| //===- StructurizeCFG.cpp -------------------------------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Transforms/Scalar/StructurizeCFG.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/MapVector.h" |
| #include "llvm/ADT/SCCIterator.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/Analysis/InstructionSimplify.h" |
| #include "llvm/Analysis/LegacyDivergenceAnalysis.h" |
| #include "llvm/Analysis/RegionInfo.h" |
| #include "llvm/Analysis/RegionIterator.h" |
| #include "llvm/Analysis/RegionPass.h" |
| #include "llvm/IR/Argument.h" |
| #include "llvm/IR/BasicBlock.h" |
| #include "llvm/IR/CFG.h" |
| #include "llvm/IR/Constant.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/Dominators.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/InstrTypes.h" |
| #include "llvm/IR/Instruction.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/Metadata.h" |
| #include "llvm/IR/PassManager.h" |
| #include "llvm/IR/PatternMatch.h" |
| #include "llvm/IR/Type.h" |
| #include "llvm/IR/Use.h" |
| #include "llvm/IR/User.h" |
| #include "llvm/IR/Value.h" |
| #include "llvm/IR/ValueHandle.h" |
| #include "llvm/InitializePasses.h" |
| #include "llvm/Pass.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Transforms/Scalar.h" |
| #include "llvm/Transforms/Utils.h" |
| #include "llvm/Transforms/Utils/Local.h" |
| #include "llvm/Transforms/Utils/SSAUpdater.h" |
| #include <algorithm> |
| #include <cassert> |
| #include <utility> |
| |
| using namespace llvm; |
| using namespace llvm::PatternMatch; |
| |
| #define DEBUG_TYPE "structurizecfg" |
| |
| // The name for newly created blocks. |
| const char FlowBlockName[] = "Flow"; |
| |
| namespace { |
| |
| static cl::opt<bool> ForceSkipUniformRegions( |
| "structurizecfg-skip-uniform-regions", |
| cl::Hidden, |
| cl::desc("Force whether the StructurizeCFG pass skips uniform regions"), |
| cl::init(false)); |
| |
| static cl::opt<bool> |
| RelaxedUniformRegions("structurizecfg-relaxed-uniform-regions", cl::Hidden, |
| cl::desc("Allow relaxed uniform region checks"), |
| cl::init(true)); |
| |
| // Definition of the complex types used in this pass. |
| |
| using BBValuePair = std::pair<BasicBlock *, Value *>; |
| |
| using RNVector = SmallVector<RegionNode *, 8>; |
| using BBVector = SmallVector<BasicBlock *, 8>; |
| using BranchVector = SmallVector<BranchInst *, 8>; |
| using BBValueVector = SmallVector<BBValuePair, 2>; |
| |
| using BBSet = SmallPtrSet<BasicBlock *, 8>; |
| |
| using PhiMap = MapVector<PHINode *, BBValueVector>; |
| using BB2BBVecMap = MapVector<BasicBlock *, BBVector>; |
| |
| using BBPhiMap = DenseMap<BasicBlock *, PhiMap>; |
| using BBPredicates = DenseMap<BasicBlock *, Value *>; |
| using PredMap = DenseMap<BasicBlock *, BBPredicates>; |
| using BB2BBMap = DenseMap<BasicBlock *, BasicBlock *>; |
| |
| // A traits type that is intended to be used in graph algorithms. The graph |
| // traits starts at an entry node, and traverses the RegionNodes that are in |
| // the Nodes set. |
| struct SubGraphTraits { |
| using NodeRef = std::pair<RegionNode *, SmallDenseSet<RegionNode *> *>; |
| using BaseSuccIterator = GraphTraits<RegionNode *>::ChildIteratorType; |
| |
| // This wraps a set of Nodes into the iterator, so we know which edges to |
| // filter out. |
| class WrappedSuccIterator |
| : public iterator_adaptor_base< |
| WrappedSuccIterator, BaseSuccIterator, |
| typename std::iterator_traits<BaseSuccIterator>::iterator_category, |
| NodeRef, std::ptrdiff_t, NodeRef *, NodeRef> { |
| SmallDenseSet<RegionNode *> *Nodes; |
| |
| public: |
| WrappedSuccIterator(BaseSuccIterator It, SmallDenseSet<RegionNode *> *Nodes) |
| : iterator_adaptor_base(It), Nodes(Nodes) {} |
| |
| NodeRef operator*() const { return {*I, Nodes}; } |
| }; |
| |
| static bool filterAll(const NodeRef &N) { return true; } |
| static bool filterSet(const NodeRef &N) { return N.second->count(N.first); } |
| |
| using ChildIteratorType = |
| filter_iterator<WrappedSuccIterator, bool (*)(const NodeRef &)>; |
| |
| static NodeRef getEntryNode(Region *R) { |
| return {GraphTraits<Region *>::getEntryNode(R), nullptr}; |
| } |
| |
| static NodeRef getEntryNode(NodeRef N) { return N; } |
| |
| static iterator_range<ChildIteratorType> children(const NodeRef &N) { |
| auto *filter = N.second ? &filterSet : &filterAll; |
| return make_filter_range( |
| make_range<WrappedSuccIterator>( |
| {GraphTraits<RegionNode *>::child_begin(N.first), N.second}, |
| {GraphTraits<RegionNode *>::child_end(N.first), N.second}), |
| filter); |
| } |
| |
| static ChildIteratorType child_begin(const NodeRef &N) { |
| return children(N).begin(); |
| } |
| |
| static ChildIteratorType child_end(const NodeRef &N) { |
| return children(N).end(); |
| } |
| }; |
| |
| /// Finds the nearest common dominator of a set of BasicBlocks. |
| /// |
| /// For every BB you add to the set, you can specify whether we "remember" the |
| /// block. When you get the common dominator, you can also ask whether it's one |
| /// of the blocks we remembered. |
| class NearestCommonDominator { |
| DominatorTree *DT; |
| BasicBlock *Result = nullptr; |
| bool ResultIsRemembered = false; |
| |
| /// Add BB to the resulting dominator. |
| void addBlock(BasicBlock *BB, bool Remember) { |
| if (!Result) { |
| Result = BB; |
| ResultIsRemembered = Remember; |
| return; |
| } |
| |
| BasicBlock *NewResult = DT->findNearestCommonDominator(Result, BB); |
| if (NewResult != Result) |
| ResultIsRemembered = false; |
| if (NewResult == BB) |
| ResultIsRemembered |= Remember; |
| Result = NewResult; |
| } |
| |
| public: |
| explicit NearestCommonDominator(DominatorTree *DomTree) : DT(DomTree) {} |
| |
| void addBlock(BasicBlock *BB) { |
| addBlock(BB, /* Remember = */ false); |
| } |
| |
| void addAndRememberBlock(BasicBlock *BB) { |
| addBlock(BB, /* Remember = */ true); |
| } |
| |
| /// Get the nearest common dominator of all the BBs added via addBlock() and |
| /// addAndRememberBlock(). |
| BasicBlock *result() { return Result; } |
| |
| /// Is the BB returned by getResult() one of the blocks we added to the set |
| /// with addAndRememberBlock()? |
| bool resultIsRememberedBlock() { return ResultIsRemembered; } |
| }; |
| |
| /// Transforms the control flow graph on one single entry/exit region |
| /// at a time. |
| /// |
| /// After the transform all "If"/"Then"/"Else" style control flow looks like |
| /// this: |
| /// |
| /// \verbatim |
| /// 1 |
| /// || |
| /// | | |
| /// 2 | |
| /// | / |
| /// |/ |
| /// 3 |
| /// || Where: |
| /// | | 1 = "If" block, calculates the condition |
| /// 4 | 2 = "Then" subregion, runs if the condition is true |
| /// | / 3 = "Flow" blocks, newly inserted flow blocks, rejoins the flow |
| /// |/ 4 = "Else" optional subregion, runs if the condition is false |
| /// 5 5 = "End" block, also rejoins the control flow |
| /// \endverbatim |
| /// |
| /// Control flow is expressed as a branch where the true exit goes into the |
| /// "Then"/"Else" region, while the false exit skips the region |
| /// The condition for the optional "Else" region is expressed as a PHI node. |
| /// The incoming values of the PHI node are true for the "If" edge and false |
| /// for the "Then" edge. |
| /// |
| /// Additionally to that even complicated loops look like this: |
| /// |
| /// \verbatim |
| /// 1 |
| /// || |
| /// | | |
| /// 2 ^ Where: |
| /// | / 1 = "Entry" block |
| /// |/ 2 = "Loop" optional subregion, with all exits at "Flow" block |
| /// 3 3 = "Flow" block, with back edge to entry block |
| /// | |
| /// \endverbatim |
| /// |
| /// The back edge of the "Flow" block is always on the false side of the branch |
| /// while the true side continues the general flow. So the loop condition |
| /// consist of a network of PHI nodes where the true incoming values expresses |
| /// breaks and the false values expresses continue states. |
| |
| class StructurizeCFG { |
| Type *Boolean; |
| ConstantInt *BoolTrue; |
| ConstantInt *BoolFalse; |
| UndefValue *BoolUndef; |
| |
| Function *Func; |
| Region *ParentRegion; |
| |
| LegacyDivergenceAnalysis *DA = nullptr; |
| DominatorTree *DT; |
| |
| SmallVector<RegionNode *, 8> Order; |
| BBSet Visited; |
| |
| SmallVector<WeakVH, 8> AffectedPhis; |
| BBPhiMap DeletedPhis; |
| BB2BBVecMap AddedPhis; |
| |
| PredMap Predicates; |
| BranchVector Conditions; |
| |
| BB2BBMap Loops; |
| PredMap LoopPreds; |
| BranchVector LoopConds; |
| |
| RegionNode *PrevNode; |
| |
| void orderNodes(); |
| |
| void analyzeLoops(RegionNode *N); |
| |
| Value *buildCondition(BranchInst *Term, unsigned Idx, bool Invert); |
| |
| void gatherPredicates(RegionNode *N); |
| |
| void collectInfos(); |
| |
| void insertConditions(bool Loops); |
| |
| void delPhiValues(BasicBlock *From, BasicBlock *To); |
| |
| void addPhiValues(BasicBlock *From, BasicBlock *To); |
| |
| void setPhiValues(); |
| |
| void simplifyAffectedPhis(); |
| |
| void killTerminator(BasicBlock *BB); |
| |
| void changeExit(RegionNode *Node, BasicBlock *NewExit, |
| bool IncludeDominator); |
| |
| BasicBlock *getNextFlow(BasicBlock *Dominator); |
| |
| BasicBlock *needPrefix(bool NeedEmpty); |
| |
| BasicBlock *needPostfix(BasicBlock *Flow, bool ExitUseAllowed); |
| |
| void setPrevNode(BasicBlock *BB); |
| |
| bool dominatesPredicates(BasicBlock *BB, RegionNode *Node); |
| |
| bool isPredictableTrue(RegionNode *Node); |
| |
| void wireFlow(bool ExitUseAllowed, BasicBlock *LoopEnd); |
| |
| void handleLoops(bool ExitUseAllowed, BasicBlock *LoopEnd); |
| |
| void createFlow(); |
| |
| void rebuildSSA(); |
| |
| public: |
| void init(Region *R); |
| bool run(Region *R, DominatorTree *DT); |
| bool makeUniformRegion(Region *R, LegacyDivergenceAnalysis *DA); |
| }; |
| |
| class StructurizeCFGLegacyPass : public RegionPass { |
| bool SkipUniformRegions; |
| |
| public: |
| static char ID; |
| |
| explicit StructurizeCFGLegacyPass(bool SkipUniformRegions_ = false) |
| : RegionPass(ID), SkipUniformRegions(SkipUniformRegions_) { |
| if (ForceSkipUniformRegions.getNumOccurrences()) |
| SkipUniformRegions = ForceSkipUniformRegions.getValue(); |
| initializeStructurizeCFGLegacyPassPass(*PassRegistry::getPassRegistry()); |
| } |
| |
| bool runOnRegion(Region *R, RGPassManager &RGM) override { |
| StructurizeCFG SCFG; |
| SCFG.init(R); |
| if (SkipUniformRegions) { |
| LegacyDivergenceAnalysis *DA = &getAnalysis<LegacyDivergenceAnalysis>(); |
| if (SCFG.makeUniformRegion(R, DA)) |
| return false; |
| } |
| DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); |
| return SCFG.run(R, DT); |
| } |
| |
| StringRef getPassName() const override { return "Structurize control flow"; } |
| |
| void getAnalysisUsage(AnalysisUsage &AU) const override { |
| if (SkipUniformRegions) |
| AU.addRequired<LegacyDivergenceAnalysis>(); |
| AU.addRequiredID(LowerSwitchID); |
| AU.addRequired<DominatorTreeWrapperPass>(); |
| |
| AU.addPreserved<DominatorTreeWrapperPass>(); |
| RegionPass::getAnalysisUsage(AU); |
| } |
| }; |
| |
| } // end anonymous namespace |
| |
| char StructurizeCFGLegacyPass::ID = 0; |
| |
| INITIALIZE_PASS_BEGIN(StructurizeCFGLegacyPass, "structurizecfg", |
| "Structurize the CFG", false, false) |
| INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis) |
| INITIALIZE_PASS_DEPENDENCY(LowerSwitchLegacyPass) |
| INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) |
| INITIALIZE_PASS_DEPENDENCY(RegionInfoPass) |
| INITIALIZE_PASS_END(StructurizeCFGLegacyPass, "structurizecfg", |
| "Structurize the CFG", false, false) |
| |
| /// Build up the general order of nodes, by performing a topological sort of the |
| /// parent region's nodes, while ensuring that there is no outer cycle node |
| /// between any two inner cycle nodes. |
| void StructurizeCFG::orderNodes() { |
| Order.resize(std::distance(GraphTraits<Region *>::nodes_begin(ParentRegion), |
| GraphTraits<Region *>::nodes_end(ParentRegion))); |
| if (Order.empty()) |
| return; |
| |
| SmallDenseSet<RegionNode *> Nodes; |
| auto EntryNode = SubGraphTraits::getEntryNode(ParentRegion); |
| |
| // A list of range indices of SCCs in Order, to be processed. |
| SmallVector<std::pair<unsigned, unsigned>, 8> WorkList; |
| unsigned I = 0, E = Order.size(); |
| while (true) { |
| // Run through all the SCCs in the subgraph starting with Entry. |
| for (auto SCCI = |
| scc_iterator<SubGraphTraits::NodeRef, SubGraphTraits>::begin( |
| EntryNode); |
| !SCCI.isAtEnd(); ++SCCI) { |
| auto &SCC = *SCCI; |
| |
| // An SCC up to the size of 2, can be reduced to an entry (the last node), |
| // and a possible additional node. Therefore, it is already in order, and |
| // there is no need to add it to the work-list. |
| unsigned Size = SCC.size(); |
| if (Size > 2) |
| WorkList.emplace_back(I, I + Size); |
| |
| // Add the SCC nodes to the Order array. |
| for (auto &N : SCC) { |
| assert(I < E && "SCC size mismatch!"); |
| Order[I++] = N.first; |
| } |
| } |
| assert(I == E && "SCC size mismatch!"); |
| |
| // If there are no more SCCs to order, then we are done. |
| if (WorkList.empty()) |
| break; |
| |
| std::tie(I, E) = WorkList.pop_back_val(); |
| |
| // Collect the set of nodes in the SCC's subgraph. These are only the |
| // possible child nodes; we do not add the entry (last node) otherwise we |
| // will have the same exact SCC all over again. |
| Nodes.clear(); |
| Nodes.insert(Order.begin() + I, Order.begin() + E - 1); |
| |
| // Update the entry node. |
| EntryNode.first = Order[E - 1]; |
| EntryNode.second = &Nodes; |
| } |
| } |
| |
| /// Determine the end of the loops |
| void StructurizeCFG::analyzeLoops(RegionNode *N) { |
| if (N->isSubRegion()) { |
| // Test for exit as back edge |
| BasicBlock *Exit = N->getNodeAs<Region>()->getExit(); |
| if (Visited.count(Exit)) |
| Loops[Exit] = N->getEntry(); |
| |
| } else { |
| // Test for successors as back edge |
| BasicBlock *BB = N->getNodeAs<BasicBlock>(); |
| BranchInst *Term = cast<BranchInst>(BB->getTerminator()); |
| |
| for (BasicBlock *Succ : Term->successors()) |
| if (Visited.count(Succ)) |
| Loops[Succ] = BB; |
| } |
| } |
| |
| /// Build the condition for one edge |
| Value *StructurizeCFG::buildCondition(BranchInst *Term, unsigned Idx, |
| bool Invert) { |
| Value *Cond = Invert ? BoolFalse : BoolTrue; |
| if (Term->isConditional()) { |
| Cond = Term->getCondition(); |
| |
| if (Idx != (unsigned)Invert) |
| Cond = invertCondition(Cond); |
| } |
| return Cond; |
| } |
| |
| /// Analyze the predecessors of each block and build up predicates |
| void StructurizeCFG::gatherPredicates(RegionNode *N) { |
| RegionInfo *RI = ParentRegion->getRegionInfo(); |
| BasicBlock *BB = N->getEntry(); |
| BBPredicates &Pred = Predicates[BB]; |
| BBPredicates &LPred = LoopPreds[BB]; |
| |
| for (BasicBlock *P : predecessors(BB)) { |
| // Ignore it if it's a branch from outside into our region entry |
| if (!ParentRegion->contains(P)) |
| continue; |
| |
| Region *R = RI->getRegionFor(P); |
| if (R == ParentRegion) { |
| // It's a top level block in our region |
| BranchInst *Term = cast<BranchInst>(P->getTerminator()); |
| for (unsigned i = 0, e = Term->getNumSuccessors(); i != e; ++i) { |
| BasicBlock *Succ = Term->getSuccessor(i); |
| if (Succ != BB) |
| continue; |
| |
| if (Visited.count(P)) { |
| // Normal forward edge |
| if (Term->isConditional()) { |
| // Try to treat it like an ELSE block |
| BasicBlock *Other = Term->getSuccessor(!i); |
| if (Visited.count(Other) && !Loops.count(Other) && |
| !Pred.count(Other) && !Pred.count(P)) { |
| |
| Pred[Other] = BoolFalse; |
| Pred[P] = BoolTrue; |
| continue; |
| } |
| } |
| Pred[P] = buildCondition(Term, i, false); |
| } else { |
| // Back edge |
| LPred[P] = buildCondition(Term, i, true); |
| } |
| } |
| } else { |
| // It's an exit from a sub region |
| while (R->getParent() != ParentRegion) |
| R = R->getParent(); |
| |
| // Edge from inside a subregion to its entry, ignore it |
| if (*R == *N) |
| continue; |
| |
| BasicBlock *Entry = R->getEntry(); |
| if (Visited.count(Entry)) |
| Pred[Entry] = BoolTrue; |
| else |
| LPred[Entry] = BoolFalse; |
| } |
| } |
| } |
| |
| /// Collect various loop and predicate infos |
| void StructurizeCFG::collectInfos() { |
| // Reset predicate |
| Predicates.clear(); |
| |
| // and loop infos |
| Loops.clear(); |
| LoopPreds.clear(); |
| |
| // Reset the visited nodes |
| Visited.clear(); |
| |
| for (RegionNode *RN : reverse(Order)) { |
| LLVM_DEBUG(dbgs() << "Visiting: " |
| << (RN->isSubRegion() ? "SubRegion with entry: " : "") |
| << RN->getEntry()->getName() << "\n"); |
| |
| // Analyze all the conditions leading to a node |
| gatherPredicates(RN); |
| |
| // Remember that we've seen this node |
| Visited.insert(RN->getEntry()); |
| |
| // Find the last back edges |
| analyzeLoops(RN); |
| } |
| } |
| |
| /// Insert the missing branch conditions |
| void StructurizeCFG::insertConditions(bool Loops) { |
| BranchVector &Conds = Loops ? LoopConds : Conditions; |
| Value *Default = Loops ? BoolTrue : BoolFalse; |
| SSAUpdater PhiInserter; |
| |
| for (BranchInst *Term : Conds) { |
| assert(Term->isConditional()); |
| |
| BasicBlock *Parent = Term->getParent(); |
| BasicBlock *SuccTrue = Term->getSuccessor(0); |
| BasicBlock *SuccFalse = Term->getSuccessor(1); |
| |
| PhiInserter.Initialize(Boolean, ""); |
| PhiInserter.AddAvailableValue(&Func->getEntryBlock(), Default); |
| PhiInserter.AddAvailableValue(Loops ? SuccFalse : Parent, Default); |
| |
| BBPredicates &Preds = Loops ? LoopPreds[SuccFalse] : Predicates[SuccTrue]; |
| |
| NearestCommonDominator Dominator(DT); |
| Dominator.addBlock(Parent); |
| |
| Value *ParentValue = nullptr; |
| for (std::pair<BasicBlock *, Value *> BBAndPred : Preds) { |
| BasicBlock *BB = BBAndPred.first; |
| Value *Pred = BBAndPred.second; |
| |
| if (BB == Parent) { |
| ParentValue = Pred; |
| break; |
| } |
| PhiInserter.AddAvailableValue(BB, Pred); |
| Dominator.addAndRememberBlock(BB); |
| } |
| |
| if (ParentValue) { |
| Term->setCondition(ParentValue); |
| } else { |
| if (!Dominator.resultIsRememberedBlock()) |
| PhiInserter.AddAvailableValue(Dominator.result(), Default); |
| |
| Term->setCondition(PhiInserter.GetValueInMiddleOfBlock(Parent)); |
| } |
| } |
| } |
| |
| /// Remove all PHI values coming from "From" into "To" and remember |
| /// them in DeletedPhis |
| void StructurizeCFG::delPhiValues(BasicBlock *From, BasicBlock *To) { |
| PhiMap &Map = DeletedPhis[To]; |
| for (PHINode &Phi : To->phis()) { |
| bool Recorded = false; |
| while (Phi.getBasicBlockIndex(From) != -1) { |
| Value *Deleted = Phi.removeIncomingValue(From, false); |
| Map[&Phi].push_back(std::make_pair(From, Deleted)); |
| if (!Recorded) { |
| AffectedPhis.push_back(&Phi); |
| Recorded = true; |
| } |
| } |
| } |
| } |
| |
| /// Add a dummy PHI value as soon as we knew the new predecessor |
| void StructurizeCFG::addPhiValues(BasicBlock *From, BasicBlock *To) { |
| for (PHINode &Phi : To->phis()) { |
| Value *Undef = UndefValue::get(Phi.getType()); |
| Phi.addIncoming(Undef, From); |
| } |
| AddedPhis[To].push_back(From); |
| } |
| |
| /// Add the real PHI value as soon as everything is set up |
| void StructurizeCFG::setPhiValues() { |
| SmallVector<PHINode *, 8> InsertedPhis; |
| SSAUpdater Updater(&InsertedPhis); |
| for (const auto &AddedPhi : AddedPhis) { |
| BasicBlock *To = AddedPhi.first; |
| const BBVector &From = AddedPhi.second; |
| |
| if (!DeletedPhis.count(To)) |
| continue; |
| |
| PhiMap &Map = DeletedPhis[To]; |
| for (const auto &PI : Map) { |
| PHINode *Phi = PI.first; |
| Value *Undef = UndefValue::get(Phi->getType()); |
| Updater.Initialize(Phi->getType(), ""); |
| Updater.AddAvailableValue(&Func->getEntryBlock(), Undef); |
| Updater.AddAvailableValue(To, Undef); |
| |
| NearestCommonDominator Dominator(DT); |
| Dominator.addBlock(To); |
| for (const auto &VI : PI.second) { |
| Updater.AddAvailableValue(VI.first, VI.second); |
| Dominator.addAndRememberBlock(VI.first); |
| } |
| |
| if (!Dominator.resultIsRememberedBlock()) |
| Updater.AddAvailableValue(Dominator.result(), Undef); |
| |
| for (BasicBlock *FI : From) |
| Phi->setIncomingValueForBlock(FI, Updater.GetValueAtEndOfBlock(FI)); |
| AffectedPhis.push_back(Phi); |
| } |
| |
| DeletedPhis.erase(To); |
| } |
| assert(DeletedPhis.empty()); |
| |
| AffectedPhis.append(InsertedPhis.begin(), InsertedPhis.end()); |
| } |
| |
| void StructurizeCFG::simplifyAffectedPhis() { |
| bool Changed; |
| do { |
| Changed = false; |
| SimplifyQuery Q(Func->getParent()->getDataLayout()); |
| Q.DT = DT; |
| for (WeakVH VH : AffectedPhis) { |
| if (auto Phi = dyn_cast_or_null<PHINode>(VH)) { |
| if (auto NewValue = SimplifyInstruction(Phi, Q)) { |
| Phi->replaceAllUsesWith(NewValue); |
| Phi->eraseFromParent(); |
| Changed = true; |
| } |
| } |
| } |
| } while (Changed); |
| } |
| |
| /// Remove phi values from all successors and then remove the terminator. |
| void StructurizeCFG::killTerminator(BasicBlock *BB) { |
| Instruction *Term = BB->getTerminator(); |
| if (!Term) |
| return; |
| |
| for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); |
| SI != SE; ++SI) |
| delPhiValues(BB, *SI); |
| |
| if (DA) |
| DA->removeValue(Term); |
| Term->eraseFromParent(); |
| } |
| |
| /// Let node exit(s) point to NewExit |
| void StructurizeCFG::changeExit(RegionNode *Node, BasicBlock *NewExit, |
| bool IncludeDominator) { |
| if (Node->isSubRegion()) { |
| Region *SubRegion = Node->getNodeAs<Region>(); |
| BasicBlock *OldExit = SubRegion->getExit(); |
| BasicBlock *Dominator = nullptr; |
| |
| // Find all the edges from the sub region to the exit |
| for (auto BBI = pred_begin(OldExit), E = pred_end(OldExit); BBI != E;) { |
| // Incrememt BBI before mucking with BB's terminator. |
| BasicBlock *BB = *BBI++; |
| |
| if (!SubRegion->contains(BB)) |
| continue; |
| |
| // Modify the edges to point to the new exit |
| delPhiValues(BB, OldExit); |
| BB->getTerminator()->replaceUsesOfWith(OldExit, NewExit); |
| addPhiValues(BB, NewExit); |
| |
| // Find the new dominator (if requested) |
| if (IncludeDominator) { |
| if (!Dominator) |
| Dominator = BB; |
| else |
| Dominator = DT->findNearestCommonDominator(Dominator, BB); |
| } |
| } |
| |
| // Change the dominator (if requested) |
| if (Dominator) |
| DT->changeImmediateDominator(NewExit, Dominator); |
| |
| // Update the region info |
| SubRegion->replaceExit(NewExit); |
| } else { |
| BasicBlock *BB = Node->getNodeAs<BasicBlock>(); |
| killTerminator(BB); |
| BranchInst::Create(NewExit, BB); |
| addPhiValues(BB, NewExit); |
| if (IncludeDominator) |
| DT->changeImmediateDominator(NewExit, BB); |
| } |
| } |
| |
| /// Create a new flow node and update dominator tree and region info |
| BasicBlock *StructurizeCFG::getNextFlow(BasicBlock *Dominator) { |
| LLVMContext &Context = Func->getContext(); |
| BasicBlock *Insert = Order.empty() ? ParentRegion->getExit() : |
| Order.back()->getEntry(); |
| BasicBlock *Flow = BasicBlock::Create(Context, FlowBlockName, |
| Func, Insert); |
| DT->addNewBlock(Flow, Dominator); |
| ParentRegion->getRegionInfo()->setRegionFor(Flow, ParentRegion); |
| return Flow; |
| } |
| |
| /// Create a new or reuse the previous node as flow node |
| BasicBlock *StructurizeCFG::needPrefix(bool NeedEmpty) { |
| BasicBlock *Entry = PrevNode->getEntry(); |
| |
| if (!PrevNode->isSubRegion()) { |
| killTerminator(Entry); |
| if (!NeedEmpty || Entry->getFirstInsertionPt() == Entry->end()) |
| return Entry; |
| } |
| |
| // create a new flow node |
| BasicBlock *Flow = getNextFlow(Entry); |
| |
| // and wire it up |
| changeExit(PrevNode, Flow, true); |
| PrevNode = ParentRegion->getBBNode(Flow); |
| return Flow; |
| } |
| |
| /// Returns the region exit if possible, otherwise just a new flow node |
| BasicBlock *StructurizeCFG::needPostfix(BasicBlock *Flow, |
| bool ExitUseAllowed) { |
| if (!Order.empty() || !ExitUseAllowed) |
| return getNextFlow(Flow); |
| |
| BasicBlock *Exit = ParentRegion->getExit(); |
| DT->changeImmediateDominator(Exit, Flow); |
| addPhiValues(Flow, Exit); |
| return Exit; |
| } |
| |
| /// Set the previous node |
| void StructurizeCFG::setPrevNode(BasicBlock *BB) { |
| PrevNode = ParentRegion->contains(BB) ? ParentRegion->getBBNode(BB) |
| : nullptr; |
| } |
| |
| /// Does BB dominate all the predicates of Node? |
| bool StructurizeCFG::dominatesPredicates(BasicBlock *BB, RegionNode *Node) { |
| BBPredicates &Preds = Predicates[Node->getEntry()]; |
| return llvm::all_of(Preds, [&](std::pair<BasicBlock *, Value *> Pred) { |
| return DT->dominates(BB, Pred.first); |
| }); |
| } |
| |
| /// Can we predict that this node will always be called? |
| bool StructurizeCFG::isPredictableTrue(RegionNode *Node) { |
| BBPredicates &Preds = Predicates[Node->getEntry()]; |
| bool Dominated = false; |
| |
| // Regionentry is always true |
| if (!PrevNode) |
| return true; |
| |
| for (std::pair<BasicBlock*, Value*> Pred : Preds) { |
| BasicBlock *BB = Pred.first; |
| Value *V = Pred.second; |
| |
| if (V != BoolTrue) |
| return false; |
| |
| if (!Dominated && DT->dominates(BB, PrevNode->getEntry())) |
| Dominated = true; |
| } |
| |
| // TODO: The dominator check is too strict |
| return Dominated; |
| } |
| |
| /// Take one node from the order vector and wire it up |
| void StructurizeCFG::wireFlow(bool ExitUseAllowed, |
| BasicBlock *LoopEnd) { |
| RegionNode *Node = Order.pop_back_val(); |
| Visited.insert(Node->getEntry()); |
| |
| if (isPredictableTrue(Node)) { |
| // Just a linear flow |
| if (PrevNode) { |
| changeExit(PrevNode, Node->getEntry(), true); |
| } |
| PrevNode = Node; |
| } else { |
| // Insert extra prefix node (or reuse last one) |
| BasicBlock *Flow = needPrefix(false); |
| |
| // Insert extra postfix node (or use exit instead) |
| BasicBlock *Entry = Node->getEntry(); |
| BasicBlock *Next = needPostfix(Flow, ExitUseAllowed); |
| |
| // let it point to entry and next block |
| Conditions.push_back(BranchInst::Create(Entry, Next, BoolUndef, Flow)); |
| addPhiValues(Flow, Entry); |
| DT->changeImmediateDominator(Entry, Flow); |
| |
| PrevNode = Node; |
| while (!Order.empty() && !Visited.count(LoopEnd) && |
| dominatesPredicates(Entry, Order.back())) { |
| handleLoops(false, LoopEnd); |
| } |
| |
| changeExit(PrevNode, Next, false); |
| setPrevNode(Next); |
| } |
| } |
| |
| void StructurizeCFG::handleLoops(bool ExitUseAllowed, |
| BasicBlock *LoopEnd) { |
| RegionNode *Node = Order.back(); |
| BasicBlock *LoopStart = Node->getEntry(); |
| |
| if (!Loops.count(LoopStart)) { |
| wireFlow(ExitUseAllowed, LoopEnd); |
| return; |
| } |
| |
| if (!isPredictableTrue(Node)) |
| LoopStart = needPrefix(true); |
| |
| LoopEnd = Loops[Node->getEntry()]; |
| wireFlow(false, LoopEnd); |
| while (!Visited.count(LoopEnd)) { |
| handleLoops(false, LoopEnd); |
| } |
| |
| // If the start of the loop is the entry block, we can't branch to it so |
| // insert a new dummy entry block. |
| Function *LoopFunc = LoopStart->getParent(); |
| if (LoopStart == &LoopFunc->getEntryBlock()) { |
| LoopStart->setName("entry.orig"); |
| |
| BasicBlock *NewEntry = |
| BasicBlock::Create(LoopStart->getContext(), |
| "entry", |
| LoopFunc, |
| LoopStart); |
| BranchInst::Create(LoopStart, NewEntry); |
| DT->setNewRoot(NewEntry); |
| } |
| |
| // Create an extra loop end node |
| LoopEnd = needPrefix(false); |
| BasicBlock *Next = needPostfix(LoopEnd, ExitUseAllowed); |
| LoopConds.push_back(BranchInst::Create(Next, LoopStart, |
| BoolUndef, LoopEnd)); |
| addPhiValues(LoopEnd, LoopStart); |
| setPrevNode(Next); |
| } |
| |
| /// After this function control flow looks like it should be, but |
| /// branches and PHI nodes only have undefined conditions. |
| void StructurizeCFG::createFlow() { |
| BasicBlock *Exit = ParentRegion->getExit(); |
| bool EntryDominatesExit = DT->dominates(ParentRegion->getEntry(), Exit); |
| |
| AffectedPhis.clear(); |
| DeletedPhis.clear(); |
| AddedPhis.clear(); |
| Conditions.clear(); |
| LoopConds.clear(); |
| |
| PrevNode = nullptr; |
| Visited.clear(); |
| |
| while (!Order.empty()) { |
| handleLoops(EntryDominatesExit, nullptr); |
| } |
| |
| if (PrevNode) |
| changeExit(PrevNode, Exit, EntryDominatesExit); |
| else |
| assert(EntryDominatesExit); |
| } |
| |
| /// Handle a rare case where the disintegrated nodes instructions |
| /// no longer dominate all their uses. Not sure if this is really necessary |
| void StructurizeCFG::rebuildSSA() { |
| SSAUpdater Updater; |
| for (BasicBlock *BB : ParentRegion->blocks()) |
| for (Instruction &I : *BB) { |
| bool Initialized = false; |
| // We may modify the use list as we iterate over it, so be careful to |
| // compute the next element in the use list at the top of the loop. |
| for (auto UI = I.use_begin(), E = I.use_end(); UI != E;) { |
| Use &U = *UI++; |
| Instruction *User = cast<Instruction>(U.getUser()); |
| if (User->getParent() == BB) { |
| continue; |
| } else if (PHINode *UserPN = dyn_cast<PHINode>(User)) { |
| if (UserPN->getIncomingBlock(U) == BB) |
| continue; |
| } |
| |
| if (DT->dominates(&I, User)) |
| continue; |
| |
| if (!Initialized) { |
| Value *Undef = UndefValue::get(I.getType()); |
| Updater.Initialize(I.getType(), ""); |
| Updater.AddAvailableValue(&Func->getEntryBlock(), Undef); |
| Updater.AddAvailableValue(BB, &I); |
| Initialized = true; |
| } |
| Updater.RewriteUseAfterInsertions(U); |
| } |
| } |
| } |
| |
| static bool hasOnlyUniformBranches(Region *R, unsigned UniformMDKindID, |
| const LegacyDivergenceAnalysis &DA) { |
| // Bool for if all sub-regions are uniform. |
| bool SubRegionsAreUniform = true; |
| // Count of how many direct children are conditional. |
| unsigned ConditionalDirectChildren = 0; |
| |
| for (auto E : R->elements()) { |
| if (!E->isSubRegion()) { |
| auto Br = dyn_cast<BranchInst>(E->getEntry()->getTerminator()); |
| if (!Br || !Br->isConditional()) |
| continue; |
| |
| if (!DA.isUniform(Br)) |
| return false; |
| |
| // One of our direct children is conditional. |
| ConditionalDirectChildren++; |
| |
| LLVM_DEBUG(dbgs() << "BB: " << Br->getParent()->getName() |
| << " has uniform terminator\n"); |
| } else { |
| // Explicitly refuse to treat regions as uniform if they have non-uniform |
| // subregions. We cannot rely on DivergenceAnalysis for branches in |
| // subregions because those branches may have been removed and re-created, |
| // so we look for our metadata instead. |
| // |
| // Warning: It would be nice to treat regions as uniform based only on |
| // their direct child basic blocks' terminators, regardless of whether |
| // subregions are uniform or not. However, this requires a very careful |
| // look at SIAnnotateControlFlow to make sure nothing breaks there. |
| for (auto BB : E->getNodeAs<Region>()->blocks()) { |
| auto Br = dyn_cast<BranchInst>(BB->getTerminator()); |
| if (!Br || !Br->isConditional()) |
| continue; |
| |
| if (!Br->getMetadata(UniformMDKindID)) { |
| // Early exit if we cannot have relaxed uniform regions. |
| if (!RelaxedUniformRegions) |
| return false; |
| |
| SubRegionsAreUniform = false; |
| break; |
| } |
| } |
| } |
| } |
| |
| // Our region is uniform if: |
| // 1. All conditional branches that are direct children are uniform (checked |
| // above). |
| // 2. And either: |
| // a. All sub-regions are uniform. |
| // b. There is one or less conditional branches among the direct children. |
| return SubRegionsAreUniform || (ConditionalDirectChildren <= 1); |
| } |
| |
| void StructurizeCFG::init(Region *R) { |
| LLVMContext &Context = R->getEntry()->getContext(); |
| |
| Boolean = Type::getInt1Ty(Context); |
| BoolTrue = ConstantInt::getTrue(Context); |
| BoolFalse = ConstantInt::getFalse(Context); |
| BoolUndef = UndefValue::get(Boolean); |
| |
| this->DA = nullptr; |
| } |
| |
| bool StructurizeCFG::makeUniformRegion(Region *R, |
| LegacyDivergenceAnalysis *DA) { |
| if (R->isTopLevelRegion()) |
| return false; |
| |
| this->DA = DA; |
| // TODO: We could probably be smarter here with how we handle sub-regions. |
| // We currently rely on the fact that metadata is set by earlier invocations |
| // of the pass on sub-regions, and that this metadata doesn't get lost -- |
| // but we shouldn't rely on metadata for correctness! |
| unsigned UniformMDKindID = |
| R->getEntry()->getContext().getMDKindID("structurizecfg.uniform"); |
| |
| if (hasOnlyUniformBranches(R, UniformMDKindID, *DA)) { |
| LLVM_DEBUG(dbgs() << "Skipping region with uniform control flow: " << *R |
| << '\n'); |
| |
| // Mark all direct child block terminators as having been treated as |
| // uniform. To account for a possible future in which non-uniform |
| // sub-regions are treated more cleverly, indirect children are not |
| // marked as uniform. |
| MDNode *MD = MDNode::get(R->getEntry()->getParent()->getContext(), {}); |
| for (RegionNode *E : R->elements()) { |
| if (E->isSubRegion()) |
| continue; |
| |
| if (Instruction *Term = E->getEntry()->getTerminator()) |
| Term->setMetadata(UniformMDKindID, MD); |
| } |
| |
| return true; |
| } |
| return false; |
| } |
| |
| /// Run the transformation for each region found |
| bool StructurizeCFG::run(Region *R, DominatorTree *DT) { |
| if (R->isTopLevelRegion()) |
| return false; |
| |
| this->DT = DT; |
| |
| Func = R->getEntry()->getParent(); |
| ParentRegion = R; |
| |
| orderNodes(); |
| collectInfos(); |
| createFlow(); |
| insertConditions(false); |
| insertConditions(true); |
| setPhiValues(); |
| simplifyAffectedPhis(); |
| rebuildSSA(); |
| |
| // Cleanup |
| Order.clear(); |
| Visited.clear(); |
| DeletedPhis.clear(); |
| AddedPhis.clear(); |
| Predicates.clear(); |
| Conditions.clear(); |
| Loops.clear(); |
| LoopPreds.clear(); |
| LoopConds.clear(); |
| |
| return true; |
| } |
| |
| Pass *llvm::createStructurizeCFGPass(bool SkipUniformRegions) { |
| return new StructurizeCFGLegacyPass(SkipUniformRegions); |
| } |
| |
| static void addRegionIntoQueue(Region &R, std::vector<Region *> &Regions) { |
| Regions.push_back(&R); |
| for (const auto &E : R) |
| addRegionIntoQueue(*E, Regions); |
| } |
| |
| PreservedAnalyses StructurizeCFGPass::run(Function &F, |
| FunctionAnalysisManager &AM) { |
| |
| bool Changed = false; |
| DominatorTree *DT = &AM.getResult<DominatorTreeAnalysis>(F); |
| auto &RI = AM.getResult<RegionInfoAnalysis>(F); |
| std::vector<Region *> Regions; |
| addRegionIntoQueue(*RI.getTopLevelRegion(), Regions); |
| while (!Regions.empty()) { |
| Region *R = Regions.back(); |
| StructurizeCFG SCFG; |
| SCFG.init(R); |
| Changed |= SCFG.run(R, DT); |
| Regions.pop_back(); |
| } |
| if (!Changed) |
| return PreservedAnalyses::all(); |
| PreservedAnalyses PA; |
| PA.preserve<DominatorTreeAnalysis>(); |
| return PA; |
| } |