| //===- AMDGPUBaseInfo.cpp - AMDGPU Base encoding information --------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "AMDGPUBaseInfo.h" |
| #include "AMDGPUTargetTransformInfo.h" |
| #include "AMDGPU.h" |
| #include "SIDefines.h" |
| #include "AMDGPUAsmUtils.h" |
| #include "llvm/ADT/StringRef.h" |
| #include "llvm/ADT/Triple.h" |
| #include "llvm/BinaryFormat/ELF.h" |
| #include "llvm/CodeGen/MachineMemOperand.h" |
| #include "llvm/IR/Attributes.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/GlobalValue.h" |
| #include "llvm/IR/Instruction.h" |
| #include "llvm/IR/LLVMContext.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/MC/MCContext.h" |
| #include "llvm/MC/MCInstrDesc.h" |
| #include "llvm/MC/MCInstrInfo.h" |
| #include "llvm/MC/MCRegisterInfo.h" |
| #include "llvm/MC/MCSectionELF.h" |
| #include "llvm/MC/MCSubtargetInfo.h" |
| #include "llvm/MC/SubtargetFeature.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/MathExtras.h" |
| #include <algorithm> |
| #include <cassert> |
| #include <cstdint> |
| #include <cstring> |
| #include <utility> |
| |
| #include "MCTargetDesc/AMDGPUMCTargetDesc.h" |
| |
| #define GET_INSTRINFO_NAMED_OPS |
| #define GET_INSTRMAP_INFO |
| #include "AMDGPUGenInstrInfo.inc" |
| #undef GET_INSTRMAP_INFO |
| #undef GET_INSTRINFO_NAMED_OPS |
| |
| namespace { |
| |
| /// \returns Bit mask for given bit \p Shift and bit \p Width. |
| unsigned getBitMask(unsigned Shift, unsigned Width) { |
| return ((1 << Width) - 1) << Shift; |
| } |
| |
| /// Packs \p Src into \p Dst for given bit \p Shift and bit \p Width. |
| /// |
| /// \returns Packed \p Dst. |
| unsigned packBits(unsigned Src, unsigned Dst, unsigned Shift, unsigned Width) { |
| Dst &= ~(1 << Shift) & ~getBitMask(Shift, Width); |
| Dst |= (Src << Shift) & getBitMask(Shift, Width); |
| return Dst; |
| } |
| |
| /// Unpacks bits from \p Src for given bit \p Shift and bit \p Width. |
| /// |
| /// \returns Unpacked bits. |
| unsigned unpackBits(unsigned Src, unsigned Shift, unsigned Width) { |
| return (Src & getBitMask(Shift, Width)) >> Shift; |
| } |
| |
| /// \returns Vmcnt bit shift (lower bits). |
| unsigned getVmcntBitShiftLo() { return 0; } |
| |
| /// \returns Vmcnt bit width (lower bits). |
| unsigned getVmcntBitWidthLo() { return 4; } |
| |
| /// \returns Expcnt bit shift. |
| unsigned getExpcntBitShift() { return 4; } |
| |
| /// \returns Expcnt bit width. |
| unsigned getExpcntBitWidth() { return 3; } |
| |
| /// \returns Lgkmcnt bit shift. |
| unsigned getLgkmcntBitShift() { return 8; } |
| |
| /// \returns Lgkmcnt bit width. |
| unsigned getLgkmcntBitWidth(unsigned VersionMajor) { |
| return (VersionMajor >= 10) ? 6 : 4; |
| } |
| |
| /// \returns Vmcnt bit shift (higher bits). |
| unsigned getVmcntBitShiftHi() { return 14; } |
| |
| /// \returns Vmcnt bit width (higher bits). |
| unsigned getVmcntBitWidthHi() { return 2; } |
| |
| } // end namespace anonymous |
| |
| namespace llvm { |
| |
| namespace AMDGPU { |
| |
| #define GET_MIMGBaseOpcodesTable_IMPL |
| #define GET_MIMGDimInfoTable_IMPL |
| #define GET_MIMGInfoTable_IMPL |
| #define GET_MIMGLZMappingTable_IMPL |
| #define GET_MIMGMIPMappingTable_IMPL |
| #include "AMDGPUGenSearchableTables.inc" |
| |
| int getMIMGOpcode(unsigned BaseOpcode, unsigned MIMGEncoding, |
| unsigned VDataDwords, unsigned VAddrDwords) { |
| const MIMGInfo *Info = getMIMGOpcodeHelper(BaseOpcode, MIMGEncoding, |
| VDataDwords, VAddrDwords); |
| return Info ? Info->Opcode : -1; |
| } |
| |
| const MIMGBaseOpcodeInfo *getMIMGBaseOpcode(unsigned Opc) { |
| const MIMGInfo *Info = getMIMGInfo(Opc); |
| return Info ? getMIMGBaseOpcodeInfo(Info->BaseOpcode) : nullptr; |
| } |
| |
| int getMaskedMIMGOp(unsigned Opc, unsigned NewChannels) { |
| const MIMGInfo *OrigInfo = getMIMGInfo(Opc); |
| const MIMGInfo *NewInfo = |
| getMIMGOpcodeHelper(OrigInfo->BaseOpcode, OrigInfo->MIMGEncoding, |
| NewChannels, OrigInfo->VAddrDwords); |
| return NewInfo ? NewInfo->Opcode : -1; |
| } |
| |
| struct MUBUFInfo { |
| uint16_t Opcode; |
| uint16_t BaseOpcode; |
| uint8_t dwords; |
| bool has_vaddr; |
| bool has_srsrc; |
| bool has_soffset; |
| }; |
| |
| #define GET_MUBUFInfoTable_DECL |
| #define GET_MUBUFInfoTable_IMPL |
| #include "AMDGPUGenSearchableTables.inc" |
| |
| int getMUBUFBaseOpcode(unsigned Opc) { |
| const MUBUFInfo *Info = getMUBUFInfoFromOpcode(Opc); |
| return Info ? Info->BaseOpcode : -1; |
| } |
| |
| int getMUBUFOpcode(unsigned BaseOpc, unsigned Dwords) { |
| const MUBUFInfo *Info = getMUBUFInfoFromBaseOpcodeAndDwords(BaseOpc, Dwords); |
| return Info ? Info->Opcode : -1; |
| } |
| |
| int getMUBUFDwords(unsigned Opc) { |
| const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc); |
| return Info ? Info->dwords : 0; |
| } |
| |
| bool getMUBUFHasVAddr(unsigned Opc) { |
| const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc); |
| return Info ? Info->has_vaddr : false; |
| } |
| |
| bool getMUBUFHasSrsrc(unsigned Opc) { |
| const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc); |
| return Info ? Info->has_srsrc : false; |
| } |
| |
| bool getMUBUFHasSoffset(unsigned Opc) { |
| const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc); |
| return Info ? Info->has_soffset : false; |
| } |
| |
| // Wrapper for Tablegen'd function. enum Subtarget is not defined in any |
| // header files, so we need to wrap it in a function that takes unsigned |
| // instead. |
| int getMCOpcode(uint16_t Opcode, unsigned Gen) { |
| return getMCOpcodeGen(Opcode, static_cast<Subtarget>(Gen)); |
| } |
| |
| namespace IsaInfo { |
| |
| void streamIsaVersion(const MCSubtargetInfo *STI, raw_ostream &Stream) { |
| auto TargetTriple = STI->getTargetTriple(); |
| auto Version = getIsaVersion(STI->getCPU()); |
| |
| Stream << TargetTriple.getArchName() << '-' |
| << TargetTriple.getVendorName() << '-' |
| << TargetTriple.getOSName() << '-' |
| << TargetTriple.getEnvironmentName() << '-' |
| << "gfx" |
| << Version.Major |
| << Version.Minor |
| << Version.Stepping; |
| |
| if (hasXNACK(*STI)) |
| Stream << "+xnack"; |
| if (hasSRAMECC(*STI)) |
| Stream << "+sram-ecc"; |
| |
| Stream.flush(); |
| } |
| |
| bool hasCodeObjectV3(const MCSubtargetInfo *STI) { |
| return STI->getTargetTriple().getOS() == Triple::AMDHSA && |
| STI->getFeatureBits().test(FeatureCodeObjectV3); |
| } |
| |
| unsigned getWavefrontSize(const MCSubtargetInfo *STI) { |
| if (STI->getFeatureBits().test(FeatureWavefrontSize16)) |
| return 16; |
| if (STI->getFeatureBits().test(FeatureWavefrontSize32)) |
| return 32; |
| |
| return 64; |
| } |
| |
| unsigned getLocalMemorySize(const MCSubtargetInfo *STI) { |
| if (STI->getFeatureBits().test(FeatureLocalMemorySize32768)) |
| return 32768; |
| if (STI->getFeatureBits().test(FeatureLocalMemorySize65536)) |
| return 65536; |
| |
| return 0; |
| } |
| |
| unsigned getEUsPerCU(const MCSubtargetInfo *STI) { |
| return 4; |
| } |
| |
| unsigned getMaxWorkGroupsPerCU(const MCSubtargetInfo *STI, |
| unsigned FlatWorkGroupSize) { |
| assert(FlatWorkGroupSize != 0); |
| if (STI->getTargetTriple().getArch() != Triple::amdgcn) |
| return 8; |
| unsigned N = getWavesPerWorkGroup(STI, FlatWorkGroupSize); |
| if (N == 1) |
| return 40; |
| N = 40 / N; |
| return std::min(N, 16u); |
| } |
| |
| unsigned getMaxWavesPerCU(const MCSubtargetInfo *STI) { |
| return getMaxWavesPerEU() * getEUsPerCU(STI); |
| } |
| |
| unsigned getMaxWavesPerCU(const MCSubtargetInfo *STI, |
| unsigned FlatWorkGroupSize) { |
| return getWavesPerWorkGroup(STI, FlatWorkGroupSize); |
| } |
| |
| unsigned getMinWavesPerEU(const MCSubtargetInfo *STI) { |
| return 1; |
| } |
| |
| unsigned getMaxWavesPerEU() { |
| // FIXME: Need to take scratch memory into account. |
| return 10; |
| } |
| |
| unsigned getMaxWavesPerEU(const MCSubtargetInfo *STI, |
| unsigned FlatWorkGroupSize) { |
| return alignTo(getMaxWavesPerCU(STI, FlatWorkGroupSize), |
| getEUsPerCU(STI)) / getEUsPerCU(STI); |
| } |
| |
| unsigned getMinFlatWorkGroupSize(const MCSubtargetInfo *STI) { |
| return 1; |
| } |
| |
| unsigned getMaxFlatWorkGroupSize(const MCSubtargetInfo *STI) { |
| return 2048; |
| } |
| |
| unsigned getWavesPerWorkGroup(const MCSubtargetInfo *STI, |
| unsigned FlatWorkGroupSize) { |
| return alignTo(FlatWorkGroupSize, getWavefrontSize(STI)) / |
| getWavefrontSize(STI); |
| } |
| |
| unsigned getSGPRAllocGranule(const MCSubtargetInfo *STI) { |
| IsaVersion Version = getIsaVersion(STI->getCPU()); |
| if (Version.Major >= 10) |
| return getAddressableNumSGPRs(STI); |
| if (Version.Major >= 8) |
| return 16; |
| return 8; |
| } |
| |
| unsigned getSGPREncodingGranule(const MCSubtargetInfo *STI) { |
| return 8; |
| } |
| |
| unsigned getTotalNumSGPRs(const MCSubtargetInfo *STI) { |
| IsaVersion Version = getIsaVersion(STI->getCPU()); |
| if (Version.Major >= 8) |
| return 800; |
| return 512; |
| } |
| |
| unsigned getAddressableNumSGPRs(const MCSubtargetInfo *STI) { |
| if (STI->getFeatureBits().test(FeatureSGPRInitBug)) |
| return FIXED_NUM_SGPRS_FOR_INIT_BUG; |
| |
| IsaVersion Version = getIsaVersion(STI->getCPU()); |
| if (Version.Major >= 10) |
| return 106; |
| if (Version.Major >= 8) |
| return 102; |
| return 104; |
| } |
| |
| unsigned getMinNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) { |
| assert(WavesPerEU != 0); |
| |
| IsaVersion Version = getIsaVersion(STI->getCPU()); |
| if (Version.Major >= 10) |
| return 0; |
| |
| if (WavesPerEU >= getMaxWavesPerEU()) |
| return 0; |
| |
| unsigned MinNumSGPRs = getTotalNumSGPRs(STI) / (WavesPerEU + 1); |
| if (STI->getFeatureBits().test(FeatureTrapHandler)) |
| MinNumSGPRs -= std::min(MinNumSGPRs, (unsigned)TRAP_NUM_SGPRS); |
| MinNumSGPRs = alignDown(MinNumSGPRs, getSGPRAllocGranule(STI)) + 1; |
| return std::min(MinNumSGPRs, getAddressableNumSGPRs(STI)); |
| } |
| |
| unsigned getMaxNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU, |
| bool Addressable) { |
| assert(WavesPerEU != 0); |
| |
| unsigned AddressableNumSGPRs = getAddressableNumSGPRs(STI); |
| IsaVersion Version = getIsaVersion(STI->getCPU()); |
| if (Version.Major >= 10) |
| return Addressable ? AddressableNumSGPRs : 108; |
| if (Version.Major >= 8 && !Addressable) |
| AddressableNumSGPRs = 112; |
| unsigned MaxNumSGPRs = getTotalNumSGPRs(STI) / WavesPerEU; |
| if (STI->getFeatureBits().test(FeatureTrapHandler)) |
| MaxNumSGPRs -= std::min(MaxNumSGPRs, (unsigned)TRAP_NUM_SGPRS); |
| MaxNumSGPRs = alignDown(MaxNumSGPRs, getSGPRAllocGranule(STI)); |
| return std::min(MaxNumSGPRs, AddressableNumSGPRs); |
| } |
| |
| unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed, |
| bool FlatScrUsed, bool XNACKUsed) { |
| unsigned ExtraSGPRs = 0; |
| if (VCCUsed) |
| ExtraSGPRs = 2; |
| |
| IsaVersion Version = getIsaVersion(STI->getCPU()); |
| if (Version.Major >= 10) |
| return ExtraSGPRs; |
| |
| if (Version.Major < 8) { |
| if (FlatScrUsed) |
| ExtraSGPRs = 4; |
| } else { |
| if (XNACKUsed) |
| ExtraSGPRs = 4; |
| |
| if (FlatScrUsed) |
| ExtraSGPRs = 6; |
| } |
| |
| return ExtraSGPRs; |
| } |
| |
| unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed, |
| bool FlatScrUsed) { |
| return getNumExtraSGPRs(STI, VCCUsed, FlatScrUsed, |
| STI->getFeatureBits().test(AMDGPU::FeatureXNACK)); |
| } |
| |
| unsigned getNumSGPRBlocks(const MCSubtargetInfo *STI, unsigned NumSGPRs) { |
| NumSGPRs = alignTo(std::max(1u, NumSGPRs), getSGPREncodingGranule(STI)); |
| // SGPRBlocks is actual number of SGPR blocks minus 1. |
| return NumSGPRs / getSGPREncodingGranule(STI) - 1; |
| } |
| |
| unsigned getVGPRAllocGranule(const MCSubtargetInfo *STI, |
| Optional<bool> EnableWavefrontSize32) { |
| bool IsWave32 = EnableWavefrontSize32 ? |
| *EnableWavefrontSize32 : |
| STI->getFeatureBits().test(FeatureWavefrontSize32); |
| return IsWave32 ? 8 : 4; |
| } |
| |
| unsigned getVGPREncodingGranule(const MCSubtargetInfo *STI, |
| Optional<bool> EnableWavefrontSize32) { |
| return getVGPRAllocGranule(STI, EnableWavefrontSize32); |
| } |
| |
| unsigned getTotalNumVGPRs(const MCSubtargetInfo *STI) { |
| return 256; |
| } |
| |
| unsigned getAddressableNumVGPRs(const MCSubtargetInfo *STI) { |
| return getTotalNumVGPRs(STI); |
| } |
| |
| unsigned getMinNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) { |
| assert(WavesPerEU != 0); |
| |
| if (WavesPerEU >= getMaxWavesPerEU()) |
| return 0; |
| unsigned MinNumVGPRs = |
| alignDown(getTotalNumVGPRs(STI) / (WavesPerEU + 1), |
| getVGPRAllocGranule(STI)) + 1; |
| return std::min(MinNumVGPRs, getAddressableNumVGPRs(STI)); |
| } |
| |
| unsigned getMaxNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) { |
| assert(WavesPerEU != 0); |
| |
| unsigned MaxNumVGPRs = alignDown(getTotalNumVGPRs(STI) / WavesPerEU, |
| getVGPRAllocGranule(STI)); |
| unsigned AddressableNumVGPRs = getAddressableNumVGPRs(STI); |
| return std::min(MaxNumVGPRs, AddressableNumVGPRs); |
| } |
| |
| unsigned getNumVGPRBlocks(const MCSubtargetInfo *STI, unsigned NumVGPRs, |
| Optional<bool> EnableWavefrontSize32) { |
| NumVGPRs = alignTo(std::max(1u, NumVGPRs), |
| getVGPREncodingGranule(STI, EnableWavefrontSize32)); |
| // VGPRBlocks is actual number of VGPR blocks minus 1. |
| return NumVGPRs / getVGPREncodingGranule(STI, EnableWavefrontSize32) - 1; |
| } |
| |
| } // end namespace IsaInfo |
| |
| void initDefaultAMDKernelCodeT(amd_kernel_code_t &Header, |
| const MCSubtargetInfo *STI) { |
| IsaVersion Version = getIsaVersion(STI->getCPU()); |
| |
| memset(&Header, 0, sizeof(Header)); |
| |
| Header.amd_kernel_code_version_major = 1; |
| Header.amd_kernel_code_version_minor = 2; |
| Header.amd_machine_kind = 1; // AMD_MACHINE_KIND_AMDGPU |
| Header.amd_machine_version_major = Version.Major; |
| Header.amd_machine_version_minor = Version.Minor; |
| Header.amd_machine_version_stepping = Version.Stepping; |
| Header.kernel_code_entry_byte_offset = sizeof(Header); |
| Header.wavefront_size = 6; |
| |
| // If the code object does not support indirect functions, then the value must |
| // be 0xffffffff. |
| Header.call_convention = -1; |
| |
| // These alignment values are specified in powers of two, so alignment = |
| // 2^n. The minimum alignment is 2^4 = 16. |
| Header.kernarg_segment_alignment = 4; |
| Header.group_segment_alignment = 4; |
| Header.private_segment_alignment = 4; |
| |
| if (Version.Major >= 10) { |
| if (STI->getFeatureBits().test(FeatureWavefrontSize32)) { |
| Header.wavefront_size = 5; |
| Header.code_properties |= AMD_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32; |
| } |
| Header.compute_pgm_resource_registers |= |
| S_00B848_WGP_MODE(STI->getFeatureBits().test(FeatureCuMode) ? 0 : 1) | |
| S_00B848_MEM_ORDERED(1); |
| } |
| } |
| |
| amdhsa::kernel_descriptor_t getDefaultAmdhsaKernelDescriptor( |
| const MCSubtargetInfo *STI) { |
| IsaVersion Version = getIsaVersion(STI->getCPU()); |
| |
| amdhsa::kernel_descriptor_t KD; |
| memset(&KD, 0, sizeof(KD)); |
| |
| AMDHSA_BITS_SET(KD.compute_pgm_rsrc1, |
| amdhsa::COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_16_64, |
| amdhsa::FLOAT_DENORM_MODE_FLUSH_NONE); |
| AMDHSA_BITS_SET(KD.compute_pgm_rsrc1, |
| amdhsa::COMPUTE_PGM_RSRC1_ENABLE_DX10_CLAMP, 1); |
| AMDHSA_BITS_SET(KD.compute_pgm_rsrc1, |
| amdhsa::COMPUTE_PGM_RSRC1_ENABLE_IEEE_MODE, 1); |
| AMDHSA_BITS_SET(KD.compute_pgm_rsrc2, |
| amdhsa::COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_X, 1); |
| if (Version.Major >= 10) { |
| AMDHSA_BITS_SET(KD.kernel_code_properties, |
| amdhsa::KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32, |
| STI->getFeatureBits().test(FeatureWavefrontSize32) ? 1 : 0); |
| AMDHSA_BITS_SET(KD.compute_pgm_rsrc1, |
| amdhsa::COMPUTE_PGM_RSRC1_WGP_MODE, |
| STI->getFeatureBits().test(FeatureCuMode) ? 0 : 1); |
| AMDHSA_BITS_SET(KD.compute_pgm_rsrc1, |
| amdhsa::COMPUTE_PGM_RSRC1_MEM_ORDERED, 1); |
| } |
| return KD; |
| } |
| |
| bool isGroupSegment(const GlobalValue *GV) { |
| return GV->getType()->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS; |
| } |
| |
| bool isGlobalSegment(const GlobalValue *GV) { |
| return GV->getType()->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS; |
| } |
| |
| bool isReadOnlySegment(const GlobalValue *GV) { |
| return GV->getType()->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS || |
| GV->getType()->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT; |
| } |
| |
| bool shouldEmitConstantsToTextSection(const Triple &TT) { |
| return TT.getOS() != Triple::AMDHSA; |
| } |
| |
| int getIntegerAttribute(const Function &F, StringRef Name, int Default) { |
| Attribute A = F.getFnAttribute(Name); |
| int Result = Default; |
| |
| if (A.isStringAttribute()) { |
| StringRef Str = A.getValueAsString(); |
| if (Str.getAsInteger(0, Result)) { |
| LLVMContext &Ctx = F.getContext(); |
| Ctx.emitError("can't parse integer attribute " + Name); |
| } |
| } |
| |
| return Result; |
| } |
| |
| std::pair<int, int> getIntegerPairAttribute(const Function &F, |
| StringRef Name, |
| std::pair<int, int> Default, |
| bool OnlyFirstRequired) { |
| Attribute A = F.getFnAttribute(Name); |
| if (!A.isStringAttribute()) |
| return Default; |
| |
| LLVMContext &Ctx = F.getContext(); |
| std::pair<int, int> Ints = Default; |
| std::pair<StringRef, StringRef> Strs = A.getValueAsString().split(','); |
| if (Strs.first.trim().getAsInteger(0, Ints.first)) { |
| Ctx.emitError("can't parse first integer attribute " + Name); |
| return Default; |
| } |
| if (Strs.second.trim().getAsInteger(0, Ints.second)) { |
| if (!OnlyFirstRequired || !Strs.second.trim().empty()) { |
| Ctx.emitError("can't parse second integer attribute " + Name); |
| return Default; |
| } |
| } |
| |
| return Ints; |
| } |
| |
| unsigned getVmcntBitMask(const IsaVersion &Version) { |
| unsigned VmcntLo = (1 << getVmcntBitWidthLo()) - 1; |
| if (Version.Major < 9) |
| return VmcntLo; |
| |
| unsigned VmcntHi = ((1 << getVmcntBitWidthHi()) - 1) << getVmcntBitWidthLo(); |
| return VmcntLo | VmcntHi; |
| } |
| |
| unsigned getExpcntBitMask(const IsaVersion &Version) { |
| return (1 << getExpcntBitWidth()) - 1; |
| } |
| |
| unsigned getLgkmcntBitMask(const IsaVersion &Version) { |
| return (1 << getLgkmcntBitWidth(Version.Major)) - 1; |
| } |
| |
| unsigned getWaitcntBitMask(const IsaVersion &Version) { |
| unsigned VmcntLo = getBitMask(getVmcntBitShiftLo(), getVmcntBitWidthLo()); |
| unsigned Expcnt = getBitMask(getExpcntBitShift(), getExpcntBitWidth()); |
| unsigned Lgkmcnt = getBitMask(getLgkmcntBitShift(), |
| getLgkmcntBitWidth(Version.Major)); |
| unsigned Waitcnt = VmcntLo | Expcnt | Lgkmcnt; |
| if (Version.Major < 9) |
| return Waitcnt; |
| |
| unsigned VmcntHi = getBitMask(getVmcntBitShiftHi(), getVmcntBitWidthHi()); |
| return Waitcnt | VmcntHi; |
| } |
| |
| unsigned decodeVmcnt(const IsaVersion &Version, unsigned Waitcnt) { |
| unsigned VmcntLo = |
| unpackBits(Waitcnt, getVmcntBitShiftLo(), getVmcntBitWidthLo()); |
| if (Version.Major < 9) |
| return VmcntLo; |
| |
| unsigned VmcntHi = |
| unpackBits(Waitcnt, getVmcntBitShiftHi(), getVmcntBitWidthHi()); |
| VmcntHi <<= getVmcntBitWidthLo(); |
| return VmcntLo | VmcntHi; |
| } |
| |
| unsigned decodeExpcnt(const IsaVersion &Version, unsigned Waitcnt) { |
| return unpackBits(Waitcnt, getExpcntBitShift(), getExpcntBitWidth()); |
| } |
| |
| unsigned decodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt) { |
| return unpackBits(Waitcnt, getLgkmcntBitShift(), |
| getLgkmcntBitWidth(Version.Major)); |
| } |
| |
| void decodeWaitcnt(const IsaVersion &Version, unsigned Waitcnt, |
| unsigned &Vmcnt, unsigned &Expcnt, unsigned &Lgkmcnt) { |
| Vmcnt = decodeVmcnt(Version, Waitcnt); |
| Expcnt = decodeExpcnt(Version, Waitcnt); |
| Lgkmcnt = decodeLgkmcnt(Version, Waitcnt); |
| } |
| |
| Waitcnt decodeWaitcnt(const IsaVersion &Version, unsigned Encoded) { |
| Waitcnt Decoded; |
| Decoded.VmCnt = decodeVmcnt(Version, Encoded); |
| Decoded.ExpCnt = decodeExpcnt(Version, Encoded); |
| Decoded.LgkmCnt = decodeLgkmcnt(Version, Encoded); |
| return Decoded; |
| } |
| |
| unsigned encodeVmcnt(const IsaVersion &Version, unsigned Waitcnt, |
| unsigned Vmcnt) { |
| Waitcnt = |
| packBits(Vmcnt, Waitcnt, getVmcntBitShiftLo(), getVmcntBitWidthLo()); |
| if (Version.Major < 9) |
| return Waitcnt; |
| |
| Vmcnt >>= getVmcntBitWidthLo(); |
| return packBits(Vmcnt, Waitcnt, getVmcntBitShiftHi(), getVmcntBitWidthHi()); |
| } |
| |
| unsigned encodeExpcnt(const IsaVersion &Version, unsigned Waitcnt, |
| unsigned Expcnt) { |
| return packBits(Expcnt, Waitcnt, getExpcntBitShift(), getExpcntBitWidth()); |
| } |
| |
| unsigned encodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt, |
| unsigned Lgkmcnt) { |
| return packBits(Lgkmcnt, Waitcnt, getLgkmcntBitShift(), |
| getLgkmcntBitWidth(Version.Major)); |
| } |
| |
| unsigned encodeWaitcnt(const IsaVersion &Version, |
| unsigned Vmcnt, unsigned Expcnt, unsigned Lgkmcnt) { |
| unsigned Waitcnt = getWaitcntBitMask(Version); |
| Waitcnt = encodeVmcnt(Version, Waitcnt, Vmcnt); |
| Waitcnt = encodeExpcnt(Version, Waitcnt, Expcnt); |
| Waitcnt = encodeLgkmcnt(Version, Waitcnt, Lgkmcnt); |
| return Waitcnt; |
| } |
| |
| unsigned encodeWaitcnt(const IsaVersion &Version, const Waitcnt &Decoded) { |
| return encodeWaitcnt(Version, Decoded.VmCnt, Decoded.ExpCnt, Decoded.LgkmCnt); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // hwreg |
| //===----------------------------------------------------------------------===// |
| |
| namespace Hwreg { |
| |
| int64_t getHwregId(const StringRef Name) { |
| for (int Id = ID_SYMBOLIC_FIRST_; Id < ID_SYMBOLIC_LAST_; ++Id) { |
| if (IdSymbolic[Id] && Name == IdSymbolic[Id]) |
| return Id; |
| } |
| return ID_UNKNOWN_; |
| } |
| |
| static unsigned getLastSymbolicHwreg(const MCSubtargetInfo &STI) { |
| if (isSI(STI) || isCI(STI) || isVI(STI)) |
| return ID_SYMBOLIC_FIRST_GFX9_; |
| else if (isGFX9(STI)) |
| return ID_SYMBOLIC_FIRST_GFX10_; |
| else |
| return ID_SYMBOLIC_LAST_; |
| } |
| |
| bool isValidHwreg(int64_t Id, const MCSubtargetInfo &STI) { |
| return ID_SYMBOLIC_FIRST_ <= Id && Id < getLastSymbolicHwreg(STI) && |
| IdSymbolic[Id]; |
| } |
| |
| bool isValidHwreg(int64_t Id) { |
| return 0 <= Id && isUInt<ID_WIDTH_>(Id); |
| } |
| |
| bool isValidHwregOffset(int64_t Offset) { |
| return 0 <= Offset && isUInt<OFFSET_WIDTH_>(Offset); |
| } |
| |
| bool isValidHwregWidth(int64_t Width) { |
| return 0 <= (Width - 1) && isUInt<WIDTH_M1_WIDTH_>(Width - 1); |
| } |
| |
| uint64_t encodeHwreg(uint64_t Id, uint64_t Offset, uint64_t Width) { |
| return (Id << ID_SHIFT_) | |
| (Offset << OFFSET_SHIFT_) | |
| ((Width - 1) << WIDTH_M1_SHIFT_); |
| } |
| |
| StringRef getHwreg(unsigned Id, const MCSubtargetInfo &STI) { |
| return isValidHwreg(Id, STI) ? IdSymbolic[Id] : ""; |
| } |
| |
| void decodeHwreg(unsigned Val, unsigned &Id, unsigned &Offset, unsigned &Width) { |
| Id = (Val & ID_MASK_) >> ID_SHIFT_; |
| Offset = (Val & OFFSET_MASK_) >> OFFSET_SHIFT_; |
| Width = ((Val & WIDTH_M1_MASK_) >> WIDTH_M1_SHIFT_) + 1; |
| } |
| |
| } // namespace Hwreg |
| |
| //===----------------------------------------------------------------------===// |
| // SendMsg |
| //===----------------------------------------------------------------------===// |
| |
| namespace SendMsg { |
| |
| int64_t getMsgId(const StringRef Name) { |
| for (int i = ID_GAPS_FIRST_; i < ID_GAPS_LAST_; ++i) { |
| if (IdSymbolic[i] && Name == IdSymbolic[i]) |
| return i; |
| } |
| return ID_UNKNOWN_; |
| } |
| |
| static bool isValidMsgId(int64_t MsgId) { |
| return (ID_GAPS_FIRST_ <= MsgId && MsgId < ID_GAPS_LAST_) && IdSymbolic[MsgId]; |
| } |
| |
| bool isValidMsgId(int64_t MsgId, const MCSubtargetInfo &STI, bool Strict) { |
| if (Strict) { |
| if (MsgId == ID_GS_ALLOC_REQ || MsgId == ID_GET_DOORBELL) |
| return isGFX9(STI) || isGFX10(STI); |
| else |
| return isValidMsgId(MsgId); |
| } else { |
| return 0 <= MsgId && isUInt<ID_WIDTH_>(MsgId); |
| } |
| } |
| |
| StringRef getMsgName(int64_t MsgId) { |
| return isValidMsgId(MsgId)? IdSymbolic[MsgId] : ""; |
| } |
| |
| int64_t getMsgOpId(int64_t MsgId, const StringRef Name) { |
| const char* const *S = (MsgId == ID_SYSMSG) ? OpSysSymbolic : OpGsSymbolic; |
| const int F = (MsgId == ID_SYSMSG) ? OP_SYS_FIRST_ : OP_GS_FIRST_; |
| const int L = (MsgId == ID_SYSMSG) ? OP_SYS_LAST_ : OP_GS_LAST_; |
| for (int i = F; i < L; ++i) { |
| if (Name == S[i]) { |
| return i; |
| } |
| } |
| return OP_UNKNOWN_; |
| } |
| |
| bool isValidMsgOp(int64_t MsgId, int64_t OpId, bool Strict) { |
| |
| if (!Strict) |
| return 0 <= OpId && isUInt<OP_WIDTH_>(OpId); |
| |
| switch(MsgId) |
| { |
| case ID_GS: |
| return (OP_GS_FIRST_ <= OpId && OpId < OP_GS_LAST_) && OpId != OP_GS_NOP; |
| case ID_GS_DONE: |
| return OP_GS_FIRST_ <= OpId && OpId < OP_GS_LAST_; |
| case ID_SYSMSG: |
| return OP_SYS_FIRST_ <= OpId && OpId < OP_SYS_LAST_; |
| default: |
| return OpId == OP_NONE_; |
| } |
| } |
| |
| StringRef getMsgOpName(int64_t MsgId, int64_t OpId) { |
| assert(msgRequiresOp(MsgId)); |
| return (MsgId == ID_SYSMSG)? OpSysSymbolic[OpId] : OpGsSymbolic[OpId]; |
| } |
| |
| bool isValidMsgStream(int64_t MsgId, int64_t OpId, int64_t StreamId, bool Strict) { |
| |
| if (!Strict) |
| return 0 <= StreamId && isUInt<STREAM_ID_WIDTH_>(StreamId); |
| |
| switch(MsgId) |
| { |
| case ID_GS: |
| return STREAM_ID_FIRST_ <= StreamId && StreamId < STREAM_ID_LAST_; |
| case ID_GS_DONE: |
| return (OpId == OP_GS_NOP)? |
| (StreamId == STREAM_ID_NONE_) : |
| (STREAM_ID_FIRST_ <= StreamId && StreamId < STREAM_ID_LAST_); |
| default: |
| return StreamId == STREAM_ID_NONE_; |
| } |
| } |
| |
| bool msgRequiresOp(int64_t MsgId) { |
| return MsgId == ID_GS || MsgId == ID_GS_DONE || MsgId == ID_SYSMSG; |
| } |
| |
| bool msgSupportsStream(int64_t MsgId, int64_t OpId) { |
| return (MsgId == ID_GS || MsgId == ID_GS_DONE) && OpId != OP_GS_NOP; |
| } |
| |
| void decodeMsg(unsigned Val, |
| uint16_t &MsgId, |
| uint16_t &OpId, |
| uint16_t &StreamId) { |
| MsgId = Val & ID_MASK_; |
| OpId = (Val & OP_MASK_) >> OP_SHIFT_; |
| StreamId = (Val & STREAM_ID_MASK_) >> STREAM_ID_SHIFT_; |
| } |
| |
| uint64_t encodeMsg(uint64_t MsgId, |
| uint64_t OpId, |
| uint64_t StreamId) { |
| return (MsgId << ID_SHIFT_) | |
| (OpId << OP_SHIFT_) | |
| (StreamId << STREAM_ID_SHIFT_); |
| } |
| |
| } // namespace SendMsg |
| |
| //===----------------------------------------------------------------------===// |
| // |
| //===----------------------------------------------------------------------===// |
| |
| unsigned getInitialPSInputAddr(const Function &F) { |
| return getIntegerAttribute(F, "InitialPSInputAddr", 0); |
| } |
| |
| bool isShader(CallingConv::ID cc) { |
| switch(cc) { |
| case CallingConv::AMDGPU_VS: |
| case CallingConv::AMDGPU_LS: |
| case CallingConv::AMDGPU_HS: |
| case CallingConv::AMDGPU_ES: |
| case CallingConv::AMDGPU_GS: |
| case CallingConv::AMDGPU_PS: |
| case CallingConv::AMDGPU_CS: |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| bool isCompute(CallingConv::ID cc) { |
| return !isShader(cc) || cc == CallingConv::AMDGPU_CS; |
| } |
| |
| bool isEntryFunctionCC(CallingConv::ID CC) { |
| switch (CC) { |
| case CallingConv::AMDGPU_KERNEL: |
| case CallingConv::SPIR_KERNEL: |
| case CallingConv::AMDGPU_VS: |
| case CallingConv::AMDGPU_GS: |
| case CallingConv::AMDGPU_PS: |
| case CallingConv::AMDGPU_CS: |
| case CallingConv::AMDGPU_ES: |
| case CallingConv::AMDGPU_HS: |
| case CallingConv::AMDGPU_LS: |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| bool hasXNACK(const MCSubtargetInfo &STI) { |
| return STI.getFeatureBits()[AMDGPU::FeatureXNACK]; |
| } |
| |
| bool hasSRAMECC(const MCSubtargetInfo &STI) { |
| return STI.getFeatureBits()[AMDGPU::FeatureSRAMECC]; |
| } |
| |
| bool hasMIMG_R128(const MCSubtargetInfo &STI) { |
| return STI.getFeatureBits()[AMDGPU::FeatureMIMG_R128]; |
| } |
| |
| bool hasPackedD16(const MCSubtargetInfo &STI) { |
| return !STI.getFeatureBits()[AMDGPU::FeatureUnpackedD16VMem]; |
| } |
| |
| bool isSI(const MCSubtargetInfo &STI) { |
| return STI.getFeatureBits()[AMDGPU::FeatureSouthernIslands]; |
| } |
| |
| bool isCI(const MCSubtargetInfo &STI) { |
| return STI.getFeatureBits()[AMDGPU::FeatureSeaIslands]; |
| } |
| |
| bool isVI(const MCSubtargetInfo &STI) { |
| return STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands]; |
| } |
| |
| bool isGFX9(const MCSubtargetInfo &STI) { |
| return STI.getFeatureBits()[AMDGPU::FeatureGFX9]; |
| } |
| |
| bool isGFX10(const MCSubtargetInfo &STI) { |
| return STI.getFeatureBits()[AMDGPU::FeatureGFX10]; |
| } |
| |
| bool isGCN3Encoding(const MCSubtargetInfo &STI) { |
| return STI.getFeatureBits()[AMDGPU::FeatureGCN3Encoding]; |
| } |
| |
| bool isSGPR(unsigned Reg, const MCRegisterInfo* TRI) { |
| const MCRegisterClass SGPRClass = TRI->getRegClass(AMDGPU::SReg_32RegClassID); |
| const unsigned FirstSubReg = TRI->getSubReg(Reg, 1); |
| return SGPRClass.contains(FirstSubReg != 0 ? FirstSubReg : Reg) || |
| Reg == AMDGPU::SCC; |
| } |
| |
| bool isRegIntersect(unsigned Reg0, unsigned Reg1, const MCRegisterInfo* TRI) { |
| for (MCRegAliasIterator R(Reg0, TRI, true); R.isValid(); ++R) { |
| if (*R == Reg1) return true; |
| } |
| return false; |
| } |
| |
| #define MAP_REG2REG \ |
| using namespace AMDGPU; \ |
| switch(Reg) { \ |
| default: return Reg; \ |
| CASE_CI_VI(FLAT_SCR) \ |
| CASE_CI_VI(FLAT_SCR_LO) \ |
| CASE_CI_VI(FLAT_SCR_HI) \ |
| CASE_VI_GFX9_GFX10(TTMP0) \ |
| CASE_VI_GFX9_GFX10(TTMP1) \ |
| CASE_VI_GFX9_GFX10(TTMP2) \ |
| CASE_VI_GFX9_GFX10(TTMP3) \ |
| CASE_VI_GFX9_GFX10(TTMP4) \ |
| CASE_VI_GFX9_GFX10(TTMP5) \ |
| CASE_VI_GFX9_GFX10(TTMP6) \ |
| CASE_VI_GFX9_GFX10(TTMP7) \ |
| CASE_VI_GFX9_GFX10(TTMP8) \ |
| CASE_VI_GFX9_GFX10(TTMP9) \ |
| CASE_VI_GFX9_GFX10(TTMP10) \ |
| CASE_VI_GFX9_GFX10(TTMP11) \ |
| CASE_VI_GFX9_GFX10(TTMP12) \ |
| CASE_VI_GFX9_GFX10(TTMP13) \ |
| CASE_VI_GFX9_GFX10(TTMP14) \ |
| CASE_VI_GFX9_GFX10(TTMP15) \ |
| CASE_VI_GFX9_GFX10(TTMP0_TTMP1) \ |
| CASE_VI_GFX9_GFX10(TTMP2_TTMP3) \ |
| CASE_VI_GFX9_GFX10(TTMP4_TTMP5) \ |
| CASE_VI_GFX9_GFX10(TTMP6_TTMP7) \ |
| CASE_VI_GFX9_GFX10(TTMP8_TTMP9) \ |
| CASE_VI_GFX9_GFX10(TTMP10_TTMP11) \ |
| CASE_VI_GFX9_GFX10(TTMP12_TTMP13) \ |
| CASE_VI_GFX9_GFX10(TTMP14_TTMP15) \ |
| CASE_VI_GFX9_GFX10(TTMP0_TTMP1_TTMP2_TTMP3) \ |
| CASE_VI_GFX9_GFX10(TTMP4_TTMP5_TTMP6_TTMP7) \ |
| CASE_VI_GFX9_GFX10(TTMP8_TTMP9_TTMP10_TTMP11) \ |
| CASE_VI_GFX9_GFX10(TTMP12_TTMP13_TTMP14_TTMP15) \ |
| CASE_VI_GFX9_GFX10(TTMP0_TTMP1_TTMP2_TTMP3_TTMP4_TTMP5_TTMP6_TTMP7) \ |
| CASE_VI_GFX9_GFX10(TTMP4_TTMP5_TTMP6_TTMP7_TTMP8_TTMP9_TTMP10_TTMP11) \ |
| CASE_VI_GFX9_GFX10(TTMP8_TTMP9_TTMP10_TTMP11_TTMP12_TTMP13_TTMP14_TTMP15) \ |
| CASE_VI_GFX9_GFX10(TTMP0_TTMP1_TTMP2_TTMP3_TTMP4_TTMP5_TTMP6_TTMP7_TTMP8_TTMP9_TTMP10_TTMP11_TTMP12_TTMP13_TTMP14_TTMP15) \ |
| } |
| |
| #define CASE_CI_VI(node) \ |
| assert(!isSI(STI)); \ |
| case node: return isCI(STI) ? node##_ci : node##_vi; |
| |
| #define CASE_VI_GFX9_GFX10(node) \ |
| case node: return (isGFX9(STI) || isGFX10(STI)) ? node##_gfx9_gfx10 : node##_vi; |
| |
| unsigned getMCReg(unsigned Reg, const MCSubtargetInfo &STI) { |
| if (STI.getTargetTriple().getArch() == Triple::r600) |
| return Reg; |
| MAP_REG2REG |
| } |
| |
| #undef CASE_CI_VI |
| #undef CASE_VI_GFX9_GFX10 |
| |
| #define CASE_CI_VI(node) case node##_ci: case node##_vi: return node; |
| #define CASE_VI_GFX9_GFX10(node) case node##_vi: case node##_gfx9_gfx10: return node; |
| |
| unsigned mc2PseudoReg(unsigned Reg) { |
| MAP_REG2REG |
| } |
| |
| #undef CASE_CI_VI |
| #undef CASE_VI_GFX9_GFX10 |
| #undef MAP_REG2REG |
| |
| bool isSISrcOperand(const MCInstrDesc &Desc, unsigned OpNo) { |
| assert(OpNo < Desc.NumOperands); |
| unsigned OpType = Desc.OpInfo[OpNo].OperandType; |
| return OpType >= AMDGPU::OPERAND_SRC_FIRST && |
| OpType <= AMDGPU::OPERAND_SRC_LAST; |
| } |
| |
| bool isSISrcFPOperand(const MCInstrDesc &Desc, unsigned OpNo) { |
| assert(OpNo < Desc.NumOperands); |
| unsigned OpType = Desc.OpInfo[OpNo].OperandType; |
| switch (OpType) { |
| case AMDGPU::OPERAND_REG_IMM_FP32: |
| case AMDGPU::OPERAND_REG_IMM_FP64: |
| case AMDGPU::OPERAND_REG_IMM_FP16: |
| case AMDGPU::OPERAND_REG_IMM_V2FP16: |
| case AMDGPU::OPERAND_REG_IMM_V2INT16: |
| case AMDGPU::OPERAND_REG_INLINE_C_FP32: |
| case AMDGPU::OPERAND_REG_INLINE_C_FP64: |
| case AMDGPU::OPERAND_REG_INLINE_C_FP16: |
| case AMDGPU::OPERAND_REG_INLINE_C_V2FP16: |
| case AMDGPU::OPERAND_REG_INLINE_C_V2INT16: |
| case AMDGPU::OPERAND_REG_INLINE_AC_FP32: |
| case AMDGPU::OPERAND_REG_INLINE_AC_FP16: |
| case AMDGPU::OPERAND_REG_INLINE_AC_V2FP16: |
| case AMDGPU::OPERAND_REG_INLINE_AC_V2INT16: |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| bool isSISrcInlinableOperand(const MCInstrDesc &Desc, unsigned OpNo) { |
| assert(OpNo < Desc.NumOperands); |
| unsigned OpType = Desc.OpInfo[OpNo].OperandType; |
| return OpType >= AMDGPU::OPERAND_REG_INLINE_C_FIRST && |
| OpType <= AMDGPU::OPERAND_REG_INLINE_C_LAST; |
| } |
| |
| // Avoid using MCRegisterClass::getSize, since that function will go away |
| // (move from MC* level to Target* level). Return size in bits. |
| unsigned getRegBitWidth(unsigned RCID) { |
| switch (RCID) { |
| case AMDGPU::SGPR_32RegClassID: |
| case AMDGPU::VGPR_32RegClassID: |
| case AMDGPU::VRegOrLds_32RegClassID: |
| case AMDGPU::AGPR_32RegClassID: |
| case AMDGPU::VS_32RegClassID: |
| case AMDGPU::AV_32RegClassID: |
| case AMDGPU::SReg_32RegClassID: |
| case AMDGPU::SReg_32_XM0RegClassID: |
| case AMDGPU::SRegOrLds_32RegClassID: |
| return 32; |
| case AMDGPU::SGPR_64RegClassID: |
| case AMDGPU::VS_64RegClassID: |
| case AMDGPU::AV_64RegClassID: |
| case AMDGPU::SReg_64RegClassID: |
| case AMDGPU::VReg_64RegClassID: |
| case AMDGPU::AReg_64RegClassID: |
| case AMDGPU::SReg_64_XEXECRegClassID: |
| return 64; |
| case AMDGPU::SGPR_96RegClassID: |
| case AMDGPU::SReg_96RegClassID: |
| case AMDGPU::VReg_96RegClassID: |
| return 96; |
| case AMDGPU::SGPR_128RegClassID: |
| case AMDGPU::SReg_128RegClassID: |
| case AMDGPU::VReg_128RegClassID: |
| case AMDGPU::AReg_128RegClassID: |
| return 128; |
| case AMDGPU::SGPR_160RegClassID: |
| case AMDGPU::SReg_160RegClassID: |
| case AMDGPU::VReg_160RegClassID: |
| return 160; |
| case AMDGPU::SReg_256RegClassID: |
| case AMDGPU::VReg_256RegClassID: |
| return 256; |
| case AMDGPU::SReg_512RegClassID: |
| case AMDGPU::VReg_512RegClassID: |
| case AMDGPU::AReg_512RegClassID: |
| return 512; |
| case AMDGPU::SReg_1024RegClassID: |
| case AMDGPU::VReg_1024RegClassID: |
| case AMDGPU::AReg_1024RegClassID: |
| return 1024; |
| default: |
| llvm_unreachable("Unexpected register class"); |
| } |
| } |
| |
| unsigned getRegBitWidth(const MCRegisterClass &RC) { |
| return getRegBitWidth(RC.getID()); |
| } |
| |
| unsigned getRegOperandSize(const MCRegisterInfo *MRI, const MCInstrDesc &Desc, |
| unsigned OpNo) { |
| assert(OpNo < Desc.NumOperands); |
| unsigned RCID = Desc.OpInfo[OpNo].RegClass; |
| return getRegBitWidth(MRI->getRegClass(RCID)) / 8; |
| } |
| |
| bool isInlinableLiteral64(int64_t Literal, bool HasInv2Pi) { |
| if (Literal >= -16 && Literal <= 64) |
| return true; |
| |
| uint64_t Val = static_cast<uint64_t>(Literal); |
| return (Val == DoubleToBits(0.0)) || |
| (Val == DoubleToBits(1.0)) || |
| (Val == DoubleToBits(-1.0)) || |
| (Val == DoubleToBits(0.5)) || |
| (Val == DoubleToBits(-0.5)) || |
| (Val == DoubleToBits(2.0)) || |
| (Val == DoubleToBits(-2.0)) || |
| (Val == DoubleToBits(4.0)) || |
| (Val == DoubleToBits(-4.0)) || |
| (Val == 0x3fc45f306dc9c882 && HasInv2Pi); |
| } |
| |
| bool isInlinableLiteral32(int32_t Literal, bool HasInv2Pi) { |
| if (Literal >= -16 && Literal <= 64) |
| return true; |
| |
| // The actual type of the operand does not seem to matter as long |
| // as the bits match one of the inline immediate values. For example: |
| // |
| // -nan has the hexadecimal encoding of 0xfffffffe which is -2 in decimal, |
| // so it is a legal inline immediate. |
| // |
| // 1065353216 has the hexadecimal encoding 0x3f800000 which is 1.0f in |
| // floating-point, so it is a legal inline immediate. |
| |
| uint32_t Val = static_cast<uint32_t>(Literal); |
| return (Val == FloatToBits(0.0f)) || |
| (Val == FloatToBits(1.0f)) || |
| (Val == FloatToBits(-1.0f)) || |
| (Val == FloatToBits(0.5f)) || |
| (Val == FloatToBits(-0.5f)) || |
| (Val == FloatToBits(2.0f)) || |
| (Val == FloatToBits(-2.0f)) || |
| (Val == FloatToBits(4.0f)) || |
| (Val == FloatToBits(-4.0f)) || |
| (Val == 0x3e22f983 && HasInv2Pi); |
| } |
| |
| bool isInlinableLiteral16(int16_t Literal, bool HasInv2Pi) { |
| if (!HasInv2Pi) |
| return false; |
| |
| if (Literal >= -16 && Literal <= 64) |
| return true; |
| |
| uint16_t Val = static_cast<uint16_t>(Literal); |
| return Val == 0x3C00 || // 1.0 |
| Val == 0xBC00 || // -1.0 |
| Val == 0x3800 || // 0.5 |
| Val == 0xB800 || // -0.5 |
| Val == 0x4000 || // 2.0 |
| Val == 0xC000 || // -2.0 |
| Val == 0x4400 || // 4.0 |
| Val == 0xC400 || // -4.0 |
| Val == 0x3118; // 1/2pi |
| } |
| |
| bool isInlinableLiteralV216(int32_t Literal, bool HasInv2Pi) { |
| assert(HasInv2Pi); |
| |
| if (isInt<16>(Literal) || isUInt<16>(Literal)) { |
| int16_t Trunc = static_cast<int16_t>(Literal); |
| return AMDGPU::isInlinableLiteral16(Trunc, HasInv2Pi); |
| } |
| if (!(Literal & 0xffff)) |
| return AMDGPU::isInlinableLiteral16(Literal >> 16, HasInv2Pi); |
| |
| int16_t Lo16 = static_cast<int16_t>(Literal); |
| int16_t Hi16 = static_cast<int16_t>(Literal >> 16); |
| return Lo16 == Hi16 && isInlinableLiteral16(Lo16, HasInv2Pi); |
| } |
| |
| bool isArgPassedInSGPR(const Argument *A) { |
| const Function *F = A->getParent(); |
| |
| // Arguments to compute shaders are never a source of divergence. |
| CallingConv::ID CC = F->getCallingConv(); |
| switch (CC) { |
| case CallingConv::AMDGPU_KERNEL: |
| case CallingConv::SPIR_KERNEL: |
| return true; |
| case CallingConv::AMDGPU_VS: |
| case CallingConv::AMDGPU_LS: |
| case CallingConv::AMDGPU_HS: |
| case CallingConv::AMDGPU_ES: |
| case CallingConv::AMDGPU_GS: |
| case CallingConv::AMDGPU_PS: |
| case CallingConv::AMDGPU_CS: |
| // For non-compute shaders, SGPR inputs are marked with either inreg or byval. |
| // Everything else is in VGPRs. |
| return F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::InReg) || |
| F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::ByVal); |
| default: |
| // TODO: Should calls support inreg for SGPR inputs? |
| return false; |
| } |
| } |
| |
| static bool hasSMEMByteOffset(const MCSubtargetInfo &ST) { |
| return isGCN3Encoding(ST) || isGFX10(ST); |
| } |
| |
| int64_t getSMRDEncodedOffset(const MCSubtargetInfo &ST, int64_t ByteOffset) { |
| if (hasSMEMByteOffset(ST)) |
| return ByteOffset; |
| return ByteOffset >> 2; |
| } |
| |
| bool isLegalSMRDImmOffset(const MCSubtargetInfo &ST, int64_t ByteOffset) { |
| int64_t EncodedOffset = getSMRDEncodedOffset(ST, ByteOffset); |
| return (hasSMEMByteOffset(ST)) ? |
| isUInt<20>(EncodedOffset) : isUInt<8>(EncodedOffset); |
| } |
| |
| // Given Imm, split it into the values to put into the SOffset and ImmOffset |
| // fields in an MUBUF instruction. Return false if it is not possible (due to a |
| // hardware bug needing a workaround). |
| // |
| // The required alignment ensures that individual address components remain |
| // aligned if they are aligned to begin with. It also ensures that additional |
| // offsets within the given alignment can be added to the resulting ImmOffset. |
| bool splitMUBUFOffset(uint32_t Imm, uint32_t &SOffset, uint32_t &ImmOffset, |
| const GCNSubtarget *Subtarget, uint32_t Align) { |
| const uint32_t MaxImm = alignDown(4095, Align); |
| uint32_t Overflow = 0; |
| |
| if (Imm > MaxImm) { |
| if (Imm <= MaxImm + 64) { |
| // Use an SOffset inline constant for 4..64 |
| Overflow = Imm - MaxImm; |
| Imm = MaxImm; |
| } else { |
| // Try to keep the same value in SOffset for adjacent loads, so that |
| // the corresponding register contents can be re-used. |
| // |
| // Load values with all low-bits (except for alignment bits) set into |
| // SOffset, so that a larger range of values can be covered using |
| // s_movk_i32. |
| // |
| // Atomic operations fail to work correctly when individual address |
| // components are unaligned, even if their sum is aligned. |
| uint32_t High = (Imm + Align) & ~4095; |
| uint32_t Low = (Imm + Align) & 4095; |
| Imm = Low; |
| Overflow = High - Align; |
| } |
| } |
| |
| // There is a hardware bug in SI and CI which prevents address clamping in |
| // MUBUF instructions from working correctly with SOffsets. The immediate |
| // offset is unaffected. |
| if (Overflow > 0 && |
| Subtarget->getGeneration() <= AMDGPUSubtarget::SEA_ISLANDS) |
| return false; |
| |
| ImmOffset = Imm; |
| SOffset = Overflow; |
| return true; |
| } |
| |
| SIModeRegisterDefaults::SIModeRegisterDefaults(const Function &F) { |
| *this = getDefaultForCallingConv(F.getCallingConv()); |
| |
| StringRef IEEEAttr = F.getFnAttribute("amdgpu-ieee").getValueAsString(); |
| if (!IEEEAttr.empty()) |
| IEEE = IEEEAttr == "true"; |
| |
| StringRef DX10ClampAttr |
| = F.getFnAttribute("amdgpu-dx10-clamp").getValueAsString(); |
| if (!DX10ClampAttr.empty()) |
| DX10Clamp = DX10ClampAttr == "true"; |
| } |
| |
| namespace { |
| |
| struct SourceOfDivergence { |
| unsigned Intr; |
| }; |
| const SourceOfDivergence *lookupSourceOfDivergence(unsigned Intr); |
| |
| #define GET_SourcesOfDivergence_IMPL |
| #include "AMDGPUGenSearchableTables.inc" |
| |
| } // end anonymous namespace |
| |
| bool isIntrinsicSourceOfDivergence(unsigned IntrID) { |
| return lookupSourceOfDivergence(IntrID); |
| } |
| |
| } // namespace AMDGPU |
| } // namespace llvm |