LLVM_DEBUG(dbgs() << "Changing function entry from " |
| << EntryBlock_->getName() << " to " |
| << NextCmpBlock->getName() << "\n"); |
| DTU.getDomTree().setNewRoot(NextCmpBlock); |
| DTU.applyUpdates({{DominatorTree::Delete, NextCmpBlock, EntryBlock_}}); |
| } |
| EntryBlock_ = nullptr; |
| |
| // Delete merged blocks. This also removes incoming values in phi. |
| SmallVector<BasicBlock *, 16> DeadBlocks; |
| for (auto &Cmp : Comparisons_) { |
| LLVM_DEBUG(dbgs() << "Deleting merged block " << Cmp.BB->getName() << "\n"); |
| DeadBlocks.push_back(Cmp.BB); |
| } |
| DeleteDeadBlocks(DeadBlocks, &DTU); |
| |
| Comparisons_.clear(); |
| return true; |
| } |
| |
| std::vector<BasicBlock *> getOrderedBlocks(PHINode &Phi, |
| BasicBlock *const LastBlock, |
| int NumBlocks) { |
| // Walk up from the last block to find other blocks. |
| std::vector<BasicBlock *> Blocks(NumBlocks); |
| assert(LastBlock && "invalid last block"); |
| BasicBlock *CurBlock = LastBlock; |
| for (int BlockIndex = NumBlocks - 1; BlockIndex > 0; --BlockIndex) { |
| if (CurBlock->hasAddressTaken()) { |
| // Somebody is jumping to the block through an address, all bets are |
| // off. |
| LLVM_DEBUG(dbgs() << "skip: block " << BlockIndex |
| << " has its address taken\n"); |
| return {}; |
| } |
| Blocks[BlockIndex] = CurBlock; |
| auto *SinglePredecessor = CurBlock->getSinglePredecessor(); |
| if (!SinglePredecessor) { |
| // The block has two or more predecessors. |
| LLVM_DEBUG(dbgs() << "skip: block " << BlockIndex |
| << " has two or more predecessors\n"); |
| return {}; |
| } |
| if (Phi.getBasicBlockIndex(SinglePredecessor) < 0) { |
| // The block does not link back to the phi. |
| LLVM_DEBUG(dbgs() << "skip: block " << BlockIndex |
| << " does not link back to the phi\n"); |
| return {}; |
| } |
| CurBlock = SinglePredecessor; |
| } |
| Blocks[0] = CurBlock; |
| return Blocks; |
| } |
| |
| bool processPhi(PHINode &Phi, const TargetLibraryInfo &TLI, AliasAnalysis &AA, |
| DomTreeUpdater &DTU) { |
| LLVM_DEBUG(dbgs() << "processPhi()\n"); |
| if (Phi.getNumIncomingValues() <= 1) { |
| LLVM_DEBUG(dbgs() << "skip: only one incoming value in phi\n"); |
| return false; |
| } |
| // We are looking for something that has the following structure: |
| // bb1 --eq--> bb2 --eq--> bb3 --eq--> bb4 --+ |
| // \ \ \ \ |
| // ne ne ne \ |
| // \ \ \ v |
| // +------------+-----------+----------> bb_phi |
| // |
| // - The last basic block (bb4 here) must branch unconditionally to bb_phi. |
| // It's the only block that contributes a non-constant value to the Phi. |
| // - All other blocks (b1, b2, b3) must have exactly two successors, one of |
| // them being the phi block. |
| // - All intermediate blocks (bb2, bb3) must have only one predecessor. |
| // - Blocks cannot do other work besides the comparison, see doesOtherWork() |
| |
| // The blocks are not necessarily ordered in the phi, so we start from the |
| // last block and reconstruct the order. |
| BasicBlock *LastBlock = nullptr; |
| for (unsigned I = 0; I < Phi.getNumIncomingValues(); ++I) { |
| if (isa<ConstantInt>(Phi.getIncomingValue(I))) continue; |
| if (LastBlock) { |
| // There are several non-constant values. |
| LLVM_DEBUG(dbgs() << "skip: several non-constant values\n"); |
| return false; |
| } |
| if (!isa<ICmpInst>(Phi.getIncomingValue(I)) || |
| cast<ICmpInst>(Phi.getIncomingValue(I))->getParent() != |
| Phi.getIncomingBlock(I)) { |
| // Non-constant incoming value is not from a cmp instruction or not |
| // produced by the last block. We could end up processing the value |
| // producing block more than once. |
| // |
| // This is an uncommon case, so we bail. |
| LLVM_DEBUG( |
| dbgs() |
| << "skip: non-constant value not from cmp or not from last block.\n"); |
| return false; |
| } |
| LastBlock = Phi.getIncomingBlock(I); |
| } |
| if (!LastBlock) { |
| // There is no non-constant block. |
| LLVM_DEBUG(dbgs() << "skip: no non-constant block\n"); |
| return false; |
| } |
| if (LastBlock->getSingleSuccessor() != Phi.getParent()) { |
| LLVM_DEBUG(dbgs() << "skip: last block non-phi successor\n"); |
| return false; |
| } |
| |
| const auto Blocks = |
| getOrderedBlocks(Phi, LastBlock, Phi.getNumIncomingValues()); |
| if (Blocks.empty()) return false; |
| BCECmpChain CmpChain(Blocks, Phi, AA); |
| |
| if (CmpChain.size() < 2) { |
| LLVM_DEBUG(dbgs() << "skip: only one compare block\n"); |
| return false; |
| } |
| |
| return CmpChain.simplify(TLI, AA, DTU); |
| } |
| |
| static bool runImpl(Function &F, const TargetLibraryInfo &TLI, |
| const TargetTransformInfo &TTI, AliasAnalysis &AA, |
| DominatorTree *DT) { |
| LLVM_DEBUG(dbgs() << "MergeICmpsLegacyPass: " << F.getName() << "\n"); |
| |
| // We only try merging comparisons if the target wants to expand memcmp later. |
| // The rationale is to avoid turning small chains into memcmp calls. |
| if (!TTI.enableMemCmpExpansion(F.hasOptSize(), true)) |
| return false; |
| |
| // If we don't have memcmp avaiable we can't emit calls to it. |
| if (!TLI.has(LibFunc_memcmp)) |
| return false; |
| |
| DomTreeUpdater DTU(DT, /*PostDominatorTree*/ nullptr, |
| DomTreeUpdater::UpdateStrategy::Eager); |
| |
| bool MadeChange = false; |
| |
| for (auto BBIt = ++F.begin(); BBIt != F.end(); ++BBIt) { |
| // A Phi operation is always first in a basic block. |
| if (auto *const Phi = dyn_cast<PHINode>(&*BBIt->begin())) |
| MadeChange |= processPhi(*Phi, TLI, AA, DTU); |
| } |
| |
| return MadeChange; |
| } |
| |
| class MergeICmpsLegacyPass : public FunctionPass { |
| public: |
| static char ID; |
| |
| MergeICmpsLegacyPass() : FunctionPass(ID) { |
| initializeMergeICmpsLegacyPassPass(*PassRegistry::getPassRegistry()); |
| } |
| |
| bool runOnFunction(Function &F) override { |
| if (skipFunction(F)) return false; |
| const auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); |
| const auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); |
| // MergeICmps does not need the DominatorTree, but we update it if it's |
| // already available. |
| auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>(); |
| auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); |
| return runImpl(F, TLI, TTI, AA, DTWP ? &DTWP->getDomTree() : nullptr); |
| } |
| |
| private: |
| void getAnalysisUsage(AnalysisUsage &AU) const override { |
| AU.addRequired<TargetLibraryInfoWrapperPass>(); |
| AU.addRequired<TargetTransformInfoWrapperPass>(); |
| AU.addRequired<AAResultsWrapperPass>(); |
| AU.addPreserved<GlobalsAAWrapperPass>(); |
| AU.addPreserved<DominatorTreeWrapperPass>(); |
| } |
| }; |
| |
| } // namespace |
| |
| char MergeICmpsLegacyPass::ID = 0; |
| INITIALIZE_PASS_BEGIN(MergeICmpsLegacyPass, "mergeicmps", |
| "Merge contiguous icmps into a memcmp", false, false) |
| INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) |
| INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) |
| INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) |
| INITIALIZE_PASS_END(MergeICmpsLegacyPass, "mergeicmps", |
| "Merge contiguous icmps into a memcmp", false, false) |
| |
| Pass *llvm::createMergeICmpsLegacyPass() { return new MergeICmpsLegacyPass(); } |
| |
| PreservedAnalyses MergeICmpsPass::run(Function &F, |
| FunctionAnalysisManager &AM) { |
| auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); |
| auto &TTI = AM.getResult<TargetIRAnalysis>(F); |
| auto &AA = AM.getResult<AAManager>(F); |
| auto *DT = AM.getCachedResult<DominatorTreeAnalysis>(F); |
| const bool MadeChanges = runImpl(F, TLI, TTI, AA, DT); |
| if (!MadeChanges) |
| return PreservedAnalyses::all(); |
| PreservedAnalyses PA; |
| PA.preserve<GlobalsAA>(); |
| PA.preserve<DominatorTreeAnalysis>(); |
| return PA; |
| } |