| //===- ARMAsmParser.cpp - Parse ARM assembly to MCInst instructions -------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "ARMFeatures.h" |
| #include "ARMBaseInstrInfo.h" |
| #include "Utils/ARMBaseInfo.h" |
| #include "MCTargetDesc/ARMAddressingModes.h" |
| #include "MCTargetDesc/ARMBaseInfo.h" |
| #include "MCTargetDesc/ARMInstPrinter.h" |
| #include "MCTargetDesc/ARMMCExpr.h" |
| #include "MCTargetDesc/ARMMCTargetDesc.h" |
| #include "TargetInfo/ARMTargetInfo.h" |
| #include "llvm/ADT/APFloat.h" |
| #include "llvm/ADT/APInt.h" |
| #include "llvm/ADT/None.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SmallSet.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/StringMap.h" |
| #include "llvm/ADT/StringRef.h" |
| #include "llvm/ADT/StringSwitch.h" |
| #include "llvm/ADT/Triple.h" |
| #include "llvm/ADT/Twine.h" |
| #include "llvm/MC/MCContext.h" |
| #include "llvm/MC/MCExpr.h" |
| #include "llvm/MC/MCInst.h" |
| #include "llvm/MC/MCInstrDesc.h" |
| #include "llvm/MC/MCInstrInfo.h" |
| #include "llvm/MC/MCObjectFileInfo.h" |
| #include "llvm/MC/MCParser/MCAsmLexer.h" |
| #include "llvm/MC/MCParser/MCAsmParser.h" |
| #include "llvm/MC/MCParser/MCAsmParserExtension.h" |
| #include "llvm/MC/MCParser/MCAsmParserUtils.h" |
| #include "llvm/MC/MCParser/MCParsedAsmOperand.h" |
| #include "llvm/MC/MCParser/MCTargetAsmParser.h" |
| #include "llvm/MC/MCRegisterInfo.h" |
| #include "llvm/MC/MCSection.h" |
| #include "llvm/MC/MCStreamer.h" |
| #include "llvm/MC/MCSubtargetInfo.h" |
| #include "llvm/MC/MCSymbol.h" |
| #include "llvm/MC/SubtargetFeature.h" |
| #include "llvm/Support/ARMBuildAttributes.h" |
| #include "llvm/Support/ARMEHABI.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Compiler.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Support/SMLoc.h" |
| #include "llvm/Support/TargetParser.h" |
| #include "llvm/Support/TargetRegistry.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include <algorithm> |
| #include <cassert> |
| #include <cstddef> |
| #include <cstdint> |
| #include <iterator> |
| #include <limits> |
| #include <memory> |
| #include <string> |
| #include <utility> |
| #include <vector> |
| |
| #define DEBUG_TYPE "asm-parser" |
| |
| using namespace llvm; |
| |
| namespace llvm { |
| extern const MCInstrDesc ARMInsts[]; |
| } // end namespace llvm |
| |
| namespace { |
| |
| enum class ImplicitItModeTy { Always, Never, ARMOnly, ThumbOnly }; |
| |
| static cl::opt<ImplicitItModeTy> ImplicitItMode( |
| "arm-implicit-it", cl::init(ImplicitItModeTy::ARMOnly), |
| cl::desc("Allow conditional instructions outdside of an IT block"), |
| cl::values(clEnumValN(ImplicitItModeTy::Always, "always", |
| "Accept in both ISAs, emit implicit ITs in Thumb"), |
| clEnumValN(ImplicitItModeTy::Never, "never", |
| "Warn in ARM, reject in Thumb"), |
| clEnumValN(ImplicitItModeTy::ARMOnly, "arm", |
| "Accept in ARM, reject in Thumb"), |
| clEnumValN(ImplicitItModeTy::ThumbOnly, "thumb", |
| "Warn in ARM, emit implicit ITs in Thumb"))); |
| |
| static cl::opt<bool> AddBuildAttributes("arm-add-build-attributes", |
| cl::init(false)); |
| |
| enum VectorLaneTy { NoLanes, AllLanes, IndexedLane }; |
| |
| static inline unsigned extractITMaskBit(unsigned Mask, unsigned Position) { |
| // Position==0 means we're not in an IT block at all. Position==1 |
| // means we want the first state bit, which is always 0 (Then). |
| // Position==2 means we want the second state bit, stored at bit 3 |
| // of Mask, and so on downwards. So (5 - Position) will shift the |
| // right bit down to bit 0, including the always-0 bit at bit 4 for |
| // the mandatory initial Then. |
| return (Mask >> (5 - Position) & 1); |
| } |
| |
| class UnwindContext { |
| using Locs = SmallVector<SMLoc, 4>; |
| |
| MCAsmParser &Parser; |
| Locs FnStartLocs; |
| Locs CantUnwindLocs; |
| Locs PersonalityLocs; |
| Locs PersonalityIndexLocs; |
| Locs HandlerDataLocs; |
| int FPReg; |
| |
| public: |
| UnwindContext(MCAsmParser &P) : Parser(P), FPReg(ARM::SP) {} |
| |
| bool hasFnStart() const { return !FnStartLocs.empty(); } |
| bool cantUnwind() const { return !CantUnwindLocs.empty(); } |
| bool hasHandlerData() const { return !HandlerDataLocs.empty(); } |
| |
| bool hasPersonality() const { |
| return !(PersonalityLocs.empty() && PersonalityIndexLocs.empty()); |
| } |
| |
| void recordFnStart(SMLoc L) { FnStartLocs.push_back(L); } |
| void recordCantUnwind(SMLoc L) { CantUnwindLocs.push_back(L); } |
| void recordPersonality(SMLoc L) { PersonalityLocs.push_back(L); } |
| void recordHandlerData(SMLoc L) { HandlerDataLocs.push_back(L); } |
| void recordPersonalityIndex(SMLoc L) { PersonalityIndexLocs.push_back(L); } |
| |
| void saveFPReg(int Reg) { FPReg = Reg; } |
| int getFPReg() const { return FPReg; } |
| |
| void emitFnStartLocNotes() const { |
| for (Locs::const_iterator FI = FnStartLocs.begin(), FE = FnStartLocs.end(); |
| FI != FE; ++FI) |
| Parser.Note(*FI, ".fnstart was specified here"); |
| } |
| |
| void emitCantUnwindLocNotes() const { |
| for (Locs::const_iterator UI = CantUnwindLocs.begin(), |
| UE = CantUnwindLocs.end(); UI != UE; ++UI) |
| Parser.Note(*UI, ".cantunwind was specified here"); |
| } |
| |
| void emitHandlerDataLocNotes() const { |
| for (Locs::const_iterator HI = HandlerDataLocs.begin(), |
| HE = HandlerDataLocs.end(); HI != HE; ++HI) |
| Parser.Note(*HI, ".handlerdata was specified here"); |
| } |
| |
| void emitPersonalityLocNotes() const { |
| for (Locs::const_iterator PI = PersonalityLocs.begin(), |
| PE = PersonalityLocs.end(), |
| PII = PersonalityIndexLocs.begin(), |
| PIE = PersonalityIndexLocs.end(); |
| PI != PE || PII != PIE;) { |
| if (PI != PE && (PII == PIE || PI->getPointer() < PII->getPointer())) |
| Parser.Note(*PI++, ".personality was specified here"); |
| else if (PII != PIE && (PI == PE || PII->getPointer() < PI->getPointer())) |
| Parser.Note(*PII++, ".personalityindex was specified here"); |
| else |
| llvm_unreachable(".personality and .personalityindex cannot be " |
| "at the same location"); |
| } |
| } |
| |
| void reset() { |
| FnStartLocs = Locs(); |
| CantUnwindLocs = Locs(); |
| PersonalityLocs = Locs(); |
| HandlerDataLocs = Locs(); |
| PersonalityIndexLocs = Locs(); |
| FPReg = ARM::SP; |
| } |
| }; |
| |
| |
| class ARMAsmParser : public MCTargetAsmParser { |
| const MCRegisterInfo *MRI; |
| UnwindContext UC; |
| |
| ARMTargetStreamer &getTargetStreamer() { |
| assert(getParser().getStreamer().getTargetStreamer() && |
| "do not have a target streamer"); |
| MCTargetStreamer &TS = *getParser().getStreamer().getTargetStreamer(); |
| return static_cast<ARMTargetStreamer &>(TS); |
| } |
| |
| // Map of register aliases registers via the .req directive. |
| StringMap<unsigned> RegisterReqs; |
| |
| bool NextSymbolIsThumb; |
| |
| bool useImplicitITThumb() const { |
| return ImplicitItMode == ImplicitItModeTy::Always || |
| ImplicitItMode == ImplicitItModeTy::ThumbOnly; |
| } |
| |
| bool useImplicitITARM() const { |
| return ImplicitItMode == ImplicitItModeTy::Always || |
| ImplicitItMode == ImplicitItModeTy::ARMOnly; |
| } |
| |
| struct { |
| ARMCC::CondCodes Cond; // Condition for IT block. |
| unsigned Mask:4; // Condition mask for instructions. |
| // Starting at first 1 (from lsb). |
| // '1' condition as indicated in IT. |
| // '0' inverse of condition (else). |
| // Count of instructions in IT block is |
| // 4 - trailingzeroes(mask) |
| // Note that this does not have the same encoding |
| // as in the IT instruction, which also depends |
| // on the low bit of the condition code. |
| |
| unsigned CurPosition; // Current position in parsing of IT |
| // block. In range [0,4], with 0 being the IT |
| // instruction itself. Initialized according to |
| // count of instructions in block. ~0U if no |
| // active IT block. |
| |
| bool IsExplicit; // true - The IT instruction was present in the |
| // input, we should not modify it. |
| // false - The IT instruction was added |
| // implicitly, we can extend it if that |
| // would be legal. |
| } ITState; |
| |
| SmallVector<MCInst, 4> PendingConditionalInsts; |
| |
| void flushPendingInstructions(MCStreamer &Out) override { |
| if (!inImplicitITBlock()) { |
| assert(PendingConditionalInsts.size() == 0); |
| return; |
| } |
| |
| // Emit the IT instruction |
| MCInst ITInst; |
| ITInst.setOpcode(ARM::t2IT); |
| ITInst.addOperand(MCOperand::createImm(ITState.Cond)); |
| ITInst.addOperand(MCOperand::createImm(ITState.Mask)); |
| Out.EmitInstruction(ITInst, getSTI()); |
| |
| // Emit the conditonal instructions |
| assert(PendingConditionalInsts.size() <= 4); |
| for (const MCInst &Inst : PendingConditionalInsts) { |
| Out.EmitInstruction(Inst, getSTI()); |
| } |
| PendingConditionalInsts.clear(); |
| |
| // Clear the IT state |
| ITState.Mask = 0; |
| ITState.CurPosition = ~0U; |
| } |
| |
| bool inITBlock() { return ITState.CurPosition != ~0U; } |
| bool inExplicitITBlock() { return inITBlock() && ITState.IsExplicit; } |
| bool inImplicitITBlock() { return inITBlock() && !ITState.IsExplicit; } |
| |
| bool lastInITBlock() { |
| return ITState.CurPosition == 4 - countTrailingZeros(ITState.Mask); |
| } |
| |
| void forwardITPosition() { |
| if (!inITBlock()) return; |
| // Move to the next instruction in the IT block, if there is one. If not, |
| // mark the block as done, except for implicit IT blocks, which we leave |
| // open until we find an instruction that can't be added to it. |
| unsigned TZ = countTrailingZeros(ITState.Mask); |
| if (++ITState.CurPosition == 5 - TZ && ITState.IsExplicit) |
| ITState.CurPosition = ~0U; // Done with the IT block after this. |
| } |
| |
| // Rewind the state of the current IT block, removing the last slot from it. |
| void rewindImplicitITPosition() { |
| assert(inImplicitITBlock()); |
| assert(ITState.CurPosition > 1); |
| ITState.CurPosition--; |
| unsigned TZ = countTrailingZeros(ITState.Mask); |
| unsigned NewMask = 0; |
| NewMask |= ITState.Mask & (0xC << TZ); |
| NewMask |= 0x2 << TZ; |
| ITState.Mask = NewMask; |
| } |
| |
| // Rewind the state of the current IT block, removing the last slot from it. |
| // If we were at the first slot, this closes the IT block. |
| void discardImplicitITBlock() { |
| assert(inImplicitITBlock()); |
| assert(ITState.CurPosition == 1); |
| ITState.CurPosition = ~0U; |
| } |
| |
| // Return the low-subreg of a given Q register. |
| unsigned getDRegFromQReg(unsigned QReg) const { |
| return MRI->getSubReg(QReg, ARM::dsub_0); |
| } |
| |
| // Get the condition code corresponding to the current IT block slot. |
| ARMCC::CondCodes currentITCond() { |
| unsigned MaskBit = extractITMaskBit(ITState.Mask, ITState.CurPosition); |
| return MaskBit ? ARMCC::getOppositeCondition(ITState.Cond) : ITState.Cond; |
| } |
| |
| // Invert the condition of the current IT block slot without changing any |
| // other slots in the same block. |
| void invertCurrentITCondition() { |
| if (ITState.CurPosition == 1) { |
| ITState.Cond = ARMCC::getOppositeCondition(ITState.Cond); |
| } else { |
| ITState.Mask ^= 1 << (5 - ITState.CurPosition); |
| } |
| } |
| |
| // Returns true if the current IT block is full (all 4 slots used). |
| bool isITBlockFull() { |
| return inITBlock() && (ITState.Mask & 1); |
| } |
| |
| // Extend the current implicit IT block to have one more slot with the given |
| // condition code. |
| void extendImplicitITBlock(ARMCC::CondCodes Cond) { |
| assert(inImplicitITBlock()); |
| assert(!isITBlockFull()); |
| assert(Cond == ITState.Cond || |
| Cond == ARMCC::getOppositeCondition(ITState.Cond)); |
| unsigned TZ = countTrailingZeros(ITState.Mask); |
| unsigned NewMask = 0; |
| // Keep any existing condition bits. |
| NewMask |= ITState.Mask & (0xE << TZ); |
| // Insert the new condition bit. |
| NewMask |= (Cond != ITState.Cond) << TZ; |
| // Move the trailing 1 down one bit. |
| NewMask |= 1 << (TZ - 1); |
| ITState.Mask = NewMask; |
| } |
| |
| // Create a new implicit IT block with a dummy condition code. |
| void startImplicitITBlock() { |
| assert(!inITBlock()); |
| ITState.Cond = ARMCC::AL; |
| ITState.Mask = 8; |
| ITState.CurPosition = 1; |
| ITState.IsExplicit = false; |
| } |
| |
| // Create a new explicit IT block with the given condition and mask. |
| // The mask should be in the format used in ARMOperand and |
| // MCOperand, with a 1 implying 'e', regardless of the low bit of |
| // the condition. |
| void startExplicitITBlock(ARMCC::CondCodes Cond, unsigned Mask) { |
| assert(!inITBlock()); |
| ITState.Cond = Cond; |
| ITState.Mask = Mask; |
| ITState.CurPosition = 0; |
| ITState.IsExplicit = true; |
| } |
| |
| struct { |
| unsigned Mask : 4; |
| unsigned CurPosition; |
| } VPTState; |
| bool inVPTBlock() { return VPTState.CurPosition != ~0U; } |
| void forwardVPTPosition() { |
| if (!inVPTBlock()) return; |
| unsigned TZ = countTrailingZeros(VPTState.Mask); |
| if (++VPTState.CurPosition == 5 - TZ) |
| VPTState.CurPosition = ~0U; |
| } |
| |
| void Note(SMLoc L, const Twine &Msg, SMRange Range = None) { |
| return getParser().Note(L, Msg, Range); |
| } |
| |
| bool Warning(SMLoc L, const Twine &Msg, SMRange Range = None) { |
| return getParser().Warning(L, Msg, Range); |
| } |
| |
| bool Error(SMLoc L, const Twine &Msg, SMRange Range = None) { |
| return getParser().Error(L, Msg, Range); |
| } |
| |
| bool validatetLDMRegList(const MCInst &Inst, const OperandVector &Operands, |
| unsigned ListNo, bool IsARPop = false); |
| bool validatetSTMRegList(const MCInst &Inst, const OperandVector &Operands, |
| unsigned ListNo); |
| |
| int tryParseRegister(); |
| bool tryParseRegisterWithWriteBack(OperandVector &); |
| int tryParseShiftRegister(OperandVector &); |
| bool parseRegisterList(OperandVector &, bool EnforceOrder = true); |
| bool parseMemory(OperandVector &); |
| bool parseOperand(OperandVector &, StringRef Mnemonic); |
| bool parsePrefix(ARMMCExpr::VariantKind &RefKind); |
| bool parseMemRegOffsetShift(ARM_AM::ShiftOpc &ShiftType, |
| unsigned &ShiftAmount); |
| bool parseLiteralValues(unsigned Size, SMLoc L); |
| bool parseDirectiveThumb(SMLoc L); |
| bool parseDirectiveARM(SMLoc L); |
| bool parseDirectiveThumbFunc(SMLoc L); |
| bool parseDirectiveCode(SMLoc L); |
| bool parseDirectiveSyntax(SMLoc L); |
| bool parseDirectiveReq(StringRef Name, SMLoc L); |
| bool parseDirectiveUnreq(SMLoc L); |
| bool parseDirectiveArch(SMLoc L); |
| bool parseDirectiveEabiAttr(SMLoc L); |
| bool parseDirectiveCPU(SMLoc L); |
| bool parseDirectiveFPU(SMLoc L); |
| bool parseDirectiveFnStart(SMLoc L); |
| bool parseDirectiveFnEnd(SMLoc L); |
| bool parseDirectiveCantUnwind(SMLoc L); |
| bool parseDirectivePersonality(SMLoc L); |
| bool parseDirectiveHandlerData(SMLoc L); |
| bool parseDirectiveSetFP(SMLoc L); |
| bool parseDirectivePad(SMLoc L); |
| bool parseDirectiveRegSave(SMLoc L, bool IsVector); |
| bool parseDirectiveInst(SMLoc L, char Suffix = '\0'); |
| bool parseDirectiveLtorg(SMLoc L); |
| bool parseDirectiveEven(SMLoc L); |
| bool parseDirectivePersonalityIndex(SMLoc L); |
| bool parseDirectiveUnwindRaw(SMLoc L); |
| bool parseDirectiveTLSDescSeq(SMLoc L); |
| bool parseDirectiveMovSP(SMLoc L); |
| bool parseDirectiveObjectArch(SMLoc L); |
| bool parseDirectiveArchExtension(SMLoc L); |
| bool parseDirectiveAlign(SMLoc L); |
| bool parseDirectiveThumbSet(SMLoc L); |
| |
| bool isMnemonicVPTPredicable(StringRef Mnemonic, StringRef ExtraToken); |
| StringRef splitMnemonic(StringRef Mnemonic, StringRef ExtraToken, |
| unsigned &PredicationCode, |
| unsigned &VPTPredicationCode, bool &CarrySetting, |
| unsigned &ProcessorIMod, StringRef &ITMask); |
| void getMnemonicAcceptInfo(StringRef Mnemonic, StringRef ExtraToken, |
| StringRef FullInst, bool &CanAcceptCarrySet, |
| bool &CanAcceptPredicationCode, |
| bool &CanAcceptVPTPredicationCode); |
| |
| void tryConvertingToTwoOperandForm(StringRef Mnemonic, bool CarrySetting, |
| OperandVector &Operands); |
| bool isThumb() const { |
| // FIXME: Can tablegen auto-generate this? |
| return getSTI().getFeatureBits()[ARM::ModeThumb]; |
| } |
| |
| bool isThumbOne() const { |
| return isThumb() && !getSTI().getFeatureBits()[ARM::FeatureThumb2]; |
| } |
| |
| bool isThumbTwo() const { |
| return isThumb() && getSTI().getFeatureBits()[ARM::FeatureThumb2]; |
| } |
| |
| bool hasThumb() const { |
| return getSTI().getFeatureBits()[ARM::HasV4TOps]; |
| } |
| |
| bool hasThumb2() const { |
| return getSTI().getFeatureBits()[ARM::FeatureThumb2]; |
| } |
| |
| bool hasV6Ops() const { |
| return getSTI().getFeatureBits()[ARM::HasV6Ops]; |
| } |
| |
| bool hasV6T2Ops() const { |
| return getSTI().getFeatureBits()[ARM::HasV6T2Ops]; |
| } |
| |
| bool hasV6MOps() const { |
| return getSTI().getFeatureBits()[ARM::HasV6MOps]; |
| } |
| |
| bool hasV7Ops() const { |
| return getSTI().getFeatureBits()[ARM::HasV7Ops]; |
| } |
| |
| bool hasV8Ops() const { |
| return getSTI().getFeatureBits()[ARM::HasV8Ops]; |
| } |
| |
| bool hasV8MBaseline() const { |
| return getSTI().getFeatureBits()[ARM::HasV8MBaselineOps]; |
| } |
| |
| bool hasV8MMainline() const { |
| return getSTI().getFeatureBits()[ARM::HasV8MMainlineOps]; |
| } |
| bool hasV8_1MMainline() const { |
| return getSTI().getFeatureBits()[ARM::HasV8_1MMainlineOps]; |
| } |
| bool hasMVE() const { |
| return getSTI().getFeatureBits()[ARM::HasMVEIntegerOps]; |
| } |
| bool hasMVEFloat() const { |
| return getSTI().getFeatureBits()[ARM::HasMVEFloatOps]; |
| } |
| bool has8MSecExt() const { |
| return getSTI().getFeatureBits()[ARM::Feature8MSecExt]; |
| } |
| |
| bool hasARM() const { |
| return !getSTI().getFeatureBits()[ARM::FeatureNoARM]; |
| } |
| |
| bool hasDSP() const { |
| return getSTI().getFeatureBits()[ARM::FeatureDSP]; |
| } |
| |
| bool hasD32() const { |
| return getSTI().getFeatureBits()[ARM::FeatureD32]; |
| } |
| |
| bool hasV8_1aOps() const { |
| return getSTI().getFeatureBits()[ARM::HasV8_1aOps]; |
| } |
| |
| bool hasRAS() const { |
| return getSTI().getFeatureBits()[ARM::FeatureRAS]; |
| } |
| |
| void SwitchMode() { |
| MCSubtargetInfo &STI = copySTI(); |
| auto FB = ComputeAvailableFeatures(STI.ToggleFeature(ARM::ModeThumb)); |
| setAvailableFeatures(FB); |
| } |
| |
| void FixModeAfterArchChange(bool WasThumb, SMLoc Loc); |
| |
| bool isMClass() const { |
| return getSTI().getFeatureBits()[ARM::FeatureMClass]; |
| } |
| |
| /// @name Auto-generated Match Functions |
| /// { |
| |
| #define GET_ASSEMBLER_HEADER |
| #include "ARMGenAsmMatcher.inc" |
| |
| /// } |
| |
| OperandMatchResultTy parseITCondCode(OperandVector &); |
| OperandMatchResultTy parseCoprocNumOperand(OperandVector &); |
| OperandMatchResultTy parseCoprocRegOperand(OperandVector &); |
| OperandMatchResultTy parseCoprocOptionOperand(OperandVector &); |
| OperandMatchResultTy parseMemBarrierOptOperand(OperandVector &); |
| OperandMatchResultTy parseTraceSyncBarrierOptOperand(OperandVector &); |
| OperandMatchResultTy parseInstSyncBarrierOptOperand(OperandVector &); |
| OperandMatchResultTy parseProcIFlagsOperand(OperandVector &); |
| OperandMatchResultTy parseMSRMaskOperand(OperandVector &); |
| OperandMatchResultTy parseBankedRegOperand(OperandVector &); |
| OperandMatchResultTy parsePKHImm(OperandVector &O, StringRef Op, int Low, |
| int High); |
| OperandMatchResultTy parsePKHLSLImm(OperandVector &O) { |
| return parsePKHImm(O, "lsl", 0, 31); |
| } |
| OperandMatchResultTy parsePKHASRImm(OperandVector &O) { |
| return parsePKHImm(O, "asr", 1, 32); |
| } |
| OperandMatchResultTy parseSetEndImm(OperandVector &); |
| OperandMatchResultTy parseShifterImm(OperandVector &); |
| OperandMatchResultTy parseRotImm(OperandVector &); |
| OperandMatchResultTy parseModImm(OperandVector &); |
| OperandMatchResultTy parseBitfield(OperandVector &); |
| OperandMatchResultTy parsePostIdxReg(OperandVector &); |
| OperandMatchResultTy parseAM3Offset(OperandVector &); |
| OperandMatchResultTy parseFPImm(OperandVector &); |
| OperandMatchResultTy parseVectorList(OperandVector &); |
| OperandMatchResultTy parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index, |
| SMLoc &EndLoc); |
| |
| // Asm Match Converter Methods |
| void cvtThumbMultiply(MCInst &Inst, const OperandVector &); |
| void cvtThumbBranches(MCInst &Inst, const OperandVector &); |
| void cvtMVEVMOVQtoDReg(MCInst &Inst, const OperandVector &); |
| |
| bool validateInstruction(MCInst &Inst, const OperandVector &Ops); |
| bool processInstruction(MCInst &Inst, const OperandVector &Ops, MCStreamer &Out); |
| bool shouldOmitCCOutOperand(StringRef Mnemonic, OperandVector &Operands); |
| bool shouldOmitPredicateOperand(StringRef Mnemonic, OperandVector &Operands); |
| bool shouldOmitVectorPredicateOperand(StringRef Mnemonic, OperandVector &Operands); |
| bool isITBlockTerminator(MCInst &Inst) const; |
| void fixupGNULDRDAlias(StringRef Mnemonic, OperandVector &Operands); |
| bool validateLDRDSTRD(MCInst &Inst, const OperandVector &Operands, |
| bool Load, bool ARMMode, bool Writeback); |
| |
| public: |
| enum ARMMatchResultTy { |
| Match_RequiresITBlock = FIRST_TARGET_MATCH_RESULT_TY, |
| Match_RequiresNotITBlock, |
| Match_RequiresV6, |
| Match_RequiresThumb2, |
| Match_RequiresV8, |
| Match_RequiresFlagSetting, |
| #define GET_OPERAND_DIAGNOSTIC_TYPES |
| #include "ARMGenAsmMatcher.inc" |
| |
| }; |
| |
| ARMAsmParser(const MCSubtargetInfo &STI, MCAsmParser &Parser, |
| const MCInstrInfo &MII, const MCTargetOptions &Options) |
| : MCTargetAsmParser(Options, STI, MII), UC(Parser) { |
| MCAsmParserExtension::Initialize(Parser); |
| |
| // Cache the MCRegisterInfo. |
| MRI = getContext().getRegisterInfo(); |
| |
| // Initialize the set of available features. |
| setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); |
| |
| // Add build attributes based on the selected target. |
| if (AddBuildAttributes) |
| getTargetStreamer().emitTargetAttributes(STI); |
| |
| // Not in an ITBlock to start with. |
| ITState.CurPosition = ~0U; |
| |
| VPTState.CurPosition = ~0U; |
| |
| NextSymbolIsThumb = false; |
| } |
| |
| // Implementation of the MCTargetAsmParser interface: |
| bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override; |
| bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name, |
| SMLoc NameLoc, OperandVector &Operands) override; |
| bool ParseDirective(AsmToken DirectiveID) override; |
| |
| unsigned validateTargetOperandClass(MCParsedAsmOperand &Op, |
| unsigned Kind) override; |
| unsigned checkTargetMatchPredicate(MCInst &Inst) override; |
| |
| bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, |
| OperandVector &Operands, MCStreamer &Out, |
| uint64_t &ErrorInfo, |
| bool MatchingInlineAsm) override; |
| unsigned MatchInstruction(OperandVector &Operands, MCInst &Inst, |
| SmallVectorImpl<NearMissInfo> &NearMisses, |
| bool MatchingInlineAsm, bool &EmitInITBlock, |
| MCStreamer &Out); |
| |
| struct NearMissMessage { |
| SMLoc Loc; |
| SmallString<128> Message; |
| }; |
| |
| const char *getCustomOperandDiag(ARMMatchResultTy MatchError); |
| |
| void FilterNearMisses(SmallVectorImpl<NearMissInfo> &NearMissesIn, |
| SmallVectorImpl<NearMissMessage> &NearMissesOut, |
| SMLoc IDLoc, OperandVector &Operands); |
| void ReportNearMisses(SmallVectorImpl<NearMissInfo> &NearMisses, SMLoc IDLoc, |
| OperandVector &Operands); |
| |
| void doBeforeLabelEmit(MCSymbol *Symbol) override; |
| |
| void onLabelParsed(MCSymbol *Symbol) override; |
| }; |
| |
| /// ARMOperand - Instances of this class represent a parsed ARM machine |
| /// operand. |
| class ARMOperand : public MCParsedAsmOperand { |
| enum KindTy { |
| k_CondCode, |
| k_VPTPred, |
| k_CCOut, |
| k_ITCondMask, |
| k_CoprocNum, |
| k_CoprocReg, |
| k_CoprocOption, |
| k_Immediate, |
| k_MemBarrierOpt, |
| k_InstSyncBarrierOpt, |
| k_TraceSyncBarrierOpt, |
| k_Memory, |
| k_PostIndexRegister, |
| k_MSRMask, |
| k_BankedReg, |
| k_ProcIFlags, |
| k_VectorIndex, |
| k_Register, |
| k_RegisterList, |
| k_RegisterListWithAPSR, |
| k_DPRRegisterList, |
| k_SPRRegisterList, |
| k_FPSRegisterListWithVPR, |
| k_FPDRegisterListWithVPR, |
| k_VectorList, |
| k_VectorListAllLanes, |
| k_VectorListIndexed, |
| k_ShiftedRegister, |
| k_ShiftedImmediate, |
| k_ShifterImmediate, |
| k_RotateImmediate, |
| k_ModifiedImmediate, |
| k_ConstantPoolImmediate, |
| k_BitfieldDescriptor, |
| k_Token, |
| } Kind; |
| |
| SMLoc StartLoc, EndLoc, AlignmentLoc; |
| SmallVector<unsigned, 8> Registers; |
| |
| struct CCOp { |
| ARMCC::CondCodes Val; |
| }; |
| |
| struct VCCOp { |
| ARMVCC::VPTCodes Val; |
| }; |
| |
| struct CopOp { |
| unsigned Val; |
| }; |
| |
| struct CoprocOptionOp { |
| unsigned Val; |
| }; |
| |
| struct ITMaskOp { |
| unsigned Mask:4; |
| }; |
| |
| struct MBOptOp { |
| ARM_MB::MemBOpt Val; |
| }; |
| |
| struct ISBOptOp { |
| ARM_ISB::InstSyncBOpt Val; |
| }; |
| |
| struct TSBOptOp { |
| ARM_TSB::TraceSyncBOpt Val; |
| }; |
| |
| struct IFlagsOp { |
| ARM_PROC::IFlags Val; |
| }; |
| |
| struct MMaskOp { |
| unsigned Val; |
| }; |
| |
| struct BankedRegOp { |
| unsigned Val; |
| }; |
| |
| struct TokOp { |
| const char *Data; |
| unsigned Length; |
| }; |
| |
| struct RegOp { |
| unsigned RegNum; |
| }; |
| |
| // A vector register list is a sequential list of 1 to 4 registers. |
| struct VectorListOp { |
| unsigned RegNum; |
| unsigned Count; |
| unsigned LaneIndex; |
| bool isDoubleSpaced; |
| }; |
| |
| struct VectorIndexOp { |
| unsigned Val; |
| }; |
| |
| struct ImmOp { |
| const MCExpr *Val; |
| }; |
| |
| /// Combined record for all forms of ARM address expressions. |
| struct MemoryOp { |
| unsigned BaseRegNum; |
| // Offset is in OffsetReg or OffsetImm. If both are zero, no offset |
| // was specified. |
| const MCConstantExpr *OffsetImm; // Offset immediate value |
| unsigned OffsetRegNum; // Offset register num, when OffsetImm == NULL |
| ARM_AM::ShiftOpc ShiftType; // Shift type for OffsetReg |
| unsigned ShiftImm; // shift for OffsetReg. |
| unsigned Alignment; // 0 = no alignment specified |
| // n = alignment in bytes (2, 4, 8, 16, or 32) |
| unsigned isNegative : 1; // Negated OffsetReg? (~'U' bit) |
| }; |
| |
| struct PostIdxRegOp { |
| unsigned RegNum; |
| bool isAdd; |
| ARM_AM::ShiftOpc ShiftTy; |
| unsigned ShiftImm; |
| }; |
| |
| struct ShifterImmOp { |
| bool isASR; |
| unsigned Imm; |
| }; |
| |
| struct RegShiftedRegOp { |
| ARM_AM::ShiftOpc ShiftTy; |
| unsigned SrcReg; |
| unsigned ShiftReg; |
| unsigned ShiftImm; |
| }; |
| |
| struct RegShiftedImmOp { |
| ARM_AM::ShiftOpc ShiftTy; |
| unsigned SrcReg; |
| unsigned ShiftImm; |
| }; |
| |
| struct RotImmOp { |
| unsigned Imm; |
| }; |
| |
| struct ModImmOp { |
| unsigned Bits; |
| unsigned Rot; |
| }; |
| |
| struct BitfieldOp { |
| unsigned LSB; |
| unsigned Width; |
| }; |
| |
| union { |
| struct CCOp CC; |
| struct VCCOp VCC; |
| struct CopOp Cop; |
| struct CoprocOptionOp CoprocOption; |
| struct MBOptOp MBOpt; |
| struct ISBOptOp ISBOpt; |
| struct TSBOptOp TSBOpt; |
| struct ITMaskOp ITMask; |
| struct IFlagsOp IFlags; |
| struct MMaskOp MMask; |
| struct BankedRegOp BankedReg; |
| struct TokOp Tok; |
| struct RegOp Reg; |
| struct VectorListOp VectorList; |
| struct VectorIndexOp VectorIndex; |
| struct ImmOp Imm; |
| struct MemoryOp Memory; |
| struct PostIdxRegOp PostIdxReg; |
| struct ShifterImmOp ShifterImm; |
| struct RegShiftedRegOp RegShiftedReg; |
| struct RegShiftedImmOp RegShiftedImm; |
| struct RotImmOp RotImm; |
| struct ModImmOp ModImm; |
| struct BitfieldOp Bitfield; |
| }; |
| |
| public: |
| ARMOperand(KindTy K) : MCParsedAsmOperand(), Kind(K) {} |
| |
| /// getStartLoc - Get the location of the first token of this operand. |
| SMLoc getStartLoc() const override { return StartLoc; } |
| |
| /// getEndLoc - Get the location of the last token of this operand. |
| SMLoc getEndLoc() const override { return EndLoc; } |
| |
| /// getLocRange - Get the range between the first and last token of this |
| /// operand. |
| SMRange getLocRange() const { return SMRange(StartLoc, EndLoc); } |
| |
| /// getAlignmentLoc - Get the location of the Alignment token of this operand. |
| SMLoc getAlignmentLoc() const { |
| assert(Kind == k_Memory && "Invalid access!"); |
| return AlignmentLoc; |
| } |
| |
| ARMCC::CondCodes getCondCode() const { |
| assert(Kind == k_CondCode && "Invalid access!"); |
| return CC.Val; |
| } |
| |
| ARMVCC::VPTCodes getVPTPred() const { |
| assert(isVPTPred() && "Invalid access!"); |
| return VCC.Val; |
| } |
| |
| unsigned getCoproc() const { |
| assert((Kind == k_CoprocNum || Kind == k_CoprocReg) && "Invalid access!"); |
| return Cop.Val; |
| } |
| |
| StringRef getToken() const { |
| assert(Kind == k_Token && "Invalid access!"); |
| return StringRef(Tok.Data, Tok.Length); |
| } |
| |
| unsigned getReg() const override { |
| assert((Kind == k_Register || Kind == k_CCOut) && "Invalid access!"); |
| return Reg.RegNum; |
| } |
| |
| const SmallVectorImpl<unsigned> &getRegList() const { |
| assert((Kind == k_RegisterList || Kind == k_RegisterListWithAPSR || |
| Kind == k_DPRRegisterList || Kind == k_SPRRegisterList || |
| Kind == k_FPSRegisterListWithVPR || |
| Kind == k_FPDRegisterListWithVPR) && |
| "Invalid access!"); |
| return Registers; |
| } |
| |
| const MCExpr *getImm() const { |
| assert(isImm() && "Invalid access!"); |
| return Imm.Val; |
| } |
| |
| const MCExpr *getConstantPoolImm() const { |
| assert(isConstantPoolImm() && "Invalid access!"); |
| return Imm.Val; |
| } |
| |
| unsigned getVectorIndex() const { |
| assert(Kind == k_VectorIndex && "Invalid access!"); |
| return VectorIndex.Val; |
| } |
| |
| ARM_MB::MemBOpt getMemBarrierOpt() const { |
| assert(Kind == k_MemBarrierOpt && "Invalid access!"); |
| return MBOpt.Val; |
| } |
| |
| ARM_ISB::InstSyncBOpt getInstSyncBarrierOpt() const { |
| assert(Kind == k_InstSyncBarrierOpt && "Invalid access!"); |
| return ISBOpt.Val; |
| } |
| |
| ARM_TSB::TraceSyncBOpt getTraceSyncBarrierOpt() const { |
| assert(Kind == k_TraceSyncBarrierOpt && "Invalid access!"); |
| return TSBOpt.Val; |
| } |
| |
| ARM_PROC::IFlags getProcIFlags() const { |
| assert(Kind == k_ProcIFlags && "Invalid access!"); |
| return IFlags.Val; |
| } |
| |
| unsigned getMSRMask() const { |
| assert(Kind == k_MSRMask && "Invalid access!"); |
| return MMask.Val; |
| } |
| |
| unsigned getBankedReg() const { |
| assert(Kind == k_BankedReg && "Invalid access!"); |
| return BankedReg.Val; |
| } |
| |
| bool isCoprocNum() const { return Kind == k_CoprocNum; } |
| bool isCoprocReg() const { return Kind == k_CoprocReg; } |
| bool isCoprocOption() const { return Kind == k_CoprocOption; } |
| bool isCondCode() const { return Kind == k_CondCode; } |
| bool isVPTPred() const { return Kind == k_VPTPred; } |
| bool isCCOut() const { return Kind == k_CCOut; } |
| bool isITMask() const { return Kind == k_ITCondMask; } |
| bool isITCondCode() const { return Kind == k_CondCode; } |
| bool isImm() const override { |
| return Kind == k_Immediate; |
| } |
| |
| bool isARMBranchTarget() const { |
| if (!isImm()) return false; |
| |
| if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm())) |
| return CE->getValue() % 4 == 0; |
| return true; |
| } |
| |
| |
| bool isThumbBranchTarget() const { |
| if (!isImm()) return false; |
| |
| if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm())) |
| return CE->getValue() % 2 == 0; |
| return true; |
| } |
| |
| // checks whether this operand is an unsigned offset which fits is a field |
| // of specified width and scaled by a specific number of bits |
| template<unsigned width, unsigned scale> |
| bool isUnsignedOffset() const { |
| if (!isImm()) return false; |
| if (isa<MCSymbolRefExpr>(Imm.Val)) return true; |
| if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) { |
| int64_t Val = CE->getValue(); |
| int64_t Align = 1LL << scale; |
| int64_t Max = Align * ((1LL << width) - 1); |
| return ((Val % Align) == 0) && (Val >= 0) && (Val <= Max); |
| } |
| return false; |
| } |
| |
| // checks whether this operand is an signed offset which fits is a field |
| // of specified width and scaled by a specific number of bits |
| template<unsigned width, unsigned scale> |
| bool isSignedOffset() const { |
| if (!isImm()) return false; |
| if (isa<MCSymbolRefExpr>(Imm.Val)) return true; |
| if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) { |
| int64_t Val = CE->getValue(); |
| int64_t Align = 1LL << scale; |
| int64_t Max = Align * ((1LL << (width-1)) - 1); |
| int64_t Min = -Align * (1LL << (width-1)); |
| return ((Val % Align) == 0) && (Val >= Min) && (Val <= Max); |
| } |
| return false; |
| } |
| |
| // checks whether this operand is an offset suitable for the LE / |
| // LETP instructions in Arm v8.1M |
| bool isLEOffset() const { |
| if (!isImm()) return false; |
| if (isa<MCSymbolRefExpr>(Imm.Val)) return true; |
| if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) { |
| int64_t Val = CE->getValue(); |
| return Val < 0 && Val >= -4094 && (Val & 1) == 0; |
| } |
| return false; |
| } |
| |
| // checks whether this operand is a memory operand computed as an offset |
| // applied to PC. the offset may have 8 bits of magnitude and is represented |
| // with two bits of shift. textually it may be either [pc, #imm], #imm or |
| // relocable expression... |
| bool isThumbMemPC() const { |
| int64_t Val = 0; |
| if (isImm()) { |
| if (isa<MCSymbolRefExpr>(Imm.Val)) return true; |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val); |
| if (!CE) return false; |
| Val = CE->getValue(); |
| } |
| else if (isGPRMem()) { |
| if(!Memory.OffsetImm || Memory.OffsetRegNum) return false; |
| if(Memory.BaseRegNum != ARM::PC) return false; |
| Val = Memory.OffsetImm->getValue(); |
| } |
| else return false; |
| return ((Val % 4) == 0) && (Val >= 0) && (Val <= 1020); |
| } |
| |
| bool isFPImm() const { |
| if (!isImm()) return false; |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| if (!CE) return false; |
| int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue())); |
| return Val != -1; |
| } |
| |
| template<int64_t N, int64_t M> |
| bool isImmediate() const { |
| if (!isImm()) return false; |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| if (!CE) return false; |
| int64_t Value = CE->getValue(); |
| return Value >= N && Value <= M; |
| } |
| |
| template<int64_t N, int64_t M> |
| bool isImmediateS4() const { |
| if (!isImm()) return false; |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| if (!CE) return false; |
| int64_t Value = CE->getValue(); |
| return ((Value & 3) == 0) && Value >= N && Value <= M; |
| } |
| template<int64_t N, int64_t M> |
| bool isImmediateS2() const { |
| if (!isImm()) return false; |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| if (!CE) return false; |
| int64_t Value = CE->getValue(); |
| return ((Value & 1) == 0) && Value >= N && Value <= M; |
| } |
| bool isFBits16() const { |
| return isImmediate<0, 17>(); |
| } |
| bool isFBits32() const { |
| return isImmediate<1, 33>(); |
| } |
| bool isImm8s4() const { |
| return isImmediateS4<-1020, 1020>(); |
| } |
| bool isImm7s4() const { |
| return isImmediateS4<-508, 508>(); |
| } |
| bool isImm7Shift0() const { |
| return isImmediate<-127, 127>(); |
| } |
| bool isImm7Shift1() const { |
| return isImmediateS2<-255, 255>(); |
| } |
| bool isImm7Shift2() const { |
| return isImmediateS4<-511, 511>(); |
| } |
| bool isImm7() const { |
| return isImmediate<-127, 127>(); |
| } |
| bool isImm0_1020s4() const { |
| return isImmediateS4<0, 1020>(); |
| } |
| bool isImm0_508s4() const { |
| return isImmediateS4<0, 508>(); |
| } |
| bool isImm0_508s4Neg() const { |
| if (!isImm()) return false; |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| if (!CE) return false; |
| int64_t Value = -CE->getValue(); |
| // explicitly exclude zero. we want that to use the normal 0_508 version. |
| return ((Value & 3) == 0) && Value > 0 && Value <= 508; |
| } |
| |
| bool isImm0_4095Neg() const { |
| if (!isImm()) return false; |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| if (!CE) return false; |
| // isImm0_4095Neg is used with 32-bit immediates only. |
| // 32-bit immediates are zero extended to 64-bit when parsed, |
| // thus simple -CE->getValue() results in a big negative number, |
| // not a small positive number as intended |
| if ((CE->getValue() >> 32) > 0) return false; |
| uint32_t Value = -static_cast<uint32_t>(CE->getValue()); |
| return Value > 0 && Value < 4096; |
| } |
| |
| bool isImm0_7() const { |
| return isImmediate<0, 7>(); |
| } |
| |
| bool isImm1_16() const { |
| return isImmediate<1, 16>(); |
| } |
| |
| bool isImm1_32() const { |
| return isImmediate<1, 32>(); |
| } |
| |
| bool isImm8_255() const { |
| return isImmediate<8, 255>(); |
| } |
| |
| bool isImm256_65535Expr() const { |
| if (!isImm()) return false; |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| // If it's not a constant expression, it'll generate a fixup and be |
| // handled later. |
| if (!CE) return true; |
| int64_t Value = CE->getValue(); |
| return Value >= 256 && Value < 65536; |
| } |
| |
| bool isImm0_65535Expr() const { |
| if (!isImm()) return false; |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| // If it's not a constant expression, it'll generate a fixup and be |
| // handled later. |
| if (!CE) return true; |
| int64_t Value = CE->getValue(); |
| return Value >= 0 && Value < 65536; |
| } |
| |
| bool isImm24bit() const { |
| return isImmediate<0, 0xffffff + 1>(); |
| } |
| |
| bool isImmThumbSR() const { |
| return isImmediate<1, 33>(); |
| } |
| |
| template<int shift> |
| bool isExpImmValue(uint64_t Value) const { |
| uint64_t mask = (1 << shift) - 1; |
| if ((Value & mask) != 0 || (Value >> shift) > 0xff) |
| return false; |
| return true; |
| } |
| |
| template<int shift> |
| bool isExpImm() const { |
| if (!isImm()) return false; |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| if (!CE) return false; |
| |
| return isExpImmValue<shift>(CE->getValue()); |
| } |
| |
| template<int shift, int size> |
| bool isInvertedExpImm() const { |
| if (!isImm()) return false; |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| if (!CE) return false; |
| |
| uint64_t OriginalValue = CE->getValue(); |
| uint64_t InvertedValue = OriginalValue ^ (((uint64_t)1 << size) - 1); |
| return isExpImmValue<shift>(InvertedValue); |
| } |
| |
| bool isPKHLSLImm() const { |
| return isImmediate<0, 32>(); |
| } |
| |
| bool isPKHASRImm() const { |
| return isImmediate<0, 33>(); |
| } |
| |
| bool isAdrLabel() const { |
| // If we have an immediate that's not a constant, treat it as a label |
| // reference needing a fixup. |
| if (isImm() && !isa<MCConstantExpr>(getImm())) |
| return true; |
| |
| // If it is a constant, it must fit into a modified immediate encoding. |
| if (!isImm()) return false; |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| if (!CE) return false; |
| int64_t Value = CE->getValue(); |
| return (ARM_AM::getSOImmVal(Value) != -1 || |
| ARM_AM::getSOImmVal(-Value) != -1); |
| } |
| |
| bool isT2SOImm() const { |
| // If we have an immediate that's not a constant, treat it as an expression |
| // needing a fixup. |
| if (isImm() && !isa<MCConstantExpr>(getImm())) { |
| // We want to avoid matching :upper16: and :lower16: as we want these |
| // expressions to match in isImm0_65535Expr() |
| const ARMMCExpr *ARM16Expr = dyn_cast<ARMMCExpr>(getImm()); |
| return (!ARM16Expr || (ARM16Expr->getKind() != ARMMCExpr::VK_ARM_HI16 && |
| ARM16Expr->getKind() != ARMMCExpr::VK_ARM_LO16)); |
| } |
| if (!isImm()) return false; |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| if (!CE) return false; |
| int64_t Value = CE->getValue(); |
| return ARM_AM::getT2SOImmVal(Value) != -1; |
| } |
| |
| bool isT2SOImmNot() const { |
| if (!isImm()) return false; |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| if (!CE) return false; |
| int64_t Value = CE->getValue(); |
| return ARM_AM::getT2SOImmVal(Value) == -1 && |
| ARM_AM::getT2SOImmVal(~Value) != -1; |
| } |
| |
| bool isT2SOImmNeg() const { |
| if (!isImm()) return false; |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| if (!CE) return false; |
| int64_t Value = CE->getValue(); |
| // Only use this when not representable as a plain so_imm. |
| return ARM_AM::getT2SOImmVal(Value) == -1 && |
| ARM_AM::getT2SOImmVal(-Value) != -1; |
| } |
| |
| bool isSetEndImm() const { |
| if (!isImm()) return false; |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| if (!CE) return false; |
| int64_t Value = CE->getValue(); |
| return Value == 1 || Value == 0; |
| } |
| |
| bool isReg() const override { return Kind == k_Register; } |
| bool isRegList() const { return Kind == k_RegisterList; } |
| bool isRegListWithAPSR() const { |
| return Kind == k_RegisterListWithAPSR || Kind == k_RegisterList; |
| } |
| bool isDPRRegList() const { return Kind == k_DPRRegisterList; } |
| bool isSPRRegList() const { return Kind == k_SPRRegisterList; } |
| bool isFPSRegListWithVPR() const { return Kind == k_FPSRegisterListWithVPR; } |
| bool isFPDRegListWithVPR() const { return Kind == k_FPDRegisterListWithVPR; } |
| bool isToken() const override { return Kind == k_Token; } |
| bool isMemBarrierOpt() const { return Kind == k_MemBarrierOpt; } |
| bool isInstSyncBarrierOpt() const { return Kind == k_InstSyncBarrierOpt; } |
| bool isTraceSyncBarrierOpt() const { return Kind == k_TraceSyncBarrierOpt; } |
| bool isMem() const override { |
| return isGPRMem() || isMVEMem(); |
| } |
| bool isMVEMem() const { |
| if (Kind != k_Memory) |
| return false; |
| if (Memory.BaseRegNum && |
| !ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Memory.BaseRegNum) && |
| !ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(Memory.BaseRegNum)) |
| return false; |
| if (Memory.OffsetRegNum && |
| !ARMMCRegisterClasses[ARM::MQPRRegClassID].contains( |
| Memory.OffsetRegNum)) |
| return false; |
| return true; |
| } |
| bool isGPRMem() const { |
| if (Kind != k_Memory) |
| return false; |
| if (Memory.BaseRegNum && |
| !ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Memory.BaseRegNum)) |
| return false; |
| if (Memory.OffsetRegNum && |
| !ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Memory.OffsetRegNum)) |
| return false; |
| return true; |
| } |
| bool isShifterImm() const { return Kind == k_ShifterImmediate; } |
| bool isRegShiftedReg() const { |
| return Kind == k_ShiftedRegister && |
| ARMMCRegisterClasses[ARM::GPRRegClassID].contains( |
| RegShiftedReg.SrcReg) && |
| ARMMCRegisterClasses[ARM::GPRRegClassID].contains( |
| RegShiftedReg.ShiftReg); |
| } |
| bool isRegShiftedImm() const { |
| return Kind == k_ShiftedImmediate && |
| ARMMCRegisterClasses[ARM::GPRRegClassID].contains( |
| RegShiftedImm.SrcReg); |
| } |
| bool isRotImm() const { return Kind == k_RotateImmediate; } |
| |
| template<unsigned Min, unsigned Max> |
| bool isPowerTwoInRange() const { |
| if (!isImm()) return false; |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| if (!CE) return false; |
| int64_t Value = CE->getValue(); |
| return Value > 0 && countPopulation((uint64_t)Value) == 1 && |
| Value >= Min && Value <= Max; |
| } |
| bool isModImm() const { return Kind == k_ModifiedImmediate; } |
| |
| bool isModImmNot() const { |
| if (!isImm()) return false; |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| if (!CE) return false; |
| int64_t Value = CE->getValue(); |
| return ARM_AM::getSOImmVal(~Value) != -1; |
| } |
| |
| bool isModImmNeg() const { |
| if (!isImm()) return false; |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| if (!CE) return false; |
| int64_t Value = CE->getValue(); |
| return ARM_AM::getSOImmVal(Value) == -1 && |
| ARM_AM::getSOImmVal(-Value) != -1; |
| } |
| |
| bool isThumbModImmNeg1_7() const { |
| if (!isImm()) return false; |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| if (!CE) return false; |
| int32_t Value = -(int32_t)CE->getValue(); |
| return 0 < Value && Value < 8; |
| } |
| |
| bool isThumbModImmNeg8_255() const { |
| if (!isImm()) return false; |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| if (!CE) return false; |
| int32_t Value = -(int32_t)CE->getValue(); |
| return 7 < Value && Value < 256; |
| } |
| |
| bool isConstantPoolImm() const { return Kind == k_ConstantPoolImmediate; } |
| bool isBitfield() const { return Kind == k_BitfieldDescriptor; } |
| bool isPostIdxRegShifted() const { |
| return Kind == k_PostIndexRegister && |
| ARMMCRegisterClasses[ARM::GPRRegClassID].contains(PostIdxReg.RegNum); |
| } |
| bool isPostIdxReg() const { |
| return isPostIdxRegShifted() && PostIdxReg.ShiftTy == ARM_AM::no_shift; |
| } |
| bool isMemNoOffset(bool alignOK = false, unsigned Alignment = 0) const { |
| if (!isGPRMem()) |
| return false; |
| // No offset of any kind. |
| return Memory.OffsetRegNum == 0 && Memory.OffsetImm == nullptr && |
| (alignOK || Memory.Alignment == Alignment); |
| } |
| bool isMemNoOffsetT2(bool alignOK = false, unsigned Alignment = 0) const { |
| if (!isGPRMem()) |
| return false; |
| |
| if (!ARMMCRegisterClasses[ARM::GPRnopcRegClassID].contains( |
| Memory.BaseRegNum)) |
| return false; |
| |
| // No offset of any kind. |
| return Memory.OffsetRegNum == 0 && Memory.OffsetImm == nullptr && |
| (alignOK || Memory.Alignment == Alignment); |
| } |
| bool isMemNoOffsetT2NoSp(bool alignOK = false, unsigned Alignment = 0) const { |
| if (!isGPRMem()) |
| return false; |
| |
| if (!ARMMCRegisterClasses[ARM::rGPRRegClassID].contains( |
| Memory.BaseRegNum)) |
| return false; |
| |
| // No offset of any kind. |
| return Memory.OffsetRegNum == 0 && Memory.OffsetImm == nullptr && |
| (alignOK || Memory.Alignment == Alignment); |
| } |
| bool isMemNoOffsetT(bool alignOK = false, unsigned Alignment = 0) const { |
| if (!isGPRMem()) |
| return false; |
| |
| if (!ARMMCRegisterClasses[ARM::tGPRRegClassID].contains( |
| Memory.BaseRegNum)) |
| return false; |
| |
| // No offset of any kind. |
| return Memory.OffsetRegNum == 0 && Memory.OffsetImm == nullptr && |
| (alignOK || Memory.Alignment == Alignment); |
| } |
| bool isMemPCRelImm12() const { |
| if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) |
| return false; |
| // Base register must be PC. |
| if (Memory.BaseRegNum != ARM::PC) |
| return false; |
| // Immediate offset in range [-4095, 4095]. |
| if (!Memory.OffsetImm) return true; |
| int64_t Val = Memory.OffsetImm->getValue(); |
| return (Val > -4096 && Val < 4096) || |
| (Val == std::numeric_limits<int32_t>::min()); |
| } |
| |
| bool isAlignedMemory() const { |
| return isMemNoOffset(true); |
| } |
| |
| bool isAlignedMemoryNone() const { |
| return isMemNoOffset(false, 0); |
| } |
| |
| bool isDupAlignedMemoryNone() const { |
| return isMemNoOffset(false, 0); |
| } |
| |
| bool isAlignedMemory16() const { |
| if (isMemNoOffset(false, 2)) // alignment in bytes for 16-bits is 2. |
| return true; |
| return isMemNoOffset(false, 0); |
| } |
| |
| bool isDupAlignedMemory16() const { |
| if (isMemNoOffset(false, 2)) // alignment in bytes for 16-bits is 2. |
| return true; |
| return isMemNoOffset(false, 0); |
| } |
| |
| bool isAlignedMemory32() const { |
| if (isMemNoOffset(false, 4)) // alignment in bytes for 32-bits is 4. |
| return true; |
| return isMemNoOffset(false, 0); |
| } |
| |
| bool isDupAlignedMemory32() const { |
| if (isMemNoOffset(false, 4)) // alignment in bytes for 32-bits is 4. |
| return true; |
| return isMemNoOffset(false, 0); |
| } |
| |
| bool isAlignedMemory64() const { |
| if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. |
| return true; |
| return isMemNoOffset(false, 0); |
| } |
| |
| bool isDupAlignedMemory64() const { |
| if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. |
| return true; |
| return isMemNoOffset(false, 0); |
| } |
| |
| bool isAlignedMemory64or128() const { |
| if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. |
| return true; |
| if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16. |
| return true; |
| return isMemNoOffset(false, 0); |
| } |
| |
| bool isDupAlignedMemory64or128() const { |
| if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. |
| return true; |
| if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16. |
| return true; |
| return isMemNoOffset(false, 0); |
| } |
| |
| bool isAlignedMemory64or128or256() const { |
| if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. |
| return true; |
| if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16. |
| return true; |
| if (isMemNoOffset(false, 32)) // alignment in bytes for 256-bits is 32. |
| return true; |
| return isMemNoOffset(false, 0); |
| } |
| |
| bool isAddrMode2() const { |
| if (!isGPRMem() || Memory.Alignment != 0) return false; |
| // Check for register offset. |
| if (Memory.OffsetRegNum) return true; |
| // Immediate offset in range [-4095, 4095]. |
| if (!Memory.OffsetImm) return true; |
| int64_t Val = Memory.OffsetImm->getValue(); |
| return Val > -4096 && Val < 4096; |
| } |
| |
| bool isAM2OffsetImm() const { |
| if (!isImm()) return false; |
| // Immediate offset in range [-4095, 4095]. |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| if (!CE) return false; |
| int64_t Val = CE->getValue(); |
| return (Val == std::numeric_limits<int32_t>::min()) || |
| (Val > -4096 && Val < 4096); |
| } |
| |
| bool isAddrMode3() const { |
| // If we have an immediate that's not a constant, treat it as a label |
| // reference needing a fixup. If it is a constant, it's something else |
| // and we reject it. |
| if (isImm() && !isa<MCConstantExpr>(getImm())) |
| return true; |
| if (!isGPRMem() || Memory.Alignment != 0) return false; |
| // No shifts are legal for AM3. |
| if (Memory.ShiftType != ARM_AM::no_shift) return false; |
| // Check for register offset. |
| if (Memory.OffsetRegNum) return true; |
| // Immediate offset in range [-255, 255]. |
| if (!Memory.OffsetImm) return true; |
| int64_t Val = Memory.OffsetImm->getValue(); |
| // The #-0 offset is encoded as std::numeric_limits<int32_t>::min(), and we |
| // have to check for this too. |
| return (Val > -256 && Val < 256) || |
| Val == std::numeric_limits<int32_t>::min(); |
| } |
| |
| bool isAM3Offset() const { |
| if (isPostIdxReg()) |
| return true; |
| if (!isImm()) |
| return false; |
| // Immediate offset in range [-255, 255]. |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| if (!CE) return false; |
| int64_t Val = CE->getValue(); |
| // Special case, #-0 is std::numeric_limits<int32_t>::min(). |
| return (Val > -256 && Val < 256) || |
| Val == std::numeric_limits<int32_t>::min(); |
| } |
| |
| bool isAddrMode5() const { |
| // If we have an immediate that's not a constant, treat it as a label |
| // reference needing a fixup. If it is a constant, it's something else |
| // and we reject it. |
| if (isImm() && !isa<MCConstantExpr>(getImm())) |
| return true; |
| if (!isGPRMem() || Memory.Alignment != 0) return false; |
| // Check for register offset. |
| if (Memory.OffsetRegNum) return false; |
| // Immediate offset in range [-1020, 1020] and a multiple of 4. |
| if (!Memory.OffsetImm) return true; |
| int64_t Val = Memory.OffsetImm->getValue(); |
| return (Val >= -1020 && Val <= 1020 && ((Val & 3) == 0)) || |
| Val == std::numeric_limits<int32_t>::min(); |
| } |
| |
| bool isAddrMode5FP16() const { |
| // If we have an immediate that's not a constant, treat it as a label |
| // reference needing a fixup. If it is a constant, it's something else |
| // and we reject it. |
| if (isImm() && !isa<MCConstantExpr>(getImm())) |
| return true; |
| if (!isGPRMem() || Memory.Alignment != 0) return false; |
| // Check for register offset. |
| if (Memory.OffsetRegNum) return false; |
| // Immediate offset in range [-510, 510] and a multiple of 2. |
| if (!Memory.OffsetImm) return true; |
| int64_t Val = Memory.OffsetImm->getValue(); |
| return (Val >= -510 && Val <= 510 && ((Val & 1) == 0)) || |
| Val == std::numeric_limits<int32_t>::min(); |
| } |
| |
| bool isMemTBB() const { |
| if (!isGPRMem() || !Memory.OffsetRegNum || Memory.isNegative || |
| Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0) |
| return false; |
| return true; |
| } |
| |
| bool isMemTBH() const { |
| if (!isGPRMem() || !Memory.OffsetRegNum || Memory.isNegative || |
| Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm != 1 || |
| Memory.Alignment != 0 ) |
| return false; |
| return true; |
| } |
| |
| bool isMemRegOffset() const { |
| if (!isGPRMem() || !Memory.OffsetRegNum || Memory.Alignment != 0) |
| return false; |
| return true; |
| } |
| |
| bool isT2MemRegOffset() const { |
| if (!isGPRMem() || !Memory.OffsetRegNum || Memory.isNegative || |
| Memory.Alignment != 0 || Memory.BaseRegNum == ARM::PC) |
| return false; |
| // Only lsl #{0, 1, 2, 3} allowed. |
| if (Memory.ShiftType == ARM_AM::no_shift) |
| return true; |
| if (Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm > 3) |
| return false; |
| return true; |
| } |
| |
| bool isMemThumbRR() const { |
| // Thumb reg+reg addressing is simple. Just two registers, a base and |
| // an offset. No shifts, negations or any other complicating factors. |
| if (!isGPRMem() || !Memory.OffsetRegNum || Memory.isNegative || |
| Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0) |
| return false; |
| return isARMLowRegister(Memory.BaseRegNum) && |
| (!Memory.OffsetRegNum || isARMLowRegister(Memory.OffsetRegNum)); |
| } |
| |
| bool isMemThumbRIs4() const { |
| if (!isGPRMem() || Memory.OffsetRegNum != 0 || |
| !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0) |
| return false; |
| // Immediate offset, multiple of 4 in range [0, 124]. |
| if (!Memory.OffsetImm) return true; |
| int64_t Val = Memory.OffsetImm->getValue(); |
| return Val >= 0 && Val <= 124 && (Val % 4) == 0; |
| } |
| |
| bool isMemThumbRIs2() const { |
| if (!isGPRMem() || Memory.OffsetRegNum != 0 || |
| !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0) |
| return false; |
| // Immediate offset, multiple of 4 in range [0, 62]. |
| if (!Memory.OffsetImm) return true; |
| int64_t Val = Memory.OffsetImm->getValue(); |
| return Val >= 0 && Val <= 62 && (Val % 2) == 0; |
| } |
| |
| bool isMemThumbRIs1() const { |
| if (!isGPRMem() || Memory.OffsetRegNum != 0 || |
| !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0) |
| return false; |
| // Immediate offset in range [0, 31]. |
| if (!Memory.OffsetImm) return true; |
| int64_t Val = Memory.OffsetImm->getValue(); |
| return Val >= 0 && Val <= 31; |
| } |
| |
| bool isMemThumbSPI() const { |
| if (!isGPRMem() || Memory.OffsetRegNum != 0 || |
| Memory.BaseRegNum != ARM::SP || Memory.Alignment != 0) |
| return false; |
| // Immediate offset, multiple of 4 in range [0, 1020]. |
| if (!Memory.OffsetImm) return true; |
| int64_t Val = Memory.OffsetImm->getValue(); |
| return Val >= 0 && Val <= 1020 && (Val % 4) == 0; |
| } |
| |
| bool isMemImm8s4Offset() const { |
| // If we have an immediate that's not a constant, treat it as a label |
| // reference needing a fixup. If it is a constant, it's something else |
| // and we reject it. |
| if (isImm() && !isa<MCConstantExpr>(getImm())) |
| return true; |
| if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) |
| return false; |
| // Immediate offset a multiple of 4 in range [-1020, 1020]. |
| if (!Memory.OffsetImm) return true; |
| int64_t Val = Memory.OffsetImm->getValue(); |
| // Special case, #-0 is std::numeric_limits<int32_t>::min(). |
| return (Val >= -1020 && Val <= 1020 && (Val & 3) == 0) || |
| Val == std::numeric_limits<int32_t>::min(); |
| } |
| bool isMemImm7s4Offset() const { |
| // If we have an immediate that's not a constant, treat it as a label |
| // reference needing a fixup. If it is a constant, it's something else |
| // and we reject it. |
| if (isImm() && !isa<MCConstantExpr>(getImm())) |
| return true; |
| if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0 || |
| !ARMMCRegisterClasses[ARM::GPRnopcRegClassID].contains( |
| Memory.BaseRegNum)) |
| return false; |
| // Immediate offset a multiple of 4 in range [-508, 508]. |
| if (!Memory.OffsetImm) return true; |
| int64_t Val = Memory.OffsetImm->getValue(); |
| // Special case, #-0 is INT32_MIN. |
| return (Val >= -508 && Val <= 508 && (Val & 3) == 0) || Val == INT32_MIN; |
| } |
| bool isMemImm0_1020s4Offset() const { |
| if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) |
| return false; |
| // Immediate offset a multiple of 4 in range [0, 1020]. |
| if (!Memory.OffsetImm) return true; |
| int64_t Val = Memory.OffsetImm->getValue(); |
| return Val >= 0 && Val <= 1020 && (Val & 3) == 0; |
| } |
| |
| bool isMemImm8Offset() const { |
| if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) |
| return false; |
| // Base reg of PC isn't allowed for these encodings. |
| if (Memory.BaseRegNum == ARM::PC) return false; |
| // Immediate offset in range [-255, 255]. |
| if (!Memory.OffsetImm) return true; |
| int64_t Val = Memory.OffsetImm->getValue(); |
| return (Val == std::numeric_limits<int32_t>::min()) || |
| (Val > -256 && Val < 256); |
| } |
| |
| template<unsigned Bits, unsigned RegClassID> |
| bool isMemImm7ShiftedOffset() const { |
| if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0 || |
| !ARMMCRegisterClasses[RegClassID].contains(Memory.BaseRegNum)) |
| return false; |
| |
| // Expect an immediate offset equal to an element of the range |
| // [-127, 127], shifted left by Bits. |
| |
| if (!Memory.OffsetImm) return true; |
| int64_t Val = Memory.OffsetImm->getValue(); |
| |
| // INT32_MIN is a special-case value (indicating the encoding with |
| // zero offset and the subtract bit set) |
| if (Val == INT32_MIN) |
| return true; |
| |
| unsigned Divisor = 1U << Bits; |
| |
| // Check that the low bits are zero |
| if (Val % Divisor != 0) |
| return false; |
| |
| // Check that the remaining offset is within range. |
| Val /= Divisor; |
| return (Val >= -127 && Val <= 127); |
| } |
| |
| template <int shift> bool isMemRegRQOffset() const { |
| if (!isMVEMem() || Memory.OffsetImm != 0 || Memory.Alignment != 0) |
| return false; |
| |
| if (!ARMMCRegisterClasses[ARM::GPRnopcRegClassID].contains( |
| Memory.BaseRegNum)) |
| return false; |
| if (!ARMMCRegisterClasses[ARM::MQPRRegClassID].contains( |
| Memory.OffsetRegNum)) |
| return false; |
| |
| if (shift == 0 && Memory.ShiftType != ARM_AM::no_shift) |
| return false; |
| |
| if (shift > 0 && |
| (Memory.ShiftType != ARM_AM::uxtw || Memory.ShiftImm != shift)) |
| return false; |
| |
| return true; |
| } |
| |
| template <int shift> bool isMemRegQOffset() const { |
| if (!isMVEMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) |
| return false; |
| |
| if (!ARMMCRegisterClasses[ARM::MQPRRegClassID].contains( |
| Memory.BaseRegNum)) |
| return false; |
| |
| if(!Memory.OffsetImm) return true; |
| static_assert(shift < 56, |
| "Such that we dont shift by a value higher than 62"); |
| int64_t Val = Memory.OffsetImm->getValue(); |
| |
| // The value must be a multiple of (1 << shift) |
| if ((Val & ((1U << shift) - 1)) != 0) |
| return false; |
| |
| // And be in the right range, depending on the amount that it is shifted |
| // by. Shift 0, is equal to 7 unsigned bits, the sign bit is set |
| // separately. |
| int64_t Range = (1U << (7+shift)) - 1; |
| return (Val == INT32_MIN) || (Val > -Range && Val < Range); |
| } |
| |
| bool isMemPosImm8Offset() const { |
| if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) |
| return false; |
| // Immediate offset in range [0, 255]. |
| if (!Memory.OffsetImm) return true; |
| int64_t Val = Memory.OffsetImm->getValue(); |
| return Val >= 0 && Val < 256; |
| } |
| |
| bool isMemNegImm8Offset() const { |
| if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) |
| return false; |
| // Base reg of PC isn't allowed for these encodings. |
| if (Memory.BaseRegNum == ARM::PC) return false; |
| // Immediate offset in range [-255, -1]. |
| if (!Memory.OffsetImm) return false; |
| int64_t Val = Memory.OffsetImm->getValue(); |
| return (Val == std::numeric_limits<int32_t>::min()) || |
| (Val > -256 && Val < 0); |
| } |
| |
| bool isMemUImm12Offset() const { |
| if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) |
| return false; |
| // Immediate offset in range [0, 4095]. |
| if (!Memory.OffsetImm) return true; |
| int64_t Val = Memory.OffsetImm->getValue(); |
| return (Val >= 0 && Val < 4096); |
| } |
| |
| bool isMemImm12Offset() const { |
| // If we have an immediate that's not a constant, treat it as a label |
| // reference needing a fixup. If it is a constant, it's something else |
| // and we reject it. |
| |
| if (isImm() && !isa<MCConstantExpr>(getImm())) |
| return true; |
| |
| if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) |
| return false; |
| // Immediate offset in range [-4095, 4095]. |
| if (!Memory.OffsetImm) return true; |
| int64_t Val = Memory.OffsetImm->getValue(); |
| return (Val > -4096 && Val < 4096) || |
| (Val == std::numeric_limits<int32_t>::min()); |
| } |
| |
| bool isConstPoolAsmImm() const { |
| // Delay processing of Constant Pool Immediate, this will turn into |
| // a constant. Match no other operand |
| return (isConstantPoolImm()); |
| } |
| |
| bool isPostIdxImm8() const { |
| if (!isImm()) return false; |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| if (!CE) return false; |
| int64_t Val = CE->getValue(); |
| return (Val > -256 && Val < 256) || |
| (Val == std::numeric_limits<int32_t>::min()); |
| } |
| |
| bool isPostIdxImm8s4() const { |
| if (!isImm()) return false; |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| if (!CE) return false; |
| int64_t Val = CE->getValue(); |
| return ((Val & 3) == 0 && Val >= -1020 && Val <= 1020) || |
| (Val == std::numeric_limits<int32_t>::min()); |
| } |
| |
| bool isMSRMask() const { return Kind == k_MSRMask; } |
| bool isBankedReg() const { return Kind == k_BankedReg; } |
| bool isProcIFlags() const { return Kind == k_ProcIFlags; } |
| |
| // NEON operands. |
| bool isSingleSpacedVectorList() const { |
| return Kind == k_VectorList && !VectorList.isDoubleSpaced; |
| } |
| |
| bool isDoubleSpacedVectorList() const { |
| return Kind == k_VectorList && VectorList.isDoubleSpaced; |
| } |
| |
| bool isVecListOneD() const { |
| if (!isSingleSpacedVectorList()) return false; |
| return VectorList.Count == 1; |
| } |
| |
| bool isVecListTwoMQ() const { |
| return isSingleSpacedVectorList() && VectorList.Count == 2 && |
| ARMMCRegisterClasses[ARM::MQPRRegClassID].contains( |
| VectorList.RegNum); |
| } |
| |
| bool isVecListDPair() const { |
| if (!isSingleSpacedVectorList()) return false; |
| return (ARMMCRegisterClasses[ARM::DPairRegClassID] |
| .contains(VectorList.RegNum)); |
| } |
| |
| bool isVecListThreeD() const { |
| if (!isSingleSpacedVectorList()) return false; |
| return VectorList.Count == 3; |
| } |
| |
| bool isVecListFourD() const { |
| if (!isSingleSpacedVectorList()) return false; |
| return VectorList.Count == 4; |
| } |
| |
| bool isVecListDPairSpaced() const { |
| if (Kind != k_VectorList) return false; |
| if (isSingleSpacedVectorList()) return false; |
| return (ARMMCRegisterClasses[ARM::DPairSpcRegClassID] |
| .contains(VectorList.RegNum)); |
| } |
| |
| bool isVecListThreeQ() const { |
| if (!isDoubleSpacedVectorList()) return false; |
| return VectorList.Count == 3; |
| } |
| |
| bool isVecListFourQ() const { |
| if (!isDoubleSpacedVectorList()) return false; |
| return VectorList.Count == 4; |
| } |
| |
| bool isVecListFourMQ() const { |
| return isSingleSpacedVectorList() && VectorList.Count == 4 && |
| ARMMCRegisterClasses[ARM::MQPRRegClassID].contains( |
| VectorList.RegNum); |
| } |
| |
| bool isSingleSpacedVectorAllLanes() const { |
| return Kind == k_VectorListAllLanes && !VectorList.isDoubleSpaced; |
| } |
| |
| bool isDoubleSpacedVectorAllLanes() const { |
| return Kind == k_VectorListAllLanes && VectorList.isDoubleSpaced; |
| } |
| |
| bool isVecListOneDAllLanes() const { |
| if (!isSingleSpacedVectorAllLanes()) return false; |
| return VectorList.Count == 1; |
| } |
| |
| bool isVecListDPairAllLanes() const { |
| if (!isSingleSpacedVectorAllLanes()) return false; |
| return (ARMMCRegisterClasses[ARM::DPairRegClassID] |
| .contains(VectorList.RegNum)); |
| } |
| |
| bool isVecListDPairSpacedAllLanes() const { |
| if (!isDoubleSpacedVectorAllLanes()) return false; |
| return VectorList.Count == 2; |
| } |
| |
| bool isVecListThreeDAllLanes() const { |
| if (!isSingleSpacedVectorAllLanes()) return false; |
| return VectorList.Count == 3; |
| } |
| |
| bool isVecListThreeQAllLanes() const { |
| if (!isDoubleSpacedVectorAllLanes()) return false; |
| return VectorList.Count == 3; |
| } |
| |
| bool isVecListFourDAllLanes() const { |
| if (!isSingleSpacedVectorAllLanes()) return false; |
| return VectorList.Count == 4; |
| } |
| |
| bool isVecListFourQAllLanes() const { |
| if (!isDoubleSpacedVectorAllLanes()) return false; |
| return VectorList.Count == 4; |
| } |
| |
| bool isSingleSpacedVectorIndexed() const { |
| return Kind == k_VectorListIndexed && !VectorList.isDoubleSpaced; |
| } |
| |
| bool isDoubleSpacedVectorIndexed() const { |
| return Kind == k_VectorListIndexed && VectorList.isDoubleSpaced; |
| } |
| |
| bool isVecListOneDByteIndexed() const { |
| if (!isSingleSpacedVectorIndexed()) return false; |
| return VectorList.Count == 1 && VectorList.LaneIndex <= 7; |
| } |
| |
| bool isVecListOneDHWordIndexed() const { |
| if (!isSingleSpacedVectorIndexed()) return false; |
| return VectorList.Count == 1 && VectorList.LaneIndex <= 3; |
| } |
| |
| bool isVecListOneDWordIndexed() const { |
| if (!isSingleSpacedVectorIndexed()) return false; |
| return VectorList.Count == 1 && VectorList.LaneIndex <= 1; |
| } |
| |
| bool isVecListTwoDByteIndexed() const { |
| if (!isSingleSpacedVectorIndexed()) return false; |
| return VectorList.Count == 2 && VectorList.LaneIndex <= 7; |
| } |
| |
| bool isVecListTwoDHWordIndexed() const { |
| if (!isSingleSpacedVectorIndexed()) return false; |
| return VectorList.Count == 2 && VectorList.LaneIndex <= 3; |
| } |
| |
| bool isVecListTwoQWordIndexed() const { |
| if (!isDoubleSpacedVectorIndexed()) return false; |
| return VectorList.Count == 2 && VectorList.LaneIndex <= 1; |
| } |
| |
| bool isVecListTwoQHWordIndexed() const { |
| if (!isDoubleSpacedVectorIndexed()) return false; |
| return VectorList.Count == 2 && VectorList.LaneIndex <= 3; |
| } |
| |
| bool isVecListTwoDWordIndexed() const { |
| if (!isSingleSpacedVectorIndexed()) return false; |
| return VectorList.Count == 2 && VectorList.LaneIndex <= 1; |
| } |
| |
| bool isVecListThreeDByteIndexed() const { |
| if (!isSingleSpacedVectorIndexed()) return false; |
| return VectorList.Count == 3 && VectorList.LaneIndex <= 7; |
| } |
| |
| bool isVecListThreeDHWordIndexed() const { |
| if (!isSingleSpacedVectorIndexed()) return false; |
| return VectorList.Count == 3 && VectorList.LaneIndex <= 3; |
| } |
| |
| bool isVecListThreeQWordIndexed() const { |
| if (!isDoubleSpacedVectorIndexed()) return false; |
| return VectorList.Count == 3 && VectorList.LaneIndex <= 1; |
| } |
| |
| bool isVecListThreeQHWordIndexed() const { |
| if (!isDoubleSpacedVectorIndexed()) return false; |
| return VectorList.Count == 3 && VectorList.LaneIndex <= 3; |
| } |
| |
| bool isVecListThreeDWordIndexed() const { |
| if (!isSingleSpacedVectorIndexed()) return false; |
| return VectorList.Count == 3 && VectorList.LaneIndex <= 1; |
| } |
| |
| bool isVecListFourDByteIndexed() const { |
| if (!isSingleSpacedVectorIndexed()) return false; |
| return VectorList.Count == 4 && VectorList.LaneIndex <= 7; |
| } |
| |
| bool isVecListFourDHWordIndexed() const { |
| if (!isSingleSpacedVectorIndexed()) return false; |
| return VectorList.Count == 4 && VectorList.LaneIndex <= 3; |
| } |
| |
| bool isVecListFourQWordIndexed() const { |
| if (!isDoubleSpacedVectorIndexed()) return false; |
| return VectorList.Count == 4 && VectorList.LaneIndex <= 1; |
| } |
| |
| bool isVecListFourQHWordIndexed() const { |
| if (!isDoubleSpacedVectorIndexed()) return false; |
| return VectorList.Count == 4 && VectorList.LaneIndex <= 3; |
| } |
| |
| bool isVecListFourDWordIndexed() const { |
| if (!isSingleSpacedVectorIndexed()) return false; |
| return VectorList.Count == 4 && VectorList.LaneIndex <= 1; |
| } |
| |
| bool isVectorIndex() const { return Kind == k_VectorIndex; } |
| |
| template <unsigned NumLanes> |
| bool isVectorIndexInRange() const { |
| if (Kind != k_VectorIndex) return false; |
| return VectorIndex.Val < NumLanes; |
| } |
| |
| bool isVectorIndex8() const { return isVectorIndexInRange<8>(); } |
| bool isVectorIndex16() const { return isVectorIndexInRange<4>(); } |
| bool isVectorIndex32() const { return isVectorIndexInRange<2>(); } |
| bool isVectorIndex64() const { return isVectorIndexInRange<1>(); } |
| |
| template<int PermittedValue, int OtherPermittedValue> |
| bool isMVEPairVectorIndex() const { |
| if (Kind != k_VectorIndex) return false; |
| return VectorIndex.Val == PermittedValue || |
| VectorIndex.Val == OtherPermittedValue; |
| } |
| |
| bool isNEONi8splat() const { |
| if (!isImm()) return false; |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| // Must be a constant. |
| if (!CE) return false; |
| int64_t Value = CE->getValue(); |
| // i8 value splatted across 8 bytes. The immediate is just the 8 byte |
| // value. |
| return Value >= 0 && Value < 256; |
| } |
| |
| bool isNEONi16splat() const { |
| if (isNEONByteReplicate(2)) |
| return false; // Leave that for bytes replication and forbid by default. |
| if (!isImm()) |
| return false; |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| // Must be a constant. |
| if (!CE) return false; |
| unsigned Value = CE->getValue(); |
| return ARM_AM::isNEONi16splat(Value); |
| } |
| |
| bool isNEONi16splatNot() const { |
| if (!isImm()) |
| return false; |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| // Must be a constant. |
| if (!CE) return false; |
| unsigned Value = CE->getValue(); |
| return ARM_AM::isNEONi16splat(~Value & 0xffff); |
| } |
| |
| bool isNEONi32splat() const { |
| if (isNEONByteReplicate(4)) |
| return false; // Leave that for bytes replication and forbid by default. |
| if (!isImm()) |
| return false; |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| // Must be a constant. |
| if (!CE) return false; |
| unsigned Value = CE->getValue(); |
| return ARM_AM::isNEONi32splat(Value); |
| } |
| |
| bool isNEONi32splatNot() const { |
| if (!isImm()) |
| return false; |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| // Must be a constant. |
| if (!CE) return false; |
| unsigned Value = CE->getValue(); |
| return ARM_AM::isNEONi32splat(~Value); |
| } |
| |
| static bool isValidNEONi32vmovImm(int64_t Value) { |
| // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X, |
| // for VMOV/VMVN only, 00Xf or 0Xff are also accepted. |
| return ((Value & 0xffffffffffffff00) == 0) || |
| ((Value & 0xffffffffffff00ff) == 0) || |
| ((Value & 0xffffffffff00ffff) == 0) || |
| ((Value & 0xffffffff00ffffff) == 0) || |
| ((Value & 0xffffffffffff00ff) == 0xff) || |
| ((Value & 0xffffffffff00ffff) == 0xffff); |
| } |
| |
| bool isNEONReplicate(unsigned Width, unsigned NumElems, bool Inv) const { |
| assert((Width == 8 || Width == 16 || Width == 32) && |
| "Invalid element width"); |
| assert(NumElems * Width <= 64 && "Invalid result width"); |
| |
| if (!isImm()) |
| return false; |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| // Must be a constant. |
| if (!CE) |
| return false; |
| int64_t Value = CE->getValue(); |
| if (!Value) |
| return false; // Don't bother with zero. |
| if (Inv) |
| Value = ~Value; |
| |
| uint64_t Mask = (1ull << Width) - 1; |
| uint64_t Elem = Value & Mask; |
| if (Width == 16 && (Elem & 0x00ff) != 0 && (Elem & 0xff00) != 0) |
| return false; |
| if (Width == 32 && !isValidNEONi32vmovImm(Elem)) |
| return false; |
| |
| for (unsigned i = 1; i < NumElems; ++i) { |
| Value >>= Width; |
| if ((Value & Mask) != Elem) |
| return false; |
| } |
| return true; |
| } |
| |
| bool isNEONByteReplicate(unsigned NumBytes) const { |
| return isNEONReplicate(8, NumBytes, false); |
| } |
| |
| static void checkNeonReplicateArgs(unsigned FromW, unsigned ToW) { |
| assert((FromW == 8 || FromW == 16 || FromW == 32) && |
| "Invalid source width"); |
| assert((ToW == 16 || ToW == 32 || ToW == 64) && |
| "Invalid destination width"); |
| assert(FromW < ToW && "ToW is not less than FromW"); |
| } |
| |
| template<unsigned FromW, unsigned ToW> |
| bool isNEONmovReplicate() const { |
| checkNeonReplicateArgs(FromW, ToW); |
| if (ToW == 64 && isNEONi64splat()) |
| return false; |
| return isNEONReplicate(FromW, ToW / FromW, false); |
| } |
| |
| template<unsigned FromW, unsigned ToW> |
| bool isNEONinvReplicate() const { |
| checkNeonReplicateArgs(FromW, ToW); |
| return isNEONReplicate(FromW, ToW / FromW, true); |
| } |
| |
| bool isNEONi32vmov() const { |
| if (isNEONByteReplicate(4)) |
| return false; // Let it to be classified as byte-replicate case. |
| if (!isImm()) |
| return false; |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| // Must be a constant. |
| if (!CE) |
| return false; |
| return isValidNEONi32vmovImm(CE->getValue()); |
| } |
| |
| bool isNEONi32vmovNeg() const { |
| if (!isImm()) return false; |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| // Must be a constant. |
| if (!CE) return false; |
| return isValidNEONi32vmovImm(~CE->getValue()); |
| } |
| |
| bool isNEONi64splat() const { |
| if (!isImm()) return false; |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| // Must be a constant. |
| if (!CE) return false; |
| uint64_t Value = CE->getValue(); |
| // i64 value with each byte being either 0 or 0xff. |
| for (unsigned i = 0; i < 8; ++i, Value >>= 8) |
| if ((Value & 0xff) != 0 && (Value & 0xff) != 0xff) return false; |
| return true; |
| } |
| |
| template<int64_t Angle, int64_t Remainder> |
| bool isComplexRotation() const { |
| if (!isImm()) return false; |
| |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| if (!CE) return false; |
| uint64_t Value = CE->getValue(); |
| |
| return (Value % Angle == Remainder && Value <= 270); |
| } |
| |
| bool isMVELongShift() const { |
| if (!isImm()) return false; |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| // Must be a constant. |
| if (!CE) return false; |
| uint64_t Value = CE->getValue(); |
| return Value >= 1 && Value <= 32; |
| } |
| |
| bool isITCondCodeNoAL() const { |
| if (!isITCondCode()) return false; |
| ARMCC::CondCodes CC = getCondCode(); |
| return CC != ARMCC::AL; |
| } |
| |
| bool isITCondCodeRestrictedI() const { |
| if (!isITCondCode()) |
| return false; |
| ARMCC::CondCodes CC = getCondCode(); |
| return CC == ARMCC::EQ || CC == ARMCC::NE; |
| } |
| |
| bool isITCondCodeRestrictedS() const { |
| if (!isITCondCode()) |
| return false; |
| ARMCC::CondCodes CC = getCondCode(); |
| return CC == ARMCC::LT || CC == ARMCC::GT || CC == ARMCC::LE || |
| CC == ARMCC::GE; |
| } |
| |
| bool isITCondCodeRestrictedU() const { |
| if (!isITCondCode()) |
| return false; |
| ARMCC::CondCodes CC = getCondCode(); |
| return CC == ARMCC::HS || CC == ARMCC::HI; |
| } |
| |
| bool isITCondCodeRestrictedFP() const { |
| if (!isITCondCode()) |
| return false; |
| ARMCC::CondCodes CC = getCondCode(); |
| return CC == ARMCC::EQ || CC == ARMCC::NE || CC == ARMCC::LT || |
| CC == ARMCC::GT || CC == ARMCC::LE || CC == ARMCC::GE; |
| } |
| |
| void addExpr(MCInst &Inst, const MCExpr *Expr) const { |
| // Add as immediates when possible. Null MCExpr = 0. |
| if (!Expr) |
| Inst.addOperand(MCOperand::createImm(0)); |
| else if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr)) |
| Inst.addOperand(MCOperand::createImm(CE->getValue())); |
| else |
| Inst.addOperand(MCOperand::createExpr(Expr)); |
| } |
| |
| void addARMBranchTargetOperands(MCInst &Inst, unsigned N) const { |
| assert(N == 1 && "Invalid number of operands!"); |
| addExpr(Inst, getImm()); |
| } |
| |
| void addThumbBranchTargetOperands(MCInst &Inst, unsigned N) const { |
| assert(N == 1 && "Invalid number of operands!"); |
| addExpr(Inst, getImm()); |
| } |
| |
| void addCondCodeOperands(MCInst &Inst, unsigned N) const { |
| assert(N == 2 && "Invalid number of operands!"); |
| Inst.addOperand(MCOperand::createImm(unsigned(getCondCode()))); |
| unsigned RegNum = getCondCode() == ARMCC::AL ? 0: ARM::CPSR; |
| Inst.addOperand(MCOperand::createReg(RegNum)); |
| } |
| |
| void addVPTPredNOperands(MCInst &Inst, unsigned N) const { |
| assert(N == 2 && "Invalid number of operands!"); |
| Inst.addOperand(MCOperand::createImm(unsigned(getVPTPred()))); |
| unsigned RegNum = getVPTPred() == ARMVCC::None ? 0: ARM::P0; |
| Inst.addOperand(MCOperand::createReg(RegNum)); |
| } |
| |
| void addVPTPredROperands(MCInst &Inst, unsigned N) const { |
| assert(N == 3 && "Invalid number of operands!"); |
| addVPTPredNOperands(Inst, N-1); |
| unsigned RegNum; |
| if (getVPTPred() == ARMVCC::None) { |
| RegNum = 0; |
| } else { |
| unsigned NextOpIndex = Inst.getNumOperands(); |
| const MCInstrDesc &MCID = ARMInsts[Inst.getOpcode()]; |
| int TiedOp = MCID.getOperandConstraint(NextOpIndex, MCOI::TIED_TO); |
| assert(TiedOp >= 0 && |
| "Inactive register in vpred_r is not tied to an output!"); |
| RegNum = Inst.getOperand(TiedOp).getReg(); |
| } |
| Inst.addOperand(MCOperand::createReg(RegNum)); |
| } |
| |
| void addCoprocNumOperands(MCInst &Inst, unsigned N) const { |
| assert(N == 1 && "Invalid number of operands!"); |
| Inst.addOperand(MCOperand::createImm(getCoproc())); |
| } |
| |
| void addCoprocRegOperands(MCInst &Inst, unsigned N) const { |
| assert(N == 1 && "Invalid number of operands!"); |
| Inst.addOperand(MCOperand::createImm(getCoproc())); |
| } |
| |
| void addCoprocOptionOperands(MCInst &Inst, unsigned N) const { |
| assert(N == 1 && "Invalid number of operands!"); |
| Inst.addOperand(MCOperand::createImm(CoprocOption.Val)); |
| } |
| |
| void addITMaskOperands(MCInst &Inst, unsigned N) const { |
| assert(N == 1 && "Invalid number of operands!"); |
| Inst.addOperand(MCOperand::createImm(ITMask.Mask)); |
| } |
| |
| void addITCondCodeOperands(MCInst &Inst, unsigned N) const { |
| assert(N == 1 && "Invalid number of operands!"); |
| Inst.addOperand(MCOperand::createImm(unsigned(getCondCode()))); |
| } |
| |
| void addITCondCodeInvOperands(MCInst &Inst, unsigned N) const { |
| assert(N == 1 && "Invalid number of operands!"); |
| Inst.addOperand(MCOperand::createImm(unsigned(ARMCC::getOppositeCondition(getCondCode())))); |
| } |
| |
| void addCCOutOperands(MCInst &Inst, unsigned N) const { |
| assert(N == 1 && "Invalid number of operands!"); |
| Inst.addOperand(MCOperand::createReg(getReg())); |
| } |
| |
| void addRegOperands(MCInst &Inst, unsigned N) const { |
| assert(N == 1 && "Invalid number of operands!"); |
| Inst.addOperand(MCOperand::createReg(getReg())); |
| } |
| |
| void addRegShiftedRegOperands(MCInst &Inst, unsigned N) const { |
| assert(N == 3 && "Invalid number of operands!"); |
| assert(isRegShiftedReg() && |
| "addRegShiftedRegOperands() on non-RegShiftedReg!"); |
| Inst.addOperand(MCOperand::createReg(RegShiftedReg.SrcReg)); |
| Inst.addOperand(MCOperand::createReg(RegShiftedReg.ShiftReg)); |
| Inst.addOperand(MCOperand::createImm( |
| ARM_AM::getSORegOpc(RegShiftedReg.ShiftTy, RegShiftedReg.ShiftImm))); |
| } |
| |
| void addRegShiftedImmOperands(MCInst &Inst, unsigned N) const { |
| assert(N == 2 && "Invalid number of operands!"); |
| assert(isRegShiftedImm() && |
| "addRegShiftedImmOperands() on non-RegShiftedImm!"); |
| Inst.addOperand(MCOperand::createReg(RegShiftedImm.SrcReg)); |
| // Shift of #32 is encoded as 0 where permitted |
| unsigned Imm = (RegShiftedImm.ShiftImm == 32 ? 0 : RegShiftedImm.ShiftImm); |
| Inst.addOperand(MCOperand::createImm( |
| ARM_AM::getSORegOpc(RegShiftedImm.ShiftTy, Imm))); |
| } |
| |
| void addShifterImmOperands(MCInst &Inst, unsigned N) const { |
| assert(N == 1 && "Invalid number of operands!"); |
| Inst.addOperand(MCOperand::createImm((ShifterImm.isASR << 5) | |
| ShifterImm.Imm)); |
| } |
| |
| void addRegListOperands(MCInst &Inst, unsigned N) const { |
| assert(N == 1 && "Invalid number of operands!"); |
| const SmallVectorImpl<unsigned> &RegList = getRegList(); |
| for (SmallVectorImpl<unsigned>::const_iterator |
| I = RegList.begin(), E = RegList.end(); I != E; ++I) |
| Inst.addOperand(MCOperand::createReg(*I)); |
| } |
| |
| void addRegListWithAPSROperands(MCInst &Inst, unsigned N) const { |
| assert(N == 1 && "Invalid number of operands!"); |
| const SmallVectorImpl<unsigned> &RegList = getRegList(); |
| for (SmallVectorImpl<unsigned>::const_iterator |
| I = RegList.begin(), E = RegList.end(); I != E; ++I) |
| Inst.addOperand(MCOperand::createReg(*I)); |
| } |
| |
| void addDPRRegListOperands(MCInst &Inst, unsigned N) const { |
| addRegListOperands(Inst, N); |
| } |
| |
| void addSPRRegListOperands(MCInst &Inst, unsigned N) const { |
| addRegListOperands(Inst, N); |
| } |
| |
| void addFPSRegListWithVPROperands(MCInst &Inst, unsigned N) const { |
| addRegListOperands(Inst, N); |
| } |
| |
| void addFPDRegListWithVPROperands(MCInst &Inst, unsigned N) const { |
| addRegListOperands(Inst, N); |
| } |
| |
| void addRotImmOperands(MCInst &Inst, unsigned N) const { |
| assert(N == 1 && "Invalid number of operands!"); |
| // Encoded as val>>3. The printer handles display as 8, 16, 24. |
| Inst.addOperand(MCOperand::createImm(RotImm.Imm >> 3)); |
| } |
| |
| void addModImmOperands(MCInst &Inst, unsigned N) const { |
| assert(N == 1 && "Invalid number of operands!"); |
| |
| // Support for fixups (MCFixup) |
| if (isImm()) |
| return addImmOperands(Inst, N); |
| |
| Inst.addOperand(MCOperand::createImm(ModImm.Bits | (ModImm.Rot << 7))); |
| } |
| |
| void addModImmNotOperands(MCInst &Inst, unsigned N) const { |
| assert(N == 1 && "Invalid number of operands!"); |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| uint32_t Enc = ARM_AM::getSOImmVal(~CE->getValue()); |
| Inst.addOperand(MCOperand::createImm(Enc)); |
| } |
| |
| void addModImmNegOperands(MCInst &Inst, unsigned N) const { |
| assert(N == 1 && "Invalid number of operands!"); |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| uint32_t Enc = ARM_AM::getSOImmVal(-CE->getValue()); |
| Inst.addOperand(MCOperand::createImm(Enc)); |
| } |
| |
| void addThumbModImmNeg8_255Operands(MCInst &Inst, unsigned N) const { |
| assert(N == 1 && "Invalid number of operands!"); |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| uint32_t Val = -CE->getValue(); |
| Inst.addOperand(MCOperand::createImm(Val)); |
| } |
| |
| void addThumbModImmNeg1_7Operands(MCInst &Inst, unsigned N) const { |
| assert(N == 1 && "Invalid number of operands!"); |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| uint32_t Val = -CE->getValue(); |
| Inst.addOperand(MCOperand::createImm(Val)); |
| } |
| |
| void addBitfieldOperands(MCInst &Inst, unsigned N) const { |
| assert(N == 1 && "Invalid number of operands!"); |
| // Munge the lsb/width into a bitfield mask. |
| unsigned lsb = Bitfield.LSB; |
| unsigned width = Bitfield.Width; |
| // Make a 32-bit mask w/ the referenced bits clear and all other bits set. |
| uint32_t Mask = ~(((uint32_t)0xffffffff >> lsb) << (32 - width) >> |
| (32 - (lsb + width))); |
| Inst.addOperand(MCOperand::createImm(Mask)); |
| } |
| |
| void addImmOperands(MCInst &Inst, unsigned N) const { |
| assert(N == 1 && "Invalid number of operands!"); |
| addExpr(Inst, getImm()); |
| } |
| |
| void addFBits16Operands(MCInst &Inst, unsigned N) const { |
| assert(N == 1 && "Invalid number of operands!"); |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| Inst.addOperand(MCOperand::createImm(16 - CE->getValue())); |
| } |
| |
| void addFBits32Operands(MCInst &Inst, unsigned N) const { |
| assert(N == 1 && "Invalid number of operands!"); |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| Inst.addOperand(MCOperand::createImm(32 - CE->getValue())); |
| } |
| |
| void addFPImmOperands(MCInst &Inst, unsigned N) const { |
| assert(N == 1 && "Invalid number of operands!"); |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue())); |
| Inst.addOperand(MCOperand::createImm(Val)); |
| } |
| |
| void addImm8s4Operands(MCInst &Inst, unsigned N) const { |
| assert(N == 1 && "Invalid number of operands!"); |
| // FIXME: We really want to scale the value here, but the LDRD/STRD |
| // instruction don't encode operands that way yet. |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| Inst.addOperand(MCOperand::createImm(CE->getValue())); |
| } |
| |
| void addImm7s4Operands(MCInst &Inst, unsigned N) const { |
| assert(N == 1 && "Invalid number of operands!"); |
| // FIXME: We really want to scale the value here, but the VSTR/VLDR_VSYSR |
| // instruction don't encode operands that way yet. |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| Inst.addOperand(MCOperand::createImm(CE->getValue())); |
| } |
| |
| void addImm7Shift0Operands(MCInst &Inst, unsigned N) const { |
| assert(N == 1 && "Invalid number of operands!"); |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| assert(CE != nullptr && "Invalid operand type!"); |
| Inst.addOperand(MCOperand::createImm(CE->getValue())); |
| } |
| |
| void addImm7Shift1Operands(MCInst &Inst, unsigned N) const { |
| assert(N == 1 && "Invalid number of operands!"); |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| assert(CE != nullptr && "Invalid operand type!"); |
| Inst.addOperand(MCOperand::createImm(CE->getValue())); |
| } |
| |
| void addImm7Shift2Operands(MCInst &Inst, unsigned N) const { |
| assert(N == 1 && "Invalid number of operands!"); |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| assert(CE != nullptr && "Invalid operand type!"); |
| Inst.addOperand(MCOperand::createImm(CE->getValue())); |
| } |
| |
| void addImm7Operands(MCInst &Inst, unsigned N) const { |
| assert(N == 1 && "Invalid number of operands!"); |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| assert(CE != nullptr && "Invalid operand type!"); |
| Inst.addOperand(MCOperand::createImm(CE->getValue())); |
| } |
| |
| void addImm0_1020s4Operands(MCInst &Inst, unsigned N) const { |
| assert(N == 1 && "Invalid number of operands!"); |
| // The immediate is scaled by four in the encoding and is stored |
| // in the MCInst as such. Lop off the low two bits here. |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| Inst.addOperand(MCOperand::createImm(CE->getValue() / 4)); |
| } |
| |
| void addImm0_508s4NegOperands(MCInst &Inst, unsigned N) const { |
| assert(N == 1 && "Invalid number of operands!"); |
| // The immediate is scaled by four in the encoding and is stored |
| // in the MCInst as such. Lop off the low two bits here. |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| Inst.addOperand(MCOperand::createImm(-(CE->getValue() / 4))); |
| } |
| |
| void addImm0_508s4Operands(MCInst &Inst, unsigned N) const { |
| assert(N == 1 && "Invalid number of operands!"); |
| // The immediate is scaled by four in the encoding and is stored |
| // in the MCInst as such. Lop off the low two bits here. |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| Inst.addOperand(MCOperand::createImm(CE->getValue() / 4)); |
| } |
| |
| void addImm1_16Operands(MCInst &Inst, unsigned N) const { |
| assert(N == 1 && "Invalid number of operands!"); |
| // The constant encodes as the immediate-1, and we store in the instruction |
| // the bits as encoded, so subtract off one here. |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| Inst.addOperand(MCOperand::createImm(CE->getValue() - 1)); |
| } |
| |
| void addImm1_32Operands(MCInst &Inst, unsigned N) const { |
| assert(N == 1 && "Invalid number of operands!"); |
| // The constant encodes as the immediate-1, and we store in the instruction |
| // the bits as encoded, so subtract off one here. |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| Inst.addOperand(MCOperand::createImm(CE->getValue() - 1)); |
| } |
| |
| void addImmThumbSROperands(MCInst &Inst, unsigned N) const { |
| assert(N == 1 && "Invalid number of operands!"); |
| // The constant encodes as the immediate, except for 32, which encodes as |
| // zero. |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| unsigned Imm = CE->getValue(); |
| Inst.addOperand(MCOperand::createImm((Imm == 32 ? 0 : Imm))); |
| } |
| |
| void addPKHASRImmOperands(MCInst &Inst, unsigned N) const { |
| assert(N == 1 && "Invalid number of operands!"); |
| // An ASR value of 32 encodes as 0, so that's how we want to add it to |
| // the instruction as well. |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| int Val = CE->getValue(); |
| Inst.addOperand(MCOperand::createImm(Val == 32 ? 0 : Val)); |
| } |
| |
| void addT2SOImmNotOperands(MCInst &Inst, unsigned N) const { |
| assert(N == 1 && "Invalid number of operands!"); |
| // The operand is actually a t2_so_imm, but we have its bitwise |
| // negation in the assembly source, so twiddle it here. |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| Inst.addOperand(MCOperand::createImm(~(uint32_t)CE->getValue())); |
| } |
| |
| void addT2SOImmNegOperands(MCInst &Inst, unsigned N) const { |
| assert(N == 1 && "Invalid number of operands!"); |
| // The operand is actually a t2_so_imm, but we have its |
| // negation in the assembly source, so twiddle it here. |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| Inst.addOperand(MCOperand::createImm(-(uint32_t)CE->getValue())); |
| } |
| |
| void addImm0_4095NegOperands(MCInst &Inst, unsigned N) const { |
| assert(N == 1 && "Invalid number of operands!"); |
| // The operand is actually an imm0_4095, but we have its |
| // negation in the assembly source, so twiddle it here. |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| Inst.addOperand(MCOperand::createImm(-(uint32_t)CE->getValue())); |
| } |
| |
| void addUnsignedOffset_b8s2Operands(MCInst &Inst, unsigned N) const { |
| if(const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm())) { |
| Inst.addOperand(MCOperand::createImm(CE->getValue() >> 2)); |
| return; |
| } |
| |
| const MCSymbolRefExpr *SR = dyn_cast<MCSymbolRefExpr>(Imm.Val); |
| assert(SR && "Unknown value type!"); |
| Inst.addOperand(MCOperand::createExpr(SR)); |
| } |
| |
| void addThumbMemPCOperands(MCInst &Inst, unsigned N) const { |
| assert(N == 1 && "Invalid number of operands!"); |
| if (isImm()) { |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| if (CE) { |
| Inst.addOperand(MCOperand::createImm(CE->getValue())); |
| return; |
| } |
| |
| const MCSymbolRefExpr *SR = dyn_cast<MCSymbolRefExpr>(Imm.Val); |
| |
| assert(SR && "Unknown value type!"); |
| Inst.addOperand(MCOperand::createExpr(SR)); |
| return; |
| } |
| |
| assert(isGPRMem() && "Unknown value type!"); |
| assert(isa<MCConstantExpr>(Memory.OffsetImm) && "Unknown value type!"); |
| Inst.addOperand(MCOperand::createImm(Memory.OffsetImm->getValue())); |
| } |
| |
| void addMemBarrierOptOperands(MCInst &Inst, unsigned N) const { |
| assert(N == 1 && "Invalid number of operands!"); |
| Inst.addOperand(MCOperand::createImm(unsigned(getMemBarrierOpt()))); |
| } |
| |
| void addInstSyncBarrierOptOperands(MCInst &Inst, unsigned N) const { |
| assert(N == 1 && "Invalid number of operands!"); |
| Inst.addOperand(MCOperand::createImm(unsigned(getInstSyncBarrierOpt()))); |
| } |
| |
| void addTraceSyncBarrierOptOperands(MCInst &Inst, unsigned N) const { |
| assert(N == 1 && "Invalid number of operands!"); |
| Inst.addOperand(MCOperand::createImm(unsigned(getTraceSyncBarrierOpt()))); |
| } |
| |
| void addMemNoOffsetOperands(MCInst &Inst, unsigned N) const { |
| assert(N == 1 && "Invalid number of operands!"); |
| Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); |
| } |
| |
| void addMemNoOffsetT2Operands(MCInst &Inst, unsigned N) const { |
| assert(N == 1 && "Invalid number of operands!"); |
| Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); |
| } |
| |
| void addMemNoOffsetT2NoSpOperands(MCInst &Inst, unsigned N) const { |
| assert(N == 1 && "Invalid number of operands!"); |
| Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); |
| } |
| |
| void addMemNoOffsetTOperands(MCInst &Inst, unsigned N) const { |
| assert(N == 1 && "Invalid number of operands!"); |
| Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); |
| } |
| |
| void addMemPCRelImm12Operands(MCInst &Inst, unsigned N) const { |
| assert(N == 1 && "Invalid number of operands!"); |
| int32_t Imm = Memory.OffsetImm->getValue(); |
| Inst.addOperand(MCOperand::createImm(Imm)); |
| } |
| |
| void addAdrLabelOperands(MCInst &Inst, unsigned N) const { |
| assert(N == 1 && "Invalid number of operands!"); |
| assert(isImm() && "Not an immediate!"); |
| |
| // If we have an immediate that's not a constant, treat it as a label |
| // reference needing a fixup. |
| if (!isa<MCConstantExpr>(getImm())) { |
| Inst.addOperand(MCOperand::createExpr(getImm())); |
| return; |
| } |
| |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| int Val = CE->getValue(); |
| Inst.addOperand(MCOperand::createImm(Val)); |
| } |
| |
| void addAlignedMemoryOperands(MCInst &Inst, unsigned N) const { |
| assert(N == 2 && "Invalid number of operands!"); |
| Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); |
| Inst.addOperand(MCOperand::createImm(Memory.Alignment)); |
| } |
| |
| void addDupAlignedMemoryNoneOperands(MCInst &Inst, unsigned N) const { |
| addAlignedMemoryOperands(Inst, N); |
| } |
| |
| void addAlignedMemoryNoneOperands(MCInst &Inst, unsigned N) const { |
| addAlignedMemoryOperands(Inst, N); |
| } |
| |
| void addAlignedMemory16Operands(MCInst &Inst, unsigned N) const { |
| addAlignedMemoryOperands(Inst, N); |
| } |
| |
| void addDupAlignedMemory16Operands(MCInst &Inst, unsigned N) const { |
| addAlignedMemoryOperands(Inst, N); |
| } |
| |
| void addAlignedMemory32Operands(MCInst &Inst, unsigned N) const { |
| addAlignedMemoryOperands(Inst, N); |
| } |
| |
| void addDupAlignedMemory32Operands(MCInst &Inst, unsigned N) const { |
| addAlignedMemoryOperands(Inst, N); |
| } |
| |
| void addAlignedMemory64Operands(MCInst &Inst, unsigned N) const { |
| addAlignedMemoryOperands(Inst, N); |
| } |
| |
| void addDupAlignedMemory64Operands(MCInst &Inst, unsigned N) const { |
| addAlignedMemoryOperands(Inst, N); |
| } |
| |
| void addAlignedMemory64or128Operands(MCInst &Inst, unsigned N) const { |
| addAlignedMemoryOperands(Inst, N); |
| } |
| |
| void addDupAlignedMemory64or128Operands(MCInst &Inst, unsigned N) const { |
| addAlignedMemoryOperands(Inst, N); |
| } |
| |
| void addAlignedMemory64or128or256Operands(MCInst &Inst, unsigned N) const { |
| addAlignedMemoryOperands(Inst, N); |
| } |
| |
| void addAddrMode2Operands(MCInst &Inst, unsigned N) const { |
| assert(N == 3 && "Invalid number of operands!"); |
| int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; |
| if (!Memory.OffsetRegNum) { |
| ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; |
| // Special case for #-0 |
| if (Val == std::numeric_limits<int32_t>::min()) Val = 0; |
| if (Val < 0) Val = -Val; |
| Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift); |
| } else { |
| // For register offset, we encode the shift type and negation flag |
| // here. |
| Val = ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, |
| Memory.ShiftImm, Memory.ShiftType); |
| } |
| Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); |
| Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); |
| Inst.addOperand(MCOperand::createImm(Val)); |
| } |
| |
| void addAM2OffsetImmOperands(MCInst &Inst, unsigned N) const { |
| assert(N == 2 && "Invalid number of operands!"); |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| assert(CE && "non-constant AM2OffsetImm operand!"); |
| int32_t Val = CE->getValue(); |
| ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; |
| // Special case for #-0 |
| if (Val == std::numeric_limits<int32_t>::min()) Val = 0; |
| if (Val < 0) Val = -Val; |
| Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift); |
| Inst.addOperand(MCOperand::createReg(0)); |
| Inst.addOperand(MCOperand::createImm(Val)); |
| } |
| |
| void addAddrMode3Operands(MCInst &Inst, unsigned N) const { |
| assert(N == 3 && "Invalid number of operands!"); |
| // If we have an immediate that's not a constant, treat it as a label |
| // reference needing a fixup. If it is a constant, it's something else |
| // and we reject it. |
| if (isImm()) { |
| Inst.addOperand(MCOperand::createExpr(getImm())); |
| Inst.addOperand(MCOperand::createReg(0)); |
| Inst.addOperand(MCOperand::createImm(0)); |
| return; |
| } |
| |
| int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; |
| if (!Memory.OffsetRegNum) { |
| ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; |
| // Special case for #-0 |
| if (Val == std::numeric_limits<int32_t>::min()) Val = 0; |
| if (Val < 0) Val = -Val; |
| Val = ARM_AM::getAM3Opc(AddSub, Val); |
| } else { |
| // For register offset, we encode the shift type and negation flag |
| // here. |
| Val = ARM_AM::getAM3Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 0); |
| } |
| Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); |
| Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); |
| Inst.addOperand(MCOperand::createImm(Val)); |
| } |
| |
| void addAM3OffsetOperands(MCInst &Inst, unsigned N) const { |
| assert(N == 2 && "Invalid number of operands!"); |
| if (Kind == k_PostIndexRegister) { |
| int32_t Val = |
| ARM_AM::getAM3Opc(PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub, 0); |
| Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum)); |
| Inst.addOperand(MCOperand::createImm(Val)); |
| return; |
| } |
| |
| // Constant offset. |
| const MCConstantExpr *CE = static_cast<const MCConstantExpr*>(getImm()); |
| int32_t Val = CE->getValue(); |
| ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; |
| // Special case for #-0 |
| if (Val == std::numeric_limits<int32_t>::min()) Val = 0; |
| if (Val < 0) Val = -Val; |
| Val = ARM_AM::getAM3Opc(AddSub, Val); |
| Inst.addOperand(MCOperand::createReg(0)); |
| Inst.addOperand(MCOperand::createImm(Val)); |
| } |
| |
| void addAddrMode5Operands(MCInst &Inst, unsigned N) const { |
| assert(N == 2 && "Invalid number of operands!"); |
| // If we have an immediate that's not a constant, treat it as a label |
| // reference needing a fixup. If it is a constant, it's something else |
| // and we reject it. |
| if (isImm()) { |
| Inst.addOperand(MCOperand::createExpr(getImm())); |
| Inst.addOperand(MCOperand::createImm(0)); |
| return; |
| } |
| |
| // The lower two bits are always zero and as such are not encoded. |
| int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 4 : 0; |
| ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; |
| // Special case for #-0 |
| if (Val == std::numeric_limits<int32_t>::min()) Val = 0; |
| if (Val < 0) Val = -Val; |
| Val = ARM_AM::getAM5Opc(AddSub, Val); |
| Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); |
| Inst.addOperand(MCOperand::createImm(Val)); |
| } |
| |
| void addAddrMode5FP16Operands(MCInst &Inst, unsigned N) const { |
| assert(N == 2 && "Invalid number of operands!"); |
| // If we have an immediate that's not a constant, treat it as a label |
| // reference needing a fixup. If it is a constant, it's something else |
| // and we reject it. |
| if (isImm()) { |
| Inst.addOperand(MCOperand::createExpr(getImm())); |
| Inst.addOperand(MCOperand::createImm(0)); |
| return; |
| } |
| |
| // The lower bit is always zero and as such is not encoded. |
| int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 2 : 0; |
| ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; |
| // Special case for #-0 |
| if (Val == std::numeric_limits<int32_t>::min()) Val = 0; |
| if (Val < 0) Val = -Val; |
| Val = ARM_AM::getAM5FP16Opc(AddSub, Val); |
| Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); |
| Inst.addOperand(MCOperand::createImm(Val)); |
| } |
| |
| void addMemImm8s4OffsetOperands(MCInst &Inst, unsigned N) const { |
| assert(N == 2 && "Invalid number of operands!"); |
| // If we have an immediate that's not a constant, treat it as a label |
| // reference needing a fixup. If it is a constant, it's something else |
| // and we reject it. |
| if (isImm()) { |
| Inst.addOperand(MCOperand::createExpr(getImm())); |
| Inst.addOperand(MCOperand::createImm(0)); |
| return; |
| } |
| |
| int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; |
| Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); |
| Inst.addOperand(MCOperand::createImm(Val)); |
| } |
| |
| void addMemImm7s4OffsetOperands(MCInst &Inst, unsigned N) const { |
| assert(N == 2 && "Invalid number of operands!"); |
| // If we have an immediate that's not a constant, treat it as a label |
| // reference needing a fixup. If it is a constant, it's something else |
| // and we reject it. |
| if (isImm()) { |
| Inst.addOperand(MCOperand::createExpr(getImm())); |
| Inst.addOperand(MCOperand::createImm(0)); |
| return; |
| } |
| |
| int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; |
| Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); |
| Inst.addOperand(MCOperand::createImm(Val)); |
| } |
| |
| void addMemImm0_1020s4OffsetOperands(MCInst &Inst, unsigned N) const { |
| assert(N == 2 && "Invalid number of operands!"); |
| // The lower two bits are always zero and as such are not encoded. |
| int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 4 : 0; |
| Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); |
| Inst.addOperand(MCOperand::createImm(Val)); |
| } |
| |
| void addMemImmOffsetOperands(MCInst &Inst, unsigned N) const { |
| assert(N == 2 && "Invalid number of operands!"); |
| int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; |
| Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); |
| Inst.addOperand(MCOperand::createImm(Val)); |
| } |
| |
| void addMemRegRQOffsetOperands(MCInst &Inst, unsigned N) const { |
| assert(N == 2 && "Invalid number of operands!"); |
| Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); |
| Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); |
| } |
| |
| void addMemUImm12OffsetOperands(MCInst &Inst, unsigned N) const { |
| assert(N == 2 && "Invalid number of operands!"); |
| // If this is an immediate, it's a label reference. |
| if (isImm()) { |
| addExpr(Inst, getImm()); |
| Inst.addOperand(MCOperand::createImm(0)); |
| return; |
| } |
| |
| // Otherwise, it's a normal memory reg+offset. |
| int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; |
| Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); |
| Inst.addOperand(MCOperand::createImm(Val)); |
| } |
| |
| void addMemImm12OffsetOperands(MCInst &Inst, unsigned N) const { |
| assert(N == 2 && "Invalid number of operands!"); |
| // If this is an immediate, it's a label reference. |
| if (isImm()) { |
| addExpr(Inst, getImm()); |
| Inst.addOperand(MCOperand::createImm(0)); |
| return; |
| } |
| |
| // Otherwise, it's a normal memory reg+offset. |
| int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; |
| Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); |
| Inst.addOperand(MCOperand::createImm(Val)); |
| } |
| |
| void addConstPoolAsmImmOperands(MCInst &Inst, unsigned N) const { |
| assert(N == 1 && "Invalid number of operands!"); |
| // This is container for the immediate that we will create the constant |
| // pool from |
| addExpr(Inst, getConstantPoolImm()); |
| return; |
| } |
| |
| void addMemTBBOperands(MCInst &Inst, unsigned N) const { |
| assert(N == 2 && "Invalid number of operands!"); |
| Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); |
| Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); |
| } |
| |
| void addMemTBHOperands(MCInst &Inst, unsigned N) const { |
| assert(N == 2 && "Invalid number of operands!"); |
| Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); |
| Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); |
| } |
| |
| void addMemRegOffsetOperands(MCInst &Inst, unsigned N) const { |
| assert(N == 3 && "Invalid number of operands!"); |
| unsigned Val = |
| ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, |
| Memory.ShiftImm, Memory.ShiftType); |
| Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); |
| Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); |
| Inst.addOperand(MCOperand::createImm(Val)); |
| } |
| |
| void addT2MemRegOffsetOperands(MCInst &Inst, unsigned N) const { |
| assert(N == 3 && "Invalid number of operands!"); |
| Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); |
| Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); |
| Inst.addOperand(MCOperand::createImm(Memory.ShiftImm)); |
| } |
| |
| void addMemThumbRROperands(MCInst &Inst, unsigned N) const { |
| assert(N == 2 && "Invalid number of operands!"); |
| Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); |
| Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); |
| } |
| |
| void addMemThumbRIs4Operands(MCInst &Inst, unsigned N) const { |
| assert(N == 2 && "Invalid number of operands!"); |
| int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 4) : 0; |
| Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); |
| Inst.addOperand(MCOperand::createImm(Val)); |
| } |
| |
| void addMemThumbRIs2Operands(MCInst &Inst, unsigned N) const { |
| assert(N == 2 && "Invalid number of operands!"); |
| int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 2) : 0; |
| Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); |
| Inst.addOperand(MCOperand::createImm(Val)); |
| } |
| |
| void addMemThumbRIs1Operands(MCInst &Inst, unsigned N) const { |
| assert(N == 2 && "Invalid number of operands!"); |
| int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue()) : 0; |
| Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); |
| Inst.addOperand(MCOperand::createImm(Val)); |
| } |
| |
| void addMemThumbSPIOperands(MCInst &Inst, unsigned N) const { |
| assert(N == 2 && "Invalid number of operands!"); |
| int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 4) : 0; |
| Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); |
| Inst.addOperand(MCOperand::createImm(Val)); |
| } |
| |
| void addPostIdxImm8Operands(MCInst &Inst, unsigned N) const { |
| assert(N == 1 && "Invalid number of operands!"); |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| assert(CE && "non-constant post-idx-imm8 operand!"); |
| int Imm = CE->getValue(); |
| bool isAdd = Imm >= 0; |
| if (Imm == std::numeric_limits<int32_t>::min()) Imm = 0; |
| Imm = (Imm < 0 ? -Imm : Imm) | (int)isAdd << 8; |
| Inst.addOperand(MCOperand::createImm(Imm)); |
| } |
| |
| void addPostIdxImm8s4Operands(MCInst &Inst, unsigned N) const { |
| assert(N == 1 && "Invalid number of operands!"); |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| assert(CE && "non-constant post-idx-imm8s4 operand!"); |
| int Imm = CE->getValue(); |
| bool isAdd = Imm >= 0; |
| if (Imm == std::numeric_limits<int32_t>::min()) Imm = 0; |
| // Immediate is scaled by 4. |
| Imm = ((Imm < 0 ? -Imm : Imm) / 4) | (int)isAdd << 8; |
| Inst.addOperand(MCOperand::createImm(Imm)); |
| } |
| |
| void addPostIdxRegOperands(MCInst &Inst, unsigned N) const { |
| assert(N == 2 && "Invalid number of operands!"); |
| Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum)); |
| Inst.addOperand(MCOperand::createImm(PostIdxReg.isAdd)); |
| } |
| |
| void addPostIdxRegShiftedOperands(MCInst &Inst, unsigned N) const { |
| assert(N == 2 && "Invalid number of operands!"); |
| Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum)); |
| // The sign, shift type, and shift amount are encoded in a single operand |
| // using the AM2 encoding helpers. |
| ARM_AM::AddrOpc opc = PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub; |
| unsigned Imm = ARM_AM::getAM2Opc(opc, PostIdxReg.ShiftImm, |
| PostIdxReg.ShiftTy); |
| Inst.addOperand(MCOperand::createImm(Imm)); |
| } |
| |
| void addPowerTwoOperands(MCInst &Inst, unsigned N) const { |
| assert(N == 1 && "Invalid number of operands!"); |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| Inst.addOperand(MCOperand::createImm(CE->getValue())); |
| } |
| |
| void addMSRMaskOperands(MCInst &Inst, unsigned N) const { |
| assert(N == 1 && "Invalid number of operands!"); |
| Inst.addOperand(MCOperand::createImm(unsigned(getMSRMask()))); |
| } |
| |
| void addBankedRegOperands(MCInst &Inst, unsigned N) const { |
| assert(N == 1 && "Invalid number of operands!"); |
| Inst.addOperand(MCOperand::createImm(unsigned(getBankedReg()))); |
| } |
| |
| void addProcIFlagsOperands(MCInst &Inst, unsigned N) const { |
| assert(N == 1 && "Invalid number of operands!"); |
| Inst.addOperand(MCOperand::createImm(unsigned(getProcIFlags()))); |
| } |
| |
| void addVecListOperands(MCInst &Inst, unsigned N) const { |
| assert(N == 1 && "Invalid number of operands!"); |
| Inst.addOperand(MCOperand::createReg(VectorList.RegNum)); |
| } |
| |
| void addMVEVecListOperands(MCInst &Inst, unsigned N) const { |
| assert(N == 1 && "Invalid number of operands!"); |
| |
| // When we come here, the VectorList field will identify a range |
| // of q-registers by its base register and length, and it will |
| // have already been error-checked to be the expected length of |
| // range and contain only q-regs in the range q0-q7. So we can |
| // count on the base register being in the range q0-q6 (for 2 |
| // regs) or q0-q4 (for 4) |
| // |
| // The MVE instructions taking a register range of this kind will |
| // need an operand in the QQPR or QQQQPR class, representing the |
| // entire range as a unit. So we must translate into that class, |
| // by finding the index of the base register in the MQPR reg |
| // class, and returning the super-register at the corresponding |
| // index in the target class. |
| |
| const MCRegisterClass *RC_in = &ARMMCRegisterClasses[ARM::MQPRRegClassID]; |
| const MCRegisterClass *RC_out = (VectorList.Count == 2) ? |
| &ARMMCRegisterClasses[ARM::QQPRRegClassID] : |
| &ARMMCRegisterClasses[ARM::QQQQPRRegClassID]; |
| |
| unsigned I, E = RC_out->getNumRegs(); |
| for (I = 0; I < E; I++) |
| if (RC_in->getRegister(I) == VectorList.RegNum) |
| break; |
| assert(I < E && "Invalid vector list start register!"); |
| |
| Inst.addOperand(MCOperand::createReg(RC_out->getRegister(I))); |
| } |
| |
| void addVecListIndexedOperands(MCInst &Inst, unsigned N) const { |
| assert(N == 2 && "Invalid number of operands!"); |
| Inst.addOperand(MCOperand::createReg(VectorList.RegNum)); |
| Inst.addOperand(MCOperand::createImm(VectorList.LaneIndex)); |
| } |
| |
| void addVectorIndex8Operands(MCInst &Inst, unsigned N) const { |
| assert(N == 1 && "Invalid number of operands!"); |
| Inst.addOperand(MCOperand::createImm(getVectorIndex())); |
| } |
| |
| void addVectorIndex16Operands(MCInst &Inst, unsigned N) const { |
| assert(N == 1 && "Invalid number of operands!"); |
| Inst.addOperand(MCOperand::createImm(getVectorIndex())); |
| } |
| |
| void addVectorIndex32Operands(MCInst &Inst, unsigned N) const { |
| assert(N == 1 && "Invalid number of operands!"); |
| Inst.addOperand(MCOperand::createImm(getVectorIndex())); |
| } |
| |
| void addVectorIndex64Operands(MCInst &Inst, unsigned N) const { |
| assert(N == 1 && "Invalid number of operands!"); |
| Inst.addOperand(MCOperand::createImm(getVectorIndex())); |
| } |
| |
| void addMVEVectorIndexOperands(MCInst &Inst, unsigned N) const { |
| assert(N == 1 && "Invalid number of operands!"); |
| Inst.addOperand(MCOperand::createImm(getVectorIndex())); |
| } |
| |
| void addMVEPairVectorIndexOperands(MCInst &Inst, unsigned N) const { |
| assert(N == 1 && "Invalid number of operands!"); |
| Inst.addOperand(MCOperand::createImm(getVectorIndex())); |
| } |
| |
| void addNEONi8splatOperands(MCInst &Inst, unsigned N) const { |
| assert(N == 1 && "Invalid number of operands!"); |
| // The immediate encodes the type of constant as well as the value. |
| // Mask in that this is an i8 splat. |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| Inst.addOperand(MCOperand::createImm(CE->getValue() | 0xe00)); |
| } |
| |
| void addNEONi16splatOperands(MCInst &Inst, unsigned N) const { |
| assert(N == 1 && "Invalid number of operands!"); |
| // The immediate encodes the type of constant as well as the value. |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| unsigned Value = CE->getValue(); |
| Value = ARM_AM::encodeNEONi16splat(Value); |
| Inst.addOperand(MCOperand::createImm(Value)); |
| } |
| |
| void addNEONi16splatNotOperands(MCInst &Inst, unsigned N) const { |
| assert(N == 1 && "Invalid number of operands!"); |
| // The immediate encodes the type of constant as well as the value. |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| unsigned Value = CE->getValue(); |
| Value = ARM_AM::encodeNEONi16splat(~Value & 0xffff); |
| Inst.addOperand(MCOperand::createImm(Value)); |
| } |
| |
| void addNEONi32splatOperands(MCInst &Inst, unsigned N) const { |
| assert(N == 1 && "Invalid number of operands!"); |
| // The immediate encodes the type of constant as well as the value. |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| unsigned Value = CE->getValue(); |
| Value = ARM_AM::encodeNEONi32splat(Value); |
| Inst.addOperand(MCOperand::createImm(Value)); |
| } |
| |
| void addNEONi32splatNotOperands(MCInst &Inst, unsigned N) const { |
| assert(N == 1 && "Invalid number of operands!"); |
| // The immediate encodes the type of constant as well as the value. |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| unsigned Value = CE->getValue(); |
| Value = ARM_AM::encodeNEONi32splat(~Value); |
| Inst.addOperand(MCOperand::createImm(Value)); |
| } |
| |
| void addNEONi8ReplicateOperands(MCInst &Inst, bool Inv) const { |
| // The immediate encodes the type of constant as well as the value. |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| assert((Inst.getOpcode() == ARM::VMOVv8i8 || |
| Inst.getOpcode() == ARM::VMOVv16i8) && |
| "All instructions that wants to replicate non-zero byte " |
| "always must be replaced with VMOVv8i8 or VMOVv16i8."); |
| unsigned Value = CE->getValue(); |
| if (Inv) |
| Value = ~Value; |
| unsigned B = Value & 0xff; |
| B |= 0xe00; // cmode = 0b1110 |
| Inst.addOperand(MCOperand::createImm(B)); |
| } |
| |
| void addNEONinvi8ReplicateOperands(MCInst &Inst, unsigned N) const { |
| assert(N == 1 && "Invalid number of operands!"); |
| addNEONi8ReplicateOperands(Inst, true); |
| } |
| |
| static unsigned encodeNeonVMOVImmediate(unsigned Value) { |
| if (Value >= 256 && Value <= 0xffff) |
| Value = (Value >> 8) | ((Value & 0xff) ? 0xc00 : 0x200); |
| else if (Value > 0xffff && Value <= 0xffffff) |
| Value = (Value >> 16) | ((Value & 0xff) ? 0xd00 : 0x400); |
| else if (Value > 0xffffff) |
| Value = (Value >> 24) | 0x600; |
| return Value; |
| } |
| |
| void addNEONi32vmovOperands(MCInst &Inst, unsigned N) const { |
| assert(N == 1 && "Invalid number of operands!"); |
| // The immediate encodes the type of constant as well as the value. |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| unsigned Value = encodeNeonVMOVImmediate(CE->getValue()); |
| Inst.addOperand(MCOperand::createImm(Value)); |
| } |
| |
| void addNEONvmovi8ReplicateOperands(MCInst &Inst, unsigned N) const { |
| assert(N == 1 && "Invalid number of operands!"); |
| addNEONi8ReplicateOperands(Inst, false); |
| } |
| |
| void addNEONvmovi16ReplicateOperands(MCInst &Inst, unsigned N) const { |
| assert(N == 1 && "Invalid number of operands!"); |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| assert((Inst.getOpcode() == ARM::VMOVv4i16 || |
| Inst.getOpcode() == ARM::VMOVv8i16 || |
| Inst.getOpcode() == ARM::VMVNv4i16 || |
| Inst.getOpcode() == ARM::VMVNv8i16) && |
| "All instructions that want to replicate non-zero half-word " |
| "always must be replaced with V{MOV,MVN}v{4,8}i16."); |
| uint64_t Value = CE->getValue(); |
| unsigned Elem = Value & 0xffff; |
| if (Elem >= 256) |
| Elem = (Elem >> 8) | 0x200; |
| Inst.addOperand(MCOperand::createImm(Elem)); |
| } |
| |
| void addNEONi32vmovNegOperands(MCInst &Inst, unsigned N) const { |
| assert(N == 1 && "Invalid number of operands!"); |
| // The immediate encodes the type of constant as well as the value. |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| unsigned Value = encodeNeonVMOVImmediate(~CE->getValue()); |
| Inst.addOperand(MCOperand::createImm(Value)); |
| } |
| |
| void addNEONvmovi32ReplicateOperands(MCInst &Inst, unsigned N) const { |
| assert(N == 1 && "Invalid number of operands!"); |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| assert((Inst.getOpcode() == ARM::VMOVv2i32 || |
| Inst.getOpcode() == ARM::VMOVv4i32 || |
| Inst.getOpcode() == ARM::VMVNv2i32 || |
| Inst.getOpcode() == ARM::VMVNv4i32) && |
| "All instructions that want to replicate non-zero word " |
| "always must be replaced with V{MOV,MVN}v{2,4}i32."); |
| uint64_t Value = CE->getValue(); |
| unsigned Elem = encodeNeonVMOVImmediate(Value & 0xffffffff); |
| Inst.addOperand(MCOperand::createImm(Elem)); |
| } |
| |
| void addNEONi64splatOperands(MCInst &Inst, unsigned N) const { |
| assert(N == 1 && "Invalid number of operands!"); |
| // The immediate encodes the type of constant as well as the value. |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| uint64_t Value = CE->getValue(); |
| unsigned Imm = 0; |
| for (unsigned i = 0; i < 8; ++i, Value >>= 8) { |
| Imm |= (Value & 1) << i; |
| } |
| Inst.addOperand(MCOperand::createImm(Imm | 0x1e00)); |
| } |
| |
| void addComplexRotationEvenOperands(MCInst &Inst, unsigned N) const { |
| assert(N == 1 && "Invalid number of operands!"); |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| Inst.addOperand(MCOperand::createImm(CE->getValue() / 90)); |
| } |
| |
| void addComplexRotationOddOperands(MCInst &Inst, unsigned N) const { |
| assert(N == 1 && "Invalid number of operands!"); |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); |
| Inst.addOperand(MCOperand::createImm((CE->getValue() - 90) / 180)); |
| } |
| |
| void print(raw_ostream &OS) const override; |
| |
| static std::unique_ptr<ARMOperand> CreateITMask(unsigned Mask, SMLoc S) { |
| auto Op = make_unique<ARMOperand>(k_ITCondMask); |
| Op->ITMask.Mask = Mask; |
| Op->StartLoc = S; |
| Op->EndLoc = S; |
| return Op; |
| } |
| |
| static std::unique_ptr<ARMOperand> CreateCondCode(ARMCC::CondCodes CC, |
| SMLoc S) { |
| auto Op = make_unique<ARMOperand>(k_CondCode); |
| Op->CC.Val = CC; |
| Op->StartLoc = S; |
| Op->EndLoc = S; |
| return Op; |
| } |
| |
| static std::unique_ptr<ARMOperand> CreateVPTPred(ARMVCC::VPTCodes CC, |
| SMLoc S) { |
| auto Op = make_unique<ARMOperand>(k_VPTPred); |
| Op->VCC.Val = CC; |
| Op->StartLoc = S; |
| Op->EndLoc = S; |
| return Op; |
| } |
| |
| static std::unique_ptr<ARMOperand> CreateCoprocNum(unsigned CopVal, SMLoc S) { |
| auto Op = make_unique<ARMOperand>(k_CoprocNum); |
| Op->Cop.Val = CopVal; |
| Op->StartLoc = S; |
| Op->EndLoc = S; |
| return Op; |
| } |
| |
| static std::unique_ptr<ARMOperand> CreateCoprocReg(unsigned CopVal, SMLoc S) { |
| auto Op = make_unique<ARMOperand>(k_CoprocReg); |
| Op->Cop.Val = CopVal; |
| Op->StartLoc = S; |
| Op->EndLoc = S; |
| return Op; |
| } |
| |
| static std::unique_ptr<ARMOperand> CreateCoprocOption(unsigned Val, SMLoc S, |
| SMLoc E) { |
| auto Op = make_unique<ARMOperand>(k_CoprocOption); |
| Op->Cop.Val = Val; |
| Op->StartLoc = S; |
| Op->EndLoc = E; |
| return Op; |
| } |
| |
| static std::unique_ptr<ARMOperand> CreateCCOut(unsigned RegNum, SMLoc S) { |
| auto Op = make_unique<ARMOperand>(k_CCOut); |
| Op->Reg.RegNum = RegNum; |
| Op->StartLoc = S; |
| Op->EndLoc = S; |
| return Op; |
| } |
| |
| static std::unique_ptr<ARMOperand> CreateToken(StringRef Str, SMLoc S) { |
| auto Op = make_unique<ARMOperand>(k_Token); |
| Op->Tok.Data = Str.data(); |
| Op->Tok.Length = Str.size(); |
| Op->StartLoc = S; |
| Op->EndLoc = S; |
| return Op; |
| } |
| |
| static std::unique_ptr<ARMOperand> CreateReg(unsigned RegNum, SMLoc S, |
| SMLoc E) { |
| auto Op = make_unique<ARMOperand>(k_Register); |
| Op->Reg.RegNum = RegNum; |
| Op->StartLoc = S; |
| Op->EndLoc = E; |
| return Op; |
| } |
| |
| static std::unique_ptr<ARMOperand> |
| CreateShiftedRegister(ARM_AM::ShiftOpc ShTy, unsigned SrcReg, |
| unsigned ShiftReg, unsigned ShiftImm, SMLoc S, |
| SMLoc E) { |
| auto Op = make_unique<ARMOperand>(k_ShiftedRegister); |
| Op->RegShiftedReg.ShiftTy = ShTy; |
| Op->RegShiftedReg.SrcReg = SrcReg; |
| Op->RegShiftedReg.ShiftReg = ShiftReg; |
| Op->RegShiftedReg.ShiftImm = ShiftImm; |
| Op->StartLoc = S; |
| Op->EndLoc = E; |
| return Op; |
| } |
| |
| static std::unique_ptr<ARMOperand> |
| CreateShiftedImmediate(ARM_AM::ShiftOpc ShTy, unsigned SrcReg, |
| unsigned ShiftImm, SMLoc S, SMLoc E) { |
| auto Op = make_unique<ARMOperand>(k_ShiftedImmediate); |
| Op->RegShiftedImm.ShiftTy = ShTy; |
| Op->RegShiftedImm.SrcReg = SrcReg; |
| Op->RegShiftedImm.ShiftImm = ShiftImm; |
| Op->StartLoc = S; |
| Op->EndLoc = E; |
| return Op; |
| } |
| |
| static std::unique_ptr<ARMOperand> CreateShifterImm(bool isASR, unsigned Imm, |
| SMLoc S, SMLoc E) { |
| auto Op = make_unique<ARMOperand>(k_ShifterImmediate); |
| Op->ShifterImm.isASR = isASR; |
| Op->ShifterImm.Imm = Imm; |
| Op->StartLoc = S; |
| Op->EndLoc = E; |
| return Op; |
| } |
| |
| static std::unique_ptr<ARMOperand> CreateRotImm(unsigned Imm, SMLoc S, |
| SMLoc E) { |
| auto Op = make_unique<ARMOperand>(k_RotateImmediate); |
| Op->RotImm.Imm = Imm; |
| Op->StartLoc = S; |
| Op->EndLoc = E; |
| return Op; |
| } |
| |
| static std::unique_ptr<ARMOperand> CreateModImm(unsigned Bits, unsigned Rot, |
| SMLoc S, SMLoc E) { |
| auto Op = make_unique<ARMOperand>(k_ModifiedImmediate); |
| Op->ModImm.Bits = Bits; |
| Op->ModImm.Rot = Rot; |
| Op->StartLoc = S; |
| Op->EndLoc = E; |
| return Op; |
| } |
| |
| static std::unique_ptr<ARMOperand> |
| CreateConstantPoolImm(const MCExpr *Val, SMLoc S, SMLoc E) { |
| auto Op = make_unique<ARMOperand>(k_ConstantPoolImmediate); |
| Op->Imm.Val = Val; |
| Op->StartLoc = S; |
| Op->EndLoc = E; |
| return Op; |
| } |
| |
| static std::unique_ptr<ARMOperand> |
| CreateBitfield(unsigned LSB, unsigned Width, SMLoc S, SMLoc E) { |
| auto Op = make_unique<ARMOperand>(k_BitfieldDescriptor); |
| Op->Bitfield.LSB = LSB; |
| Op->Bitfield.Width = Width; |
| Op->StartLoc = S; |
| Op->EndLoc = E; |
| return Op; |
| } |
| |
| static std::unique_ptr<ARMOperand> |
| CreateRegList(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs, |
| SMLoc StartLoc, SMLoc EndLoc) { |
| assert(Regs.size() > 0 && "RegList contains no registers?"); |
| KindTy Kind = k_RegisterList; |
| |
| if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains( |
| Regs.front().second)) { |
| if (Regs.back().second == ARM::VPR) |
| Kind = k_FPDRegisterListWithVPR; |
| else |
| Kind = k_DPRRegisterList; |
| } else if (ARMMCRegisterClasses[ARM::SPRRegClassID].contains( |
| Regs.front().second)) { |
| if (Regs.back().second == ARM::VPR) |
| Kind = k_FPSRegisterListWithVPR; |
| else |
| Kind = k_SPRRegisterList; |
| } |
| |
| // Sort based on the register encoding values. |
| array_pod_sort(Regs.begin(), Regs.end()); |
| |
| if (Kind == k_RegisterList && Regs.back().second == ARM::APSR) |
| Kind = k_RegisterListWithAPSR; |
| |
| auto Op = make_unique<ARMOperand>(Kind); |
| for (SmallVectorImpl<std::pair<unsigned, unsigned>>::const_iterator |
| I = Regs.begin(), E = Regs.end(); I != E; ++I) |
| Op->Registers.push_back(I->second); |
| |
| Op->StartLoc = StartLoc; |
| Op->EndLoc = EndLoc; |
| return Op; |
| } |
| |
| static std::unique_ptr<ARMOperand> CreateVectorList(unsigned RegNum, |
| unsigned Count, |
| bool isDoubleSpaced, |
| SMLoc S, SMLoc E) { |
| auto Op = make_unique<ARMOperand>(k_VectorList); |
| Op->VectorList.RegNum = RegNum; |
| Op->VectorList.Count = Count; |
| Op->VectorList.isDoubleSpaced = isDoubleSpaced; |
| Op->StartLoc = S; |
| Op->EndLoc = E; |
| return Op; |
| } |
| |
| static std::unique_ptr<ARMOperand> |
| CreateVectorListAllLanes(unsigned RegNum, unsigned Count, bool isDoubleSpaced, |
| SMLoc S, SMLoc E) { |
| auto Op = make_unique<ARMOperand>(k_VectorListAllLanes); |
| Op->VectorList.RegNum = RegNum; |
| Op->VectorList.Count = Count; |
| Op->VectorList.isDoubleSpaced = isDoubleSpaced; |
| Op->StartLoc = S; |
| Op->EndLoc = E; |
| return Op; |
| } |
| |
| static std::unique_ptr<ARMOperand> |
| CreateVectorListIndexed(unsigned RegNum, unsigned Count, unsigned Index, |
| bool isDoubleSpaced, SMLoc S, SMLoc E) { |
| auto Op = make_unique<ARMOperand>(k_VectorListIndexed); |
| Op->VectorList.RegNum = RegNum; |
| Op->VectorList.Count = Count; |
| Op->VectorList.LaneIndex = Index; |
| Op->VectorList.isDoubleSpaced = isDoubleSpaced; |
| Op->StartLoc = S; |
| Op->EndLoc = E; |
| return Op; |
| } |
| |
| static std::unique_ptr<ARMOperand> |
| CreateVectorIndex(unsigned Idx, SMLoc S, SMLoc E, MCContext &Ctx) { |
| auto Op = make_unique<ARMOperand>(k_VectorIndex); |
| Op->VectorIndex.Val = Idx; |
| Op->StartLoc = S; |
| Op->EndLoc = E; |
| return Op; |
| } |
| |
| static std::unique_ptr<ARMOperand> CreateImm(const MCExpr *Val, SMLoc S, |
| SMLoc E) { |
| auto Op = make_unique<ARMOperand>(k_Immediate); |
| Op->Imm.Val = Val; |
| Op->StartLoc = S; |
| Op->EndLoc = E; |
| return Op; |
| } |
| |
| static std::unique_ptr<ARMOperand> |
| CreateMem(unsigned BaseRegNum, const MCConstantExpr *OffsetImm, |
| unsigned OffsetRegNum, ARM_AM::ShiftOpc ShiftType, |
| unsigned ShiftImm, unsigned Alignment, bool isNegative, SMLoc S, |
| SMLoc E, SMLoc AlignmentLoc = SMLoc()) { |
| auto Op = make_unique<ARMOperand>(k_Memory); |
| Op->Memory.BaseRegNum = BaseRegNum; |
| Op->Memory.OffsetImm = OffsetImm; |
| Op->Memory.OffsetRegNum = OffsetRegNum; |
| Op->Memory.ShiftType = ShiftType; |
| Op->Memory.ShiftImm = ShiftImm; |
| Op->Memory.Alignment = Alignment; |
| Op->Memory.isNegative = isNegative; |
| Op->StartLoc = S; |
| Op->EndLoc = E; |
| Op->AlignmentLoc = AlignmentLoc; |
| return Op; |
| } |
| |
| static std::unique_ptr<ARMOperand> |
| CreatePostIdxReg(unsigned RegNum, bool isAdd, ARM_AM::ShiftOpc ShiftTy, |
| unsigned ShiftImm, SMLoc S, SMLoc E) { |
| auto Op = make_unique<ARMOperand>(k_PostIndexRegister); |
| Op->PostIdxReg.RegNum = RegNum; |
| Op->PostIdxReg.isAdd = isAdd; |
| Op->PostIdxReg.ShiftTy = ShiftTy; |
| Op->PostIdxReg.ShiftImm = ShiftImm; |
| Op->StartLoc = S; |
| Op->EndLoc = E; |
| return Op; |
| } |
| |
| static std::unique_ptr<ARMOperand> CreateMemBarrierOpt(ARM_MB::MemBOpt Opt, |
| SMLoc S) { |
| auto Op = make_unique<ARMOperand>(k_MemBarrierOpt); |
| Op->MBOpt.Val = Opt; |
| Op->StartLoc = S; |
| Op->EndLoc = S; |
| return Op; |
| } |
| |
| static std::unique_ptr<ARMOperand> |
| CreateInstSyncBarrierOpt(ARM_ISB::InstSyncBOpt Opt, SMLoc S) { |
| auto Op = make_unique<ARMOperand>(k_InstSyncBarrierOpt); |
| Op->ISBOpt.Val = Opt; |
| Op->StartLoc = S; |
| Op->EndLoc = S; |
| return Op; |
| } |
| |
| static std::unique_ptr<ARMOperand> |
| CreateTraceSyncBarrierOpt(ARM_TSB::TraceSyncBOpt Opt, SMLoc S) { |
| auto Op = make_unique<ARMOperand>(k_TraceSyncBarrierOpt); |
| Op->TSBOpt.Val = Opt; |
| Op->StartLoc = S; |
| Op->EndLoc = S; |
| return Op; |
| } |
| |
| static std::unique_ptr<ARMOperand> CreateProcIFlags(ARM_PROC::IFlags IFlags, |
| SMLoc S) { |
| auto Op = make_unique<ARMOperand>(k_ProcIFlags); |
| Op->IFlags.Val = IFlags; |
| Op->StartLoc = S; |
| Op->EndLoc = S; |
| return Op; |
| } |
| |
| static std::unique_ptr<ARMOperand> CreateMSRMask(unsigned MMask, SMLoc S) { |
| auto Op = make_unique<ARMOperand>(k_MSRMask); |
| Op->MMask.Val = MMask; |
| Op->StartLoc = S; |
| Op->EndLoc = S; |
| return Op; |
| } |
| |
| static std::unique_ptr<ARMOperand> CreateBankedReg(unsigned Reg, SMLoc S) { |
| auto Op = make_unique<ARMOperand>(k_BankedReg); |
| Op->BankedReg.Val = Reg; |
| Op->StartLoc = S; |
| Op->EndLoc = S; |
| return Op; |
| } |
| }; |
| |
| } // end anonymous namespace. |
| |
| void ARMOperand::print(raw_ostream &OS) const { |
| auto RegName = [](unsigned Reg) { |
| if (Reg) |
| return ARMInstPrinter::getRegisterName(Reg); |
| else |
| return "noreg"; |
| }; |
| |
| switch (Kind) { |
| case k_CondCode: |
| OS << "<ARMCC::" << ARMCondCodeToString(getCondCode()) << ">"; |
| break; |
| case k_VPTPred: |
| OS << "<ARMVCC::" << ARMVPTPredToString(getVPTPred()) << ">"; |
| break; |
| case k_CCOut: |
| OS << "<ccout " << RegName(getReg()) << ">"; |
| break; |
| case k_ITCondMask: { |
| static const char *const MaskStr[] = { |
| "(invalid)", "(tttt)", "(ttt)", "(ttte)", |
| "(tt)", "(ttet)", "(tte)", "(ttee)", |
| "(t)", "(tett)", "(tet)", "(tete)", |
| "(te)", "(teet)", "(tee)", "(teee)", |
| }; |
| assert((ITMask.Mask & 0xf) == ITMask.Mask); |
| OS << "<it-mask " << MaskStr[ITMask.Mask] << ">"; |
| break; |
| } |
| case k_CoprocNum: |
| OS << "<coprocessor number: " << getCoproc() << ">"; |
| break; |
| case k_CoprocReg: |
| OS << "<coprocessor register: " << getCoproc() << ">"; |
| break; |
| case k_CoprocOption: |
| OS << "<coprocessor option: " << CoprocOption.Val << ">"; |
| break; |
| case k_MSRMask: |
| OS << "<mask: " << getMSRMask() << ">"; |
| break; |
| case k_BankedReg: |
| OS << "<banked reg: " << getBankedReg() << ">"; |
| break; |
| case k_Immediate: |
| OS << *getImm(); |
| break; |
| case k_MemBarrierOpt: |
| OS << "<ARM_MB::" << MemBOptToString(getMemBarrierOpt(), false) << ">"; |
| break; |
| case k_InstSyncBarrierOpt: |
| OS << "<ARM_ISB::" << InstSyncBOptToString(getInstSyncBarrierOpt()) << ">"; |
| break; |
| case k_TraceSyncBarrierOpt: |
| OS << "<ARM_TSB::" << TraceSyncBOptToString(getTraceSyncBarrierOpt()) << ">"; |
| break; |
| case k_Memory: |
| OS << "<memory"; |
| if (Memory.BaseRegNum) |
| OS << " base:" << RegName(Memory.BaseRegNum); |
| if (Memory.OffsetImm) |
| OS << " offset-imm:" << *Memory.OffsetImm; |
| if (Memory.OffsetRegNum) |
| OS << " offset-reg:" << (Memory.isNegative ? "-" : "") |
| << RegName(Memory.OffsetRegNum); |
| if (Memory.ShiftType != ARM_AM::no_shift) { |
| OS << " shift-type:" << ARM_AM::getShiftOpcStr(Memory.ShiftType); |
| OS << " shift-imm:" << Memory.ShiftImm; |
| } |
| if (Memory.Alignment) |
| OS << " alignment:" << Memory.Alignment; |
| OS << ">"; |
| break; |
| case k_PostIndexRegister: |
| OS << "post-idx register " << (PostIdxReg.isAdd ? "" : "-") |
| << RegName(PostIdxReg.RegNum); |
| if (PostIdxReg.ShiftTy != ARM_AM::no_shift) |
| OS << ARM_AM::getShiftOpcStr(PostIdxReg.ShiftTy) << " " |
| << PostIdxReg.ShiftImm; |
| OS << ">"; |
| break; |
| case k_ProcIFlags: { |
| OS << "<ARM_PROC::"; |
| unsigned IFlags = getProcIFlags(); |
| for (int i=2; i >= 0; --i) |
| if (IFlags & (1 << i)) |
| OS << ARM_PROC::IFlagsToString(1 << i); |
| OS << ">"; |
| break; |
| } |
| case k_Register: |
| OS << "<register " << RegName(getReg()) << ">"; |
| break; |
| case k_ShifterImmediate: |
| OS << "<shift " << (ShifterImm.isASR ? "asr" : "lsl") |
| << " #" << ShifterImm.Imm << ">"; |
| break; |
| case k_ShiftedRegister: |
| OS << "<so_reg_reg " << RegName(RegShiftedReg.SrcReg) << " " |
| << ARM_AM::getShiftOpcStr(RegShiftedReg.ShiftTy) << " " |
| << RegName(RegShiftedReg.ShiftReg) << ">"; |
| break; |
| case k_ShiftedImmediate: |
| OS << "<so_reg_imm " << RegName(RegShiftedImm.SrcReg) << " " |
| << ARM_AM::getShiftOpcStr(RegShiftedImm.ShiftTy) << " #" |
| << RegShiftedImm.ShiftImm << ">"; |
| break; |
| case k_RotateImmediate: |
| OS << "<ror " << " #" << (RotImm.Imm * 8) << ">"; |
| break; |
| case k_ModifiedImmediate: |
| OS << "<mod_imm #" << ModImm.Bits << ", #" |
| << ModImm.Rot << ")>"; |
| break; |
| case k_ConstantPoolImmediate: |
| OS << "<constant_pool_imm #" << *getConstantPoolImm(); |
| break; |
| case k_BitfieldDescriptor: |
| OS << "<bitfield " << "lsb: " << Bitfield.LSB |
| << ", width: " << Bitfield.Width << ">"; |
| break; |
| case k_RegisterList: |
| case k_RegisterListWithAPSR: |
| case k_DPRRegisterList: |
| case k_SPRRegisterList: |
| case k_FPSRegisterListWithVPR: |
| case k_FPDRegisterListWithVPR: { |
| OS << "<register_list "; |
| |
| const SmallVectorImpl<unsigned> &RegList = getRegList(); |
| for (SmallVectorImpl<unsigned>::const_iterator |
| I = RegList.begin(), E = RegList.end(); I != E; ) { |
| OS << RegName(*I); |
| if (++I < E) OS << ", "; |
| } |
| |
| OS << ">"; |
| break; |
| } |
| case k_VectorList: |
| OS << "<vector_list " << VectorList.Count << " * " |
| << RegName(VectorList.RegNum) << ">"; |
| break; |
| case k_VectorListAllLanes: |
| OS << "<vector_list(all lanes) " << VectorList.Count << " * " |
| << RegName(VectorList.RegNum) << ">"; |
| break; |
| case k_VectorListIndexed: |
| OS << "<vector_list(lane " << VectorList.LaneIndex << ") " |
| << VectorList.Count << " * " << RegName(VectorList.RegNum) << ">"; |
| break; |
| case k_Token: |
| OS << "'" << getToken() << "'"; |
| break; |
| case k_VectorIndex: |
| OS << "<vectorindex " << getVectorIndex() << ">"; |
| break; |
| } |
| } |
| |
| /// @name Auto-generated Match Functions |
| /// { |
| |
| static unsigned MatchRegisterName(StringRef Name); |
| |
| /// } |
| |
| bool ARMAsmParser::ParseRegister(unsigned &RegNo, |
| SMLoc &StartLoc, SMLoc &EndLoc) { |
| const AsmToken &Tok = getParser().getTok(); |
| StartLoc = Tok.getLoc(); |
| EndLoc = Tok.getEndLoc(); |
| RegNo = tryParseRegister(); |
| |
| return (RegNo == (unsigned)-1); |
| } |
| |
| /// Try to parse a register name. The token must be an Identifier when called, |
| /// and if it is a register name the token is eaten and the register number is |
| /// returned. Otherwise return -1. |
| int ARMAsmParser::tryParseRegister() { |
| MCAsmParser &Parser = getParser(); |
| const AsmToken &Tok = Parser.getTok(); |
| if (Tok.isNot(AsmToken::Identifier)) return -1; |
| |
| std::string lowerCase = Tok.getString().lower(); |
| unsigned RegNum = MatchRegisterName(lowerCase); |
| if (!RegNum) { |
| RegNum = StringSwitch<unsigned>(lowerCase) |
| .Case("r13", ARM::SP) |
| .Case("r14", ARM::LR) |
| .Case("r15", ARM::PC) |
| .Case("ip", ARM::R12) |
| // Additional register name aliases for 'gas' compatibility. |
| .Case("a1", ARM::R0) |
| .Case("a2", ARM::R1) |
| .Case("a3", ARM::R2) |
| .Case("a4", ARM::R3) |
| .Case("v1", ARM::R4) |
| .Case("v2", ARM::R5) |
| .Case("v3", ARM::R6) |
| .Case("v4", ARM::R7) |
| .Case("v5", ARM::R8) |
| .Case("v6", ARM::R9) |
| .Case("v7", ARM::R10) |
| .Case("v8", ARM::R11) |
| .Case("sb", ARM::R9) |
| .Case("sl", ARM::R10) |
| .Case("fp", ARM::R11) |
| .Default(0); |
| } |
| if (!RegNum) { |
| // Check for aliases registered via .req. Canonicalize to lower case. |
| // That's more consistent since register names are case insensitive, and |
| // it's how the original entry was passed in from MC/MCParser/AsmParser. |
| StringMap<unsigned>::const_iterator Entry = RegisterReqs.find(lowerCase); |
| // If no match, return failure. |
| if (Entry == RegisterReqs.end()) |
| return -1; |
| Parser.Lex(); // Eat identifier token. |
| return Entry->getValue(); |
| } |
| |
| // Some FPUs only have 16 D registers, so D16-D31 are invalid |
| if (!hasD32() && RegNum >= ARM::D16 && RegNum <= ARM::D31) |
| return -1; |
| |
| Parser.Lex(); // Eat identifier token. |
| |
| return RegNum; |
| } |
| |
| // Try to parse a shifter (e.g., "lsl <amt>"). On success, return 0. |
| // If a recoverable error occurs, return 1. If an irrecoverable error |
| // occurs, return -1. An irrecoverable error is one where tokens have been |
| // consumed in the process of trying to parse the shifter (i.e., when it is |
| // indeed a shifter operand, but malformed). |
| int ARMAsmParser::tryParseShiftRegister(OperandVector &Operands) { |
| MCAsmParser &Parser = getParser(); |
| SMLoc S = Parser.getTok().getLoc(); |
| const AsmToken &Tok = Parser.getTok(); |
| if (Tok.isNot(AsmToken::Identifier)) |
| return -1; |
| |
| std::string lowerCase = Tok.getString().lower(); |
| ARM_AM::ShiftOpc ShiftTy = StringSwitch<ARM_AM::ShiftOpc>(lowerCase) |
| .Case("asl", ARM_AM::lsl) |
| .Case("lsl", ARM_AM::lsl) |
| .Case("lsr", ARM_AM::lsr) |
| .Case("asr", ARM_AM::asr) |
| .Case("ror", ARM_AM::ror) |
| .Case("rrx", ARM_AM::rrx) |
| .Default(ARM_AM::no_shift); |
| |
| if (ShiftTy == ARM_AM::no_shift) |
| return 1; |
| |
| Parser.Lex(); // Eat the operator. |
| |
| // The source register for the shift has already been added to the |
| // operand list, so we need to pop it off and combine it into the shifted |
| // register operand instead. |
| std::unique_ptr<ARMOperand> PrevOp( |
| (ARMOperand *)Operands.pop_back_val().release()); |
| if (!PrevOp->isReg()) |
| return Error(PrevOp->getStartLoc(), "shift must be of a register"); |
| int SrcReg = PrevOp->getReg(); |
| |
| SMLoc EndLoc; |
| int64_t Imm = 0; |
| int ShiftReg = 0; |
| if (ShiftTy == ARM_AM::rrx) { |
| // RRX Doesn't have an explicit shift amount. The encoder expects |
| // the shift register to be the same as the source register. Seems odd, |
| // but OK. |
| ShiftReg = SrcReg; |
| } else { |
| // Figure out if this is shifted by a constant or a register (for non-RRX). |
| if (Parser.getTok().is(AsmToken::Hash) || |
| Parser.getTok().is(AsmToken::Dollar)) { |
| Parser.Lex(); // Eat hash. |
| SMLoc ImmLoc = Parser.getTok().getLoc(); |
| const MCExpr *ShiftExpr = nullptr; |
| if (getParser().parseExpression(ShiftExpr, EndLoc)) { |
| Error(ImmLoc, "invalid immediate shift value"); |
| return -1; |
| } |
| // The expression must be evaluatable as an immediate. |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftExpr); |
| if (!CE) { |
| Error(ImmLoc, "invalid immediate shift value"); |
| return -1; |
| } |
| // Range check the immediate. |
| // lsl, ror: 0 <= imm <= 31 |
| // lsr, asr: 0 <= imm <= 32 |
| Imm = CE->getValue(); |
| if (Imm < 0 || |
| ((ShiftTy == ARM_AM::lsl || ShiftTy == ARM_AM::ror) && Imm > 31) || |
| ((ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr) && Imm > 32)) { |
| Error(ImmLoc, "immediate shift value out of range"); |
| return -1; |
| } |
| // shift by zero is a nop. Always send it through as lsl. |
| // ('as' compatibility) |
| if (Imm == 0) |
| ShiftTy = ARM_AM::lsl; |
| } else if (Parser.getTok().is(AsmToken::Identifier)) { |
| SMLoc L = Parser.getTok().getLoc(); |
| EndLoc = Parser.getTok().getEndLoc(); |
| ShiftReg = tryParseRegister(); |
| if (ShiftReg == -1) { |
| Error(L, "expected immediate or register in shift operand"); |
| return -1; |
| } |
| } else { |
| Error(Parser.getTok().getLoc(), |
| "expected immediate or register in shift operand"); |
| return -1; |
| } |
| } |
| |
| if (ShiftReg && ShiftTy != ARM_AM::rrx) |
| Operands.push_back(ARMOperand::CreateShiftedRegister(ShiftTy, SrcReg, |
| ShiftReg, Imm, |
| S, EndLoc)); |
| else |
| Operands.push_back(ARMOperand::CreateShiftedImmediate(ShiftTy, SrcReg, Imm, |
| S, EndLoc)); |
| |
| return 0; |
| } |
| |
| /// Try to parse a register name. The token must be an Identifier when called. |
| /// If it's a register, an AsmOperand is created. Another AsmOperand is created |
| /// if there is a "writeback". 'true' if it's not a register. |
| /// |
| /// TODO this is likely to change to allow different register types and or to |
| /// parse for a specific register type. |
| bool ARMAsmParser::tryParseRegisterWithWriteBack(OperandVector &Operands) { |
| MCAsmParser &Parser = getParser(); |
| SMLoc RegStartLoc = Parser.getTok().getLoc(); |
| SMLoc RegEndLoc = Parser.getTok().getEndLoc(); |
| int RegNo = tryParseRegister(); |
| if (RegNo == -1) |
| return true; |
| |
| Operands.push_back(ARMOperand::CreateReg(RegNo, RegStartLoc, RegEndLoc)); |
| |
| const AsmToken &ExclaimTok = Parser.getTok(); |
| if (ExclaimTok.is(AsmToken::Exclaim)) { |
| Operands.push_back(ARMOperand::CreateToken(ExclaimTok.getString(), |
| ExclaimTok.getLoc())); |
| Parser.Lex(); // Eat exclaim token |
| return false; |
| } |
| |
| // Also check for an index operand. This is only legal for vector registers, |
| // but that'll get caught OK in operand matching, so we don't need to |
| // explicitly filter everything else out here. |
| if (Parser.getTok().is(AsmToken::LBrac)) { |
| SMLoc SIdx = Parser.getTok().getLoc(); |
| Parser.Lex(); // Eat left bracket token. |
| |
| const MCExpr *ImmVal; |
| if (getParser().parseExpression(ImmVal)) |
| return true; |
| const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(ImmVal); |
| if (!MCE) |
| return TokError("immediate value expected for vector index"); |
| |
| if (Parser.getTok().isNot(AsmToken::RBrac)) |
| return Error(Parser.getTok().getLoc(), "']' expected"); |
| |
| SMLoc E = Parser.getTok().getEndLoc(); |
| Parser.Lex(); // Eat right bracket token. |
| |
| Operands.push_back(ARMOperand::CreateVectorIndex(MCE->getValue(), |
| SIdx, E, |
| getContext())); |
| } |
| |
| return false; |
| } |
| |
| /// MatchCoprocessorOperandName - Try to parse an coprocessor related |
| /// instruction with a symbolic operand name. |
| /// We accept "crN" syntax for GAS compatibility. |
| /// <operand-name> ::= <prefix><number> |
| /// If CoprocOp is 'c', then: |
| /// <prefix> ::= c | cr |
| /// If CoprocOp is 'p', then : |
| /// <prefix> ::= p |
| /// <number> ::= integer in range [0, 15] |
| static int MatchCoprocessorOperandName(StringRef Name, char CoprocOp) { |
| // Use the same layout as the tablegen'erated register name matcher. Ugly, |
| // but efficient. |
| if (Name.size() < 2 || Name[0] != CoprocOp) |
| return -1; |
| Name = (Name[1] == 'r') ? Name.drop_front(2) : Name.drop_front(); |
| |
| switch (Name.size()) { |
| default: return -1; |
| case 1: |
| switch (Name[0]) { |
| default: return -1; |
| case '0': return 0; |
| case '1': return 1; |
| case '2': return 2; |
| case '3': return 3; |
| case '4': return 4; |
| case '5': return 5; |
| case '6': return 6; |
| case '7': return 7; |
| case '8': return 8; |
| case '9': return 9; |
| } |
| case 2: |
| if (Name[0] != '1') |
| return -1; |
| switch (Name[1]) { |
| default: return -1; |
| // CP10 and CP11 are VFP/NEON and so vector instructions should be used. |
| // However, old cores (v5/v6) did use them in that way. |
| case '0': return 10; |
| case '1': return 11; |
| case '2': return 12; |
| case '3': return 13; |
| case '4': return 14; |
| case '5': return 15; |
| } |
| } |
| } |
| |
| /// parseITCondCode - Try to parse a condition code for an IT instruction. |
| OperandMatchResultTy |
| ARMAsmParser::parseITCondCode(OperandVector &Operands) { |
| MCAsmParser &Parser = getParser(); |
| SMLoc S = Parser.getTok().getLoc(); |
| const AsmToken &Tok = Parser.getTok(); |
| if (!Tok.is(AsmToken::Identifier)) |
| return MatchOperand_NoMatch; |
| unsigned CC = ARMCondCodeFromString(Tok.getString()); |
| if (CC == ~0U) |
| return MatchOperand_NoMatch; |
| Parser.Lex(); // Eat the token. |
| |
| Operands.push_back(ARMOperand::CreateCondCode(ARMCC::CondCodes(CC), S)); |
| |
| return MatchOperand_Success; |
| } |
| |
| /// parseCoprocNumOperand - Try to parse an coprocessor number operand. The |
| /// token must be an Identifier when called, and if it is a coprocessor |
| /// number, the token is eaten and the operand is added to the operand list. |
| OperandMatchResultTy |
| ARMAsmParser::parseCoprocNumOperand(OperandVector &Operands) { |
| MCAsmParser &Parser = getParser(); |
| SMLoc S = Parser.getTok().getLoc(); |
| const AsmToken &Tok = Parser.getTok(); |
| if (Tok.isNot(AsmToken::Identifier)) |
| return MatchOperand_NoMatch; |
| |
| int Num = MatchCoprocessorOperandName(Tok.getString().lower(), 'p'); |
| if (Num == -1) |
| return MatchOperand_NoMatch; |
| if (!isValidCoprocessorNumber(Num, getSTI().getFeatureBits())) |
| return MatchOperand_NoMatch; |
| |
| Parser.Lex(); // Eat identifier token. |
| Operands.push_back(ARMOperand::CreateCoprocNum(Num, S)); |
| return MatchOperand_Success; |
| } |
| |
| /// parseCoprocRegOperand - Try to parse an coprocessor register operand. The |
| /// token must be an Identifier when called, and if it is a coprocessor |
| /// number, the token is eaten and the operand is added to the operand list. |
| OperandMatchResultTy |
| ARMAsmParser::parseCoprocRegOperand(OperandVector &Operands) { |
| MCAsmParser &Parser = getParser(); |
| SMLoc S = Parser.getTok().getLoc(); |
| const AsmToken &Tok = Parser.getTok(); |
| if (Tok.isNot(AsmToken::Identifier)) |
| return MatchOperand_NoMatch; |
| |
| int Reg = MatchCoprocessorOperandName(Tok.getString().lower(), 'c'); |
| if (Reg == -1) |
| return MatchOperand_NoMatch; |
| |
| Parser.Lex(); // Eat identifier token. |
| Operands.push_back(ARMOperand::CreateCoprocReg(Reg, S)); |
| return MatchOperand_Success; |
| } |
| |
| /// parseCoprocOptionOperand - Try to parse an coprocessor option operand. |
| /// coproc_option : '{' imm0_255 '}' |
| OperandMatchResultTy |
| ARMAsmParser::parseCoprocOptionOperand(OperandVector &Operands) { |
| MCAsmParser &Parser = getParser(); |
| SMLoc S = Parser.getTok().getLoc(); |
| |
| // If this isn't a '{', this isn't a coprocessor immediate operand. |
| if (Parser.getTok().isNot(AsmToken::LCurly)) |
| return MatchOperand_NoMatch; |
| Parser.Lex(); // Eat the '{' |
| |
| const MCExpr *Expr; |
| SMLoc Loc = Parser.getTok().getLoc(); |
| if (getParser().parseExpression(Expr)) { |
| Error(Loc, "illegal expression"); |
| return MatchOperand_ParseFail; |
| } |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr); |
| if (!CE || CE->getValue() < 0 || CE->getValue() > 255) { |
| Error(Loc, "coprocessor option must be an immediate in range [0, 255]"); |
| return MatchOperand_ParseFail; |
| } |
| int Val = CE->getValue(); |
| |
| // Check for and consume the closing '}' |
| if (Parser.getTok().isNot(AsmToken::RCurly)) |
| return MatchOperand_ParseFail; |
| SMLoc E = Parser.getTok().getEndLoc(); |
| Parser.Lex(); // Eat the '}' |
| |
| Operands.push_back(ARMOperand::CreateCoprocOption(Val, S, E)); |
| return MatchOperand_Success; |
| } |
| |
| // For register list parsing, we need to map from raw GPR register numbering |
| // to the enumeration values. The enumeration values aren't sorted by |
| // register number due to our using "sp", "lr" and "pc" as canonical names. |
| static unsigned getNextRegister(unsigned Reg) { |
| // If this is a GPR, we need to do it manually, otherwise we can rely |
| // on the sort ordering of the enumeration since the other reg-classes |
| // are sane. |
| if (!ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg)) |
| return Reg + 1; |
| switch(Reg) { |
| default: llvm_unreachable("Invalid GPR number!"); |
| case ARM::R0: return ARM::R1; case ARM::R1: return ARM::R2; |
| case ARM::R2: return ARM::R3; case ARM::R3: return ARM::R4; |
| case ARM::R4: return ARM::R5; case ARM::R5: return ARM::R6; |
| case ARM::R6: return ARM::R7; case ARM::R7: return ARM::R8; |
| case ARM::R8: return ARM::R9; case ARM::R9: return ARM::R10; |
| case ARM::R10: return ARM::R11; case ARM::R11: return ARM::R12; |
| case ARM::R12: return ARM::SP; case ARM::SP: return ARM::LR; |
| case ARM::LR: return ARM::PC; case ARM::PC: return ARM::R0; |
| } |
| } |
| |
| /// Parse a register list. |
| bool ARMAsmParser::parseRegisterList(OperandVector &Operands, |
| bool EnforceOrder) { |
| MCAsmParser &Parser = getParser(); |
| if (Parser.getTok().isNot(AsmToken::LCurly)) |
| return TokError("Token is not a Left Curly Brace"); |
| SMLoc S = Parser.getTok().getLoc(); |
| Parser.Lex(); // Eat '{' token. |
| SMLoc RegLoc = Parser.getTok().getLoc(); |
| |
| // Check the first register in the list to see what register class |
| // this is a list of. |
| int Reg = tryParseRegister(); |
| if (Reg == -1) |
| return Error(RegLoc, "register expected"); |
| |
| // The reglist instructions have at most 16 registers, so reserve |
| // space for that many. |
| int EReg = 0; |
| SmallVector<std::pair<unsigned, unsigned>, 16> Registers; |
| |
| // Allow Q regs and just interpret them as the two D sub-registers. |
| if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { |
| Reg = getDRegFromQReg(Reg); |
| EReg = MRI->getEncodingValue(Reg); |
| Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); |
| ++Reg; |
| } |
| const MCRegisterClass *RC; |
| if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg)) |
| RC = &ARMMCRegisterClasses[ARM::GPRRegClassID]; |
| else if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) |
| RC = &ARMMCRegisterClasses[ARM::DPRRegClassID]; |
| else if (ARMMCRegisterClasses[ARM::SPRRegClassID].contains(Reg)) |
| RC = &ARMMCRegisterClasses[ARM::SPRRegClassID]; |
| else if (ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID].contains(Reg)) |
| RC = &ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID]; |
| else |
| return Error(RegLoc, "invalid register in register list"); |
| |
| // Store the register. |
| EReg = MRI->getEncodingValue(Reg); |
| Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); |
| |
| // This starts immediately after the first register token in the list, |
| // so we can see either a comma or a minus (range separator) as a legal |
| // next token. |
| while (Parser.getTok().is(AsmToken::Comma) || |
| Parser.getTok().is(AsmToken::Minus)) { |
| if (Parser.getTok().is(AsmToken::Minus)) { |
| Parser.Lex(); // Eat the minus. |
| SMLoc AfterMinusLoc = Parser.getTok().getLoc(); |
| int EndReg = tryParseRegister(); |
| if (EndReg == -1) |
| return Error(AfterMinusLoc, "register expected"); |
| // Allow Q regs and just interpret them as the two D sub-registers. |
| if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg)) |
| EndReg = getDRegFromQReg(EndReg) + 1; |
| // If the register is the same as the start reg, there's nothing |
| // more to do. |
| if (Reg == EndReg) |
| continue; |
| // The register must be in the same register class as the first. |
| if (!RC->contains(EndReg)) |
| return Error(AfterMinusLoc, "invalid register in register list"); |
| // Ranges must go from low to high. |
| if (MRI->getEncodingValue(Reg) > MRI->getEncodingValue(EndReg)) |
| return Error(AfterMinusLoc, "bad range in register list"); |
| |
| // Add all the registers in the range to the register list. |
| while (Reg != EndReg) { |
| Reg = getNextRegister(Reg); |
| EReg = MRI->getEncodingValue(Reg); |
| Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); |
| } |
| continue; |
| } |
| Parser.Lex(); // Eat the comma. |
| RegLoc = Parser.getTok().getLoc(); |
| int OldReg = Reg; |
| const AsmToken RegTok = Parser.getTok(); |
| Reg = tryParseRegister(); |
| if (Reg == -1) |
| return Error(RegLoc, "register expected"); |
| // Allow Q regs and just interpret them as the two D sub-registers. |
| bool isQReg = false; |
| if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { |
| Reg = getDRegFromQReg(Reg); |
| isQReg = true; |
| } |
| if (!RC->contains(Reg) && |
| RC->getID() == ARMMCRegisterClasses[ARM::GPRRegClassID].getID() && |
| ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID].contains(Reg)) { |
| // switch the register classes, as GPRwithAPSRnospRegClassID is a partial |
| // subset of GPRRegClassId except it contains APSR as well. |
| RC = &ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID]; |
| } |
| if (Reg == ARM::VPR && (RC == &ARMMCRegisterClasses[ARM::SPRRegClassID] || |
| RC == &ARMMCRegisterClasses[ARM::DPRRegClassID])) { |
| RC = &ARMMCRegisterClasses[ARM::FPWithVPRRegClassID]; |
| EReg = MRI->getEncodingValue(Reg); |
| Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); |
| continue; |
| } |
| // The register must be in the same register class as the first. |
| if (!RC->contains(Reg)) |
| return Error(RegLoc, "invalid register in register list"); |
| // In most cases, the list must be monotonically increasing. An |
| // exception is CLRM, which is order-independent anyway, so |
| // there's no potential for confusion if you write clrm {r2,r1} |
| // instead of clrm {r1,r2}. |
| if (EnforceOrder && |
| MRI->getEncodingValue(Reg) < MRI->getEncodingValue(OldReg)) { |
| if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg)) |
| Warning(RegLoc, "register list not in ascending order"); |
| else if (!ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID].contains(Reg)) |
| return Error(RegLoc, "register list not in ascending order"); |
| } |
| if (MRI->getEncodingValue(Reg) == MRI->getEncodingValue(OldReg)) { |
| Warning(RegLoc, "duplicated register (" + RegTok.getString() + |
| ") in register list"); |
| continue; |
| } |
| // VFP register lists must also be contiguous. |
| if (RC != &ARMMCRegisterClasses[ARM::GPRRegClassID] && |
| RC != &ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID] && |
| Reg != OldReg + 1) |
| return Error(RegLoc, "non-contiguous register range"); |
| EReg = MRI->getEncodingValue(Reg); |
| Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); |
| if (isQReg) { |
| EReg = MRI->getEncodingValue(++Reg); |
| Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); |
| } |
| } |
| |
| if (Parser.getTok().isNot(AsmToken::RCurly)) |
| return Error(Parser.getTok().getLoc(), "'}' expected"); |
| SMLoc E = Parser.getTok().getEndLoc(); |
| Parser.Lex(); // Eat '}' token. |
| |
| // Push the register list operand. |
| Operands.push_back(ARMOperand::CreateRegList(Registers, S, E)); |
| |
| // The ARM system instruction variants for LDM/STM have a '^' token here. |
| if (Parser.getTok().is(AsmToken::Caret)) { |
| Operands.push_back(ARMOperand::CreateToken("^",Parser.getTok().getLoc())); |
| Parser.Lex(); // Eat '^' token. |
| } |
| |
| return false; |
| } |
| |
| // Helper function to parse the lane index for vector lists. |
| OperandMatchResultTy ARMAsmParser:: |
| parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index, SMLoc &EndLoc) { |
| MCAsmParser &Parser = getParser(); |
| Index = 0; // Always return a defined index value. |
| if (Parser.getTok().is(AsmToken::LBrac)) { |
| Parser.Lex(); // Eat the '['. |
| if (Parser.getTok().is(AsmToken::RBrac)) { |
| // "Dn[]" is the 'all lanes' syntax. |
| LaneKind = AllLanes; |
| EndLoc = Parser.getTok().getEndLoc(); |
| Parser.Lex(); // Eat the ']'. |
| return MatchOperand_Success; |
| } |
| |
| // There's an optional '#' token here. Normally there wouldn't be, but |
| // inline assemble puts one in, and it's friendly to accept that. |
| if (Parser.getTok().is(AsmToken::Hash)) |
| Parser.Lex(); // Eat '#' or '$'. |
| |
| const MCExpr *LaneIndex; |
| SMLoc Loc = Parser.getTok().getLoc(); |
| if (getParser().parseExpression(LaneIndex)) { |
| Error(Loc, "illegal expression"); |
| return MatchOperand_ParseFail; |
| } |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LaneIndex); |
| if (!CE) { |
| Error(Loc, "lane index must be empty or an integer"); |
| return MatchOperand_ParseFail; |
| } |
| if (Parser.getTok().isNot(AsmToken::RBrac)) { |
| Error(Parser.getTok().getLoc(), "']' expected"); |
| return MatchOperand_ParseFail; |
| } |
| EndLoc = Parser.getTok().getEndLoc(); |
| Parser.Lex(); // Eat the ']'. |
| int64_t Val = CE->getValue(); |
| |
| // FIXME: Make this range check context sensitive for .8, .16, .32. |
| if (Val < 0 || Val > 7) { |
| Error(Parser.getTok().getLoc(), "lane index out of range"); |
| return MatchOperand_ParseFail; |
| } |
| Index = Val; |
| LaneKind = IndexedLane; |
| return MatchOperand_Success; |
| } |
| LaneKind = NoLanes; |
| return MatchOperand_Success; |
| } |
| |
| // parse a vector register list |
| OperandMatchResultTy |
| ARMAsmParser::parseVectorList(OperandVector &Operands) { |
| MCAsmParser &Parser = getParser(); |
| VectorLaneTy LaneKind; |
| unsigned LaneIndex; |
| SMLoc S = Parser.getTok().getLoc(); |
| // As an extension (to match gas), support a plain D register or Q register |
| // (without encosing curly braces) as a single or double entry list, |
| // respectively. |
| if (!hasMVE() && Parser.getTok().is(AsmToken::Identifier)) { |
| SMLoc E = Parser.getTok().getEndLoc(); |
| int Reg = tryParseRegister(); |
| if (Reg == -1) |
| return MatchOperand_NoMatch; |
| if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) { |
| OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex, E); |
| if (Res != MatchOperand_Success) |
| return Res; |
| switch (LaneKind) { |
| case NoLanes: |
| Operands.push_back(ARMOperand::CreateVectorList(Reg, 1, false, S, E)); |
| break; |
| case AllLanes: |
| Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 1, false, |
| S, E)); |
| break; |
| case IndexedLane: |
| Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 1, |
| LaneIndex, |
| false, S, E)); |
| break; |
| } |
| return MatchOperand_Success; |
| } |
| if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { |
| Reg = getDRegFromQReg(Reg); |
| OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex, E); |
| if (Res != MatchOperand_Success) |
| return Res; |
| switch (LaneKind) { |
| case NoLanes: |
| Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0, |
| &ARMMCRegisterClasses[ARM::DPairRegClassID]); |
| Operands.push_back(ARMOperand::CreateVectorList(Reg, 2, false, S, E)); |
| break; |
| case AllLanes: |
| Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0, |
| &ARMMCRegisterClasses[ARM::DPairRegClassID]); |
| Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 2, false, |
| S, E)); |
| break; |
| case IndexedLane: |
| Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 2, |
| LaneIndex, |
| false, S, E)); |
| break; |
| } |
| return MatchOperand_Success; |
| } |
| Error(S, "vector register expected"); |
| return MatchOperand_ParseFail; |
| } |
| |
| if (Parser.getTok().isNot(AsmToken::LCurly)) |
| return MatchOperand_NoMatch; |
| |
| Parser.Lex(); // Eat '{' token. |
| SMLoc RegLoc = Parser.getTok().getLoc(); |
| |
| int Reg = tryParseRegister(); |
| if (Reg == -1) { |
| Error(RegLoc, "register expected"); |
| return MatchOperand_ParseFail; |
| } |
| unsigned Count = 1; |
| int Spacing = 0; |
| unsigned FirstReg = Reg; |
| |
| if (hasMVE() && !ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(Reg)) { |
| Error(Parser.getTok().getLoc(), "vector register in range Q0-Q7 expected"); |
| return MatchOperand_ParseFail; |
| } |
| // The list is of D registers, but we also allow Q regs and just interpret |
| // them as the two D sub-registers. |
| else if (!hasMVE() && ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { |
| FirstReg = Reg = getDRegFromQReg(Reg); |
| Spacing = 1; // double-spacing requires explicit D registers, otherwise |
| // it's ambiguous with four-register single spaced. |
| ++Reg; |
| ++Count; |
| } |
| |
| SMLoc E; |
| if (parseVectorLane(LaneKind, LaneIndex, E) != MatchOperand_Success) |
| return MatchOperand_ParseFail; |
| |
| while (Parser.getTok().is(AsmToken::Comma) || |
| Parser.getTok().is(AsmToken::Minus)) { |
| if (Parser.getTok().is(AsmToken::Minus)) { |
| if (!Spacing) |
| Spacing = 1; // Register range implies a single spaced list. |
| else if (Spacing == 2) { |
| Error(Parser.getTok().getLoc(), |
| "sequential registers in double spaced list"); |
| return MatchOperand_ParseFail; |
| } |
| Parser.Lex(); // Eat the minus. |
| SMLoc AfterMinusLoc = Parser.getTok().getLoc(); |
| int EndReg = tryParseRegister(); |
| if (EndReg == -1) { |
| Error(AfterMinusLoc, "register expected"); |
| return MatchOperand_ParseFail; |
| } |
| // Allow Q regs and just interpret them as the two D sub-registers. |
| if (!hasMVE() && ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg)) |
| EndReg = getDRegFromQReg(EndReg) + 1; |
| // If the register is the same as the start reg, there's nothing |
| // more to do. |
| if (Reg == EndReg) |
| continue; |
| // The register must be in the same register class as the first. |
| if ((hasMVE() && |
| !ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(EndReg)) || |
| (!hasMVE() && |
| !ARMMCRegisterClasses[ARM::DPRRegClassID].contains(EndReg))) { |
| Error(AfterMinusLoc, "invalid register in register list"); |
| return MatchOperand_ParseFail; |
| } |
| // Ranges must go from low to high. |
| if (Reg > EndReg) { |
| Error(AfterMinusLoc, "bad range in register list"); |
| return MatchOperand_ParseFail; |
| } |
| // Parse the lane specifier if present. |
| VectorLaneTy NextLaneKind; |
| unsigned NextLaneIndex; |
| if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != |
| MatchOperand_Success) |
| return MatchOperand_ParseFail; |
| if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) { |
| Error(AfterMinusLoc, "mismatched lane index in register list"); |
| return MatchOperand_ParseFail; |
| } |
| |
| // Add all the registers in the range to the register list. |
| Count += EndReg - Reg; |
| Reg = EndReg; |
| continue; |
| } |
| Parser.Lex(); // Eat the comma. |
| RegLoc = Parser.getTok().getLoc(); |
| int OldReg = Reg; |
| Reg = tryParseRegister(); |
| if (Reg == -1) { |
| Error(RegLoc, "register expected"); |
| return MatchOperand_ParseFail; |
| } |
| |
| if (hasMVE()) { |
| if (!ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(Reg)) { |
| Error(RegLoc, "vector register in range Q0-Q7 expected"); |
| return MatchOperand_ParseFail; |
| } |
| Spacing = 1; |
| } |
| // vector register lists must be contiguous. |
| // It's OK to use the enumeration values directly here rather, as the |
| // VFP register classes have the enum sorted properly. |
| // |
| // The list is of D registers, but we also allow Q regs and just interpret |
| // them as the two D sub-registers. |
| else if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { |
| if (!Spacing) |
| Spacing = 1; // Register range implies a single spaced list. |
| else if (Spacing == 2) { |
| Error(RegLoc, |
| "invalid register in double-spaced list (must be 'D' register')"); |
| return MatchOperand_ParseFail; |
| } |
| Reg = getDRegFromQReg(Reg); |
| if (Reg != OldReg + 1) { |
| Error(RegLoc, "non-contiguous register range"); |
| return MatchOperand_ParseFail; |
| } |
| ++Reg; |
| Count += 2; |
| // Parse the lane specifier if present. |
| VectorLaneTy NextLaneKind; |
| unsigned NextLaneIndex; |
| SMLoc LaneLoc = Parser.getTok().getLoc(); |
| if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != |
| MatchOperand_Success) |
| return MatchOperand_ParseFail; |
| if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) { |
| Error(LaneLoc, "mismatched lane index in register list"); |
| return MatchOperand_ParseFail; |
| } |
| continue; |
| } |
| // Normal D register. |
| // Figure out the register spacing (single or double) of the list if |
| // we don't know it already. |
| if (!Spacing) |
| Spacing = 1 + (Reg == OldReg + 2); |
| |
| // Just check that it's contiguous and keep going. |
| if (Reg != OldReg + Spacing) { |
| Error(RegLoc, "non-contiguous register range"); |
| return MatchOperand_ParseFail; |
| } |
| ++Count; |
| // Parse the lane specifier if present. |
| VectorLaneTy NextLaneKind; |
| unsigned NextLaneIndex; |
| SMLoc EndLoc = Parser.getTok().getLoc(); |
| if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != MatchOperand_Success) |
| return MatchOperand_ParseFail; |
| if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) { |
| Error(EndLoc, "mismatched lane index in register list"); |
| return MatchOperand_ParseFail; |
| } |
| } |
| |
| if (Parser.getTok().isNot(AsmToken::RCurly)) { |
| Error(Parser.getTok().getLoc(), "'}' expected"); |
| return MatchOperand_ParseFail; |
| } |
| E = Parser.getTok().getEndLoc(); |
| Parser.Lex(); // Eat '}' token. |
| |
| switch (LaneKind) { |
| case NoLanes: |
| case AllLanes: { |
| // Two-register operands have been converted to the |
| // composite register classes. |
| if (Count == 2 && !hasMVE()) { |
| const MCRegisterClass *RC = (Spacing == 1) ? |
| &ARMMCRegisterClasses[ARM::DPairRegClassID] : |
| &ARMMCRegisterClasses[ARM::DPairSpcRegClassID]; |
| FirstReg = MRI->getMatchingSuperReg(FirstReg, ARM::dsub_0, RC); |
| } |
| auto Create = (LaneKind == NoLanes ? ARMOperand::CreateVectorList : |
| ARMOperand::CreateVectorListAllLanes); |
| Operands.push_back(Create(FirstReg, Count, (Spacing == 2), S, E)); |
| break; |
| } |
| case IndexedLane: |
| Operands.push_back(ARMOperand::CreateVectorListIndexed(FirstReg, Count, |
| LaneIndex, |
| (Spacing == 2), |
| S, E)); |
| break; |
| } |
| return MatchOperand_Success; |
| } |
| |
| /// parseMemBarrierOptOperand - Try to parse DSB/DMB data barrier options. |
| OperandMatchResultTy |
| ARMAsmParser::parseMemBarrierOptOperand(OperandVector &Operands) { |
| MCAsmParser &Parser = getParser(); |
| SMLoc S = Parser.getTok().getLoc(); |
| const AsmToken &Tok = Parser.getTok(); |
| unsigned Opt; |
| |
| if (Tok.is(AsmToken::Identifier)) { |
| StringRef OptStr = Tok.getString(); |
| |
| Opt = StringSwitch<unsigned>(OptStr.slice(0, OptStr.size()).lower()) |
| .Case("sy", ARM_MB::SY) |
| .Case("st", ARM_MB::ST) |
| .Case("ld", ARM_MB::LD) |
| .Case("sh", ARM_MB::ISH) |
| .Case("ish", ARM_MB::ISH) |
| .Case("shst", ARM_MB::ISHST) |
| .Case("ishst", ARM_MB::ISHST) |
| .Case("ishld", ARM_MB::ISHLD) |
| .Case("nsh", ARM_MB::NSH) |
| .Case("un", ARM_MB::NSH) |
| .Case("nshst", ARM_MB::NSHST) |
| .Case("nshld", ARM_MB::NSHLD) |
| .Case("unst", ARM_MB::NSHST) |
| .Case("osh", ARM_MB::OSH) |
| .Case("oshst", ARM_MB::OSHST) |
| .Case("oshld", ARM_MB::OSHLD) |
| .Default(~0U); |
| |
| // ishld, oshld, nshld and ld are only available from ARMv8. |
| if (!hasV8Ops() && (Opt == ARM_MB::ISHLD || Opt == ARM_MB::OSHLD || |
| Opt == ARM_MB::NSHLD || Opt == ARM_MB::LD)) |
| Opt = ~0U; |
| |
| if (Opt == ~0U) |
| return MatchOperand_NoMatch; |
| |
| Parser.Lex(); // Eat identifier token. |
| } else if (Tok.is(AsmToken::Hash) || |
| Tok.is(AsmToken::Dollar) || |
| Tok.is(AsmToken::Integer)) { |
| if (Parser.getTok().isNot(AsmToken::Integer)) |
| Parser.Lex(); // Eat '#' or '$'. |
| SMLoc Loc = Parser.getTok().getLoc(); |
| |
| const MCExpr *MemBarrierID; |
| if (getParser().parseExpression(MemBarrierID)) { |
| Error(Loc, "illegal expression"); |
| return MatchOperand_ParseFail; |
| } |
| |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(MemBarrierID); |
| if (!CE) { |
| Error(Loc, "constant expression expected"); |
| return MatchOperand_ParseFail; |
| } |
| |
| int Val = CE->getValue(); |
| if (Val & ~0xf) { |
| Error(Loc, "immediate value out of range"); |
| return MatchOperand_ParseFail; |
| } |
| |
| Opt = ARM_MB::RESERVED_0 + Val; |
| } else |
| return MatchOperand_ParseFail; |
| |
| Operands.push_back(ARMOperand::CreateMemBarrierOpt((ARM_MB::MemBOpt)Opt, S)); |
| return MatchOperand_Success; |
| } |
| |
| OperandMatchResultTy |
| ARMAsmParser::parseTraceSyncBarrierOptOperand(OperandVector &Operands) { |
| MCAsmParser &Parser = getParser(); |
| SMLoc S = Parser.getTok().getLoc(); |
| const AsmToken &Tok = Parser.getTok(); |
| |
| if (Tok.isNot(AsmToken::Identifier)) |
| return MatchOperand_NoMatch; |
| |
| if (!Tok.getString().equals_lower("csync")) |
| return MatchOperand_NoMatch; |
| |
| Parser.Lex(); // Eat identifier token. |
| |
| Operands.push_back(ARMOperand::CreateTraceSyncBarrierOpt(ARM_TSB::CSYNC, S)); |
| return MatchOperand_Success; |
| } |
| |
| /// parseInstSyncBarrierOptOperand - Try to parse ISB inst sync barrier options. |
| OperandMatchResultTy |
| ARMAsmParser::parseInstSyncBarrierOptOperand(OperandVector &Operands) { |
| MCAsmParser &Parser = getParser(); |
| SMLoc S = Parser.getTok().getLoc(); |
| const AsmToken &Tok = Parser.getTok(); |
| unsigned Opt; |
| |
| if (Tok.is(AsmToken::Identifier)) { |
| StringRef OptStr = Tok.getString(); |
| |
| if (OptStr.equals_lower("sy")) |
| Opt = ARM_ISB::SY; |
| else |
| return MatchOperand_NoMatch; |
| |
| Parser.Lex(); // Eat identifier token. |
| } else if (Tok.is(AsmToken::Hash) || |
| Tok.is(AsmToken::Dollar) || |
| Tok.is(AsmToken::Integer)) { |
| if (Parser.getTok().isNot(AsmToken::Integer)) |
| Parser.Lex(); // Eat '#' or '$'. |
| SMLoc Loc = Parser.getTok().getLoc(); |
| |
| const MCExpr *ISBarrierID; |
| if (getParser().parseExpression(ISBarrierID)) { |
| Error(Loc, "illegal expression"); |
| return MatchOperand_ParseFail; |
| } |
| |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ISBarrierID); |
| if (!CE) { |
| Error(Loc, "constant expression expected"); |
| return MatchOperand_ParseFail; |
| } |
| |
| int Val = CE->getValue(); |
| if (Val & ~0xf) { |
| Error(Loc, "immediate value out of range"); |
| return MatchOperand_ParseFail; |
| } |
| |
| Opt = ARM_ISB::RESERVED_0 + Val; |
| } else |
| return MatchOperand_ParseFail; |
| |
| Operands.push_back(ARMOperand::CreateInstSyncBarrierOpt( |
| (ARM_ISB::InstSyncBOpt)Opt, S)); |
| return MatchOperand_Success; |
| } |
| |
| |
| /// parseProcIFlagsOperand - Try to parse iflags from CPS instruction. |
| OperandMatchResultTy |
| ARMAsmParser::parseProcIFlagsOperand(OperandVector &Operands) { |
| MCAsmParser &Parser = getParser(); |
| SMLoc S = Parser.getTok().getLoc(); |
| const AsmToken &Tok = Parser.getTok(); |
| if (!Tok.is(AsmToken::Identifier)) |
| return MatchOperand_NoMatch; |
| StringRef IFlagsStr = Tok.getString(); |
| |
| // An iflags string of "none" is interpreted to mean that none of the AIF |
| // bits are set. Not a terribly useful instruction, but a valid encoding. |
| unsigned IFlags = 0; |
| if (IFlagsStr != "none") { |
| for (int i = 0, e = IFlagsStr.size(); i != e; ++i) { |
| unsigned Flag = StringSwitch<unsigned>(IFlagsStr.substr(i, 1).lower()) |
| .Case("a", ARM_PROC::A) |
| .Case("i", ARM_PROC::I) |
| .Case("f", ARM_PROC::F) |
| .Default(~0U); |
| |
| // If some specific iflag is already set, it means that some letter is |
| // present more than once, this is not acceptable. |
| if (Flag == ~0U || (IFlags & Flag)) |
| return MatchOperand_NoMatch; |
| |
| IFlags |= Flag; |
| } |
| } |
| |
| Parser.Lex(); // Eat identifier token. |
| Operands.push_back(ARMOperand::CreateProcIFlags((ARM_PROC::IFlags)IFlags, S)); |
| return MatchOperand_Success; |
| } |
| |
| /// parseMSRMaskOperand - Try to parse mask flags from MSR instruction. |
| OperandMatchResultTy |
| ARMAsmParser::parseMSRMaskOperand(OperandVector &Operands) { |
| MCAsmParser &Parser = getParser(); |
| SMLoc S = Parser.getTok().getLoc(); |
| const AsmToken &Tok = Parser.getTok(); |
| |
| if (Tok.is(AsmToken::Integer)) { |
| int64_t Val = Tok.getIntVal(); |
| if (Val > 255 || Val < 0) { |
| return MatchOperand_NoMatch; |
| } |
| unsigned SYSmvalue = Val & 0xFF; |
| Parser.Lex(); |
| Operands.push_back(ARMOperand::CreateMSRMask(SYSmvalue, S)); |
| return MatchOperand_Success; |
| } |
| |
| if (!Tok.is(AsmToken::Identifier)) |
| return MatchOperand_NoMatch; |
| StringRef Mask = Tok.getString(); |
| |
| if (isMClass()) { |
| auto TheReg = ARMSysReg::lookupMClassSysRegByName(Mask.lower()); |
| if (!TheReg || !TheReg->hasRequiredFeatures(getSTI().getFeatureBits())) |
| return MatchOperand_NoMatch; |
| |
| unsigned SYSmvalue = TheReg->Encoding & 0xFFF; |
| |
| Parser.Lex(); // Eat identifier token. |
| Operands.push_back(ARMOperand::CreateMSRMask(SYSmvalue, S)); |
| return MatchOperand_Success; |
| } |
| |
| // Split spec_reg from flag, example: CPSR_sxf => "CPSR" and "sxf" |
| size_t Start = 0, Next = Mask.find('_'); |
| StringRef Flags = ""; |
| std::string SpecReg = Mask.slice(Start, Next).lower(); |
| if (Next != StringRef::npos) |
| Flags = Mask.slice(Next+1, Mask.size()); |
| |
| // FlagsVal contains the complete mask: |
| // 3-0: Mask |
| // 4: Special Reg (cpsr, apsr => 0; spsr => 1) |
| unsigned FlagsVal = 0; |
| |
| if (SpecReg == "apsr") { |
| FlagsVal = StringSwitch<unsigned>(Flags) |
| .Case("nzcvq", 0x8) // same as CPSR_f |
| .Case("g", 0x4) // same as CPSR_s |
| .Case("nzcvqg", 0xc) // same as CPSR_fs |
| .Default(~0U); |
| |
| if (FlagsVal == ~0U) { |
| if (!Flags.empty()) |
| return MatchOperand_NoMatch; |
| else |
| FlagsVal = 8; // No flag |
| } |
| } else if (SpecReg == "cpsr" || SpecReg == "spsr") { |
| // cpsr_all is an alias for cpsr_fc, as is plain cpsr. |
| if (Flags == "all" || Flags == "") |
| Flags = "fc"; |
| for (int i = 0, e = Flags.size(); i != e; ++i) { |
| unsigned Flag = StringSwitch<unsigned>(Flags.substr(i, 1)) |
| .Case("c", 1) |
| .Case("x", 2) |
| .Case("s", 4) |
| .Case("f", 8) |
| .Default(~0U); |
| |
| // If some specific flag is already set, it means that some letter is |
| // present more than once, this is not acceptable. |
| if (Flag == ~0U || (FlagsVal & Flag)) |
| return MatchOperand_NoMatch; |
| FlagsVal |= Flag; |
| } |
| } else // No match for special register. |
| return MatchOperand_NoMatch; |
| |
| // Special register without flags is NOT equivalent to "fc" flags. |
| // NOTE: This is a divergence from gas' behavior. Uncommenting the following |
| // two lines would enable gas compatibility at the expense of breaking |
| // round-tripping. |
| // |
| // if (!FlagsVal) |
| // FlagsVal = 0x9; |
| |
| // Bit 4: Special Reg (cpsr, apsr => 0; spsr => 1) |
| if (SpecReg == "spsr") |
| FlagsVal |= 16; |
| |
| Parser.Lex(); // Eat identifier token. |
| Operands.push_back(ARMOperand::CreateMSRMask(FlagsVal, S)); |
| return MatchOperand_Success; |
| } |
| |
| /// parseBankedRegOperand - Try to parse a banked register (e.g. "lr_irq") for |
| /// use in the MRS/MSR instructions added to support virtualization. |
| OperandMatchResultTy |
| ARMAsmParser::parseBankedRegOperand(OperandVector &Operands) { |
| MCAsmParser &Parser = getParser(); |
| SMLoc S = Parser.getTok().getLoc(); |
| const AsmToken &Tok = Parser.getTok(); |
| if (!Tok.is(AsmToken::Identifier)) |
| return MatchOperand_NoMatch; |
| StringRef RegName = Tok.getString(); |
| |
| auto TheReg = ARMBankedReg::lookupBankedRegByName(RegName.lower()); |
| if (!TheReg) |
| return MatchOperand_NoMatch; |
| unsigned Encoding = TheReg->Encoding; |
| |
| Parser.Lex(); // Eat identifier token. |
| Operands.push_back(ARMOperand::CreateBankedReg(Encoding, S)); |
| return MatchOperand_Success; |
| } |
| |
| OperandMatchResultTy |
| ARMAsmParser::parsePKHImm(OperandVector &Operands, StringRef Op, int Low, |
| int High) { |
| MCAsmParser &Parser = getParser(); |
| const AsmToken &Tok = Parser.getTok(); |
| if (Tok.isNot(AsmToken::Identifier)) { |
| Error(Parser.getTok().getLoc(), Op + " operand expected."); |
| return MatchOperand_ParseFail; |
| } |
| StringRef ShiftName = Tok.getString(); |
| std::string LowerOp = Op.lower(); |
| std::string UpperOp = Op.upper(); |
| if (ShiftName != LowerOp && ShiftName != UpperOp) { |
| Error(Parser.getTok().getLoc(), Op + " operand expected."); |
| return MatchOperand_ParseFail; |
| } |
| Parser.Lex(); // Eat shift type token. |
| |
| // There must be a '#' and a shift amount. |
| if (Parser.getTok().isNot(AsmToken::Hash) && |
| Parser.getTok().isNot(AsmToken::Dollar)) { |
| Error(Parser.getTok().getLoc(), "'#' expected"); |
| return MatchOperand_ParseFail; |
| } |
| Parser.Lex(); // Eat hash token. |
| |
| const MCExpr *ShiftAmount; |
| SMLoc Loc = Parser.getTok().getLoc(); |
| SMLoc EndLoc; |
| if (getParser().parseExpression(ShiftAmount, EndLoc)) { |
| Error(Loc, "illegal expression"); |
| return MatchOperand_ParseFail; |
| } |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount); |
| if (!CE) { |
| Error(Loc, "constant expression expected"); |
| return MatchOperand_ParseFail; |
| } |
| int Val = CE->getValue(); |
| if (Val < Low || Val > High) { |
| Error(Loc, "immediate value out of range"); |
| return MatchOperand_ParseFail; |
| } |
| |
| Operands.push_back(ARMOperand::CreateImm(CE, Loc, EndLoc)); |
| |
| return MatchOperand_Success; |
| } |
| |
| OperandMatchResultTy |
| ARMAsmParser::parseSetEndImm(OperandVector &Operands) { |
| MCAsmParser &Parser = getParser(); |
| const AsmToken &Tok = Parser.getTok(); |
| SMLoc S = Tok.getLoc(); |
| if (Tok.isNot(AsmToken::Identifier)) { |
| Error(S, "'be' or 'le' operand expected"); |
| return MatchOperand_ParseFail; |
| } |
| int Val = StringSwitch<int>(Tok.getString().lower()) |
| .Case("be", 1) |
| .Case("le", 0) |
| .Default(-1); |
| Parser.Lex(); // Eat the token. |
| |
| if (Val == -1) { |
| Error(S, "'be' or 'le' operand expected"); |
| return MatchOperand_ParseFail; |
| } |
| Operands.push_back(ARMOperand::CreateImm(MCConstantExpr::create(Val, |
| getContext()), |
| S, Tok.getEndLoc())); |
| return MatchOperand_Success; |
| } |
| |
| /// parseShifterImm - Parse the shifter immediate operand for SSAT/USAT |
| /// instructions. Legal values are: |
| /// lsl #n 'n' in [0,31] |
| /// asr #n 'n' in [1,32] |
| /// n == 32 encoded as n == 0. |
| OperandMatchResultTy |
| ARMAsmParser::parseShifterImm(OperandVector &Operands) { |
| MCAsmParser &Parser = getParser(); |
| const AsmToken &Tok = Parser.getTok(); |
| SMLoc S = Tok.getLoc(); |
| if (Tok.isNot(AsmToken::Identifier)) { |
| Error(S, "shift operator 'asr' or 'lsl' expected"); |
| return MatchOperand_ParseFail; |
| } |
| StringRef ShiftName = Tok.getString(); |
| bool isASR; |
| if (ShiftName == "lsl" || ShiftName == "LSL") |
| isASR = false; |
| else if (ShiftName == "asr" || ShiftName == "ASR") |
| isASR = true; |
| else { |
| Error(S, "shift operator 'asr' or 'lsl' expected"); |
| return MatchOperand_ParseFail; |
| } |
| Parser.Lex(); // Eat the operator. |
| |
| // A '#' and a shift amount. |
| if (Parser.getTok().isNot(AsmToken::Hash) && |
| Parser.getTok().isNot(AsmToken::Dollar)) { |
| Error(Parser.getTok().getLoc(), "'#' expected"); |
| return MatchOperand_ParseFail; |
| } |
| Parser.Lex(); // Eat hash token. |
| SMLoc ExLoc = Parser.getTok().getLoc(); |
| |
| const MCExpr *ShiftAmount; |
| SMLoc EndLoc; |
| if (getParser().parseExpression(ShiftAmount, EndLoc)) { |
| Error(ExLoc, "malformed shift expression"); |
| return MatchOperand_ParseFail; |
| } |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount); |
| if (!CE) { |
| Error(ExLoc, "shift amount must be an immediate"); |
| return MatchOperand_ParseFail; |
| } |
| |
| int64_t Val = CE->getValue(); |
| if (isASR) { |
| // Shift amount must be in [1,32] |
| if (Val < 1 || Val > 32) { |
| Error(ExLoc, "'asr' shift amount must be in range [1,32]"); |
| return MatchOperand_ParseFail; |
| } |
| // asr #32 encoded as asr #0, but is not allowed in Thumb2 mode. |
| if (isThumb() && Val == 32) { |
| Error(ExLoc, "'asr #32' shift amount not allowed in Thumb mode"); |
| return MatchOperand_ParseFail; |
| } |
| if (Val == 32) Val = 0; |
| } else { |
| // Shift amount must be in [1,32] |
| if (Val < 0 || Val > 31) { |
| Error(ExLoc, "'lsr' shift amount must be in range [0,31]"); |
| return MatchOperand_ParseFail; |
| } |
| } |
| |
| Operands.push_back(ARMOperand::CreateShifterImm(isASR, Val, S, EndLoc)); |
| |
| return MatchOperand_Success; |
| } |
| |
| /// parseRotImm - Parse the shifter immediate operand for SXTB/UXTB family |
| /// of instructions. Legal values are: |
| /// ror #n 'n' in {0, 8, 16, 24} |
| OperandMatchResultTy |
| ARMAsmParser::parseRotImm(OperandVector &Operands) { |
| MCAsmParser &Parser = getParser(); |
| const AsmToken &Tok = Parser.getTok(); |
| SMLoc S = Tok.getLoc(); |
| if (Tok.isNot(AsmToken::Identifier)) |
| return MatchOperand_NoMatch; |
| StringRef ShiftName = Tok.getString(); |
| if (ShiftName != "ror" && ShiftName != "ROR") |
| return MatchOperand_NoMatch; |
| Parser.Lex(); // Eat the operator. |
| |
| // A '#' and a rotate amount. |
| if (Parser.getTok().isNot(AsmToken::Hash) && |
| Parser.getTok().isNot(AsmToken::Dollar)) { |
| Error(Parser.getTok().getLoc(), "'#' expected"); |
| return MatchOperand_ParseFail; |
| } |
| Parser.Lex(); // Eat hash token. |
| SMLoc ExLoc = Parser.getTok().getLoc(); |
| |
| const MCExpr *ShiftAmount; |
| SMLoc EndLoc; |
| if (getParser().parseExpression(ShiftAmount, EndLoc)) { |
| Error(ExLoc, "malformed rotate expression"); |
| return MatchOperand_ParseFail; |
| } |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount); |
| if (!CE) { |
| Error(ExLoc, "rotate amount must be an immediate"); |
| return MatchOperand_ParseFail; |
| } |
| |
| int64_t Val = CE->getValue(); |
| // Shift amount must be in {0, 8, 16, 24} (0 is undocumented extension) |
| // normally, zero is represented in asm by omitting the rotate operand |
| // entirely. |
| if (Val != 8 && Val != 16 && Val != 24 && Val != 0) { |
| Error(ExLoc, "'ror' rotate amount must be 8, 16, or 24"); |
| return MatchOperand_ParseFail; |
| } |
| |
| Operands.push_back(ARMOperand::CreateRotImm(Val, S, EndLoc)); |
| |
| return MatchOperand_Success; |
| } |
| |
| OperandMatchResultTy |
| ARMAsmParser::parseModImm(OperandVector &Operands) { |
| MCAsmParser &Parser = getParser(); |
| MCAsmLexer &Lexer = getLexer(); |
| int64_t Imm1, Imm2; |
| |
| SMLoc S = Parser.getTok().getLoc(); |
| |
| // 1) A mod_imm operand can appear in the place of a register name: |
| // add r0, #mod_imm |
| // add r0, r0, #mod_imm |
| // to correctly handle the latter, we bail out as soon as we see an |
| // identifier. |
| // |
| // 2) Similarly, we do not want to parse into complex operands: |
| // mov r0, #mod_imm |
| // mov r0, :lower16:(_foo) |
| if (Parser.getTok().is(AsmToken::Identifier) || |
| Parser.getTok().is(AsmToken::Colon)) |
| return MatchOperand_NoMatch; |
| |
| // Hash (dollar) is optional as per the ARMARM |
| if (Parser.getTok().is(AsmToken::Hash) || |
| Parser.getTok().is(AsmToken::Dollar)) { |
| // Avoid parsing into complex operands (#:) |
| if (Lexer.peekTok().is(AsmToken::Colon)) |
| return MatchOperand_NoMatch; |
| |
| // Eat the hash (dollar) |
| Parser.Lex(); |
| } |
| |
| SMLoc Sx1, Ex1; |
| Sx1 = Parser.getTok().getLoc(); |
| const MCExpr *Imm1Exp; |
| if (getParser().parseExpression(Imm1Exp, Ex1)) { |
| Error(Sx1, "malformed expression"); |
| return MatchOperand_ParseFail; |
| } |
| |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm1Exp); |
| |
| if (CE) { |
| // Immediate must fit within 32-bits |
| Imm1 = CE->getValue(); |
| int Enc = ARM_AM::getSOImmVal(Imm1); |
| if (Enc != -1 && Parser.getTok().is(AsmToken::EndOfStatement)) { |
| // We have a match! |
| Operands.push_back(ARMOperand::CreateModImm((Enc & 0xFF), |
| (Enc & 0xF00) >> 7, |
| Sx1, Ex1)); |
| return MatchOperand_Success; |
| } |
| |
| // We have parsed an immediate which is not for us, fallback to a plain |
| // immediate. This can happen for instruction aliases. For an example, |
| // ARMInstrInfo.td defines the alias [mov <-> mvn] which can transform |
| // a mov (mvn) with a mod_imm_neg/mod_imm_not operand into the opposite |
| // instruction with a mod_imm operand. The alias is defined such that the |
| // parser method is shared, that's why we have to do this here. |
| if (Parser.getTok().is(AsmToken::EndOfStatement)) { |
| Operands.push_back(ARMOperand::CreateImm(Imm1Exp, Sx1, Ex1)); |
| return MatchOperand_Success; |
| } |
| } else { |
| // Operands like #(l1 - l2) can only be evaluated at a later stage (via an |
| // MCFixup). Fallback to a plain immediate. |
| Operands.push_back(ARMOperand::CreateImm(Imm1Exp, Sx1, Ex1)); |
| return MatchOperand_Success; |
| } |
| |
| // From this point onward, we expect the input to be a (#bits, #rot) pair |
| if (Parser.getTok().isNot(AsmToken::Comma)) { |
| Error(Sx1, "expected modified immediate operand: #[0, 255], #even[0-30]"); |
| return MatchOperand_ParseFail; |
| } |
| |
| if (Imm1 & ~0xFF) { |
| Error(Sx1, "immediate operand must a number in the range [0, 255]"); |
| return MatchOperand_ParseFail; |
| } |
| |
| // Eat the comma |
| Parser.Lex(); |
| |
| // Repeat for #rot |
| SMLoc Sx2, Ex2; |
| Sx2 = Parser.getTok().getLoc(); |
| |
| // Eat the optional hash (dollar) |
| if (Parser.getTok().is(AsmToken::Hash) || |
| Parser.getTok().is(AsmToken::Dollar)) |
| Parser.Lex(); |
| |
| const MCExpr *Imm2Exp; |
| if (getParser().parseExpression(Imm2Exp, Ex2)) { |
| Error(Sx2, "malformed expression"); |
| return MatchOperand_ParseFail; |
| } |
| |
| CE = dyn_cast<MCConstantExpr>(Imm2Exp); |
| |
| if (CE) { |
| Imm2 = CE->getValue(); |
| if (!(Imm2 & ~0x1E)) { |
| // We have a match! |
| Operands.push_back(ARMOperand::CreateModImm(Imm1, Imm2, S, Ex2)); |
| return MatchOperand_Success; |
| } |
| Error(Sx2, "immediate operand must an even number in the range [0, 30]"); |
| return MatchOperand_ParseFail; |
| } else { |
| Error(Sx2, "constant expression expected"); |
| return MatchOperand_ParseFail; |
| } |
| } |
| |
| OperandMatchResultTy |
| ARMAsmParser::parseBitfield(OperandVector &Operands) { |
| MCAsmParser &Parser = getParser(); |
| SMLoc S = Parser.getTok().getLoc(); |
| // The bitfield descriptor is really two operands, the LSB and the width. |
| if (Parser.getTok().isNot(AsmToken::Hash) && |
| Parser.getTok().isNot(AsmToken::Dollar)) { |
| Error(Parser.getTok().getLoc(), "'#' expected"); |
| return MatchOperand_ParseFail; |
| } |
| Parser.Lex(); // Eat hash token. |
| |
| const MCExpr *LSBExpr; |
| SMLoc E = Parser.getTok().getLoc(); |
| if (getParser().parseExpression(LSBExpr)) { |
| Error(E, "malformed immediate expression"); |
| return MatchOperand_ParseFail; |
| } |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LSBExpr); |
| if (!CE) { |
| Error(E, "'lsb' operand must be an immediate"); |
| return MatchOperand_ParseFail; |
| } |
| |
| int64_t LSB = CE->getValue(); |
| // The LSB must be in the range [0,31] |
| if (LSB < 0 || LSB > 31) { |
| Error(E, "'lsb' operand must be in the range [0,31]"); |
| return MatchOperand_ParseFail; |
| } |
| E = Parser.getTok().getLoc(); |
| |
| // Expect another immediate operand. |
| if (Parser.getTok().isNot(AsmToken::Comma)) { |
| Error(Parser.getTok().getLoc(), "too few operands"); |
| return MatchOperand_ParseFail; |
| } |
| Parser.Lex(); // Eat hash token. |
| if (Parser.getTok().isNot(AsmToken::Hash) && |
| Parser.getTok().isNot(AsmToken::Dollar)) { |
| Error(Parser.getTok().getLoc(), "'#' expected"); |
| return MatchOperand_ParseFail; |
| } |
| Parser.Lex(); // Eat hash token. |
| |
| const MCExpr *WidthExpr; |
| SMLoc EndLoc; |
| if (getParser().parseExpression(WidthExpr, EndLoc)) { |
| Error(E, "malformed immediate expression"); |
| return MatchOperand_ParseFail; |
| } |
| CE = dyn_cast<MCConstantExpr>(WidthExpr); |
| if (!CE) { |
| Error(E, "'width' operand must be an immediate"); |
| return MatchOperand_ParseFail; |
| } |
| |
| int64_t Width = CE->getValue(); |
| // The LSB must be in the range [1,32-lsb] |
| if (Width < 1 || Width > 32 - LSB) { |
| Error(E, "'width' operand must be in the range [1,32-lsb]"); |
| return MatchOperand_ParseFail; |
| } |
| |
| Operands.push_back(ARMOperand::CreateBitfield(LSB, Width, S, EndLoc)); |
| |
| return MatchOperand_Success; |
| } |
| |
| OperandMatchResultTy |
| ARMAsmParser::parsePostIdxReg(OperandVector &Operands) { |
| // Check for a post-index addressing register operand. Specifically: |
| // postidx_reg := '+' register {, shift} |
| // | '-' register {, shift} |
| // | register {, shift} |
| |
| // This method must return MatchOperand_NoMatch without consuming any tokens |
| // in the case where there is no match, as other alternatives take other |
| // parse methods. |
| MCAsmParser &Parser = getParser(); |
| AsmToken Tok = Parser.getTok(); |
| SMLoc S = Tok.getLoc(); |
| bool haveEaten = false; |
| bool isAdd = true; |
| if (Tok.is(AsmToken::Plus)) { |
| Parser.Lex(); // Eat the '+' token. |
| haveEaten = true; |
| } else if (Tok.is(AsmToken::Minus)) { |
| Parser.Lex(); // Eat the '-' token. |
| isAdd = false; |
| haveEaten = true; |
| } |
| |
| SMLoc E = Parser.getTok().getEndLoc(); |
| int Reg = tryParseRegister(); |
| if (Reg == -1) { |
| if (!haveEaten) |
| return MatchOperand_NoMatch; |
| Error(Parser.getTok().getLoc(), "register expected"); |
| return MatchOperand_ParseFail; |
| } |
| |
| ARM_AM::ShiftOpc ShiftTy = ARM_AM::no_shift; |
| unsigned ShiftImm = 0; |
| if (Parser.getTok().is(AsmToken::Comma)) { |
| Parser.Lex(); // Eat the ','. |
| if (parseMemRegOffsetShift(ShiftTy, ShiftImm)) |
| return MatchOperand_ParseFail; |
| |
| // FIXME: Only approximates end...may include intervening whitespace. |
| E = Parser.getTok().getLoc(); |
| } |
| |
| Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ShiftTy, |
| ShiftImm, S, E)); |
| |
| return MatchOperand_Success; |
| } |
| |
| OperandMatchResultTy |
| ARMAsmParser::parseAM3Offset(OperandVector &Operands) { |
| // Check for a post-index addressing register operand. Specifically: |
| // am3offset := '+' register |
| // | '-' register |
| // | register |
| // | # imm |
| // | # + imm |
| // | # - imm |
| |
| // This method must return MatchOperand_NoMatch without consuming any tokens |
| // in the case where there is no match, as other alternatives take other |
| // parse methods. |
| MCAsmParser &Parser = getParser(); |
| AsmToken Tok = Parser.getTok(); |
| SMLoc S = Tok.getLoc(); |
| |
| // Do immediates first, as we always parse those if we have a '#'. |
| if (Parser.getTok().is(AsmToken::Hash) || |
| Parser.getTok().is(AsmToken::Dollar)) { |
| Parser.Lex(); // Eat '#' or '$'. |
| // Explicitly look for a '-', as we need to encode negative zero |
| // differently. |
| bool isNegative = Parser.getTok().is(AsmToken::Minus); |
| const MCExpr *Offset; |
| SMLoc E; |
| if (getParser().parseExpression(Offset, E)) |
| return MatchOperand_ParseFail; |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Offset); |
| if (!CE) { |
| Error(S, "constant expression expected"); |
| return MatchOperand_ParseFail; |
| } |
| // Negative zero is encoded as the flag value |
| // std::numeric_limits<int32_t>::min(). |
| int32_t Val = CE->getValue(); |
| if (isNegative && Val == 0) |
| Val = std::numeric_limits<int32_t>::min(); |
| |
| Operands.push_back( |
| ARMOperand::CreateImm(MCConstantExpr::create(Val, getContext()), S, E)); |
| |
| return MatchOperand_Success; |
| } |
| |
| bool haveEaten = false; |
| bool isAdd = true; |
| if (Tok.is(AsmToken::Plus)) { |
| Parser.Lex(); // Eat the '+' token. |
| haveEaten = true; |
| } else if (Tok.is(AsmToken::Minus)) { |
| Parser.Lex(); // Eat the '-' token. |
| isAdd = false; |
| haveEaten = true; |
| } |
| |
| Tok = Parser.getTok(); |
| int Reg = tryParseRegister(); |
| if (Reg == -1) { |
| if (!haveEaten) |
| return MatchOperand_NoMatch; |
| Error(Tok.getLoc(), "register expected"); |
| return MatchOperand_ParseFail; |
| } |
| |
| Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ARM_AM::no_shift, |
| 0, S, Tok.getEndLoc())); |
| |
| return MatchOperand_Success; |
| } |
| |
| /// Convert parsed operands to MCInst. Needed here because this instruction |
| /// only has two register operands, but multiplication is commutative so |
| /// assemblers should accept both "mul rD, rN, rD" and "mul rD, rD, rN". |
| void ARMAsmParser::cvtThumbMultiply(MCInst &Inst, |
| const OperandVector &Operands) { |
| ((ARMOperand &)*Operands[3]).addRegOperands(Inst, 1); |
| ((ARMOperand &)*Operands[1]).addCCOutOperands(Inst, 1); |
| // If we have a three-operand form, make sure to set Rn to be the operand |
| // that isn't the same as Rd. |
| unsigned RegOp = 4; |
| if (Operands.size() == 6 && |
| ((ARMOperand &)*Operands[4]).getReg() == |
| ((ARMOperand &)*Operands[3]).getReg()) |
| RegOp = 5; |
| ((ARMOperand &)*Operands[RegOp]).addRegOperands(Inst, 1); |
| Inst.addOperand(Inst.getOperand(0)); |
| ((ARMOperand &)*Operands[2]).addCondCodeOperands(Inst, 2); |
| } |
| |
| void ARMAsmParser::cvtThumbBranches(MCInst &Inst, |
| const OperandVector &Operands) { |
| int CondOp = -1, ImmOp = -1; |
| switch(Inst.getOpcode()) { |
| case ARM::tB: |
| case ARM::tBcc: CondOp = 1; ImmOp = 2; break; |
| |
| case ARM::t2B: |
| case ARM::t2Bcc: CondOp = 1; ImmOp = 3; break; |
| |
| default: llvm_unreachable("Unexpected instruction in cvtThumbBranches"); |
| } |
| // first decide whether or not the branch should be conditional |
| // by looking at it's location relative to an IT block |
| if(inITBlock()) { |
| // inside an IT block we cannot have any conditional branches. any |
| // such instructions needs to be converted to unconditional form |
| switch(Inst.getOpcode()) { |
| case ARM::tBcc: Inst.setOpcode(ARM::tB); break; |
| case ARM::t2Bcc: Inst.setOpcode(ARM::t2B); break; |
| } |
| } else { |
| // outside IT blocks we can only have unconditional branches with AL |
| // condition code or conditional branches with non-AL condition code |
| unsigned Cond = static_cast<ARMOperand &>(*Operands[CondOp]).getCondCode(); |
| switch(Inst.getOpcode()) { |
| case ARM::tB: |
| case ARM::tBcc: |
| Inst.setOpcode(Cond == ARMCC::AL ? ARM::tB : ARM::tBcc); |
| break; |
| case ARM::t2B: |
| case ARM::t2Bcc: |
| Inst.setOpcode(Cond == ARMCC::AL ? ARM::t2B : ARM::t2Bcc); |
| break; |
| } |
| } |
| |
| // now decide on encoding size based on branch target range |
| switch(Inst.getOpcode()) { |
| // classify tB as either t2B or t1B based on range of immediate operand |
| case ARM::tB: { |
| ARMOperand &op = static_cast<ARMOperand &>(*Operands[ImmOp]); |
| if (!op.isSignedOffset<11, 1>() && isThumb() && hasV8MBaseline()) |
| Inst.setOpcode(ARM::t2B); |
| break; |
| } |
| // classify tBcc as either t2Bcc or t1Bcc based on range of immediate operand |
| case ARM::tBcc: { |
| ARMOperand &op = static_cast<ARMOperand &>(*Operands[ImmOp]); |
| if (!op.isSignedOffset<8, 1>() && isThumb() && hasV8MBaseline()) |
| Inst.setOpcode(ARM::t2Bcc); |
| break; |
| } |
| } |
| ((ARMOperand &)*Operands[ImmOp]).addImmOperands(Inst, 1); |
| ((ARMOperand &)*Operands[CondOp]).addCondCodeOperands(Inst, 2); |
| } |
| |
| void ARMAsmParser::cvtMVEVMOVQtoDReg( |
| MCInst &Inst, const OperandVector &Operands) { |
| |
| // mnemonic, condition code, Rt, Rt2, Qd, idx, Qd again, idx2 |
| assert(Operands.size() == 8); |
| |
| ((ARMOperand &)*Operands[2]).addRegOperands(Inst, 1); // Rt |
| ((ARMOperand &)*Operands[3]).addRegOperands(Inst, 1); // Rt2 |
| ((ARMOperand &)*Operands[4]).addRegOperands(Inst, 1); // Qd |
| ((ARMOperand &)*Operands[5]).addMVEPairVectorIndexOperands(Inst, 1); // idx |
| // skip second copy of Qd in Operands[6] |
| ((ARMOperand &)*Operands[7]).addMVEPairVectorIndexOperands(Inst, 1); // idx2 |
| ((ARMOperand &)*Operands[1]).addCondCodeOperands(Inst, 2); // condition code |
| } |
| |
| /// Parse an ARM memory expression, return false if successful else return true |
| /// or an error. The first token must be a '[' when called. |
| bool ARMAsmParser::parseMemory(OperandVector &Operands) { |
| MCAsmParser &Parser = getParser(); |
| SMLoc S, E; |
| if (Parser.getTok().isNot(AsmToken::LBrac)) |
| return TokError("Token is not a Left Bracket"); |
| S = Parser.getTok().getLoc(); |
| Parser.Lex(); // Eat left bracket token. |
| |
| const AsmToken &BaseRegTok = Parser.getTok(); |
| int BaseRegNum = tryParseRegister(); |
| if (BaseRegNum == -1) |
| return Error(BaseRegTok.getLoc(), "register expected"); |
| |
| // The next token must either be a comma, a colon or a closing bracket. |
| const AsmToken &Tok = Parser.getTok(); |
| if (!Tok.is(AsmToken::Colon) && !Tok.is(AsmToken::Comma) && |
| !Tok.is(AsmToken::RBrac)) |
| return Error(Tok.getLoc(), "malformed memory operand"); |
| |
| if (Tok.is(AsmToken::RBrac)) { |
| E = Tok.getEndLoc(); |
| Parser.Lex(); // Eat right bracket token. |
| |
| Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, 0, |
| ARM_AM::no_shift, 0, 0, false, |
| S, E)); |
| |
| // If there's a pre-indexing writeback marker, '!', just add it as a token |
| // operand. It's rather odd, but syntactically valid. |
| if (Parser.getTok().is(AsmToken::Exclaim)) { |
| Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); |
| Parser.Lex(); // Eat the '!'. |
| } |
| |
| return false; |
| } |
| |
| assert((Tok.is(AsmToken::Colon) || Tok.is(AsmToken::Comma)) && |
| "Lost colon or comma in memory operand?!"); |
| if (Tok.is(AsmToken::Comma)) { |
| Parser.Lex(); // Eat the comma. |
| } |
| |
| // If we have a ':', it's an alignment specifier. |
| if (Parser.getTok().is(AsmToken::Colon)) { |
| Parser.Lex(); // Eat the ':'. |
| E = Parser.getTok().getLoc(); |
| SMLoc AlignmentLoc = Tok.getLoc(); |
| |
| const MCExpr *Expr; |
| if (getParser().parseExpression(Expr)) |
| return true; |
| |
| // The expression has to be a constant. Memory references with relocations |
| // don't come through here, as they use the <label> forms of the relevant |
| // instructions. |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr); |
| if (!CE) |
| return Error (E, "constant expression expected"); |
| |
| unsigned Align = 0; |
| switch (CE->getValue()) { |
| default: |
| return Error(E, |
| "alignment specifier must be 16, 32, 64, 128, or 256 bits"); |
| case 16: Align = 2; break; |
| case 32: Align = 4; break; |
| case 64: Align = 8; break; |
| case 128: Align = 16; break; |
| case 256: Align = 32; break; |
| } |
| |
| // Now we should have the closing ']' |
| if (Parser.getTok().isNot(AsmToken::RBrac)) |
| return Error(Parser.getTok().getLoc(), "']' expected"); |
| E = Parser.getTok().getEndLoc(); |
| Parser.Lex(); // Eat right bracket token. |
| |
| // Don't worry about range checking the value here. That's handled by |
| // the is*() predicates. |
| Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, 0, |
| ARM_AM::no_shift, 0, Align, |
| false, S, E, AlignmentLoc)); |
| |
| // If there's a pre-indexing writeback marker, '!', just add it as a token |
| // operand. |
| if (Parser.getTok().is(AsmToken::Exclaim)) { |
| Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); |
| Parser.Lex(); // Eat the '!'. |
| } |
| |
| return false; |
| } |
| |
| // If we have a '#', it's an immediate offset, else assume it's a register |
| // offset. Be friendly and also accept a plain integer (without a leading |
| // hash) for gas compatibility. |
| if (Parser.getTok().is(AsmToken::Hash) || |
| Parser.getTok().is(AsmToken::Dollar) || |
| Parser.getTok().is(AsmToken::Integer)) { |
| if (Parser.getTok().isNot(AsmToken::Integer)) |
| Parser.Lex(); // Eat '#' or '$'. |
| E = Parser.getTok().getLoc(); |
| |
| bool isNegative = getParser().getTok().is(AsmToken::Minus); |
| const MCExpr *Offset; |
| if (getParser().parseExpression(Offset)) |
| return true; |
| |
| // The expression has to be a constant. Memory references with relocations |
| // don't come through here, as they use the <label> forms of the relevant |
| // instructions. |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Offset); |
| if (!CE) |
| return Error (E, "constant expression expected"); |
| |
| // If the constant was #-0, represent it as |
| // std::numeric_limits<int32_t>::min(). |
| int32_t Val = CE->getValue(); |
| if (isNegative && Val == 0) |
| CE = MCConstantExpr::create(std::numeric_limits<int32_t>::min(), |
| getContext()); |
| |
| // Now we should have the closing ']' |
| if (Parser.getTok().isNot(AsmToken::RBrac)) |
| return Error(Parser.getTok().getLoc(), "']' expected"); |
| E = Parser.getTok().getEndLoc(); |
| Parser.Lex(); // Eat right bracket token. |
| |
| // Don't worry about range checking the value here. That's handled by |
| // the is*() predicates. |
| Operands.push_back(ARMOperand::CreateMem(BaseRegNum, CE, 0, |
| ARM_AM::no_shift, 0, 0, |
| false, S, E)); |
| |
| // If there's a pre-indexing writeback marker, '!', just add it as a token |
| // operand. |
| if (Parser.getTok().is(AsmToken::Exclaim)) { |
| Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); |
| Parser.Lex(); // Eat the '!'. |
| } |
| |
| return false; |
| } |
| |
| // The register offset is optionally preceded by a '+' or '-' |
| bool isNegative = false; |
| if (Parser.getTok().is(AsmToken::Minus)) { |
| isNegative = true; |
| Parser.Lex(); // Eat the '-'. |
| } else if (Parser.getTok().is(AsmToken::Plus)) { |
| // Nothing to do. |
| Parser.Lex(); // Eat the '+'. |
| } |
| |
| E = Parser.getTok().getLoc(); |
| int OffsetRegNum = tryParseRegister(); |
| if (OffsetRegNum == -1) |
| return Error(E, "register expected"); |
| |
| // If there's a shift operator, handle it. |
| ARM_AM::ShiftOpc ShiftType = ARM_AM::no_shift; |
| unsigned ShiftImm = 0; |
| if (Parser.getTok().is(AsmToken::Comma)) { |
| Parser.Lex(); // Eat the ','. |
| if (parseMemRegOffsetShift(ShiftType, ShiftImm)) |
| return true; |
| } |
| |
| // Now we should have the closing ']' |
| if (Parser.getTok().isNot(AsmToken::RBrac)) |
| return Error(Parser.getTok().getLoc(), "']' expected"); |
| E = Parser.getTok().getEndLoc(); |
| Parser.Lex(); // Eat right bracket token. |
| |
| Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, OffsetRegNum, |
| ShiftType, ShiftImm, 0, isNegative, |
| S, E)); |
| |
| // If there's a pre-indexing writeback marker, '!', just add it as a token |
| // operand. |
| if (Parser.getTok().is(AsmToken::Exclaim)) { |
| Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); |
| Parser.Lex(); // Eat the '!'. |
| } |
| |
| return false; |
| } |
| |
| /// parseMemRegOffsetShift - one of these two: |
| /// ( lsl | lsr | asr | ror ) , # shift_amount |
| /// rrx |
| /// return true if it parses a shift otherwise it returns false. |
| bool ARMAsmParser::parseMemRegOffsetShift(ARM_AM::ShiftOpc &St, |
| unsigned &Amount) { |
| MCAsmParser &Parser = getParser(); |
| SMLoc Loc = Parser.getTok().getLoc(); |
| const AsmToken &Tok = Parser.getTok(); |
| if (Tok.isNot(AsmToken::Identifier)) |
| return Error(Loc, "illegal shift operator"); |
| StringRef ShiftName = Tok.getString(); |
| if (ShiftName == "lsl" || ShiftName == "LSL" || |
| ShiftName == "asl" || ShiftName == "ASL") |
| St = ARM_AM::lsl; |
| else if (ShiftName == "lsr" || ShiftName == "LSR") |
| St = ARM_AM::lsr; |
| else if (ShiftName == "asr" || ShiftName == "ASR") |
| St = ARM_AM::asr; |
| else if (ShiftName == "ror" || ShiftName == "ROR") |
| St = ARM_AM::ror; |
| else if (ShiftName == "rrx" || ShiftName == "RRX") |
| St = ARM_AM::rrx; |
| else if (ShiftName == "uxtw" || ShiftName == "UXTW") |
| St = ARM_AM::uxtw; |
| else |
| return Error(Loc, "illegal shift operator"); |
| Parser.Lex(); // Eat shift type token. |
| |
| // rrx stands alone. |
| Amount = 0; |
| if (St != ARM_AM::rrx) { |
| Loc = Parser.getTok().getLoc(); |
| // A '#' and a shift amount. |
| const AsmToken &HashTok = Parser.getTok(); |
| if (HashTok.isNot(AsmToken::Hash) && |
| HashTok.isNot(AsmToken::Dollar)) |
| return Error(HashTok.getLoc(), "'#' expected"); |
| Parser.Lex(); // Eat hash token. |
| |
| const MCExpr *Expr; |
| if (getParser().parseExpression(Expr)) |
| return true; |
| // Range check the immediate. |
| // lsl, ror: 0 <= imm <= 31 |
| // lsr, asr: 0 <= imm <= 32 |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr); |
| if (!CE) |
| return Error(Loc, "shift amount must be an immediate"); |
| int64_t Imm = CE->getValue(); |
| if (Imm < 0 || |
| ((St == ARM_AM::lsl || St == ARM_AM::ror) && Imm > 31) || |
| ((St == ARM_AM::lsr || St == ARM_AM::asr) && Imm > 32)) |
| return Error(Loc, "immediate shift value out of range"); |
| // If <ShiftTy> #0, turn it into a no_shift. |
| if (Imm == 0) |
| St = ARM_AM::lsl; |
| // For consistency, treat lsr #32 and asr #32 as having immediate value 0. |
| if (Imm == 32) |
| Imm = 0; |
| Amount = Imm; |
| } |
| |
| return false; |
| } |
| |
| /// parseFPImm - A floating point immediate expression operand. |
| OperandMatchResultTy |
| ARMAsmParser::parseFPImm(OperandVector &Operands) { |
| MCAsmParser &Parser = getParser(); |
| // Anything that can accept a floating point constant as an operand |
| // needs to go through here, as the regular parseExpression is |
| // integer only. |
| // |
| // This routine still creates a generic Immediate operand, containing |
| // a bitcast of the 64-bit floating point value. The various operands |
| // that accept floats can check whether the value is valid for them |
| // via the standard is*() predicates. |
| |
| SMLoc S = Parser.getTok().getLoc(); |
| |
| if (Parser.getTok().isNot(AsmToken::Hash) && |
| Parser.getTok().isNot(AsmToken::Dollar)) |
| return MatchOperand_NoMatch; |
| |
| // Disambiguate the VMOV forms that can accept an FP immediate. |
| // vmov.f32 <sreg>, #imm |
| // vmov.f64 <dreg>, #imm |
| // vmov.f32 <dreg>, #imm @ vector f32x2 |
| // vmov.f32 <qreg>, #imm @ vector f32x4 |
| // |
| // There are also the NEON VMOV instructions which expect an |
| // integer constant. Make sure we don't try to parse an FPImm |
| // for these: |
| // vmov.i{8|16|32|64} <dreg|qreg>, #imm |
| ARMOperand &TyOp = static_cast<ARMOperand &>(*Operands[2]); |
| bool isVmovf = TyOp.isToken() && |
| (TyOp.getToken() == ".f32" || TyOp.getToken() == ".f64" || |
| TyOp.getToken() == ".f16"); |
| ARMOperand &Mnemonic = static_cast<ARMOperand &>(*Operands[0]); |
| bool isFconst = Mnemonic.isToken() && (Mnemonic.getToken() == "fconstd" || |
| Mnemonic.getToken() == "fconsts"); |
| if (!(isVmovf || isFconst)) |
| return MatchOperand_NoMatch; |
| |
| Parser.Lex(); // Eat '#' or '$'. |
| |
| // Handle negation, as that still comes through as a separate token. |
| bool isNegative = false; |
| if (Parser.getTok().is(AsmToken::Minus)) { |
| isNegative = true; |
| Parser.Lex(); |
| } |
| const AsmToken &Tok = Parser.getTok(); |
| SMLoc Loc = Tok.getLoc(); |
| if (Tok.is(AsmToken::Real) && isVmovf) { |
| APFloat RealVal(APFloat::IEEEsingle(), Tok.getString()); |
| uint64_t IntVal = RealVal.bitcastToAPInt().getZExtValue(); |
| // If we had a '-' in front, toggle the sign bit. |
| IntVal ^= (uint64_t)isNegative << 31; |
| Parser.Lex(); // Eat the token. |
| Operands.push_back(ARMOperand::CreateImm( |
| MCConstantExpr::create(IntVal, getContext()), |
| S, Parser.getTok().getLoc())); |
| return MatchOperand_Success; |
| } |
| // Also handle plain integers. Instructions which allow floating point |
| // immediates also allow a raw encoded 8-bit value. |
| if (Tok.is(AsmToken::Integer) && isFconst) { |
| int64_t Val = Tok.getIntVal(); |
| Parser.Lex(); // Eat the token. |
| if (Val > 255 || Val < 0) { |
| Error(Loc, "encoded floating point value out of range"); |
| return MatchOperand_ParseFail; |
| } |
| float RealVal = ARM_AM::getFPImmFloat(Val); |
| Val = APFloat(RealVal).bitcastToAPInt().getZExtValue(); |
| |
| Operands.push_back(ARMOperand::CreateImm( |
| MCConstantExpr::create(Val, getContext()), S, |
| Parser.getTok().getLoc())); |
| return MatchOperand_Success; |
| } |
| |
| Error(Loc, "invalid floating point immediate"); |
| return MatchOperand_ParseFail; |
| } |
| |
| /// Parse a arm instruction operand. For now this parses the operand regardless |
| /// of the mnemonic. |
| bool ARMAsmParser::parseOperand(OperandVector &Operands, StringRef Mnemonic) { |
| MCAsmParser &Parser = getParser(); |
| SMLoc S, E; |
| |
| // Check if the current operand has a custom associated parser, if so, try to |
| // custom parse the operand, or fallback to the general approach. |
| OperandMatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic); |
| if (ResTy == MatchOperand_Success) |
| return false; |
| // If there wasn't a custom match, try the generic matcher below. Otherwise, |
| // there was a match, but an error occurred, in which case, just return that |
| // the operand parsing failed. |
| if (ResTy == MatchOperand_ParseFail) |
| return true; |
| |
| switch (getLexer().getKind()) { |
| default: |
| Error(Parser.getTok().getLoc(), "unexpected token in operand"); |
| return true; |
| case AsmToken::Identifier: { |
| // If we've seen a branch mnemonic, the next operand must be a label. This |
| // is true even if the label is a register name. So "br r1" means branch to |
| // label "r1". |
| bool ExpectLabel = Mnemonic == "b" || Mnemonic == "bl"; |
| if (!ExpectLabel) { |
| if (!tryParseRegisterWithWriteBack(Operands)) |
| return false; |
| int Res = tryParseShiftRegister(Operands); |
| if (Res == 0) // success |
| return false; |
| else if (Res == -1) // irrecoverable error |
| return true; |
| // If this is VMRS, check for the apsr_nzcv operand. |
| if (Mnemonic == "vmrs" && |
| Parser.getTok().getString().equals_lower("apsr_nzcv")) { |
| S = Parser.getTok().getLoc(); |
| Parser.Lex(); |
| Operands.push_back(ARMOperand::CreateToken("APSR_nzcv", S)); |
| return false; |
| } |
| } |
| |
| // Fall though for the Identifier case that is not a register or a |
| // special name. |
| LLVM_FALLTHROUGH; |
| } |
| case AsmToken::LParen: // parenthesized expressions like (_strcmp-4) |
| case AsmToken::Integer: // things like 1f and 2b as a branch targets |
| case AsmToken::String: // quoted label names. |
| case AsmToken::Dot: { // . as a branch target |
| // This was not a register so parse other operands that start with an |
| // identifier (like labels) as expressions and create them as immediates. |
| const MCExpr *IdVal; |
| S = Parser.getTok().getLoc(); |
| if (getParser().parseExpression(IdVal)) |
| return true; |
| E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); |
| Operands.push_back(ARMOperand::CreateImm(IdVal, S, E)); |
| return false; |
| } |
| case AsmToken::LBrac: |
| return parseMemory(Operands); |
| case AsmToken::LCurly: |
| return parseRegisterList(Operands, !Mnemonic.startswith("clr")); |
| case AsmToken::Dollar: |
| case AsmToken::Hash: |
| // #42 -> immediate. |
| S = Parser.getTok().getLoc(); |
| Parser.Lex(); |
| |
| if (Parser.getTok().isNot(AsmToken::Colon)) { |
| bool isNegative = Parser.getTok().is(AsmToken::Minus); |
| const MCExpr *ImmVal; |
| if (getParser().parseExpression(ImmVal)) |
| return true; |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ImmVal); |
| if (CE) { |
| int32_t Val = CE->getValue(); |
| if (isNegative && Val == 0) |
| ImmVal = MCConstantExpr::create(std::numeric_limits<int32_t>::min(), |
| getContext()); |
| } |
| E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); |
| Operands.push_back(ARMOperand::CreateImm(ImmVal, S, E)); |
| |
| // There can be a trailing '!' on operands that we want as a separate |
| // '!' Token operand. Handle that here. For example, the compatibility |
| // alias for 'srsdb sp!, #imm' is 'srsdb #imm!'. |
| if (Parser.getTok().is(AsmToken::Exclaim)) { |
| Operands.push_back(ARMOperand::CreateToken(Parser.getTok().getString(), |
| Parser.getTok().getLoc())); |
| Parser.Lex(); // Eat exclaim token |
| } |
| return false; |
| } |
| // w/ a ':' after the '#', it's just like a plain ':'. |
| LLVM_FALLTHROUGH; |
| |
| case AsmToken::Colon: { |
| S = Parser.getTok().getLoc(); |
| // ":lower16:" and ":upper16:" expression prefixes |
| // FIXME: Check it's an expression prefix, |
| // e.g. (FOO - :lower16:BAR) isn't legal. |
| ARMMCExpr::VariantKind RefKind; |
| if (parsePrefix(RefKind)) |
| return true; |
| |
| const MCExpr *SubExprVal; |
| if (getParser().parseExpression(SubExprVal)) |
| return true; |
| |
| const MCExpr *ExprVal = ARMMCExpr::create(RefKind, SubExprVal, |
| getContext()); |
| E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); |
| Operands.push_back(ARMOperand::CreateImm(ExprVal, S, E)); |
| return false; |
| } |
| case AsmToken::Equal: { |
| S = Parser.getTok().getLoc(); |
| if (Mnemonic != "ldr") // only parse for ldr pseudo (e.g. ldr r0, =val) |
| return Error(S, "unexpected token in operand"); |
| Parser.Lex(); // Eat '=' |
| const MCExpr *SubExprVal; |
| if (getParser().parseExpression(SubExprVal)) |
| return true; |
| E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); |
| |
| // execute-only: we assume that assembly programmers know what they are |
| // doing and allow literal pool creation here |
| Operands.push_back(ARMOperand::CreateConstantPoolImm(SubExprVal, S, E)); |
| return false; |
| } |
| } |
| } |
| |
| // parsePrefix - Parse ARM 16-bit relocations expression prefix, i.e. |
| // :lower16: and :upper16:. |
| bool ARMAsmParser::parsePrefix(ARMMCExpr::VariantKind &RefKind) { |
| MCAsmParser &Parser = getParser(); |
| RefKind = ARMMCExpr::VK_ARM_None; |
| |
| // consume an optional '#' (GNU compatibility) |
| if (getLexer().is(AsmToken::Hash)) |
| Parser.Lex(); |
| |
| // :lower16: and :upper16: modifiers |
| assert(getLexer().is(AsmToken::Colon) && "expected a :"); |
| Parser.Lex(); // Eat ':' |
| |
| if (getLexer().isNot(AsmToken::Identifier)) { |
| Error(Parser.getTok().getLoc(), "expected prefix identifier in operand"); |
| return true; |
| } |
| |
| enum { |
| COFF = (1 << MCObjectFileInfo::IsCOFF), |
| ELF = (1 << MCObjectFileInfo::IsELF), |
| MACHO = (1 << MCObjectFileInfo::IsMachO), |
| WASM = (1 << MCObjectFileInfo::IsWasm), |
| }; |
| static const struct PrefixEntry { |
| const char *Spelling; |
| ARMMCExpr::VariantKind VariantKind; |
| uint8_t SupportedFormats; |
| } PrefixEntries[] = { |
| { "lower16", ARMMCExpr::VK_ARM_LO16, COFF | ELF | MACHO }, |
| { "upper16", ARMMCExpr::VK_ARM_HI16, COFF | ELF | MACHO }, |
| }; |
| |
| StringRef IDVal = Parser.getTok().getIdentifier(); |
| |
| const auto &Prefix = |
| std::find_if(std::begin(PrefixEntries), std::end(PrefixEntries), |
| [&IDVal](const PrefixEntry &PE) { |
| return PE.Spelling == IDVal; |
| }); |
| if (Prefix == std::end(PrefixEntries)) { |
| Error(Parser.getTok().getLoc(), "unexpected prefix in operand"); |
| return true; |
| } |
| |
| uint8_t CurrentFormat; |
| switch (getContext().getObjectFileInfo()->getObjectFileType()) { |
| case MCObjectFileInfo::IsMachO: |
| CurrentFormat = MACHO; |
| break; |
| case MCObjectFileInfo::IsELF: |
| CurrentFormat = ELF; |
| break; |
| case MCObjectFileInfo::IsCOFF: |
| CurrentFormat = COFF; |
| break; |
| case MCObjectFileInfo::IsWasm: |
| CurrentFormat = WASM; |
| break; |
| case MCObjectFileInfo::IsXCOFF: |
| llvm_unreachable("unexpected object format"); |
| break; |
| } |
| |
| if (~Prefix->SupportedFormats & CurrentFormat) { |
| Error(Parser.getTok().getLoc(), |
| "cannot represent relocation in the current file format"); |
| return true; |
| } |
| |
| RefKind = Prefix->VariantKind; |
| Parser.Lex(); |
| |
| if (getLexer().isNot(AsmToken::Colon)) { |
| Error(Parser.getTok().getLoc(), "unexpected token after prefix"); |
| return true; |
| } |
| Parser.Lex(); // Eat the last ':' |
| |
| return false; |
| } |
| |
| /// Given a mnemonic, split out possible predication code and carry |
| /// setting letters to form a canonical mnemonic and flags. |
| // |
| // FIXME: Would be nice to autogen this. |
| // FIXME: This is a bit of a maze of special cases. |
| StringRef ARMAsmParser::splitMnemonic(StringRef Mnemonic, |
| StringRef ExtraToken, |
| unsigned &PredicationCode, |
| unsigned &VPTPredicationCode, |
| bool &CarrySetting, |
| unsigned &ProcessorIMod, |
| StringRef &ITMask) { |
| PredicationCode = ARMCC::AL; |
| VPTPredicationCode = ARMVCC::None; |
| CarrySetting = false; |
| ProcessorIMod = 0; |
| |
| // Ignore some mnemonics we know aren't predicated forms. |
| // |
| // FIXME: Would be nice to autogen this. |
| if ((Mnemonic == "movs" && isThumb()) || |
| Mnemonic == "teq" || Mnemonic == "vceq" || Mnemonic == "svc" || |
| Mnemonic == "mls" || Mnemonic == "smmls" || Mnemonic == "vcls" || |
| Mnemonic == "vmls" || Mnemonic == "vnmls" || Mnemonic == "vacge" || |
| Mnemonic == "vcge" || Mnemonic == "vclt" || Mnemonic == "vacgt" || |
| Mnemonic == "vaclt" || Mnemonic == "vacle" || Mnemonic == "hlt" || |
| Mnemonic == "vcgt" || Mnemonic == "vcle" || Mnemonic == "smlal" || |
| Mnemonic == "umaal" || Mnemonic == "umlal" || Mnemonic == "vabal" || |
| Mnemonic == "vmlal" || Mnemonic == "vpadal" || Mnemonic == "vqdmlal" || |
| Mnemonic == "fmuls" || Mnemonic == "vmaxnm" || Mnemonic == "vminnm" || |
| Mnemonic == "vcvta" || Mnemonic == "vcvtn" || Mnemonic == "vcvtp" || |
| Mnemonic == "vcvtm" || Mnemonic == "vrinta" || Mnemonic == "vrintn" || |
| Mnemonic == "vrintp" || Mnemonic == "vrintm" || Mnemonic == "hvc" || |
| Mnemonic.startswith("vsel") || Mnemonic == "vins" || Mnemonic == "vmovx" || |
| Mnemonic == "bxns" || Mnemonic == "blxns" || |
| Mnemonic == "vudot" || Mnemonic == "vsdot" || |
| Mnemonic == "vcmla" || Mnemonic == "vcadd" || |
| Mnemonic == "vfmal" || Mnemonic == "vfmsl" || |
| Mnemonic == "wls" || Mnemonic == "le" || Mnemonic == "dls" || |
| Mnemonic == "csel" || Mnemonic == "csinc" || |
| Mnemonic == "csinv" || Mnemonic == "csneg" || Mnemonic == "cinc" || |
| Mnemonic == "cinv" || Mnemonic == "cneg" || Mnemonic == "cset" || |
| Mnemonic == "csetm") |
| return Mnemonic; |
| |
| // First, split out any predication code. Ignore mnemonics we know aren't |
| // predicated but do have a carry-set and so weren't caught above. |
| if (Mnemonic != "adcs" && Mnemonic != "bics" && Mnemonic != "movs" && |
| Mnemonic != "muls" && Mnemonic != "smlals" && Mnemonic != "smulls" && |
| Mnemonic != "umlals" && Mnemonic != "umulls" && Mnemonic != "lsls" && |
| Mnemonic != "sbcs" && Mnemonic != "rscs" && |
| !(hasMVE() && |
| (Mnemonic == "vmine" || |
| Mnemonic == "vshle" || Mnemonic == "vshlt" || Mnemonic == "vshllt" || |
| Mnemonic == "vrshle" || Mnemonic == "vrshlt" || |
| Mnemonic == "vmvne" || Mnemonic == "vorne" || |
| Mnemonic == "vnege" || Mnemonic == "vnegt" || |
| Mnemonic == "vmule" || Mnemonic == "vmult" || |
| Mnemonic == "vrintne" || |
| Mnemonic == "vcmult" || Mnemonic == "vcmule" || |
| Mnemonic == "vpsele" || Mnemonic == "vpselt" || |
| Mnemonic.startswith("vq")))) { |
| unsigned CC = ARMCondCodeFromString(Mnemonic.substr(Mnemonic.size()-2)); |
| if (CC != ~0U) { |
| Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 2); |
| PredicationCode = CC; |
| } |
| } |
| |
| // Next, determine if we have a carry setting bit. We explicitly ignore all |
| // the instructions we know end in 's'. |
| if (Mnemonic.endswith("s") && |
| !(Mnemonic == "cps" || Mnemonic == "mls" || |
| Mnemonic == "mrs" || Mnemonic == "smmls" || Mnemonic == "vabs" || |
| Mnemonic == "vcls" || Mnemonic == "vmls" || Mnemonic == "vmrs" || |
| Mnemonic == "vnmls" || Mnemonic == "vqabs" || Mnemonic == "vrecps" || |
| Mnemonic == "vrsqrts" || Mnemonic == "srs" || Mnemonic == "flds" || |
| Mnemonic == "fmrs" || Mnemonic == "fsqrts" || Mnemonic == "fsubs" || |
| Mnemonic == "fsts" || Mnemonic == "fcpys" || Mnemonic == "fdivs" || |
| Mnemonic == "fmuls" || Mnemonic == "fcmps" || Mnemonic == "fcmpzs" || |
| Mnemonic == "vfms" || Mnemonic == "vfnms" || Mnemonic == "fconsts" || |
| Mnemonic == "bxns" || Mnemonic == "blxns" || Mnemonic == "vfmas" || |
| Mnemonic == "vmlas" || |
| (Mnemonic == "movs" && isThumb()))) { |
| Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 1); |
| CarrySetting = true; |
| } |
| |
| // The "cps" instruction can have a interrupt mode operand which is glued into |
| // the mnemonic. Check if this is the case, split it and parse the imod op |
| if (Mnemonic.startswith("cps")) { |
| // Split out any imod code. |
| unsigned IMod = |
| StringSwitch<unsigned>(Mnemonic.substr(Mnemonic.size()-2, 2)) |
| .Case("ie", ARM_PROC::IE) |
| .Case("id", ARM_PROC::ID) |
| .Default(~0U); |
| if (IMod != ~0U) { |
| Mnemonic = Mnemonic.slice(0, Mnemonic.size()-2); |
| ProcessorIMod = IMod; |
| } |
| } |
| |
| if (isMnemonicVPTPredicable(Mnemonic, ExtraToken) && Mnemonic != "vmovlt" && |
| Mnemonic != "vshllt" && Mnemonic != "vrshrnt" && Mnemonic != "vshrnt" && |
| Mnemonic != "vqrshrunt" && Mnemonic != "vqshrunt" && |
| Mnemonic != "vqrshrnt" && Mnemonic != "vqshrnt" && Mnemonic != "vmullt" && |
| Mnemonic != "vqmovnt" && Mnemonic != "vqmovunt" && |
| Mnemonic != "vqmovnt" && Mnemonic != "vmovnt" && Mnemonic != "vqdmullt" && |
| Mnemonic != "vpnot" && Mnemonic != "vcvtt" && Mnemonic != "vcvt") { |
| unsigned CC = ARMVectorCondCodeFromString(Mnemonic.substr(Mnemonic.size()-1)); |
| if (CC != ~0U) { |
| Mnemonic = Mnemonic.slice(0, Mnemonic.size()-1); |
| VPTPredicationCode = CC; |
| } |
| return Mnemonic; |
| } |
| |
| // The "it" instruction has the condition mask on the end of the mnemonic. |
| if (Mnemonic.startswith("it")) { |
| ITMask = Mnemonic.slice(2, Mnemonic.size()); |
| Mnemonic = Mnemonic.slice(0, 2); |
| } |
| |
| if (Mnemonic.startswith("vpst")) { |
| ITMask = Mnemonic.slice(4, Mnemonic.size()); |
| Mnemonic = Mnemonic.slice(0, 4); |
| } |
| else if (Mnemonic.startswith("vpt")) { |
| ITMask = Mnemonic.slice(3, Mnemonic.size()); |
| Mnemonic = Mnemonic.slice(0, 3); |
| } |
| |
| return Mnemonic; |
| } |
| |
| /// Given a canonical mnemonic, determine if the instruction ever allows |
| /// inclusion of carry set or predication code operands. |
| // |
| // FIXME: It would be nice to autogen this. |
| void ARMAsmParser::getMnemonicAcceptInfo(StringRef Mnemonic, |
| StringRef ExtraToken, |
| StringRef FullInst, |
| bool &CanAcceptCarrySet, |
| bool &CanAcceptPredicationCode, |
| bool &CanAcceptVPTPredicationCode) { |
| CanAcceptVPTPredicationCode = isMnemonicVPTPredicable(Mnemonic, ExtraToken); |
| |
| CanAcceptCarrySet = |
| Mnemonic == "and" || Mnemonic == "lsl" || Mnemonic == "lsr" || |
| Mnemonic == "rrx" || Mnemonic == "ror" || Mnemonic == "sub" || |
| Mnemonic == "add" || Mnemonic == "adc" || Mnemonic == "mul" || |
| Mnemonic == "bic" || Mnemonic == "asr" || Mnemonic == "orr" || |
| Mnemonic == "mvn" || Mnemonic == "rsb" || Mnemonic == "rsc" || |
| Mnemonic == "orn" || Mnemonic == "sbc" || Mnemonic == "eor" || |
| Mnemonic == "neg" || Mnemonic == "vfm" || Mnemonic == "vfnm" || |
| (!isThumb() && |
| (Mnemonic == "smull" || Mnemonic == "mov" || Mnemonic == "mla" || |
| Mnemonic == "smlal" || Mnemonic == "umlal" || Mnemonic == "umull")); |
| |
| if (Mnemonic == "bkpt" || Mnemonic == "cbnz" || Mnemonic == "setend" || |
| Mnemonic == "cps" || Mnemonic == "it" || Mnemonic == "cbz" || |
| Mnemonic == "trap" || Mnemonic == "hlt" || Mnemonic == "udf" || |
| Mnemonic.startswith("crc32") || Mnemonic.startswith("cps") || |
| Mnemonic.startswith("vsel") || Mnemonic == "vmaxnm" || |
| Mnemonic == "vminnm" || Mnemonic == "vcvta" || Mnemonic == "vcvtn" || |
| Mnemonic == "vcvtp" || Mnemonic == "vcvtm" || Mnemonic == "vrinta" || |
| Mnemonic == "vrintn" || Mnemonic == "vrintp" || Mnemonic == "vrintm" || |
| Mnemonic.startswith("aes") || Mnemonic == "hvc" || Mnemonic == "setpan" || |
| Mnemonic.startswith("sha1") || Mnemonic.startswith("sha256") || |
| (FullInst.startswith("vmull") && FullInst.endswith(".p64")) || |
| Mnemonic == "vmovx" || Mnemonic == "vins" || |
| Mnemonic == "vudot" || Mnemonic == "vsdot" || |
| Mnemonic == "vcmla" || Mnemonic == "vcadd" || |
| Mnemonic == "vfmal" || Mnemonic == "vfmsl" || |
| Mnemonic == "sb" || Mnemonic == "ssbb" || |
| Mnemonic == "pssbb" || |
| Mnemonic == "bfcsel" || Mnemonic == "wls" || |
| Mnemonic == "dls" || Mnemonic == "le" || Mnemonic == "csel" || |
| Mnemonic == "csinc" || Mnemonic == "csinv" || Mnemonic == "csneg" || |
| Mnemonic == "cinc" || Mnemonic == "cinv" || Mnemonic == "cneg" || |
| Mnemonic == "cset" || Mnemonic == "csetm" || |
| Mnemonic.startswith("vpt") || Mnemonic.startswith("vpst") || |
| (hasMVE() && |
| (Mnemonic.startswith("vst2") || Mnemonic.startswith("vld2") || |
| Mnemonic.startswith("vst4") || Mnemonic.startswith("vld4") || |
| Mnemonic.startswith("wlstp") || Mnemonic.startswith("dlstp") || |
| Mnemonic.startswith("letp")))) { |
| // These mnemonics are never predicable |
| CanAcceptPredicationCode = false; |
| } else if (!isThumb()) { |
| // Some instructions are only predicable in Thumb mode |
| CanAcceptPredicationCode = |
| Mnemonic != "cdp2" && Mnemonic != "clrex" && Mnemonic != "mcr2" && |
| Mnemonic != "mcrr2" && Mnemonic != "mrc2" && Mnemonic != "mrrc2" && |
| Mnemonic != "dmb" && Mnemonic != "dfb" && Mnemonic != "dsb" && |
| Mnemonic != "isb" && Mnemonic != "pld" && Mnemonic != "pli" && |
| Mnemonic != "pldw" && Mnemonic != "ldc2" && Mnemonic != "ldc2l" && |
| Mnemonic != "stc2" && Mnemonic != "stc2l" && |
| Mnemonic != "tsb" && |
| !Mnemonic.startswith("rfe") && !Mnemonic.startswith("srs"); |
| } else if (isThumbOne()) { |
| if (hasV6MOps()) |
| CanAcceptPredicationCode = Mnemonic != "movs"; |
| else |
| CanAcceptPredicationCode = Mnemonic != "nop" && Mnemonic != "movs"; |
| } else |
| CanAcceptPredicationCode = true; |
| } |
| |
| // Some Thumb instructions have two operand forms that are not |
| // available as three operand, convert to two operand form if possible. |
| // |
| // FIXME: We would really like to be able to tablegen'erate this. |
| void ARMAsmParser::tryConvertingToTwoOperandForm(StringRef Mnemonic, |
| bool CarrySetting, |
| OperandVector &Operands) { |
| if (Operands.size() != 6) |
| return; |
| |
| const auto &Op3 = static_cast<ARMOperand &>(*Operands[3]); |
| auto &Op4 = static_cast<ARMOperand &>(*Operands[4]); |
| if (!Op3.isReg() || !Op4.isReg()) |
| return; |
| |
| auto Op3Reg = Op3.getReg(); |
| auto Op4Reg = Op4.getReg(); |
| |
| // For most Thumb2 cases we just generate the 3 operand form and reduce |
| // it in processInstruction(), but the 3 operand form of ADD (t2ADDrr) |
| // won't accept SP or PC so we do the transformation here taking care |
| // with immediate range in the 'add sp, sp #imm' case. |
| auto &Op5 = static_cast<ARMOperand &>(*Operands[5]); |
| if (isThumbTwo()) { |
| if (Mnemonic != "add") |
| return; |
| bool TryTransform = Op3Reg == ARM::PC || Op4Reg == ARM::PC || |
| (Op5.isReg() && Op5.getReg() == ARM::PC); |
| if (!TryTransform) { |
| TryTransform = (Op3Reg == ARM::SP || Op4Reg == ARM::SP || |
| (Op5.isReg() && Op5.getReg() == ARM::SP)) && |
| !(Op3Reg == ARM::SP && Op4Reg == ARM::SP && |
| Op5.isImm() && !Op5.isImm0_508s4()); |
| } |
| if (!TryTransform) |
| return; |
| } else if (!isThumbOne()) |
| return; |
| |
| if (!(Mnemonic == "add" || Mnemonic == "sub" || Mnemonic == "and" || |
| Mnemonic == "eor" || Mnemonic == "lsl" || Mnemonic == "lsr" || |
| Mnemonic == "asr" || Mnemonic == "adc" || Mnemonic == "sbc" || |
| Mnemonic == "ror" || Mnemonic == "orr" || Mnemonic == "bic")) |
| return; |
| |
| // If first 2 operands of a 3 operand instruction are the same |
| // then transform to 2 operand version of the same instruction |
| // e.g. 'adds r0, r0, #1' transforms to 'adds r0, #1' |
| bool Transform = Op3Reg == Op4Reg; |
| |
| // For communtative operations, we might be able to transform if we swap |
| // Op4 and Op5. The 'ADD Rdm, SP, Rdm' form is already handled specially |
| // as tADDrsp. |
| const ARMOperand *LastOp = &Op5; |
| bool Swap = false; |
| if (!Transform && Op5.isReg() && Op3Reg == Op5.getReg() && |
| ((Mnemonic == "add" && Op4Reg != ARM::SP) || |
| Mnemonic == "and" || Mnemonic == "eor" || |
| Mnemonic == "adc" || Mnemonic == "orr")) { |
| Swap = true; |
| LastOp = &Op4; |
| Transform = true; |
| } |
| |
| // If both registers are the same then remove one of them from |
| // the operand list, with certain exceptions. |
| if (Transform) { |
| // Don't transform 'adds Rd, Rd, Rm' or 'sub{s} Rd, Rd, Rm' because the |
| // 2 operand forms don't exist. |
| if (((Mnemonic == "add" && CarrySetting) || Mnemonic == "sub") && |
| LastOp->isReg()) |
| Transform = false; |
| |
| // Don't transform 'add/sub{s} Rd, Rd, #imm' if the immediate fits into |
| // 3-bits because the ARMARM says not to. |
| if ((Mnemonic == "add" || Mnemonic == "sub") && LastOp->isImm0_7()) |
| Transform = false; |
| } |
| |
| if (Transform) { |
| if (Swap) |
| std::swap(Op4, Op5); |
| Operands.erase(Operands.begin() + 3); |
| } |
| } |
| |
| bool ARMAsmParser::shouldOmitCCOutOperand(StringRef Mnemonic, |
| OperandVector &Operands) { |
| // FIXME: This is all horribly hacky. We really need a better way to deal |
| // with optional operands like this in the matcher table. |
| |
| // The 'mov' mnemonic is special. One variant has a cc_out operand, while |
| // another does not. Specifically, the MOVW instruction does not. So we |
| // special case it here and remove the defaulted (non-setting) cc_out |
| // operand if that's the instruction we're trying to match. |
| // |
| // We do this as post-processing of the explicit operands rather than just |
| // conditionally adding the cc_out in the first place because we need |
| // to check the type of the parsed immediate operand. |
| if (Mnemonic == "mov" && Operands.size() > 4 && !isThumb() && |
| !static_cast<ARMOperand &>(*Operands[4]).isModImm() && |
| static_cast<ARMOperand &>(*Operands[4]).isImm0_65535Expr() && |
| static_cast<ARMOperand &>(*Operands[1]).getReg() == 0) |
| return true; |
| |
| // Register-register 'add' for thumb does not have a cc_out operand |
| // when there are only two register operands. |
| if (isThumb() && Mnemonic == "add" && Operands.size() == 5 && |
| static_cast<ARMOperand &>(*Operands[3]).isReg() && |
| static_cast<ARMOperand &>(*Operands[4]).isReg() && |
| static_cast<ARMOperand &>(*Operands[1]).getReg() == 0) |
| return true; |
| // Register-register 'add' for thumb does not have a cc_out operand |
| // when it's an ADD Rdm, SP, {Rdm|#imm0_255} instruction. We do |
| // have to check the immediate range here since Thumb2 has a variant |
| // that can handle a different range and has a cc_out operand. |
| if (((isThumb() && Mnemonic == "add") || |
| (isThumbTwo() && Mnemonic == "sub")) && |
| Operands.size() == 6 && static_cast<ARMOperand &>(*Operands[3]).isReg() && |
| static_cast<ARMOperand &>(*Operands[4]).isReg() && |
| static_cast<ARMOperand &>(*Operands[4]).getReg() == ARM::SP && |
| static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && |
| ((Mnemonic == "add" && static_cast<ARMOperand &>(*Operands[5]).isReg()) || |
| static_cast<ARMOperand &>(*Operands[5]).isImm0_1020s4())) |
| return true; |
| // For Thumb2, add/sub immediate does not have a cc_out operand for the |
| // imm0_4095 variant. That's the least-preferred variant when |
| // selecting via the generic "add" mnemonic, so to know that we |
| // should remove the cc_out operand, we have to explicitly check that |
| // it's not one of the other variants. Ugh. |
| if (isThumbTwo() && (Mnemonic == "add" || Mnemonic == "sub") && |
| Operands.size() == 6 && static_cast<ARMOperand &>(*Operands[3]).isReg() && |
| static_cast<ARMOperand &>(*Operands[4]).isReg() && |
| static_cast<ARMOperand &>(*Operands[5]).isImm()) { |
| // Nest conditions rather than one big 'if' statement for readability. |
| // |
| // If both registers are low, we're in an IT block, and the immediate is |
| // in range, we should use encoding T1 instead, which has a cc_out. |
| if (inITBlock() && |
| isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) && |
| isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) && |
| static_cast<ARMOperand &>(*Operands[5]).isImm0_7()) |
| return false; |
| // Check against T3. If the second register is the PC, this is an |
| // alternate form of ADR, which uses encoding T4, so check for that too. |
| if (static_cast<ARMOperand &>(*Operands[4]).getReg() != ARM::PC && |
| static_cast<ARMOperand &>(*Operands[5]).isT2SOImm()) |
| return false; |
| |
| // Otherwise, we use encoding T4, which does not have a cc_out |
| // operand. |
| return true; |
| } |
| |
| // The thumb2 multiply instruction doesn't have a CCOut register, so |
| // if we have a "mul" mnemonic in Thumb mode, check if we'll be able to |
| // use the 16-bit encoding or not. |
| if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 6 && |
| static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && |
| static_cast<ARMOperand &>(*Operands[3]).isReg() && |
| static_cast<ARMOperand &>(*Operands[4]).isReg() && |
| static_cast<ARMOperand &>(*Operands[5]).isReg() && |
| // If the registers aren't low regs, the destination reg isn't the |
| // same as one of the source regs, or the cc_out operand is zero |
| // outside of an IT block, we have to use the 32-bit encoding, so |
| // remove the cc_out operand. |
| (!isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) || |
| !isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) || |
| !isARMLowRegister(static_cast<ARMOperand &>(*Operands[5]).getReg()) || |
| !inITBlock() || (static_cast<ARMOperand &>(*Operands[3]).getReg() != |
| static_cast<ARMOperand &>(*Operands[5]).getReg() && |
| static_cast<ARMOperand &>(*Operands[3]).getReg() != |
| static_cast<ARMOperand &>(*Operands[4]).getReg()))) |
| return true; |
| |
| // Also check the 'mul' syntax variant that doesn't specify an explicit |
| // destination register. |
| if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 5 && |
| static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && |
| static_cast<ARMOperand &>(*Operands[3]).isReg() && |
| static_cast<ARMOperand &>(*Operands[4]).isReg() && |
| // If the registers aren't low regs or the cc_out operand is zero |
| // outside of an IT block, we have to use the 32-bit encoding, so |
| // remove the cc_out operand. |
| (!isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) || |
| !isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) || |
| !inITBlock())) |
| return true; |
| |
| // Register-register 'add/sub' for thumb does not have a cc_out operand |
| // when it's an ADD/SUB SP, #imm. Be lenient on count since there's also |
| // the "add/sub SP, SP, #imm" version. If the follow-up operands aren't |
| // right, this will result in better diagnostics (which operand is off) |
| // anyway. |
| if (isThumb() && (Mnemonic == "add" || Mnemonic == "sub") && |
| (Operands.size() == 5 || Operands.size() == 6) && |
| static_cast<ARMOperand &>(*Operands[3]).isReg() && |
| static_cast<ARMOperand &>(*Operands[3]).getReg() == ARM::SP && |
| static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && |
| (static_cast<ARMOperand &>(*Operands[4]).isImm() || |
| (Operands.size() == 6 && |
| static_cast<ARMOperand &>(*Operands[5]).isImm()))) |
| return true; |
| |
| return false; |
| } |
| |
| bool ARMAsmParser::shouldOmitPredicateOperand(StringRef Mnemonic, |
| OperandVector &Operands) { |
| // VRINT{Z, X} have a predicate operand in VFP, but not in NEON |
| unsigned RegIdx = 3; |
| if ((((Mnemonic == "vrintz" || Mnemonic == "vrintx") && !hasMVE()) || |
| Mnemonic == "vrintr") && |
| (static_cast<ARMOperand &>(*Operands[2]).getToken() == ".f32" || |
| static_cast<ARMOperand &>(*Operands[2]).getToken() == ".f16")) { |
| if (static_cast<ARMOperand &>(*Operands[3]).isToken() && |
| (static_cast<ARMOperand &>(*Operands[3]).getToken() == ".f32" || |
| static_cast<ARMOperand &>(*Operands[3]).getToken() == ".f16")) |
| RegIdx = 4; |
| |
| if (static_cast<ARMOperand &>(*Operands[RegIdx]).isReg() && |
| (ARMMCRegisterClasses[ARM::DPRRegClassID].contains( |
| static_cast<ARMOperand &>(*Operands[RegIdx]).getReg()) || |
| ARMMCRegisterClasses[ARM::QPRRegClassID].contains( |
| static_cast<ARMOperand &>(*Operands[RegIdx]).getReg()))) |
| return true; |
| } |
| return false; |
| } |
| |
| bool ARMAsmParser::shouldOmitVectorPredicateOperand(StringRef Mnemonic, |
| OperandVector &Operands) { |
| if (!hasMVE() || Operands.size() < 3) |
| return true; |
| |
| if (Mnemonic.startswith("vld2") || Mnemonic.startswith("vld4") || |
| Mnemonic.startswith("vst2") || Mnemonic.startswith("vst4")) |
| return true; |
| |
| if (Mnemonic.startswith("vctp") || Mnemonic.startswith("vpnot")) |
| return false; |
| |
| if (Mnemonic.startswith("vmov") && |
| !(Mnemonic.startswith("vmovl") || Mnemonic.startswith("vmovn") || |
| Mnemonic.startswith("vmovx"))) { |
| for (auto &Operand : Operands) { |
| if (static_cast<ARMOperand &>(*Operand).isVectorIndex() || |
| ((*Operand).isReg() && |
| (ARMMCRegisterClasses[ARM::SPRRegClassID].contains( |
| (*Operand).getReg()) || |
| ARMMCRegisterClasses[ARM::DPRRegClassID].contains( |
| (*Operand).getReg())))) { |
| return true; |
| } |
| } |
| return false; |
| } else { |
| for (auto &Operand : Operands) { |
| // We check the larger class QPR instead of just the legal class |
| // MQPR, to more accurately report errors when using Q registers |
| // outside of the allowed range. |
| if (static_cast<ARMOperand &>(*Operand).isVectorIndex() || |
| (Operand->isReg() && |
| (ARMMCRegisterClasses[ARM::QPRRegClassID].contains( |
| Operand->getReg())))) |
| return false; |
| } |
| return true; |
| } |
| } |
| |
| static bool isDataTypeToken(StringRef Tok) { |
| return Tok == ".8" || Tok == ".16" || Tok == ".32" || Tok == ".64" || |
| Tok == ".i8" || Tok == ".i16" || Tok == ".i32" || Tok == ".i64" || |
| Tok == ".u8" || Tok == ".u16" || Tok == ".u32" || Tok == ".u64" || |
| Tok == ".s8" || Tok == ".s16" || Tok == ".s32" || Tok == ".s64" || |
| Tok == ".p8" || Tok == ".p16" || Tok == ".f32" || Tok == ".f64" || |
| Tok == ".f" || Tok == ".d"; |
| } |
| |
| // FIXME: This bit should probably be handled via an explicit match class |
| // in the .td files that matches the suffix instead of having it be |
| // a literal string token the way it is now. |
| static bool doesIgnoreDataTypeSuffix(StringRef Mnemonic, StringRef DT) { |
| return Mnemonic.startswith("vldm") || Mnemonic.startswith("vstm"); |
| } |
| |
| static void applyMnemonicAliases(StringRef &Mnemonic, |
| const FeatureBitset &Features, |
| unsigned VariantID); |
| |
| // The GNU assembler has aliases of ldrd and strd with the second register |
| // omitted. We don't have a way to do that in tablegen, so fix it up here. |
| // |
| // We have to be careful to not emit an invalid Rt2 here, because the rest of |
| // the assmebly parser could then generate confusing diagnostics refering to |
| // it. If we do find anything that prevents us from doing the transformation we |
| // bail out, and let the assembly parser report an error on the instruction as |
| // it is written. |
| void ARMAsmParser::fixupGNULDRDAlias(StringRef Mnemonic, |
| OperandVector &Operands) { |
| if (Mnemonic != "ldrd" && Mnemonic != "strd") |
| return; |
| if (Operands.size() < 4) |
| return; |
| |
| ARMOperand &Op2 = static_cast<ARMOperand &>(*Operands[2]); |
| ARMOperand &Op3 = static_cast<ARMOperand &>(*Operands[3]); |
| |
| if (!Op2.isReg()) |
| return; |
| if (!Op3.isGPRMem()) |
| return; |
| |
| const MCRegisterClass &GPR = MRI->getRegClass(ARM::GPRRegClassID); |
| if (!GPR.contains(Op2.getReg())) |
| return; |
| |
| unsigned RtEncoding = MRI->getEncodingValue(Op2.getReg()); |
| if (!isThumb() && (RtEncoding & 1)) { |
| // In ARM mode, the registers must be from an aligned pair, this |
| // restriction does not apply in Thumb mode. |
| return; |
| } |
| if (Op2.getReg() == ARM::PC) |
| return; |
| unsigned PairedReg = GPR.getRegister(RtEncoding + 1); |
| if (!PairedReg || PairedReg == ARM::PC || |
| (PairedReg == ARM::SP && !hasV8Ops())) |
| return; |
| |
| Operands.insert( |
| Operands.begin() + 3, |
| ARMOperand::CreateReg(PairedReg, Op2.getStartLoc(), Op2.getEndLoc())); |
| } |
| |
| /// Parse an arm instruction mnemonic followed by its operands. |
| bool ARMAsmParser::ParseInstruction(ParseInstructionInfo &Info, StringRef Name, |
| SMLoc NameLoc, OperandVector &Operands) { |
| MCAsmParser &Parser = getParser(); |
| |
| // Apply mnemonic aliases before doing anything else, as the destination |
| // mnemonic may include suffices and we want to handle them normally. |
| // The generic tblgen'erated code does this later, at the start of |
| // MatchInstructionImpl(), but that's too late for aliases that include |
| // any sort of suffix. |
| const FeatureBitset &AvailableFeatures = getAvailableFeatures(); |
| unsigned AssemblerDialect = getParser().getAssemblerDialect(); |
| applyMnemonicAliases(Name, AvailableFeatures, AssemblerDialect); |
| |
| // First check for the ARM-specific .req directive. |
| if (Parser.getTok().is(AsmToken::Identifier) && |
| Parser.getTok().getIdentifier() == ".req") { |
| parseDirectiveReq(Name, NameLoc); |
| // We always return 'error' for this, as we're done with this |
| // statement and don't need to match the 'instruction." |
| return true; |
| } |
| |
| // Create the leading tokens for the mnemonic, split by '.' characters. |
| size_t Start = 0, Next = Name.find('.'); |
| StringRef Mnemonic = Name.slice(Start, Next); |
| StringRef ExtraToken = Name.slice(Next, Name.find(' ', Next + 1)); |
| |
| // Split out the predication code and carry setting flag from the mnemonic. |
| unsigned PredicationCode; |
| unsigned VPTPredicationCode; |
| unsigned ProcessorIMod; |
| bool CarrySetting; |
| StringRef ITMask; |
| Mnemonic = splitMnemonic(Mnemonic, ExtraToken, PredicationCode, VPTPredicationCode, |
| CarrySetting, ProcessorIMod, ITMask); |
| |
| // In Thumb1, only the branch (B) instruction can be predicated. |
| if (isThumbOne() && PredicationCode != ARMCC::AL && Mnemonic != "b") { |
| return Error(NameLoc, "conditional execution not supported in Thumb1"); |
| } |
| |
| Operands.push_back(ARMOperand::CreateToken(Mnemonic, NameLoc)); |
| |
| // Handle the mask for IT and VPT instructions. In ARMOperand and |
| // MCOperand, this is stored in a format independent of the |
| // condition code: the lowest set bit indicates the end of the |
| // encoding, and above that, a 1 bit indicates 'else', and an 0 |
| // indicates 'then'. E.g. |
| // IT -> 1000 |
| // ITx -> x100 (ITT -> 0100, ITE -> 1100) |
| // ITxy -> xy10 (e.g. ITET -> 1010) |
| // ITxyz -> xyz1 (e.g. ITEET -> 1101) |
| if (Mnemonic == "it" || Mnemonic.startswith("vpt") || |
| Mnemonic.startswith("vpst")) { |
| SMLoc Loc = Mnemonic == "it" ? SMLoc::getFromPointer(NameLoc.getPointer() + 2) : |
| Mnemonic == "vpt" ? SMLoc::getFromPointer(NameLoc.getPointer() + 3) : |
| SMLoc::getFromPointer(NameLoc.getPointer() + 4); |
| if (ITMask.size() > 3) { |
| if (Mnemonic == "it") |
| return Error(Loc, "too many conditions on IT instruction"); |
| return Error(Loc, "too many conditions on VPT instruction"); |
| } |
| unsigned Mask = 8; |
| for (unsigned i = ITMask.size(); i != 0; --i) { |
| char pos = ITMask[i - 1]; |
| if (pos != 't' && pos != 'e') { |
| return Error(Loc, "illegal IT block condition mask '" + ITMask + "'"); |
| } |
| Mask >>= 1; |
| if (ITMask[i - 1] == 'e') |
| Mask |= 8; |
| } |
| Operands.push_back(ARMOperand::CreateITMask(Mask, Loc)); |
| } |
| |
| // FIXME: This is all a pretty gross hack. We should automatically handle |
| // optional operands like this via tblgen. |
| |
| // Next, add the CCOut and ConditionCode operands, if needed. |
| // |
| // For mnemonics which can ever incorporate a carry setting bit or predication |
| // code, our matching model involves us always generating CCOut and |
| // ConditionCode operands to match the mnemonic "as written" and then we let |
| // the matcher deal with finding the right instruction or generating an |
| // appropriate error. |
| bool CanAcceptCarrySet, CanAcceptPredicationCode, CanAcceptVPTPredicationCode; |
| getMnemonicAcceptInfo(Mnemonic, ExtraToken, Name, CanAcceptCarrySet, |
| CanAcceptPredicationCode, CanAcceptVPTPredicationCode); |
| |
| // If we had a carry-set on an instruction that can't do that, issue an |
| // error. |
| if (!CanAcceptCarrySet && CarrySetting) { |
| return Error(NameLoc, "instruction '" + Mnemonic + |
| "' can not set flags, but 's' suffix specified"); |
| } |
| // If we had a predication code on an instruction that can't do that, issue an |
| // error. |
| if (!CanAcceptPredicationCode && PredicationCode != ARMCC::AL) { |
| return Error(NameLoc, "instruction '" + Mnemonic + |
| "' is not predicable, but condition code specified"); |
| } |
| |
| // If we had a VPT predication code on an instruction that can't do that, issue an |
| // error. |
| if (!CanAcceptVPTPredicationCode && VPTPredicationCode != ARMVCC::None) { |
| return Error(NameLoc, "instruction '" + Mnemonic + |
| "' is not VPT predicable, but VPT code T/E is specified"); |
| } |
| |
| // Add the carry setting operand, if necessary. |
| if (CanAcceptCarrySet) { |
| SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size()); |
| Operands.push_back(ARMOperand::CreateCCOut(CarrySetting ? ARM::CPSR : 0, |
| Loc)); |
| } |
| |
| // Add the predication code operand, if necessary. |
| if (CanAcceptPredicationCode) { |
| SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size() + |
| CarrySetting); |
| Operands.push_back(ARMOperand::CreateCondCode( |
| ARMCC::CondCodes(PredicationCode), Loc)); |
| } |
| |
| // Add the VPT predication code operand, if necessary. |
| // FIXME: We don't add them for the instructions filtered below as these can |
| // have custom operands which need special parsing. This parsing requires |
| // the operand to be in the same place in the OperandVector as their |
| // definition in tblgen. Since these instructions may also have the |
| // scalar predication operand we do not add the vector one and leave until |
| // now to fix it up. |
| if (CanAcceptVPTPredicationCode && Mnemonic != "vmov" && |
| !Mnemonic.startswith("vcmp") && |
| !(Mnemonic.startswith("vcvt") && Mnemonic != "vcvta" && |
| Mnemonic != "vcvtn" && Mnemonic != "vcvtp" && Mnemonic != "vcvtm")) { |
| SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size() + |
| CarrySetting); |
| Operands.push_back(ARMOperand::CreateVPTPred( |
| ARMVCC::VPTCodes(VPTPredicationCode), Loc)); |
| } |
| |
| // Add the processor imod operand, if necessary. |
| if (ProcessorIMod) { |
| Operands.push_back(ARMOperand::CreateImm( |
| MCConstantExpr::create(ProcessorIMod, getContext()), |
| NameLoc, NameLoc)); |
| } else if (Mnemonic == "cps" && isMClass()) { |
| return Error(NameLoc, "instruction 'cps' requires effect for M-class"); |
| } |
| |
| // Add the remaining tokens in the mnemonic. |
| while (Next != StringRef::npos) { |
| Start = Next; |
| Next = Name.find('.', Start + 1); |
| ExtraToken = Name.slice(Start, Next); |
| |
| // Some NEON instructions have an optional datatype suffix that is |
| // completely ignored. Check for that. |
| if (isDataTypeToken(ExtraToken) && |
| doesIgnoreDataTypeSuffix(Mnemonic, ExtraToken)) |
| continue; |
| |
| // For for ARM mode generate an error if the .n qualifier is used. |
| if (ExtraToken == ".n" && !isThumb()) { |
| SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start); |
| return Error(Loc, "instruction with .n (narrow) qualifier not allowed in " |
| "arm mode"); |
| } |
| |
| // The .n qualifier is always discarded as that is what the tables |
| // and matcher expect. In ARM mode the .w qualifier has no effect, |
| // so discard it to avoid errors that can be caused by the matcher. |
| if (ExtraToken != ".n" && (isThumb() || ExtraToken != ".w")) { |
| SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start); |
| Operands.push_back(ARMOperand::CreateToken(ExtraToken, Loc)); |
| } |
| } |
| |
| // Read the remaining operands. |
| if (getLexer().isNot(AsmToken::EndOfStatement)) { |
| // Read the first operand. |
| if (parseOperand(Operands, Mnemonic)) { |
| return true; |
| } |
| |
| while (parseOptionalToken(AsmToken::Comma)) { |
| // Parse and remember the operand. |
| if (parseOperand(Operands, Mnemonic)) { |
| return true; |
| } |
| } |
| } |
| |
| if (parseToken(AsmToken::EndOfStatement, "unexpected token in argument list")) |
| return true; |
| |
| tryConvertingToTwoOperandForm(Mnemonic, CarrySetting, Operands); |
| |
| // Some instructions, mostly Thumb, have forms for the same mnemonic that |
| // do and don't have a cc_out optional-def operand. With some spot-checks |
| // of the operand list, we can figure out which variant we're trying to |
| // parse and adjust accordingly before actually matching. We shouldn't ever |
| // try to remove a cc_out operand that was explicitly set on the |
| // mnemonic, of course (CarrySetting == true). Reason number #317 the |
| // table driven matcher doesn't fit well with the ARM instruction set. |
| if (!CarrySetting && shouldOmitCCOutOperand(Mnemonic, Operands)) |
| Operands.erase(Operands.begin() + 1); |
| |
| // Some instructions have the same mnemonic, but don't always |
| // have a predicate. Distinguish them here and delete the |
| // appropriate predicate if needed. This could be either the scalar |
| // predication code or the vector predication code. |
| if (PredicationCode == ARMCC::AL && |
| shouldOmitPredicateOperand(Mnemonic, Operands)) |
| Operands.erase(Operands.begin() + 1); |
| |
| |
| if (hasMVE()) { |
| if (!shouldOmitVectorPredicateOperand(Mnemonic, Operands) && |
| Mnemonic == "vmov" && PredicationCode == ARMCC::LT) { |
| // Very nasty hack to deal with the vector predicated variant of vmovlt |
| // the scalar predicated vmov with condition 'lt'. We can not tell them |
| // apart until we have parsed their operands. |
| Operands.erase(Operands.begin() + 1); |
| Operands.erase(Operands.begin()); |
| SMLoc MLoc = SMLoc::getFromPointer(NameLoc.getPointer()); |
| SMLoc PLoc = SMLoc::getFromPointer(NameLoc.getPointer() + |
| Mnemonic.size() - 1 + CarrySetting); |
| Operands.insert(Operands.begin(), |
| ARMOperand::CreateVPTPred(ARMVCC::None, PLoc)); |
| Operands.insert(Operands.begin(), |
| ARMOperand::CreateToken(StringRef("vmovlt"), MLoc)); |
| } else if (Mnemonic == "vcvt" && PredicationCode == ARMCC::NE && |
| !shouldOmitVectorPredicateOperand(Mnemonic, Operands)) { |
| // Another nasty hack to deal with the ambiguity between vcvt with scalar |
| // predication 'ne' and vcvtn with vector predication 'e'. As above we |
| // can only distinguish between the two after we have parsed their |
| // operands. |
| Operands.erase(Operands.begin() + 1); |
| Operands.erase(Operands.begin()); |
| SMLoc MLoc = SMLoc::getFromPointer(NameLoc.getPointer()); |
| SMLoc PLoc = SMLoc::getFromPointer(NameLoc.getPointer() + |
| Mnemonic.size() - 1 + CarrySetting); |
| Operands.insert(Operands.begin(), |
| ARMOperand::CreateVPTPred(ARMVCC::Else, PLoc)); |
| Operands.insert(Operands.begin(), |
| ARMOperand::CreateToken(StringRef("vcvtn"), MLoc)); |
| } else if (Mnemonic == "vmul" && PredicationCode == ARMCC::LT && |
| !shouldOmitVectorPredicateOperand(Mnemonic, Operands)) { |
| // Another hack, this time to distinguish between scalar predicated vmul |
| // with 'lt' predication code and the vector instruction vmullt with |
| // vector predication code "none" |
| Operands.erase(Operands.begin() + 1); |
| Operands.erase(Operands.begin()); |
| SMLoc MLoc = SMLoc::getFromPointer(NameLoc.getPointer()); |
| Operands.insert(Operands.begin(), |
| ARMOperand::CreateToken(StringRef("vmullt"), MLoc)); |
| } |
| // For vmov and vcmp, as mentioned earlier, we did not add the vector |
| // predication code, since these may contain operands that require |
| // special parsing. So now we have to see if they require vector |
| // predication and replace the scalar one with the vector predication |
| // operand if that is the case. |
| else if (Mnemonic == "vmov" || Mnemonic.startswith("vcmp") || |
| (Mnemonic.startswith("vcvt") && !Mnemonic.startswith("vcvta") && |
| !Mnemonic.startswith("vcvtn") && !Mnemonic.startswith("vcvtp") && |
| !Mnemonic.startswith("vcvtm"))) { |
| if (!shouldOmitVectorPredicateOperand(Mnemonic, Operands)) { |
| // We could not split the vector predicate off vcvt because it might |
| // have been the scalar vcvtt instruction. Now we know its a vector |
| // instruction, we still need to check whether its the vector |
| // predicated vcvt with 'Then' predication or the vector vcvtt. We can |
| // distinguish the two based on the suffixes, if it is any of |
| // ".f16.f32", ".f32.f16", ".f16.f64" or ".f64.f16" then it is the vcvtt. |
| if (Mnemonic.startswith("vcvtt") && Operands.size() >= 4) { |
| auto Sz1 = static_cast<ARMOperand &>(*Operands[2]); |
| auto Sz2 = static_cast<ARMOperand &>(*Operands[3]); |
| if (!(Sz1.isToken() && Sz1.getToken().startswith(".f") && |
| Sz2.isToken() && Sz2.getToken().startswith(".f"))) { |
| Operands.erase(Operands.begin()); |
| SMLoc MLoc = SMLoc::getFromPointer(NameLoc.getPointer()); |
| VPTPredicationCode = ARMVCC::Then; |
| |
| Mnemonic = Mnemonic.substr(0, 4); |
| Operands.insert(Operands.begin(), |
| ARMOperand::CreateToken(Mnemonic, MLoc)); |
| } |
| } |
| Operands.erase(Operands.begin() + 1); |
| SMLoc PLoc = SMLoc::getFromPointer(NameLoc.getPointer() + |
| Mnemonic.size() + CarrySetting); |
| Operands.insert(Operands.begin() + 1, |
| ARMOperand::CreateVPTPred( |
| ARMVCC::VPTCodes(VPTPredicationCode), PLoc)); |
| } |
| } else if (CanAcceptVPTPredicationCode) { |
| // For all other instructions, make sure only one of the two |
| // predication operands is left behind, depending on whether we should |
| // use the vector predication. |
| if (shouldOmitVectorPredicateOperand(Mnemonic, Operands)) { |
| if (CanAcceptPredicationCode) |
| Operands.erase(Operands.begin() + 2); |
| else |
| Operands.erase(Operands.begin() + 1); |
| } else if (CanAcceptPredicationCode && PredicationCode == ARMCC::AL) { |
| Operands.erase(Operands.begin() + 1); |
| } |
| } |
| } |
| |
| if (VPTPredicationCode != ARMVCC::None) { |
| bool usedVPTPredicationCode = false; |
| for (unsigned I = 1; I < Operands.size(); ++I) |
| if (static_cast<ARMOperand &>(*Operands[I]).isVPTPred()) |
| usedVPTPredicationCode = true; |
| if (!usedVPTPredicationCode) { |
| // If we have a VPT predication code and we haven't just turned it |
| // into an operand, then it was a mistake for splitMnemonic to |
| // separate it from the rest of the mnemonic in the first place, |
| // and this may lead to wrong disassembly (e.g. scalar floating |
| // point VCMPE is actually a different instruction from VCMP, so |
| // we mustn't treat them the same). In that situation, glue it |
| // back on. |
| Mnemonic = Name.slice(0, Mnemonic.size() + 1); |
| Operands.erase(Operands.begin()); |
| Operands.insert(Operands.begin(), |
| ARMOperand::CreateToken(Mnemonic, NameLoc)); |
| } |
| } |
| |
| // ARM mode 'blx' need special handling, as the register operand version |
| // is predicable, but the label operand version is not. So, we can't rely |
| // on the Mnemonic based checking to correctly figure out when to put |
| // a k_CondCode operand in the list. If we're trying to match the label |
| // version, remove the k_CondCode operand here. |
| if (!isThumb() && Mnemonic == "blx" && Operands.size() == 3 && |
| static_cast<ARMOperand &>(*Operands[2]).isImm()) |
| Operands.erase(Operands.begin() + 1); |
| |
| // Adjust operands of ldrexd/strexd to MCK_GPRPair. |
| // ldrexd/strexd require even/odd GPR pair. To enforce this constraint, |
| // a single GPRPair reg operand is used in the .td file to replace the two |
| // GPRs. However, when parsing from asm, the two GRPs cannot be |
| // automatically |
| // expressed as a GPRPair, so we have to manually merge them. |
| // FIXME: We would really like to be able to tablegen'erate this. |
| if (!isThumb() && Operands.size() > 4 && |
| (Mnemonic == "ldrexd" || Mnemonic == "strexd" || Mnemonic == "ldaexd" || |
| Mnemonic == "stlexd")) { |
| bool isLoad = (Mnemonic == "ldrexd" || Mnemonic == "ldaexd"); |
| unsigned Idx = isLoad ? 2 : 3; |
| ARMOperand &Op1 = static_cast<ARMOperand &>(*Operands[Idx]); |
| ARMOperand &Op2 = static_cast<ARMOperand &>(*Operands[Idx + 1]); |
| |
| const MCRegisterClass &MRC = MRI->getRegClass(ARM::GPRRegClassID); |
| // Adjust only if Op1 and Op2 are GPRs. |
| if (Op1.isReg() && Op2.isReg() && MRC.contains(Op1.getReg()) && |
| MRC.contains(Op2.getReg())) { |
| unsigned Reg1 = Op1.getReg(); |
| unsigned Reg2 = Op2.getReg(); |
| unsigned Rt = MRI->getEncodingValue(Reg1); |
| unsigned Rt2 = MRI->getEncodingValue(Reg2); |
| |
| // Rt2 must be Rt + 1 and Rt must be even. |
| if (Rt + 1 != Rt2 || (Rt & 1)) { |
| return Error(Op2.getStartLoc(), |
| isLoad ? "destination operands must be sequential" |
| : "source operands must be sequential"); |
| } |
| unsigned NewReg = MRI->getMatchingSuperReg( |
| Reg1, ARM::gsub_0, &(MRI->getRegClass(ARM::GPRPairRegClassID))); |
| Operands[Idx] = |
| ARMOperand::CreateReg(NewReg, Op1.getStartLoc(), Op2.getEndLoc()); |
| Operands.erase(Operands.begin() + Idx + 1); |
| } |
| } |
| |
| // GNU Assembler extension (compatibility). |
| fixupGNULDRDAlias(Mnemonic, Operands); |
| |
| // FIXME: As said above, this is all a pretty gross hack. This instruction |
| // does not fit with other "subs" and tblgen. |
| // Adjust operands of B9.3.19 SUBS PC, LR, #imm (Thumb2) system instruction |
| // so the Mnemonic is the original name "subs" and delete the predicate |
| // operand so it will match the table entry. |
| if (isThumbTwo() && Mnemonic == "sub" && Operands.size() == 6 && |
| static_cast<ARMOperand &>(*Operands[3]).isReg() && |
| static_cast<ARMOperand &>(*Operands[3]).getReg() == ARM::PC && |
| static_cast<ARMOperand &>(*Operands[4]).isReg() && |
| static_cast<ARMOperand &>(*Operands[4]).getReg() == ARM::LR && |
| static_cast<ARMOperand &>(*Operands[5]).isImm()) { |
| Operands.front() = ARMOperand::CreateToken(Name, NameLoc); |
| Operands.erase(Operands.begin() + 1); |
| } |
| return false; |
| } |
| |
| // Validate context-sensitive operand constraints. |
| |
| // return 'true' if register list contains non-low GPR registers, |
| // 'false' otherwise. If Reg is in the register list or is HiReg, set |
| // 'containsReg' to true. |
| static bool checkLowRegisterList(const MCInst &Inst, unsigned OpNo, |
| unsigned Reg, unsigned HiReg, |
| bool &containsReg) { |
| containsReg = false; |
| for (unsigned i = OpNo; i < Inst.getNumOperands(); ++i) { |
| unsigned OpReg = Inst.getOperand(i).getReg(); |
| if (OpReg == Reg) |
| containsReg = true; |
| // Anything other than a low register isn't legal here. |
| if (!isARMLowRegister(OpReg) && (!HiReg || OpReg != HiReg)) |
| return true; |
| } |
| return false; |
| } |
| |
| // Check if the specified regisgter is in the register list of the inst, |
| // starting at the indicated operand number. |
| static bool listContainsReg(const MCInst &Inst, unsigned OpNo, unsigned Reg) { |
| for (unsigned i = OpNo, e = Inst.getNumOperands(); i < e; ++i) { |
| unsigned OpReg = Inst.getOperand(i).getReg(); |
| if (OpReg == Reg) |
| return true; |
| } |
| return false; |
| } |
| |
| // Return true if instruction has the interesting property of being |
| // allowed in IT blocks, but not being predicable. |
| static bool instIsBreakpoint(const MCInst &Inst) { |
| return Inst.getOpcode() == ARM::tBKPT || |
| Inst.getOpcode() == ARM::BKPT || |
| Inst.getOpcode() == ARM::tHLT || |
| Inst.getOpcode() == ARM::HLT; |
| } |
| |
| bool ARMAsmParser::validatetLDMRegList(const MCInst &Inst, |
| const OperandVector &Operands, |
| unsigned ListNo, bool IsARPop) { |
| const ARMOperand &Op = static_cast<const ARMOperand &>(*Operands[ListNo]); |
| bool HasWritebackToken = Op.isToken() && Op.getToken() == "!"; |
| |
| bool ListContainsSP = listContainsReg(Inst, ListNo, ARM::SP); |
| bool ListContainsLR = listContainsReg(Inst, ListNo, ARM::LR); |
| bool ListContainsPC = listContainsReg(Inst, ListNo, ARM::PC); |
| |
| if (!IsARPop && ListContainsSP) |
| return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), |
| "SP may not be in the register list"); |
| else if (ListContainsPC && ListContainsLR) |
| return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), |
| "PC and LR may not be in the register list simultaneously"); |
| return false; |
| } |
| |
| bool ARMAsmParser::validatetSTMRegList(const MCInst &Inst, |
| const OperandVector &Operands, |
| unsigned ListNo) { |
| const ARMOperand &Op = static_cast<const ARMOperand &>(*Operands[ListNo]); |
| bool HasWritebackToken = Op.isToken() && Op.getToken() == "!"; |
| |
| bool ListContainsSP = listContainsReg(Inst, ListNo, ARM::SP); |
| bool ListContainsPC = listContainsReg(Inst, ListNo, ARM::PC); |
| |
| if (ListContainsSP && ListContainsPC) |
| return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), |
| "SP and PC may not be in the register list"); |
| else if (ListContainsSP) |
| return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), |
| "SP may not be in the register list"); |
| else if (ListContainsPC) |
| return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), |
| "PC may not be in the register list"); |
| return false; |
| } |
| |
| bool ARMAsmParser::validateLDRDSTRD(MCInst &Inst, |
| const OperandVector &Operands, |
| bool Load, bool ARMMode, bool Writeback) { |
| unsigned RtIndex = Load || !Writeback ? 0 : 1; |
| unsigned Rt = MRI->getEncodingValue(Inst.getOperand(RtIndex).getReg()); |
| unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(RtIndex + 1).getReg()); |
| |
| if (ARMMode) { |
| // Rt can't be R14. |
| if (Rt == 14) |
| return Error(Operands[3]->getStartLoc(), |
| "Rt can't be R14"); |
| |
| // Rt must be even-numbered. |
| if ((Rt & 1) == 1) |
| return Error(Operands[3]->getStartLoc(), |
| "Rt must be even-numbered"); |
| |
| // Rt2 must be Rt + 1. |
| if (Rt2 != Rt + 1) { |
| if (Load) |
| return Error(Operands[3]->getStartLoc(), |
| "destination operands must be sequential"); |
| else |
| return Error(Operands[3]->getStartLoc(), |
| "source operands must be sequential"); |
| } |
| |
| // FIXME: Diagnose m == 15 |
| // FIXME: Diagnose ldrd with m == t || m == t2. |
| } |
| |
| if (!ARMMode && Load) { |
| if (Rt2 == Rt) |
| return Error(Operands[3]->getStartLoc(), |
| "destination operands can't be identical"); |
| } |
| |
| if (Writeback) { |
| unsigned Rn = MRI->getEncodingValue(Inst.getOperand(3).getReg()); |
| |
| if (Rn == Rt || Rn == Rt2) { |
| if (Load) |
| return Error(Operands[3]->getStartLoc(), |
| "base register needs to be different from destination " |
| "registers"); |
| else |
| return Error(Operands[3]->getStartLoc(), |
| "source register and base register can't be identical"); |
| } |
| |
| // FIXME: Diagnose ldrd/strd with writeback and n == 15. |
| // (Except the immediate form of ldrd?) |
| } |
| |
| return false; |
| } |
| |
| static int findFirstVectorPredOperandIdx(const MCInstrDesc &MCID) { |
| for (unsigned i = 0; i < MCID.NumOperands; ++i) { |
| if (ARM::isVpred(MCID.OpInfo[i].OperandType)) |
| return i; |
| } |
| return -1; |
| } |
| |
| static bool isVectorPredicable(const MCInstrDesc &MCID) { |
| return findFirstVectorPredOperandIdx(MCID) != -1; |
| } |
| |
| // FIXME: We would really like to be able to tablegen'erate this. |
| bool ARMAsmParser::validateInstruction(MCInst &Inst, |
| const OperandVector &Operands) { |
| const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); |
| SMLoc Loc = Operands[0]->getStartLoc(); |
| |
| // Check the IT block state first. |
| // NOTE: BKPT and HLT instructions have the interesting property of being |
| // allowed in IT blocks, but not being predicable. They just always execute. |
| if (inITBlock() && !instIsBreakpoint(Inst)) { |
| // The instruction must be predicable. |
| if (!MCID.isPredicable()) |
| return Error(Loc, "instructions in IT block must be predicable"); |
| ARMCC::CondCodes Cond = ARMCC::CondCodes( |
| Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm()); |
| if (Cond != currentITCond()) { |
| // Find the condition code Operand to get its SMLoc information. |
| SMLoc CondLoc; |
| for (unsigned I = 1; I < Operands.size(); ++I) |
| if (static_cast<ARMOperand &>(*Operands[I]).isCondCode()) |
| CondLoc = Operands[I]->getStartLoc(); |
| return Error(CondLoc, "incorrect condition in IT block; got '" + |
| StringRef(ARMCondCodeToString(Cond)) + |
| "', but expected '" + |
| ARMCondCodeToString(currentITCond()) + "'"); |
| } |
| // Check for non-'al' condition codes outside of the IT block. |
| } else if (isThumbTwo() && MCID.isPredicable() && |
| Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm() != |
| ARMCC::AL && Inst.getOpcode() != ARM::tBcc && |
| Inst.getOpcode() != ARM::t2Bcc && |
| Inst.getOpcode() != ARM::t2BFic) { |
| return Error(Loc, "predicated instructions must be in IT block"); |
| } else if (!isThumb() && !useImplicitITARM() && MCID.isPredicable() && |
| Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm() != |
| ARMCC::AL) { |
| return Warning(Loc, "predicated instructions should be in IT block"); |
| } else if (!MCID.isPredicable()) { |
| // Check the instruction doesn't have a predicate operand anyway |
| // that it's not allowed to use. Sometimes this happens in order |
| // to keep instructions the same shape even though one cannot |
| // legally be predicated, e.g. vmul.f16 vs vmul.f32. |
| for (unsigned i = 0, e = MCID.getNumOperands(); i != e; ++i) { |
| if (MCID.OpInfo[i].isPredicate()) { |
| if (Inst.getOperand(i).getImm() != ARMCC::AL) |
| return Error(Loc, "instruction is not predicable"); |
| break; |
| } |
| } |
| } |
| |
| // PC-setting instructions in an IT block, but not the last instruction of |
| // the block, are UNPREDICTABLE. |
| if (inExplicitITBlock() && !lastInITBlock() && isITBlockTerminator(Inst)) { |
| return Error(Loc, "instruction must be outside of IT block or the last instruction in an IT block"); |
| } |
| |
| if (inVPTBlock() && !instIsBreakpoint(Inst)) { |
| unsigned Bit = extractITMaskBit(VPTState.Mask, VPTState.CurPosition); |
| if (!isVectorPredicable(MCID)) |
| return Error(Loc, "instruction in VPT block must be predicable"); |
| unsigned Pred = Inst.getOperand(findFirstVectorPredOperandIdx(MCID)).getImm(); |
| unsigned VPTPred = Bit ? ARMVCC::Else : ARMVCC::Then; |
| if (Pred != VPTPred) { |
| SMLoc PredLoc; |
| for (unsigned I = 1; I < Operands.size(); ++I) |
| if (static_cast<ARMOperand &>(*Operands[I]).isVPTPred()) |
| PredLoc = Operands[I]->getStartLoc(); |
| return Error(PredLoc, "incorrect predication in VPT block; got '" + |
| StringRef(ARMVPTPredToString(ARMVCC::VPTCodes(Pred))) + |
| "', but expected '" + |
| ARMVPTPredToString(ARMVCC::VPTCodes(VPTPred)) + "'"); |
| } |
| } |
| else if (isVectorPredicable(MCID) && |
| Inst.getOperand(findFirstVectorPredOperandIdx(MCID)).getImm() != |
| ARMVCC::None) |
| return Error(Loc, "VPT predicated instructions must be in VPT block"); |
| |
| const unsigned Opcode = Inst.getOpcode(); |
| switch (Opcode) { |
| case ARM::t2IT: { |
| // Encoding is unpredictable if it ever results in a notional 'NV' |
| // predicate. Since we don't parse 'NV' directly this means an 'AL' |
| // predicate with an "else" mask bit. |
| unsigned Cond = Inst.getOperand(0).getImm(); |
| unsigned Mask = Inst.getOperand(1).getImm(); |
| |
| // Conditions only allowing a 't' are those with no set bit except |
| // the lowest-order one that indicates the end of the sequence. In |
| // other words, powers of 2. |
| if (Cond == ARMCC::AL && countPopulation(Mask) != 1) |
| return Error(Loc, "unpredictable IT predicate sequence"); |
| break; |
| } |
| case ARM::LDRD: |
| if (validateLDRDSTRD(Inst, Operands, /*Load*/true, /*ARMMode*/true, |
| /*Writeback*/false)) |
| return true; |
| break; |
| case ARM::LDRD_PRE: |
| case ARM::LDRD_POST: |
| if (validateLDRDSTRD(Inst, Operands, /*Load*/true, /*ARMMode*/true, |
| /*Writeback*/true)) |
| return true; |
| break; |
| case ARM::t2LDRDi8: |
| if (validateLDRDSTRD(Inst, Operands, /*Load*/true, /*ARMMode*/false, |
| /*Writeback*/false)) |
| return true; |
| break; |
| case ARM::t2LDRD_PRE: |
| case ARM::t2LDRD_POST: |
| if (validateLDRDSTRD(Inst, Operands, /*Load*/true, /*ARMMode*/false, |
| /*Writeback*/true)) |
| return true; |
| break; |
| case ARM::t2BXJ: { |
| const unsigned RmReg = Inst.getOperand(0).getReg(); |
| // Rm = SP is no longer unpredictable in v8-A |
| if (RmReg == ARM::SP && !hasV8Ops()) |
| return Error(Operands[2]->getStartLoc(), |
| "r13 (SP) is an unpredictable operand to BXJ"); |
| return false; |
| } |
| case ARM::STRD: |
| if (validateLDRDSTRD(Inst, Operands, /*Load*/false, /*ARMMode*/true, |
| /*Writeback*/false)) |
| return true; |
| break; |
| case ARM::STRD_PRE: |
| case ARM::STRD_POST: |
| if (validateLDRDSTRD(Inst, Operands, /*Load*/false, /*ARMMode*/true, |
| /*Writeback*/true)) |
| return true; |
| break; |
| case ARM::t2STRD_PRE: |
| case ARM::t2STRD_POST: |
| if (validateLDRDSTRD(Inst, Operands, /*Load*/false, /*ARMMode*/false, |
| /*Writeback*/true)) |
| return true; |
| break; |
| case ARM::STR_PRE_IMM: |
| case ARM::STR_PRE_REG: |
| case ARM::t2STR_PRE: |
| case ARM::STR_POST_IMM: |
| case ARM::STR_POST_REG: |
| case ARM::t2STR_POST: |
| case ARM::STRH_PRE: |
| case ARM::t2STRH_PRE: |
| case ARM::STRH_POST: |
| case ARM::t2STRH_POST: |
| case ARM::STRB_PRE_IMM: |
| case ARM::STRB_PRE_REG: |
| case ARM::t2STRB_PRE: |
| case ARM::STRB_POST_IMM: |
| case ARM::STRB_POST_REG: |
| case ARM::t2STRB_POST: { |
| // Rt must be different from Rn. |
| const unsigned Rt = MRI->getEncodingValue(Inst.getOperand(1).getReg()); |
| const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(2).getReg()); |
| |
| if (Rt == Rn) |
| return Error(Operands[3]->getStartLoc(), |
| "source register and base register can't be identical"); |
| return false; |
| } |
| case ARM::LDR_PRE_IMM: |
| case ARM::LDR_PRE_REG: |
| case ARM::t2LDR_PRE: |
| case ARM::LDR_POST_IMM: |
| case ARM::LDR_POST_REG: |
| case ARM::t2LDR_POST: |
| case ARM::LDRH_PRE: |
| case ARM::t2LDRH_PRE: |
| case ARM::LDRH_POST: |
| case ARM::t2LDRH_POST: |
| case ARM::LDRSH_PRE: |
| case ARM::t2LDRSH_PRE: |
| case ARM::LDRSH_POST: |
| case ARM::t2LDRSH_POST: |
| case ARM::LDRB_PRE_IMM: |
| case ARM::LDRB_PRE_REG: |
| case ARM::t2LDRB_PRE: |
| case ARM::LDRB_POST_IMM: |
| case ARM::LDRB_POST_REG: |
| case ARM::t2LDRB_POST: |
| case ARM::LDRSB_PRE: |
| case ARM::t2LDRSB_PRE: |
| case ARM::LDRSB_POST: |
| case ARM::t2LDRSB_POST: { |
| // Rt must be different from Rn. |
| const unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg()); |
| const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(2).getReg()); |
| |
| if (Rt == Rn) |
| return Error(Operands[3]->getStartLoc(), |
| "destination register and base register can't be identical"); |
| return false; |
| } |
| |
| case ARM::MVE_VLDRBU8_rq: |
| case ARM::MVE_VLDRBU16_rq: |
| case ARM::MVE_VLDRBS16_rq: |
| case ARM::MVE_VLDRBU32_rq: |
| case ARM::MVE_VLDRBS32_rq: |
| case ARM::MVE_VLDRHU16_rq: |
| case ARM::MVE_VLDRHU16_rq_u: |
| case ARM::MVE_VLDRHU32_rq: |
| case ARM::MVE_VLDRHU32_rq_u: |
| case ARM::MVE_VLDRHS32_rq: |
| case ARM::MVE_VLDRHS32_rq_u: |
| case ARM::MVE_VLDRWU32_rq: |
| case ARM::MVE_VLDRWU32_rq_u: |
| case ARM::MVE_VLDRDU64_rq: |
| case ARM::MVE_VLDRDU64_rq_u: |
| case ARM::MVE_VLDRWU32_qi: |
| case ARM::MVE_VLDRWU32_qi_pre: |
| case ARM::MVE_VLDRDU64_qi: |
| case ARM::MVE_VLDRDU64_qi_pre: { |
| // Qd must be different from Qm. |
| unsigned QdIdx = 0, QmIdx = 2; |
| bool QmIsPointer = false; |
| switch (Opcode) { |
| case ARM::MVE_VLDRWU32_qi: |
| case ARM::MVE_VLDRDU64_qi: |
| QmIdx = 1; |
| QmIsPointer = true; |
| break; |
| case ARM::MVE_VLDRWU32_qi_pre: |
| case ARM::MVE_VLDRDU64_qi_pre: |
| QdIdx = 1; |
| QmIsPointer = true; |
| break; |
| } |
| |
| const unsigned Qd = MRI->getEncodingValue(Inst.getOperand(QdIdx).getReg()); |
| const unsigned Qm = MRI->getEncodingValue(Inst.getOperand(QmIdx).getReg()); |
| |
| if (Qd == Qm) { |
| return Error(Operands[3]->getStartLoc(), |
| Twine("destination vector register and vector ") + |
| (QmIsPointer ? "pointer" : "offset") + |
| " register can't be identical"); |
| } |
| return false; |
| } |
| |
| case ARM::SBFX: |
| case ARM::t2SBFX: |
| case ARM::UBFX: |
| case ARM::t2UBFX: { |
| // Width must be in range [1, 32-lsb]. |
| unsigned LSB = Inst.getOperand(2).getImm(); |
| unsigned Widthm1 = Inst.getOperand(3).getImm(); |
| if (Widthm1 >= 32 - LSB) |
| return Error(Operands[5]->getStartLoc(), |
| "bitfield width must be in range [1,32-lsb]"); |
| return false; |
| } |
| // Notionally handles ARM::tLDMIA_UPD too. |
| case ARM::tLDMIA: { |
| // If we're parsing Thumb2, the .w variant is available and handles |
| // most cases that are normally illegal for a Thumb1 LDM instruction. |
| // We'll make the transformation in processInstruction() if necessary. |
| // |
| // Thumb LDM instructions are writeback iff the base register is not |
| // in the register list. |
| unsigned Rn = Inst.getOperand(0).getReg(); |
| bool HasWritebackToken = |
| (static_cast<ARMOperand &>(*Operands[3]).isToken() && |
| static_cast<ARMOperand &>(*Operands[3]).getToken() == "!"); |
| bool ListContainsBase; |
| if (checkLowRegisterList(Inst, 3, Rn, 0, ListContainsBase) && !isThumbTwo()) |
| return Error(Operands[3 + HasWritebackToken]->getStartLoc(), |
| "registers must be in range r0-r7"); |
| // If we should have writeback, then there should be a '!' token. |
| if (!ListContainsBase && !HasWritebackToken && !isThumbTwo()) |
| return Error(Operands[2]->getStartLoc(), |
| "writeback operator '!' expected"); |
| // If we should not have writeback, there must not be a '!'. This is |
| // true even for the 32-bit wide encodings. |
| if (ListContainsBase && HasWritebackToken) |
| return Error(Operands[3]->getStartLoc(), |
| "writeback operator '!' not allowed when base register " |
| "in register list"); |
| |
| if (validatetLDMRegList(Inst, Operands, 3)) |
| return true; |
| break; |
| } |
| case ARM::LDMIA_UPD: |
| case ARM::LDMDB_UPD: |
| case ARM::LDMIB_UPD: |
| case ARM::LDMDA_UPD: |
| // ARM variants loading and updating the same register are only officially |
| // UNPREDICTABLE on v7 upwards. Goodness knows what they did before. |
| if (!hasV7Ops()) |
| break; |
| if (listContainsReg(Inst, 3, Inst.getOperand(0).getReg())) |
| return Error(Operands.back()->getStartLoc(), |
| "writeback register not allowed in register list"); |
| break; |
| case ARM::t2LDMIA: |
| case ARM::t2LDMDB: |
| if (validatetLDMRegList(Inst, Operands, 3)) |
| return true; |
| break; |
| case ARM::t2STMIA: |
| case ARM::t2STMDB: |
| if (validatetSTMRegList(Inst, Operands, 3)) |
| return true; |
| break; |
| case ARM::t2LDMIA_UPD: |
| case ARM::t2LDMDB_UPD: |
| case ARM::t2STMIA_UPD: |
| case ARM::t2STMDB_UPD: |
| if (listContainsReg(Inst, 3, Inst.getOperand(0).getReg())) |
| return Error(Operands.back()->getStartLoc(), |
| "writeback register not allowed in register list"); |
| |
| if (Opcode == ARM::t2LDMIA_UPD || Opcode == ARM::t2LDMDB_UPD) { |
| if (validatetLDMRegList(Inst, Operands, 3)) |
| return true; |
| } else { |
| if (validatetSTMRegList(Inst, Operands, 3)) |
| return true; |
| } |
| break; |
| |
| case ARM::sysLDMIA_UPD: |
| case ARM::sysLDMDA_UPD: |
| case ARM::sysLDMDB_UPD: |
| case ARM::sysLDMIB_UPD: |
| if (!listContainsReg(Inst, 3, ARM::PC)) |
| return Error(Operands[4]->getStartLoc(), |
| "writeback register only allowed on system LDM " |
| "if PC in register-list"); |
| break; |
| case ARM::sysSTMIA_UPD: |
| case ARM::sysSTMDA_UPD: |
| case ARM::sysSTMDB_UPD: |
| case ARM::sysSTMIB_UPD: |
| return Error(Operands[2]->getStartLoc(), |
| "system STM cannot have writeback register"); |
| case ARM::tMUL: |
| // The second source operand must be the same register as the destination |
| // operand. |
| // |
| // In this case, we must directly check the parsed operands because the |
| // cvtThumbMultiply() function is written in such a way that it guarantees |
| // this first statement is always true for the new Inst. Essentially, the |
| // destination is unconditionally copied into the second source operand |
| // without checking to see if it matches what we actually parsed. |
| if (Operands.size() == 6 && (((ARMOperand &)*Operands[3]).getReg() != |
| ((ARMOperand &)*Operands[5]).getReg()) && |
| (((ARMOperand &)*Operands[3]).getReg() != |
| ((ARMOperand &)*Operands[4]).getReg())) { |
| return Error(Operands[3]->getStartLoc(), |
| "destination register must match source register"); |
| } |
| break; |
| |
| // Like for ldm/stm, push and pop have hi-reg handling version in Thumb2, |
| // so only issue a diagnostic for thumb1. The instructions will be |
| // switched to the t2 encodings in processInstruction() if necessary. |
| case ARM::tPOP: { |
| bool ListContainsBase; |
| if (checkLowRegisterList(Inst, 2, 0, ARM::PC, ListContainsBase) && |
| !isThumbTwo()) |
| return Error(Operands[2]->getStartLoc(), |
| "registers must be in range r0-r7 or pc"); |
| if (validatetLDMRegList(Inst, Operands, 2, !isMClass())) |
| return true; |
| break; |
| } |
| case ARM::tPUSH: { |
| bool ListContainsBase; |
| if (checkLowRegisterList(Inst, 2, 0, ARM::LR, ListContainsBase) && |
| !isThumbTwo()) |
| return Error(Operands[2]->getStartLoc(), |
| "registers must be in range r0-r7 or lr"); |
| if (validatetSTMRegList(Inst, Operands, 2)) |
| return true; |
| break; |
| } |
| case ARM::tSTMIA_UPD: { |
| bool ListContainsBase, InvalidLowList; |
| InvalidLowList = checkLowRegisterList(Inst, 4, Inst.getOperand(0).getReg(), |
| 0, ListContainsBase); |
| if (InvalidLowList && !isThumbTwo()) |
| return Error(Operands[4]->getStartLoc(), |
| "registers must be in range r0-r7"); |
| |
| // This would be converted to a 32-bit stm, but that's not valid if the |
| // writeback register is in the list. |
| if (InvalidLowList && ListContainsBase) |
| return Error(Operands[4]->getStartLoc(), |
| "writeback operator '!' not allowed when base register " |
| "in register list"); |
| |
| if (validatetSTMRegList(Inst, Operands, 4)) |
| return true; |
| break; |
| } |
| case ARM::tADDrSP: |
| // If the non-SP source operand and the destination operand are not the |
| // same, we need thumb2 (for the wide encoding), or we have an error. |
| if (!isThumbTwo() && |
| Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) { |
| return Error(Operands[4]->getStartLoc(), |
| "source register must be the same as destination"); |
| } |
| break; |
| |
| case ARM::t2ADDri: |
| case ARM::t2ADDri12: |
| case ARM::t2ADDrr: |
| case ARM::t2ADDrs: |
| case ARM::t2SUBri: |
| case ARM::t2SUBri12: |
| case ARM::t2SUBrr: |
| case ARM::t2SUBrs: |
| if (Inst.getOperand(0).getReg() == ARM::SP && |
| Inst.getOperand(1).getReg() != ARM::SP) |
| return Error(Operands[4]->getStartLoc(), |
| "source register must be sp if destination is sp"); |
| break; |
| |
| // Final range checking for Thumb unconditional branch instructions. |
| case ARM::tB: |
| if (!(static_cast<ARMOperand &>(*Operands[2])).isSignedOffset<11, 1>()) |
| return Error(Operands[2]->getStartLoc(), "branch target out of range"); |
| break; |
| case ARM::t2B: { |
| int op = (Operands[2]->isImm()) ? 2 : 3; |
| if (!static_cast<ARMOperand &>(*Operands[op]).isSignedOffset<24, 1>()) |
| return Error(Operands[op]->getStartLoc(), "branch target out of range"); |
| break; |
| } |
| // Final range checking for Thumb conditional branch instructions. |
| case ARM::tBcc: |
| if (!static_cast<ARMOperand &>(*Operands[2]).isSignedOffset<8, 1>()) |
| return Error(Operands[2]->getStartLoc(), "branch target out of range"); |
| break; |
| case ARM::t2Bcc: { |
| int Op = (Operands[2]->isImm()) ? 2 : 3; |
| if (!static_cast<ARMOperand &>(*Operands[Op]).isSignedOffset<20, 1>()) |
| return Error(Operands[Op]->getStartLoc(), "branch target out of range"); |
| break; |
| } |
| case ARM::tCBZ: |
| case ARM::tCBNZ: { |
| if (!static_cast<ARMOperand &>(*Operands[2]).isUnsignedOffset<6, 1>()) |
| return Error(Operands[2]->getStartLoc(), "branch target out of range"); |
| break; |
| } |
| case ARM::MOVi16: |
| case ARM::MOVTi16: |
| case ARM::t2MOVi16: |
| case ARM::t2MOVTi16: |
| { |
| // We want to avoid misleadingly allowing something like "mov r0, <symbol>" |
| // especially when we turn it into a movw and the expression <symbol> does |
| // not have a :lower16: or :upper16 as part of the expression. We don't |
| // want the behavior of silently truncating, which can be unexpected and |
| // lead to bugs that are difficult to find since this is an easy mistake |
| // to make. |
| int i = (Operands[3]->isImm()) ? 3 : 4; |
| ARMOperand &Op = static_cast<ARMOperand &>(*Operands[i]); |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm()); |
| if (CE) break; |
| const MCExpr *E = dyn_cast<MCExpr>(Op.getImm()); |
| if (!E) break; |
| const ARMMCExpr *ARM16Expr = dyn_cast<ARMMCExpr>(E); |
| if (!ARM16Expr || (ARM16Expr->getKind() != ARMMCExpr::VK_ARM_HI16 && |
| ARM16Expr->getKind() != ARMMCExpr::VK_ARM_LO16)) |
| return Error( |
| Op.getStartLoc(), |
| "immediate expression for mov requires :lower16: or :upper16"); |
| break; |
| } |
| case ARM::HINT: |
| case ARM::t2HINT: { |
| unsigned Imm8 = Inst.getOperand(0).getImm(); |
| unsigned Pred = Inst.getOperand(1).getImm(); |
| // ESB is not predicable (pred must be AL). Without the RAS extension, this |
| // behaves as any other unallocated hint. |
| if (Imm8 == 0x10 && Pred != ARMCC::AL && hasRAS()) |
| return Error(Operands[1]->getStartLoc(), "instruction 'esb' is not " |
| "predicable, but condition " |
| "code specified"); |
| if (Imm8 == 0x14 && Pred != ARMCC::AL) |
| return Error(Operands[1]->getStartLoc(), "instruction 'csdb' is not " |
| "predicable, but condition " |
| "code specified"); |
| break; |
| } |
| case ARM::t2BFi: |
| case ARM::t2BFr: |
| case ARM::t2BFLi: |
| case ARM::t2BFLr: { |
| if (!static_cast<ARMOperand &>(*Operands[2]).isUnsignedOffset<4, 1>() || |
| (Inst.getOperand(0).isImm() && Inst.getOperand(0).getImm() == 0)) |
| return Error(Operands[2]->getStartLoc(), |
| "branch location out of range or not a multiple of 2"); |
| |
| if (Opcode == ARM::t2BFi) { |
| if (!static_cast<ARMOperand &>(*Operands[3]).isSignedOffset<16, 1>()) |
| return Error(Operands[3]->getStartLoc(), |
| "branch target out of range or not a multiple of 2"); |
| } else if (Opcode == ARM::t2BFLi) { |
| if (!static_cast<ARMOperand &>(*Operands[3]).isSignedOffset<18, 1>()) |
| return Error(Operands[3]->getStartLoc(), |
| "branch target out of range or not a multiple of 2"); |
| } |
| break; |
| } |
| case ARM::t2BFic: { |
| if (!static_cast<ARMOperand &>(*Operands[1]).isUnsignedOffset<4, 1>() || |
| (Inst.getOperand(0).isImm() && Inst.getOperand(0).getImm() == 0)) |
| return Error(Operands[1]->getStartLoc(), |
| "branch location out of range or not a multiple of 2"); |
| |
| if (!static_cast<ARMOperand &>(*Operands[2]).isSignedOffset<16, 1>()) |
| return Error(Operands[2]->getStartLoc(), |
| "branch target out of range or not a multiple of 2"); |
| |
| assert(Inst.getOperand(0).isImm() == Inst.getOperand(2).isImm() && |
| "branch location and else branch target should either both be " |
| "immediates or both labels"); |
| |
| if (Inst.getOperand(0).isImm() && Inst.getOperand(2).isImm()) { |
| int Diff = Inst.getOperand(2).getImm() - Inst.getOperand(0).getImm(); |
| if (Diff != 4 && Diff != 2) |
| return Error( |
| Operands[3]->getStartLoc(), |
| "else branch target must be 2 or 4 greater than the branch location"); |
| } |
| break; |
| } |
| case ARM::t2CLRM: { |
| for (unsigned i = 2; i < Inst.getNumOperands(); i++) { |
| if (Inst.getOperand(i).isReg() && |
| !ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID].contains( |
| Inst.getOperand(i).getReg())) { |
| return Error(Operands[2]->getStartLoc(), |
| "invalid register in register list. Valid registers are " |
| "r0-r12, lr/r14 and APSR."); |
| } |
| } |
| break; |
| } |
| case ARM::DSB: |
| case ARM::t2DSB: { |
| |
| if (Inst.getNumOperands() < 2) |
| break; |
| |
| unsigned Option = Inst.getOperand(0).getImm(); |
| unsigned Pred = Inst.getOperand(1).getImm(); |
| |
| // SSBB and PSSBB (DSB #0|#4) are not predicable (pred must be AL). |
| if (Option == 0 && Pred != ARMCC::AL) |
| return Error(Operands[1]->getStartLoc(), |
| "instruction 'ssbb' is not predicable, but condition code " |
| "specified"); |
| if (Option == 4 && Pred != ARMCC::AL) |
| return Error(Operands[1]->getStartLoc(), |
| "instruction 'pssbb' is not predicable, but condition code " |
| "specified"); |
| break; |
| } |
| case ARM::VMOVRRS: { |
| // Source registers must be sequential. |
| const unsigned Sm = MRI->getEncodingValue(Inst.getOperand(2).getReg()); |
| const unsigned Sm1 = MRI->getEncodingValue(Inst.getOperand(3).getReg()); |
| if (Sm1 != Sm + 1) |
| return Error(Operands[5]->getStartLoc(), |
| "source operands must be sequential"); |
| break; |
| } |
| case ARM::VMOVSRR: { |
| // Destination registers must be sequential. |
| const unsigned Sm = MRI->getEncodingValue(Inst.getOperand(0).getReg()); |
| const unsigned Sm1 = MRI->getEncodingValue(Inst.getOperand(1).getReg()); |
| if (Sm1 != Sm + 1) |
| return Error(Operands[3]->getStartLoc(), |
| "destination operands must be sequential"); |
| break; |
| } |
| case ARM::VLDMDIA: |
| case ARM::VSTMDIA: { |
| ARMOperand &Op = static_cast<ARMOperand&>(*Operands[3]); |
| auto &RegList = Op.getRegList(); |
| if (RegList.size() < 1 || RegList.size() > 16) |
| return Error(Operands[3]->getStartLoc(), |
| "list of registers must be at least 1 and at most 16"); |
| break; |
| } |
| case ARM::MVE_VQDMULLs32bh: |
| case ARM::MVE_VQDMULLs32th: |
| case ARM::MVE_VCMULf32: |
| case ARM::MVE_VMULLs32bh: |
| case ARM::MVE_VMULLs32th: |
| case ARM::MVE_VMULLu32bh: |
| case ARM::MVE_VMULLu32th: { |
| if (Operands[3]->getReg() == Operands[4]->getReg()) { |
| return Error (Operands[3]->getStartLoc(), |
| "Qd register and Qn register can't be identical"); |
| } |
| if (Operands[3]->getReg() == Operands[5]->getReg()) { |
| return Error (Operands[3]->getStartLoc(), |
| "Qd register and Qm register can't be identical"); |
| } |
| break; |
| } |
| case ARM::MVE_VMOV_rr_q: { |
| if (Operands[4]->getReg() != Operands[6]->getReg()) |
| return Error (Operands[4]->getStartLoc(), "Q-registers must be the same"); |
| if (static_cast<ARMOperand &>(*Operands[5]).getVectorIndex() != |
| static_cast<ARMOperand &>(*Operands[7]).getVectorIndex() + 2) |
| return Error (Operands[5]->getStartLoc(), "Q-register indexes must be 2 and 0 or 3 and 1"); |
| break; |
| } |
| case ARM::MVE_VMOV_q_rr: { |
| if (Operands[2]->getReg() != Operands[4]->getReg()) |
| return Error (Operands[2]->getStartLoc(), "Q-registers must be the same"); |
| if (static_cast<ARMOperand &>(*Operands[3]).getVectorIndex() != |
| static_cast<ARMOperand &>(*Operands[5]).getVectorIndex() + 2) |
| return Error (Operands[3]->getStartLoc(), "Q-register indexes must be 2 and 0 or 3 and 1"); |
| break; |
| } |
| } |
| |
| return false; |
| } |
| |
| static unsigned getRealVSTOpcode(unsigned Opc, unsigned &Spacing) { |
| switch(Opc) { |
| default: llvm_unreachable("unexpected opcode!"); |
| // VST1LN |
| case ARM::VST1LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST1LNd8_UPD; |
| case ARM::VST1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD; |
| case ARM::VST1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD; |
| case ARM::VST1LNdWB_register_Asm_8: Spacing = 1; return ARM::VST1LNd8_UPD; |
| case ARM::VST1LNdWB_register_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD; |
| case ARM::VST1LNdWB_register_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD; |
| case ARM::VST1LNdAsm_8: Spacing = 1; return ARM::VST1LNd8; |
| case ARM::VST1LNdAsm_16: Spacing = 1; return ARM::VST1LNd16; |
| case ARM::VST1LNdAsm_32: Spacing = 1; return ARM::VST1LNd32; |
| |
| // VST2LN |
| case ARM::VST2LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST2LNd8_UPD; |
| case ARM::VST2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD; |
| case ARM::VST2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD; |
| case ARM::VST2LNqWB_fixed_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD; |
| case ARM::VST2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD; |
| |
| case ARM::VST2LNdWB_register_Asm_8: Spacing = 1; return ARM::VST2LNd8_UPD; |
| case ARM::VST2LNdWB_register_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD; |
| case ARM::VST2LNdWB_register_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD; |
| case ARM::VST2LNqWB_register_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD; |
| case ARM::VST2LNqWB_register_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD; |
| |
| case ARM::VST2LNdAsm_8: Spacing = 1; return ARM::VST2LNd8; |
| case ARM::VST2LNdAsm_16: Spacing = 1; return ARM::VST2LNd16; |
| case ARM::VST2LNdAsm_32: Spacing = 1; return ARM::VST2LNd32; |
| case ARM::VST2LNqAsm_16: Spacing = 2; return ARM::VST2LNq16; |
| case ARM::VST2LNqAsm_32: Spacing = 2; return ARM::VST2LNq32; |
| |
| // VST3LN |
| case ARM::VST3LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST3LNd8_UPD; |
| case ARM::VST3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD; |
| case ARM::VST3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD; |
| case ARM::VST3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNq16_UPD; |
| case ARM::VST3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD; |
| case ARM::VST3LNdWB_register_Asm_8: Spacing = 1; return ARM::VST3LNd8_UPD; |
| case ARM::VST3LNdWB_register_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD; |
| case ARM::VST3LNdWB_register_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD; |
| case ARM::VST3LNqWB_register_Asm_16: Spacing = 2; return ARM::VST3LNq16_UPD; |
| case ARM::VST3LNqWB_register_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD; |
| case ARM::VST3LNdAsm_8: Spacing = 1; return ARM::VST3LNd8; |
| case ARM::VST3LNdAsm_16: Spacing = 1; return ARM::VST3LNd16; |
| case ARM::VST3LNdAsm_32: Spacing = 1; return ARM::VST3LNd32; |
| case ARM::VST3LNqAsm_16: Spacing = 2; return ARM::VST3LNq16; |
| case ARM::VST3LNqAsm_32: Spacing = 2; return ARM::VST3LNq32; |
| |
| // VST3 |
| case ARM::VST3dWB_fixed_Asm_8: Spacing = 1; return ARM::VST3d8_UPD; |
| case ARM::VST3dWB_fixed_Asm_16: Spacing = 1; return ARM::VST3d16_UPD; |
| case ARM::VST3dWB_fixed_Asm_32: Spacing = 1; return ARM::VST3d32_UPD; |
| case ARM::VST3qWB_fixed_Asm_8: Spacing = 2; return ARM::VST3q8_UPD; |
| case ARM::VST3qWB_fixed_Asm_16: Spacing = 2; return ARM::VST3q16_UPD; |
| case ARM::VST3qWB_fixed_Asm_32: Spacing = 2; return ARM::VST3q32_UPD; |
| case ARM::VST3dWB_register_Asm_8: Spacing = 1; return ARM::VST3d8_UPD; |
| case ARM::VST3dWB_register_Asm_16: Spacing = 1; return ARM::VST3d16_UPD; |
| case ARM::VST3dWB_register_Asm_32: Spacing = 1; return ARM::VST3d32_UPD; |
| case ARM::VST3qWB_register_Asm_8: Spacing = 2; return ARM::VST3q8_UPD; |
| case ARM::VST3qWB_register_Asm_16: Spacing = 2; return ARM::VST3q16_UPD; |
| case ARM::VST3qWB_register_Asm_32: Spacing = 2; return ARM::VST3q32_UPD; |
| case ARM::VST3dAsm_8: Spacing = 1; return ARM::VST3d8; |
| case ARM::VST3dAsm_16: Spacing = 1; return ARM::VST3d16; |
| case ARM::VST3dAsm_32: Spacing = 1; return ARM::VST3d32; |
| case ARM::VST3qAsm_8: Spacing = 2; return ARM::VST3q8; |
| case ARM::VST3qAsm_16: Spacing = 2; return ARM::VST3q16; |
| case ARM::VST3qAsm_32: Spacing = 2; return ARM::VST3q32; |
| |
| // VST4LN |
| case ARM::VST4LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST4LNd8_UPD; |
| case ARM::VST4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD; |
| case ARM::VST4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD; |
| case ARM::VST4LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNq16_UPD; |
| case ARM::VST4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD; |
| case ARM::VST4LNdWB_register_Asm_8: Spacing = 1; return ARM::VST4LNd8_UPD; |
| case ARM::VST4LNdWB_register_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD; |
| case ARM::VST4LNdWB_register_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD; |
| case ARM::VST4LNqWB_register_Asm_16: Spacing = 2; return ARM::VST4LNq16_UPD; |
| case ARM::VST4LNqWB_register_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD; |
| case ARM::VST4LNdAsm_8: Spacing = 1; return ARM::VST4LNd8; |
| case ARM::VST4LNdAsm_16: Spacing = 1; return ARM::VST4LNd16; |
| case ARM::VST4LNdAsm_32: Spacing = 1; return ARM::VST4LNd32; |
| case ARM::VST4LNqAsm_16: Spacing = 2; return ARM::VST4LNq16; |
| case ARM::VST4LNqAsm_32: Spacing = 2; return ARM::VST4LNq32; |
| |
| // VST4 |
| case ARM::VST4dWB_fixed_Asm_8: Spacing = 1; return ARM::VST4d8_UPD; |
| case ARM::VST4dWB_fixed_Asm_16: Spacing = 1; return ARM::VST4d16_UPD; |
| case ARM::VST4dWB_fixed_Asm_32: Spacing = 1; return ARM::VST4d32_UPD; |
| case ARM::VST4qWB_fixed_Asm_8: Spacing = 2; return ARM::VST4q8_UPD; |
| case ARM::VST4qWB_fixed_Asm_16: Spacing = 2; return ARM::VST4q16_UPD; |
| case ARM::VST4qWB_fixed_Asm_32: Spacing = 2; return ARM::VST4q32_UPD; |
| case ARM::VST4dWB_register_Asm_8: Spacing = 1; return ARM::VST4d8_UPD; |
| case ARM::VST4dWB_register_Asm_16: Spacing = 1; return ARM::VST4d16_UPD; |
| case ARM::VST4dWB_register_Asm_32: Spacing = 1; return ARM::VST4d32_UPD; |
| case ARM::VST4qWB_register_Asm_8: Spacing = 2; return ARM::VST4q8_UPD; |
| case ARM::VST4qWB_register_Asm_16: Spacing = 2; return ARM::VST4q16_UPD; |
| case ARM::VST4qWB_register_Asm_32: Spacing = 2; return ARM::VST4q32_UPD; |
| case ARM::VST4dAsm_8: Spacing = 1; return ARM::VST4d8; |
| case ARM::VST4dAsm_16: Spacing = 1; return ARM::VST4d16; |
| case ARM::VST4dAsm_32: Spacing = 1; return ARM::VST4d32; |
| case ARM::VST4qAsm_8: Spacing = 2; return ARM::VST4q8; |
| case ARM::VST4qAsm_16: Spacing = 2; return ARM::VST4q16; |
| case ARM::VST4qAsm_32: Spacing = 2; return ARM::VST4q32; |
| } |
| } |
| |
| static unsigned getRealVLDOpcode(unsigned Opc, unsigned &Spacing) { |
| switch(Opc) { |
| default: llvm_unreachable("unexpected opcode!"); |
| // VLD1LN |
| case ARM::VLD1LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD1LNd8_UPD; |
| case ARM::VLD1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD; |
| case ARM::VLD1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD; |
| case ARM::VLD1LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD1LNd8_UPD; |
| case ARM::VLD1LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD; |
| case ARM::VLD1LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD; |
| case ARM::VLD1LNdAsm_8: Spacing = 1; return ARM::VLD1LNd8; |
| case ARM::VLD1LNdAsm_16: Spacing = 1; return ARM::VLD1LNd16; |
| case ARM::VLD1LNdAsm_32: Spacing = 1; return ARM::VLD1LNd32; |
| |
| // VLD2LN |
| case ARM::VLD2LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD2LNd8_UPD; |
| case ARM::VLD2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD; |
| case ARM::VLD2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD; |
| case ARM::VLD2LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNq16_UPD; |
| case ARM::VLD2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD; |
| case ARM::VLD2LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD2LNd8_UPD; |
| case ARM::VLD2LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD; |
| case ARM::VLD2LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD; |
| case ARM::VLD2LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD2LNq16_UPD; |
| case ARM::VLD2LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD; |
| case ARM::VLD2LNdAsm_8: Spacing = 1; return ARM::VLD2LNd8; |
| case ARM::VLD2LNdAsm_16: Spacing = 1; return ARM::VLD2LNd16; |
| case ARM::VLD2LNdAsm_32: Spacing = 1; return ARM::VLD2LNd32; |
| case ARM::VLD2LNqAsm_16: Spacing = 2; return ARM::VLD2LNq16; |
| case ARM::VLD2LNqAsm_32: Spacing = 2; return ARM::VLD2LNq32; |
| |
| // VLD3DUP |
| case ARM::VLD3DUPdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3DUPd8_UPD; |
| case ARM::VLD3DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD; |
| case ARM::VLD3DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD; |
| case ARM::VLD3DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3DUPq8_UPD; |
| case ARM::VLD3DUPqWB_fixed_Asm_16: Spacing = 2; return ARM::VLD3DUPq16_UPD; |
| case ARM::VLD3DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD; |
| case ARM::VLD3DUPdWB_register_Asm_8: Spacing = 1; return ARM::VLD3DUPd8_UPD; |
| case ARM::VLD3DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD; |
| case ARM::VLD3DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD; |
| case ARM::VLD3DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD3DUPq8_UPD; |
| case ARM::VLD3DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD3DUPq16_UPD; |
| case ARM::VLD3DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD; |
| case ARM::VLD3DUPdAsm_8: Spacing = 1; return ARM::VLD3DUPd8; |
| case ARM::VLD3DUPdAsm_16: Spacing = 1; return ARM::VLD3DUPd16; |
| case ARM::VLD3DUPdAsm_32: Spacing = 1; return ARM::VLD3DUPd32; |
| case ARM::VLD3DUPqAsm_8: Spacing = 2; return ARM::VLD3DUPq8; |
| case ARM::VLD3DUPqAsm_16: Spacing = 2; return ARM::VLD3DUPq16; |
| case ARM::VLD3DUPqAsm_32: Spacing = 2; return ARM::VLD3DUPq32; |
| |
| // VLD3LN |
| case ARM::VLD3LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3LNd8_UPD; |
| case ARM::VLD3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD; |
| case ARM::VLD3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD; |
| case ARM::VLD3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNq16_UPD; |
| case ARM::VLD3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD; |
| case ARM::VLD3LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD3LNd8_UPD; |
| case ARM::VLD3LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD; |
| case ARM::VLD3LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD; |
| case ARM::VLD3LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD3LNq16_UPD; |
| case ARM::VLD3LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD; |
| case ARM::VLD3LNdAsm_8: Spacing = 1; return ARM::VLD3LNd8; |
| case ARM::VLD3LNdAsm_16: Spacing = 1; return ARM::VLD3LNd16; |
| case ARM::VLD3LNdAsm_32: Spacing = 1; return ARM::VLD3LNd32; |
| case ARM::VLD3LNqAsm_16: Spacing = 2; return ARM::VLD3LNq16; |
| case ARM::VLD3LNqAsm_32: Spacing = 2; return ARM::VLD3LNq32; |
| |
| // VLD3 |
| case ARM::VLD3dWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3d8_UPD; |
| case ARM::VLD3dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD; |
| case ARM::VLD3dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD; |
| case ARM::VLD3qWB_fixed_Asm_8: Spacing = 2; return ARM::VLD3q8_UPD; |
| case ARM::VLD3qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD; |
| case ARM::VLD3qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD; |
| case ARM::VLD3dWB_register_Asm_8: Spacing = 1; return ARM::VLD3d8_UPD; |
| case ARM::VLD3dWB_register_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD; |
| case ARM::VLD3dWB_register_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD; |
| case ARM::VLD3qWB_register_Asm_8: Spacing = 2; return ARM::VLD3q8_UPD; |
| case ARM::VLD3qWB_register_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD; |
| case ARM::VLD3qWB_register_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD; |
| case ARM::VLD3dAsm_8: Spacing = 1; return ARM::VLD3d8; |
| case ARM::VLD3dAsm_16: Spacing = 1; return ARM::VLD3d16; |
| case ARM::VLD3dAsm_32: Spacing = 1; return ARM::VLD3d32; |
| case ARM::VLD3qAsm_8: Spacing = 2; return ARM::VLD3q8; |
| case ARM::VLD3qAsm_16: Spacing = 2; return ARM::VLD3q16; |
| case ARM::VLD3qAsm_32: Spacing = 2; return ARM::VLD3q32; |
| |
| // VLD4LN |
| case ARM::VLD4LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4LNd8_UPD; |
| case ARM::VLD4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD; |
| case ARM::VLD4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD; |
| case ARM::VLD4LNqWB_fixed_Asm_16: Spacing = 2; return ARM::VLD4LNq16_UPD; |
| case ARM::VLD4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD; |
| case ARM::VLD4LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD4LNd8_UPD; |
| case ARM::VLD4LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD; |
| case ARM::VLD4LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD; |
| case ARM::VLD4LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD4LNq16_UPD; |
| case ARM::VLD4LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD; |
| case ARM::VLD4LNdAsm_8: Spacing = 1; return ARM::VLD4LNd8; |
| case ARM::VLD4LNdAsm_16: Spacing = 1; return ARM::VLD4LNd16; |
| case ARM::VLD4LNdAsm_32: Spacing = 1; return ARM::VLD4LNd32; |
| case ARM::VLD4LNqAsm_16: Spacing = 2; return ARM::VLD4LNq16; |
| case ARM::VLD4LNqAsm_32: Spacing = 2; return ARM::VLD4LNq32; |
| |
| // VLD4DUP |
| case ARM::VLD4DUPdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4DUPd8_UPD; |
| case ARM::VLD4DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD; |
| case ARM::VLD4DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD; |
| case ARM::VLD4DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4DUPq8_UPD; |
| case ARM::VLD4DUPqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPq16_UPD; |
| case ARM::VLD4DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD; |
| case ARM::VLD4DUPdWB_register_Asm_8: Spacing = 1; return ARM::VLD4DUPd8_UPD; |
| case ARM::VLD4DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD; |
| case ARM::VLD4DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD; |
| case ARM::VLD4DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD4DUPq8_UPD; |
| case ARM::VLD4DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD4DUPq16_UPD; |
| case ARM::VLD4DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD; |
| case ARM::VLD4DUPdAsm_8: Spacing = 1; return ARM::VLD4DUPd8; |
| case ARM::VLD4DUPdAsm_16: Spacing = 1; return ARM::VLD4DUPd16; |
| case ARM::VLD4DUPdAsm_32: Spacing = 1; return ARM::VLD4DUPd32; |
| case ARM::VLD4DUPqAsm_8: Spacing = 2; return ARM::VLD4DUPq8; |
| case ARM::VLD4DUPqAsm_16: Spacing = 2; return ARM::VLD4DUPq16; |
| case ARM::VLD4DUPqAsm_32: Spacing = 2; return ARM::VLD4DUPq32; |
| |
| // VLD4 |
| case ARM::VLD4dWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4d8_UPD; |
| case ARM::VLD4dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD; |
| case ARM::VLD4dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD; |
| case ARM::VLD4qWB_fixed_Asm_8: Spacing = 2; return ARM::VLD4q8_UPD; |
| case ARM::VLD4qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD; |
| case ARM::VLD4qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD; |
| case ARM::VLD4dWB_register_Asm_8: Spacing = 1; return ARM::VLD4d8_UPD; |
| case ARM::VLD4dWB_register_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD; |
| case ARM::VLD4dWB_register_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD; |
| case ARM::VLD4qWB_register_Asm_8: Spacing = 2; return ARM::VLD4q8_UPD; |
| case ARM::VLD4qWB_register_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD; |
| case ARM::VLD4qWB_register_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD; |
| case ARM::VLD4dAsm_8: Spacing = 1; return ARM::VLD4d8; |
| case ARM::VLD4dAsm_16: Spacing = 1; return ARM::VLD4d16; |
| case ARM::VLD4dAsm_32: Spacing = 1; return ARM::VLD4d32; |
| case ARM::VLD4qAsm_8: Spacing = 2; return ARM::VLD4q8; |
| case ARM::VLD4qAsm_16: Spacing = 2; return ARM::VLD4q16; |
| case ARM::VLD4qAsm_32: Spacing = 2; return ARM::VLD4q32; |
| } |
| } |
| |
| bool ARMAsmParser::processInstruction(MCInst &Inst, |
| const OperandVector &Operands, |
| MCStreamer &Out) { |
| // Check if we have the wide qualifier, because if it's present we |
| // must avoid selecting a 16-bit thumb instruction. |
| bool HasWideQualifier = false; |
| for (auto &Op : Operands) { |
| ARMOperand &ARMOp = static_cast<ARMOperand&>(*Op); |
| if (ARMOp.isToken() && ARMOp.getToken() == ".w") { |
| HasWideQualifier = true; |
| break; |
| } |
| } |
| |
| switch (Inst.getOpcode()) { |
| case ARM::MVE_VORNIZ0v4i32: |
| case ARM::MVE_VORNIZ0v8i16: |
| case ARM::MVE_VORNIZ8v4i32: |
| case ARM::MVE_VORNIZ8v8i16: |
| case ARM::MVE_VORNIZ16v4i32: |
| case ARM::MVE_VORNIZ24v4i32: |
| case ARM::MVE_VANDIZ0v4i32: |
| case ARM::MVE_VANDIZ0v8i16: |
| case ARM::MVE_VANDIZ8v4i32: |
| case ARM::MVE_VANDIZ8v8i16: |
| case ARM::MVE_VANDIZ16v4i32: |
| case ARM::MVE_VANDIZ24v4i32: { |
| unsigned Opcode; |
| bool imm16 = false; |
| switch(Inst.getOpcode()) { |
| case ARM::MVE_VORNIZ0v4i32: Opcode = ARM::MVE_VORRIZ0v4i32; break; |
| case ARM::MVE_VORNIZ0v8i16: Opcode = ARM::MVE_VORRIZ0v8i16; imm16 = true; break; |
| case ARM::MVE_VORNIZ8v4i32: Opcode = ARM::MVE_VORRIZ8v4i32; break; |
| case ARM::MVE_VORNIZ8v8i16: Opcode = ARM::MVE_VORRIZ8v8i16; imm16 = true; break; |
| case ARM::MVE_VORNIZ16v4i32: Opcode = ARM::MVE_VORRIZ16v4i32; break; |
| case ARM::MVE_VORNIZ24v4i32: Opcode = ARM::MVE_VORRIZ24v4i32; break; |
| case ARM::MVE_VANDIZ0v4i32: Opcode = ARM::MVE_VBICIZ0v4i32; break; |
| case ARM::MVE_VANDIZ0v8i16: Opcode = ARM::MVE_VBICIZ0v8i16; imm16 = true; break; |
| case ARM::MVE_VANDIZ8v4i32: Opcode = ARM::MVE_VBICIZ8v4i32; break; |
| case ARM::MVE_VANDIZ8v8i16: Opcode = ARM::MVE_VBICIZ8v8i16; imm16 = true; break; |
| case ARM::MVE_VANDIZ16v4i32: Opcode = ARM::MVE_VBICIZ16v4i32; break; |
| case ARM::MVE_VANDIZ24v4i32: Opcode = ARM::MVE_VBICIZ24v4i32; break; |
| default: llvm_unreachable("unexpected opcode"); |
| } |
| |
| MCInst TmpInst; |
| TmpInst.setOpcode(Opcode); |
| TmpInst.addOperand(Inst.getOperand(0)); |
| TmpInst.addOperand(Inst.getOperand(1)); |
| |
| // invert immediate |
| unsigned imm = ~Inst.getOperand(2).getImm() & (imm16 ? 0xffff : 0xffffffff); |
| TmpInst.addOperand(MCOperand::createImm(imm)); |
| |
| TmpInst.addOperand(Inst.getOperand(3)); |
| TmpInst.addOperand(Inst.getOperand(4)); |
| Inst = TmpInst; |
| return true; |
| } |
| // Alias for alternate form of 'ldr{,b}t Rt, [Rn], #imm' instruction. |
| case ARM::LDRT_POST: |
| case ARM::LDRBT_POST: { |
| const unsigned Opcode = |
| (Inst.getOpcode() == ARM::LDRT_POST) ? ARM::LDRT_POST_IMM |
| : ARM::LDRBT_POST_IMM; |
| MCInst TmpInst; |
| TmpInst.setOpcode(Opcode); |
| TmpInst.addOperand(Inst.getOperand(0)); |
| TmpInst.addOperand(Inst.getOperand(1)); |
| TmpInst.addOperand(Inst.getOperand(1)); |
| TmpInst.addOperand(MCOperand::createReg(0)); |
| TmpInst.addOperand(MCOperand::createImm(0)); |
| TmpInst.addOperand(Inst.getOperand(2)); |
| TmpInst.addOperand(Inst.getOperand(3)); |
| Inst = TmpInst; |
| return true; |
| } |
| // Alias for alternate form of 'str{,b}t Rt, [Rn], #imm' instruction. |
| case ARM::STRT_POST: |
| case ARM::STRBT_POST: { |
| const unsigned Opcode = |
| (Inst.getOpcode() == ARM::STRT_POST) ? ARM::STRT_POST_IMM |
| : ARM::STRBT_POST_IMM; |
| MCInst TmpInst; |
| TmpInst.setOpcode(Opcode); |
| TmpInst.addOperand(Inst.getOperand(1)); |
| TmpInst.addOperand(Inst.getOperand(0)); |
| TmpInst.addOperand(Inst.getOperand(1)); |
| TmpInst.addOperand(MCOperand::createReg(0)); |
| TmpInst.addOperand(MCOperand::createImm(0)); |
| TmpInst.addOperand(Inst.getOperand(2)); |
| TmpInst.addOperand(Inst.getOperand(3)); |
| Inst = TmpInst; |
| return true; |
| } |
| // Alias for alternate form of 'ADR Rd, #imm' instruction. |
| case ARM::ADDri: { |
| if (Inst.getOperand(1).getReg() != ARM::PC || |
| Inst.getOperand(5).getReg() != 0 || |
| !(Inst.getOperand(2).isExpr() || Inst.getOperand(2).isImm())) |
| return false; |
| MCInst TmpInst; |
| TmpInst.setOpcode(ARM::ADR); |
| TmpInst.addOperand(Inst.getOperand(0)); |
| if (Inst.getOperand(2).isImm()) { |
| // Immediate (mod_imm) will be in its encoded form, we must unencode it |
| // before passing it to the ADR instruction. |
| unsigned Enc = Inst.getOperand(2).getImm(); |
| TmpInst.addOperand(MCOperand::createImm( |
| ARM_AM::rotr32(Enc & 0xFF, (Enc & 0xF00) >> 7))); |
| } else { |
| // Turn PC-relative expression into absolute expression. |
| // Reading PC provides the start of the current instruction + 8 and |
| // the transform to adr is biased by that. |
| MCSymbol *Dot = getContext().createTempSymbol(); |
| Out.EmitLabel(Dot); |
| const MCExpr *OpExpr = Inst.getOperand(2).getExpr(); |
| const MCExpr *InstPC = MCSymbolRefExpr::create(Dot, |
| MCSymbolRefExpr::VK_None, |
| getContext()); |
| const MCExpr *Const8 = MCConstantExpr::create(8, getContext()); |
| const MCExpr *ReadPC = MCBinaryExpr::createAdd(InstPC, Const8, |
| getContext()); |
| const MCExpr *FixupAddr = MCBinaryExpr::createAdd(ReadPC, OpExpr, |
| getContext()); |
| TmpInst.addOperand(MCOperand::createExpr(FixupAddr)); |
| } |
| TmpInst.addOperand(Inst.getOperand(3)); |
| TmpInst.addOperand(Inst.getOperand(4)); |
| Inst = TmpInst; |
| return true; |
| } |
| // Aliases for alternate PC+imm syntax of LDR instructions. |
| case ARM::t2LDRpcrel: |
| // Select the narrow version if the immediate will fit. |
| if (Inst.getOperand(1).getImm() > 0 && |
| Inst.getOperand(1).getImm() <= 0xff && |
| !HasWideQualifier) |
| Inst.setOpcode(ARM::tLDRpci); |
| else |
| Inst.setOpcode(ARM::t2LDRpci); |
| return true; |
| case ARM::t2LDRBpcrel: |
| Inst.setOpcode(ARM::t2LDRBpci); |
| return true; |
| case ARM::t2LDRHpcrel: |
| Inst.setOpcode(ARM::t2LDRHpci); |
| return true; |
| case ARM::t2LDRSBpcrel: |
| Inst.setOpcode(ARM::t2LDRSBpci); |
| return true; |
| case ARM::t2LDRSHpcrel: |
| Inst.setOpcode(ARM::t2LDRSHpci); |
| return true; |
| case ARM::LDRConstPool: |
| case ARM::tLDRConstPool: |
| case ARM::t2LDRConstPool: { |
| // Pseudo instruction ldr rt, =immediate is converted to a |
| // MOV rt, immediate if immediate is known and representable |
| // otherwise we create a constant pool entry that we load from. |
| MCInst TmpInst; |
| if (Inst.getOpcode() == ARM::LDRConstPool) |
| TmpInst.setOpcode(ARM::LDRi12); |
| else if (Inst.getOpcode() == ARM::tLDRConstPool) |
| TmpInst.setOpcode(ARM::tLDRpci); |
| else if (Inst.getOpcode() == ARM::t2LDRConstPool) |
| TmpInst.setOpcode(ARM::t2LDRpci); |
| const ARMOperand &PoolOperand = |
| (HasWideQualifier ? |
| static_cast<ARMOperand &>(*Operands[4]) : |
| static_cast<ARMOperand &>(*Operands[3])); |
| const MCExpr *SubExprVal = PoolOperand.getConstantPoolImm(); |
| // If SubExprVal is a constant we may be able to use a MOV |
| if (isa<MCConstantExpr>(SubExprVal) && |
| Inst.getOperand(0).getReg() != ARM::PC && |
| Inst.getOperand(0).getReg() != ARM::SP) { |
| int64_t Value = |
| (int64_t) (cast<MCConstantExpr>(SubExprVal))->getValue(); |
| bool UseMov = true; |
| bool MovHasS = true; |
| if (Inst.getOpcode() == ARM::LDRConstPool) { |
| // ARM Constant |
| if (ARM_AM::getSOImmVal(Value) != -1) { |
| Value = ARM_AM::getSOImmVal(Value); |
| TmpInst.setOpcode(ARM::MOVi); |
| } |
| else if (ARM_AM::getSOImmVal(~Value) != -1) { |
| Value = ARM_AM::getSOImmVal(~Value); |
| TmpInst.setOpcode(ARM::MVNi); |
| } |
| else if (hasV6T2Ops() && |
| Value >=0 && Value < 65536) { |
| TmpInst.setOpcode(ARM::MOVi16); |
| MovHasS = false; |
| } |
| else |
| UseMov = false; |
| } |
| else { |
| // Thumb/Thumb2 Constant |
| if (hasThumb2() && |
| ARM_AM::getT2SOImmVal(Value) != -1) |
| TmpInst.setOpcode(ARM::t2MOVi); |
| else if (hasThumb2() && |
| ARM_AM::getT2SOImmVal(~Value) != -1) { |
| TmpInst.setOpcode(ARM::t2MVNi); |
| Value = ~Value; |
| } |
| else if (hasV8MBaseline() && |
| Value >=0 && Value < 65536) { |
| TmpInst.setOpcode(ARM::t2MOVi16); |
| MovHasS = false; |
| } |
| else |
| UseMov = false; |
| } |
| if (UseMov) { |
| TmpInst.addOperand(Inst.getOperand(0)); // Rt |
| TmpInst.addOperand(MCOperand::createImm(Value)); // Immediate |
| TmpInst.addOperand(Inst.getOperand(2)); // CondCode |
| TmpInst.addOperand(Inst.getOperand(3)); // CondCode |
| if (MovHasS) |
| TmpInst.addOperand(MCOperand::createReg(0)); // S |
| Inst = TmpInst; |
| return true; |
| } |
| } |
| // No opportunity to use MOV/MVN create constant pool |
| const MCExpr *CPLoc = |
| getTargetStreamer().addConstantPoolEntry(SubExprVal, |
| PoolOperand.getStartLoc()); |
| TmpInst.addOperand(Inst.getOperand(0)); // Rt |
| TmpInst.addOperand(MCOperand::createExpr(CPLoc)); // offset to constpool |
| if (TmpInst.getOpcode() == ARM::LDRi12) |
| TmpInst.addOperand(MCOperand::createImm(0)); // unused offset |
| TmpInst.addOperand(Inst.getOperand(2)); // CondCode |
| TmpInst.addOperand(Inst.getOperand(3)); // CondCode |
| Inst = TmpInst; |
| return true; |
| } |
| // Handle NEON VST complex aliases. |
| case ARM::VST1LNdWB_register_Asm_8: |
| case ARM::VST1LNdWB_register_Asm_16: |
| case ARM::VST1LNdWB_register_Asm_32: { |
| MCInst TmpInst; |
| // Shuffle the operands around so the lane index operand is in the |
| // right place. |
| unsigned Spacing; |
| TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); |
| TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb |
| TmpInst.addOperand(Inst.getOperand(2)); // Rn |
| TmpInst.addOperand(Inst.getOperand(3)); // alignment |
| TmpInst.addOperand(Inst.getOperand(4)); // Rm |
| TmpInst.addOperand(Inst.getOperand(0)); // Vd |
| TmpInst.addOperand(Inst.getOperand(1)); // lane |
| TmpInst.addOperand(Inst.getOperand(5)); // CondCode |
| TmpInst.addOperand(Inst.getOperand(6)); |
| Inst = TmpInst; |
| return true; |
| } |
| |
| case ARM::VST2LNdWB_register_Asm_8: |
| case ARM::VST2LNdWB_register_Asm_16: |
| case ARM::VST2LNdWB_register_Asm_32: |
| case ARM::VST2LNqWB_register_Asm_16: |
| case ARM::VST2LNqWB_register_Asm_32: { |
| MCInst TmpInst; |
| // Shuffle the operands around so the lane index operand is in the |
| // right place. |
| unsigned Spacing; |
| TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); |
| TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb |
| TmpInst.addOperand(Inst.getOperand(2)); // Rn |
| TmpInst.addOperand(Inst.getOperand(3)); // alignment |
| TmpInst.addOperand(Inst.getOperand(4)); // Rm |
| TmpInst.addOperand(Inst.getOperand(0)); // Vd |
| TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + |
| Spacing)); |
| TmpInst.addOperand(Inst.getOperand(1)); // lane |
| TmpInst.addOperand(Inst.getOperand(5)); // CondCode |
| TmpInst.addOperand(Inst.getOperand(6)); |
| Inst = TmpInst; |
| return true; |
| } |
| |
| case ARM::VST3LNdWB_register_Asm_8: |
| case ARM::VST3LNdWB_register_Asm_16: |
| case ARM::VST3LNdWB_register_Asm_32: |
| case ARM::VST3LNqWB_register_Asm_16: |
| case ARM::VST3LNqWB_register_Asm_32: { |
| MCInst TmpInst; |
| // Shuffle the operands around so the lane index operand is in the |
| // right place. |
| unsigned Spacing; |
| TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); |
| TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb |
| TmpInst.addOperand(Inst.getOperand(2)); // Rn |
| TmpInst.addOperand(Inst.getOperand(3)); // alignment |
| TmpInst.addOperand(Inst.getOperand(4)); // Rm |
| TmpInst.addOperand(Inst.getOperand(0)); // Vd |
| TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + |
| Spacing)); |
| TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + |
| Spacing * 2)); |
| TmpInst.addOperand(Inst.getOperand(1)); // lane |
| TmpInst.addOperand(Inst.getOperand(5)); // CondCode |
| TmpInst.addOperand(Inst.getOperand(6)); |
| Inst = TmpInst; |
| return true; |
| } |
| |
| case ARM::VST4LNdWB_register_Asm_8: |
| case ARM::VST4LNdWB_register_Asm_16: |
| case ARM::VST4LNdWB_register_Asm_32: |
| case ARM::VST4LNqWB_register_Asm_16: |
| case ARM::VST4LNqWB_register_Asm_32: { |
| MCInst TmpInst; |
| // Shuffle the operands around so the lane index operand is in the |
| // right place. |
| unsigned Spacing; |
| TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); |
| TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb |
| TmpInst.addOperand(Inst.getOperand(2)); // Rn |
| TmpInst.addOperand(Inst.getOperand(3)); // alignment |
| TmpInst.addOperand(Inst.getOperand(4)); // Rm |
| TmpInst.addOperand(Inst.getOperand(0)); // Vd |
| TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + |
| Spacing)); |
| TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + |
| Spacing * 2)); |
| TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + |
| Spacing * 3)); |
| TmpInst.addOperand(Inst.getOperand(1)); // lane |
| TmpInst.addOperand(Inst.getOperand(5)); // CondCode |
| TmpInst.addOperand(Inst.getOperand(6)); |
| Inst = TmpInst; |
| return true; |
| } |
| |
| case ARM::VST1LNdWB_fixed_Asm_8: |
| case ARM::VST1LNdWB_fixed_Asm_16: |
| case ARM::VST1LNdWB_fixed_Asm_32: { |
| MCInst TmpInst; |
| // Shuffle the operands around so the lane index operand is in the |
| // right place. |
| unsigned Spacing; |
| TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); |
| TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb |
| TmpInst.addOperand(Inst.getOperand(2)); // Rn |
| TmpInst.addOperand(Inst.getOperand(3)); // alignment |
| TmpInst.addOperand(MCOperand::createReg(0)); // Rm |
| TmpInst.addOperand(Inst.getOperand(0)); // Vd |
| TmpInst.addOperand(Inst.getOperand(1)); // lane |
| TmpInst.addOperand(Inst.getOperand(4)); // CondCode |
| TmpInst.addOperand(Inst.getOperand(5)); |
| Inst = TmpInst; |
| return true; |
| } |
| |
| case ARM::VST2LNdWB_fixed_Asm_8: |
| case ARM::VST2LNdWB_fixed_Asm_16: |
| case ARM::VST2LNdWB_fixed_Asm_32: |
| case ARM::VST2LNqWB_fixed_Asm_16: |
| case ARM::VST2LNqWB_fixed_Asm_32: { |
| MCInst TmpInst; |
| // Shuffle the operands around so the lane index operand is in the |
| // right place. |
| unsigned Spacing; |
| TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); |
| TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb |
| TmpInst.addOperand(Inst.getOperand(2)); // Rn |
| TmpInst.addOperand(Inst.getOperand(3)); // alignment |
| TmpInst.addOperand(MCOperand::createReg(0)); // Rm |
| TmpInst.addOperand(Inst.getOperand(0)); // Vd |
| TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + |
| Spacing)); |
| TmpInst.addOperand(Inst.getOperand(1)); // lane |
| TmpInst.addOperand(Inst.getOperand(4)); // CondCode |
| TmpInst.addOperand(Inst.getOperand(5)); |
| Inst = TmpInst; |
| return true; |
| } |
| |
| case ARM::VST3LNdWB_fixed_Asm_8: |
| case ARM::VST3LNdWB_fixed_Asm_16: |
| case ARM::VST3LNdWB_fixed_Asm_32: |
| case ARM::VST3LNqWB_fixed_Asm_16: |
| case ARM::VST3LNqWB_fixed_Asm_32: { |
| MCInst TmpInst; |
| // Shuffle the operands around so the lane index operand is in the |
| // right place. |
| unsigned Spacing; |
| TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); |
| TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb |
| TmpInst.addOperand(Inst.getOperand(2)); // Rn |
| TmpInst.addOperand(Inst.getOperand(3)); // alignment |
| TmpInst.addOperand(MCOperand::createReg(0)); // Rm |
| TmpInst.addOperand(Inst.getOperand(0)); // Vd |
| TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + |
| Spacing)); |
| TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + |
| Spacing * 2)); |
| TmpInst.addOperand(Inst.getOperand(1)); // lane |
| TmpInst.addOperand(Inst.getOperand(4)); // CondCode |
| TmpInst.addOperand(Inst.getOperand(5)); |
| Inst = TmpInst; |
| return true; |
| } |
| |
| case ARM::VST4LNdWB_fixed_Asm_8: |
| case ARM::VST4LNdWB_fixed_Asm_16: |
| case ARM::VST4LNdWB_fixed_Asm_32: |
| case ARM::VST4LNqWB_fixed_Asm_16: |
| case ARM::VST4LNqWB_fixed_Asm_32: { |
| MCInst TmpInst; |
| // Shuffle the operands around so the lane index operand is in the |
| // right place. |
| unsigned Spacing; |
| TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); |
| TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb |
| TmpInst.addOperand(Inst.getOperand(2)); // Rn |
| TmpInst.addOperand(Inst.getOperand(3)); // alignment |
| TmpInst.addOperand(MCOperand::createReg(0)); // Rm |
| TmpInst.addOperand(Inst.getOperand(0)); // Vd |
| TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + |
| Spacing)); |
| TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + |
| Spacing * 2)); |
| TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + |
| Spacing * 3)); |
| TmpInst.addOperand(Inst.getOperand(1)); // lane |
| TmpInst.addOperand(Inst.getOperand(4)); // CondCode |
| TmpInst.addOperand(Inst.getOperand(5)); |
| Inst = TmpInst; |
| return true; |
| } |
| |
| case ARM::VST1LNdAsm_8: |
| case ARM::VST1LNdAsm_16: |
| case ARM::VST1LNdAsm_32: { |
| MCInst TmpInst; |
| // Shuffle the operands around so the lane index operand is in the |
| // right place. |
| unsigned Spacing; |
| TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); |
| TmpInst.addOperand(Inst.getOperand(2)); // Rn |
| TmpInst.addOperand(Inst.getOperand(3)); // alignment |
| TmpInst.addOperand(Inst.getOperand(0)); // Vd |
| TmpInst.addOperand(Inst.getOperand(1)); // lane |
| TmpInst.addOperand(Inst.getOperand(4)); // CondCode |
| TmpInst.addOperand(Inst.getOperand(5)); |
| Inst = TmpInst; |
| return true; |
| } |
| |
| case ARM::VST2LNdAsm_8: |
| case ARM::VST2LNdAsm_16: |
| case ARM::VST2LNdAsm_32: |
| case ARM::VST2LNqAsm_16: |
| case ARM::VST2LNqAsm_32: { |
| MCInst TmpInst; |
| // Shuffle the operands around so the lane index operand is in the |
| // right place. |
| unsigned Spacing; |
| TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); |
| TmpInst.addOperand(Inst.getOperand(2)); // Rn |
| TmpInst.addOperand(Inst.getOperand(3)); // alignment |
| TmpInst.addOperand(Inst.getOperand(0)); // Vd |
| TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + |
| Spacing)); |
| TmpInst.addOperand(Inst.getOperand(1)); // lane |
| TmpInst.addOperand(Inst.getOperand(4)); // CondCode |
| TmpInst.addOperand(Inst.getOperand(5)); |
| Inst = TmpInst; |
| return true; |
| } |
| |
| case ARM::VST3LNdAsm_8: |
| case ARM::VST3LNdAsm_16: |
| case ARM::VST3LNdAsm_32: |
| case ARM::VST3LNqAsm_16: |
| case ARM::VST3LNqAsm_32: { |
| MCInst TmpInst; |
| // Shuffle the operands around so the lane index operand is in the |
| // right place. |
| unsigned Spacing; |
| TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); |
| TmpInst.addOperand(Inst.getOperand(2)); // Rn |
| TmpInst.addOperand(Inst.getOperand(3)); // alignment |
| TmpInst.addOperand(Inst.getOperand(0)); // Vd |
| TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + |
| Spacing)); |
| TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + |
| Spacing * 2)); |
| TmpInst.addOperand(Inst.getOperand(1)); // lane |
| TmpInst.addOperand(Inst.getOperand(4)); // CondCode |
| TmpInst.addOperand(Inst.getOperand(5)); |
| Inst = TmpInst; |
| return true; |
| } |
| |
| case ARM::VST4LNdAsm_8: |
| case ARM::VST4LNdAsm_16: |
| case ARM::VST4LNdAsm_32: |
| case ARM::VST4LNqAsm_16: |
| case ARM::VST4LNqAsm_32: { |
| MCInst TmpInst; |
| // Shuffle the operands around so the lane index operand is in the |
| // right place. |
| unsigned Spacing; |
| TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); |
| TmpInst.addOperand(Inst.getOperand(2)); // Rn |
| TmpInst.addOperand(Inst.getOperand(3)); // alignment |
| TmpInst.addOperand(Inst.getOperand(0)); // Vd |
| TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + |
| Spacing)); |
| TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + |
| Spacing * 2)); |
| TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + |
| Spacing * 3)); |
| TmpInst.addOperand(Inst.getOperand(1)); // lane |
| TmpInst.addOperand(Inst.getOperand(4)); // CondCode |
| TmpInst.addOperand(Inst.getOperand(5)); |
| Inst = TmpInst; |
| return true; |
| } |
| |
| // Handle NEON VLD complex aliases. |
| case ARM::VLD1LNdWB_register_Asm_8: |
| case ARM::VLD1LNdWB_register_Asm_16: |
| case ARM::VLD1LNdWB_register_Asm_32: { |
| MCInst TmpInst; |
| // Shuffle the operands around so the lane index operand is in the |
| // right place. |
| unsigned Spacing; |
| TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); |
| TmpInst.addOperand(Inst.getOperand(0)); // Vd |
| TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb |
| TmpInst.addOperand(Inst.getOperand(2)); // Rn |
| TmpInst.addOperand(Inst.getOperand(3)); // alignment |
| TmpInst.addOperand(Inst.getOperand(4)); // Rm |
| TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) |
| TmpInst.addOperand(Inst.getOperand(1)); // lane |
| TmpInst.addOperand(Inst.getOperand(5)); // CondCode |
| TmpInst.addOperand(Inst.getOperand(6)); |
| Inst = TmpInst; |
| return true; |
| } |
| |
| case ARM::VLD2LNdWB_register_Asm_8: |
| case ARM::VLD2LNdWB_register_Asm_16: |
| case ARM::VLD2LNdWB_register_Asm_32: |
| case ARM::VLD2LNqWB_register_Asm_16: |
| case ARM::VLD2LNqWB_register_Asm_32: { |
| MCInst TmpInst; |
| // Shuffle the operands around so the lane index operand is in the |
| // right place. |
| unsigned Spacing; |
| TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); |
| TmpInst.addOperand(Inst.getOperand(0)); // Vd |
| TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + |
| Spacing)); |
| TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb |
| TmpInst.addOperand(Inst.getOperand(2)); // Rn |
| TmpInst.addOperand(Inst.getOperand(3)); // alignment |
| TmpInst.addOperand(Inst.getOperand(4)); // Rm |
| TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) |
| TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + |
| Spacing)); |
| TmpInst.addOperand(Inst.getOperand(1)); // lane |
| TmpInst.addOperand(Inst.getOperand(5)); // CondCode |
| TmpInst.addOperand(Inst.getOperand(6)); |
| Inst = TmpInst; |
| return true; |
| } |
| |
| case ARM::VLD3LNdWB_register_Asm_8: |
| case ARM::VLD3LNdWB_register_Asm_16: |
| case ARM::VLD3LNdWB_register_Asm_32: |
| case ARM::VLD3LNqWB_register_Asm_16: |
| case ARM::VLD3LNqWB_register_Asm_32: { |
| MCInst TmpInst; |
| // Shuffle the operands around so the lane index operand is in the |
| // right place. |
| unsigned Spacing; |
| TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); |
| TmpInst.addOperand(Inst.getOperand(0)); // Vd |
| TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + |
| Spacing)); |
| TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + |
| Spacing * 2)); |
| TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb |
| TmpInst.addOperand(Inst.getOperand(2)); // Rn |
| TmpInst.addOperand(Inst.getOperand(3)); // alignment |
| TmpInst.addOperand(Inst.getOperand(4)); // Rm |
| TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) |
| TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + |
| Spacing)); |
| TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + |
| Spacing * 2)); |
| TmpInst.addOperand(Inst.getOperand(1)); // lane |
| TmpInst.addOperand(Inst.getOperand(5)); // CondCode |
| TmpInst.addOperand(Inst.getOperand(6)); |
| Inst = TmpInst; |
| return true; |
| } |
| |
| case ARM::VLD4LNdWB_register_Asm_8: |
| case ARM::VLD4LNdWB_register_Asm_16: |
| case ARM::VLD4LNdWB_register_Asm_32: |
| case ARM::VLD4LNqWB_register_Asm_16: |
| case ARM::VLD4LNqWB_register_Asm_32: { |
| MCInst TmpInst; |
| // Shuffle the operands around so the lane index operand is in the |
| // right place. |
| unsigned Spacing; |
| TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); |
| TmpInst.addOperand(Inst.getOperand(0)); // Vd |
| TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + |
| Spacing)); |
| TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + |
| Spacing * 2)); |
| TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + |
| Spacing * 3)); |
| TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb |
| TmpInst.addOperand(Inst.getOperand(2)); // Rn |
| TmpInst.addOperand(Inst.getOperand(3)); // alignment |
| TmpInst.addOperand(Inst.getOperand(4)); // Rm |
| TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) |
| TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + |
| Spacing)); |
| TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + |
| Spacing * 2)); |
| TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + |
| Spacing * 3)); |
| TmpInst.addOperand(Inst.getOperand(1)); // lane |
| TmpInst.addOperand(Inst.getOperand(5)); // CondCode |
| TmpInst.addOperand(Inst.getOperand(6)); |
| Inst = TmpInst; |
| return true; |
| } |
| |
| case ARM::VLD1LNdWB_fixed_Asm_8: |
| case ARM::VLD1LNdWB_fixed_Asm_16: |
| case ARM::VLD1LNdWB_fixed_Asm_32: { |
| MCInst TmpInst; |
| // Shuffle the operands around so the lane index operand is in the |
| // right place. |
| unsigned Spacing; |
| TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); |
| TmpInst.addOperand(Inst.getOperand(0)); // Vd |
| TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb |
| TmpInst.addOperand(Inst.getOperand(2)); // Rn |
| TmpInst.addOperand(Inst.getOperand(3)); // alignment |
| TmpInst.addOperand(MCOperand::createReg(0)); // Rm |
| TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) |
| TmpInst.addOperand(Inst.getOperand(1)); // lane |
| TmpInst.addOperand(Inst.getOperand(4)); // CondCode |
| TmpInst.addOperand(Inst.getOperand(5)); |
| Inst = TmpInst; |
| return true; |
| } |
| |
| case ARM::VLD2LNdWB_fixed_Asm_8: |
| case ARM::VLD2LNdWB_fixed_Asm_16: |
| case ARM::VLD2LNdWB_fixed_Asm_32: |
| case ARM::VLD2LNqWB_fixed_Asm_16: |
| case ARM::VLD2LNqWB_fixed_Asm_32: { |
| MCInst TmpInst; |
| // Shuffle the operands around so the lane index operand is in the |
| // right place. |
| unsigned Spacing; |
| TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); |
| TmpInst.addOperand(Inst.getOperand(0)); // Vd |
| TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + |
| Spacing)); |
| TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb |
| TmpInst.addOperand(Inst.getOperand(2)); // Rn |
| TmpInst.addOperand(Inst.getOperand(3)); // alignment |
| TmpInst.addOperand(MCOperand::createReg(0)); // Rm |
| TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) |
| TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + |
| Spacing)); |
| TmpInst.addOperand(Inst.getOperand(1)); // lane |
| TmpInst.addOperand(Inst.getOperand(4)); // CondCode |
| TmpInst.addOperand(Inst.getOperand(5)); |
| Inst = TmpInst; |
| return true; |
| } |
| |
| case ARM::VLD3LNdWB_fixed_Asm_8: |
| case ARM::VLD3LNdWB_fixed_Asm_16: |
| case ARM::VLD3LNdWB_fixed_Asm_32: |
| case ARM::VLD3LNqWB_fixed_Asm_16: |
| case ARM::VLD3LNqWB_fixed_Asm_32: { |
| MCInst TmpInst; |
| // Shuffle the operands around so the lane index operand is in the |
| // right place. |
| unsigned Spacing; |
| TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); |
| TmpInst.addOperand(Inst.getOperand(0)); // Vd |
| TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + |
| Spacing)); |
| TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + |
| Spacing * 2)); |
| TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb |
| TmpInst.addOperand(Inst.getOperand(2)); // Rn |
| TmpInst.addOperand(Inst.getOperand(3)); // alignment |
| TmpInst.addOperand(MCOperand::createReg(0)); // Rm |
| TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) |
| TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + |
| Spacing)); |
| TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + |
| Spacing * 2)); |
| TmpInst.addOperand(Inst.getOperand(1)); // lane |
| TmpInst.addOperand(Inst.getOperand(4)); // CondCode |
| TmpInst.addOperand(Inst.getOperand(5)); |
| Inst = TmpInst; |
| return true; |
| } |
| |
| case ARM::VLD4LNdWB_fixed_Asm_8: |
| case ARM::VLD4LNdWB_fixed_Asm_16: |
| case ARM::VLD4LNdWB_fixed_Asm_32: |
| case ARM::VLD4LNqWB_fixed_Asm_16: |
| case ARM::VLD4LNqWB_fixed_Asm_32: { |
| MCInst TmpInst; |
| // Shuffle the operands around so the lane index operand is in the |
| // right place. |
| unsigned Spacing; |
| TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); |
| TmpInst.addOperand(Inst.getOperand(0)); // Vd |
| TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + |
| Spacing)); |
| TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + |
| Spacing * 2)); |
| TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + |
| Spacing * 3)); |
| TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb |
| TmpInst.addOperand(Inst.getOperand(2)); // Rn |
| TmpInst.addOperand(Inst.getOperand(3)); // alignment |
| TmpInst.addOperand(MCOperand::createReg(0)); // Rm |
| TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) |
| TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + |
| Spacing)); |
| TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + |
| Spacing * 2)); |
| TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + |
| Spacing * 3)); |
| TmpInst.addOperand(Inst.getOperand(1)); // lane |
| TmpInst.addOperand(Inst.getOperand(4)); // CondCode |
| TmpInst.addOperand(Inst.getOperand(5)); |
| Inst = TmpInst; |
| return true; |
| } |
| |
| case ARM::VLD1LNdAsm_8: |
| case ARM::VLD1LNdAsm_16: |
| case ARM::VLD1LNdAsm_32: { |
| MCInst TmpInst; |
| // Shuffle the operands around so the lane index operand is in the |
| // right place. |
| unsigned Spacing; |
| TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); |
| TmpInst.addOperand(Inst.getOperand(0)); // Vd |
| TmpInst.addOperand(Inst.getOperand(2)); // Rn |
| TmpInst.addOperand(Inst.getOperand(3)); // alignment |
| TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) |
| TmpInst.addOperand(Inst.getOperand(1)); // lane |
| TmpInst.addOperand(Inst.getOperand(4)); // CondCode |
| TmpInst.addOperand(Inst.getOperand(5)); |
| Inst = TmpInst; |
| return true; |
| } |
| |
| case ARM::VLD2LNdAsm_8: |
| case ARM::VLD2LNdAsm_16: |
| case ARM::VLD2LNdAsm_32: |
| case ARM::VLD2LNqAsm_16: |
| case ARM::VLD2LNqAsm_32: { |
| MCInst TmpInst; |
| // Shuffle the operands around so the lane index operand is in the |
| // right place. |
| unsigned Spacing; |
| TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); |
| TmpInst.addOperand(Inst.getOperand(0)); // Vd |
| TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + |
| Spacing)); |
| TmpInst.addOperand(Inst.getOperand(2)); // Rn |
| TmpInst.addOperand(Inst.getOperand(3)); // alignment |
| TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) |
| TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + |
| Spacing)); |
| TmpInst.addOperand(Inst.getOperand(1)); // lane |
| TmpInst.addOperand(Inst.getOperand(4)); // CondCode |
| TmpInst.addOperand(Inst.getOperand(5)); |
| Inst = TmpInst; |
| return true; |
| } |
| |
| case ARM::VLD3LNdAsm_8: |
| case ARM::VLD3LNdAsm_16: |
| case ARM::VLD3LNdAsm_32: |
| case ARM::VLD3LNqAsm_16: |
| case ARM::VLD3LNqAsm_32: { |
| MCInst TmpInst; |
| // Shuffle the operands around so the lane index operand is in the |
| // right place. |
| unsigned Spacing; |
| TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); |
| TmpInst.addOperand(Inst.getOperand(0)); // Vd |
| TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + |
| Spacing)); |
| TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + |
| Spacing * 2)); |
| TmpInst.addOperand(Inst.getOperand(2)); // Rn |
| TmpInst.addOperand(Inst.getOperand(3)); // alignment |
| TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) |
| TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + |
| Spacing)); |
| TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + |
| Spacing * 2)); |
| TmpInst.addOperand(Inst.getOperand(1)); // lane |
| TmpInst.addOperand(Inst.getOperand(4)); // CondCode |
| TmpInst.addOperand(Inst.getOperand(5)); |
| Inst = TmpInst; |
| return true; |
| } |
| |
| case ARM::VLD4LNdAsm_8: |
| case ARM::VLD4LNdAsm_16: |
| case ARM::VLD4LNdAsm_32: |
| case ARM::VLD4LNqAsm_16: |
| case ARM::VLD4LNqAsm_32: { |
| MCInst TmpInst; |
| // Shuffle the operands around so the lane index operand is in the |
| // right place. |
| unsigned Spacing; |
| TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); |
| TmpInst.addOperand(Inst.getOperand(0)); // Vd |
| TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + |
| Spacing)); |
| TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + |
| Spacing * 2)); |
| TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + |
| Spacing * 3)); |
| TmpInst.addOperand(Inst.getOperand(2)); // Rn |
| TmpInst.addOperand(Inst.getOperand(3)); // alignment |
| TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) |
| TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + |
| Spacing)); |
| TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + |
| Spacing * 2)); |
| TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + |
| Spacing * 3)); |
| TmpInst.addOperand(Inst.getOperand(1)); // lane |
| TmpInst.addOperand(Inst.getOperand(4)); // CondCode |
| TmpInst.addOperand(Inst.getOperand(5)); |
| Inst = TmpInst; |
| return true; |
| } |
| |
| // VLD3DUP single 3-element structure to all lanes instructions. |
| case ARM::VLD3DUPdAsm_8: |
| case ARM::VLD3DUPdAsm_16: |
| case ARM::VLD3DUPdAsm_32: |
| case ARM::VLD3DUPqAsm_8: |
| case ARM::VLD3DUPqAsm_16: |
| case ARM::VLD3DUPqAsm_32: { |
| MCInst TmpInst; |
| unsigned Spacing; |
| TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); |
| TmpInst.addOperand(Inst.getOperand(0)); // Vd |
| TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + |
| Spacing)); |
| TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + |
| Spacing * 2)); |
| TmpInst.addOperand(Inst.getOperand(1)); // Rn |
| TmpInst.addOperand(Inst.getOperand(2)); // alignment |
| TmpInst.addOperand(Inst.getOperand(3)); // CondCode |
| TmpInst.addOperand(Inst.getOperand(4)); |
| Inst = TmpInst; |
| return true; |
| } |
| |
| case ARM::VLD3DUPdWB_fixed_Asm_8: |
| case ARM::VLD3DUPdWB_fixed_Asm_16: |
| case ARM::VLD3DUPdWB_fixed_Asm_32: |
| case ARM::VLD3DUPqWB_fixed_Asm_8: |
| case ARM::VLD3DUPqWB_fixed_Asm_16: |
| case ARM::VLD3DUPqWB_fixed_Asm_32: { |
| MCInst TmpInst; |
| unsigned Spacing; |
| TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); |
| TmpInst.addOperand(Inst.getOperand(0)); // Vd |
| TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + |
| Spacing)); |
| TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + |
| Spacing * 2)); |
| TmpInst.addOperand(Inst.getOperand(1)); // Rn |
| TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn |
| TmpInst.addOperand(Inst.getOperand(2)); // alignment |
| TmpInst.addOperand(MCOperand::createReg(0)); // Rm |
| TmpInst.addOperand(Inst.getOperand(3)); // CondCode |
| TmpInst.addOperand(Inst.getOperand(4)); |
| Inst = TmpInst; |
| return true; |
| } |
| |
| case ARM::VLD3DUPdWB_register_Asm_8: |
| case ARM::VLD3DUPdWB_register_Asm_16: |
| case ARM::VLD3DUPdWB_register_Asm_32: |
| case ARM::VLD3DUPqWB_register_Asm_8: |
| case ARM::VLD3DUPqWB_register_Asm_16: |
| case ARM::VLD3DUPqWB_register_Asm_32: { |
| MCInst TmpInst; |
| unsigned Spacing; |
| TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); |
| TmpInst.addOperand(Inst.getOperand(0)); // Vd |
| TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + |
| Spacing)); |
| TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + |
| Spacing * 2)); |
| TmpInst.addOperand(Inst.getOperand(1)); // Rn |
| TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn |
| TmpInst.addOperand(Inst.getOperand(2)); // alignment |
| TmpInst.addOperand(Inst.getOperand(3)); // Rm |
| TmpInst.addOperand(Inst.getOperand(4)); // CondCode |
| TmpInst.addOperand(Inst.getOperand(5)); |
| Inst = TmpInst; |
| return true; |
| } |
| |
| // VLD3 multiple 3-element structure instructions. |
| case ARM::VLD3dAsm_8: |
| case ARM::VLD3dAsm_16: |
| case ARM::VLD3dAsm_32: |
| case ARM::VLD3qAsm_8: |
| case ARM::VLD3qAsm_16: |
| case ARM::VLD3qAsm_32: { |
| MCInst TmpInst; |
| unsigned Spacing; |
| TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); |
| TmpInst.addOperand(Inst.getOperand(0)); // Vd |
| TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + |
| Spacing)); |
| TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + |
| Spacing * 2)); |
| TmpInst.addOperand(Inst.getOperand(1)); // Rn |
| TmpInst.addOperand(Inst.getOperand(2)); // alignment |
| TmpInst.addOperand(Inst.getOperand(3)); // CondCode |
| TmpInst.addOperand(Inst.getOperand(4)); |
| Inst = TmpInst; |
| return true; |
| } |
| |
| case ARM::VLD3dWB_fixed_Asm_8: |
| case ARM::VLD3dWB_fixed_Asm_16: |
| case ARM::VLD3dWB_fixed_Asm_32: |
| case ARM::VLD3qWB_fixed_Asm_8: |
| case ARM::VLD3qWB_fixed_Asm_16: |
| case ARM::VLD3qWB_fixed_Asm_32: { |
| MCInst TmpInst; |
| unsigned Spacing; |
| TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); |
| TmpInst.addOperand(Inst.getOperand(0)); // Vd |
| TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + |
| Spacing)); |
| TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + |
| Spacing * 2)); |
| TmpInst.addOperand(Inst.getOperand(1)); // Rn |
| TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn |
| TmpInst.addOperand(Inst.getOperand(2)); // alignment |
| TmpInst.addOperand(MCOperand::createReg(0)); // Rm |
| TmpInst.addOperand(Inst.getOperand(3)); // CondCode |
| TmpInst.addOperand(Inst.getOperand(4)); |
| Inst = TmpInst; |
| return true; |
| } |
| |
| case ARM::VLD3dWB_register_Asm_8: |
| case ARM::VLD3dWB_register_Asm_16: |
| case ARM::VLD3dWB_register_Asm_32: |
| case ARM::VLD3qWB_register_Asm_8: |
| case ARM::VLD3qWB_register_Asm_16: |
| case ARM::VLD3qWB_register_Asm_32: { |
| MCInst TmpInst; |
| unsigned Spacing; |
| TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); |
| TmpInst.addOperand(Inst.getOperand(0)); // Vd |
| TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + |
| Spacing)); |
| TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + |
| Spacing * 2)); |
| TmpInst.addOperand(Inst.getOperand(1)); // Rn |
| TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn |
| TmpInst.addOperand(Inst.getOperand(2)); // alignment |
| TmpInst.addOperand(Inst.getOperand(3)); // Rm |
| TmpInst.addOperand(Inst.getOperand(4)); // CondCode |
| TmpInst.addOperand(Inst.getOperand(5)); |
| Inst = TmpInst; |
| return true; |
| } |
| |
| // VLD4DUP single 3-element structure to all lanes instructions. |
| case ARM::VLD4DUPdAsm_8: |
| case ARM::VLD4DUPdAsm_16: |
| case ARM::VLD4DUPdAsm_32: |
| case ARM::VLD4DUPqAsm_8: |
| case ARM::VLD4DUPqAsm_16: |
| case ARM::VLD4DUPqAsm_32: { |
| MCInst TmpInst; |
| unsigned Spacing; |
| TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); |
| TmpInst.addOperand(Inst.getOperand(0)); // Vd |
| TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + |
| Spacing)); |
| TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + |
| Spacing * 2)); |
| TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + |
| Spacing * 3)); |
| TmpInst.addOperand(Inst.getOperand(1)); // Rn |
| TmpInst.addOperand(Inst.getOperand(2)); // alignment |
| TmpInst.addOperand(Inst.getOperand(3)); // CondCode |
| TmpInst.addOperand(Inst.getOperand(4)); |
| Inst = TmpInst; |
| return true; |
| } |
| |
| case ARM::VLD4DUPdWB_fixed_Asm_8: |
| case ARM::VLD4DUPdWB_fixed_Asm_16: |
| case ARM::VLD4DUPdWB_fixed_Asm_32: |
| case ARM::VLD4DUPqWB_fixed_Asm_8: |
| case ARM::VLD4DUPqWB_fixed_Asm_16: |
| case ARM::VLD4DUPqWB_fixed_Asm_32: { |
| MCInst TmpInst; |
| unsigned Spacing; |
| TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); |
| TmpInst.addOperand(Inst.getOperand(0)); // Vd |
| TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + |
| Spacing)); |
| TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + |
| Spacing * 2)); |
| TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + |
| Spacing * 3)); |
| TmpInst.addOperand(Inst.getOperand(1)); // Rn |
| TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn |
| TmpInst.addOperand(Inst.getOperand(2)); // alignment |
| TmpInst.addOperand(MCOperand::createReg(0)); // Rm |
| TmpInst.addOperand(Inst.getOperand(3)); // CondCode |
| TmpInst.addOperand(Inst.getOperand(4)); |
| Inst = TmpInst; |
| return true; |
| } |
| |
| case ARM::VLD4DUPdWB_register_Asm_8: |
| case ARM::VLD4DUPdWB_register_Asm_16: |
| case ARM::VLD4DUPdWB_register_Asm_32: |
| case ARM::VLD4DUPqWB_register_Asm_8: |
| case ARM::VLD4DUPqWB_register_Asm_16: |
| case ARM::VLD4DUPqWB_register_Asm_32: { |
| MCInst TmpInst; |
| unsigned Spacing; |
| TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); |
| TmpInst.addOperand(Inst.getOperand(0)); // Vd |
| TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + |
| Spacing)); |
| TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + |
| Spacing * 2)); |
| TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + |
| Spacing * 3)); |
| TmpInst.addOperand(Inst.getOperand(1)); // Rn |
| TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn |
| TmpInst.addOperand(Inst.getOperand(2)); // alignment |
| TmpInst.addOperand(Inst.getOperand(3)); // Rm |
| TmpInst.addOperand(Inst.getOperand(4)); // CondCode |
| TmpInst.addOperand(Inst.getOperand(5)); |
| Inst = TmpInst; |
| return true; |
| } |
| |
| // VLD4 multiple 4-element structure instructions. |
| case ARM::VLD4dAsm_8: |
| case ARM::VLD4dAsm_16: |
| case ARM::VLD4dAsm_32: |
| case ARM::VLD4qAsm_8: |
| case ARM::VLD4qAsm_16: |
| case ARM::VLD4qAsm_32: { |
| MCInst TmpInst; |
| unsigned Spacing; |
| TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); |
| TmpInst.addOperand(Inst.getOperand(0)); // Vd |
| TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + |
| Spacing)); |
| TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + |
| Spacing * 2)); |
| TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + |
| Spacing * 3)); |
| TmpInst.addOperand(Inst.getOperand(1)); // Rn |
| TmpInst.addOperand(Inst.getOperand(2)); // alignment |
| TmpInst.addOperand(Inst.getOperand(3)); // CondCode |
| TmpInst.addOperand(Inst.getOperand(4)); |
| Inst = TmpInst; |
| return true; |
| } |
| |
| case ARM::VLD4dWB_fixed_Asm_8: |
| case ARM::VLD4dWB_fixed_Asm_16: |
| case ARM::VLD4dWB_fixed_Asm_32: |
| case ARM::VLD4qWB_fixed_Asm_8: |
| case ARM::VLD4qWB_fixed_Asm_16: |
| case ARM::VLD4qWB_fixed_Asm_32: { |
| MCInst TmpInst; |
| unsigned Spacing; |
| TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); |
| TmpInst.addOperand(Inst.getOperand(0)); // Vd |
| TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + |
| Spacing)); |
| TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + |
| Spacing * 2)); |
| TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + |
| Spacing * 3)); |
| TmpInst.addOperand(Inst.getOperand(1)); // Rn |
| TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn |
| TmpInst.addOperand(Inst.getOperand(2)); // alignment |
| TmpInst.addOperand(MCOperand::createReg(0)); // Rm |
| TmpInst.addOperand(Inst.getOperand(3)); // CondCode |
| TmpInst.addOperand(Inst.getOperand(4)); |
| Inst = TmpInst; |
| return true; |
| } |
| |
| case ARM::VLD4dWB_register_Asm_8: |
| case ARM::VLD4dWB_register_Asm_16: |
| case ARM::VLD4dWB_register_Asm_32: |
| case ARM::VLD4qWB_register_Asm_8: |
| case ARM::VLD4qWB_register_Asm_16: |
| case ARM::VLD4qWB_register_Asm_32: { |
| MCInst TmpInst; |
| unsigned Spacing; |
| TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); |
| TmpInst.addOperand(Inst.getOperand(0)); // Vd |
| TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + |
| Spacing)); |
| TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + |
| Spacing * 2)); |
| TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + |
| Spacing * 3)); |
| TmpInst.addOperand(Inst.getOperand(1)); // Rn |
| TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn |
| TmpInst.addOperand(Inst.getOperand(2)); // alignment |
| TmpInst.addOperand(Inst.getOperand(3)); // Rm |
| TmpInst.addOperand(Inst.getOperand(4)); // CondCode |
| TmpInst.addOperand(Inst.getOperand(5)); |
| Inst = TmpInst; |
| return true; |
| } |
| |
| // VST3 multiple 3-element structure instructions. |
| case ARM::VST3dAsm_8: |
| case ARM::VST3dAsm_16: |
| case ARM::VST3dAsm_32: |
| case ARM::VST3qAsm_8: |
| case ARM::VST3qAsm_16: |
| case ARM::VST3qAsm_32: { |
| MCInst TmpInst; |
| unsigned Spacing; |
| TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); |
| TmpInst.addOperand(Inst.getOperand(1)); // Rn |
| TmpInst.addOperand(Inst.getOperand(2)); // alignment |
| TmpInst.addOperand(Inst.getOperand(0)); // Vd |
| TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + |
| Spacing)); |
| TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + |
| Spacing * 2)); |
| TmpInst.addOperand(Inst.getOperand(3)); // CondCode |
| TmpInst.addOperand(Inst.getOperand(4)); |
| Inst = TmpInst; |
| return true; |
| } |
| |
| case ARM::VST3dWB_fixed_Asm_8: |
| case ARM::VST3dWB_fixed_Asm_16: |
| case ARM::VST3dWB_fixed_Asm_32: |
| case ARM::VST3qWB_fixed_Asm_8: |
| case ARM::VST3qWB_fixed_Asm_16: |
| case ARM::VST3qWB_fixed_Asm_32: { |
| MCInst TmpInst; |
| unsigned Spacing; |
| TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); |
| TmpInst.addOperand(Inst.getOperand(1)); // Rn |
| TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn |
| TmpInst.addOperand(Inst.getOperand(2)); // alignment |
| TmpInst.addOperand(MCOperand::createReg(0)); // Rm |
| TmpInst.addOperand(Inst.getOperand(0)); // Vd |
| TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + |
| Spacing)); |
| TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + |
| Spacing * 2)); |
| TmpInst.addOperand(Inst.getOperand(3)); // CondCode |
| TmpInst.addOperand(Inst.getOperand(4)); |
| Inst = TmpInst; |
| return true; |
| } |
| |
| case ARM::VST3dWB_register_Asm_8: |
| case ARM::VST3dWB_register_Asm_16: |
| case ARM::VST3dWB_register_Asm_32: |
| case ARM::VST3qWB_register_Asm_8: |
| case ARM::VST3qWB_register_Asm_16: |
| case ARM::VST3qWB_register_Asm_32: { |
| MCInst TmpInst; |
| unsigned Spacing; |
| TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); |
| TmpInst.addOperand(Inst.getOperand(1)); // Rn |
| TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn |
| TmpInst.addOperand(Inst.getOperand(2)); // alignment |
| TmpInst.addOperand(Inst.getOperand(3)); // Rm |
| TmpInst.addOperand(Inst.getOperand(0)); // Vd |
| TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + |
| Spacing)); |
| TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + |
| Spacing * 2)); |
| TmpInst.addOperand(Inst.getOperand(4)); // CondCode |
| TmpInst.addOperand(Inst.getOperand(5)); |
| Inst = TmpInst; |
| return true; |
| } |
| |
| // VST4 multiple 3-element structure instructions. |
| case ARM::VST4dAsm_8: |
| case ARM::VST4dAsm_16: |
| case ARM::VST4dAsm_32: |
| case ARM::VST4qAsm_8: |
| case ARM::VST4qAsm_16: |
| case ARM::VST4qAsm_32: { |
| MCInst TmpInst; |
| unsigned Spacing; |
| TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); |
| TmpInst.addOperand(Inst.getOperand(1)); // Rn |
| TmpInst.addOperand(Inst.getOperand(2)); // alignment |
| TmpInst.addOperand(Inst.getOperand(0)); // Vd |
| TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + |
| Spacing)); |
| TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + |
| Spacing * 2)); |
| TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + |
| Spacing * 3)); |
| TmpInst.addOperand(Inst.getOperand(3)); // CondCode |
| TmpInst.addOperand(Inst.getOperand(4)); |
| Inst = TmpInst; |
| return true; |
| } |
| |
| case ARM::VST4dWB_fixed_Asm_8: |
| case ARM::VST4dWB_fixed_Asm_16: |
| case ARM::VST4dWB_fixed_Asm_32: |
| case ARM::VST4qWB_fixed_Asm_8: |
| case ARM::VST4qWB_fixed_Asm_16: |
| case ARM::VST4qWB_fixed_Asm_32: { |
| MCInst TmpInst; |
| unsigned Spacing; |
| TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); |
| TmpInst.addOperand(Inst.getOperand(1)); // Rn |
| TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn |
| TmpInst.addOperand(Inst.getOperand(2)); // alignment |
| TmpInst.addOperand(MCOperand::createReg(0)); // Rm |
| TmpInst.addOperand(Inst.getOperand(0)); // Vd |
| TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + |
| Spacing)); |
| TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + |
| Spacing * 2)); |
| TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + |
| Spacing * 3)); |
| TmpInst.addOperand(Inst.getOperand(3)); // CondCode |
| TmpInst.addOperand(Inst.getOperand(4)); |
| Inst = TmpInst; |
| return true; |
| } |
| |
| case ARM::VST4dWB_register_Asm_8: |
| case ARM::VST4dWB_register_Asm_16: |
| case ARM::VST4dWB_register_Asm_32: |
| case ARM::VST4qWB_register_Asm_8: |
| case ARM::VST4qWB_register_Asm_16: |
| case ARM::VST4qWB_register_Asm_32: { |
| MCInst TmpInst; |
| unsigned Spacing; |
| TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); |
| TmpInst.addOperand(Inst.getOperand(1)); // Rn |
| TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn |
| TmpInst.addOperand(Inst.getOperand(2)); // alignment |
| TmpInst.addOperand(Inst.getOperand(3)); // Rm |
| TmpInst.addOperand(Inst.getOperand(0)); // Vd |
| TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + |
| Spacing)); |
| TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + |
| Spacing * 2)); |
| TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + |
| Spacing * 3)); |
| TmpInst.addOperand(Inst.getOperand(4)); // CondCode |
| TmpInst.addOperand(Inst.getOperand(5)); |
| Inst = TmpInst; |
| return true; |
| } |
| |
| // Handle encoding choice for the shift-immediate instructions. |
| case ARM::t2LSLri: |
| case ARM::t2LSRri: |
| case ARM::t2ASRri: |
| if (isARMLowRegister(Inst.getOperand(0).getReg()) && |
| isARMLowRegister(Inst.getOperand(1).getReg()) && |
| Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) && |
| !HasWideQualifier) { |
| unsigned NewOpc; |
| switch (Inst.getOpcode()) { |
| default: llvm_unreachable("unexpected opcode"); |
| case ARM::t2LSLri: NewOpc = ARM::tLSLri; break; |
| case ARM::t2LSRri: NewOpc = ARM::tLSRri; break; |
| case ARM::t2ASRri: NewOpc = ARM::tASRri; break; |
| } |
| // The Thumb1 operands aren't in the same order. Awesome, eh? |
| MCInst TmpInst; |
| TmpInst.setOpcode(NewOpc); |
| TmpInst.addOperand(Inst.getOperand(0)); |
| TmpInst.addOperand(Inst.getOperand(5)); |
| TmpInst.addOperand(Inst.getOperand(1)); |
| TmpInst.addOperand(Inst.getOperand(2)); |
| TmpInst.addOperand(Inst.getOperand(3)); |
| TmpInst.addOperand(Inst.getOperand(4)); |
| Inst = TmpInst; |
| return true; |
| } |
| return false; |
| |
| // Handle the Thumb2 mode MOV complex aliases. |
| case ARM::t2MOVsr: |
| case ARM::t2MOVSsr: { |
| // Which instruction to expand to depends on the CCOut operand and |
| // whether we're in an IT block if the register operands are low |
| // registers. |
| bool isNarrow = false; |
| if (isARMLowRegister(Inst.getOperand(0).getReg()) && |
| isARMLowRegister(Inst.getOperand(1).getReg()) && |
| isARMLowRegister(Inst.getOperand(2).getReg()) && |
| Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() && |
| inITBlock() == (Inst.getOpcode() == ARM::t2MOVsr) && |
| !HasWideQualifier) |
| isNarrow = true; |
| MCInst TmpInst; |
| unsigned newOpc; |
| switch(ARM_AM::getSORegShOp(Inst.getOperand(3).getImm())) { |
| default: llvm_unreachable("unexpected opcode!"); |
| case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRrr : ARM::t2ASRrr; break; |
| case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRrr : ARM::t2LSRrr; break; |
| case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLrr : ARM::t2LSLrr; break; |
| case ARM_AM::ror: newOpc = isNarrow ? ARM::tROR : ARM::t2RORrr; break; |
| } |
| TmpInst.setOpcode(newOpc); |
| TmpInst.addOperand(Inst.getOperand(0)); // Rd |
| if (isNarrow) |
| TmpInst.addOperand(MCOperand::createReg( |
| Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0)); |
| TmpInst.addOperand(Inst.getOperand(1)); // Rn |
| TmpInst.addOperand(Inst.getOperand(2)); // Rm |
| TmpInst.addOperand(Inst.getOperand(4)); // CondCode |
| TmpInst.addOperand(Inst.getOperand(5)); |
| if (!isNarrow) |
| TmpInst.addOperand(MCOperand::createReg( |
| Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0)); |
| Inst = TmpInst; |
| return true; |
| } |
| case ARM::t2MOVsi: |
| case ARM::t2MOVSsi: { |
| // Which instruction to expand to depends on the CCOut operand and |
| // whether we're in an IT block if the register operands are low |
| // registers. |
| bool isNarrow = false; |
| if (isARMLowRegister(Inst.getOperand(0).getReg()) && |
| isARMLowRegister(Inst.getOperand(1).getReg()) && |
| inITBlock() == (Inst.getOpcode() == ARM::t2MOVsi) && |
| !HasWideQualifier) |
| isNarrow = true; |
| MCInst TmpInst; |
| unsigned newOpc; |
| unsigned Shift = ARM_AM::getSORegShOp(Inst.getOperand(2).getImm()); |
| unsigned Amount = ARM_AM::getSORegOffset(Inst.getOperand(2).getImm()); |
| bool isMov = false; |
| // MOV rd, rm, LSL #0 is actually a MOV instruction |
| if (Shift == ARM_AM::lsl && Amount == 0) { |
| isMov = true; |
| // The 16-bit encoding of MOV rd, rm, LSL #N is explicitly encoding T2 of |
| // MOV (register) in the ARMv8-A and ARMv8-M manuals, and immediate 0 is |
| // unpredictable in an IT block so the 32-bit encoding T3 has to be used |
| // instead. |
| if (inITBlock()) { |
| isNarrow = false; |
| } |
| newOpc = isNarrow ? ARM::tMOVSr : ARM::t2MOVr; |
| } else { |
| switch(Shift) { |
| default: llvm_unreachable("unexpected opcode!"); |
| case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRri : ARM::t2ASRri; break; |
| case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRri : ARM::t2LSRri; break; |
| case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLri : ARM::t2LSLri; break; |
| case ARM_AM::ror: newOpc = ARM::t2RORri; isNarrow = false; break; |
| case ARM_AM::rrx: isNarrow = false; newOpc = ARM::t2RRX; break; |
| } |
| } |
| if (Amount == 32) Amount = 0; |
| TmpInst.setOpcode(newOpc); |
| TmpInst.addOperand(Inst.getOperand(0)); // Rd |
| if (isNarrow && !isMov) |
| TmpInst.addOperand(MCOperand::createReg( |
| Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0)); |
| TmpInst.addOperand(Inst.getOperand(1)); // Rn |
| if (newOpc != ARM::t2RRX && !isMov) |
| TmpInst.addOperand(MCOperand::createImm(Amount)); |
| TmpInst.addOperand(Inst.getOperand(3)); // CondCode |
| TmpInst.addOperand(Inst.getOperand(4)); |
| if (!isNarrow) |
| TmpInst.addOperand(MCOperand::createReg( |
| Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0)); |
| Inst = TmpInst; |
| return true; |
| } |
| // Handle the ARM mode MOV complex aliases. |
| case ARM::ASRr: |
| case ARM::LSRr: |
| case ARM::LSLr: |
| case ARM::RORr: { |
| ARM_AM::ShiftOpc ShiftTy; |
| switch(Inst.getOpcode()) { |
| default: llvm_unreachable("unexpected opcode!"); |
| case ARM::ASRr: ShiftTy = ARM_AM::asr; break; |
| case ARM::LSRr: ShiftTy = ARM_AM::lsr; break; |
| case ARM::LSLr: ShiftTy = ARM_AM::lsl; break; |
| case ARM::RORr: ShiftTy = ARM_AM::ror; break; |
| } |
| unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, 0); |
| MCInst TmpInst; |
| TmpInst.setOpcode(ARM::MOVsr); |
| TmpInst.addOperand(Inst.getOperand(0)); // Rd |
| TmpInst.addOperand(Inst.getOperand(1)); // Rn |
| TmpInst.addOperand(Inst.getOperand(2)); // Rm |
| TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty |
| TmpInst.addOperand(Inst.getOperand(3)); // CondCode |
| TmpInst.addOperand(Inst.getOperand(4)); |
| TmpInst.addOperand(Inst.getOperand(5)); // cc_out |
| Inst = TmpInst; |
| return true; |
| } |
| case ARM::ASRi: |
| case ARM::LSRi: |
| case ARM::LSLi: |
| case ARM::RORi: { |
| ARM_AM::ShiftOpc ShiftTy; |
| switch(Inst.getOpcode()) { |
| default: llvm_unreachable("unexpected opcode!"); |
| case ARM::ASRi: ShiftTy = ARM_AM::asr; break; |
| case ARM::LSRi: ShiftTy = ARM_AM::lsr; break; |
| case ARM::LSLi: ShiftTy = ARM_AM::lsl; break; |
| case ARM::RORi: ShiftTy = ARM_AM::ror; break; |
| } |
| // A shift by zero is a plain MOVr, not a MOVsi. |
| unsigned Amt = Inst.getOperand(2).getImm(); |
| unsigned Opc = Amt == 0 ? ARM::MOVr : ARM::MOVsi; |
| // A shift by 32 should be encoded as 0 when permitted |
| if (Amt == 32 && (ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr)) |
| Amt = 0; |
| unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, Amt); |
| MCInst TmpInst; |
| TmpInst.setOpcode(Opc); |
| TmpInst.addOperand(Inst.getOperand(0)); // Rd |
| TmpInst.addOperand(Inst.getOperand(1)); // Rn |
| if (Opc == ARM::MOVsi) |
| TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty |
| TmpInst.addOperand(Inst.getOperand(3)); // CondCode |
| TmpInst.addOperand(Inst.getOperand(4)); |
| TmpInst.addOperand(Inst.getOperand(5)); // cc_out |
| Inst = TmpInst; |
| return true; |
| } |
| case ARM::RRXi: { |
| unsigned Shifter = ARM_AM::getSORegOpc(ARM_AM::rrx, 0); |
| MCInst TmpInst; |
| TmpInst.setOpcode(ARM::MOVsi); |
| TmpInst.addOperand(Inst.getOperand(0)); // Rd |
| TmpInst.addOperand(Inst.getOperand(1)); // Rn |
| TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty |
| TmpInst.addOperand(Inst.getOperand(2)); // CondCode |
| TmpInst.addOperand(Inst.getOperand(3)); |
| TmpInst.addOperand(Inst.getOperand(4)); // cc_out |
| Inst = TmpInst; |
| return true; |
| } |
| case ARM::t2LDMIA_UPD: { |
| // If this is a load of a single register, then we should use |
| // a post-indexed LDR instruction instead, per the ARM ARM. |
| if (Inst.getNumOperands() != 5) |
| return false; |
| MCInst TmpInst; |
| TmpInst.setOpcode(ARM::t2LDR_POST); |
| TmpInst.addOperand(Inst.getOperand(4)); // Rt |
| TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb |
| TmpInst.addOperand(Inst.getOperand(1)); // Rn |
| TmpInst.addOperand(MCOperand::createImm(4)); |
| TmpInst.addOperand(Inst.getOperand(2)); // CondCode |
| TmpInst.addOperand(Inst.getOperand(3)); |
| Inst = TmpInst; |
| return true; |
| } |
| case ARM::t2STMDB_UPD: { |
| // If this is a store of a single register, then we should use |
| // a pre-indexed STR instruction instead, per the ARM ARM. |
| if (Inst.getNumOperands() != 5) |
| return false; |
| MCInst TmpInst; |
| TmpInst.setOpcode(ARM::t2STR_PRE); |
| TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb |
| TmpInst.addOperand(Inst.getOperand(4)); // Rt |
| TmpInst.addOperand(Inst.getOperand(1)); // Rn |
| TmpInst.addOperand(MCOperand::createImm(-4)); |
| TmpInst.addOperand(Inst.getOperand(2)); // CondCode |
| TmpInst.addOperand(Inst.getOperand(3)); |
| Inst = TmpInst; |
| return true; |
| } |
| case ARM::LDMIA_UPD: |
| // If this is a load of a single register via a 'pop', then we should use |
| // a post-indexed LDR instruction instead, per the ARM ARM. |
| if (static_cast<ARMOperand &>(*Operands[0]).getToken() == "pop" && |
| Inst.getNumOperands() == 5) { |
| MCInst TmpInst; |
| TmpInst.setOpcode(ARM::LDR_POST_IMM); |
| TmpInst.addOperand(Inst.getOperand(4)); // Rt |
| TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb |
| TmpInst.addOperand(Inst.getOperand(1)); // Rn |
| TmpInst.addOperand(MCOperand::createReg(0)); // am2offset |
| TmpInst.addOperand(MCOperand::createImm(4)); |
| TmpInst.addOperand(Inst.getOperand(2)); // CondCode |
| TmpInst.addOperand(Inst.getOperand(3)); |
| Inst = TmpInst; |
| return true; |
| } |
| break; |
| case ARM::STMDB_UPD: |
| // If this is a store of a single register via a 'push', then we should use |
| // a pre-indexed STR instruction instead, per the ARM ARM. |
| if (static_cast<ARMOperand &>(*Operands[0]).getToken() == "push" && |
| Inst.getNumOperands() == 5) { |
| MCInst TmpInst; |
| TmpInst.setOpcode(ARM::STR_PRE_IMM); |
| TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb |
| TmpInst.addOperand(Inst.getOperand(4)); // Rt |
| TmpInst.addOperand(Inst.getOperand(1)); // addrmode_imm12 |
| TmpInst.addOperand(MCOperand::createImm(-4)); |
| TmpInst.addOperand(Inst.getOperand(2)); // CondCode |
| TmpInst.addOperand(Inst.getOperand(3)); |
| Inst = TmpInst; |
| } |
| break; |
| case ARM::t2ADDri12: |
| // If the immediate fits for encoding T3 (t2ADDri) and the generic "add" |
| // mnemonic was used (not "addw"), encoding T3 is preferred. |
| if (static_cast<ARMOperand &>(*Operands[0]).getToken() != "add" || |
| ARM_AM::getT2SOImmVal(Inst.getOperand(2).getImm()) == -1) |
| break; |
| Inst.setOpcode(ARM::t2ADDri); |
| Inst.addOperand(MCOperand::createReg(0)); // cc_out |
| break; |
| case ARM::t2SUBri12: |
| // If the immediate fits for encoding T3 (t2SUBri) and the generic "sub" |
| // mnemonic was used (not "subw"), encoding T3 is preferred. |
| if (static_cast<ARMOperand &>(*Operands[0]).getToken() != "sub" || |
| ARM_AM::getT2SOImmVal(Inst.getOperand(2).getImm()) == -1) |
| break; |
| Inst.setOpcode(ARM::t2SUBri); |
| Inst.addOperand(MCOperand::createReg(0)); // cc_out |
| break; |
| case ARM::tADDi8: |
| // If the immediate is in the range 0-7, we want tADDi3 iff Rd was |
| // explicitly specified. From the ARM ARM: "Encoding T1 is preferred |
| // to encoding T2 if <Rd> is specified and encoding T2 is preferred |
| // to encoding T1 if <Rd> is omitted." |
| if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) { |
| Inst.setOpcode(ARM::tADDi3); |
| return true; |
| } |
| break; |
| case ARM::tSUBi8: |
| // If the immediate is in the range 0-7, we want tADDi3 iff Rd was |
| // explicitly specified. From the ARM ARM: "Encoding T1 is preferred |
| // to encoding T2 if <Rd> is specified and encoding T2 is preferred |
| // to encoding T1 if <Rd> is omitted." |
| if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) { |
| Inst.setOpcode(ARM::tSUBi3); |
| return true; |
| } |
| break; |
| case ARM::t2ADDri: |
| case ARM::t2SUBri: { |
| // If the destination and first source operand are the same, and |
| // the flags are compatible with the current IT status, use encoding T2 |
| // instead of T3. For compatibility with the system 'as'. Make sure the |
| // wide encoding wasn't explicit. |
| if (Inst.getOperand(0).getReg() != Inst.getOperand(1).getReg() || |
| !isARMLowRegister(Inst.getOperand(0).getReg()) || |
| (Inst.getOperand(2).isImm() && |
| (unsigned)Inst.getOperand(2).getImm() > 255) || |
| Inst.getOperand(5).getReg() != (inITBlock() ? 0 : ARM::CPSR) || |
| HasWideQualifier) |
| break; |
| MCInst TmpInst; |
| TmpInst.setOpcode(Inst.getOpcode() == ARM::t2ADDri ? |
| ARM::tADDi8 : ARM::tSUBi8); |
| TmpInst.addOperand(Inst.getOperand(0)); |
| TmpInst.addOperand(Inst.getOperand(5)); |
| TmpInst.addOperand(Inst.getOperand(0)); |
| TmpInst.addOperand(Inst.getOperand(2)); |
| TmpInst.addOperand(Inst.getOperand(3)); |
| TmpInst.addOperand(Inst.getOperand(4)); |
| Inst = TmpInst; |
| return true; |
| } |
| case ARM::t2ADDrr: { |
| // If the destination and first source operand are the same, and |
| // there's no setting of the flags, use encoding T2 instead of T3. |
| // Note that this is only for ADD, not SUB. This mirrors the system |
| // 'as' behaviour. Also take advantage of ADD being commutative. |
| // Make sure the wide encoding wasn't explicit. |
| bool Swap = false; |
| auto DestReg = Inst.getOperand(0).getReg(); |
| bool Transform = DestReg == Inst.getOperand(1).getReg(); |
| if (!Transform && DestReg == Inst.getOperand(2).getReg()) { |
| Transform = true; |
| Swap = true; |
| } |
| if (!Transform || |
| Inst.getOperand(5).getReg() != 0 || |
| HasWideQualifier) |
| break; |
| MCInst TmpInst; |
| TmpInst.setOpcode(ARM::tADDhirr); |
| TmpInst.addOperand(Inst.getOperand(0)); |
| TmpInst.addOperand(Inst.getOperand(0)); |
| TmpInst.addOperand(Inst.getOperand(Swap ? 1 : 2)); |
| TmpInst.addOperand(Inst.getOperand(3)); |
| TmpInst.addOperand(Inst.getOperand(4)); |
| Inst = TmpInst; |
| return true; |
| } |
| case ARM::tADDrSP: |
| // If the non-SP source operand and the destination operand are not the |
| // same, we need to use the 32-bit encoding if it's available. |
| if (Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) { |
| Inst.setOpcode(ARM::t2ADDrr); |
| Inst.addOperand(MCOperand::createReg(0)); // cc_out |
| return true; |
| } |
| break; |
| case ARM::tB: |
| // A Thumb conditional branch outside of an IT block is a tBcc. |
| if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()) { |
| Inst.setOpcode(ARM::tBcc); |
| return true; |
| } |
| break; |
| case ARM::t2B: |
| // A Thumb2 conditional branch outside of an IT block is a t2Bcc. |
| if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()){ |
| Inst.setOpcode(ARM::t2Bcc); |
| return true; |
| } |
| break; |
| case ARM::t2Bcc: |
| // If the conditional is AL or we're in an IT block, we really want t2B. |
| if (Inst.getOperand(1).getImm() == ARMCC::AL || inITBlock()) { |
| Inst.setOpcode(ARM::t2B); |
| return true; |
| } |
| break; |
| case ARM::tBcc: |
| // If the conditional is AL, we really want tB. |
| if (Inst.getOperand(1).getImm() == ARMCC::AL) { |
| Inst.setOpcode(ARM::tB); |
| return true; |
| } |
| break; |
| case ARM::tLDMIA: { |
| // If the register list contains any high registers, or if the writeback |
| // doesn't match what tLDMIA can do, we need to use the 32-bit encoding |
| // instead if we're in Thumb2. Otherwise, this should have generated |
| // an error in validateInstruction(). |
| unsigned Rn = Inst.getOperand(0).getReg(); |
| bool hasWritebackToken = |
| (static_cast<ARMOperand &>(*Operands[3]).isToken() && |
| static_cast<ARMOperand &>(*Operands[3]).getToken() == "!"); |
| bool listContainsBase; |
| if (checkLowRegisterList(Inst, 3, Rn, 0, listContainsBase) || |
| (!listContainsBase && !hasWritebackToken) || |
| (listContainsBase && hasWritebackToken)) { |
| // 16-bit encoding isn't sufficient. Switch to the 32-bit version. |
| assert(isThumbTwo()); |
| Inst.setOpcode(hasWritebackToken ? ARM::t2LDMIA_UPD : ARM::t2LDMIA); |
| // If we're switching to the updating version, we need to insert |
| // the writeback tied operand. |
| if (hasWritebackToken) |
| Inst.insert(Inst.begin(), |
| MCOperand::createReg(Inst.getOperand(0).getReg())); |
| return true; |
| } |
| break; |
| } |
| case ARM::tSTMIA_UPD: { |
| // If the register list contains any high registers, we need to use |
| // the 32-bit encoding instead if we're in Thumb2. Otherwise, this |
| // should have generated an error in validateInstruction(). |
| unsigned Rn = Inst.getOperand(0).getReg(); |
| bool listContainsBase; |
| if (checkLowRegisterList(Inst, 4, Rn, 0, listContainsBase)) { |
| // 16-bit encoding isn't sufficient. Switch to the 32-bit version. |
| assert(isThumbTwo()); |
| Inst.setOpcode(ARM::t2STMIA_UPD); |
| return true; |
| } |
| break; |
| } |
| case ARM::tPOP: { |
| bool listContainsBase; |
| // If the register list contains any high registers, we need to use |
| // the 32-bit encoding instead if we're in Thumb2. Otherwise, this |
| // should have generated an error in validateInstruction(). |
| if (!checkLowRegisterList(Inst, 2, 0, ARM::PC, listContainsBase)) |
| return false; |
| assert(isThumbTwo()); |
| Inst.setOpcode(ARM::t2LDMIA_UPD); |
| // Add the base register and writeback operands. |
| Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); |
| Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); |
| return true; |
| } |
| case ARM::tPUSH: { |
| bool listContainsBase; |
| if (!checkLowRegisterList(Inst, 2, 0, ARM::LR, listContainsBase)) |
| return false; |
| assert(isThumbTwo()); |
| Inst.setOpcode(ARM::t2STMDB_UPD); |
| // Add the base register and writeback operands. |
| Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); |
| Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); |
| return true; |
| } |
| case ARM::t2MOVi: |
| // If we can use the 16-bit encoding and the user didn't explicitly |
| // request the 32-bit variant, transform it here. |
| if (isARMLowRegister(Inst.getOperand(0).getReg()) && |
| (Inst.getOperand(1).isImm() && |
| (unsigned)Inst.getOperand(1).getImm() <= 255) && |
| Inst.getOperand(4).getReg() == (inITBlock() ? 0 : ARM::CPSR) && |
| !HasWideQualifier) { |
| // The operands aren't in the same order for tMOVi8... |
| MCInst TmpInst; |
| TmpInst.setOpcode(ARM::tMOVi8); |
| TmpInst.addOperand(Inst.getOperand(0)); |
| TmpInst.addOperand(Inst.getOperand(4)); |
| TmpInst.addOperand(Inst.getOperand(1)); |
| TmpInst.addOperand(Inst.getOperand(2)); |
| TmpInst.addOperand(Inst.getOperand(3)); |
| Inst = TmpInst; |
| return true; |
| } |
| break; |
| |
| case ARM::t2MOVr: |
| // If we can use the 16-bit encoding and the user didn't explicitly |
| // request the 32-bit variant, transform it here. |
| if (isARMLowRegister(Inst.getOperand(0).getReg()) && |
| isARMLowRegister(Inst.getOperand(1).getReg()) && |
| Inst.getOperand(2).getImm() == ARMCC::AL && |
| Inst.getOperand(4).getReg() == ARM::CPSR && |
| !HasWideQualifier) { |
| // The operands aren't the same for tMOV[S]r... (no cc_out) |
| MCInst TmpInst; |
| TmpInst.setOpcode(Inst.getOperand(4).getReg() ? ARM::tMOVSr : ARM::tMOVr); |
| TmpInst.addOperand(Inst.getOperand(0)); |
| TmpInst.addOperand(Inst.getOperand(1)); |
| TmpInst.addOperand(Inst.getOperand(2)); |
| TmpInst.addOperand(Inst.getOperand(3)); |
| Inst = TmpInst; |
| return true; |
| } |
| break; |
| |
| case ARM::t2SXTH: |
| case ARM::t2SXTB: |
| case ARM::t2UXTH: |
| case ARM::t2UXTB: |
| // If we can use the 16-bit encoding and the user didn't explicitly |
| // request the 32-bit variant, transform it here. |
| if (isARMLowRegister(Inst.getOperand(0).getReg()) && |
| isARMLowRegister(Inst.getOperand(1).getReg()) && |
| Inst.getOperand(2).getImm() == 0 && |
| !HasWideQualifier) { |
| unsigned NewOpc; |
| switch (Inst.getOpcode()) { |
| default: llvm_unreachable("Illegal opcode!"); |
| case ARM::t2SXTH: NewOpc = ARM::tSXTH; break; |
| case ARM::t2SXTB: NewOpc = ARM::tSXTB; break; |
| case ARM::t2UXTH: NewOpc = ARM::tUXTH; break; |
| case ARM::t2UXTB: NewOpc = ARM::tUXTB; break; |
| } |
| // The operands aren't the same for thumb1 (no rotate operand). |
| MCInst TmpInst; |
| TmpInst.setOpcode(NewOpc); |
| TmpInst.addOperand(Inst.getOperand(0)); |
| TmpInst.addOperand(Inst.getOperand(1)); |
| TmpInst.addOperand(Inst.getOperand(3)); |
| TmpInst.addOperand(Inst.getOperand(4)); |
| Inst = TmpInst; |
| return true; |
| } |
| break; |
| |
| case ARM::MOVsi: { |
| ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(2).getImm()); |
| // rrx shifts and asr/lsr of #32 is encoded as 0 |
| if (SOpc == ARM_AM::rrx || SOpc == ARM_AM::asr || SOpc == ARM_AM::lsr) |
| return false; |
| if (ARM_AM::getSORegOffset(Inst.getOperand(2).getImm()) == 0) { |
| // Shifting by zero is accepted as a vanilla 'MOVr' |
| MCInst TmpInst; |
| TmpInst.setOpcode(ARM::MOVr); |
| TmpInst.addOperand(Inst.getOperand(0)); |
| TmpInst.addOperand(Inst.getOperand(1)); |
| TmpInst.addOperand(Inst.getOperand(3)); |
| TmpInst.addOperand(Inst.getOperand(4)); |
| TmpInst.addOperand(Inst.getOperand(5)); |
| Inst = TmpInst; |
| return true; |
| } |
| return false; |
| } |
| case ARM::ANDrsi: |
| case ARM::ORRrsi: |
| case ARM::EORrsi: |
| case ARM::BICrsi: |
| case ARM::SUBrsi: |
| case ARM::ADDrsi: { |
| unsigned newOpc; |
| ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(3).getImm()); |
| if (SOpc == ARM_AM::rrx) return false; |
| switch (Inst.getOpcode()) { |
| default: llvm_unreachable("unexpected opcode!"); |
| case ARM::ANDrsi: newOpc = ARM::ANDrr; break; |
| case ARM::ORRrsi: newOpc = ARM::ORRrr; break; |
| case ARM::EORrsi: newOpc = ARM::EORrr; break; |
| case ARM::BICrsi: newOpc = ARM::BICrr; break; |
| case ARM::SUBrsi: newOpc = ARM::SUBrr; break; |
| case ARM::ADDrsi: newOpc = ARM::ADDrr; break; |
| } |
| // If the shift is by zero, use the non-shifted instruction definition. |
| // The exception is for right shifts, where 0 == 32 |
| if (ARM_AM::getSORegOffset(Inst.getOperand(3).getImm()) == 0 && |
| !(SOpc == ARM_AM::lsr || SOpc == ARM_AM::asr)) { |
| MCInst TmpInst; |
| TmpInst.setOpcode(newOpc); |
| TmpInst.addOperand(Inst.getOperand(0)); |
| TmpInst.addOperand(Inst.getOperand(1)); |
| TmpInst.addOperand(Inst.getOperand(2)); |
| TmpInst.addOperand(Inst.getOperand(4)); |
| TmpInst.addOperand(Inst.getOperand(5)); |
| TmpInst.addOperand(Inst.getOperand(6)); |
| Inst = TmpInst; |
| return true; |
| } |
| return false; |
| } |
| case ARM::ITasm: |
| case ARM::t2IT: { |
| // Set up the IT block state according to the IT instruction we just |
| // matched. |
| assert(!inITBlock() && "nested IT blocks?!"); |
| startExplicitITBlock(ARMCC::CondCodes(Inst.getOperand(0).getImm()), |
| Inst.getOperand(1).getImm()); |
| break; |
| } |
| case ARM::t2LSLrr: |
| case ARM::t2LSRrr: |
| case ARM::t2ASRrr: |
| case ARM::t2SBCrr: |
| case ARM::t2RORrr: |
| case ARM::t2BICrr: |
| // Assemblers should use the narrow encodings of these instructions when permissible. |
| if ((isARMLowRegister(Inst.getOperand(1).getReg()) && |
| isARMLowRegister(Inst.getOperand(2).getReg())) && |
| Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() && |
| Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) && |
| !HasWideQualifier) { |
| unsigned NewOpc; |
| switch (Inst.getOpcode()) { |
| default: llvm_unreachable("unexpected opcode"); |
| case ARM::t2LSLrr: NewOpc = ARM::tLSLrr; break; |
| case ARM::t2LSRrr: NewOpc = ARM::tLSRrr; break; |
| case ARM::t2ASRrr: NewOpc = ARM::tASRrr; break; |
| case ARM::t2SBCrr: NewOpc = ARM::tSBC; break; |
| case ARM::t2RORrr: NewOpc = ARM::tROR; break; |
| case ARM::t2BICrr: NewOpc = ARM::tBIC; break; |
| } |
| MCInst TmpInst; |
| TmpInst.setOpcode(NewOpc); |
| TmpInst.addOperand(Inst.getOperand(0)); |
| TmpInst.addOperand(Inst.getOperand(5)); |
| TmpInst.addOperand(Inst.getOperand(1)); |
| TmpInst.addOperand(Inst.getOperand(2)); |
| TmpInst.addOperand(Inst.getOperand(3)); |
| TmpInst.addOperand(Inst.getOperand(4)); |
| Inst = TmpInst; |
| return true; |
| } |
| return false; |
| |
| case ARM::t2ANDrr: |
| case ARM::t2EORrr: |
| case ARM::t2ADCrr: |
| case ARM::t2ORRrr: |
| // Assemblers should use the narrow encodings of these instructions when permissible. |
| // These instructions are special in that they are commutable, so shorter encodings |
| // are available more often. |
| if ((isARMLowRegister(Inst.getOperand(1).getReg()) && |
| isARMLowRegister(Inst.getOperand(2).getReg())) && |
| (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() || |
| Inst.getOperand(0).getReg() == Inst.getOperand(2).getReg()) && |
| Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) && |
| !HasWideQualifier) { |
| unsigned NewOpc; |
| switch (Inst.getOpcode()) { |
| default: llvm_unreachable("unexpected opcode"); |
| case ARM::t2ADCrr: NewOpc = ARM::tADC; break; |
| case ARM::t2ANDrr: NewOpc = ARM::tAND; break; |
| case ARM::t2EORrr: NewOpc = ARM::tEOR; break; |
| case ARM::t2ORRrr: NewOpc = ARM::tORR; break; |
| } |
| MCInst TmpInst; |
| TmpInst.setOpcode(NewOpc); |
| TmpInst.addOperand(Inst.getOperand(0)); |
| TmpInst.addOperand(Inst.getOperand(5)); |
| if (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg()) { |
| TmpInst.addOperand(Inst.getOperand(1)); |
| TmpInst.addOperand(Inst.getOperand(2)); |
| } else { |
| TmpInst.addOperand(Inst.getOperand(2)); |
| TmpInst.addOperand(Inst.getOperand(1)); |
| } |
| TmpInst.addOperand(Inst.getOperand(3)); |
| TmpInst.addOperand(Inst.getOperand(4)); |
| Inst = TmpInst; |
| return true; |
| } |
| return false; |
| case ARM::MVE_VPST: |
| case ARM::MVE_VPTv16i8: |
| case ARM::MVE_VPTv8i16: |
| case ARM::MVE_VPTv4i32: |
| case ARM::MVE_VPTv16u8: |
| case ARM::MVE_VPTv8u16: |
| case ARM::MVE_VPTv4u32: |
| case ARM::MVE_VPTv16s8: |
| case ARM::MVE_VPTv8s16: |
| case ARM::MVE_VPTv4s32: |
| case ARM::MVE_VPTv4f32: |
| case ARM::MVE_VPTv8f16: |
| case ARM::MVE_VPTv16i8r: |
| case ARM::MVE_VPTv8i16r: |
| case ARM::MVE_VPTv4i32r: |
| case ARM::MVE_VPTv16u8r: |
| case ARM::MVE_VPTv8u16r: |
| case ARM::MVE_VPTv4u32r: |
| case ARM::MVE_VPTv16s8r: |
| case ARM::MVE_VPTv8s16r: |
| case ARM::MVE_VPTv4s32r: |
| case ARM::MVE_VPTv4f32r: |
| case ARM::MVE_VPTv8f16r: { |
| assert(!inVPTBlock() && "Nested VPT blocks are not allowed"); |
| MCOperand &MO = Inst.getOperand(0); |
| VPTState.Mask = MO.getImm(); |
| VPTState.CurPosition = 0; |
| break; |
| } |
| } |
| return false; |
| } |
| |
| unsigned ARMAsmParser::checkTargetMatchPredicate(MCInst &Inst) { |
| // 16-bit thumb arithmetic instructions either require or preclude the 'S' |
| // suffix depending on whether they're in an IT block or not. |
| unsigned Opc = Inst.getOpcode(); |
| const MCInstrDesc &MCID = MII.get(Opc); |
| if (MCID.TSFlags & ARMII::ThumbArithFlagSetting) { |
| assert(MCID.hasOptionalDef() && |
| "optionally flag setting instruction missing optional def operand"); |
| assert(MCID.NumOperands == Inst.getNumOperands() && |
| "operand count mismatch!"); |
| // Find the optional-def operand (cc_out). |
| unsigned OpNo; |
| for (OpNo = 0; |
| !MCID.OpInfo[OpNo].isOptionalDef() && OpNo < MCID.NumOperands; |
| ++OpNo) |
| ; |
| // If we're parsing Thumb1, reject it completely. |
| if (isThumbOne() && Inst.getOperand(OpNo).getReg() != ARM::CPSR) |
| return Match_RequiresFlagSetting; |
| // If we're parsing Thumb2, which form is legal depends on whether we're |
| // in an IT block. |
| if (isThumbTwo() && Inst.getOperand(OpNo).getReg() != ARM::CPSR && |
| !inITBlock()) |
| return Match_RequiresITBlock; |
| if (isThumbTwo() && Inst.getOperand(OpNo).getReg() == ARM::CPSR && |
| inITBlock()) |
| return Match_RequiresNotITBlock; |
| // LSL with zero immediate is not allowed in an IT block |
| if (Opc == ARM::tLSLri && Inst.getOperand(3).getImm() == 0 && inITBlock()) |
| return Match_RequiresNotITBlock; |
| } else if (isThumbOne()) { |
| // Some high-register supporting Thumb1 encodings only allow both registers |
| // to be from r0-r7 when in Thumb2. |
| if (Opc == ARM::tADDhirr && !hasV6MOps() && |
| isARMLowRegister(Inst.getOperand(1).getReg()) && |
| isARMLowRegister(Inst.getOperand(2).getReg())) |
| return Match_RequiresThumb2; |
| // Others only require ARMv6 or later. |
| else if (Opc == ARM::tMOVr && !hasV6Ops() && |
| isARMLowRegister(Inst.getOperand(0).getReg()) && |
| isARMLowRegister(Inst.getOperand(1).getReg())) |
| return Match_RequiresV6; |
| } |
| |
| // Before ARMv8 the rules for when SP is allowed in t2MOVr are more complex |
| // than the loop below can handle, so it uses the GPRnopc register class and |
| // we do SP handling here. |
| if (Opc == ARM::t2MOVr && !hasV8Ops()) |
| { |
| // SP as both source and destination is not allowed |
| if (Inst.getOperand(0).getReg() == ARM::SP && |
| Inst.getOperand(1).getReg() == ARM::SP) |
| return Match_RequiresV8; |
| // When flags-setting SP as either source or destination is not allowed |
| if (Inst.getOperand(4).getReg() == ARM::CPSR && |
| (Inst.getOperand(0).getReg() == ARM::SP || |
| Inst.getOperand(1).getReg() == ARM::SP)) |
| return Match_RequiresV8; |
| } |
| |
| switch (Inst.getOpcode()) { |
| case ARM::VMRS: |
| case ARM::VMSR: |
| case ARM::VMRS_FPCXTS: |
| case ARM::VMRS_FPCXTNS: |
| case ARM::VMSR_FPCXTS: |
| case ARM::VMSR_FPCXTNS: |
| case ARM::VMRS_FPSCR_NZCVQC: |
| case ARM::VMSR_FPSCR_NZCVQC: |
| case ARM::FMSTAT: |
| case ARM::VMRS_VPR: |
| case ARM::VMRS_P0: |
| case ARM::VMSR_VPR: |
| case ARM::VMSR_P0: |
| // Use of SP for VMRS/VMSR is only allowed in ARM mode with the exception of |
| // ARMv8-A. |
| if (Inst.getOperand(0).isReg() && Inst.getOperand(0).getReg() == ARM::SP && |
| (isThumb() && !hasV8Ops())) |
| return Match_InvalidOperand; |
| break; |
| default: |
| break; |
| } |
| |
| for (unsigned I = 0; I < MCID.NumOperands; ++I) |
| if (MCID.OpInfo[I].RegClass == ARM::rGPRRegClassID) { |
| // rGPRRegClass excludes PC, and also excluded SP before ARMv8 |
| const auto &Op = Inst.getOperand(I); |
| if (!Op.isReg()) { |
| // This can happen in awkward cases with tied operands, e.g. a |
| // writeback load/store with a complex addressing mode in |
| // which there's an output operand corresponding to the |
| // updated written-back base register: the Tablegen-generated |
| // AsmMatcher will have written a placeholder operand to that |
| // slot in the form of an immediate 0, because it can't |
| // generate the register part of the complex addressing-mode |
| // operand ahead of time. |
| continue; |
| } |
| |
| unsigned Reg = Op.getReg(); |
| if ((Reg == ARM::SP) && !hasV8Ops()) |
| return Match_RequiresV8; |
| else if (Reg == ARM::PC) |
| return Match_InvalidOperand; |
| } |
| |
| return Match_Success; |
| } |
| |
| namespace llvm { |
| |
| template <> inline bool IsCPSRDead<MCInst>(const MCInst *Instr) { |
| return true; // In an assembly source, no need to second-guess |
| } |
| |
| } // end namespace llvm |
| |
| // Returns true if Inst is unpredictable if it is in and IT block, but is not |
| // the last instruction in the block. |
| bool ARMAsmParser::isITBlockTerminator(MCInst &Inst) const { |
| const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); |
| |
| // All branch & call instructions terminate IT blocks with the exception of |
| // SVC. |
| if (MCID.isTerminator() || (MCID.isCall() && Inst.getOpcode() != ARM::tSVC) || |
| MCID.isReturn() || MCID.isBranch() || MCID.isIndirectBranch()) |
| return true; |
| |
| // Any arithmetic instruction which writes to the PC also terminates the IT |
| // block. |
| if (MCID.hasDefOfPhysReg(Inst, ARM::PC, *MRI)) |
| return true; |
| |
| return false; |
| } |
| |
| unsigned ARMAsmParser::MatchInstruction(OperandVector &Operands, MCInst &Inst, |
| SmallVectorImpl<NearMissInfo> &NearMisses, |
| bool MatchingInlineAsm, |
| bool &EmitInITBlock, |
| MCStreamer &Out) { |
| // If we can't use an implicit IT block here, just match as normal. |
| if (inExplicitITBlock() || !isThumbTwo() || !useImplicitITThumb()) |
| return MatchInstructionImpl(Operands, Inst, &NearMisses, MatchingInlineAsm); |
| |
| // Try to match the instruction in an extension of the current IT block (if |
| // there is one). |
| if (inImplicitITBlock()) { |
| extendImplicitITBlock(ITState.Cond); |
| if (MatchInstructionImpl(Operands, Inst, nullptr, MatchingInlineAsm) == |
| Match_Success) { |
| // The match succeded, but we still have to check that the instruction is |
| // valid in this implicit IT block. |
| const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); |
| if (MCID.isPredicable()) { |
| ARMCC::CondCodes InstCond = |
| (ARMCC::CondCodes)Inst.getOperand(MCID.findFirstPredOperandIdx()) |
| .getImm(); |
| ARMCC::CondCodes ITCond = currentITCond(); |
| if (InstCond == ITCond) { |
| EmitInITBlock = true; |
| return Match_Success; |
| } else if (InstCond == ARMCC::getOppositeCondition(ITCond)) { |
| invertCurrentITCondition(); |
| EmitInITBlock = true; |
| return Match_Success; |
| } |
| } |
| } |
| rewindImplicitITPosition(); |
| } |
| |
| // Finish the current IT block, and try to match outside any IT block. |
| flushPendingInstructions(Out); |
| unsigned PlainMatchResult = |
| MatchInstructionImpl(Operands, Inst, &NearMisses, MatchingInlineAsm); |
| if (PlainMatchResult == Match_Success) { |
| const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); |
| if (MCID.isPredicable()) { |
| ARMCC::CondCodes InstCond = |
| (ARMCC::CondCodes)Inst.getOperand(MCID.findFirstPredOperandIdx()) |
| .getImm(); |
| // Some forms of the branch instruction have their own condition code |
| // fields, so can be conditionally executed without an IT block. |
| if (Inst.getOpcode() == ARM::tBcc || Inst.getOpcode() == ARM::t2Bcc) { |
| EmitInITBlock = false; |
| return Match_Success; |
| } |
| if (InstCond == ARMCC::AL) { |
| EmitInITBlock = false; |
| return Match_Success; |
| } |
| } else { |
| EmitInITBlock = false; |
| return Match_Success; |
| } |
| } |
| |
| // Try to match in a new IT block. The matcher doesn't check the actual |
| // condition, so we create an IT block with a dummy condition, and fix it up |
| // once we know the actual condition. |
| startImplicitITBlock(); |
| if (MatchInstructionImpl(Operands, Inst, nullptr, MatchingInlineAsm) == |
| Match_Success) { |
| const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); |
| if (MCID.isPredicable()) { |
| ITState.Cond = |
| (ARMCC::CondCodes)Inst.getOperand(MCID.findFirstPredOperandIdx()) |
| .getImm(); |
| EmitInITBlock = true; |
| return Match_Success; |
| } |
| } |
| discardImplicitITBlock(); |
| |
| // If none of these succeed, return the error we got when trying to match |
| // outside any IT blocks. |
| EmitInITBlock = false; |
| return PlainMatchResult; |
| } |
| |
| static std::string ARMMnemonicSpellCheck(StringRef S, const FeatureBitset &FBS, |
| unsigned VariantID = 0); |
| |
| static const char *getSubtargetFeatureName(uint64_t Val); |
| bool ARMAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, |
| OperandVector &Operands, |
| MCStreamer &Out, uint64_t &ErrorInfo, |
| bool MatchingInlineAsm) { |
| MCInst Inst; |
| unsigned MatchResult; |
| bool PendConditionalInstruction = false; |
| |
| SmallVector<NearMissInfo, 4> NearMisses; |
| MatchResult = MatchInstruction(Operands, Inst, NearMisses, MatchingInlineAsm, |
| PendConditionalInstruction, Out); |
| |
| switch (MatchResult) { |
| case Match_Success: |
| LLVM_DEBUG(dbgs() << "Parsed as: "; |
| Inst.dump_pretty(dbgs(), MII.getName(Inst.getOpcode())); |
| dbgs() << "\n"); |
| |
| // Context sensitive operand constraints aren't handled by the matcher, |
| // so check them here. |
| if (validateInstruction(Inst, Operands)) { |
| // Still progress the IT block, otherwise one wrong condition causes |
| // nasty cascading errors. |
| forwardITPosition(); |
| forwardVPTPosition(); |
| return true; |
| } |
| |
| { // processInstruction() updates inITBlock state, we need to save it away |
| bool wasInITBlock = inITBlock(); |
| |
| // Some instructions need post-processing to, for example, tweak which |
| // encoding is selected. Loop on it while changes happen so the |
| // individual transformations can chain off each other. E.g., |
| // tPOP(r8)->t2LDMIA_UPD(sp,r8)->t2STR_POST(sp,r8) |
| while (processInstruction(Inst, Operands, Out)) |
| LLVM_DEBUG(dbgs() << "Changed to: "; |
| Inst.dump_pretty(dbgs(), MII.getName(Inst.getOpcode())); |
| dbgs() << "\n"); |
| |
| // Only after the instruction is fully processed, we can validate it |
| if (wasInITBlock && hasV8Ops() && isThumb() && |
| !isV8EligibleForIT(&Inst)) { |
| Warning(IDLoc, "deprecated instruction in IT block"); |
| } |
| } |
| |
| // Only move forward at the very end so that everything in validate |
| // and process gets a consistent answer about whether we're in an IT |
| // block. |
| forwardITPosition(); |
| forwardVPTPosition(); |
| |
| // ITasm is an ARM mode pseudo-instruction that just sets the ITblock and |
| // doesn't actually encode. |
| if (Inst.getOpcode() == ARM::ITasm) |
| return false; |
| |
| Inst.setLoc(IDLoc); |
| if (PendConditionalInstruction) { |
| PendingConditionalInsts.push_back(Inst); |
| if (isITBlockFull() || isITBlockTerminator(Inst)) |
| flushPendingInstructions(Out); |
| } else { |
| Out.EmitInstruction(Inst, getSTI()); |
| } |
| return false; |
| case Match_NearMisses: |
| ReportNearMisses(NearMisses, IDLoc, Operands); |
| return true; |
| case Match_MnemonicFail: { |
| FeatureBitset FBS = ComputeAvailableFeatures(getSTI().getFeatureBits()); |
| std::string Suggestion = ARMMnemonicSpellCheck( |
| ((ARMOperand &)*Operands[0]).getToken(), FBS); |
| return Error(IDLoc, "invalid instruction" + Suggestion, |
| ((ARMOperand &)*Operands[0]).getLocRange()); |
| } |
| } |
| |
| llvm_unreachable("Implement any new match types added!"); |
| } |
| |
| /// parseDirective parses the arm specific directives |
| bool ARMAsmParser::ParseDirective(AsmToken DirectiveID) { |
| const MCObjectFileInfo::Environment Format = |
| getContext().getObjectFileInfo()->getObjectFileType(); |
| bool IsMachO = Format == MCObjectFileInfo::IsMachO; |
| bool IsCOFF = Format == MCObjectFileInfo::IsCOFF; |
| |
| StringRef IDVal = DirectiveID.getIdentifier(); |
| if (IDVal == ".word") |
| parseLiteralValues(4, DirectiveID.getLoc()); |
| else if (IDVal == ".short" || IDVal == ".hword") |
| parseLiteralValues(2, DirectiveID.getLoc()); |
| else if (IDVal == ".thumb") |
| parseDirectiveThumb(DirectiveID.getLoc()); |
| else if (IDVal == ".arm") |
| parseDirectiveARM(DirectiveID.getLoc()); |
| else if (IDVal == ".thumb_func") |
| parseDirectiveThumbFunc(DirectiveID.getLoc()); |
| else if (IDVal == ".code") |
| parseDirectiveCode(DirectiveID.getLoc()); |
| else if (IDVal == ".syntax") |
| parseDirectiveSyntax(DirectiveID.getLoc()); |
| else if (IDVal == ".unreq") |
| parseDirectiveUnreq(DirectiveID.getLoc()); |
| else if (IDVal == ".fnend") |
| parseDirectiveFnEnd(DirectiveID.getLoc()); |
| else if (IDVal == ".cantunwind") |
| parseDirectiveCantUnwind(DirectiveID.getLoc()); |
| else if (IDVal == ".personality") |
| parseDirectivePersonality(DirectiveID.getLoc()); |
| else if (IDVal == ".handlerdata") |
| parseDirectiveHandlerData(DirectiveID.getLoc()); |
| else if (IDVal == ".setfp") |
| parseDirectiveSetFP(DirectiveID.getLoc()); |
| else if (IDVal == ".pad") |
| parseDirectivePad(DirectiveID.getLoc()); |
| else if (IDVal == ".save") |
| parseDirectiveRegSave(DirectiveID.getLoc(), false); |
| else if (IDVal == ".vsave") |
| parseDirectiveRegSave(DirectiveID.getLoc(), true); |
| else if (IDVal == ".ltorg" || IDVal == ".pool") |
| parseDirectiveLtorg(DirectiveID.getLoc()); |
| else if (IDVal == ".even") |
| parseDirectiveEven(DirectiveID.getLoc()); |
| else if (IDVal == ".personalityindex") |
| parseDirectivePersonalityIndex(DirectiveID.getLoc()); |
| else if (IDVal == ".unwind_raw") |
| parseDirectiveUnwindRaw(DirectiveID.getLoc()); |
| else if (IDVal == ".movsp") |
| parseDirectiveMovSP(DirectiveID.getLoc()); |
| else if (IDVal == ".arch_extension") |
| parseDirectiveArchExtension(DirectiveID.getLoc()); |
| else if (IDVal == ".align") |
| return parseDirectiveAlign(DirectiveID.getLoc()); // Use Generic on failure. |
| else if (IDVal == ".thumb_set") |
| parseDirectiveThumbSet(DirectiveID.getLoc()); |
| else if (IDVal == ".inst") |
| parseDirectiveInst(DirectiveID.getLoc()); |
| else if (IDVal == ".inst.n") |
| parseDirectiveInst(DirectiveID.getLoc(), 'n'); |
| else if (IDVal == ".inst.w") |
| parseDirectiveInst(DirectiveID.getLoc(), 'w'); |
| else if (!IsMachO && !IsCOFF) { |
| if (IDVal == ".arch") |
| parseDirectiveArch(DirectiveID.getLoc()); |
| else if (IDVal == ".cpu") |
| parseDirectiveCPU(DirectiveID.getLoc()); |
| else if (IDVal == ".eabi_attribute") |
| parseDirectiveEabiAttr(DirectiveID.getLoc()); |
| else if (IDVal == ".fpu") |
| parseDirectiveFPU(DirectiveID.getLoc()); |
| else if (IDVal == ".fnstart") |
| parseDirectiveFnStart(DirectiveID.getLoc()); |
| else if (IDVal == ".object_arch") |
| parseDirectiveObjectArch(DirectiveID.getLoc()); |
| else if (IDVal == ".tlsdescseq") |
| parseDirectiveTLSDescSeq(DirectiveID.getLoc()); |
| else |
| return true; |
| } else |
| return true; |
| return false; |
| } |
| |
| /// parseLiteralValues |
| /// ::= .hword expression [, expression]* |
| /// ::= .short expression [, expression]* |
| /// ::= .word expression [, expression]* |
| bool ARMAsmParser::parseLiteralValues(unsigned Size, SMLoc L) { |
| auto parseOne = [&]() -> bool { |
| const MCExpr *Value; |
| if (getParser().parseExpression(Value)) |
| return true; |
| getParser().getStreamer().EmitValue(Value, Size, L); |
| return false; |
| }; |
| return (parseMany(parseOne)); |
| } |
| |
| /// parseDirectiveThumb |
| /// ::= .thumb |
| bool ARMAsmParser::parseDirectiveThumb(SMLoc L) { |
| if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive") || |
| check(!hasThumb(), L, "target does not support Thumb mode")) |
| return true; |
| |
| if (!isThumb()) |
| SwitchMode(); |
| |
| getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16); |
| return false; |
| } |
| |
| /// parseDirectiveARM |
| /// ::= .arm |
| bool ARMAsmParser::parseDirectiveARM(SMLoc L) { |
| if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive") || |
| check(!hasARM(), L, "target does not support ARM mode")) |
| return true; |
| |
| if (isThumb()) |
| SwitchMode(); |
| getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32); |
| return false; |
| } |
| |
| void ARMAsmParser::doBeforeLabelEmit(MCSymbol *Symbol) { |
| // We need to flush the current implicit IT block on a label, because it is |
| // not legal to branch into an IT block. |
| flushPendingInstructions(getStreamer()); |
| } |
| |
| void ARMAsmParser::onLabelParsed(MCSymbol *Symbol) { |
| if (NextSymbolIsThumb) { |
| getParser().getStreamer().EmitThumbFunc(Symbol); |
| NextSymbolIsThumb = false; |
| } |
| } |
| |
| /// parseDirectiveThumbFunc |
| /// ::= .thumbfunc symbol_name |
| bool ARMAsmParser::parseDirectiveThumbFunc(SMLoc L) { |
| MCAsmParser &Parser = getParser(); |
| const auto Format = getContext().getObjectFileInfo()->getObjectFileType(); |
| bool IsMachO = Format == MCObjectFileInfo::IsMachO; |
| |
| // Darwin asm has (optionally) function name after .thumb_func direction |
| // ELF doesn't |
| |
| if (IsMachO) { |
| if (Parser.getTok().is(AsmToken::Identifier) || |
| Parser.getTok().is(AsmToken::String)) { |
| MCSymbol *Func = getParser().getContext().getOrCreateSymbol( |
| Parser.getTok().getIdentifier()); |
| getParser().getStreamer().EmitThumbFunc(Func); |
| Parser.Lex(); |
| if (parseToken(AsmToken::EndOfStatement, |
| "unexpected token in '.thumb_func' directive")) |
| return true; |
| return false; |
| } |
| } |
| |
| if (parseToken(AsmToken::EndOfStatement, |
| "unexpected token in '.thumb_func' directive")) |
| return true; |
| |
| NextSymbolIsThumb = true; |
| return false; |
| } |
| |
| /// parseDirectiveSyntax |
| /// ::= .syntax unified | divided |
| bool ARMAsmParser::parseDirectiveSyntax(SMLoc L) { |
| MCAsmParser &Parser = getParser(); |
| const AsmToken &Tok = Parser.getTok(); |
| if (Tok.isNot(AsmToken::Identifier)) { |
| Error(L, "unexpected token in .syntax directive"); |
| return false; |
| } |
| |
| StringRef Mode = Tok.getString(); |
| Parser.Lex(); |
| if (check(Mode == "divided" || Mode == "DIVIDED", L, |
| "'.syntax divided' arm assembly not supported") || |
| check(Mode != "unified" && Mode != "UNIFIED", L, |
| "unrecognized syntax mode in .syntax directive") || |
| parseToken(AsmToken::EndOfStatement, "unexpected token in directive")) |
| return true; |
| |
| // TODO tell the MC streamer the mode |
| // getParser().getStreamer().Emit???(); |
| return false; |
| } |
| |
| /// parseDirectiveCode |
| /// ::= .code 16 | 32 |
| bool ARMAsmParser::parseDirectiveCode(SMLoc L) { |
| MCAsmParser &Parser = getParser(); |
| const AsmToken &Tok = Parser.getTok(); |
| if (Tok.isNot(AsmToken::Integer)) |
| return Error(L, "unexpected token in .code directive"); |
| int64_t Val = Parser.getTok().getIntVal(); |
| if (Val != 16 && Val != 32) { |
| Error(L, "invalid operand to .code directive"); |
| return false; |
| } |
| Parser.Lex(); |
| |
| if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive")) |
| return true; |
| |
| if (Val == 16) { |
| if (!hasThumb()) |
| return Error(L, "target does not support Thumb mode"); |
| |
| if (!isThumb()) |
| SwitchMode(); |
| getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16); |
| } else { |
| if (!hasARM()) |
| return Error(L, "target does not support ARM mode"); |
| |
| if (isThumb()) |
| SwitchMode(); |
| getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32); |
| } |
| |
| return false; |
| } |
| |
| /// parseDirectiveReq |
| /// ::= name .req registername |
| bool ARMAsmParser::parseDirectiveReq(StringRef Name, SMLoc L) { |
| MCAsmParser &Parser = getParser(); |
| Parser.Lex(); // Eat the '.req' token. |
| unsigned Reg; |
| SMLoc SRegLoc, ERegLoc; |
| if (check(ParseRegister(Reg, SRegLoc, ERegLoc), SRegLoc, |
| "register name expected") || |
| parseToken(AsmToken::EndOfStatement, |
| "unexpected input in .req directive.")) |
| return true; |
| |
| if (RegisterReqs.insert(std::make_pair(Name, Reg)).first->second != Reg) |
| return Error(SRegLoc, |
| "redefinition of '" + Name + "' does not match original."); |
| |
| return false; |
| } |
| |
| /// parseDirectiveUneq |
| /// ::= .unreq registername |
| bool ARMAsmParser::parseDirectiveUnreq(SMLoc L) { |
| MCAsmParser &Parser = getParser(); |
| if (Parser.getTok().isNot(AsmToken::Identifier)) |
| return Error(L, "unexpected input in .unreq directive."); |
| RegisterReqs.erase(Parser.getTok().getIdentifier().lower()); |
| Parser.Lex(); // Eat the identifier. |
| if (parseToken(AsmToken::EndOfStatement, |
| "unexpected input in '.unreq' directive")) |
| return true; |
| return false; |
| } |
| |
| // After changing arch/CPU, try to put the ARM/Thumb mode back to what it was |
| // before, if supported by the new target, or emit mapping symbols for the mode |
| // switch. |
| void ARMAsmParser::FixModeAfterArchChange(bool WasThumb, SMLoc Loc) { |
| if (WasThumb != isThumb()) { |
| if (WasThumb && hasThumb()) { |
| // Stay in Thumb mode |
| SwitchMode(); |
| } else if (!WasThumb && hasARM()) { |
| // Stay in ARM mode |
| SwitchMode(); |
| } else { |
| // Mode switch forced, because the new arch doesn't support the old mode. |
| getParser().getStreamer().EmitAssemblerFlag(isThumb() ? MCAF_Code16 |
| : MCAF_Code32); |
| // Warn about the implcit mode switch. GAS does not switch modes here, |
| // but instead stays in the old mode, reporting an error on any following |
| // instructions as the mode does not exist on the target. |
| Warning(Loc, Twine("new target does not support ") + |
| (WasThumb ? "thumb" : "arm") + " mode, switching to " + |
| (!WasThumb ? "thumb" : "arm") + " mode"); |
| } |
| } |
| } |
| |
| /// parseDirectiveArch |
| /// ::= .arch token |
| bool ARMAsmParser::parseDirectiveArch(SMLoc L) { |
| StringRef Arch = getParser().parseStringToEndOfStatement().trim(); |
| ARM::ArchKind ID = ARM::parseArch(Arch); |
| |
| if (ID == ARM::ArchKind::INVALID) |
| return Error(L, "Unknown arch name"); |
| |
| bool WasThumb = isThumb(); |
| Triple T; |
| MCSubtargetInfo &STI = copySTI(); |
| STI.setDefaultFeatures("", ("+" + ARM::getArchName(ID)).str()); |
| setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); |
| FixModeAfterArchChange(WasThumb, L); |
| |
| getTargetStreamer().emitArch(ID); |
| return false; |
| } |
| |
| /// parseDirectiveEabiAttr |
| /// ::= .eabi_attribute int, int [, "str"] |
| /// ::= .eabi_attribute Tag_name, int [, "str"] |
| bool ARMAsmParser::parseDirectiveEabiAttr(SMLoc L) { |
| MCAsmParser &Parser = getParser(); |
| int64_t Tag; |
| SMLoc TagLoc; |
| TagLoc = Parser.getTok().getLoc(); |
| if (Parser.getTok().is(AsmToken::Identifier)) { |
| StringRef Name = Parser.getTok().getIdentifier(); |
| Tag = ARMBuildAttrs::AttrTypeFromString(Name); |
| if (Tag == -1) { |
| Error(TagLoc, "attribute name not recognised: " + Name); |
| return false; |
| } |
| Parser.Lex(); |
| } else { |
| const MCExpr *AttrExpr; |
| |
| TagLoc = Parser.getTok().getLoc(); |
| if (Parser.parseExpression(AttrExpr)) |
| return true; |
| |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(AttrExpr); |
| if (check(!CE, TagLoc, "expected numeric constant")) |
| return true; |
| |
| Tag = CE->getValue(); |
| } |
| |
| if (Parser.parseToken(AsmToken::Comma, "comma expected")) |
| return true; |
| |
| StringRef StringValue = ""; |
| bool IsStringValue = false; |
| |
| int64_t IntegerValue = 0; |
| bool IsIntegerValue = false; |
| |
| if (Tag == ARMBuildAttrs::CPU_raw_name || Tag == ARMBuildAttrs::CPU_name) |
| IsStringValue = true; |
| else if (Tag == ARMBuildAttrs::compatibility) { |
| IsStringValue = true; |
| IsIntegerValue = true; |
| } else if (Tag < 32 || Tag % 2 == 0) |
| IsIntegerValue = true; |
| else if (Tag % 2 == 1) |
| IsStringValue = true; |
| else |
| llvm_unreachable("invalid tag type"); |
| |
| if (IsIntegerValue) { |
| const MCExpr *ValueExpr; |
| SMLoc ValueExprLoc = Parser.getTok().getLoc(); |
| if (Parser.parseExpression(ValueExpr)) |
| return true; |
| |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ValueExpr); |
| if (!CE) |
| return Error(ValueExprLoc, "expected numeric constant"); |
| IntegerValue = CE->getValue(); |
| } |
| |
| if (Tag == ARMBuildAttrs::compatibility) { |
| if (Parser.parseToken(AsmToken::Comma, "comma expected")) |
| return true; |
| } |
| |
| if (IsStringValue) { |
| if (Parser.getTok().isNot(AsmToken::String)) |
| return Error(Parser.getTok().getLoc(), "bad string constant"); |
| |
| StringValue = Parser.getTok().getStringContents(); |
| Parser.Lex(); |
| } |
| |
| if (Parser.parseToken(AsmToken::EndOfStatement, |
| "unexpected token in '.eabi_attribute' directive")) |
| return true; |
| |
| if (IsIntegerValue && IsStringValue) { |
| assert(Tag == ARMBuildAttrs::compatibility); |
| getTargetStreamer().emitIntTextAttribute(Tag, IntegerValue, StringValue); |
| } else if (IsIntegerValue) |
| getTargetStreamer().emitAttribute(Tag, IntegerValue); |
| else if (IsStringValue) |
| getTargetStreamer().emitTextAttribute(Tag, StringValue); |
| return false; |
| } |
| |
| /// parseDirectiveCPU |
| /// ::= .cpu str |
| bool ARMAsmParser::parseDirectiveCPU(SMLoc L) { |
| StringRef CPU = getParser().parseStringToEndOfStatement().trim(); |
| getTargetStreamer().emitTextAttribute(ARMBuildAttrs::CPU_name, CPU); |
| |
| // FIXME: This is using table-gen data, but should be moved to |
| // ARMTargetParser once that is table-gen'd. |
| if (!getSTI().isCPUStringValid(CPU)) |
| return Error(L, "Unknown CPU name"); |
| |
| bool WasThumb = isThumb(); |
| MCSubtargetInfo &STI = copySTI(); |
| STI.setDefaultFeatures(CPU, ""); |
| setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); |
| FixModeAfterArchChange(WasThumb, L); |
| |
| return false; |
| } |
| |
| /// parseDirectiveFPU |
| /// ::= .fpu str |
| bool ARMAsmParser::parseDirectiveFPU(SMLoc L) { |
| SMLoc FPUNameLoc = getTok().getLoc(); |
| StringRef FPU = getParser().parseStringToEndOfStatement().trim(); |
| |
| unsigned ID = ARM::parseFPU(FPU); |
| std::vector<StringRef> Features; |
| if (!ARM::getFPUFeatures(ID, Features)) |
| return Error(FPUNameLoc, "Unknown FPU name"); |
| |
| MCSubtargetInfo &STI = copySTI(); |
| for (auto Feature : Features) |
| STI.ApplyFeatureFlag(Feature); |
| setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); |
| |
| getTargetStreamer().emitFPU(ID); |
| return false; |
| } |
| |
| /// parseDirectiveFnStart |
| /// ::= .fnstart |
| bool ARMAsmParser::parseDirectiveFnStart(SMLoc L) { |
| if (parseToken(AsmToken::EndOfStatement, |
| "unexpected token in '.fnstart' directive")) |
| return true; |
| |
| if (UC.hasFnStart()) { |
| Error(L, ".fnstart starts before the end of previous one"); |
| UC.emitFnStartLocNotes(); |
| return true; |
| } |
| |
| // Reset the unwind directives parser state |
| UC.reset(); |
| |
| getTargetStreamer().emitFnStart(); |
| |
| UC.recordFnStart(L); |
| return false; |
| } |
| |
| /// parseDirectiveFnEnd |
| /// ::= .fnend |
| bool ARMAsmParser::parseDirectiveFnEnd(SMLoc L) { |
| if (parseToken(AsmToken::EndOfStatement, |
| "unexpected token in '.fnend' directive")) |
| return true; |
| // Check the ordering of unwind directives |
| if (!UC.hasFnStart()) |
| return Error(L, ".fnstart must precede .fnend directive"); |
| |
| // Reset the unwind directives parser state |
| getTargetStreamer().emitFnEnd(); |
| |
| UC.reset(); |
| return false; |
| } |
| |
| /// parseDirectiveCantUnwind |
| /// ::= .cantunwind |
| bool ARMAsmParser::parseDirectiveCantUnwind(SMLoc L) { |
| if (parseToken(AsmToken::EndOfStatement, |
| "unexpected token in '.cantunwind' directive")) |
| return true; |
| |
| UC.recordCantUnwind(L); |
| // Check the ordering of unwind directives |
| if (check(!UC.hasFnStart(), L, ".fnstart must precede .cantunwind directive")) |
| return true; |
| |
| if (UC.hasHandlerData()) { |
| Error(L, ".cantunwind can't be used with .handlerdata directive"); |
| UC.emitHandlerDataLocNotes(); |
| return true; |
| } |
| if (UC.hasPersonality()) { |
| Error(L, ".cantunwind can't be used with .personality directive"); |
| UC.emitPersonalityLocNotes(); |
| return true; |
| } |
| |
| getTargetStreamer().emitCantUnwind(); |
| return false; |
| } |
| |
| /// parseDirectivePersonality |
| /// ::= .personality name |
| bool ARMAsmParser::parseDirectivePersonality(SMLoc L) { |
| MCAsmParser &Parser = getParser(); |
| bool HasExistingPersonality = UC.hasPersonality(); |
| |
| // Parse the name of the personality routine |
| if (Parser.getTok().isNot(AsmToken::Identifier)) |
| return Error(L, "unexpected input in .personality directive."); |
| StringRef Name(Parser.getTok().getIdentifier()); |
| Parser.Lex(); |
| |
| if (parseToken(AsmToken::EndOfStatement, |
| "unexpected token in '.personality' directive")) |
| return true; |
| |
| UC.recordPersonality(L); |
| |
| // Check the ordering of unwind directives |
| if (!UC.hasFnStart()) |
| return Error(L, ".fnstart must precede .personality directive"); |
| if (UC.cantUnwind()) { |
| Error(L, ".personality can't be used with .cantunwind directive"); |
| UC.emitCantUnwindLocNotes(); |
| return true; |
| } |
| if (UC.hasHandlerData()) { |
| Error(L, ".personality must precede .handlerdata directive"); |
| UC.emitHandlerDataLocNotes(); |
| return true; |
| } |
| if (HasExistingPersonality) { |
| Error(L, "multiple personality directives"); |
| UC.emitPersonalityLocNotes(); |
| return true; |
| } |
| |
| MCSymbol *PR = getParser().getContext().getOrCreateSymbol(Name); |
| getTargetStreamer().emitPersonality(PR); |
| return false; |
| } |
| |
| /// parseDirectiveHandlerData |
| /// ::= .handlerdata |
| bool ARMAsmParser::parseDirectiveHandlerData(SMLoc L) { |
| if (parseToken(AsmToken::EndOfStatement, |
| "unexpected token in '.handlerdata' directive")) |
| return true; |
| |
| UC.recordHandlerData(L); |
| // Check the ordering of unwind directives |
| if (!UC.hasFnStart()) |
| return Error(L, ".fnstart must precede .personality directive"); |
| if (UC.cantUnwind()) { |
| Error(L, ".handlerdata can't be used with .cantunwind directive"); |
| UC.emitCantUnwindLocNotes(); |
| return true; |
| } |
| |
| getTargetStreamer().emitHandlerData(); |
| return false; |
| } |
| |
| /// parseDirectiveSetFP |
| /// ::= .setfp fpreg, spreg [, offset] |
| bool ARMAsmParser::parseDirectiveSetFP(SMLoc L) { |
| MCAsmParser &Parser = getParser(); |
| // Check the ordering of unwind directives |
| if (check(!UC.hasFnStart(), L, ".fnstart must precede .setfp directive") || |
| check(UC.hasHandlerData(), L, |
| ".setfp must precede .handlerdata directive")) |
| return true; |
| |
| // Parse fpreg |
| SMLoc FPRegLoc = Parser.getTok().getLoc(); |
| int FPReg = tryParseRegister(); |
| |
| if (check(FPReg == -1, FPRegLoc, "frame pointer register expected") || |
| Parser.parseToken(AsmToken::Comma, "comma expected")) |
| return true; |
| |
| // Parse spreg |
| SMLoc SPRegLoc = Parser.getTok().getLoc(); |
| int SPReg = tryParseRegister(); |
| if (check(SPReg == -1, SPRegLoc, "stack pointer register expected") || |
| check(SPReg != ARM::SP && SPReg != UC.getFPReg(), SPRegLoc, |
| "register should be either $sp or the latest fp register")) |
| return true; |
| |
| // Update the frame pointer register |
| UC.saveFPReg(FPReg); |
| |
| // Parse offset |
| int64_t Offset = 0; |
| if (Parser.parseOptionalToken(AsmToken::Comma)) { |
| if (Parser.getTok().isNot(AsmToken::Hash) && |
| Parser.getTok().isNot(AsmToken::Dollar)) |
| return Error(Parser.getTok().getLoc(), "'#' expected"); |
| Parser.Lex(); // skip hash token. |
| |
| const MCExpr *OffsetExpr; |
| SMLoc ExLoc = Parser.getTok().getLoc(); |
| SMLoc EndLoc; |
| if (getParser().parseExpression(OffsetExpr, EndLoc)) |
| return Error(ExLoc, "malformed setfp offset"); |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); |
| if (check(!CE, ExLoc, "setfp offset must be an immediate")) |
| return true; |
| Offset = CE->getValue(); |
| } |
| |
| if (Parser.parseToken(AsmToken::EndOfStatement)) |
| return true; |
| |
| getTargetStreamer().emitSetFP(static_cast<unsigned>(FPReg), |
| static_cast<unsigned>(SPReg), Offset); |
| return false; |
| } |
| |
| /// parseDirective |
| /// ::= .pad offset |
| bool ARMAsmParser::parseDirectivePad(SMLoc L) { |
| MCAsmParser &Parser = getParser(); |
| // Check the ordering of unwind directives |
| if (!UC.hasFnStart()) |
| return Error(L, ".fnstart must precede .pad directive"); |
| if (UC.hasHandlerData()) |
| return Error(L, ".pad must precede .handlerdata directive"); |
| |
| // Parse the offset |
| if (Parser.getTok().isNot(AsmToken::Hash) && |
| Parser.getTok().isNot(AsmToken::Dollar)) |
| return Error(Parser.getTok().getLoc(), "'#' expected"); |
| Parser.Lex(); // skip hash token. |
| |
| const MCExpr *OffsetExpr; |
| SMLoc ExLoc = Parser.getTok().getLoc(); |
| SMLoc EndLoc; |
| if (getParser().parseExpression(OffsetExpr, EndLoc)) |
| return Error(ExLoc, "malformed pad offset"); |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); |
| if (!CE) |
| return Error(ExLoc, "pad offset must be an immediate"); |
| |
| if (parseToken(AsmToken::EndOfStatement, |
| "unexpected token in '.pad' directive")) |
| return true; |
| |
| getTargetStreamer().emitPad(CE->getValue()); |
| return false; |
| } |
| |
| /// parseDirectiveRegSave |
| /// ::= .save { registers } |
| /// ::= .vsave { registers } |
| bool ARMAsmParser::parseDirectiveRegSave(SMLoc L, bool IsVector) { |
| // Check the ordering of unwind directives |
| if (!UC.hasFnStart()) |
| return Error(L, ".fnstart must precede .save or .vsave directives"); |
| if (UC.hasHandlerData()) |
| return Error(L, ".save or .vsave must precede .handlerdata directive"); |
| |
| // RAII object to make sure parsed operands are deleted. |
| SmallVector<std::unique_ptr<MCParsedAsmOperand>, 1> Operands; |
| |
| // Parse the register list |
| if (parseRegisterList(Operands) || |
| parseToken(AsmToken::EndOfStatement, "unexpected token in directive")) |
| return true; |
| ARMOperand &Op = (ARMOperand &)*Operands[0]; |
| if (!IsVector && !Op.isRegList()) |
| return Error(L, ".save expects GPR registers"); |
| if (IsVector && !Op.isDPRRegList()) |
| return Error(L, ".vsave expects DPR registers"); |
| |
| getTargetStreamer().emitRegSave(Op.getRegList(), IsVector); |
| return false; |
| } |
| |
| /// parseDirectiveInst |
| /// ::= .inst opcode [, ...] |
| /// ::= .inst.n opcode [, ...] |
| /// ::= .inst.w opcode [, ...] |
| bool ARMAsmParser::parseDirectiveInst(SMLoc Loc, char Suffix) { |
| int Width = 4; |
| |
| if (isThumb()) { |
| switch (Suffix) { |
| case 'n': |
| Width = 2; |
| break; |
| case 'w': |
| break; |
| default: |
| Width = 0; |
| break; |
| } |
| } else { |
| if (Suffix) |
| return Error(Loc, "width suffixes are invalid in ARM mode"); |
| } |
| |
| auto parseOne = [&]() -> bool { |
| const MCExpr *Expr; |
| if (getParser().parseExpression(Expr)) |
| return true; |
| const MCConstantExpr *Value = dyn_cast_or_null<MCConstantExpr>(Expr); |
| if (!Value) { |
| return Error(Loc, "expected constant expression"); |
| } |
| |
| char CurSuffix = Suffix; |
| switch (Width) { |
| case 2: |
| if (Value->getValue() > 0xffff) |
| return Error(Loc, "inst.n operand is too big, use inst.w instead"); |
| break; |
| case 4: |
| if (Value->getValue() > 0xffffffff) |
| return Error(Loc, StringRef(Suffix ? "inst.w" : "inst") + |
| " operand is too big"); |
| break; |
| case 0: |
| // Thumb mode, no width indicated. Guess from the opcode, if possible. |
| if (Value->getValue() < 0xe800) |
| CurSuffix = 'n'; |
| else if (Value->getValue() >= 0xe8000000) |
| CurSuffix = 'w'; |
| else |
| return Error(Loc, "cannot determine Thumb instruction size, " |
| "use inst.n/inst.w instead"); |
| break; |
| default: |
| llvm_unreachable("only supported widths are 2 and 4"); |
| } |
| |
| getTargetStreamer().emitInst(Value->getValue(), CurSuffix); |
| return false; |
| }; |
| |
| if (parseOptionalToken(AsmToken::EndOfStatement)) |
| return Error(Loc, "expected expression following directive"); |
| if (parseMany(parseOne)) |
| return true; |
| return false; |
| } |
| |
| /// parseDirectiveLtorg |
| /// ::= .ltorg | .pool |
| bool ARMAsmParser::parseDirectiveLtorg(SMLoc L) { |
| if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive")) |
| return true; |
| getTargetStreamer().emitCurrentConstantPool(); |
| return false; |
| } |
| |
| bool ARMAsmParser::parseDirectiveEven(SMLoc L) { |
| const MCSection *Section = getStreamer().getCurrentSectionOnly(); |
| |
| if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive")) |
| return true; |
| |
| if (!Section) { |
| getStreamer().InitSections(false); |
| Section = getStreamer().getCurrentSectionOnly(); |
| } |
| |
| assert(Section && "must have section to emit alignment"); |
| if (Section->UseCodeAlign()) |
| getStreamer().EmitCodeAlignment(2); |
| else |
| getStreamer().EmitValueToAlignment(2); |
| |
| return false; |
| } |
| |
| /// parseDirectivePersonalityIndex |
| /// ::= .personalityindex index |
| bool ARMAsmParser::parseDirectivePersonalityIndex(SMLoc L) { |
| MCAsmParser &Parser = getParser(); |
| bool HasExistingPersonality = UC.hasPersonality(); |
| |
| const MCExpr *IndexExpression; |
| SMLoc IndexLoc = Parser.getTok().getLoc(); |
| if (Parser.parseExpression(IndexExpression) || |
| parseToken(AsmToken::EndOfStatement, |
| "unexpected token in '.personalityindex' directive")) { |
| return true; |
| } |
| |
| UC.recordPersonalityIndex(L); |
| |
| if (!UC.hasFnStart()) { |
| return Error(L, ".fnstart must precede .personalityindex directive"); |
| } |
| if (UC.cantUnwind()) { |
| Error(L, ".personalityindex cannot be used with .cantunwind"); |
| UC.emitCantUnwindLocNotes(); |
| return true; |
| } |
| if (UC.hasHandlerData()) { |
| Error(L, ".personalityindex must precede .handlerdata directive"); |
| UC.emitHandlerDataLocNotes(); |
| return true; |
| } |
| if (HasExistingPersonality) { |
| Error(L, "multiple personality directives"); |
| UC.emitPersonalityLocNotes(); |
| return true; |
| } |
| |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(IndexExpression); |
| if (!CE) |
| return Error(IndexLoc, "index must be a constant number"); |
| if (CE->getValue() < 0 || CE->getValue() >= ARM::EHABI::NUM_PERSONALITY_INDEX) |
| return Error(IndexLoc, |
| "personality routine index should be in range [0-3]"); |
| |
| getTargetStreamer().emitPersonalityIndex(CE->getValue()); |
| return false; |
| } |
| |
| /// parseDirectiveUnwindRaw |
| /// ::= .unwind_raw offset, opcode [, opcode...] |
| bool ARMAsmParser::parseDirectiveUnwindRaw(SMLoc L) { |
| MCAsmParser &Parser = getParser(); |
| int64_t StackOffset; |
| const MCExpr *OffsetExpr; |
| SMLoc OffsetLoc = getLexer().getLoc(); |
| |
| if (!UC.hasFnStart()) |
| return Error(L, ".fnstart must precede .unwind_raw directives"); |
| if (getParser().parseExpression(OffsetExpr)) |
| return Error(OffsetLoc, "expected expression"); |
| |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); |
| if (!CE) |
| return Error(OffsetLoc, "offset must be a constant"); |
| |
| StackOffset = CE->getValue(); |
| |
| if (Parser.parseToken(AsmToken::Comma, "expected comma")) |
| return true; |
| |
| SmallVector<uint8_t, 16> Opcodes; |
| |
| auto parseOne = [&]() -> bool { |
| const MCExpr *OE; |
| SMLoc OpcodeLoc = getLexer().getLoc(); |
| if (check(getLexer().is(AsmToken::EndOfStatement) || |
| Parser.parseExpression(OE), |
| OpcodeLoc, "expected opcode expression")) |
| return true; |
| const MCConstantExpr *OC = dyn_cast<MCConstantExpr>(OE); |
| if (!OC) |
| return Error(OpcodeLoc, "opcode value must be a constant"); |
| const int64_t Opcode = OC->getValue(); |
| if (Opcode & ~0xff) |
| return Error(OpcodeLoc, "invalid opcode"); |
| Opcodes.push_back(uint8_t(Opcode)); |
| return false; |
| }; |
| |
| // Must have at least 1 element |
| SMLoc OpcodeLoc = getLexer().getLoc(); |
| if (parseOptionalToken(AsmToken::EndOfStatement)) |
| return Error(OpcodeLoc, "expected opcode expression"); |
| if (parseMany(parseOne)) |
| return true; |
| |
| getTargetStreamer().emitUnwindRaw(StackOffset, Opcodes); |
| return false; |
| } |
| |
| /// parseDirectiveTLSDescSeq |
| /// ::= .tlsdescseq tls-variable |
| bool ARMAsmParser::parseDirectiveTLSDescSeq(SMLoc L) { |
| MCAsmParser &Parser = getParser(); |
| |
| if (getLexer().isNot(AsmToken::Identifier)) |
| return TokError("expected variable after '.tlsdescseq' directive"); |
| |
| const MCSymbolRefExpr *SRE = |
| MCSymbolRefExpr::create(Parser.getTok().getIdentifier(), |
| MCSymbolRefExpr::VK_ARM_TLSDESCSEQ, getContext()); |
| Lex(); |
| |
| if (parseToken(AsmToken::EndOfStatement, |
| "unexpected token in '.tlsdescseq' directive")) |
| return true; |
| |
| getTargetStreamer().AnnotateTLSDescriptorSequence(SRE); |
| return false; |
| } |
| |
| /// parseDirectiveMovSP |
| /// ::= .movsp reg [, #offset] |
| bool ARMAsmParser::parseDirectiveMovSP(SMLoc L) { |
| MCAsmParser &Parser = getParser(); |
| if (!UC.hasFnStart()) |
| return Error(L, ".fnstart must precede .movsp directives"); |
| if (UC.getFPReg() != ARM::SP) |
| return Error(L, "unexpected .movsp directive"); |
| |
| SMLoc SPRegLoc = Parser.getTok().getLoc(); |
| int SPReg = tryParseRegister(); |
| if (SPReg == -1) |
| return Error(SPRegLoc, "register expected"); |
| if (SPReg == ARM::SP || SPReg == ARM::PC) |
| return Error(SPRegLoc, "sp and pc are not permitted in .movsp directive"); |
| |
| int64_t Offset = 0; |
| if (Parser.parseOptionalToken(AsmToken::Comma)) { |
| if (Parser.parseToken(AsmToken::Hash, "expected #constant")) |
| return true; |
| |
| const MCExpr *OffsetExpr; |
| SMLoc OffsetLoc = Parser.getTok().getLoc(); |
| |
| if (Parser.parseExpression(OffsetExpr)) |
| return Error(OffsetLoc, "malformed offset expression"); |
| |
| const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); |
| if (!CE) |
| return Error(OffsetLoc, "offset must be an immediate constant"); |
| |
| Offset = CE->getValue(); |
| } |
| |
| if (parseToken(AsmToken::EndOfStatement, |
| "unexpected token in '.movsp' directive")) |
| return true; |
| |
| getTargetStreamer().emitMovSP(SPReg, Offset); |
| UC.saveFPReg(SPReg); |
| |
| return false; |
| } |
| |
| /// parseDirectiveObjectArch |
| /// ::= .object_arch name |
| bool ARMAsmParser::parseDirectiveObjectArch(SMLoc L) { |
| MCAsmParser &Parser = getParser(); |
| if (getLexer().isNot(AsmToken::Identifier)) |
| return Error(getLexer().getLoc(), "unexpected token"); |
| |
| StringRef Arch = Parser.getTok().getString(); |
| SMLoc ArchLoc = Parser.getTok().getLoc(); |
| Lex(); |
| |
| ARM::ArchKind ID = ARM::parseArch(Arch); |
| |
| if (ID == ARM::ArchKind::INVALID) |
| return Error(ArchLoc, "unknown architecture '" + Arch + "'"); |
| if (parseToken(AsmToken::EndOfStatement)) |
| return true; |
| |
| getTargetStreamer().emitObjectArch(ID); |
| return false; |
| } |
| |
| /// parseDirectiveAlign |
| /// ::= .align |
| bool ARMAsmParser::parseDirectiveAlign(SMLoc L) { |
| // NOTE: if this is not the end of the statement, fall back to the target |
| // agnostic handling for this directive which will correctly handle this. |
| if (parseOptionalToken(AsmToken::EndOfStatement)) { |
| // '.align' is target specifically handled to mean 2**2 byte alignment. |
| const MCSection *Section = getStreamer().getCurrentSectionOnly(); |
| assert(Section && "must have section to emit alignment"); |
| if (Section->UseCodeAlign()) |
| getStreamer().EmitCodeAlignment(4, 0); |
| else |
| getStreamer().EmitValueToAlignment(4, 0, 1, 0); |
| return false; |
| } |
| return true; |
| } |
| |
| /// parseDirectiveThumbSet |
| /// ::= .thumb_set name, value |
| bool ARMAsmParser::parseDirectiveThumbSet(SMLoc L) { |
| MCAsmParser &Parser = getParser(); |
| |
| StringRef Name; |
| if (check(Parser.parseIdentifier(Name), |
| "expected identifier after '.thumb_set'") || |
| parseToken(AsmToken::Comma, "expected comma after name '" + Name + "'")) |
| return true; |
| |
| MCSymbol *Sym; |
| const MCExpr *Value; |
| if (MCParserUtils::parseAssignmentExpression(Name, /* allow_redef */ true, |
| Parser, Sym, Value)) |
| return true; |
| |
| getTargetStreamer().emitThumbSet(Sym, Value); |
| return false; |
| } |
| |
| /// Force static initialization. |
| extern "C" void LLVMInitializeARMAsmParser() { |
| RegisterMCAsmParser<ARMAsmParser> X(getTheARMLETarget()); |
| RegisterMCAsmParser<ARMAsmParser> Y(getTheARMBETarget()); |
| RegisterMCAsmParser<ARMAsmParser> A(getTheThumbLETarget()); |
| RegisterMCAsmParser<ARMAsmParser> B(getTheThumbBETarget()); |
| } |
| |
| #define GET_REGISTER_MATCHER |
| #define GET_SUBTARGET_FEATURE_NAME |
| #define GET_MATCHER_IMPLEMENTATION |
| #define GET_MNEMONIC_SPELL_CHECKER |
| #include "ARMGenAsmMatcher.inc" |
| |
| // Some diagnostics need to vary with subtarget features, so they are handled |
| // here. For example, the DPR class has either 16 or 32 registers, depending |
| // on the FPU available. |
| const char * |
| ARMAsmParser::getCustomOperandDiag(ARMMatchResultTy MatchError) { |
| switch (MatchError) { |
| // rGPR contains sp starting with ARMv8. |
| case Match_rGPR: |
| return hasV8Ops() ? "operand must be a register in range [r0, r14]" |
| : "operand must be a register in range [r0, r12] or r14"; |
| // DPR contains 16 registers for some FPUs, and 32 for others. |
| case Match_DPR: |
| return hasD32() ? "operand must be a register in range [d0, d31]" |
| : "operand must be a register in range [d0, d15]"; |
| case Match_DPR_RegList: |
| return hasD32() ? "operand must be a list of registers in range [d0, d31]" |
| : "operand must be a list of registers in range [d0, d15]"; |
| |
| // For all other diags, use the static string from tablegen. |
| default: |
| return getMatchKindDiag(MatchError); |
| } |
| } |
| |
| // Process the list of near-misses, throwing away ones we don't want to report |
| // to the user, and converting the rest to a source location and string that |
| // should be reported. |
| void |
| ARMAsmParser::FilterNearMisses(SmallVectorImpl<NearMissInfo> &NearMissesIn, |
| SmallVectorImpl<NearMissMessage> &NearMissesOut, |
| SMLoc IDLoc, OperandVector &Operands) { |
| // TODO: If operand didn't match, sub in a dummy one and run target |
| // predicate, so that we can avoid reporting near-misses that are invalid? |
| // TODO: Many operand types dont have SuperClasses set, so we report |
| // redundant ones. |
| // TODO: Some operands are superclasses of registers (e.g. |
| // MCK_RegShiftedImm), we don't have any way to represent that currently. |
| // TODO: This is not all ARM-specific, can some of it be factored out? |
| |
| // Record some information about near-misses that we have already seen, so |
| // that we can avoid reporting redundant ones. For example, if there are |
| // variants of an instruction that take 8- and 16-bit immediates, we want |
| // to only report the widest one. |
| std::multimap<unsigned, unsigned> OperandMissesSeen; |
| SmallSet<FeatureBitset, 4> FeatureMissesSeen; |
| bool ReportedTooFewOperands = false; |
| |
| // Process the near-misses in reverse order, so that we see more general ones |
| // first, and so can avoid emitting more specific ones. |
| for (NearMissInfo &I : reverse(NearMissesIn)) { |
| switch (I.getKind()) { |
| case NearMissInfo::NearMissOperand: { |
| SMLoc OperandLoc = |
| ((ARMOperand &)*Operands[I.getOperandIndex()]).getStartLoc(); |
| const char *OperandDiag = |
| getCustomOperandDiag((ARMMatchResultTy)I.getOperandError()); |
| |
| // If we have already emitted a message for a superclass, don't also report |
| // the sub-class. We consider all operand classes that we don't have a |
| // specialised diagnostic for to be equal for the propose of this check, |
| // so that we don't report the generic error multiple times on the same |
| // operand. |
| unsigned DupCheckMatchClass = OperandDiag ? I.getOperandClass() : ~0U; |
| auto PrevReports = OperandMissesSeen.equal_range(I.getOperandIndex()); |
| if (std::any_of(PrevReports.first, PrevReports.second, |
| [DupCheckMatchClass]( |
| const std::pair<unsigned, unsigned> Pair) { |
| if (DupCheckMatchClass == ~0U || Pair.second == ~0U) |
| return Pair.second == DupCheckMatchClass; |
| else |
| return isSubclass((MatchClassKind)DupCheckMatchClass, |
| (MatchClassKind)Pair.second); |
| })) |
| break; |
| OperandMissesSeen.insert( |
| std::make_pair(I.getOperandIndex(), DupCheckMatchClass)); |
| |
| NearMissMessage Message; |
| Message.Loc = OperandLoc; |
| if (OperandDiag) { |
| Message.Message = OperandDiag; |
| } else if (I.getOperandClass() == InvalidMatchClass) { |
| Message.Message = "too many operands for instruction"; |
| } else { |
| Message.Message = "invalid operand for instruction"; |
| LLVM_DEBUG( |
| dbgs() << "Missing diagnostic string for operand class " |
| << getMatchClassName((MatchClassKind)I.getOperandClass()) |
| << I.getOperandClass() << ", error " << I.getOperandError() |
| << ", opcode " << MII.getName(I.getOpcode()) << "\n"); |
| } |
| NearMissesOut.emplace_back(Message); |
| break; |
| } |
| case NearMissInfo::NearMissFeature: { |
| const FeatureBitset &MissingFeatures = I.getFeatures(); |
| // Don't report the same set of features twice. |
| if (FeatureMissesSeen.count(MissingFeatures)) |
| break; |
| FeatureMissesSeen.insert(MissingFeatures); |
| |
| // Special case: don't report a feature set which includes arm-mode for |
| // targets that don't have ARM mode. |
| if (MissingFeatures.test(Feature_IsARMBit) && !hasARM()) |
| break; |
| // Don't report any near-misses that both require switching instruction |
| // set, and adding other subtarget features. |
| if (isThumb() && MissingFeatures.test(Feature_IsARMBit) && |
| MissingFeatures.count() > 1) |
| break; |
| if (!isThumb() && MissingFeatures.test(Feature_IsThumbBit) && |
| MissingFeatures.count() > 1) |
| break; |
| if (!isThumb() && MissingFeatures.test(Feature_IsThumb2Bit) && |
| (MissingFeatures & ~FeatureBitset({Feature_IsThumb2Bit, |
| Feature_IsThumbBit})).any()) |
| break; |
| if (isMClass() && MissingFeatures.test(Feature_HasNEONBit)) |
| break; |
| |
| NearMissMessage Message; |
| Message.Loc = IDLoc; |
| raw_svector_ostream OS(Message.Message); |
| |
| OS << "instruction requires:"; |
| for (unsigned i = 0, e = MissingFeatures.size(); i != e; ++i) |
| if (MissingFeatures.test(i)) |
| OS << ' ' << getSubtargetFeatureName(i); |
| |
| NearMissesOut.emplace_back(Message); |
| |
| break; |
| } |
| case NearMissInfo::NearMissPredicate: { |
| NearMissMessage Message; |
| Message.Loc = IDLoc; |
| switch (I.getPredicateError()) { |
| case Match_RequiresNotITBlock: |
| Message.Message = "flag setting instruction only valid outside IT block"; |
| break; |
| case Match_RequiresITBlock: |
| Message.Message = "instruction only valid inside IT block"; |
| break; |
| case Match_RequiresV6: |
| Message.Message = "instruction variant requires ARMv6 or later"; |
| break; |
| case Match_RequiresThumb2: |
| Message.Message = "instruction variant requires Thumb2"; |
| break; |
| case Match_RequiresV8: |
| Message.Message = "instruction variant requires ARMv8 or later"; |
| break; |
| case Match_RequiresFlagSetting: |
| Message.Message = "no flag-preserving variant of this instruction available"; |
| break; |
| case Match_InvalidOperand: |
| Message.Message = "invalid operand for instruction"; |
| break; |
| default: |
| llvm_unreachable("Unhandled target predicate error"); |
| break; |
| } |
| NearMissesOut.emplace_back(Message); |
| break; |
| } |
| case NearMissInfo::NearMissTooFewOperands: { |
| if (!ReportedTooFewOperands) { |
| SMLoc EndLoc = ((ARMOperand &)*Operands.back()).getEndLoc(); |
| NearMissesOut.emplace_back(NearMissMessage{ |
| EndLoc, StringRef("too few operands for instruction")}); |
| ReportedTooFewOperands = true; |
| } |
| break; |
| } |
| case NearMissInfo::NoNearMiss: |
| // This should never leave the matcher. |
| llvm_unreachable("not a near-miss"); |
| break; |
| } |
| } |
| } |
| |
| void ARMAsmParser::ReportNearMisses(SmallVectorImpl<NearMissInfo> &NearMisses, |
| SMLoc IDLoc, OperandVector &Operands) { |
| SmallVector<NearMissMessage, 4> Messages; |
| FilterNearMisses(NearMisses, Messages, IDLoc, Operands); |
| |
| if (Messages.size() == 0) { |
| // No near-misses were found, so the best we can do is "invalid |
| // instruction". |
| Error(IDLoc, "invalid instruction"); |
| } else if (Messages.size() == 1) { |
| // One near miss was found, report it as the sole error. |
| Error(Messages[0].Loc, Messages[0].Message); |
| } else { |
| // More than one near miss, so report a generic "invalid instruction" |
| // error, followed by notes for each of the near-misses. |
| Error(IDLoc, "invalid instruction, any one of the following would fix this:"); |
| for (auto &M : Messages) { |
| Note(M.Loc, M.Message); |
| } |
| } |
| } |
| |
| /// parseDirectiveArchExtension |
| /// ::= .arch_extension [no]feature |
| bool ARMAsmParser::parseDirectiveArchExtension(SMLoc L) { |
| // FIXME: This structure should be moved inside ARMTargetParser |
| // when we start to table-generate them, and we can use the ARM |
| // flags below, that were generated by table-gen. |
| static const struct { |
| const unsigned Kind; |
| const FeatureBitset ArchCheck; |
| const FeatureBitset Features; |
| } Extensions[] = { |
| { ARM::AEK_CRC, {Feature_HasV8Bit}, {ARM::FeatureCRC} }, |
| { ARM::AEK_CRYPTO, {Feature_HasV8Bit}, |
| {ARM::FeatureCrypto, ARM::FeatureNEON, ARM::FeatureFPARMv8} }, |
| { ARM::AEK_FP, {Feature_HasV8Bit}, |
| {ARM::FeatureVFP2_D16_SP, ARM::FeatureFPARMv8} }, |
| { (ARM::AEK_HWDIVTHUMB | ARM::AEK_HWDIVARM), |
| {Feature_HasV7Bit, Feature_IsNotMClassBit}, |
| {ARM::FeatureHWDivThumb, ARM::FeatureHWDivARM} }, |
| { ARM::AEK_MP, {Feature_HasV7Bit, Feature_IsNotMClassBit}, |
| {ARM::FeatureMP} }, |
| { ARM::AEK_SIMD, {Feature_HasV8Bit}, |
| {ARM::FeatureNEON, ARM::FeatureVFP2_D16_SP, ARM::FeatureFPARMv8} }, |
| { ARM::AEK_SEC, {Feature_HasV6KBit}, {ARM::FeatureTrustZone} }, |
| // FIXME: Only available in A-class, isel not predicated |
| { ARM::AEK_VIRT, {Feature_HasV7Bit}, {ARM::FeatureVirtualization} }, |
| { ARM::AEK_FP16, {Feature_HasV8_2aBit}, |
| {ARM::FeatureFPARMv8, ARM::FeatureFullFP16} }, |
| { ARM::AEK_RAS, {Feature_HasV8Bit}, {ARM::FeatureRAS} }, |
| { ARM::AEK_LOB, {Feature_HasV8_1MMainlineBit}, {ARM::FeatureLOB} }, |
| // FIXME: Unsupported extensions. |
| { ARM::AEK_OS, {}, {} }, |
| { ARM::AEK_IWMMXT, {}, {} }, |
| { ARM::AEK_IWMMXT2, {}, {} }, |
| { ARM::AEK_MAVERICK, {}, {} }, |
| { ARM::AEK_XSCALE, {}, {} }, |
| }; |
| |
| MCAsmParser &Parser = getParser(); |
| |
| if (getLexer().isNot(AsmToken::Identifier)) |
| return Error(getLexer().getLoc(), "expected architecture extension name"); |
| |
| StringRef Name = Parser.getTok().getString(); |
| SMLoc ExtLoc = Parser.getTok().getLoc(); |
| Lex(); |
| |
| if (parseToken(AsmToken::EndOfStatement, |
| "unexpected token in '.arch_extension' directive")) |
| return true; |
| |
| bool EnableFeature = true; |
| if (Name.startswith_lower("no")) { |
| EnableFeature = false; |
| Name = Name.substr(2); |
| } |
| unsigned FeatureKind = ARM::parseArchExt(Name); |
| if (FeatureKind == ARM::AEK_INVALID) |
| return Error(ExtLoc, "unknown architectural extension: " + Name); |
| |
| for (const auto &Extension : Extensions) { |
| if (Extension.Kind != FeatureKind) |
| continue; |
| |
| if (Extension.Features.none()) |
| return Error(ExtLoc, "unsupported architectural extension: " + Name); |
| |
| if ((getAvailableFeatures() & Extension.ArchCheck) != Extension.ArchCheck) |
| return Error(ExtLoc, "architectural extension '" + Name + |
| "' is not " |
| "allowed for the current base architecture"); |
| |
| MCSubtargetInfo &STI = copySTI(); |
| if (EnableFeature) { |
| STI.SetFeatureBitsTransitively(Extension.Features); |
| } else { |
| STI.ClearFeatureBitsTransitively(Extension.Features); |
| } |
| FeatureBitset Features = ComputeAvailableFeatures(STI.getFeatureBits()); |
| setAvailableFeatures(Features); |
| return false; |
| } |
| |
| return Error(ExtLoc, "unknown architectural extension: " + Name); |
| } |
| |
| // Define this matcher function after the auto-generated include so we |
| // have the match class enum definitions. |
| unsigned ARMAsmParser::validateTargetOperandClass(MCParsedAsmOperand &AsmOp, |
| unsigned Kind) { |
| ARMOperand &Op = static_cast<ARMOperand &>(AsmOp); |
| // If the kind is a token for a literal immediate, check if our asm |
| // operand matches. This is for InstAliases which have a fixed-value |
| // immediate in the syntax. |
| switch (Kind) { |
| default: break; |
| case MCK__35_0: |
| if (Op.isImm()) |
| if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm())) |
| if (CE->getValue() == 0) |
| return Match_Success; |
| break; |
| case MCK__35_8: |
| if (Op.isImm()) |
| if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm())) |
| if (CE->getValue() == 8) |
| return Match_Success; |
| break; |
| case MCK__35_16: |
| if (Op.isImm()) |
| if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm())) |
| if (CE->getValue() == 16) |
| return Match_Success; |
| break; |
| case MCK_ModImm: |
| if (Op.isImm()) { |
| const MCExpr *SOExpr = Op.getImm(); |
| int64_t Value; |
| if (!SOExpr->evaluateAsAbsolute(Value)) |
| return Match_Success; |
| assert((Value >= std::numeric_limits<int32_t>::min() && |
| Value <= std::numeric_limits<uint32_t>::max()) && |
| "expression value must be representable in 32 bits"); |
| } |
| break; |
| case MCK_rGPR: |
| if (hasV8Ops() && Op.isReg() && Op.getReg() == ARM::SP) |
| return Match_Success; |
| return Match_rGPR; |
| case MCK_GPRPair: |
| if (Op.isReg() && |
| MRI->getRegClass(ARM::GPRRegClassID).contains(Op.getReg())) |
| return Match_Success; |
| break; |
| } |
| return Match_InvalidOperand; |
| } |
| |
| bool ARMAsmParser::isMnemonicVPTPredicable(StringRef Mnemonic, |
| StringRef ExtraToken) { |
| if (!hasMVE()) |
| return false; |
| |
| return Mnemonic.startswith("vabav") || Mnemonic.startswith("vaddv") || |
| Mnemonic.startswith("vaddlv") || Mnemonic.startswith("vminnmv") || |
| Mnemonic.startswith("vminnmav") || Mnemonic.startswith("vminv") || |
| Mnemonic.startswith("vminav") || Mnemonic.startswith("vmaxnmv") || |
| Mnemonic.startswith("vmaxnmav") || Mnemonic.startswith("vmaxv") || |
| Mnemonic.startswith("vmaxav") || Mnemonic.startswith("vmladav") || |
| Mnemonic.startswith("vrmlaldavh") || Mnemonic.startswith("vrmlalvh") || |
| Mnemonic.startswith("vmlsdav") || Mnemonic.startswith("vmlav") || |
| Mnemonic.startswith("vmlaldav") || Mnemonic.startswith("vmlalv") || |
| Mnemonic.startswith("vmaxnm") || Mnemonic.startswith("vminnm") || |
| Mnemonic.startswith("vmax") || Mnemonic.startswith("vmin") || |
| Mnemonic.startswith("vshlc") || Mnemonic.startswith("vmovlt") || |
| Mnemonic.startswith("vmovlb") || Mnemonic.startswith("vshll") || |
| Mnemonic.startswith("vrshrn") || Mnemonic.startswith("vshrn") || |
| Mnemonic.startswith("vqrshrun") || Mnemonic.startswith("vqshrun") || |
| Mnemonic.startswith("vqrshrn") || Mnemonic.startswith("vqshrn") || |
| Mnemonic.startswith("vbic") || Mnemonic.startswith("vrev64") || |
| Mnemonic.startswith("vrev32") || Mnemonic.startswith("vrev16") || |
| Mnemonic.startswith("vmvn") || Mnemonic.startswith("veor") || |
| Mnemonic.startswith("vorn") || Mnemonic.startswith("vorr") || |
| Mnemonic.startswith("vand") || Mnemonic.startswith("vmul") || |
| Mnemonic.startswith("vqrdmulh") || Mnemonic.startswith("vqdmulh") || |
| Mnemonic.startswith("vsub") || Mnemonic.startswith("vadd") || |
| Mnemonic.startswith("vqsub") || Mnemonic.startswith("vqadd") || |
| Mnemonic.startswith("vabd") || Mnemonic.startswith("vrhadd") || |
| Mnemonic.startswith("vhsub") || Mnemonic.startswith("vhadd") || |
| Mnemonic.startswith("vdup") || Mnemonic.startswith("vcls") || |
| Mnemonic.startswith("vclz") || Mnemonic.startswith("vneg") || |
| Mnemonic.startswith("vabs") || Mnemonic.startswith("vqneg") || |
| Mnemonic.startswith("vqabs") || |
| (Mnemonic.startswith("vrint") && Mnemonic != "vrintr") || |
| Mnemonic.startswith("vcmla") || Mnemonic.startswith("vfma") || |
| Mnemonic.startswith("vfms") || Mnemonic.startswith("vcadd") || |
| Mnemonic.startswith("vadd") || Mnemonic.startswith("vsub") || |
| Mnemonic.startswith("vshl") || Mnemonic.startswith("vqshl") || |
| Mnemonic.startswith("vqrshl") || Mnemonic.startswith("vrshl") || |
| Mnemonic.startswith("vsri") || Mnemonic.startswith("vsli") || |
| Mnemonic.startswith("vrshr") || Mnemonic.startswith("vshr") || |
| Mnemonic.startswith("vpsel") || Mnemonic.startswith("vcmp") || |
| Mnemonic.startswith("vqdmladh") || Mnemonic.startswith("vqrdmladh") || |
| Mnemonic.startswith("vqdmlsdh") || Mnemonic.startswith("vqrdmlsdh") || |
| Mnemonic.startswith("vcmul") || Mnemonic.startswith("vrmulh") || |
| Mnemonic.startswith("vqmovn") || Mnemonic.startswith("vqmovun") || |
| Mnemonic.startswith("vmovnt") || Mnemonic.startswith("vmovnb") || |
| Mnemonic.startswith("vmaxa") || Mnemonic.startswith("vmaxnma") || |
| Mnemonic.startswith("vhcadd") || Mnemonic.startswith("vadc") || |
| Mnemonic.startswith("vsbc") || Mnemonic.startswith("vrshr") || |
| Mnemonic.startswith("vshr") || Mnemonic.startswith("vstrb") || |
| Mnemonic.startswith("vldrb") || |
| (Mnemonic.startswith("vstrh") && Mnemonic != "vstrhi") || |
| (Mnemonic.startswith("vldrh") && Mnemonic != "vldrhi") || |
| Mnemonic.startswith("vstrw") || Mnemonic.startswith("vldrw") || |
| Mnemonic.startswith("vldrd") || Mnemonic.startswith("vstrd") || |
| Mnemonic.startswith("vqdmull") || Mnemonic.startswith("vbrsr") || |
| Mnemonic.startswith("vfmas") || Mnemonic.startswith("vmlas") || |
| Mnemonic.startswith("vmla") || Mnemonic.startswith("vqdmlash") || |
| Mnemonic.startswith("vqdmlah") || Mnemonic.startswith("vqrdmlash") || |
| Mnemonic.startswith("vqrdmlah") || Mnemonic.startswith("viwdup") || |
| Mnemonic.startswith("vdwdup") || Mnemonic.startswith("vidup") || |
| Mnemonic.startswith("vddup") || Mnemonic.startswith("vctp") || |
| Mnemonic.startswith("vpnot") || Mnemonic.startswith("vbic") || |
| Mnemonic.startswith("vrmlsldavh") || Mnemonic.startswith("vmlsldav") || |
| Mnemonic.startswith("vcvt") || |
| (Mnemonic.startswith("vmov") && |
| !(ExtraToken == ".f16" || ExtraToken == ".32" || |
| ExtraToken == ".16" || ExtraToken == ".8")); |
| } |