| //===-- DNBArchImplARM64.cpp ------------------------------------*- C++ -*-===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // Created by Greg Clayton on 6/25/07. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #if defined(__arm__) || defined(__arm64__) || defined(__aarch64__) |
| |
| #include "MacOSX/arm64/DNBArchImplARM64.h" |
| |
| #if defined(ARM_THREAD_STATE64_COUNT) |
| |
| #include "DNB.h" |
| #include "DNBBreakpoint.h" |
| #include "DNBLog.h" |
| #include "DNBRegisterInfo.h" |
| #include "MacOSX/MachProcess.h" |
| #include "MacOSX/MachThread.h" |
| |
| #include <inttypes.h> |
| #include <sys/sysctl.h> |
| |
| // Break only in privileged or user mode |
| // (PAC bits in the DBGWVRn_EL1 watchpoint control register) |
| #define S_USER ((uint32_t)(2u << 1)) |
| |
| #define BCR_ENABLE ((uint32_t)(1u)) |
| #define WCR_ENABLE ((uint32_t)(1u)) |
| |
| // Watchpoint load/store |
| // (LSC bits in the DBGWVRn_EL1 watchpoint control register) |
| #define WCR_LOAD ((uint32_t)(1u << 3)) |
| #define WCR_STORE ((uint32_t)(1u << 4)) |
| |
| // Enable breakpoint, watchpoint, and vector catch debug exceptions. |
| // (MDE bit in the MDSCR_EL1 register. Equivalent to the MDBGen bit in |
| // DBGDSCRext in Aarch32) |
| #define MDE_ENABLE ((uint32_t)(1u << 15)) |
| |
| // Single instruction step |
| // (SS bit in the MDSCR_EL1 register) |
| #define SS_ENABLE ((uint32_t)(1u)) |
| |
| static const uint8_t g_arm64_breakpoint_opcode[] = { |
| 0x00, 0x00, 0x20, 0xD4}; // "brk #0", 0xd4200000 in BE byte order |
| static const uint8_t g_arm_breakpoint_opcode[] = { |
| 0xFE, 0xDE, 0xFF, 0xE7}; // this armv7 insn also works in arm64 |
| |
| // If we need to set one logical watchpoint by using |
| // two hardware watchpoint registers, the watchpoint |
| // will be split into a "high" and "low" watchpoint. |
| // Record both of them in the LoHi array. |
| |
| // It's safe to initialize to all 0's since |
| // hi > lo and therefore LoHi[i] cannot be 0. |
| static uint32_t LoHi[16] = {0}; |
| |
| void DNBArchMachARM64::Initialize() { |
| DNBArchPluginInfo arch_plugin_info = { |
| CPU_TYPE_ARM64, DNBArchMachARM64::Create, |
| DNBArchMachARM64::GetRegisterSetInfo, |
| DNBArchMachARM64::SoftwareBreakpointOpcode}; |
| |
| // Register this arch plug-in with the main protocol class |
| DNBArchProtocol::RegisterArchPlugin(arch_plugin_info); |
| } |
| |
| DNBArchProtocol *DNBArchMachARM64::Create(MachThread *thread) { |
| DNBArchMachARM64 *obj = new DNBArchMachARM64(thread); |
| |
| return obj; |
| } |
| |
| const uint8_t * |
| DNBArchMachARM64::SoftwareBreakpointOpcode(nub_size_t byte_size) { |
| return g_arm_breakpoint_opcode; |
| } |
| |
| uint32_t DNBArchMachARM64::GetCPUType() { return CPU_TYPE_ARM64; } |
| |
| uint64_t DNBArchMachARM64::GetPC(uint64_t failValue) { |
| // Get program counter |
| if (GetGPRState(false) == KERN_SUCCESS) |
| return m_state.context.gpr.__pc; |
| return failValue; |
| } |
| |
| kern_return_t DNBArchMachARM64::SetPC(uint64_t value) { |
| // Get program counter |
| kern_return_t err = GetGPRState(false); |
| if (err == KERN_SUCCESS) { |
| m_state.context.gpr.__pc = value; |
| err = SetGPRState(); |
| } |
| return err == KERN_SUCCESS; |
| } |
| |
| uint64_t DNBArchMachARM64::GetSP(uint64_t failValue) { |
| // Get stack pointer |
| if (GetGPRState(false) == KERN_SUCCESS) |
| return m_state.context.gpr.__sp; |
| return failValue; |
| } |
| |
| kern_return_t DNBArchMachARM64::GetGPRState(bool force) { |
| int set = e_regSetGPR; |
| // Check if we have valid cached registers |
| if (!force && m_state.GetError(set, Read) == KERN_SUCCESS) |
| return KERN_SUCCESS; |
| |
| // Read the registers from our thread |
| mach_msg_type_number_t count = e_regSetGPRCount; |
| kern_return_t kret = |
| ::thread_get_state(m_thread->MachPortNumber(), ARM_THREAD_STATE64, |
| (thread_state_t)&m_state.context.gpr, &count); |
| if (DNBLogEnabledForAny(LOG_THREAD)) { |
| uint64_t *x = &m_state.context.gpr.__x[0]; |
| DNBLogThreaded( |
| "thread_get_state(0x%4.4x, %u, &gpr, %u) => 0x%8.8x (count = %u) regs" |
| "\n x0=%16.16llx" |
| "\n x1=%16.16llx" |
| "\n x2=%16.16llx" |
| "\n x3=%16.16llx" |
| "\n x4=%16.16llx" |
| "\n x5=%16.16llx" |
| "\n x6=%16.16llx" |
| "\n x7=%16.16llx" |
| "\n x8=%16.16llx" |
| "\n x9=%16.16llx" |
| "\n x10=%16.16llx" |
| "\n x11=%16.16llx" |
| "\n x12=%16.16llx" |
| "\n x13=%16.16llx" |
| "\n x14=%16.16llx" |
| "\n x15=%16.16llx" |
| "\n x16=%16.16llx" |
| "\n x17=%16.16llx" |
| "\n x18=%16.16llx" |
| "\n x19=%16.16llx" |
| "\n x20=%16.16llx" |
| "\n x21=%16.16llx" |
| "\n x22=%16.16llx" |
| "\n x23=%16.16llx" |
| "\n x24=%16.16llx" |
| "\n x25=%16.16llx" |
| "\n x26=%16.16llx" |
| "\n x27=%16.16llx" |
| "\n x28=%16.16llx" |
| "\n fp=%16.16llx" |
| "\n lr=%16.16llx" |
| "\n sp=%16.16llx" |
| "\n pc=%16.16llx" |
| "\n cpsr=%8.8x", |
| m_thread->MachPortNumber(), e_regSetGPR, e_regSetGPRCount, kret, count, |
| x[0], x[1], x[2], x[3], x[4], x[5], x[6], x[7], x[8], x[9], x[0], x[11], |
| x[12], x[13], x[14], x[15], x[16], x[17], x[18], x[19], x[20], x[21], |
| x[22], x[23], x[24], x[25], x[26], x[27], x[28], |
| m_state.context.gpr.__fp, m_state.context.gpr.__lr, |
| m_state.context.gpr.__sp, m_state.context.gpr.__pc, |
| m_state.context.gpr.__cpsr); |
| } |
| m_state.SetError(set, Read, kret); |
| return kret; |
| } |
| |
| kern_return_t DNBArchMachARM64::GetVFPState(bool force) { |
| int set = e_regSetVFP; |
| // Check if we have valid cached registers |
| if (!force && m_state.GetError(set, Read) == KERN_SUCCESS) |
| return KERN_SUCCESS; |
| |
| // Read the registers from our thread |
| mach_msg_type_number_t count = e_regSetVFPCount; |
| kern_return_t kret = |
| ::thread_get_state(m_thread->MachPortNumber(), ARM_NEON_STATE64, |
| (thread_state_t)&m_state.context.vfp, &count); |
| if (DNBLogEnabledForAny(LOG_THREAD)) { |
| #if defined(__arm64__) || defined(__aarch64__) |
| DNBLogThreaded( |
| "thread_get_state(0x%4.4x, %u, &vfp, %u) => 0x%8.8x (count = %u) regs" |
| "\n q0 = 0x%16.16llx%16.16llx" |
| "\n q1 = 0x%16.16llx%16.16llx" |
| "\n q2 = 0x%16.16llx%16.16llx" |
| "\n q3 = 0x%16.16llx%16.16llx" |
| "\n q4 = 0x%16.16llx%16.16llx" |
| "\n q5 = 0x%16.16llx%16.16llx" |
| "\n q6 = 0x%16.16llx%16.16llx" |
| "\n q7 = 0x%16.16llx%16.16llx" |
| "\n q8 = 0x%16.16llx%16.16llx" |
| "\n q9 = 0x%16.16llx%16.16llx" |
| "\n q10 = 0x%16.16llx%16.16llx" |
| "\n q11 = 0x%16.16llx%16.16llx" |
| "\n q12 = 0x%16.16llx%16.16llx" |
| "\n q13 = 0x%16.16llx%16.16llx" |
| "\n q14 = 0x%16.16llx%16.16llx" |
| "\n q15 = 0x%16.16llx%16.16llx" |
| "\n q16 = 0x%16.16llx%16.16llx" |
| "\n q17 = 0x%16.16llx%16.16llx" |
| "\n q18 = 0x%16.16llx%16.16llx" |
| "\n q19 = 0x%16.16llx%16.16llx" |
| "\n q20 = 0x%16.16llx%16.16llx" |
| "\n q21 = 0x%16.16llx%16.16llx" |
| "\n q22 = 0x%16.16llx%16.16llx" |
| "\n q23 = 0x%16.16llx%16.16llx" |
| "\n q24 = 0x%16.16llx%16.16llx" |
| "\n q25 = 0x%16.16llx%16.16llx" |
| "\n q26 = 0x%16.16llx%16.16llx" |
| "\n q27 = 0x%16.16llx%16.16llx" |
| "\n q28 = 0x%16.16llx%16.16llx" |
| "\n q29 = 0x%16.16llx%16.16llx" |
| "\n q30 = 0x%16.16llx%16.16llx" |
| "\n q31 = 0x%16.16llx%16.16llx" |
| "\n fpsr = 0x%8.8x" |
| "\n fpcr = 0x%8.8x\n\n", |
| m_thread->MachPortNumber(), e_regSetVFP, e_regSetVFPCount, kret, count, |
| ((uint64_t *)&m_state.context.vfp.__v[0])[0], |
| ((uint64_t *)&m_state.context.vfp.__v[0])[1], |
| ((uint64_t *)&m_state.context.vfp.__v[1])[0], |
| ((uint64_t *)&m_state.context.vfp.__v[1])[1], |
| ((uint64_t *)&m_state.context.vfp.__v[2])[0], |
| ((uint64_t *)&m_state.context.vfp.__v[2])[1], |
| ((uint64_t *)&m_state.context.vfp.__v[3])[0], |
| ((uint64_t *)&m_state.context.vfp.__v[3])[1], |
| ((uint64_t *)&m_state.context.vfp.__v[4])[0], |
| ((uint64_t *)&m_state.context.vfp.__v[4])[1], |
| ((uint64_t *)&m_state.context.vfp.__v[5])[0], |
| ((uint64_t *)&m_state.context.vfp.__v[5])[1], |
| ((uint64_t *)&m_state.context.vfp.__v[6])[0], |
| ((uint64_t *)&m_state.context.vfp.__v[6])[1], |
| ((uint64_t *)&m_state.context.vfp.__v[7])[0], |
| ((uint64_t *)&m_state.context.vfp.__v[7])[1], |
| ((uint64_t *)&m_state.context.vfp.__v[8])[0], |
| ((uint64_t *)&m_state.context.vfp.__v[8])[1], |
| ((uint64_t *)&m_state.context.vfp.__v[9])[0], |
| ((uint64_t *)&m_state.context.vfp.__v[9])[1], |
| ((uint64_t *)&m_state.context.vfp.__v[10])[0], |
| ((uint64_t *)&m_state.context.vfp.__v[10])[1], |
| ((uint64_t *)&m_state.context.vfp.__v[11])[0], |
| ((uint64_t *)&m_state.context.vfp.__v[11])[1], |
| ((uint64_t *)&m_state.context.vfp.__v[12])[0], |
| ((uint64_t *)&m_state.context.vfp.__v[12])[1], |
| ((uint64_t *)&m_state.context.vfp.__v[13])[0], |
| ((uint64_t *)&m_state.context.vfp.__v[13])[1], |
| ((uint64_t *)&m_state.context.vfp.__v[14])[0], |
| ((uint64_t *)&m_state.context.vfp.__v[14])[1], |
| ((uint64_t *)&m_state.context.vfp.__v[15])[0], |
| ((uint64_t *)&m_state.context.vfp.__v[15])[1], |
| ((uint64_t *)&m_state.context.vfp.__v[16])[0], |
| ((uint64_t *)&m_state.context.vfp.__v[16])[1], |
| ((uint64_t *)&m_state.context.vfp.__v[17])[0], |
| ((uint64_t *)&m_state.context.vfp.__v[17])[1], |
| ((uint64_t *)&m_state.context.vfp.__v[18])[0], |
| ((uint64_t *)&m_state.context.vfp.__v[18])[1], |
| ((uint64_t *)&m_state.context.vfp.__v[19])[0], |
| ((uint64_t *)&m_state.context.vfp.__v[19])[1], |
| ((uint64_t *)&m_state.context.vfp.__v[20])[0], |
| ((uint64_t *)&m_state.context.vfp.__v[20])[1], |
| ((uint64_t *)&m_state.context.vfp.__v[21])[0], |
| ((uint64_t *)&m_state.context.vfp.__v[21])[1], |
| ((uint64_t *)&m_state.context.vfp.__v[22])[0], |
| ((uint64_t *)&m_state.context.vfp.__v[22])[1], |
| ((uint64_t *)&m_state.context.vfp.__v[23])[0], |
| ((uint64_t *)&m_state.context.vfp.__v[23])[1], |
| ((uint64_t *)&m_state.context.vfp.__v[24])[0], |
| ((uint64_t *)&m_state.context.vfp.__v[24])[1], |
| ((uint64_t *)&m_state.context.vfp.__v[25])[0], |
| ((uint64_t *)&m_state.context.vfp.__v[25])[1], |
| ((uint64_t *)&m_state.context.vfp.__v[26])[0], |
| ((uint64_t *)&m_state.context.vfp.__v[26])[1], |
| ((uint64_t *)&m_state.context.vfp.__v[27])[0], |
| ((uint64_t *)&m_state.context.vfp.__v[27])[1], |
| ((uint64_t *)&m_state.context.vfp.__v[28])[0], |
| ((uint64_t *)&m_state.context.vfp.__v[28])[1], |
| ((uint64_t *)&m_state.context.vfp.__v[29])[0], |
| ((uint64_t *)&m_state.context.vfp.__v[29])[1], |
| ((uint64_t *)&m_state.context.vfp.__v[30])[0], |
| ((uint64_t *)&m_state.context.vfp.__v[30])[1], |
| ((uint64_t *)&m_state.context.vfp.__v[31])[0], |
| ((uint64_t *)&m_state.context.vfp.__v[31])[1], |
| m_state.context.vfp.__fpsr, m_state.context.vfp.__fpcr); |
| #endif |
| } |
| m_state.SetError(set, Read, kret); |
| return kret; |
| } |
| |
| kern_return_t DNBArchMachARM64::GetEXCState(bool force) { |
| int set = e_regSetEXC; |
| // Check if we have valid cached registers |
| if (!force && m_state.GetError(set, Read) == KERN_SUCCESS) |
| return KERN_SUCCESS; |
| |
| // Read the registers from our thread |
| mach_msg_type_number_t count = e_regSetEXCCount; |
| kern_return_t kret = |
| ::thread_get_state(m_thread->MachPortNumber(), ARM_EXCEPTION_STATE64, |
| (thread_state_t)&m_state.context.exc, &count); |
| m_state.SetError(set, Read, kret); |
| return kret; |
| } |
| |
| static void DumpDBGState(const arm_debug_state_t &dbg) { |
| uint32_t i = 0; |
| for (i = 0; i < 16; i++) |
| DNBLogThreadedIf(LOG_STEP, "BVR%-2u/BCR%-2u = { 0x%8.8x, 0x%8.8x } " |
| "WVR%-2u/WCR%-2u = { 0x%8.8x, 0x%8.8x }", |
| i, i, dbg.__bvr[i], dbg.__bcr[i], i, i, dbg.__wvr[i], |
| dbg.__wcr[i]); |
| } |
| |
| kern_return_t DNBArchMachARM64::GetDBGState(bool force) { |
| int set = e_regSetDBG; |
| |
| // Check if we have valid cached registers |
| if (!force && m_state.GetError(set, Read) == KERN_SUCCESS) |
| return KERN_SUCCESS; |
| |
| // Read the registers from our thread |
| mach_msg_type_number_t count = e_regSetDBGCount; |
| kern_return_t kret = |
| ::thread_get_state(m_thread->MachPortNumber(), ARM_DEBUG_STATE64, |
| (thread_state_t)&m_state.dbg, &count); |
| m_state.SetError(set, Read, kret); |
| |
| return kret; |
| } |
| |
| kern_return_t DNBArchMachARM64::SetGPRState() { |
| int set = e_regSetGPR; |
| kern_return_t kret = ::thread_set_state( |
| m_thread->MachPortNumber(), ARM_THREAD_STATE64, |
| (thread_state_t)&m_state.context.gpr, e_regSetGPRCount); |
| m_state.SetError(set, Write, |
| kret); // Set the current write error for this register set |
| m_state.InvalidateRegisterSetState(set); // Invalidate the current register |
| // state in case registers are read |
| // back differently |
| return kret; // Return the error code |
| } |
| |
| kern_return_t DNBArchMachARM64::SetVFPState() { |
| int set = e_regSetVFP; |
| kern_return_t kret = ::thread_set_state( |
| m_thread->MachPortNumber(), ARM_NEON_STATE64, |
| (thread_state_t)&m_state.context.vfp, e_regSetVFPCount); |
| m_state.SetError(set, Write, |
| kret); // Set the current write error for this register set |
| m_state.InvalidateRegisterSetState(set); // Invalidate the current register |
| // state in case registers are read |
| // back differently |
| return kret; // Return the error code |
| } |
| |
| kern_return_t DNBArchMachARM64::SetEXCState() { |
| int set = e_regSetEXC; |
| kern_return_t kret = ::thread_set_state( |
| m_thread->MachPortNumber(), ARM_EXCEPTION_STATE64, |
| (thread_state_t)&m_state.context.exc, e_regSetEXCCount); |
| m_state.SetError(set, Write, |
| kret); // Set the current write error for this register set |
| m_state.InvalidateRegisterSetState(set); // Invalidate the current register |
| // state in case registers are read |
| // back differently |
| return kret; // Return the error code |
| } |
| |
| kern_return_t DNBArchMachARM64::SetDBGState(bool also_set_on_task) { |
| int set = e_regSetDBG; |
| kern_return_t kret = |
| ::thread_set_state(m_thread->MachPortNumber(), ARM_DEBUG_STATE64, |
| (thread_state_t)&m_state.dbg, e_regSetDBGCount); |
| if (also_set_on_task) { |
| kern_return_t task_kret = task_set_state( |
| m_thread->Process()->Task().TaskPort(), ARM_DEBUG_STATE64, |
| (thread_state_t)&m_state.dbg, e_regSetDBGCount); |
| if (task_kret != KERN_SUCCESS) |
| DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM64::SetDBGState failed " |
| "to set debug control register state: " |
| "0x%8.8x.", |
| task_kret); |
| } |
| m_state.SetError(set, Write, |
| kret); // Set the current write error for this register set |
| m_state.InvalidateRegisterSetState(set); // Invalidate the current register |
| // state in case registers are read |
| // back differently |
| |
| return kret; // Return the error code |
| } |
| |
| void DNBArchMachARM64::ThreadWillResume() { |
| // Do we need to step this thread? If so, let the mach thread tell us so. |
| if (m_thread->IsStepping()) { |
| EnableHardwareSingleStep(true); |
| } |
| |
| // Disable the triggered watchpoint temporarily before we resume. |
| // Plus, we try to enable hardware single step to execute past the instruction |
| // which triggered our watchpoint. |
| if (m_watchpoint_did_occur) { |
| if (m_watchpoint_hw_index >= 0) { |
| kern_return_t kret = GetDBGState(false); |
| if (kret == KERN_SUCCESS && |
| !IsWatchpointEnabled(m_state.dbg, m_watchpoint_hw_index)) { |
| // The watchpoint might have been disabled by the user. We don't need |
| // to do anything at all |
| // to enable hardware single stepping. |
| m_watchpoint_did_occur = false; |
| m_watchpoint_hw_index = -1; |
| return; |
| } |
| |
| DisableHardwareWatchpoint(m_watchpoint_hw_index, false); |
| DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::ThreadWillResume() " |
| "DisableHardwareWatchpoint(%d) called", |
| m_watchpoint_hw_index); |
| |
| // Enable hardware single step to move past the watchpoint-triggering |
| // instruction. |
| m_watchpoint_resume_single_step_enabled = |
| (EnableHardwareSingleStep(true) == KERN_SUCCESS); |
| |
| // If we are not able to enable single step to move past the |
| // watchpoint-triggering instruction, |
| // at least we should reset the two watchpoint member variables so that |
| // the next time around |
| // this callback function is invoked, the enclosing logical branch is |
| // skipped. |
| if (!m_watchpoint_resume_single_step_enabled) { |
| // Reset the two watchpoint member variables. |
| m_watchpoint_did_occur = false; |
| m_watchpoint_hw_index = -1; |
| DNBLogThreadedIf( |
| LOG_WATCHPOINTS, |
| "DNBArchMachARM::ThreadWillResume() failed to enable single step"); |
| } else |
| DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::ThreadWillResume() " |
| "succeeded to enable single step"); |
| } |
| } |
| } |
| |
| bool DNBArchMachARM64::NotifyException(MachException::Data &exc) { |
| |
| switch (exc.exc_type) { |
| default: |
| break; |
| case EXC_BREAKPOINT: |
| if (exc.exc_data.size() == 2 && exc.exc_data[0] == EXC_ARM_DA_DEBUG) { |
| // The data break address is passed as exc_data[1]. |
| nub_addr_t addr = exc.exc_data[1]; |
| // Find the hardware index with the side effect of possibly massaging the |
| // addr to return the starting address as seen from the debugger side. |
| uint32_t hw_index = GetHardwareWatchpointHit(addr); |
| |
| // One logical watchpoint was split into two watchpoint locations because |
| // it was too big. If the watchpoint exception is indicating the 2nd half |
| // of the two-parter, find the address of the 1st half and report that -- |
| // that's what lldb is going to expect to see. |
| DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::NotifyException " |
| "watchpoint %d was hit on address " |
| "0x%llx", |
| hw_index, (uint64_t)addr); |
| const int num_watchpoints = NumSupportedHardwareWatchpoints(); |
| for (int i = 0; i < num_watchpoints; i++) { |
| if (LoHi[i] != 0 && LoHi[i] == hw_index && LoHi[i] != i && |
| GetWatchpointAddressByIndex(i) != INVALID_NUB_ADDRESS) { |
| addr = GetWatchpointAddressByIndex(i); |
| DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::NotifyException " |
| "It is a linked watchpoint; " |
| "rewritten to index %d addr 0x%llx", |
| LoHi[i], (uint64_t)addr); |
| } |
| } |
| |
| if (hw_index != INVALID_NUB_HW_INDEX) { |
| m_watchpoint_did_occur = true; |
| m_watchpoint_hw_index = hw_index; |
| exc.exc_data[1] = addr; |
| // Piggyback the hw_index in the exc.data. |
| exc.exc_data.push_back(hw_index); |
| } |
| |
| return true; |
| } |
| break; |
| } |
| return false; |
| } |
| |
| bool DNBArchMachARM64::ThreadDidStop() { |
| bool success = true; |
| |
| m_state.InvalidateAllRegisterStates(); |
| |
| if (m_watchpoint_resume_single_step_enabled) { |
| // Great! We now disable the hardware single step as well as re-enable the |
| // hardware watchpoint. |
| // See also ThreadWillResume(). |
| if (EnableHardwareSingleStep(false) == KERN_SUCCESS) { |
| if (m_watchpoint_did_occur && m_watchpoint_hw_index >= 0) { |
| ReenableHardwareWatchpoint(m_watchpoint_hw_index); |
| m_watchpoint_resume_single_step_enabled = false; |
| m_watchpoint_did_occur = false; |
| m_watchpoint_hw_index = -1; |
| } else { |
| DNBLogError("internal error detected: m_watchpoint_resume_step_enabled " |
| "is true but (m_watchpoint_did_occur && " |
| "m_watchpoint_hw_index >= 0) does not hold!"); |
| } |
| } else { |
| DNBLogError("internal error detected: m_watchpoint_resume_step_enabled " |
| "is true but unable to disable single step!"); |
| } |
| } |
| |
| // Are we stepping a single instruction? |
| if (GetGPRState(true) == KERN_SUCCESS) { |
| // We are single stepping, was this the primary thread? |
| if (m_thread->IsStepping()) { |
| // This was the primary thread, we need to clear the trace |
| // bit if so. |
| success = EnableHardwareSingleStep(false) == KERN_SUCCESS; |
| } else { |
| // The MachThread will automatically restore the suspend count |
| // in ThreadDidStop(), so we don't need to do anything here if |
| // we weren't the primary thread the last time |
| } |
| } |
| return success; |
| } |
| |
| // Set the single step bit in the processor status register. |
| kern_return_t DNBArchMachARM64::EnableHardwareSingleStep(bool enable) { |
| DNBError err; |
| DNBLogThreadedIf(LOG_STEP, "%s( enable = %d )", __FUNCTION__, enable); |
| |
| err = GetGPRState(false); |
| |
| if (err.Fail()) { |
| err.LogThreaded("%s: failed to read the GPR registers", __FUNCTION__); |
| return err.Status(); |
| } |
| |
| err = GetDBGState(false); |
| |
| if (err.Fail()) { |
| err.LogThreaded("%s: failed to read the DBG registers", __FUNCTION__); |
| return err.Status(); |
| } |
| |
| if (enable) { |
| DNBLogThreadedIf(LOG_STEP, |
| "%s: Setting MDSCR_EL1 Single Step bit at pc 0x%llx", |
| __FUNCTION__, (uint64_t)m_state.context.gpr.__pc); |
| m_state.dbg.__mdscr_el1 |= SS_ENABLE; |
| } else { |
| DNBLogThreadedIf(LOG_STEP, |
| "%s: Clearing MDSCR_EL1 Single Step bit at pc 0x%llx", |
| __FUNCTION__, (uint64_t)m_state.context.gpr.__pc); |
| m_state.dbg.__mdscr_el1 &= ~(SS_ENABLE); |
| } |
| |
| return SetDBGState(false); |
| } |
| |
| // return 1 if bit "BIT" is set in "value" |
| static inline uint32_t bit(uint32_t value, uint32_t bit) { |
| return (value >> bit) & 1u; |
| } |
| |
| // return the bitfield "value[msbit:lsbit]". |
| static inline uint64_t bits(uint64_t value, uint32_t msbit, uint32_t lsbit) { |
| assert(msbit >= lsbit); |
| uint64_t shift_left = sizeof(value) * 8 - 1 - msbit; |
| value <<= |
| shift_left; // shift anything above the msbit off of the unsigned edge |
| value >>= shift_left + lsbit; // shift it back again down to the lsbit |
| // (including undoing any shift from above) |
| return value; // return our result |
| } |
| |
| uint32_t DNBArchMachARM64::NumSupportedHardwareWatchpoints() { |
| // Set the init value to something that will let us know that we need to |
| // autodetect how many watchpoints are supported dynamically... |
| static uint32_t g_num_supported_hw_watchpoints = UINT_MAX; |
| if (g_num_supported_hw_watchpoints == UINT_MAX) { |
| // Set this to zero in case we can't tell if there are any HW breakpoints |
| g_num_supported_hw_watchpoints = 0; |
| |
| size_t len; |
| uint32_t n = 0; |
| len = sizeof(n); |
| if (::sysctlbyname("hw.optional.watchpoint", &n, &len, NULL, 0) == 0) { |
| g_num_supported_hw_watchpoints = n; |
| DNBLogThreadedIf(LOG_THREAD, "hw.optional.watchpoint=%u", n); |
| } else { |
| // For AArch64 we would need to look at ID_AA64DFR0_EL1 but debugserver runs in |
| // EL0 so it can't |
| // access that reg. The kernel should have filled in the sysctls based on it |
| // though. |
| #if defined(__arm__) |
| uint32_t register_DBGDIDR; |
| |
| asm("mrc p14, 0, %0, c0, c0, 0" : "=r"(register_DBGDIDR)); |
| uint32_t numWRPs = bits(register_DBGDIDR, 31, 28); |
| // Zero is reserved for the WRP count, so don't increment it if it is zero |
| if (numWRPs > 0) |
| numWRPs++; |
| g_num_supported_hw_watchpoints = numWRPs; |
| DNBLogThreadedIf(LOG_THREAD, |
| "Number of supported hw watchpoints via asm(): %d", |
| g_num_supported_hw_watchpoints); |
| #endif |
| } |
| } |
| return g_num_supported_hw_watchpoints; |
| } |
| |
| uint32_t DNBArchMachARM64::EnableHardwareWatchpoint(nub_addr_t addr, |
| nub_size_t size, bool read, |
| bool write, |
| bool also_set_on_task) { |
| DNBLogThreadedIf(LOG_WATCHPOINTS, |
| "DNBArchMachARM64::EnableHardwareWatchpoint(addr = " |
| "0x%8.8llx, size = %zu, read = %u, write = %u)", |
| (uint64_t)addr, size, read, write); |
| |
| const uint32_t num_hw_watchpoints = NumSupportedHardwareWatchpoints(); |
| |
| // Can't watch zero bytes |
| if (size == 0) |
| return INVALID_NUB_HW_INDEX; |
| |
| // We must watch for either read or write |
| if (read == false && write == false) |
| return INVALID_NUB_HW_INDEX; |
| |
| // Otherwise, can't watch more than 8 bytes per WVR/WCR pair |
| if (size > 8) |
| return INVALID_NUB_HW_INDEX; |
| |
| // arm64 watchpoints really have an 8-byte alignment requirement. You can put |
| // a watchpoint on a 4-byte |
| // offset address but you can only watch 4 bytes with that watchpoint. |
| |
| // arm64 watchpoints on an 8-byte (double word) aligned addr can watch any |
| // bytes in that |
| // 8-byte long region of memory. They can watch the 1st byte, the 2nd byte, |
| // 3rd byte, etc, or any |
| // combination therein by setting the bits in the BAS [12:5] (Byte Address |
| // Select) field of |
| // the DBGWCRn_EL1 reg for the watchpoint. |
| |
| // If the MASK [28:24] bits in the DBGWCRn_EL1 allow a single watchpoint to |
| // monitor a larger region |
| // of memory (16 bytes, 32 bytes, or 2GB) but the Byte Address Select bitfield |
| // then selects a larger |
| // range of bytes, instead of individual bytes. See the ARMv8 Debug |
| // Architecture manual for details. |
| // This implementation does not currently use the MASK bits; the largest |
| // single region watched by a single |
| // watchpoint right now is 8-bytes. |
| |
| nub_addr_t aligned_wp_address = addr & ~0x7; |
| uint32_t addr_dword_offset = addr & 0x7; |
| |
| // Do we need to split up this logical watchpoint into two hardware watchpoint |
| // registers? |
| // e.g. a watchpoint of length 4 on address 6. We need do this with |
| // one watchpoint on address 0 with bytes 6 & 7 being monitored |
| // one watchpoint on address 8 with bytes 0, 1, 2, 3 being monitored |
| |
| if (addr_dword_offset + size > 8) { |
| DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM64::" |
| "EnableHardwareWatchpoint(addr = " |
| "0x%8.8llx, size = %zu) needs two " |
| "hardware watchpoints slots to monitor", |
| (uint64_t)addr, size); |
| int low_watchpoint_size = 8 - addr_dword_offset; |
| int high_watchpoint_size = addr_dword_offset + size - 8; |
| |
| uint32_t lo = EnableHardwareWatchpoint(addr, low_watchpoint_size, read, |
| write, also_set_on_task); |
| if (lo == INVALID_NUB_HW_INDEX) |
| return INVALID_NUB_HW_INDEX; |
| uint32_t hi = |
| EnableHardwareWatchpoint(aligned_wp_address + 8, high_watchpoint_size, |
| read, write, also_set_on_task); |
| if (hi == INVALID_NUB_HW_INDEX) { |
| DisableHardwareWatchpoint(lo, also_set_on_task); |
| return INVALID_NUB_HW_INDEX; |
| } |
| // Tag this lo->hi mapping in our database. |
| LoHi[lo] = hi; |
| return lo; |
| } |
| |
| // At this point |
| // 1 aligned_wp_address is the requested address rounded down to 8-byte |
| // alignment |
| // 2 addr_dword_offset is the offset into that double word (8-byte) region |
| // that we are watching |
| // 3 size is the number of bytes within that 8-byte region that we are |
| // watching |
| |
| // Set the Byte Address Selects bits DBGWCRn_EL1 bits [12:5] based on the |
| // above. |
| // The bit shift and negation operation will give us 0b11 for 2, 0b1111 for 4, |
| // etc, up to 0b11111111 for 8. |
| // then we shift those bits left by the offset into this dword that we are |
| // interested in. |
| // e.g. if we are watching bytes 4,5,6,7 in a dword we want a BAS of |
| // 0b11110000. |
| uint32_t byte_address_select = ((1 << size) - 1) << addr_dword_offset; |
| |
| // Read the debug state |
| kern_return_t kret = GetDBGState(false); |
| |
| if (kret == KERN_SUCCESS) { |
| // Check to make sure we have the needed hardware support |
| uint32_t i = 0; |
| |
| for (i = 0; i < num_hw_watchpoints; ++i) { |
| if ((m_state.dbg.__wcr[i] & WCR_ENABLE) == 0) |
| break; // We found an available hw watchpoint slot (in i) |
| } |
| |
| // See if we found an available hw watchpoint slot above |
| if (i < num_hw_watchpoints) { |
| // DumpDBGState(m_state.dbg); |
| |
| // Clear any previous LoHi joined-watchpoint that may have been in use |
| LoHi[i] = 0; |
| |
| // shift our Byte Address Select bits up to the correct bit range for the |
| // DBGWCRn_EL1 |
| byte_address_select = byte_address_select << 5; |
| |
| // Make sure bits 1:0 are clear in our address |
| m_state.dbg.__wvr[i] = aligned_wp_address; // DVA (Data Virtual Address) |
| m_state.dbg.__wcr[i] = byte_address_select | // Which bytes that follow |
| // the DVA that we will watch |
| S_USER | // Stop only in user mode |
| (read ? WCR_LOAD : 0) | // Stop on read access? |
| (write ? WCR_STORE : 0) | // Stop on write access? |
| WCR_ENABLE; // Enable this watchpoint; |
| |
| DNBLogThreadedIf( |
| LOG_WATCHPOINTS, "DNBArchMachARM64::EnableHardwareWatchpoint() " |
| "adding watchpoint on address 0x%llx with control " |
| "register value 0x%x", |
| (uint64_t)m_state.dbg.__wvr[i], (uint32_t)m_state.dbg.__wcr[i]); |
| |
| // The kernel will set the MDE_ENABLE bit in the MDSCR_EL1 for us |
| // automatically, don't need to do it here. |
| |
| kret = SetDBGState(also_set_on_task); |
| // DumpDBGState(m_state.dbg); |
| |
| DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM64::" |
| "EnableHardwareWatchpoint() " |
| "SetDBGState() => 0x%8.8x.", |
| kret); |
| |
| if (kret == KERN_SUCCESS) |
| return i; |
| } else { |
| DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM64::" |
| "EnableHardwareWatchpoint(): All " |
| "hardware resources (%u) are in use.", |
| num_hw_watchpoints); |
| } |
| } |
| return INVALID_NUB_HW_INDEX; |
| } |
| |
| bool DNBArchMachARM64::ReenableHardwareWatchpoint(uint32_t hw_index) { |
| // If this logical watchpoint # is actually implemented using |
| // two hardware watchpoint registers, re-enable both of them. |
| |
| if (hw_index < NumSupportedHardwareWatchpoints() && LoHi[hw_index]) { |
| return ReenableHardwareWatchpoint_helper(hw_index) && |
| ReenableHardwareWatchpoint_helper(LoHi[hw_index]); |
| } else { |
| return ReenableHardwareWatchpoint_helper(hw_index); |
| } |
| } |
| |
| bool DNBArchMachARM64::ReenableHardwareWatchpoint_helper(uint32_t hw_index) { |
| kern_return_t kret = GetDBGState(false); |
| if (kret != KERN_SUCCESS) |
| return false; |
| |
| const uint32_t num_hw_points = NumSupportedHardwareWatchpoints(); |
| if (hw_index >= num_hw_points) |
| return false; |
| |
| m_state.dbg.__wvr[hw_index] = m_disabled_watchpoints[hw_index].addr; |
| m_state.dbg.__wcr[hw_index] = m_disabled_watchpoints[hw_index].control; |
| |
| DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM64::" |
| "EnableHardwareWatchpoint( %u ) - WVR%u = " |
| "0x%8.8llx WCR%u = 0x%8.8llx", |
| hw_index, hw_index, (uint64_t)m_state.dbg.__wvr[hw_index], |
| hw_index, (uint64_t)m_state.dbg.__wcr[hw_index]); |
| |
| // The kernel will set the MDE_ENABLE bit in the MDSCR_EL1 for us |
| // automatically, don't need to do it here. |
| |
| kret = SetDBGState(false); |
| |
| return (kret == KERN_SUCCESS); |
| } |
| |
| bool DNBArchMachARM64::DisableHardwareWatchpoint(uint32_t hw_index, |
| bool also_set_on_task) { |
| if (hw_index < NumSupportedHardwareWatchpoints() && LoHi[hw_index]) { |
| return DisableHardwareWatchpoint_helper(hw_index, also_set_on_task) && |
| DisableHardwareWatchpoint_helper(LoHi[hw_index], also_set_on_task); |
| } else { |
| return DisableHardwareWatchpoint_helper(hw_index, also_set_on_task); |
| } |
| } |
| |
| bool DNBArchMachARM64::DisableHardwareWatchpoint_helper(uint32_t hw_index, |
| bool also_set_on_task) { |
| kern_return_t kret = GetDBGState(false); |
| if (kret != KERN_SUCCESS) |
| return false; |
| |
| const uint32_t num_hw_points = NumSupportedHardwareWatchpoints(); |
| if (hw_index >= num_hw_points) |
| return false; |
| |
| m_disabled_watchpoints[hw_index].addr = m_state.dbg.__wvr[hw_index]; |
| m_disabled_watchpoints[hw_index].control = m_state.dbg.__wcr[hw_index]; |
| |
| m_state.dbg.__wcr[hw_index] &= ~((nub_addr_t)WCR_ENABLE); |
| DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM64::" |
| "DisableHardwareWatchpoint( %u ) - WVR%u = " |
| "0x%8.8llx WCR%u = 0x%8.8llx", |
| hw_index, hw_index, (uint64_t)m_state.dbg.__wvr[hw_index], |
| hw_index, (uint64_t)m_state.dbg.__wcr[hw_index]); |
| |
| kret = SetDBGState(also_set_on_task); |
| |
| return (kret == KERN_SUCCESS); |
| } |
| |
| // This is for checking the Byte Address Select bits in the DBRWCRn_EL1 control |
| // register. |
| // Returns -1 if the trailing bit patterns are not one of: |
| // { 0b???????1, 0b??????10, 0b?????100, 0b????1000, 0b???10000, 0b??100000, |
| // 0b?1000000, 0b10000000 }. |
| static inline int32_t LowestBitSet(uint32_t val) { |
| for (unsigned i = 0; i < 8; ++i) { |
| if (bit(val, i)) |
| return i; |
| } |
| return -1; |
| } |
| |
| // Iterate through the debug registers; return the index of the first watchpoint |
| // whose address matches. |
| // As a side effect, the starting address as understood by the debugger is |
| // returned which could be |
| // different from 'addr' passed as an in/out argument. |
| uint32_t DNBArchMachARM64::GetHardwareWatchpointHit(nub_addr_t &addr) { |
| // Read the debug state |
| kern_return_t kret = GetDBGState(true); |
| // DumpDBGState(m_state.dbg); |
| DNBLogThreadedIf( |
| LOG_WATCHPOINTS, |
| "DNBArchMachARM64::GetHardwareWatchpointHit() GetDBGState() => 0x%8.8x.", |
| kret); |
| DNBLogThreadedIf(LOG_WATCHPOINTS, |
| "DNBArchMachARM64::GetHardwareWatchpointHit() addr = 0x%llx", |
| (uint64_t)addr); |
| |
| // This is the watchpoint value to match against, i.e., word address. |
| nub_addr_t wp_val = addr & ~((nub_addr_t)3); |
| if (kret == KERN_SUCCESS) { |
| DBG &debug_state = m_state.dbg; |
| uint32_t i, num = NumSupportedHardwareWatchpoints(); |
| for (i = 0; i < num; ++i) { |
| nub_addr_t wp_addr = GetWatchAddress(debug_state, i); |
| DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM64::" |
| "GetHardwareWatchpointHit() slot: %u " |
| "(addr = 0x%llx).", |
| i, (uint64_t)wp_addr); |
| if (wp_val == wp_addr) { |
| uint32_t byte_mask = bits(debug_state.__wcr[i], 12, 5); |
| |
| // Sanity check the byte_mask, first. |
| if (LowestBitSet(byte_mask) < 0) |
| continue; |
| |
| // Check that the watchpoint is enabled. |
| if (!IsWatchpointEnabled(debug_state, i)) |
| continue; |
| |
| // Compute the starting address (from the point of view of the |
| // debugger). |
| addr = wp_addr + LowestBitSet(byte_mask); |
| return i; |
| } |
| } |
| } |
| return INVALID_NUB_HW_INDEX; |
| } |
| |
| nub_addr_t DNBArchMachARM64::GetWatchpointAddressByIndex(uint32_t hw_index) { |
| kern_return_t kret = GetDBGState(true); |
| if (kret != KERN_SUCCESS) |
| return INVALID_NUB_ADDRESS; |
| const uint32_t num = NumSupportedHardwareWatchpoints(); |
| if (hw_index >= num) |
| return INVALID_NUB_ADDRESS; |
| if (IsWatchpointEnabled(m_state.dbg, hw_index)) |
| return GetWatchAddress(m_state.dbg, hw_index); |
| return INVALID_NUB_ADDRESS; |
| } |
| |
| bool DNBArchMachARM64::IsWatchpointEnabled(const DBG &debug_state, |
| uint32_t hw_index) { |
| // Watchpoint Control Registers, bitfield definitions |
| // ... |
| // Bits Value Description |
| // [0] 0 Watchpoint disabled |
| // 1 Watchpoint enabled. |
| return (debug_state.__wcr[hw_index] & 1u); |
| } |
| |
| nub_addr_t DNBArchMachARM64::GetWatchAddress(const DBG &debug_state, |
| uint32_t hw_index) { |
| // Watchpoint Value Registers, bitfield definitions |
| // Bits Description |
| // [31:2] Watchpoint value (word address, i.e., 4-byte aligned) |
| // [1:0] RAZ/SBZP |
| return bits(debug_state.__wvr[hw_index], 63, 0); |
| } |
| |
| // Register information definitions for 64 bit ARMv8. |
| enum gpr_regnums { |
| gpr_x0 = 0, |
| gpr_x1, |
| gpr_x2, |
| gpr_x3, |
| gpr_x4, |
| gpr_x5, |
| gpr_x6, |
| gpr_x7, |
| gpr_x8, |
| gpr_x9, |
| gpr_x10, |
| gpr_x11, |
| gpr_x12, |
| gpr_x13, |
| gpr_x14, |
| gpr_x15, |
| gpr_x16, |
| gpr_x17, |
| gpr_x18, |
| gpr_x19, |
| gpr_x20, |
| gpr_x21, |
| gpr_x22, |
| gpr_x23, |
| gpr_x24, |
| gpr_x25, |
| gpr_x26, |
| gpr_x27, |
| gpr_x28, |
| gpr_fp, |
| gpr_x29 = gpr_fp, |
| gpr_lr, |
| gpr_x30 = gpr_lr, |
| gpr_sp, |
| gpr_x31 = gpr_sp, |
| gpr_pc, |
| gpr_cpsr, |
| gpr_w0, |
| gpr_w1, |
| gpr_w2, |
| gpr_w3, |
| gpr_w4, |
| gpr_w5, |
| gpr_w6, |
| gpr_w7, |
| gpr_w8, |
| gpr_w9, |
| gpr_w10, |
| gpr_w11, |
| gpr_w12, |
| gpr_w13, |
| gpr_w14, |
| gpr_w15, |
| gpr_w16, |
| gpr_w17, |
| gpr_w18, |
| gpr_w19, |
| gpr_w20, |
| gpr_w21, |
| gpr_w22, |
| gpr_w23, |
| gpr_w24, |
| gpr_w25, |
| gpr_w26, |
| gpr_w27, |
| gpr_w28 |
| |
| }; |
| |
| enum { |
| vfp_v0 = 0, |
| vfp_v1, |
| vfp_v2, |
| vfp_v3, |
| vfp_v4, |
| vfp_v5, |
| vfp_v6, |
| vfp_v7, |
| vfp_v8, |
| vfp_v9, |
| vfp_v10, |
| vfp_v11, |
| vfp_v12, |
| vfp_v13, |
| vfp_v14, |
| vfp_v15, |
| vfp_v16, |
| vfp_v17, |
| vfp_v18, |
| vfp_v19, |
| vfp_v20, |
| vfp_v21, |
| vfp_v22, |
| vfp_v23, |
| vfp_v24, |
| vfp_v25, |
| vfp_v26, |
| vfp_v27, |
| vfp_v28, |
| vfp_v29, |
| vfp_v30, |
| vfp_v31, |
| vfp_fpsr, |
| vfp_fpcr, |
| |
| // lower 32 bits of the corresponding vfp_v<n> reg. |
| vfp_s0, |
| vfp_s1, |
| vfp_s2, |
| vfp_s3, |
| vfp_s4, |
| vfp_s5, |
| vfp_s6, |
| vfp_s7, |
| vfp_s8, |
| vfp_s9, |
| vfp_s10, |
| vfp_s11, |
| vfp_s12, |
| vfp_s13, |
| vfp_s14, |
| vfp_s15, |
| vfp_s16, |
| vfp_s17, |
| vfp_s18, |
| vfp_s19, |
| vfp_s20, |
| vfp_s21, |
| vfp_s22, |
| vfp_s23, |
| vfp_s24, |
| vfp_s25, |
| vfp_s26, |
| vfp_s27, |
| vfp_s28, |
| vfp_s29, |
| vfp_s30, |
| vfp_s31, |
| |
| // lower 64 bits of the corresponding vfp_v<n> reg. |
| vfp_d0, |
| vfp_d1, |
| vfp_d2, |
| vfp_d3, |
| vfp_d4, |
| vfp_d5, |
| vfp_d6, |
| vfp_d7, |
| vfp_d8, |
| vfp_d9, |
| vfp_d10, |
| vfp_d11, |
| vfp_d12, |
| vfp_d13, |
| vfp_d14, |
| vfp_d15, |
| vfp_d16, |
| vfp_d17, |
| vfp_d18, |
| vfp_d19, |
| vfp_d20, |
| vfp_d21, |
| vfp_d22, |
| vfp_d23, |
| vfp_d24, |
| vfp_d25, |
| vfp_d26, |
| vfp_d27, |
| vfp_d28, |
| vfp_d29, |
| vfp_d30, |
| vfp_d31 |
| }; |
| |
| enum { exc_far = 0, exc_esr, exc_exception }; |
| |
| // These numbers from the "DWARF for the ARM 64-bit Architecture (AArch64)" |
| // document. |
| |
| enum { |
| dwarf_x0 = 0, |
| dwarf_x1, |
| dwarf_x2, |
| dwarf_x3, |
| dwarf_x4, |
| dwarf_x5, |
| dwarf_x6, |
| dwarf_x7, |
| dwarf_x8, |
| dwarf_x9, |
| dwarf_x10, |
| dwarf_x11, |
| dwarf_x12, |
| dwarf_x13, |
| dwarf_x14, |
| dwarf_x15, |
| dwarf_x16, |
| dwarf_x17, |
| dwarf_x18, |
| dwarf_x19, |
| dwarf_x20, |
| dwarf_x21, |
| dwarf_x22, |
| dwarf_x23, |
| dwarf_x24, |
| dwarf_x25, |
| dwarf_x26, |
| dwarf_x27, |
| dwarf_x28, |
| dwarf_x29, |
| dwarf_x30, |
| dwarf_x31, |
| dwarf_pc = 32, |
| dwarf_elr_mode = 33, |
| dwarf_fp = dwarf_x29, |
| dwarf_lr = dwarf_x30, |
| dwarf_sp = dwarf_x31, |
| // 34-63 reserved |
| |
| // V0-V31 (128 bit vector registers) |
| dwarf_v0 = 64, |
| dwarf_v1, |
| dwarf_v2, |
| dwarf_v3, |
| dwarf_v4, |
| dwarf_v5, |
| dwarf_v6, |
| dwarf_v7, |
| dwarf_v8, |
| dwarf_v9, |
| dwarf_v10, |
| dwarf_v11, |
| dwarf_v12, |
| dwarf_v13, |
| dwarf_v14, |
| dwarf_v15, |
| dwarf_v16, |
| dwarf_v17, |
| dwarf_v18, |
| dwarf_v19, |
| dwarf_v20, |
| dwarf_v21, |
| dwarf_v22, |
| dwarf_v23, |
| dwarf_v24, |
| dwarf_v25, |
| dwarf_v26, |
| dwarf_v27, |
| dwarf_v28, |
| dwarf_v29, |
| dwarf_v30, |
| dwarf_v31 |
| |
| // 96-127 reserved |
| }; |
| |
| enum { |
| debugserver_gpr_x0 = 0, |
| debugserver_gpr_x1, |
| debugserver_gpr_x2, |
| debugserver_gpr_x3, |
| debugserver_gpr_x4, |
| debugserver_gpr_x5, |
| debugserver_gpr_x6, |
| debugserver_gpr_x7, |
| debugserver_gpr_x8, |
| debugserver_gpr_x9, |
| debugserver_gpr_x10, |
| debugserver_gpr_x11, |
| debugserver_gpr_x12, |
| debugserver_gpr_x13, |
| debugserver_gpr_x14, |
| debugserver_gpr_x15, |
| debugserver_gpr_x16, |
| debugserver_gpr_x17, |
| debugserver_gpr_x18, |
| debugserver_gpr_x19, |
| debugserver_gpr_x20, |
| debugserver_gpr_x21, |
| debugserver_gpr_x22, |
| debugserver_gpr_x23, |
| debugserver_gpr_x24, |
| debugserver_gpr_x25, |
| debugserver_gpr_x26, |
| debugserver_gpr_x27, |
| debugserver_gpr_x28, |
| debugserver_gpr_fp, // x29 |
| debugserver_gpr_lr, // x30 |
| debugserver_gpr_sp, // sp aka xsp |
| debugserver_gpr_pc, |
| debugserver_gpr_cpsr, |
| debugserver_vfp_v0, |
| debugserver_vfp_v1, |
| debugserver_vfp_v2, |
| debugserver_vfp_v3, |
| debugserver_vfp_v4, |
| debugserver_vfp_v5, |
| debugserver_vfp_v6, |
| debugserver_vfp_v7, |
| debugserver_vfp_v8, |
| debugserver_vfp_v9, |
| debugserver_vfp_v10, |
| debugserver_vfp_v11, |
| debugserver_vfp_v12, |
| debugserver_vfp_v13, |
| debugserver_vfp_v14, |
| debugserver_vfp_v15, |
| debugserver_vfp_v16, |
| debugserver_vfp_v17, |
| debugserver_vfp_v18, |
| debugserver_vfp_v19, |
| debugserver_vfp_v20, |
| debugserver_vfp_v21, |
| debugserver_vfp_v22, |
| debugserver_vfp_v23, |
| debugserver_vfp_v24, |
| debugserver_vfp_v25, |
| debugserver_vfp_v26, |
| debugserver_vfp_v27, |
| debugserver_vfp_v28, |
| debugserver_vfp_v29, |
| debugserver_vfp_v30, |
| debugserver_vfp_v31, |
| debugserver_vfp_fpsr, |
| debugserver_vfp_fpcr |
| }; |
| |
| const char *g_contained_x0[]{"x0", NULL}; |
| const char *g_contained_x1[]{"x1", NULL}; |
| const char *g_contained_x2[]{"x2", NULL}; |
| const char *g_contained_x3[]{"x3", NULL}; |
| const char *g_contained_x4[]{"x4", NULL}; |
| const char *g_contained_x5[]{"x5", NULL}; |
| const char *g_contained_x6[]{"x6", NULL}; |
| const char *g_contained_x7[]{"x7", NULL}; |
| const char *g_contained_x8[]{"x8", NULL}; |
| const char *g_contained_x9[]{"x9", NULL}; |
| const char *g_contained_x10[]{"x10", NULL}; |
| const char *g_contained_x11[]{"x11", NULL}; |
| const char *g_contained_x12[]{"x12", NULL}; |
| const char *g_contained_x13[]{"x13", NULL}; |
| const char *g_contained_x14[]{"x14", NULL}; |
| const char *g_contained_x15[]{"x15", NULL}; |
| const char *g_contained_x16[]{"x16", NULL}; |
| const char *g_contained_x17[]{"x17", NULL}; |
| const char *g_contained_x18[]{"x18", NULL}; |
| const char *g_contained_x19[]{"x19", NULL}; |
| const char *g_contained_x20[]{"x20", NULL}; |
| const char *g_contained_x21[]{"x21", NULL}; |
| const char *g_contained_x22[]{"x22", NULL}; |
| const char *g_contained_x23[]{"x23", NULL}; |
| const char *g_contained_x24[]{"x24", NULL}; |
| const char *g_contained_x25[]{"x25", NULL}; |
| const char *g_contained_x26[]{"x26", NULL}; |
| const char *g_contained_x27[]{"x27", NULL}; |
| const char *g_contained_x28[]{"x28", NULL}; |
| |
| const char *g_invalidate_x0[]{"x0", "w0", NULL}; |
| const char *g_invalidate_x1[]{"x1", "w1", NULL}; |
| const char *g_invalidate_x2[]{"x2", "w2", NULL}; |
| const char *g_invalidate_x3[]{"x3", "w3", NULL}; |
| const char *g_invalidate_x4[]{"x4", "w4", NULL}; |
| const char *g_invalidate_x5[]{"x5", "w5", NULL}; |
| const char *g_invalidate_x6[]{"x6", "w6", NULL}; |
| const char *g_invalidate_x7[]{"x7", "w7", NULL}; |
| const char *g_invalidate_x8[]{"x8", "w8", NULL}; |
| const char *g_invalidate_x9[]{"x9", "w9", NULL}; |
| const char *g_invalidate_x10[]{"x10", "w10", NULL}; |
| const char *g_invalidate_x11[]{"x11", "w11", NULL}; |
| const char *g_invalidate_x12[]{"x12", "w12", NULL}; |
| const char *g_invalidate_x13[]{"x13", "w13", NULL}; |
| const char *g_invalidate_x14[]{"x14", "w14", NULL}; |
| const char *g_invalidate_x15[]{"x15", "w15", NULL}; |
| const char *g_invalidate_x16[]{"x16", "w16", NULL}; |
| const char *g_invalidate_x17[]{"x17", "w17", NULL}; |
| const char *g_invalidate_x18[]{"x18", "w18", NULL}; |
| const char *g_invalidate_x19[]{"x19", "w19", NULL}; |
| const char *g_invalidate_x20[]{"x20", "w20", NULL}; |
| const char *g_invalidate_x21[]{"x21", "w21", NULL}; |
| const char *g_invalidate_x22[]{"x22", "w22", NULL}; |
| const char *g_invalidate_x23[]{"x23", "w23", NULL}; |
| const char *g_invalidate_x24[]{"x24", "w24", NULL}; |
| const char *g_invalidate_x25[]{"x25", "w25", NULL}; |
| const char *g_invalidate_x26[]{"x26", "w26", NULL}; |
| const char *g_invalidate_x27[]{"x27", "w27", NULL}; |
| const char *g_invalidate_x28[]{"x28", "w28", NULL}; |
| |
| #define GPR_OFFSET_IDX(idx) (offsetof(DNBArchMachARM64::GPR, __x[idx])) |
| |
| #define GPR_OFFSET_NAME(reg) (offsetof(DNBArchMachARM64::GPR, __##reg)) |
| |
| // These macros will auto define the register name, alt name, register size, |
| // register offset, encoding, format and native register. This ensures that |
| // the register state structures are defined correctly and have the correct |
| // sizes and offsets. |
| #define DEFINE_GPR_IDX(idx, reg, alt, gen) \ |
| { \ |
| e_regSetGPR, gpr_##reg, #reg, alt, Uint, Hex, 8, GPR_OFFSET_IDX(idx), \ |
| dwarf_##reg, dwarf_##reg, gen, debugserver_gpr_##reg, NULL, \ |
| g_invalidate_x##idx \ |
| } |
| #define DEFINE_GPR_NAME(reg, alt, gen) \ |
| { \ |
| e_regSetGPR, gpr_##reg, #reg, alt, Uint, Hex, 8, GPR_OFFSET_NAME(reg), \ |
| dwarf_##reg, dwarf_##reg, gen, debugserver_gpr_##reg, NULL, NULL \ |
| } |
| #define DEFINE_PSEUDO_GPR_IDX(idx, reg) \ |
| { \ |
| e_regSetGPR, gpr_##reg, #reg, NULL, Uint, Hex, 4, 0, INVALID_NUB_REGNUM, \ |
| INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, \ |
| g_contained_x##idx, g_invalidate_x##idx \ |
| } |
| |
| //_STRUCT_ARM_THREAD_STATE64 |
| //{ |
| // uint64_t x[29]; /* General purpose registers x0-x28 */ |
| // uint64_t fp; /* Frame pointer x29 */ |
| // uint64_t lr; /* Link register x30 */ |
| // uint64_t sp; /* Stack pointer x31 */ |
| // uint64_t pc; /* Program counter */ |
| // uint32_t cpsr; /* Current program status register */ |
| //}; |
| |
| // General purpose registers |
| const DNBRegisterInfo DNBArchMachARM64::g_gpr_registers[] = { |
| DEFINE_GPR_IDX(0, x0, "arg1", GENERIC_REGNUM_ARG1), |
| DEFINE_GPR_IDX(1, x1, "arg2", GENERIC_REGNUM_ARG2), |
| DEFINE_GPR_IDX(2, x2, "arg3", GENERIC_REGNUM_ARG3), |
| DEFINE_GPR_IDX(3, x3, "arg4", GENERIC_REGNUM_ARG4), |
| DEFINE_GPR_IDX(4, x4, "arg5", GENERIC_REGNUM_ARG5), |
| DEFINE_GPR_IDX(5, x5, "arg6", GENERIC_REGNUM_ARG6), |
| DEFINE_GPR_IDX(6, x6, "arg7", GENERIC_REGNUM_ARG7), |
| DEFINE_GPR_IDX(7, x7, "arg8", GENERIC_REGNUM_ARG8), |
| DEFINE_GPR_IDX(8, x8, NULL, INVALID_NUB_REGNUM), |
| DEFINE_GPR_IDX(9, x9, NULL, INVALID_NUB_REGNUM), |
| DEFINE_GPR_IDX(10, x10, NULL, INVALID_NUB_REGNUM), |
| DEFINE_GPR_IDX(11, x11, NULL, INVALID_NUB_REGNUM), |
| DEFINE_GPR_IDX(12, x12, NULL, INVALID_NUB_REGNUM), |
| DEFINE_GPR_IDX(13, x13, NULL, INVALID_NUB_REGNUM), |
| DEFINE_GPR_IDX(14, x14, NULL, INVALID_NUB_REGNUM), |
| DEFINE_GPR_IDX(15, x15, NULL, INVALID_NUB_REGNUM), |
| DEFINE_GPR_IDX(16, x16, NULL, INVALID_NUB_REGNUM), |
| DEFINE_GPR_IDX(17, x17, NULL, INVALID_NUB_REGNUM), |
| DEFINE_GPR_IDX(18, x18, NULL, INVALID_NUB_REGNUM), |
| DEFINE_GPR_IDX(19, x19, NULL, INVALID_NUB_REGNUM), |
| DEFINE_GPR_IDX(20, x20, NULL, INVALID_NUB_REGNUM), |
| DEFINE_GPR_IDX(21, x21, NULL, INVALID_NUB_REGNUM), |
| DEFINE_GPR_IDX(22, x22, NULL, INVALID_NUB_REGNUM), |
| DEFINE_GPR_IDX(23, x23, NULL, INVALID_NUB_REGNUM), |
| DEFINE_GPR_IDX(24, x24, NULL, INVALID_NUB_REGNUM), |
| DEFINE_GPR_IDX(25, x25, NULL, INVALID_NUB_REGNUM), |
| DEFINE_GPR_IDX(26, x26, NULL, INVALID_NUB_REGNUM), |
| DEFINE_GPR_IDX(27, x27, NULL, INVALID_NUB_REGNUM), |
| DEFINE_GPR_IDX(28, x28, NULL, INVALID_NUB_REGNUM), |
| DEFINE_GPR_NAME(fp, "x29", GENERIC_REGNUM_FP), |
| DEFINE_GPR_NAME(lr, "x30", GENERIC_REGNUM_RA), |
| DEFINE_GPR_NAME(sp, "xsp", GENERIC_REGNUM_SP), |
| DEFINE_GPR_NAME(pc, NULL, GENERIC_REGNUM_PC), |
| |
| // in armv7 we specify that writing to the CPSR should invalidate r8-12, sp, |
| // lr. |
| // this should be specified for arm64 too even though debugserver is only |
| // used for |
| // userland debugging. |
| {e_regSetGPR, gpr_cpsr, "cpsr", "flags", Uint, Hex, 4, |
| GPR_OFFSET_NAME(cpsr), dwarf_elr_mode, dwarf_elr_mode, INVALID_NUB_REGNUM, |
| debugserver_gpr_cpsr, NULL, NULL}, |
| |
| DEFINE_PSEUDO_GPR_IDX(0, w0), |
| DEFINE_PSEUDO_GPR_IDX(1, w1), |
| DEFINE_PSEUDO_GPR_IDX(2, w2), |
| DEFINE_PSEUDO_GPR_IDX(3, w3), |
| DEFINE_PSEUDO_GPR_IDX(4, w4), |
| DEFINE_PSEUDO_GPR_IDX(5, w5), |
| DEFINE_PSEUDO_GPR_IDX(6, w6), |
| DEFINE_PSEUDO_GPR_IDX(7, w7), |
| DEFINE_PSEUDO_GPR_IDX(8, w8), |
| DEFINE_PSEUDO_GPR_IDX(9, w9), |
| DEFINE_PSEUDO_GPR_IDX(10, w10), |
| DEFINE_PSEUDO_GPR_IDX(11, w11), |
| DEFINE_PSEUDO_GPR_IDX(12, w12), |
| DEFINE_PSEUDO_GPR_IDX(13, w13), |
| DEFINE_PSEUDO_GPR_IDX(14, w14), |
| DEFINE_PSEUDO_GPR_IDX(15, w15), |
| DEFINE_PSEUDO_GPR_IDX(16, w16), |
| DEFINE_PSEUDO_GPR_IDX(17, w17), |
| DEFINE_PSEUDO_GPR_IDX(18, w18), |
| DEFINE_PSEUDO_GPR_IDX(19, w19), |
| DEFINE_PSEUDO_GPR_IDX(20, w20), |
| DEFINE_PSEUDO_GPR_IDX(21, w21), |
| DEFINE_PSEUDO_GPR_IDX(22, w22), |
| DEFINE_PSEUDO_GPR_IDX(23, w23), |
| DEFINE_PSEUDO_GPR_IDX(24, w24), |
| DEFINE_PSEUDO_GPR_IDX(25, w25), |
| DEFINE_PSEUDO_GPR_IDX(26, w26), |
| DEFINE_PSEUDO_GPR_IDX(27, w27), |
| DEFINE_PSEUDO_GPR_IDX(28, w28)}; |
| |
| const char *g_contained_v0[]{"v0", NULL}; |
| const char *g_contained_v1[]{"v1", NULL}; |
| const char *g_contained_v2[]{"v2", NULL}; |
| const char *g_contained_v3[]{"v3", NULL}; |
| const char *g_contained_v4[]{"v4", NULL}; |
| const char *g_contained_v5[]{"v5", NULL}; |
| const char *g_contained_v6[]{"v6", NULL}; |
| const char *g_contained_v7[]{"v7", NULL}; |
| const char *g_contained_v8[]{"v8", NULL}; |
| const char *g_contained_v9[]{"v9", NULL}; |
| const char *g_contained_v10[]{"v10", NULL}; |
| const char *g_contained_v11[]{"v11", NULL}; |
| const char *g_contained_v12[]{"v12", NULL}; |
| const char *g_contained_v13[]{"v13", NULL}; |
| const char *g_contained_v14[]{"v14", NULL}; |
| const char *g_contained_v15[]{"v15", NULL}; |
| const char *g_contained_v16[]{"v16", NULL}; |
| const char *g_contained_v17[]{"v17", NULL}; |
| const char *g_contained_v18[]{"v18", NULL}; |
| const char *g_contained_v19[]{"v19", NULL}; |
| const char *g_contained_v20[]{"v20", NULL}; |
| const char *g_contained_v21[]{"v21", NULL}; |
| const char *g_contained_v22[]{"v22", NULL}; |
| const char *g_contained_v23[]{"v23", NULL}; |
| const char *g_contained_v24[]{"v24", NULL}; |
| const char *g_contained_v25[]{"v25", NULL}; |
| const char *g_contained_v26[]{"v26", NULL}; |
| const char *g_contained_v27[]{"v27", NULL}; |
| const char *g_contained_v28[]{"v28", NULL}; |
| const char *g_contained_v29[]{"v29", NULL}; |
| const char *g_contained_v30[]{"v30", NULL}; |
| const char *g_contained_v31[]{"v31", NULL}; |
| |
| const char *g_invalidate_v0[]{"v0", "d0", "s0", NULL}; |
| const char *g_invalidate_v1[]{"v1", "d1", "s1", NULL}; |
| const char *g_invalidate_v2[]{"v2", "d2", "s2", NULL}; |
| const char *g_invalidate_v3[]{"v3", "d3", "s3", NULL}; |
| const char *g_invalidate_v4[]{"v4", "d4", "s4", NULL}; |
| const char *g_invalidate_v5[]{"v5", "d5", "s5", NULL}; |
| const char *g_invalidate_v6[]{"v6", "d6", "s6", NULL}; |
| const char *g_invalidate_v7[]{"v7", "d7", "s7", NULL}; |
| const char *g_invalidate_v8[]{"v8", "d8", "s8", NULL}; |
| const char *g_invalidate_v9[]{"v9", "d9", "s9", NULL}; |
| const char *g_invalidate_v10[]{"v10", "d10", "s10", NULL}; |
| const char *g_invalidate_v11[]{"v11", "d11", "s11", NULL}; |
| const char *g_invalidate_v12[]{"v12", "d12", "s12", NULL}; |
| const char *g_invalidate_v13[]{"v13", "d13", "s13", NULL}; |
| const char *g_invalidate_v14[]{"v14", "d14", "s14", NULL}; |
| const char *g_invalidate_v15[]{"v15", "d15", "s15", NULL}; |
| const char *g_invalidate_v16[]{"v16", "d16", "s16", NULL}; |
| const char *g_invalidate_v17[]{"v17", "d17", "s17", NULL}; |
| const char *g_invalidate_v18[]{"v18", "d18", "s18", NULL}; |
| const char *g_invalidate_v19[]{"v19", "d19", "s19", NULL}; |
| const char *g_invalidate_v20[]{"v20", "d20", "s20", NULL}; |
| const char *g_invalidate_v21[]{"v21", "d21", "s21", NULL}; |
| const char *g_invalidate_v22[]{"v22", "d22", "s22", NULL}; |
| const char *g_invalidate_v23[]{"v23", "d23", "s23", NULL}; |
| const char *g_invalidate_v24[]{"v24", "d24", "s24", NULL}; |
| const char *g_invalidate_v25[]{"v25", "d25", "s25", NULL}; |
| const char *g_invalidate_v26[]{"v26", "d26", "s26", NULL}; |
| const char *g_invalidate_v27[]{"v27", "d27", "s27", NULL}; |
| const char *g_invalidate_v28[]{"v28", "d28", "s28", NULL}; |
| const char *g_invalidate_v29[]{"v29", "d29", "s29", NULL}; |
| const char *g_invalidate_v30[]{"v30", "d30", "s30", NULL}; |
| const char *g_invalidate_v31[]{"v31", "d31", "s31", NULL}; |
| |
| #if defined(__arm64__) || defined(__aarch64__) |
| #define VFP_V_OFFSET_IDX(idx) \ |
| (offsetof(DNBArchMachARM64::FPU, __v) + (idx * 16) + \ |
| offsetof(DNBArchMachARM64::Context, vfp)) |
| #else |
| #define VFP_V_OFFSET_IDX(idx) \ |
| (offsetof(DNBArchMachARM64::FPU, opaque) + (idx * 16) + \ |
| offsetof(DNBArchMachARM64::Context, vfp)) |
| #endif |
| #define VFP_OFFSET_NAME(reg) \ |
| (offsetof(DNBArchMachARM64::FPU, reg) + \ |
| offsetof(DNBArchMachARM64::Context, vfp)) |
| #define EXC_OFFSET(reg) \ |
| (offsetof(DNBArchMachARM64::EXC, reg) + \ |
| offsetof(DNBArchMachARM64::Context, exc)) |
| |
| //#define FLOAT_FORMAT Float |
| #define DEFINE_VFP_V_IDX(idx) \ |
| { \ |
| e_regSetVFP, vfp_v##idx, "v" #idx, "q" #idx, Vector, VectorOfUInt8, 16, \ |
| VFP_V_OFFSET_IDX(idx), INVALID_NUB_REGNUM, dwarf_v##idx, \ |
| INVALID_NUB_REGNUM, debugserver_vfp_v##idx, NULL, g_invalidate_v##idx \ |
| } |
| #define DEFINE_PSEUDO_VFP_S_IDX(idx) \ |
| { \ |
| e_regSetVFP, vfp_s##idx, "s" #idx, NULL, IEEE754, Float, 4, 0, \ |
| INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, \ |
| INVALID_NUB_REGNUM, g_contained_v##idx, g_invalidate_v##idx \ |
| } |
| #define DEFINE_PSEUDO_VFP_D_IDX(idx) \ |
| { \ |
| e_regSetVFP, vfp_d##idx, "d" #idx, NULL, IEEE754, Float, 8, 0, \ |
| INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, \ |
| INVALID_NUB_REGNUM, g_contained_v##idx, g_invalidate_v##idx \ |
| } |
| |
| // Floating point registers |
| const DNBRegisterInfo DNBArchMachARM64::g_vfp_registers[] = { |
| DEFINE_VFP_V_IDX(0), |
| DEFINE_VFP_V_IDX(1), |
| DEFINE_VFP_V_IDX(2), |
| DEFINE_VFP_V_IDX(3), |
| DEFINE_VFP_V_IDX(4), |
| DEFINE_VFP_V_IDX(5), |
| DEFINE_VFP_V_IDX(6), |
| DEFINE_VFP_V_IDX(7), |
| DEFINE_VFP_V_IDX(8), |
| DEFINE_VFP_V_IDX(9), |
| DEFINE_VFP_V_IDX(10), |
| DEFINE_VFP_V_IDX(11), |
| DEFINE_VFP_V_IDX(12), |
| DEFINE_VFP_V_IDX(13), |
| DEFINE_VFP_V_IDX(14), |
| DEFINE_VFP_V_IDX(15), |
| DEFINE_VFP_V_IDX(16), |
| DEFINE_VFP_V_IDX(17), |
| DEFINE_VFP_V_IDX(18), |
| DEFINE_VFP_V_IDX(19), |
| DEFINE_VFP_V_IDX(20), |
| DEFINE_VFP_V_IDX(21), |
| DEFINE_VFP_V_IDX(22), |
| DEFINE_VFP_V_IDX(23), |
| DEFINE_VFP_V_IDX(24), |
| DEFINE_VFP_V_IDX(25), |
| DEFINE_VFP_V_IDX(26), |
| DEFINE_VFP_V_IDX(27), |
| DEFINE_VFP_V_IDX(28), |
| DEFINE_VFP_V_IDX(29), |
| DEFINE_VFP_V_IDX(30), |
| DEFINE_VFP_V_IDX(31), |
| {e_regSetVFP, vfp_fpsr, "fpsr", NULL, Uint, Hex, 4, |
| VFP_V_OFFSET_IDX(32) + 0, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, |
| INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, NULL, NULL}, |
| {e_regSetVFP, vfp_fpcr, "fpcr", NULL, Uint, Hex, 4, |
| VFP_V_OFFSET_IDX(32) + 4, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, |
| INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, NULL, NULL}, |
| |
| DEFINE_PSEUDO_VFP_S_IDX(0), |
| DEFINE_PSEUDO_VFP_S_IDX(1), |
| DEFINE_PSEUDO_VFP_S_IDX(2), |
| DEFINE_PSEUDO_VFP_S_IDX(3), |
| DEFINE_PSEUDO_VFP_S_IDX(4), |
| DEFINE_PSEUDO_VFP_S_IDX(5), |
| DEFINE_PSEUDO_VFP_S_IDX(6), |
| DEFINE_PSEUDO_VFP_S_IDX(7), |
| DEFINE_PSEUDO_VFP_S_IDX(8), |
| DEFINE_PSEUDO_VFP_S_IDX(9), |
| DEFINE_PSEUDO_VFP_S_IDX(10), |
| DEFINE_PSEUDO_VFP_S_IDX(11), |
| DEFINE_PSEUDO_VFP_S_IDX(12), |
| DEFINE_PSEUDO_VFP_S_IDX(13), |
| DEFINE_PSEUDO_VFP_S_IDX(14), |
| DEFINE_PSEUDO_VFP_S_IDX(15), |
| DEFINE_PSEUDO_VFP_S_IDX(16), |
| DEFINE_PSEUDO_VFP_S_IDX(17), |
| DEFINE_PSEUDO_VFP_S_IDX(18), |
| DEFINE_PSEUDO_VFP_S_IDX(19), |
| DEFINE_PSEUDO_VFP_S_IDX(20), |
| DEFINE_PSEUDO_VFP_S_IDX(21), |
| DEFINE_PSEUDO_VFP_S_IDX(22), |
| DEFINE_PSEUDO_VFP_S_IDX(23), |
| DEFINE_PSEUDO_VFP_S_IDX(24), |
| DEFINE_PSEUDO_VFP_S_IDX(25), |
| DEFINE_PSEUDO_VFP_S_IDX(26), |
| DEFINE_PSEUDO_VFP_S_IDX(27), |
| DEFINE_PSEUDO_VFP_S_IDX(28), |
| DEFINE_PSEUDO_VFP_S_IDX(29), |
| DEFINE_PSEUDO_VFP_S_IDX(30), |
| DEFINE_PSEUDO_VFP_S_IDX(31), |
| |
| DEFINE_PSEUDO_VFP_D_IDX(0), |
| DEFINE_PSEUDO_VFP_D_IDX(1), |
| DEFINE_PSEUDO_VFP_D_IDX(2), |
| DEFINE_PSEUDO_VFP_D_IDX(3), |
| DEFINE_PSEUDO_VFP_D_IDX(4), |
| DEFINE_PSEUDO_VFP_D_IDX(5), |
| DEFINE_PSEUDO_VFP_D_IDX(6), |
| DEFINE_PSEUDO_VFP_D_IDX(7), |
| DEFINE_PSEUDO_VFP_D_IDX(8), |
| DEFINE_PSEUDO_VFP_D_IDX(9), |
| DEFINE_PSEUDO_VFP_D_IDX(10), |
| DEFINE_PSEUDO_VFP_D_IDX(11), |
| DEFINE_PSEUDO_VFP_D_IDX(12), |
| DEFINE_PSEUDO_VFP_D_IDX(13), |
| DEFINE_PSEUDO_VFP_D_IDX(14), |
| DEFINE_PSEUDO_VFP_D_IDX(15), |
| DEFINE_PSEUDO_VFP_D_IDX(16), |
| DEFINE_PSEUDO_VFP_D_IDX(17), |
| DEFINE_PSEUDO_VFP_D_IDX(18), |
| DEFINE_PSEUDO_VFP_D_IDX(19), |
| DEFINE_PSEUDO_VFP_D_IDX(20), |
| DEFINE_PSEUDO_VFP_D_IDX(21), |
| DEFINE_PSEUDO_VFP_D_IDX(22), |
| DEFINE_PSEUDO_VFP_D_IDX(23), |
| DEFINE_PSEUDO_VFP_D_IDX(24), |
| DEFINE_PSEUDO_VFP_D_IDX(25), |
| DEFINE_PSEUDO_VFP_D_IDX(26), |
| DEFINE_PSEUDO_VFP_D_IDX(27), |
| DEFINE_PSEUDO_VFP_D_IDX(28), |
| DEFINE_PSEUDO_VFP_D_IDX(29), |
| DEFINE_PSEUDO_VFP_D_IDX(30), |
| DEFINE_PSEUDO_VFP_D_IDX(31) |
| |
| }; |
| |
| //_STRUCT_ARM_EXCEPTION_STATE64 |
| //{ |
| // uint64_t far; /* Virtual Fault Address */ |
| // uint32_t esr; /* Exception syndrome */ |
| // uint32_t exception; /* number of arm exception taken */ |
| //}; |
| |
| // Exception registers |
| const DNBRegisterInfo DNBArchMachARM64::g_exc_registers[] = { |
| {e_regSetEXC, exc_far, "far", NULL, Uint, Hex, 8, EXC_OFFSET(__far), |
| INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, |
| INVALID_NUB_REGNUM, NULL, NULL}, |
| {e_regSetEXC, exc_esr, "esr", NULL, Uint, Hex, 4, EXC_OFFSET(__esr), |
| INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, |
| INVALID_NUB_REGNUM, NULL, NULL}, |
| {e_regSetEXC, exc_exception, "exception", NULL, Uint, Hex, 4, |
| EXC_OFFSET(__exception), INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, |
| INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, NULL, NULL}}; |
| |
| // Number of registers in each register set |
| const size_t DNBArchMachARM64::k_num_gpr_registers = |
| sizeof(g_gpr_registers) / sizeof(DNBRegisterInfo); |
| const size_t DNBArchMachARM64::k_num_vfp_registers = |
| sizeof(g_vfp_registers) / sizeof(DNBRegisterInfo); |
| const size_t DNBArchMachARM64::k_num_exc_registers = |
| sizeof(g_exc_registers) / sizeof(DNBRegisterInfo); |
| const size_t DNBArchMachARM64::k_num_all_registers = |
| k_num_gpr_registers + k_num_vfp_registers + k_num_exc_registers; |
| |
| // Register set definitions. The first definitions at register set index |
| // of zero is for all registers, followed by other registers sets. The |
| // register information for the all register set need not be filled in. |
| const DNBRegisterSetInfo DNBArchMachARM64::g_reg_sets[] = { |
| {"ARM64 Registers", NULL, k_num_all_registers}, |
| {"General Purpose Registers", g_gpr_registers, k_num_gpr_registers}, |
| {"Floating Point Registers", g_vfp_registers, k_num_vfp_registers}, |
| {"Exception State Registers", g_exc_registers, k_num_exc_registers}}; |
| // Total number of register sets for this architecture |
| const size_t DNBArchMachARM64::k_num_register_sets = |
| sizeof(g_reg_sets) / sizeof(DNBRegisterSetInfo); |
| |
| const DNBRegisterSetInfo * |
| DNBArchMachARM64::GetRegisterSetInfo(nub_size_t *num_reg_sets) { |
| *num_reg_sets = k_num_register_sets; |
| return g_reg_sets; |
| } |
| |
| bool DNBArchMachARM64::FixGenericRegisterNumber(uint32_t &set, uint32_t ®) { |
| if (set == REGISTER_SET_GENERIC) { |
| switch (reg) { |
| case GENERIC_REGNUM_PC: // Program Counter |
| set = e_regSetGPR; |
| reg = gpr_pc; |
| break; |
| |
| case GENERIC_REGNUM_SP: // Stack Pointer |
| set = e_regSetGPR; |
| reg = gpr_sp; |
| break; |
| |
| case GENERIC_REGNUM_FP: // Frame Pointer |
| set = e_regSetGPR; |
| reg = gpr_fp; |
| break; |
| |
| case GENERIC_REGNUM_RA: // Return Address |
| set = e_regSetGPR; |
| reg = gpr_lr; |
| break; |
| |
| case GENERIC_REGNUM_FLAGS: // Processor flags register |
| set = e_regSetGPR; |
| reg = gpr_cpsr; |
| break; |
| |
| case GENERIC_REGNUM_ARG1: |
| case GENERIC_REGNUM_ARG2: |
| case GENERIC_REGNUM_ARG3: |
| case GENERIC_REGNUM_ARG4: |
| case GENERIC_REGNUM_ARG5: |
| case GENERIC_REGNUM_ARG6: |
| set = e_regSetGPR; |
| reg = gpr_x0 + reg - GENERIC_REGNUM_ARG1; |
| break; |
| |
| default: |
| return false; |
| } |
| } |
| return true; |
| } |
| bool DNBArchMachARM64::GetRegisterValue(uint32_t set, uint32_t reg, |
| DNBRegisterValue *value) { |
| if (!FixGenericRegisterNumber(set, reg)) |
| return false; |
| |
| if (GetRegisterState(set, false) != KERN_SUCCESS) |
| return false; |
| |
| const DNBRegisterInfo *regInfo = m_thread->GetRegisterInfo(set, reg); |
| if (regInfo) { |
| value->info = *regInfo; |
| switch (set) { |
| case e_regSetGPR: |
| if (reg <= gpr_pc) { |
| value->value.uint64 = m_state.context.gpr.__x[reg]; |
| return true; |
| } else if (reg == gpr_cpsr) { |
| value->value.uint32 = m_state.context.gpr.__cpsr; |
| return true; |
| } |
| break; |
| |
| case e_regSetVFP: |
| |
| if (reg >= vfp_v0 && reg <= vfp_v31) { |
| #if defined(__arm64__) || defined(__aarch64__) |
| memcpy(&value->value.v_uint8, &m_state.context.vfp.__v[reg - vfp_v0], |
| 16); |
| #else |
| memcpy(&value->value.v_uint8, |
| ((uint8_t *)&m_state.context.vfp.opaque) + ((reg - vfp_v0) * 16), |
| 16); |
| #endif |
| return true; |
| } else if (reg == vfp_fpsr) { |
| #if defined(__arm64__) || defined(__aarch64__) |
| memcpy(&value->value.uint32, &m_state.context.vfp.__fpsr, 4); |
| #else |
| memcpy(&value->value.uint32, |
| ((uint8_t *)&m_state.context.vfp.opaque) + (32 * 16) + 0, 4); |
| #endif |
| return true; |
| } else if (reg == vfp_fpcr) { |
| #if defined(__arm64__) || defined(__aarch64__) |
| memcpy(&value->value.uint32, &m_state.context.vfp.__fpcr, 4); |
| #else |
| memcpy(&value->value.uint32, |
| ((uint8_t *)&m_state.context.vfp.opaque) + (32 * 16) + 4, 4); |
| #endif |
| return true; |
| } else if (reg >= vfp_s0 && reg <= vfp_s31) { |
| #if defined(__arm64__) || defined(__aarch64__) |
| memcpy(&value->value.v_uint8, &m_state.context.vfp.__v[reg - vfp_s0], |
| 4); |
| #else |
| memcpy(&value->value.v_uint8, |
| ((uint8_t *)&m_state.context.vfp.opaque) + ((reg - vfp_s0) * 16), |
| 4); |
| #endif |
| return true; |
| } else if (reg >= vfp_d0 && reg <= vfp_d31) { |
| #if defined(__arm64__) || defined(__aarch64__) |
| memcpy(&value->value.v_uint8, &m_state.context.vfp.__v[reg - vfp_d0], |
| 8); |
| #else |
| memcpy(&value->value.v_uint8, |
| ((uint8_t *)&m_state.context.vfp.opaque) + ((reg - vfp_d0) * 16), |
| 8); |
| #endif |
| return true; |
| } |
| break; |
| |
| case e_regSetEXC: |
| if (reg == exc_far) { |
| value->value.uint64 = m_state.context.exc.__far; |
| return true; |
| } else if (reg == exc_esr) { |
| value->value.uint32 = m_state.context.exc.__esr; |
| return true; |
| } else if (reg == exc_exception) { |
| value->value.uint32 = m_state.context.exc.__exception; |
| return true; |
| } |
| break; |
| } |
| } |
| return false; |
| } |
| |
| bool DNBArchMachARM64::SetRegisterValue(uint32_t set, uint32_t reg, |
| const DNBRegisterValue *value) { |
| if (!FixGenericRegisterNumber(set, reg)) |
| return false; |
| |
| if (GetRegisterState(set, false) != KERN_SUCCESS) |
| return false; |
| |
| bool success = false; |
| const DNBRegisterInfo *regInfo = m_thread->GetRegisterInfo(set, reg); |
| if (regInfo) { |
| switch (set) { |
| case e_regSetGPR: |
| if (reg <= gpr_pc) { |
| m_state.context.gpr.__x[reg] = value->value.uint64; |
| success = true; |
| } else if (reg == gpr_cpsr) { |
| m_state.context.gpr.__cpsr = value->value.uint32; |
| success = true; |
| } |
| break; |
| |
| case e_regSetVFP: |
| if (reg >= vfp_v0 && reg <= vfp_v31) { |
| #if defined(__arm64__) || defined(__aarch64__) |
| memcpy(&m_state.context.vfp.__v[reg - vfp_v0], &value->value.v_uint8, |
| 16); |
| #else |
| memcpy(((uint8_t *)&m_state.context.vfp.opaque) + ((reg - vfp_v0) * 16), |
| &value->value.v_uint8, 16); |
| #endif |
| success = true; |
| } else if (reg == vfp_fpsr) { |
| #if defined(__arm64__) || defined(__aarch64__) |
| memcpy(&m_state.context.vfp.__fpsr, &value->value.uint32, 4); |
| #else |
| memcpy(((uint8_t *)&m_state.context.vfp.opaque) + (32 * 16) + 0, |
| &value->value.uint32, 4); |
| #endif |
| success = true; |
| } else if (reg == vfp_fpcr) { |
| #if defined(__arm64__) || defined(__aarch64__) |
| memcpy(&m_state.context.vfp.__fpcr, &value->value.uint32, 4); |
| #else |
| memcpy(((uint8_t *)m_state.context.vfp.opaque) + (32 * 16) + 4, |
| &value->value.uint32, 4); |
| #endif |
| success = true; |
| } else if (reg >= vfp_s0 && reg <= vfp_s31) { |
| #if defined(__arm64__) || defined(__aarch64__) |
| memcpy(&m_state.context.vfp.__v[reg - vfp_s0], &value->value.v_uint8, |
| 4); |
| #else |
| memcpy(((uint8_t *)&m_state.context.vfp.opaque) + ((reg - vfp_s0) * 16), |
| &value->value.v_uint8, 4); |
| #endif |
| success = true; |
| } else if (reg >= vfp_d0 && reg <= vfp_d31) { |
| #if defined(__arm64__) || defined(__aarch64__) |
| memcpy(&m_state.context.vfp.__v[reg - vfp_d0], &value->value.v_uint8, |
| 8); |
| #else |
| memcpy(((uint8_t *)&m_state.context.vfp.opaque) + ((reg - vfp_d0) * 16), |
| &value->value.v_uint8, 8); |
| #endif |
| success = true; |
| } |
| break; |
| |
| case e_regSetEXC: |
| if (reg == exc_far) { |
| m_state.context.exc.__far = value->value.uint64; |
| success = true; |
| } else if (reg == exc_esr) { |
| m_state.context.exc.__esr = value->value.uint32; |
| success = true; |
| } else if (reg == exc_exception) { |
| m_state.context.exc.__exception = value->value.uint32; |
| success = true; |
| } |
| break; |
| } |
| } |
| if (success) |
| return SetRegisterState(set) == KERN_SUCCESS; |
| return false; |
| } |
| |
| kern_return_t DNBArchMachARM64::GetRegisterState(int set, bool force) { |
| switch (set) { |
| case e_regSetALL: |
| return GetGPRState(force) | GetVFPState(force) | GetEXCState(force) | |
| GetDBGState(force); |
| case e_regSetGPR: |
| return GetGPRState(force); |
| case e_regSetVFP: |
| return GetVFPState(force); |
| case e_regSetEXC: |
| return GetEXCState(force); |
| case e_regSetDBG: |
| return GetDBGState(force); |
| default: |
| break; |
| } |
| return KERN_INVALID_ARGUMENT; |
| } |
| |
| kern_return_t DNBArchMachARM64::SetRegisterState(int set) { |
| // Make sure we have a valid context to set. |
| kern_return_t err = GetRegisterState(set, false); |
| if (err != KERN_SUCCESS) |
| return err; |
| |
| switch (set) { |
| case e_regSetALL: |
| return SetGPRState() | SetVFPState() | SetEXCState() | SetDBGState(false); |
| case e_regSetGPR: |
| return SetGPRState(); |
| case e_regSetVFP: |
| return SetVFPState(); |
| case e_regSetEXC: |
| return SetEXCState(); |
| case e_regSetDBG: |
| return SetDBGState(false); |
| default: |
| break; |
| } |
| return KERN_INVALID_ARGUMENT; |
| } |
| |
| bool DNBArchMachARM64::RegisterSetStateIsValid(int set) const { |
| return m_state.RegsAreValid(set); |
| } |
| |
| nub_size_t DNBArchMachARM64::GetRegisterContext(void *buf, nub_size_t buf_len) { |
| nub_size_t size = sizeof(m_state.context.gpr) + sizeof(m_state.context.vfp) + |
| sizeof(m_state.context.exc); |
| |
| if (buf && buf_len) { |
| if (size > buf_len) |
| size = buf_len; |
| |
| bool force = false; |
| if (GetGPRState(force) | GetVFPState(force) | GetEXCState(force)) |
| return 0; |
| |
| // Copy each struct individually to avoid any padding that might be between |
| // the structs in m_state.context |
| uint8_t *p = (uint8_t *)buf; |
| ::memcpy(p, &m_state.context.gpr, sizeof(m_state.context.gpr)); |
| p += sizeof(m_state.context.gpr); |
| ::memcpy(p, &m_state.context.vfp, sizeof(m_state.context.vfp)); |
| p += sizeof(m_state.context.vfp); |
| ::memcpy(p, &m_state.context.exc, sizeof(m_state.context.exc)); |
| p += sizeof(m_state.context.exc); |
| |
| size_t bytes_written = p - (uint8_t *)buf; |
| UNUSED_IF_ASSERT_DISABLED(bytes_written); |
| assert(bytes_written == size); |
| } |
| DNBLogThreadedIf( |
| LOG_THREAD, |
| "DNBArchMachARM64::GetRegisterContext (buf = %p, len = %zu) => %zu", buf, |
| buf_len, size); |
| // Return the size of the register context even if NULL was passed in |
| return size; |
| } |
| |
| nub_size_t DNBArchMachARM64::SetRegisterContext(const void *buf, |
| nub_size_t buf_len) { |
| nub_size_t size = sizeof(m_state.context.gpr) + sizeof(m_state.context.vfp) + |
| sizeof(m_state.context.exc); |
| |
| if (buf == NULL || buf_len == 0) |
| size = 0; |
| |
| if (size) { |
| if (size > buf_len) |
| size = buf_len; |
| |
| // Copy each struct individually to avoid any padding that might be between |
| // the structs in m_state.context |
| uint8_t *p = (uint8_t *)buf; |
| ::memcpy(&m_state.context.gpr, p, sizeof(m_state.context.gpr)); |
| p += sizeof(m_state.context.gpr); |
| ::memcpy(&m_state.context.vfp, p, sizeof(m_state.context.vfp)); |
| p += sizeof(m_state.context.vfp); |
| ::memcpy(&m_state.context.exc, p, sizeof(m_state.context.exc)); |
| p += sizeof(m_state.context.exc); |
| |
| size_t bytes_written = p - (uint8_t *)buf; |
| UNUSED_IF_ASSERT_DISABLED(bytes_written); |
| assert(bytes_written == size); |
| SetGPRState(); |
| SetVFPState(); |
| SetEXCState(); |
| } |
| DNBLogThreadedIf( |
| LOG_THREAD, |
| "DNBArchMachARM64::SetRegisterContext (buf = %p, len = %zu) => %zu", buf, |
| buf_len, size); |
| return size; |
| } |
| |
| uint32_t DNBArchMachARM64::SaveRegisterState() { |
| kern_return_t kret = ::thread_abort_safely(m_thread->MachPortNumber()); |
| DNBLogThreadedIf( |
| LOG_THREAD, "thread = 0x%4.4x calling thread_abort_safely (tid) => %u " |
| "(SetGPRState() for stop_count = %u)", |
| m_thread->MachPortNumber(), kret, m_thread->Process()->StopCount()); |
| |
| // Always re-read the registers because above we call thread_abort_safely(); |
| bool force = true; |
| |
| if ((kret = GetGPRState(force)) != KERN_SUCCESS) { |
| DNBLogThreadedIf(LOG_THREAD, "DNBArchMachARM64::SaveRegisterState () " |
| "error: GPR regs failed to read: %u ", |
| kret); |
| } else if ((kret = GetVFPState(force)) != KERN_SUCCESS) { |
| DNBLogThreadedIf(LOG_THREAD, "DNBArchMachARM64::SaveRegisterState () " |
| "error: %s regs failed to read: %u", |
| "VFP", kret); |
| } else { |
| const uint32_t save_id = GetNextRegisterStateSaveID(); |
| m_saved_register_states[save_id] = m_state.context; |
| return save_id; |
| } |
| return UINT32_MAX; |
| } |
| |
| bool DNBArchMachARM64::RestoreRegisterState(uint32_t save_id) { |
| SaveRegisterStates::iterator pos = m_saved_register_states.find(save_id); |
| if (pos != m_saved_register_states.end()) { |
| m_state.context.gpr = pos->second.gpr; |
| m_state.context.vfp = pos->second.vfp; |
| kern_return_t kret; |
| bool success = true; |
| if ((kret = SetGPRState()) != KERN_SUCCESS) { |
| DNBLogThreadedIf(LOG_THREAD, "DNBArchMachARM64::RestoreRegisterState " |
| "(save_id = %u) error: GPR regs failed to " |
| "write: %u", |
| save_id, kret); |
| success = false; |
| } else if ((kret = SetVFPState()) != KERN_SUCCESS) { |
| DNBLogThreadedIf(LOG_THREAD, "DNBArchMachARM64::RestoreRegisterState " |
| "(save_id = %u) error: %s regs failed to " |
| "write: %u", |
| save_id, "VFP", kret); |
| success = false; |
| } |
| m_saved_register_states.erase(pos); |
| return success; |
| } |
| return false; |
| } |
| |
| #endif // #if defined (ARM_THREAD_STATE64_COUNT) |
| #endif // #if defined (__arm__) || defined (__arm64__) || defined (__aarch64__) |