| //===- ARMTargetTransformInfo.cpp - ARM specific TTI ----------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "ARMTargetTransformInfo.h" |
| #include "ARMSubtarget.h" |
| #include "MCTargetDesc/ARMAddressingModes.h" |
| #include "llvm/ADT/APInt.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/Analysis/LoopInfo.h" |
| #include "llvm/CodeGen/CostTable.h" |
| #include "llvm/CodeGen/ISDOpcodes.h" |
| #include "llvm/CodeGen/ValueTypes.h" |
| #include "llvm/IR/BasicBlock.h" |
| #include "llvm/IR/CallSite.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/IR/DerivedTypes.h" |
| #include "llvm/IR/Instruction.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/IntrinsicInst.h" |
| #include "llvm/IR/Type.h" |
| #include "llvm/MC/SubtargetFeature.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/MachineValueType.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include <algorithm> |
| #include <cassert> |
| #include <cstdint> |
| #include <utility> |
| |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "armtti" |
| |
| static cl::opt<bool> DisableLowOverheadLoops( |
| "disable-arm-loloops", cl::Hidden, cl::init(true), |
| cl::desc("Disable the generation of low-overhead loops")); |
| |
| bool ARMTTIImpl::areInlineCompatible(const Function *Caller, |
| const Function *Callee) const { |
| const TargetMachine &TM = getTLI()->getTargetMachine(); |
| const FeatureBitset &CallerBits = |
| TM.getSubtargetImpl(*Caller)->getFeatureBits(); |
| const FeatureBitset &CalleeBits = |
| TM.getSubtargetImpl(*Callee)->getFeatureBits(); |
| |
| // To inline a callee, all features not in the whitelist must match exactly. |
| bool MatchExact = (CallerBits & ~InlineFeatureWhitelist) == |
| (CalleeBits & ~InlineFeatureWhitelist); |
| // For features in the whitelist, the callee's features must be a subset of |
| // the callers'. |
| bool MatchSubset = ((CallerBits & CalleeBits) & InlineFeatureWhitelist) == |
| (CalleeBits & InlineFeatureWhitelist); |
| return MatchExact && MatchSubset; |
| } |
| |
| int ARMTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty) { |
| assert(Ty->isIntegerTy()); |
| |
| unsigned Bits = Ty->getPrimitiveSizeInBits(); |
| if (Bits == 0 || Imm.getActiveBits() >= 64) |
| return 4; |
| |
| int64_t SImmVal = Imm.getSExtValue(); |
| uint64_t ZImmVal = Imm.getZExtValue(); |
| if (!ST->isThumb()) { |
| if ((SImmVal >= 0 && SImmVal < 65536) || |
| (ARM_AM::getSOImmVal(ZImmVal) != -1) || |
| (ARM_AM::getSOImmVal(~ZImmVal) != -1)) |
| return 1; |
| return ST->hasV6T2Ops() ? 2 : 3; |
| } |
| if (ST->isThumb2()) { |
| if ((SImmVal >= 0 && SImmVal < 65536) || |
| (ARM_AM::getT2SOImmVal(ZImmVal) != -1) || |
| (ARM_AM::getT2SOImmVal(~ZImmVal) != -1)) |
| return 1; |
| return ST->hasV6T2Ops() ? 2 : 3; |
| } |
| // Thumb1, any i8 imm cost 1. |
| if (Bits == 8 || (SImmVal >= 0 && SImmVal < 256)) |
| return 1; |
| if ((~SImmVal < 256) || ARM_AM::isThumbImmShiftedVal(ZImmVal)) |
| return 2; |
| // Load from constantpool. |
| return 3; |
| } |
| |
| // Constants smaller than 256 fit in the immediate field of |
| // Thumb1 instructions so we return a zero cost and 1 otherwise. |
| int ARMTTIImpl::getIntImmCodeSizeCost(unsigned Opcode, unsigned Idx, |
| const APInt &Imm, Type *Ty) { |
| if (Imm.isNonNegative() && Imm.getLimitedValue() < 256) |
| return 0; |
| |
| return 1; |
| } |
| |
| int ARMTTIImpl::getIntImmCost(unsigned Opcode, unsigned Idx, const APInt &Imm, |
| Type *Ty) { |
| // Division by a constant can be turned into multiplication, but only if we |
| // know it's constant. So it's not so much that the immediate is cheap (it's |
| // not), but that the alternative is worse. |
| // FIXME: this is probably unneeded with GlobalISel. |
| if ((Opcode == Instruction::SDiv || Opcode == Instruction::UDiv || |
| Opcode == Instruction::SRem || Opcode == Instruction::URem) && |
| Idx == 1) |
| return 0; |
| |
| if (Opcode == Instruction::And) { |
| // UXTB/UXTH |
| if (Imm == 255 || Imm == 65535) |
| return 0; |
| // Conversion to BIC is free, and means we can use ~Imm instead. |
| return std::min(getIntImmCost(Imm, Ty), getIntImmCost(~Imm, Ty)); |
| } |
| |
| if (Opcode == Instruction::Add) |
| // Conversion to SUB is free, and means we can use -Imm instead. |
| return std::min(getIntImmCost(Imm, Ty), getIntImmCost(-Imm, Ty)); |
| |
| if (Opcode == Instruction::ICmp && Imm.isNegative() && |
| Ty->getIntegerBitWidth() == 32) { |
| int64_t NegImm = -Imm.getSExtValue(); |
| if (ST->isThumb2() && NegImm < 1<<12) |
| // icmp X, #-C -> cmn X, #C |
| return 0; |
| if (ST->isThumb() && NegImm < 1<<8) |
| // icmp X, #-C -> adds X, #C |
| return 0; |
| } |
| |
| // xor a, -1 can always be folded to MVN |
| if (Opcode == Instruction::Xor && Imm.isAllOnesValue()) |
| return 0; |
| |
| return getIntImmCost(Imm, Ty); |
| } |
| |
| int ARMTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src, |
| const Instruction *I) { |
| int ISD = TLI->InstructionOpcodeToISD(Opcode); |
| assert(ISD && "Invalid opcode"); |
| |
| // Single to/from double precision conversions. |
| static const CostTblEntry NEONFltDblTbl[] = { |
| // Vector fptrunc/fpext conversions. |
| { ISD::FP_ROUND, MVT::v2f64, 2 }, |
| { ISD::FP_EXTEND, MVT::v2f32, 2 }, |
| { ISD::FP_EXTEND, MVT::v4f32, 4 } |
| }; |
| |
| if (Src->isVectorTy() && ST->hasNEON() && (ISD == ISD::FP_ROUND || |
| ISD == ISD::FP_EXTEND)) { |
| std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Src); |
| if (const auto *Entry = CostTableLookup(NEONFltDblTbl, ISD, LT.second)) |
| return LT.first * Entry->Cost; |
| } |
| |
| EVT SrcTy = TLI->getValueType(DL, Src); |
| EVT DstTy = TLI->getValueType(DL, Dst); |
| |
| if (!SrcTy.isSimple() || !DstTy.isSimple()) |
| return BaseT::getCastInstrCost(Opcode, Dst, Src); |
| |
| // Some arithmetic, load and store operations have specific instructions |
| // to cast up/down their types automatically at no extra cost. |
| // TODO: Get these tables to know at least what the related operations are. |
| static const TypeConversionCostTblEntry NEONVectorConversionTbl[] = { |
| { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 0 }, |
| { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 0 }, |
| { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i32, 1 }, |
| { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i32, 1 }, |
| { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 0 }, |
| { ISD::TRUNCATE, MVT::v4i16, MVT::v4i32, 1 }, |
| |
| // The number of vmovl instructions for the extension. |
| { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 3 }, |
| { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 }, |
| { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 3 }, |
| { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 3 }, |
| { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i8, 7 }, |
| { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i8, 7 }, |
| { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i16, 6 }, |
| { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i16, 6 }, |
| { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 6 }, |
| { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 6 }, |
| |
| // Operations that we legalize using splitting. |
| { ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, 6 }, |
| { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 3 }, |
| |
| // Vector float <-> i32 conversions. |
| { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 }, |
| { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 }, |
| |
| { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i8, 3 }, |
| { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i8, 3 }, |
| { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i16, 2 }, |
| { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i16, 2 }, |
| { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 }, |
| { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 }, |
| { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i1, 3 }, |
| { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i1, 3 }, |
| { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i8, 3 }, |
| { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i8, 3 }, |
| { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 }, |
| { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 }, |
| { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 }, |
| { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 }, |
| { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i32, 2 }, |
| { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i32, 2 }, |
| { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i16, 8 }, |
| { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i16, 8 }, |
| { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i32, 4 }, |
| { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i32, 4 }, |
| |
| { ISD::FP_TO_SINT, MVT::v4i32, MVT::v4f32, 1 }, |
| { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f32, 1 }, |
| { ISD::FP_TO_SINT, MVT::v4i8, MVT::v4f32, 3 }, |
| { ISD::FP_TO_UINT, MVT::v4i8, MVT::v4f32, 3 }, |
| { ISD::FP_TO_SINT, MVT::v4i16, MVT::v4f32, 2 }, |
| { ISD::FP_TO_UINT, MVT::v4i16, MVT::v4f32, 2 }, |
| |
| // Vector double <-> i32 conversions. |
| { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 }, |
| { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 }, |
| |
| { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i8, 4 }, |
| { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i8, 4 }, |
| { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i16, 3 }, |
| { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i16, 3 }, |
| { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 }, |
| { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 }, |
| |
| { ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f64, 2 }, |
| { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f64, 2 }, |
| { ISD::FP_TO_SINT, MVT::v8i16, MVT::v8f32, 4 }, |
| { ISD::FP_TO_UINT, MVT::v8i16, MVT::v8f32, 4 }, |
| { ISD::FP_TO_SINT, MVT::v16i16, MVT::v16f32, 8 }, |
| { ISD::FP_TO_UINT, MVT::v16i16, MVT::v16f32, 8 } |
| }; |
| |
| if (SrcTy.isVector() && ST->hasNEON()) { |
| if (const auto *Entry = ConvertCostTableLookup(NEONVectorConversionTbl, ISD, |
| DstTy.getSimpleVT(), |
| SrcTy.getSimpleVT())) |
| return Entry->Cost; |
| } |
| |
| // Scalar float to integer conversions. |
| static const TypeConversionCostTblEntry NEONFloatConversionTbl[] = { |
| { ISD::FP_TO_SINT, MVT::i1, MVT::f32, 2 }, |
| { ISD::FP_TO_UINT, MVT::i1, MVT::f32, 2 }, |
| { ISD::FP_TO_SINT, MVT::i1, MVT::f64, 2 }, |
| { ISD::FP_TO_UINT, MVT::i1, MVT::f64, 2 }, |
| { ISD::FP_TO_SINT, MVT::i8, MVT::f32, 2 }, |
| { ISD::FP_TO_UINT, MVT::i8, MVT::f32, 2 }, |
| { ISD::FP_TO_SINT, MVT::i8, MVT::f64, 2 }, |
| { ISD::FP_TO_UINT, MVT::i8, MVT::f64, 2 }, |
| { ISD::FP_TO_SINT, MVT::i16, MVT::f32, 2 }, |
| { ISD::FP_TO_UINT, MVT::i16, MVT::f32, 2 }, |
| { ISD::FP_TO_SINT, MVT::i16, MVT::f64, 2 }, |
| { ISD::FP_TO_UINT, MVT::i16, MVT::f64, 2 }, |
| { ISD::FP_TO_SINT, MVT::i32, MVT::f32, 2 }, |
| { ISD::FP_TO_UINT, MVT::i32, MVT::f32, 2 }, |
| { ISD::FP_TO_SINT, MVT::i32, MVT::f64, 2 }, |
| { ISD::FP_TO_UINT, MVT::i32, MVT::f64, 2 }, |
| { ISD::FP_TO_SINT, MVT::i64, MVT::f32, 10 }, |
| { ISD::FP_TO_UINT, MVT::i64, MVT::f32, 10 }, |
| { ISD::FP_TO_SINT, MVT::i64, MVT::f64, 10 }, |
| { ISD::FP_TO_UINT, MVT::i64, MVT::f64, 10 } |
| }; |
| if (SrcTy.isFloatingPoint() && ST->hasNEON()) { |
| if (const auto *Entry = ConvertCostTableLookup(NEONFloatConversionTbl, ISD, |
| DstTy.getSimpleVT(), |
| SrcTy.getSimpleVT())) |
| return Entry->Cost; |
| } |
| |
| // Scalar integer to float conversions. |
| static const TypeConversionCostTblEntry NEONIntegerConversionTbl[] = { |
| { ISD::SINT_TO_FP, MVT::f32, MVT::i1, 2 }, |
| { ISD::UINT_TO_FP, MVT::f32, MVT::i1, 2 }, |
| { ISD::SINT_TO_FP, MVT::f64, MVT::i1, 2 }, |
| { ISD::UINT_TO_FP, MVT::f64, MVT::i1, 2 }, |
| { ISD::SINT_TO_FP, MVT::f32, MVT::i8, 2 }, |
| { ISD::UINT_TO_FP, MVT::f32, MVT::i8, 2 }, |
| { ISD::SINT_TO_FP, MVT::f64, MVT::i8, 2 }, |
| { ISD::UINT_TO_FP, MVT::f64, MVT::i8, 2 }, |
| { ISD::SINT_TO_FP, MVT::f32, MVT::i16, 2 }, |
| { ISD::UINT_TO_FP, MVT::f32, MVT::i16, 2 }, |
| { ISD::SINT_TO_FP, MVT::f64, MVT::i16, 2 }, |
| { ISD::UINT_TO_FP, MVT::f64, MVT::i16, 2 }, |
| { ISD::SINT_TO_FP, MVT::f32, MVT::i32, 2 }, |
| { ISD::UINT_TO_FP, MVT::f32, MVT::i32, 2 }, |
| { ISD::SINT_TO_FP, MVT::f64, MVT::i32, 2 }, |
| { ISD::UINT_TO_FP, MVT::f64, MVT::i32, 2 }, |
| { ISD::SINT_TO_FP, MVT::f32, MVT::i64, 10 }, |
| { ISD::UINT_TO_FP, MVT::f32, MVT::i64, 10 }, |
| { ISD::SINT_TO_FP, MVT::f64, MVT::i64, 10 }, |
| { ISD::UINT_TO_FP, MVT::f64, MVT::i64, 10 } |
| }; |
| |
| if (SrcTy.isInteger() && ST->hasNEON()) { |
| if (const auto *Entry = ConvertCostTableLookup(NEONIntegerConversionTbl, |
| ISD, DstTy.getSimpleVT(), |
| SrcTy.getSimpleVT())) |
| return Entry->Cost; |
| } |
| |
| // Scalar integer conversion costs. |
| static const TypeConversionCostTblEntry ARMIntegerConversionTbl[] = { |
| // i16 -> i64 requires two dependent operations. |
| { ISD::SIGN_EXTEND, MVT::i64, MVT::i16, 2 }, |
| |
| // Truncates on i64 are assumed to be free. |
| { ISD::TRUNCATE, MVT::i32, MVT::i64, 0 }, |
| { ISD::TRUNCATE, MVT::i16, MVT::i64, 0 }, |
| { ISD::TRUNCATE, MVT::i8, MVT::i64, 0 }, |
| { ISD::TRUNCATE, MVT::i1, MVT::i64, 0 } |
| }; |
| |
| if (SrcTy.isInteger()) { |
| if (const auto *Entry = ConvertCostTableLookup(ARMIntegerConversionTbl, ISD, |
| DstTy.getSimpleVT(), |
| SrcTy.getSimpleVT())) |
| return Entry->Cost; |
| } |
| |
| return BaseT::getCastInstrCost(Opcode, Dst, Src); |
| } |
| |
| int ARMTTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy, |
| unsigned Index) { |
| // Penalize inserting into an D-subregister. We end up with a three times |
| // lower estimated throughput on swift. |
| if (ST->hasSlowLoadDSubregister() && Opcode == Instruction::InsertElement && |
| ValTy->isVectorTy() && ValTy->getScalarSizeInBits() <= 32) |
| return 3; |
| |
| if ((Opcode == Instruction::InsertElement || |
| Opcode == Instruction::ExtractElement)) { |
| // Cross-class copies are expensive on many microarchitectures, |
| // so assume they are expensive by default. |
| if (ValTy->getVectorElementType()->isIntegerTy()) |
| return 3; |
| |
| // Even if it's not a cross class copy, this likely leads to mixing |
| // of NEON and VFP code and should be therefore penalized. |
| if (ValTy->isVectorTy() && |
| ValTy->getScalarSizeInBits() <= 32) |
| return std::max(BaseT::getVectorInstrCost(Opcode, ValTy, Index), 2U); |
| } |
| |
| return BaseT::getVectorInstrCost(Opcode, ValTy, Index); |
| } |
| |
| int ARMTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy, |
| const Instruction *I) { |
| int ISD = TLI->InstructionOpcodeToISD(Opcode); |
| // On NEON a vector select gets lowered to vbsl. |
| if (ST->hasNEON() && ValTy->isVectorTy() && ISD == ISD::SELECT) { |
| // Lowering of some vector selects is currently far from perfect. |
| static const TypeConversionCostTblEntry NEONVectorSelectTbl[] = { |
| { ISD::SELECT, MVT::v4i1, MVT::v4i64, 4*4 + 1*2 + 1 }, |
| { ISD::SELECT, MVT::v8i1, MVT::v8i64, 50 }, |
| { ISD::SELECT, MVT::v16i1, MVT::v16i64, 100 } |
| }; |
| |
| EVT SelCondTy = TLI->getValueType(DL, CondTy); |
| EVT SelValTy = TLI->getValueType(DL, ValTy); |
| if (SelCondTy.isSimple() && SelValTy.isSimple()) { |
| if (const auto *Entry = ConvertCostTableLookup(NEONVectorSelectTbl, ISD, |
| SelCondTy.getSimpleVT(), |
| SelValTy.getSimpleVT())) |
| return Entry->Cost; |
| } |
| |
| std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy); |
| return LT.first; |
| } |
| |
| return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, I); |
| } |
| |
| int ARMTTIImpl::getAddressComputationCost(Type *Ty, ScalarEvolution *SE, |
| const SCEV *Ptr) { |
| // Address computations in vectorized code with non-consecutive addresses will |
| // likely result in more instructions compared to scalar code where the |
| // computation can more often be merged into the index mode. The resulting |
| // extra micro-ops can significantly decrease throughput. |
| unsigned NumVectorInstToHideOverhead = 10; |
| int MaxMergeDistance = 64; |
| |
| if (Ty->isVectorTy() && SE && |
| !BaseT::isConstantStridedAccessLessThan(SE, Ptr, MaxMergeDistance + 1)) |
| return NumVectorInstToHideOverhead; |
| |
| // In many cases the address computation is not merged into the instruction |
| // addressing mode. |
| return 1; |
| } |
| |
| int ARMTTIImpl::getMemcpyCost(const Instruction *I) { |
| const MemCpyInst *MI = dyn_cast<MemCpyInst>(I); |
| assert(MI && "MemcpyInst expected"); |
| ConstantInt *C = dyn_cast<ConstantInt>(MI->getLength()); |
| |
| // To model the cost of a library call, we assume 1 for the call, and |
| // 3 for the argument setup. |
| const unsigned LibCallCost = 4; |
| |
| // If 'size' is not a constant, a library call will be generated. |
| if (!C) |
| return LibCallCost; |
| |
| const unsigned Size = C->getValue().getZExtValue(); |
| const unsigned DstAlign = MI->getDestAlignment(); |
| const unsigned SrcAlign = MI->getSourceAlignment(); |
| const Function *F = I->getParent()->getParent(); |
| const unsigned Limit = TLI->getMaxStoresPerMemmove(F->hasMinSize()); |
| std::vector<EVT> MemOps; |
| |
| // MemOps will be poplulated with a list of data types that needs to be |
| // loaded and stored. That's why we multiply the number of elements by 2 to |
| // get the cost for this memcpy. |
| if (getTLI()->findOptimalMemOpLowering( |
| MemOps, Limit, Size, DstAlign, SrcAlign, false /*IsMemset*/, |
| false /*ZeroMemset*/, false /*MemcpyStrSrc*/, false /*AllowOverlap*/, |
| MI->getDestAddressSpace(), MI->getSourceAddressSpace(), |
| F->getAttributes())) |
| return MemOps.size() * 2; |
| |
| // If we can't find an optimal memop lowering, return the default cost |
| return LibCallCost; |
| } |
| |
| int ARMTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index, |
| Type *SubTp) { |
| if (Kind == TTI::SK_Broadcast) { |
| static const CostTblEntry NEONDupTbl[] = { |
| // VDUP handles these cases. |
| {ISD::VECTOR_SHUFFLE, MVT::v2i32, 1}, |
| {ISD::VECTOR_SHUFFLE, MVT::v2f32, 1}, |
| {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1}, |
| {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1}, |
| {ISD::VECTOR_SHUFFLE, MVT::v4i16, 1}, |
| {ISD::VECTOR_SHUFFLE, MVT::v8i8, 1}, |
| |
| {ISD::VECTOR_SHUFFLE, MVT::v4i32, 1}, |
| {ISD::VECTOR_SHUFFLE, MVT::v4f32, 1}, |
| {ISD::VECTOR_SHUFFLE, MVT::v8i16, 1}, |
| {ISD::VECTOR_SHUFFLE, MVT::v16i8, 1}}; |
| |
| std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp); |
| |
| if (const auto *Entry = CostTableLookup(NEONDupTbl, ISD::VECTOR_SHUFFLE, |
| LT.second)) |
| return LT.first * Entry->Cost; |
| |
| return BaseT::getShuffleCost(Kind, Tp, Index, SubTp); |
| } |
| if (Kind == TTI::SK_Reverse) { |
| static const CostTblEntry NEONShuffleTbl[] = { |
| // Reverse shuffle cost one instruction if we are shuffling within a |
| // double word (vrev) or two if we shuffle a quad word (vrev, vext). |
| {ISD::VECTOR_SHUFFLE, MVT::v2i32, 1}, |
| {ISD::VECTOR_SHUFFLE, MVT::v2f32, 1}, |
| {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1}, |
| {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1}, |
| {ISD::VECTOR_SHUFFLE, MVT::v4i16, 1}, |
| {ISD::VECTOR_SHUFFLE, MVT::v8i8, 1}, |
| |
| {ISD::VECTOR_SHUFFLE, MVT::v4i32, 2}, |
| {ISD::VECTOR_SHUFFLE, MVT::v4f32, 2}, |
| {ISD::VECTOR_SHUFFLE, MVT::v8i16, 2}, |
| {ISD::VECTOR_SHUFFLE, MVT::v16i8, 2}}; |
| |
| std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp); |
| |
| if (const auto *Entry = CostTableLookup(NEONShuffleTbl, ISD::VECTOR_SHUFFLE, |
| LT.second)) |
| return LT.first * Entry->Cost; |
| |
| return BaseT::getShuffleCost(Kind, Tp, Index, SubTp); |
| } |
| if (Kind == TTI::SK_Select) { |
| static const CostTblEntry NEONSelShuffleTbl[] = { |
| // Select shuffle cost table for ARM. Cost is the number of instructions |
| // required to create the shuffled vector. |
| |
| {ISD::VECTOR_SHUFFLE, MVT::v2f32, 1}, |
| {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1}, |
| {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1}, |
| {ISD::VECTOR_SHUFFLE, MVT::v2i32, 1}, |
| |
| {ISD::VECTOR_SHUFFLE, MVT::v4i32, 2}, |
| {ISD::VECTOR_SHUFFLE, MVT::v4f32, 2}, |
| {ISD::VECTOR_SHUFFLE, MVT::v4i16, 2}, |
| |
| {ISD::VECTOR_SHUFFLE, MVT::v8i16, 16}, |
| |
| {ISD::VECTOR_SHUFFLE, MVT::v16i8, 32}}; |
| |
| std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp); |
| if (const auto *Entry = CostTableLookup(NEONSelShuffleTbl, |
| ISD::VECTOR_SHUFFLE, LT.second)) |
| return LT.first * Entry->Cost; |
| return BaseT::getShuffleCost(Kind, Tp, Index, SubTp); |
| } |
| return BaseT::getShuffleCost(Kind, Tp, Index, SubTp); |
| } |
| |
| int ARMTTIImpl::getArithmeticInstrCost( |
| unsigned Opcode, Type *Ty, TTI::OperandValueKind Op1Info, |
| TTI::OperandValueKind Op2Info, TTI::OperandValueProperties Opd1PropInfo, |
| TTI::OperandValueProperties Opd2PropInfo, |
| ArrayRef<const Value *> Args) { |
| int ISDOpcode = TLI->InstructionOpcodeToISD(Opcode); |
| std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty); |
| |
| const unsigned FunctionCallDivCost = 20; |
| const unsigned ReciprocalDivCost = 10; |
| static const CostTblEntry CostTbl[] = { |
| // Division. |
| // These costs are somewhat random. Choose a cost of 20 to indicate that |
| // vectorizing devision (added function call) is going to be very expensive. |
| // Double registers types. |
| { ISD::SDIV, MVT::v1i64, 1 * FunctionCallDivCost}, |
| { ISD::UDIV, MVT::v1i64, 1 * FunctionCallDivCost}, |
| { ISD::SREM, MVT::v1i64, 1 * FunctionCallDivCost}, |
| { ISD::UREM, MVT::v1i64, 1 * FunctionCallDivCost}, |
| { ISD::SDIV, MVT::v2i32, 2 * FunctionCallDivCost}, |
| { ISD::UDIV, MVT::v2i32, 2 * FunctionCallDivCost}, |
| { ISD::SREM, MVT::v2i32, 2 * FunctionCallDivCost}, |
| { ISD::UREM, MVT::v2i32, 2 * FunctionCallDivCost}, |
| { ISD::SDIV, MVT::v4i16, ReciprocalDivCost}, |
| { ISD::UDIV, MVT::v4i16, ReciprocalDivCost}, |
| { ISD::SREM, MVT::v4i16, 4 * FunctionCallDivCost}, |
| { ISD::UREM, MVT::v4i16, 4 * FunctionCallDivCost}, |
| { ISD::SDIV, MVT::v8i8, ReciprocalDivCost}, |
| { ISD::UDIV, MVT::v8i8, ReciprocalDivCost}, |
| { ISD::SREM, MVT::v8i8, 8 * FunctionCallDivCost}, |
| { ISD::UREM, MVT::v8i8, 8 * FunctionCallDivCost}, |
| // Quad register types. |
| { ISD::SDIV, MVT::v2i64, 2 * FunctionCallDivCost}, |
| { ISD::UDIV, MVT::v2i64, 2 * FunctionCallDivCost}, |
| { ISD::SREM, MVT::v2i64, 2 * FunctionCallDivCost}, |
| { ISD::UREM, MVT::v2i64, 2 * FunctionCallDivCost}, |
| { ISD::SDIV, MVT::v4i32, 4 * FunctionCallDivCost}, |
| { ISD::UDIV, MVT::v4i32, 4 * FunctionCallDivCost}, |
| { ISD::SREM, MVT::v4i32, 4 * FunctionCallDivCost}, |
| { ISD::UREM, MVT::v4i32, 4 * FunctionCallDivCost}, |
| { ISD::SDIV, MVT::v8i16, 8 * FunctionCallDivCost}, |
| { ISD::UDIV, MVT::v8i16, 8 * FunctionCallDivCost}, |
| { ISD::SREM, MVT::v8i16, 8 * FunctionCallDivCost}, |
| { ISD::UREM, MVT::v8i16, 8 * FunctionCallDivCost}, |
| { ISD::SDIV, MVT::v16i8, 16 * FunctionCallDivCost}, |
| { ISD::UDIV, MVT::v16i8, 16 * FunctionCallDivCost}, |
| { ISD::SREM, MVT::v16i8, 16 * FunctionCallDivCost}, |
| { ISD::UREM, MVT::v16i8, 16 * FunctionCallDivCost}, |
| // Multiplication. |
| }; |
| |
| if (ST->hasNEON()) |
| if (const auto *Entry = CostTableLookup(CostTbl, ISDOpcode, LT.second)) |
| return LT.first * Entry->Cost; |
| |
| int Cost = BaseT::getArithmeticInstrCost(Opcode, Ty, Op1Info, Op2Info, |
| Opd1PropInfo, Opd2PropInfo); |
| |
| // This is somewhat of a hack. The problem that we are facing is that SROA |
| // creates a sequence of shift, and, or instructions to construct values. |
| // These sequences are recognized by the ISel and have zero-cost. Not so for |
| // the vectorized code. Because we have support for v2i64 but not i64 those |
| // sequences look particularly beneficial to vectorize. |
| // To work around this we increase the cost of v2i64 operations to make them |
| // seem less beneficial. |
| if (LT.second == MVT::v2i64 && |
| Op2Info == TargetTransformInfo::OK_UniformConstantValue) |
| Cost += 4; |
| |
| return Cost; |
| } |
| |
| int ARMTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment, |
| unsigned AddressSpace, const Instruction *I) { |
| std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Src); |
| |
| if (Src->isVectorTy() && Alignment != 16 && |
| Src->getVectorElementType()->isDoubleTy()) { |
| // Unaligned loads/stores are extremely inefficient. |
| // We need 4 uops for vst.1/vld.1 vs 1uop for vldr/vstr. |
| return LT.first * 4; |
| } |
| return LT.first; |
| } |
| |
| int ARMTTIImpl::getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy, |
| unsigned Factor, |
| ArrayRef<unsigned> Indices, |
| unsigned Alignment, |
| unsigned AddressSpace, |
| bool UseMaskForCond, |
| bool UseMaskForGaps) { |
| assert(Factor >= 2 && "Invalid interleave factor"); |
| assert(isa<VectorType>(VecTy) && "Expect a vector type"); |
| |
| // vldN/vstN doesn't support vector types of i64/f64 element. |
| bool EltIs64Bits = DL.getTypeSizeInBits(VecTy->getScalarType()) == 64; |
| |
| if (Factor <= TLI->getMaxSupportedInterleaveFactor() && !EltIs64Bits && |
| !UseMaskForCond && !UseMaskForGaps) { |
| unsigned NumElts = VecTy->getVectorNumElements(); |
| auto *SubVecTy = VectorType::get(VecTy->getScalarType(), NumElts / Factor); |
| |
| // vldN/vstN only support legal vector types of size 64 or 128 in bits. |
| // Accesses having vector types that are a multiple of 128 bits can be |
| // matched to more than one vldN/vstN instruction. |
| if (NumElts % Factor == 0 && |
| TLI->isLegalInterleavedAccessType(SubVecTy, DL)) |
| return Factor * TLI->getNumInterleavedAccesses(SubVecTy, DL); |
| } |
| |
| return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices, |
| Alignment, AddressSpace, |
| UseMaskForCond, UseMaskForGaps); |
| } |
| |
| bool ARMTTIImpl::isLoweredToCall(const Function *F) { |
| if (!F->isIntrinsic()) |
| BaseT::isLoweredToCall(F); |
| |
| // Assume all Arm-specific intrinsics map to an instruction. |
| if (F->getName().startswith("llvm.arm")) |
| return false; |
| |
| switch (F->getIntrinsicID()) { |
| default: break; |
| case Intrinsic::powi: |
| case Intrinsic::sin: |
| case Intrinsic::cos: |
| case Intrinsic::pow: |
| case Intrinsic::log: |
| case Intrinsic::log10: |
| case Intrinsic::log2: |
| case Intrinsic::exp: |
| case Intrinsic::exp2: |
| return true; |
| case Intrinsic::sqrt: |
| case Intrinsic::fabs: |
| case Intrinsic::copysign: |
| case Intrinsic::floor: |
| case Intrinsic::ceil: |
| case Intrinsic::trunc: |
| case Intrinsic::rint: |
| case Intrinsic::nearbyint: |
| case Intrinsic::round: |
| case Intrinsic::canonicalize: |
| case Intrinsic::lround: |
| case Intrinsic::llround: |
| case Intrinsic::lrint: |
| case Intrinsic::llrint: |
| if (F->getReturnType()->isDoubleTy() && !ST->hasFP64()) |
| return true; |
| if (F->getReturnType()->isHalfTy() && !ST->hasFullFP16()) |
| return true; |
| // Some operations can be handled by vector instructions and assume |
| // unsupported vectors will be expanded into supported scalar ones. |
| // TODO Handle scalar operations properly. |
| return !ST->hasFPARMv8Base() && !ST->hasVFP2Base(); |
| case Intrinsic::masked_store: |
| case Intrinsic::masked_load: |
| case Intrinsic::masked_gather: |
| case Intrinsic::masked_scatter: |
| return !ST->hasMVEIntegerOps(); |
| case Intrinsic::sadd_with_overflow: |
| case Intrinsic::uadd_with_overflow: |
| case Intrinsic::ssub_with_overflow: |
| case Intrinsic::usub_with_overflow: |
| case Intrinsic::sadd_sat: |
| case Intrinsic::uadd_sat: |
| case Intrinsic::ssub_sat: |
| case Intrinsic::usub_sat: |
| return false; |
| } |
| |
| return BaseT::isLoweredToCall(F); |
| } |
| |
| bool ARMTTIImpl::isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE, |
| AssumptionCache &AC, |
| TargetLibraryInfo *LibInfo, |
| HardwareLoopInfo &HWLoopInfo) { |
| // Low-overhead branches are only supported in the 'low-overhead branch' |
| // extension of v8.1-m. |
| if (!ST->hasLOB() || DisableLowOverheadLoops) |
| return false; |
| |
| if (!SE.hasLoopInvariantBackedgeTakenCount(L)) |
| return false; |
| |
| const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); |
| if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) |
| return false; |
| |
| const SCEV *TripCountSCEV = |
| SE.getAddExpr(BackedgeTakenCount, |
| SE.getOne(BackedgeTakenCount->getType())); |
| |
| // We need to store the trip count in LR, a 32-bit register. |
| if (SE.getUnsignedRangeMax(TripCountSCEV).getBitWidth() > 32) |
| return false; |
| |
| // Making a call will trash LR and clear LO_BRANCH_INFO, so there's little |
| // point in generating a hardware loop if that's going to happen. |
| auto MaybeCall = [this](Instruction &I) { |
| const ARMTargetLowering *TLI = getTLI(); |
| unsigned ISD = TLI->InstructionOpcodeToISD(I.getOpcode()); |
| EVT VT = TLI->getValueType(DL, I.getType(), true); |
| if (TLI->getOperationAction(ISD, VT) == TargetLowering::LibCall) |
| return true; |
| |
| // Check if an intrinsic will be lowered to a call and assume that any |
| // other CallInst will generate a bl. |
| if (auto *Call = dyn_cast<CallInst>(&I)) { |
| if (isa<IntrinsicInst>(Call)) { |
| if (const Function *F = Call->getCalledFunction()) |
| return isLoweredToCall(F); |
| } |
| return true; |
| } |
| |
| // FPv5 provides conversions between integer, double-precision, |
| // single-precision, and half-precision formats. |
| switch (I.getOpcode()) { |
| default: |
| break; |
| case Instruction::FPToSI: |
| case Instruction::FPToUI: |
| case Instruction::SIToFP: |
| case Instruction::UIToFP: |
| case Instruction::FPTrunc: |
| case Instruction::FPExt: |
| return !ST->hasFPARMv8Base(); |
| } |
| |
| // FIXME: Unfortunately the approach of checking the Operation Action does |
| // not catch all cases of Legalization that use library calls. Our |
| // Legalization step categorizes some transformations into library calls as |
| // Custom, Expand or even Legal when doing type legalization. So for now |
| // we have to special case for instance the SDIV of 64bit integers and the |
| // use of floating point emulation. |
| if (VT.isInteger() && VT.getSizeInBits() >= 64) { |
| switch (ISD) { |
| default: |
| break; |
| case ISD::SDIV: |
| case ISD::UDIV: |
| case ISD::SREM: |
| case ISD::UREM: |
| case ISD::SDIVREM: |
| case ISD::UDIVREM: |
| return true; |
| } |
| } |
| |
| // Assume all other non-float operations are supported. |
| if (!VT.isFloatingPoint()) |
| return false; |
| |
| // We'll need a library call to handle most floats when using soft. |
| if (TLI->useSoftFloat()) { |
| switch (I.getOpcode()) { |
| default: |
| return true; |
| case Instruction::Alloca: |
| case Instruction::Load: |
| case Instruction::Store: |
| case Instruction::Select: |
| case Instruction::PHI: |
| return false; |
| } |
| } |
| |
| // We'll need a libcall to perform double precision operations on a single |
| // precision only FPU. |
| if (I.getType()->isDoubleTy() && !ST->hasFP64()) |
| return true; |
| |
| // Likewise for half precision arithmetic. |
| if (I.getType()->isHalfTy() && !ST->hasFullFP16()) |
| return true; |
| |
| return false; |
| }; |
| |
| auto IsHardwareLoopIntrinsic = [](Instruction &I) { |
| if (auto *Call = dyn_cast<IntrinsicInst>(&I)) { |
| switch (Call->getIntrinsicID()) { |
| default: |
| break; |
| case Intrinsic::set_loop_iterations: |
| case Intrinsic::test_set_loop_iterations: |
| case Intrinsic::loop_decrement: |
| case Intrinsic::loop_decrement_reg: |
| return true; |
| } |
| } |
| return false; |
| }; |
| |
| // Scan the instructions to see if there's any that we know will turn into a |
| // call or if this loop is already a low-overhead loop. |
| auto ScanLoop = [&](Loop *L) { |
| for (auto *BB : L->getBlocks()) { |
| for (auto &I : *BB) { |
| if (MaybeCall(I) || IsHardwareLoopIntrinsic(I)) |
| return false; |
| } |
| } |
| return true; |
| }; |
| |
| // Visit inner loops. |
| for (auto Inner : *L) |
| if (!ScanLoop(Inner)) |
| return false; |
| |
| if (!ScanLoop(L)) |
| return false; |
| |
| // TODO: Check whether the trip count calculation is expensive. If L is the |
| // inner loop but we know it has a low trip count, calculating that trip |
| // count (in the parent loop) may be detrimental. |
| |
| LLVMContext &C = L->getHeader()->getContext(); |
| HWLoopInfo.CounterInReg = true; |
| HWLoopInfo.IsNestingLegal = false; |
| HWLoopInfo.PerformEntryTest = true; |
| HWLoopInfo.CountType = Type::getInt32Ty(C); |
| HWLoopInfo.LoopDecrement = ConstantInt::get(HWLoopInfo.CountType, 1); |
| return true; |
| } |
| |
| void ARMTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE, |
| TTI::UnrollingPreferences &UP) { |
| // Only currently enable these preferences for M-Class cores. |
| if (!ST->isMClass()) |
| return BasicTTIImplBase::getUnrollingPreferences(L, SE, UP); |
| |
| // Disable loop unrolling for Oz and Os. |
| UP.OptSizeThreshold = 0; |
| UP.PartialOptSizeThreshold = 0; |
| if (L->getHeader()->getParent()->hasOptSize()) |
| return; |
| |
| // Only enable on Thumb-2 targets. |
| if (!ST->isThumb2()) |
| return; |
| |
| SmallVector<BasicBlock*, 4> ExitingBlocks; |
| L->getExitingBlocks(ExitingBlocks); |
| LLVM_DEBUG(dbgs() << "Loop has:\n" |
| << "Blocks: " << L->getNumBlocks() << "\n" |
| << "Exit blocks: " << ExitingBlocks.size() << "\n"); |
| |
| // Only allow another exit other than the latch. This acts as an early exit |
| // as it mirrors the profitability calculation of the runtime unroller. |
| if (ExitingBlocks.size() > 2) |
| return; |
| |
| // Limit the CFG of the loop body for targets with a branch predictor. |
| // Allowing 4 blocks permits if-then-else diamonds in the body. |
| if (ST->hasBranchPredictor() && L->getNumBlocks() > 4) |
| return; |
| |
| // Scan the loop: don't unroll loops with calls as this could prevent |
| // inlining. |
| unsigned Cost = 0; |
| for (auto *BB : L->getBlocks()) { |
| for (auto &I : *BB) { |
| if (isa<CallInst>(I) || isa<InvokeInst>(I)) { |
| ImmutableCallSite CS(&I); |
| if (const Function *F = CS.getCalledFunction()) { |
| if (!isLoweredToCall(F)) |
| continue; |
| } |
| return; |
| } |
| SmallVector<const Value*, 4> Operands(I.value_op_begin(), |
| I.value_op_end()); |
| Cost += getUserCost(&I, Operands); |
| } |
| } |
| |
| LLVM_DEBUG(dbgs() << "Cost of loop: " << Cost << "\n"); |
| |
| UP.Partial = true; |
| UP.Runtime = true; |
| UP.UpperBound = true; |
| UP.UnrollRemainder = true; |
| UP.DefaultUnrollRuntimeCount = 4; |
| UP.UnrollAndJam = true; |
| UP.UnrollAndJamInnerLoopThreshold = 60; |
| |
| // Force unrolling small loops can be very useful because of the branch |
| // taken cost of the backedge. |
| if (Cost < 12) |
| UP.Force = true; |
| } |